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Abstract

In this article we review and summarize recent developments on nonsmooth equa-
tions and smoothing Newton methods. Several new suggestions are presented.

1 Introduction

Suppose that H : <n → <n is locally Lipschitz but not necessarily continuously differen-
tiable. To solve

H(x) = 0 (1.1)

has become one of most active research directions in mathematical programming. The early
study of nonsmooth equations can be traced back to [Eav71, Man75, Man76]. The system of
nonsmooth equations arises from many applications. Pang and Qi [PaQ93] reviewed eight
problems in the study of complementarity problems, variational inequality problems and
optimization problems, which can be reformulated as systems of nonsmooth equations. In
this paper, we review recent developments of algorithms for solving nonsmooth equations.
Section 2 is devoted to semismooth Newton methods and Section 3 discusses smoothing
Newton methods. We make several final remarks in Section 4.

2 Semismooth Newton methods

2.1 Local Semismooth Newton methods

Some extensions of Newton and quasi-Newton methods have been developed; Josephy
[Jos79a, Jos79b] for strongly regular generalized equations which were extensively discussed
by Robinson [Rob80, Rob82, Rob83], Pang and Chan [PaC82] for variational inequalities
and complementarity problems. Some early studies of solving systems of nonsmooth equa-
tions by Newton’s methods include Kojima and Shindo [KoS86] for piece-wise smooth
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equations, Pang [Pan90] and Robinson [Rob94] for B-differentiable equations and Kummer
[Kum88] for locally Lipschitz functions. Subsequently, a number of generalized Newton
methods were proposed for nonsmooth equations and related problems, see, for example
[DiF95, Fis92, HaX90, Kum88, OuZ95, Pan90, Pan91, Qi93, QiS93, PaQ93, PaG93, Ral94,
Mor94, XiH90a, XiH90b]. Some methods solve nonlinear subproblems at each step, see
[Jos79a, Rob94, Pan90, Pan91, Ral94, DiF95, XiH90a, XiH90b]. In some special cases,
these nonlinear subproblems are solvable. Superlinear convergence results were established
based on this. Qi and Sun [QiS93] analysed a generalized Newton method for solving (1.1),
in which a system of linear equations is solved at each step. Superlinear convergence of
their generalized Newton method is based on a key concept of so-called semismoothness.
Independently, Kummer [Kum92] presented a general analysis of superlinear convergence
for generalized Newton methods of nonsmooth equations under similar conditions used in
Qi and Sun [QiS93].

Suppose that H of (1.1) is locally Lipschitz. By Rademacher’s Theorem, H is almost
everywhere differentiable. Let

DH = {x | H is differentiable at x}.

Then the generalized Jacobian of H at x can be defined by

∂H(x) = conv∂BH(x),

where
∂BH(x) = { lim

xj→x
xj∈DH

H ′(xj)}.

The generalized Newton method for solving (1.1) can be defined as follows: Having the
vector xk, compute xk+1 by

xk+1 = xk − V −1
k H(xk), (2.1)

where Vk ∈ ∂H(xk).
The generalized Newton method (2.1) reduces to the classical Newton method for a

system of equations if H is continuously differentiable. The classical Newton method
has a favorable feature that the sequence {xk} generated by (2.1) is locally superlinearly
(quadratically) convergent to a solution x∗ if H ′(x∗) is nonsingular (and H ′ is Lipschitz con-
tinuous) [OrR70, DeS83]. However, in general the iterative method (2.1) is not convergent
for nonsmooth equations (1.1). See [Kum88] for a counterexample.

In order to establish superlinear convergence of the generalized Newton method (2.1),
we state the concept of semismoothness. Let H be directionally differentiable at x. H is
said to be semismooth at x if

V d−H ′(x; d) = o(‖d‖), d→ 0

and H is called strongly semismooth at x if

V d−H ′(x; d) = O(‖d‖2), d→ 0,

where V ∈ ∂H(x + d). Semismoothness was originally introduced by Mifflin [Mif77] for
functionals. Semismooth functionals play an important role in the global convergence
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theory of nonsmooth optimization, see Polak [Pol97]. Qi and Sun [QiS93] extended the
concept of semismoothness to vector-valued functions.

Using semismoothness, Qi and Sun [QiS93] presented the following convergence theorem
for the generalized Newton method (2.1).

Theorem 2.1 Suppose that H(x∗) = 0 and that all V ∈ ∂H(x∗) are nonsingular. Then
the generalized Newton method (2.1) is Q-superlinearly convergent in a neighborhood of x∗

if H is semismooth at x∗, and quadratically convergent if H is strongly semismooth at x∗.

In [Kum92], Kummer independently discussed sufficient and necessary conditions for
the convergence of Newton method based on generalized derivatives. One of the conditions
for guaranteeing convergence (see Theorem 2 of [Kum92]) is that for any V ∈ ∂H(x +
d), d→ 0,

H(x+ d)−H(x)− V d = o(‖d‖). (2.2)

Since H is locally Lipschitz continuous, from [Sha90] we know that if H ′(x; d) exists, then
H ′(x; d) coincides with the B-derivative of H at x; i.e.,

lim
d→0

H(x+ d)−H(x)−H ′(x; d)
‖d‖

= 0.

So, if H ′(x; d) exists, then (2.2) implies that for any V ∈ ∂H(x+ d), d→ 0,

V d−H ′(x; d) = o(‖d‖).

Hence (2.2) implies the semismoothness of H at x if H ′(x; d) exists. On the other hand,
the semismoothness of H at x implies (2.2) since H ′(x; d) exists in this case [Page 465,
SuH97].

Note that the nonsingularity of ∂H(x∗) in the above theorem is somewhat restrictive in
some cases. Qi [Qi93] presented a modified version of (2.1) which may be stated as follows

xk+1 = xk − V −1
k H(xk), (2.3)

where Vk ∈ ∂BH(xk). The difference of this version from (2.1) is that Vk is chosen from
∂BH(xk) rather than the convex hull of ∂BH(xk). Analogous to Theorem 2.1, Qi [Qi93]
established the following result.

Theorem 2.2 Suppose that H(x∗) = 0 and that all V ∈ ∂BH(x∗) are nonsingular. Then
the generalized Newton method (2.3) is Q-superlinearly convergent in a neighborhood of x∗

if H is semismooth at x∗, and quadratically convergent at x∗ if H is strongly semismooth
at x∗.

For inexact versions of (2.1) and (2.3) and their superlinear convergence theorems, see
[MaQ95, FaK97a].

Pang and Qi [PaQ93] generalized the superlinear convergence results of Dennis-Moré
[DeM77] for quasi-Newton methods of smooth equations.
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Theorem 2.3 Assume that H is semismooth at x∗ and that all elements in ∂BH(x∗) are
nonsingular. Let {xk} ⊆ D be any sequence that converges to x∗ with xk 6= x∗ for all k.
Then {xk} converges Q-superlinearly to x∗ and H(x∗) = 0 if and only if

lim
k→∞

‖H(xk) + Vkd
k‖

‖dk‖
= 0, (2.4)

where Vk ∈ ∂BH(xk) and dk = xk+1 − xk.

Theorems 2.1, 2.2 and 2.3 generalize the convergence results of classical Newton method
for smooth equations without assuming differentiability of H. On the other hand, those
convergence results can be applied to some important mathematical programming problems
such as nonlinear complementarity problems, variational inequalities, the Karush-Kuhn-
Tucker (KKT) conditions of optimization problems and other related problems. Contrary
to Newton’s methods for solving nonsmooth equations, the direct application of quasi-
Newton methods to nonsmooth equations is not very successful. Nevertheless, several
quasi-Newton methods for solving structured nonsmooth equations have been successfully
obtained. See [JQCS96] for a review about this topic.

2.2 Globalization of Semismooth Newton Methods

It is noted that (2.1) is only convergent locally under the semismoothness assumption. A
natural question is that if (2.1) can be globalized similar to classical Newton’s method for
solving smooth equations. In general, the answer is negative because θ is not continuously
differentiable, where for any x ∈ <n, θ(x) is defined by

θ(x) =
1
2
‖H(x)‖2. (2.5)

Fortunately, in some special but important cases, θ can be continuously differentiable
though H itself is not smooth. For example, if H(x) = max(0, x), x ∈ <, then H is
not differentiable at x = 0, but θ is continuously differentiable on <. For the sake of
globalization, probably the most useful function is the Fischer-Burmeister function φ :
<2 → <2 [FiB92]

φ(a, b) =
√
a2 + b2 − (a+ b). (2.6)

It can be verified that φ is strongly semismooth everywhere [JiQ97, FaS97, Fis97]. Let
ψ : <2 → < be defined by

ψ(a, b) = φ(a, b)2.

Then ψ is continuously differentiable on <2, which was first discovered by Kanzow [Kan94a].
This property is very nice and, yet, is surprising at the first glance. The Fischer-Burmeister
function has attracted a number of authors’ attention and has been used extensively to
study the nonlinear complementarity problem NCP(F ): Finding x ∈ <n such that

x ≥ 0, F (x) ≥ 0, xTF (x) = 0,

where F : D ⊆ <n → <n. Since φ(a, b) = 0 if and only if a, b ≥ 0 and ab = 0. To solve
NCP(F ) is then equivalent to find a solution of the nonsmooth equation H(x) = 0 with H
give by

Hi(x) = φ(xi, Fi(x)), i = 1, ..., n. (2.7)
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Suppose that D = <n and F is continuously differentiable on <n. Then by the continuous
differentiability of ψ [Kan94a], θ is continuously differentiable on <n. See [Bil95, CCK97,
DFK96, FaK97a, FaS97, FFK96, FFK97, FFK98 Fis95, Fis97, GeK96, Jia96, Jia97a,
Kan94b, KaK98, KaQ97, Qi97, QiJ97, QiS98, SuW98, Tse96, YaF97] for more discussions
about Fischer-Burmeister function and its generalizations. Among those papers, De Luca
et al. provided a damped semismooth Newton method for solving NCP(F ). Although,
De Luca et al.’s algorithm was designed for solving H(x) = 0 with H given by (2.7), it is
apparent that it can be applied to solve any nonsmooth equations H(x) = 0 by requiring
θ to be continuously differentiable.

It has long been known [Eav71, Man76, Pan90] that to solve NCP(F ) (suppose that
D = <n) is equivalent to solve another equation H(x) = 0 with H given by

Hi(x) = min(xi, Fi(x)), i = 1, ..., n. (2.8)

It is also known (e.g., [KoS86, Rob92]) that to solve NCP(F ) is equivalent to solve the
normal equation

H(y) := F (y+) + y − y+ = 0 (2.9)

in the sense that if x is a solution of NCP(F ), then y := x − F (x) is a solution of (2.9);
conversely, if y is a solution of (2.9), then x := y+ is a solution of NCP(F ). Contrary to
the case based on (2.7), the function θ defined by (2.5) is not continuously differentiable
on <n if H is defined by (2.8) or (2.9). Even so, globally convergent methods based on
(2.9) have been successfully designed [DiF95,Ral94,Rob94].

Next, we state a damped semismooth Newton method due to De Luca et el. [DFK96] by
assuming that θ is continuously differentiable. We leave the case that θ is not continuously
differentiable to the next section, where smoothing methods will be introduced to address
the nonsmoothness issue.

Algorithm 2.1 (Damped Semismooth Newton Method [DFK96])

Step 0. Given x0 ∈ <n, β > 0, p > 2, ρ, σ ∈ (0, 1/2). k := 0.

Step 1. Select an element Vk ∈ ∂BH(xk) and solve

H(xk) + Vkd = 0. (2.10)

Let dk be the solution of (2.10) if it is solvable. If (2.10) is unsolvable or if the
condition

∇θ(xk)Tdk ≤ −β‖dk‖p

is not satisfied, let dk = −∇θ(xk).

Step 2. Let mk be the smallest nonnegative integer m such that

θ(xk + ρmdk)− θ(xk) ≤ 2σρm∇θ(xk)Tdk.

Set tk = ρmk and xk+1 = xk + tkd
k.

Step 3. Replace k by k + 1 and go to Step 1.

De Luca et al. proved the following two theorems.
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Theorem 2.4 Suppose that H is semismooth and θ is continuously differentiable. Then
any accumulation point x∗ of {xk} generated by Algorithm 2.1 is a stationary point of
θ, i.e., ∇θ(x∗) = 0. If x∗ is a solution of H(x) = 0 and all matrices in ∂BH(x∗) are
nonsingular, then the whole sequence {xk} converges to x∗ superlinearly and quadratically
if H is strongly semismooth at x∗.

Theorem 2.5 Suppose that H is defined by (2.7) and F is continuously differentiable on
<n. Then any accumulation point x∗ of {xk} generated by Algorithm 2.1 is a stationary
point of θ, i.e., ∇θ(x∗) = 0. If F ′(x∗) is a P0 matrix, in particular, a positive semidefinite
matrix, then x∗ is a solution of H(x) = 0. Moreover, if NCP(F ) is R-regular [Rob83] at
x∗, then the whole sequence {xk} converges to x∗ superlinearly, and quadratically if F ′ is
Lipschitz continuous around x∗.

Related algorithms to Algorithm 2.1 have been designed in [FaS97, JiQ97, Jia97a,
JiR97] etc. A recent study of Fischer-Burmeister function with various hybrid techniques
is included in [DFK97].

3 Smoothing Methods

3.1 Introduction

Recently there has been an increasing interest in smoothing methods for solving nonsmooth
equations arising from complementarity problems and variational inequalities, e.g., see
[Sma86, ChH93, ChH95, ChH97, ChM95, ChM96, GaM97, Kan96, KaJ98, QiC95]. The
feature of smoothing methods is to construct a smoothing approximation function G :
<n × <++ → <n of H such that for any ε > 0 and x ∈ <n, G(·, ε) is continuously
differentiable on <n and satisfies

‖H(x)−G(x, ε)‖ → 0 as ε ↓ 0 (3.1)

and then to find a solution of (1.1) by (inexactly) solving the following problems for a given
positive sequence {εk}, k = 0, 1, 2...,

G(x, εk) = 0. (3.2)

The well-known smoothing function is the so called Chen-Harker-Kanzow-Smale (CHKS)
function for approximating max(0, w), w ∈ <. The CHKS function is defined by

ξ(w, ε) =
√
w2 + 4ε2 + w

2
, (w, ε) ∈ <2. (3.3)

See [Sma86, ChH93, Kan96]. Suppose that ξ is defined by (3.3) and define P : <n×< → <
by

Pi(y, ε) = ξ(yi, ε), (y, ε) ∈ <n ×<, i = 1, ..., n. (3.4)

Then the smoothing function G of H, defined by (2.8) and (2.9), can be described by

G(x, ε) := x− P (x− F (x), ε), (x, ε) ∈ <n ×<++ (3.5)
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and
G(y, ε) := F (P (y, ε)) + y − P (y, ε), (y, ε) ∈ <n ×<++, (3.6)

respectively. For any a, b, ε ∈ <, define

φ(a, b, ε) =
√
a2 + b2 + ε2 − (a+ b). (3.7)

This function is a smoothed form of Fischer-Burmeister function and was first defined by
Kanzow [Kan96]. Jiang [Jia97b] proves that ψ(·, ·, ·) := φ(·, ·, ·)2 is continuously differen-
tiable on <3. Define G : <n+1 → <n by

Gi(x, ε) := φ(xi, Fi(x), ε), i = 1, 2, ..., n. (3.8)

Suppose that F is continuously differentiable on <n. The function G defined by (3.5),
(3.6) and (3.7), respectively, satisfies (3.1) and for any ε ∈ <++, G(·, ε) is continuously
differentiable on <n.

Smoothing techniques have also been used to solve mathematical programming prob-
lems with equilibrium constraints [FJQ98, FLP98, JiR98].

3.2 Jacobian Smoothing Newton method

The smoothing Newton method is also called as splitting Newton method or non-interior
point Newton method or homotopy Newton method. It uses the derivative of G with
respect to the first variable in the Newton method, namely

xk+1 = xk − tkG′x(xk, εk)−1H(xk), (3.9)

where εk > 0, G′x(xk, εk) denotes the derivative of G with respect to the first variable
at (xk, εk) and tk > 0 is the stepsize. Smoothing Newton method (3.9) for solving non-
smooth equation (1.1) has been studied for decades in different areas (see [CQS98] for
references). In some previous papers, method (3.9) is called a splitting method because
H(·) is split into a smooth part G(·, ε) and a nonsmooth part H(·) − G(·, ε). The global
and linear convergence of (3.9) has been discussed in [QiC95, Qi95]. In [CQS98], the au-
thors define a Jacobian consistency property and show that the smoothing approximation
functions in [ChM96, GaM97] have this property. Under suitable conditions, they proved
that the sequence {xk} generated by the smoothing Newton method is bounded and each
accumulation point is a solution of (1.1). Let ∂CH be defined by

∂CH(x) = ∂H1(x)× ∂H2(x)× . . .× ∂Hn(x).

This definition can be seen as a special case of the C-differential operator discussed in
[Qi96].

Definition 3.1 Let H be a Lipschitz continuous function in <n. We call G : <n×<++ →
<n a smoothing approximation function of H if G is continuously differentiable with respect
to the first variable and there is a constant µ > 0 such that for any x ∈ <n and ε ∈ <++,

‖G(x, ε)−H(x)‖ ≤ µε. (3.10)

Furthermore, if for any x ∈ <n,

lim
ε↓0

dist(G′x(x, ε), ∂CH(x)) = 0, (3.11)

then we say G satisfies the Jacobian consistency property.
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In this subsection we assume that G has the Jacobian consistency property, and present
a smoothing Newton method with a line search based on G. This smoothing Newton
method was called Jacobian smoothing Newton method in [KaP97] in order to differentiate
it from other smoothing methods.

We denote
θk(x) =

1
2
‖G(x, εk)‖2.

Algorithm 3.2 (Jacobian Smoothing Newton Method [CQS98])

Step 0. Given ρ, α, η ∈ (0, 1), γ ∈ (0,+∞) and a starting point x0 ∈ <n. Choose σ ∈
(0, 1

2(1− α)), and µ > 0 satisfying (3.10). Let β0 = ‖H(x0)‖ and ε0 = α
2µβ0. k := 0.

Step 1. Solve
H(xk) +G′x(xk, εk)dk = 0. (3.12)

Let dk be the solution of (3.12).

Step 2. Let mk be the smallest nonnegative integer m such that

θk(xk + ρmdk)− θk(xk) ≤ −2σρmθ(xk)

Set tk = ρmk and xk+1 = xk + tkd
k.

Step 3. 3.1 If ‖H(xk+1)‖ = 0, terminate.

3.2 If ‖H(xk+1)‖ > 0 and

‖H(xk+1)‖ ≤ max{ηβk, α−1‖H(xk+1)−G(xk+1, εk)‖}, (3.13)

we let
βk+1 = ‖H(xk+1)‖

and choose an εk+1 satisfying

0 < εk+1 ≤ min{ α
2µ
βk+1,

εk

2
}

and
dist(G′x(xk+1, εk+1), ∂CH(xk+1)) ≤ γβk+1.

3.3 If ‖H(xk+1)‖ > 0 but (3.13) does not hold, we let βk+1 = βk and εk+1 = εk.

Step 4. Replace k by k + 1 and go to Step 1.

Assumption 3.1 (i) The level set

D0 = {x ∈ <n : θ(x) ≤ (1 + α)2θ(x0)}

is bounded.

(ii) For any ε ∈ <++ and x ∈ D0, G′x(x, ε) is nonsingular.

In [CQS98], Chen et al. proved
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Theorem 3.1 Suppose that Assumption 3.1 holds. Then Algorithm 3.2 is well defined and
the generated sequence {xk} remains in D0 and satisfies

lim
k→0

H(xk) = 0.

Theorem 3.2 Suppose that Assumption 3.1 holds. Suppose that for an accumulation point
x∗ of the sequence {xk}, all V ∈ ∂CH(x∗) are nonsingular and that H is semismooth at
x∗. Then x∗ is a solution of H(x) = 0 and the sequence {xk} generated by Algorithm
3.2 converges to x∗ superlinearly. Moreover, if F is strongly semismooth at x∗, then {xk}
converges to x∗ quadratically.

There are several modifications of Algorithm 3.2. Chen and Ye [ChY98] combined
a finite termination strategy with Algorithm 3.2 to get finitely convergent results for box
constrained linear variational inequality problems. Kanzow and Pieper [KaP97] introduced
a gradient step to handle the singular case of the iteration matrices and provided numerical
results on computing complementarity problems.

3.3 Squared Smoothing Newton Methods

Algorithm 3.2 provided a general convergence result on the variable x. Its convergence anal-
ysis strongly depends on the Jacobian consistency property. It has been verified in [CQS98]
that many smoothing functions satisfy it. However, on the other hand, the smoothing func-
tions based on normal maps [Rob92], which only require the mapping to be defined on the
feasible region instead of on <n, do not satisfy this property. See [QSZ97, ZSQ98, SuQ97]
for the smoothing forms of normal maps. Moreover, even if G satisfies the Jacobian con-
sistency property, its regularized forms, e.g., G(x, ε) := G(x, ε) + εx, which are useful to
get stronger results, do not satisfy the Jacobian consistency property. In addition, more
smoothing functions which do not satisfy the Jacobian consistency property arise. See
Section 3.4 for a new example. In order to circumvent one or several of these difficul-
ties, a class of squared smoothing Newton methods were introduced in [QSZ97]. For the
sake of convenience, we suppose that for any ε < 0 and x ∈ <n, G(x, ε) = G(x,−ε) and
G(x, 0) = H(x). Define Φ : <n+1 → <n+1 by

Φ(x, ε) =

(
G(x, ε)
ε

)
, (3.14)

where G is continuously differentiable at any z := (x, ε) ∈ <n ×<++ and satisfies (3.1).
Choose ε̄ ∈ <++ and γ ∈ (0, 1) such that γε̄ < 1. Let z̄ := (0, ε̄) ∈ <n × <. Define the

merit function η : <n+1 → <+ by

η(z) := ‖Φ(z)‖2 (3.15)

and define β : <n+1 → <+ by

β(z) := γmin{1, η(z)}.

Let
Ω := {z := (x, ε) ∈ <n ×<| ε ≥ β(z)ε̄}.

Then, because for any z ∈ <n+1, β(z) ≤ γ < 1, it follows that for any x ∈ <n,

(x, ε̄) ∈ Ω.
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Algorithm 3.3 (Squared Smoothing Newton Method [QSZ97])

Step 0. Choose constants δ ∈ (0, 1), σ ∈ (0, 1/2). Let ε0 := ε̄, x0 ∈ <n be an arbitrary
point and k := 0.

Step 1. If Φ(zk) = 0 then stop. Otherwise, let βk := β(zk).

Step 2. Compute dk := (∆xk,∆εk) ∈ <n ×<n by

Φ(zk) + Φ′(zk)dk = βkz̄. (3.16)

Step 3. Let lk be the smallest nonnegative integer l satisfying

η(zk + δldk) ≤ [1− 2σ(1− γε̄)δl]η(zk). (3.17)

Define zk+1 := zk + δlkdk.

Step 4. Replace k by k + 1 and go to Step 1.

Remark. Algorithm 3.3 was first proposed in [QSZ97] and was then used in [Sun98, Qih97,
ZSQ98] for solving regularized reformulations of complementarity problems and variational
inequality problems [FaK97b, RaG97, SzG98] and in [QiL97] for solving extended order
linear complementarity problems.

Assumption 3.2 G is continuously differentiable at any (x, ε) ∈ <n × <++ and G′x(x, ε)
is nonsingular.

Qi et al. [QSZ97] proved the following two theorems.

Theorem 3.3 Suppose that Assumption 3.2 is satisfied. Then an infinite sequence {zk} is
generated by Algorithm 3.3 and each accumulation point z̃ of {zk} is a solution of Φ(z) = 0.

Stronger global convergent results have been obtained in [Sun98, Qih97, ZSQ98] by
considering various regularized forms of Φ.

Theorem 3.4 Suppose that Assumption 3.2 is satisfied and z∗ is an accumulation point
of the infinite sequence {zk} generated by Algorithm 3.3. Suppose that Φ is semismooth at
z∗ and that all V ∈ ∂Φ(z∗) are nonsingular. Then the whole sequence {zk} converges to
z∗,

‖zk+1 − z∗‖ = o(‖zk − z∗‖)

and
εk+1 = o(εk).

Furthermore, if Φ is strongly semismooth at z∗, then

‖zk+1 − z∗‖ = O(‖zk − z∗‖2)

and
εk+1 = O(εk)2.
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In Theorem 3.4 we obtained the superlinear (quadratic) convergence of εk and ‖zk−z∗‖
instead of ‖xk−x∗‖ while in Theorem 3.2 we obtain the superlinear (quadratic) of ‖xk−x∗‖,
but neither εk nor ‖zk − z∗‖.

Suppose that G is defined by (3.8) and that F is continuously differentiable. Jiang
[Jia97b] provided a different form of Φ, which was defined by

Φ(x, ε) :=

(
G(x, ε)
eε − 1

)
. (3.18)

An interesting property of such defined Φ is that for any ε > 0 and any λ ∈ (0, 1],

ε+ λ∆ε > 0

and
ε+ λ∆ε < ε,

where d := (∆x,∆ε) ∈ <n ×< is a solution of

Φ(x, ε) + Φ′(x, ε)d = 0.

Based on this observation, Jiang [Jia97b] designed a smoothing Newton method for solving
NCP(F ) with the assumption that F is a P0 function. By using the continuous differen-
tiability of η := ‖Φ‖2 and the assumption that the search directions are bounded, which
can be satisfied by assuming that F is a uniform P-function, Jiang [Jia97b] proved global
and local superlinearly (quadratically) convergent results of his method. It is noted that
Jiang’s approach can be used to any Φ with η being continuously differentiable. Moreover,
the assumption that the search directions are bounded might be removed off if similar tech-
niques used in Algorithm 3.3 are applied. Another approach to remove off the boundedness
assumption of the search directions made in [Jia97b] is to use gradient directions combined
with Newton directions [QiL98].

In Algorithm 3.3, we have assumed that the iteration matrices are nonsingular. This
may not be satisfied if for every ε > 0, G(·, ε) is not a P0-function. See [GoT97] for a
discussion on the P0 property of G(·, ε). In this case, we suggest to use a modified method,
which we will introduce below, if η is continuously differentiable on <n+1. Let Z := <n×<+

and ΠZ be the orthogonal projection operator onto Z.

Algorithm 3.4 (Modified Squared Smoothing Newton Method)

Step 0. Choose constants δ ∈ (0, 1), σ ∈ (0, 1/2) , α > 0, and p > 2. Let ε0 := ε̄, x0 ∈ <n
be an arbitrary point and k := 0.

Step 1. If Φ(zk) = 0 then stop. Otherwise, let βk := β(zk).

Step 2. Compute dk := (∆xk,∆εk) ∈ <n ×< by

Φ(zk) + Φ′(zk)dk = βkz̄. (3.19)

If (3.19) is not solvable or if the condition

∇η(zk)Tdk ≤ −α‖dk‖p (3.20)

does not hold, let

dk := (∆xk,∆εk) = ΠZ [zk −∇η(zk)]− zk.
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Step 3. Let lk be the smallest nonnegative integer l satisfying

η(zk + δldk) ≤ η(zk) + σδl∇η(xk)Tdk (3.21)

and
εk + δl∆εk > 0.

Define zk+1 := zk + δlkdk.

Step 4. Replace k by k + 1 and go to Step 1.

Remark. If dk is a solution of (3.19), then

∇η(zk)Tdk ≤ −2(1− γε̄)η(zk)

and
εk + µ∆εk > 0 ∀µ ∈ [0, 1].

Theorem 3.5 Suppose that η is continuously differentiable on <n+1. Then Algorithm 3.4
generates an infinite sequence {zk} with zk ∈ <n × <++ and any accumulation point z̃ of
{zk} satisfies

z̃ −ΠZ [z̃ −∇η(z̃)] = 0. (3.22)

Proof: First, it is easy to see that Algorithm 3.4 is well defined and generates an infinite
sequence {zk} with zk ∈ <n × <++. Suppose that z̃ is an accumulation point of {zk} but
does not satisfy (3.22). Then from z̃ − ΠZ [z̃ − ∇η(z̃)] 6= 0 and ε̃ ≥ 0, we obtain that
∇η(z̃) 6= 0. By taking a subsequence if necessary, assume that zk → z̃. We consider two
cases:

(i) There are infinitely many k such that condition (3.20) does not hold. Define

K = {k| (3.20) does not hold at the kth step}.

Suppose that K = {k1, k2, ...}. Then dkj → d̃ := ΠZ [z̃ −∇η(z̃)]− z̃ 6= 0 as j →∞.
Therefore, there exist a neighborhood N (z̃) and a positive number µ̄ ∈ (0, 1] such that

for all z := (x, ε) ∈ N (z̃), d := (∆x,∆ε) = ΠZ [z −∇η(z)]− z, and µ ∈ (0, µ̄), we have

η(z + µd) ≤ η(z) + σµ∇η(z)Td

and if ε > 0, then

ε+ µ∆ε = (1− µ)ε+ µΠ<+ [ε−∇εη(z)] > 0 ∀µ ∈ (0, 1).

Thus we can conclude that
∇η(zkj )Tdkj → 0,

which is a contradiction because −∇η(zkj )Tdkj ≥ ‖dkj‖2 and dkj → d̃ 6= 0.
(ii) There are infinitely many k such that condition (3.20) holds. Define

K = {k| (3.20) holds at the kth step}.
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Suppose that K = {k1, k2, ...}. Then {dkj} is bounded. By taking a subsequence if neces-
sary, assume that dkj → d̃ and Φ′(zkj )→ V ∈ ∂Φ(z̃) as j →∞. Then d̃ satisfies

Φ(z̃) + V d̃ = β(z̃)z̄ (3.23)

and
∇η(z̃)T d̃ ≤ −α‖d̃‖p.

Since η is continuously differentiable on <n+1, we obtain from (3.23) that

∇η(z̃)T d̃ ≤ −2(1− γε̄)η(z̃). (3.24)

Apparently, η(z̃) 6= 0, and so, ∇η(z̃)T d̃ < 0. Then there exist a neighborhood N (z̃) of z̃
and a positive number µ̄ ∈ (0, 1] such that for all z := (x, ε) ∈ N (z̃) with ε > 0, µ ∈ (0, µ̄)
and all d := (∆x,∆ε) ∈ <n ×< sufficiently close to d̃ satisfying

Φ(z) + Φ′(z)d = β(z)z̄

and
∇η(z)Td ≤ −α‖d‖p,

we have
η(z + µd) ≤ η(z) + σµ∇η(z)Td

and
ε+ µ∆ε > 0.

This implies that
∇η(z̃)T d̃ = ∇η(zkj )Tdkj → 0,

which is a contradiction because by (3.24), ∇η(z̃)T d̃ = 0 implies η(z̃) = 0.
We have completed the proof of the theorem.

In Theorem 3.5 we prove that any accumulation point z̃ of {zk} is a solution of (3.22).
This point z̃ may be not a solution of Φ(z) = 0. However, under some suitable conditions
any solution of (3.22) is a solution of Φ(z) = 0 as well. For example, let us consider NCP(F ).
Suppose that F is a continuously differentiable P0 function on <n and G is defined by (3.8).
From (3.22), V T

x G(z̃) = 0, ε̃ ≥ 0, V T
ε G(z̃)+ ε̃ ≥ 0 and ε̃(V T

ε G(z̃)+ ε̃) = 0, where V ∈ ∂G(z̃)
and V = (Vx Vε) with Vx ∈ <n ×<n and Vε ∈ <n. If ε̃ > 0, then Vx = G′x(z̃) is a P-matrix
[Kan96]. So, G(z̃) = 0, ε̃ ≥ 0 and ε̃2 = 0. This contradicts our assumption that ε̃ > 0.
Then ε̃ must be 0. From [FaS97], we know that V T

x G(z̃) = 0 implies that G(z̃) = 0. Then
z̃ is a solution of Φ(z) = 0. Comparing to Algorithm 3.3, the advantage of Algorithm 3.4 is
that during the process of iteration the iterate matrices are not required to be nonsingular.
On the other hand, if for every ε > 0, G(·, ε) is known to be a P0 function, by considering
G(x, ε) := G(x, ε)+εx if necessary, then from Theorem 3.4 we know that any accumulation
point of {zk} generated by Algorithm 3.3 is a solution of Φ(z) = 0. In general, the same
result may not hold for Algorithm 3.4. For an example, see G(x, ε) = F (x) + εx, where
F is a continuously differentiable P0-function. See [GoT97] for more discussions about the
P0 property of various G.
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Theorem 3.6 Suppose that η is continuously differentiable on <n+1 and z∗ is an accumu-
lation point of the infinite sequence {zk} generated by Algorithm 3.4. Suppose that z∗ is a
solution of Φ(z) = 0 and that Φ is semismooth at z∗. If all V ∈ ∂Φ(z∗) are nonsingular,
then the whole sequence {zk} converges to z∗,

‖zk+1 − z∗‖ = o(‖zk − z∗‖)

and
εk+1 = o(εk).

Furthermore, if Φ is strongly semismooth at z∗, then

‖zk+1 − z∗‖ = O(‖zk − z∗‖2)

and
εk+1 = O(εk)2.

Proof: The proof of this theorem is similar to that of Theorem 3.4 by noting that when
z → z∗,

‖β(z)z̄‖ = O(‖Φ(z)‖2),

which, together with the nonsingularity of all V ∈ ∂Φ(z∗), guarantees that (3.20) holds for
all zk sufficiently close to z∗.

3.4 Smoothing Newton Methods with Neighborhood Constraints

The paper of Burke and Xu [BuX98a] initialized the study of smoothing Newton methods
with various neighborhood constraints. A typical class of neighborhoods can be described
as follows. Let

N (β) := {x ∈ <n :
‖G(x, ε)‖

ε
≤ β, with 0 < ε}, (3.25)

for β > 0. Given an ε > 0 and a starting point in N (β). Then apply Newton’s methods
to G(x, ε) = 0 with ε fixed to find a new x ∈ N (β) and a decreased ε. Along this line, see
[BuX98b, ChX98, ChC97, PeL97, Tse98, Xu96, Xu97]. Since N (β) is not a very restricted
set, it is usually easy to find a staring point in this neighborhood. In order to make N (β)
bounded, we need a restrictive condition, e.g., for NCP(F ) F is assumed to be a P0 +R0

function [ChC97]. So, several refined neighborhoods are introduced. For example

N1(β) := {x ∈ <n : G(x, ε) ∈ Ω,
‖G(x, ε)‖

ε
≤ β, with 0 < ε}, (3.26)

where β > 0 and Ω is a convex set containing the origin. Along this line, see [HoY96,
ChC98, QiS98, BuX97, BuX98c].

Except [Tse98], where NCP(F ) was considered and an active set strategy was intro-
duced, the superlinear convergence of this class of smoothing Newton methods requires the
assumption of the differentiability of H at a solution point. There is still no smoothing
Newton method to have superlinear convergence without this restrictive assumption if the
refined neighborhoods are applied.

For NCP(F ), these smoothing methods require F to be well defined on <n, which may
not hold for a few problems. Moreover, the P0 property or monotonicity of F may only
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hold on <n+ instead of on <n. These require us to define new smoothing functions to use
the definition of F on <n+ only. Apparently, the normal map and its smoothing forms are
a choice. In the following, we give a new approach.

It is easy to verify that to solve NCP(F ) is also equivalent to solve

H(x) := min(x, F (x+)) = x− [x− F (x+)]+ = 0. (3.27)

Suppose that ξ and P are defined by (3.3) and (3.4), respectively. Define G : <n×< → <n
by

G(x, ε) := x− P (x− F (P (x, ε)), ε), (x, ε) ∈ <n ×<.

Then G is a smoothing approximation of H and F is only required to have definition on
<n+. This defined smoothing function G and related forms may be useful to improve the
properties of the above smoothing Newton methods with neighborhood constraints.

4 Final Remarks

In this paper we reviewed some recent developments of Newton’s methods for solving non-
smooth equations: semismooth Newton methods and smoothing Newton methods. These
two classes of methods are different but related to each other, in particular in the local
high order convergence analysis. Some related topics include

• continuously differentiable optimization approach (see [Fuk96] and references therein).

• interior point methods (see [Wri97] and references therein).

Finally, we would like to mention that some standard test libraries like GAMSLIB and
MCPLIB have been constructed by Ferris and his colleagues [DFPR94, DiF95b, FeR96].
These test problems within the MATLAB programming environment are publically avail-
able and can be downloaded by anonymous ftp from ftp.cs.wisc.edu:math-prog/matlab/.
In fact, these problems should be seriously tested for any numerical methods designed for
solving nonsmooth equations developed in the future.
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