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Abstract

In this paper, we provide a complete characterization of the robust isolated calmness

of the Karush-Kuhn-Tucker (KKT) solution mapping for convex constrained optimization

problems regularized by the nuclear norm function. This study is motivated by the recent

work in [8], where the authors show that under the Robinson constraint qualification at a

local optimal solution, the KKT solution mapping for a wide class of conic programming

problems is robustly isolated calm if and only if both the second order sufficient condition

(SOSC) and the strict Robinson constraint qualification (SRCQ) are satisfied. Based on

the variational properties of the nuclear norm function and its conjugate, we establish

the equivalence between the primal/dual SOSC and the dual/primal SRCQ. The derived

results lead to several equivalent characterizations of the robust isolated calmness of the

KKT solution mapping and add insights to the existing literature on the stability of nuclear

norm regularized convex optimization problems.
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1. Introduction

Let X and Y be two finite dimensional Euclidean spaces. Let G : X ⇉ Y be a set-valued

mapping. The graph of G is defined as gphG := {(x, y) ∈ X × Y | y ∈ G(x)}. Consider any

(x̄, ȳ) ∈ gphG. The mapping G is said to be isolated calm at x̄ for ȳ if there exist a constant

κ > 0 and open neighborhoods X of x̄ and Y of ȳ such that

G(x) ∩ Y ⊂ {ȳ}+ κ‖x− x̄‖BY, ∀ x ∈ X , (1.1)

where BY is the unit ball in Y (cf. e.g., [9, 3.9 (3I)]). The mapping G is said to be robustly

isolated calm at x̄ for ȳ if (1.1) holds and G(x) ∩ Y 6= ∅ for any x ∈ X [8, Definition 2].

In this paper, we are interested in characterizing the robust isolated calmness of the Karush-

Kuhn-Tucker (KKT) solution mapping associated with the following nuclear norm regularized
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convex optimization problem:

min
X

h(FX) + 〈C,X〉+ ‖X‖∗

s.t. AX − b ∈ Q,
(1.2)

where the function h : Rd → R is twice continuously differentiable on domh, which is assumed

to be a non-empty open convex set, and is also essentially strictly convex (i.e., h is strictly

convex on every convex subset of dom ∂h), F : Rm×n → R
d and A : Rm×n → R

e are linear

operators, C ∈ R
m×n and b ∈ R

e are given data, Q ⊆ R
e is a nonempty convex polyhedral

cone, ‖ · ‖∗ denotes the nuclear norm function in R
m×n, i.e., the sum of all the singular values

of a given matrix, and m,n, d, e are non-negative integers. The nuclear norm regularizer has

been extensively used in diverse disciplines due to its ability in promoting a low rank solution.

See the references [2, 3, 14, 17, 20, 21] for a sample of applications.

The concept of the isolated calmness is of fundamental importance in variational analysis.

The monograph [9] by Dontchev and Rockafellar contains a comprehensive study on this subject.

Besides its own interest in sensitivity analysis and perturbation theory, the isolated calmness of

the KKT solution mapping can be readily applied to provide linear rate convergence analysis

for many important primal dual type methods such as the proximal augmented Lagrangian

method [16] and the alternating direction method of multipliers [10] that can be employed

efficiently to solve large scale matrix optimization problems such as (1.2). With this application

in mind, in this paper we aim to derive easy-to-understand conditions to characterize the the

isolated calmness of the KKT solution mapping for [10].

Obviously problem (1.2) can be equivalently formulated as the following conic programming

problem
min
X,t

h(FX) + 〈C,X〉+ t

s.t. AX − b ∈ Q, (X, t) ∈ epi ‖ · ‖∗,
(1.3)

where epi ‖ ·‖∗ denotes the epigraph of the function ‖ ·‖∗. Since epi ‖ ·‖∗ is not a polyhedral set,

the sensitivity results in the conventional nonlinear programming are not applicable for problem

(1.3). Recently, some progress has been achieved in characterizing the isolated calmness of KKT

solution mappings for problems involving non-polyhedral functions. For example, Zhang and

Zhang [23] show that for the nonlinear semidefinite programming, the second order sufficient

condition (SOSC) and the strict Robinson constraint qualification (SRCQ) at a local optimal

solution together are sufficient for the KKT solution mapping to be isolated calm. Adding to this

result, Han et al. [11] show that the SRCQ is also necessary to ensure the isolated calmness of

the KKT solution mapping for such problems. In [12], Liu and Pan extend the aforementioned

results to problems constrained by the epigraph of the Ky Fan k-norm function. The most

recent work of Ding et al. [8] indicates that under the Robinson constraint qualification (RCQ)

at a local optimal solution, the KKT solution mapping for a wide class of conic programming

is robustly isolated calm at the origin for a KKT point if and only if both the SOSC and the

SRCQ hold at the reference point.

The results developed in [8] can be directly applied to problem (1.3). Thus, by examining

the relationships between the SOSCs, the (strict) RCQs as well as the robust isolated calmness

of the solution mappings corresponding to problem (1.2) and problem (1.3), we are able to

extend the work in [8] to the nuclear norm regularized convex optimization problem (1.2).

Additionally, due to the special structure of problem (1.2) and its dual, we could provide more

insightful characterizations about the isolated calmness of the KKT solution mapping. Note
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that the Lagrangian dual of problem (1.2) is given by

max
y,w,S

−〈b, y〉 − δQ◦(y)− h∗(w)

s.t. A∗y + F∗w + S + C = 0, ‖S‖2 ≤ 1,
(1.4)

where A∗ and F∗ are the adjoint of A and F , respectively, h∗(·) is the conjugate function of h

and ‖ · ‖2 denotes the spectral norm in R
m×n, i.e., the largest singular value of a given matrix.

We shall show that for problem (1.2), its SRCQ is equivalent to the SOSC of problem (1.4), and

conversely, its SOSC is equivalent to the SRCQ of problem (1.4). Armed with these results,

we are led to a relatively complete understanding of the robust isolated calmness for the KKT

solution mapping for the nuclear norm regularized convex optimization problems.

The remaining parts of this paper are organized as follows. In the next section, we provide

some preliminary results on variational analysis. In Section 3, we demonstrate how to translate

the results of set-constrained problems in [8] into the language of nonsmooth optimization

problems. In particular, this translation provides us a characterization of the robust isolated

calmness of the KKT solution mapping for the nuclear norm regularized convex optimization

problems. Section 4 is devoted to the study of the variational properties of the nuclear norm

function. The derived results play an important role in our subsequent analysis. In Section 5,

we establish the equivalence between the SOSC for the primal/dual problem and the SRCQ

for the dual/primal problem. This establishment enables us to describe the robust isolated

calmness of the KKT solution mapping for problem (1.2) via several equivalent conditions.

The following notation will be used throughout our paper:

• For a given positive integer p, we use S
p to denote the linear space of all p × p real

symmetric matrices, Sp+ the cone of all p × p positive semidefinite matrices and S
p
− the

cone of all p× p negative semidefinite matrices.

• For a given proper closed convex function θ : X → (−∞,+∞], we use dom θ to denote its

effective domain, epi θ to denote its epigraph, θ∗ to denote its conjugate and ∂θ to denote

its subdifferential, all as in standard convex analysis [15]. We also use Proxθ to denote

its proximal mapping with unit step length, i.e. (see, e.g., [18, Definition 1.22]),

Proxθ(x) := arg min
x′∈X

{
θ(x′) +

1

2
‖x′ − x‖2

}
, x ∈ X.

• LetD ⊆ R
m×n be a non-empty closed convex set. We write δD(·) as the indicator function

over D, i.e., δD(X) = 0 if X ∈ D, and δD(X) = ∞ if X 6∈ D. We write ΠD(·) as the

metric projection onto D, i.e., ΠD(X) := argminY {‖Y −X‖ | Y ∈ D} for X ∈ R
m×n.

• For any z ∈ R
m, we denote Diag(z) as the m ×m diagonal matrix whose i-th diagonal

entry is zi for i = 1, . . . ,m. Let α ⊆ {1, ...,m} and β ⊆ {1, ..., n} be two index sets. For

any Z ∈ R
m×n, we write Zα as the sub-matrix of Z by removing all the columns of Z not

in α, and Zαβ to be the |α| × |β| sub-matrix of Z obtained by removing all the rows of Z

not in α and all the columns of Z not in β.

• Let On be the set of all n × n orthogonal matrices. For any X ∈ R
m×n, let σ(X) ∈ R

m

be the vector of all singular values of X with the entries σ1(X) ≥ σ2(X) ≥ . . . ≥ σm(X),

and let Om,n(X) be the set of paired orthogonal matrices satisfying the singular value

decomposition of X , i.e.,

Om,n(X) = {(U, V ) ∈ Om ×On | X = U [Diag(σ(X)) 0]V T }.



444 Y. CUI AND D.F. SUN

2. Preliminaries

In this section, we gather some knowledge on variational analysis that will be used in our

subsequent developments. One can refer to the monograph [1] of Bonnans and Shapiro for

detailed discussions on this subject.

A cone Q ⊆ Y is said to be pointed if y ∈ Q and −y ∈ Q implies that y = 0. Let Q ⊆ Y be

a pointed convex closed cone. The closed convex set K ⊆ X is said to be C2-cone reducible at

x ∈ K to the cone Q, if there exist an open neighborhood W ⊆ X of x and a twice continuously

differentiable mapping Ξ : W → Y such that: (i) Ξ(x) = 0 ∈ Y; (ii) the derivative mapping

Ξ(x) : X → Y is onto; (iii) K ∩W = {x ∈ W | Ξ(x) ∈ Q}. We say that K is C2-cone reducible

if K is C2-cone reducible at every x ∈ K. A proper closed convex function θ : X → (−∞,∞] is

said to be C2-cone reducible at x ∈ dom θ if epi θ is C2-cone reducible at (x, θ(x)). Moreover, θ

is said to be C2-cone reducible if it is C2-cone reducible at every x ∈ dom θ.

Given a subset K ⊆ X and x ∈ K, the inner tangent cone and the contingent cone of K at

x are defined as

T i
K(x) = lim inf

t↓0

K − x

t
,

and

TK(x) = lim sup
t↓0

K − x

t
,

respectively, where the limit is taken in the sense of Painleve-Kuratowski set convergence. If

K is convex,
K − x

t
is a monotone decreasing function of t such that TK(x) = T i

K(x) for any

x ∈ K [1, Proposition 2.55]. In this case, both TK(x) and T i
K(x) are called the tangent cone of

K at x. Given x ∈ K and a direction d ∈ X, define the inner and outer second order tangent

sets at x in the direction d as

T i,2
K (x; d) := lim inf

t↓0

K − x− td
1
2 t

2
,

and

T 2
K(x; d) := lim sup

t↓0

K − x− td
1
2 t

2
,

respectively. The inner and outer second order tangent sets not necessarily coincide in general,

even if the set K is closed and convex. However, if K is a C2-cone reducible convex set, then

T i,2
K (x; d) = T 2

K(x; d) [1, Proposition 3.136].

For a given function θ : X → (−∞,+∞], the lower and upper directional epiderivatives of θ

at x ∈ dom θ in the direction h ∈ X are defined as

θ
↓
−(x;h) := lim inf

t↓0
h′→h

θ(x+ th′)− θ(x)

t
,

θ
↓
+(x;h) := sup

{tn}∈Σ

(
lim inf
n→∞
h′→h

θ(x + tnh
′)− θ(x)

tn

)
,

respectively, where Σ denotes the set of positive real sequences {tn} converging to 0. The

contingent and inner tangent cone of epi θ are closely related to the lower and upper directional

epiderivative of θ [1, Proposition 2.58]. Specifically, for any x ∈ dom θ,

Tepi θ
(
x, θ(x)

)
= epi θ↓−(x; ·), T i

epi θ

(
x, θ(x)

)
= epi θ↓+(x; ·). (2.1)
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One can observe from the above equations that if θ is a closed convex function, then θ↓−(x; ·) =

θ
↓
+(x; ·) for any x ∈ dom θ. In this case we say that θ is directionally epidifferentiable at x and

write the common value as θ↓(x; ·). If θ↓+(x; d) and θ
↓
−(x; d) are finite for x ∈ dom θ and d ∈ X,

we also define the following lower and upper second order epiderivatives for w ∈ X:

θ
�
− (x; d, w) := lim inf

t↓0

w′→w

θ(x+ td+ 1
2 t

2w′)− θ(x)− tθ
↓
−(x; d)

1
2 t

2
,

θ
�
+ (x; d, w) := sup

tn∈Σ

(
lim inf
n→∞

w′→w

θ(x+ tnd+
1
2 t

2
nw

′)− θ(x) − tnθ
↓
+(x; d)

1
2 t

2
n

)
.

Similarly to (2.1), the inner and outer second order tangent sets of epi θ are closely related to

the lower and upper second order epiderivative of θ [1, Proposition 3.41]. Specifically, for any

x ∈ dom θ and d ∈ X, if θ↓+(x; d) and θ
↓
−(x; d) are finite, then

T i,2
epi θ((x, θ(x)); (d, θ

↓
+(x; d)) = epi θ↓↓+ (x; d, ·), (2.2a)

T 2
epi θ((x, θ(x)); (d, θ

↓
−(x; d)) = epi θ↓↓− (x; d, ·). (2.2b)

3. Constraint Qualifications, Second Order Sufficient Optimality

Conditions and Robust Isolated Calmness

Consider the following canonical perturbation of a general class of nonsmooth optimization

problems (not necessarily convex):

min {f(x) + θ(x) − 〈δ1, x〉 | g(x) + δ2 ∈ P} , (3.1)

where f : X → R and g : X → Y are twice continuously differentiable functions, P ⊆ Y is

a closed convex set, θ : X → (−∞,+∞] is a closed proper convex function, and δ1 ∈ X and

δ2 ∈ Y are perturbation parameters. The purpose to perturb both the objective function and

the constraint in (3.1) is to study its KKT solution mapping that involves both the primal

solution and the corresponding Lagrangian multiplier.

Note that problem (3.1) can be equivalently written as the following optimization problem:

min {f(x) + t− 〈δ1, x〉 | g(x) + δ2 ∈ P , (x, t) ∈ K} , (3.2)

where K := epi θ is a closed convex set. The constraint qualifications and SOSCs for problem

(3.2) have been extensively explored in [1, Section 3], through the study of the (second order)

tangent sets of P and K at a stationary point. In the following, by employing the equations

in (2.1) and (2.2), we reduce these properties to the (second order) directional epiderivatives

of θ. This reduction leads to a direct approach to the sensitivity analysis of the nonsmooth

optimization problem (3.1).

For notational simplicity, denote Z := X × R × Y × X × R. Let (δ1, δ2) ∈ X × Y be given.

We say that (x̄, t̄) is a feasible solution to problem (3.2) if

(x̄, t̄) ∈ F̂ (δ1, δ2) := {(x, t) ∈ X× R | g(x) + δ2 ∈ P , (x, t) ∈ K}.

For any (x, t, y, z, τ) ∈ Z, the Lagrangian function of (3.2) with δ = (δ1, δ2) can be written as

Lδ(x, t; y, z, τ) := f(x) + t− 〈δ1, x〉+ 〈y, g(x) + δ2〉+ 〈z, x〉+ tτ.
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For any given (δ1, δ2) ∈ X× Y, the KKT optimality condition for problem (3.2) is





0 = ∇xLδ(x, t, y, z, τ) = ∇f(x)− δ1 +∇g(x)y + z,

∇tLδ(x, t, y, z, τ) = 1 + τ = 0,

y ∈ NP(g(x) + δ2), (z, τ) ∈ NK(x, t),

(x, t, y, z, τ) ∈ Z, (3.3)

where NC(s) denotes the normal cone of a given convex set C at s ∈ C. Throughout the rest

of this paper, we shall omit the superscript δ from the Lagrangian function Lδ(·) if δ = (0, 0).

Let ŜKKT : X× Y → Z be the following KKT solution mapping:

ŜKKT(δ1, δ2) := {(x, t, y, z, τ) ∈ Z | (x, t, y, z, τ) satisfies (3.3)}, (δ1, δ2) ∈ X× Y. (3.4)

For any given (δ1, δ2) ∈ X× Y, we call (x̄, t̄) a stationary point of problem (3.1) if there exists

a Lagrangian multiplier (ȳ, z̄, τ̄ ) ∈ Y × X × R such that (x̄, t̄, ȳ, z̄, τ̄ ) ∈ ŜKKT(δ1, δ2). Denote

M̂(x̄, t̄, δ1, δ2) ⊆ Y× X× R as the set of all such Lagrange multipliers (ȳ, z̄, τ̄) associated with

(x̄, t̄). Note from (3.3) that τ̄ ≡ −1.

Let (δ1, δ2) = 0 in problem (3.2). The Robinson constraint qualification (RCQ) is said to

hold at a feasible solution (x̄, θ(x̄)) of problem (3.2) if

(
(g′(x̄), 0)

(IX, 1)

)
(X× R) +

(
TP(g(x̄))

TK(x̄, θ(x̄))

)
=

(
Y

X× R

)
, (3.5)

where IX is the identity mapping from X to X. It is known that the RCQ (3.5) holds at a local

optimal solution (x̄, θ(x̄)) if and only if M̂(x̄, θ(x̄), 0, 0) is a nonempty, convex and compact set

(cf., e.g., [1, Theorem 3.9 and Proposition 3.17]). The SRCQ is said to hold at (x̄, θ(x̄)) for

(ȳ, z̄,−1) ∈ M̂(x̄, θ(x̄), 0, 0) if

(
(g′(x̄), 0)

(IX, 1)

)
(X× R) +

(
TP(g(x̄)) ∩ ȳ⊥

TK(x̄, θ(x̄)) ∩ (z̄,−1)⊥

)
=

(
Y

X× R

)
. (3.6)

Obviously the SRCQ (3.6) is stronger than the RCQ (3.5). It follows from [1, Proposition 4.50]

that M̂(x̄, θ(x̄), 0, 0) is a singleton if the SRCQ holds at (x̄, θ(x̄)). The critical cone at a feasible

point (x̄, θ(x̄)) for problem (3.2) takes the form of

Ĉ(x̄, θ(x̄))

:=
{
(d1, d2) ∈ X× R | g′(x̄)d1 ∈ TP(g(x̄)), (d1, d2) ∈ TK

(
x̄, θ(x̄)

)
, f ′(x̄)d1 + d2 ≤ 0

}
.

Furthermore, if (x̄, θ(x̄)) is a stationary point of problem (3.2) and there exists (ȳ, z̄,−1) ∈

M̂(x̄, θ(x̄), 0, 0), then

Ĉ(x̄, θ(x̄))

=
{
(d1, d2) ∈ X× R | g′(x̄)d1 ∈ TP(g(x̄)), (d1, d2) ∈ TK

(
x̄, θ(x̄)

)
, f ′(x̄)d1 + d2 = 0

}

=
{
(d1, d2) ∈ X× R | g′(x̄)d1 ∈ TP(g(x̄)) ∩ ȳ

⊥, (d1, d2) ∈ TK
(
x̄, θ(x̄)

)
∩ (z̄,−1)⊥

}
.

Assume that epi θ is second order regular at (x̄, θ(x̄)) (see [1, Definition 3.85] for the definition

of the second order regularity). This assumption is particularly satisfied when θ(·) = ‖·‖∗, since
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in this case epi θ is a C2-cone reducible set [5, Proposition 4.3]. Then the SOSC at a stationary

point (x̄, θ(x̄)) for problem (3.2) with (δ1, δ2) = 0 is said to hold if for any d ∈ Ĉ(x̄, θ(x̄)) \ {0},

sup
(ȳ,z̄,−1)∈M̂(x̄,θ(x̄),0,0)

〈d,∇2
(x,t)(x,t)L(x̄, θ(x̄), ȳ, z̄,−1)d〉−σ

(
(z̄,−1), T 2

K((x̄, θ(x̄)); (g
′(x̄), 0)d)

)
> 0,

(3.7)

where σ(s, C) := sup{〈s′, s〉 | s′ ∈ C} denotes the support function of a given set C at s. The

above SOSC implies the quadratic growth condition at (x̄, θ(x̄)) (cf. e.g., [1, Theorem 3.86]),

that is, there exist a constant κ > 0 and a neighborhood N of (x̄, θ(x̄)) such that

f(x) + t ≥ f(x̄) + θ(x̄) + κ ‖(x, t)− (x̄, θ(x̄))‖2, ∀ (x, t) ∈ F̂ (0, 0) ∩N.

The following proposition, which is taken from [8, Theorem 24], characterizes the robust

isolated calmness of problem (3.2) via the SOSC (3.7) and the SRCQ (3.6).

Proposition 3.1. Suppose that (x̄, θ(x̄)) ∈ X × R is a feasible solution of problem (3.2) with

(δ1, δ2) = 0. Suppose that the RCQ (3.5) holds at (x̄, θ(x̄)). Assume that epi θ is C2-cone

reducible at (x̄, θ(x̄)). Let (ȳ, z̄,−1) ∈ M̂(x̄, θ(x̄), 0, 0). Then the following two statements are

equivalent to each other:

• The SOSC (3.7) holds at (x̄, θ(x̄)) and the SRCQ (3.6) holds at (x̄, θ(x̄)) for (ȳ, z̄,−1).

• The point (x̄, θ(x̄)) is a local optimal solution of problem (3.2) and the KKT solution

mapping ŜKKT is robustly isolated calm at the origin for (x̄, θ(x̄), ȳ, z̄,−1).

Now we return to the nonsmooth optimization problem (3.1). Let (δ1, δ2) ∈ X×Y be given.

We say that x̄ is a feasible solution to problem (3.1) if

x̄ ∈ F (δ1, δ2) := {x ∈ dom θ | g(x) + δ2 ∈ P}.

Denote l : X× Y → R by

l(x, y) := f(x) + 〈g(x), y〉, (x, y) ∈ X× Y.

Then the KKT optimality condition takes the form of
{
δ1 ∈ ∇xl(x, y) + ∂θ(x),

y ∈ NP (g(x) + δ2),
(x, y) ∈ X× Y. (3.8)

Let SKKT : X× Y → X× Y be the following KKT solution mapping:

SKKT(δ1, δ2) := {(x, y) ∈ X× Y | (x, y) satisfies (3.8)}, (δ1, δ2) ∈ X× Y. (3.9)

For any given (δ1, δ2) ∈ X × Y, we call x̄ a stationary point of problem (3.1) if there exists a

Lagrangian multiplier ȳ ∈ Y such that (x̄, ȳ) ∈ SKKT(δ1, δ2). Denote M(x̄, δ1, δ2) ⊆ Y as the

set of all such Lagrange multipliers ȳ associated with x̄.

The following proposition establishes the equivalence between the robust isolated calmness

of the KKT solution mappings with respect to problem (3.1) and problem (3.2).

Proposition 3.2. Let (x̄, θ(x̄)) ∈ X × R be a local optimal solution of problem (3.2) with

M̂(x̄, θ(x̄), 0, 0) 6= ∅. Let (ȳ, z̄,−1) ∈ M̂(x̄, θ(x̄), 0, 0). If the KKT solution mapping ŜKKT

given in (3.4) is robustly isolated calm at the origin for (x̄, θ(x̄), ȳ, z̄,−1), then the KKT solution

mapping SKKT given in (3.9) is robustly isolated calm at the origin for (x̄, ȳ). The reverse

implication is true if the function θ is Lipschitz continuous at x̄.
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Proof. Note from [4, Corollary 2.4.9] that

(z,−1) ∈ Nepi θ

(
x, θ(x)

)
⇐⇒ z ∈ ∂θ(x), ∀ x, z ∈ X.

Then for any (δ1, δ2) ∈ X × Y and any (x, t, y, z,−1) ∈ ŜKKT(δ1, δ2), we know from (3.3) and

(3.8) that (x, y) ∈ SKKT(δ1, δ2). Thus, the first part of this proposition follows easily from the

definition of the robust isolated calmness.

Conversely, consider any (δ1, δ2) ∈ X × Y and (x, y) ∈ SKKT(δ1, δ2). Let z = δ1 −∇f(x) −

∇g(x)y. By the similar arguments as above, we have (x, θ(x), y, z,−1) ∈ ŜKKT(δ1, δ2). Since f

and g are assumed to be twice continuously differentiable, ∇f(·) and ∇g(·) are locally Lipschitz

continuous at x̄. Then there exists a constant κ > 0 (only depending on x̄ and ȳ) such that for

any x sufficiently close to x̄,





‖θ(x)− θ(x̄)‖ ≤ κ‖x− x̄‖,

‖z − z̄‖ ≤ ‖δ1‖+ ‖∇f(x)−∇f(x̄)‖ + ‖∇g(x)y −∇g(x̄)ȳ‖

≤ k
(
‖δ1‖+ ‖x− x̄‖+ ‖y − ȳ‖

)
.

Consequently, the second assertion of this proposition also follows from the definition of the

robust isolated calmness.

As mentioned in Section 2, the closed convex function θ(·) is always directionally epidif-

ferentiable at x ∈ dom θ. Then by [15, Theorem 23.2], the KKT optimality condition (3.8) is

equivalent to {
θ↓(x; d) + 〈∇xl(x, y)− δ1, d〉 ≥ 0,

y ∈ NP(g(x) + δ2),
∀ d ∈ X,

where (x, y) ∈ X× Y. Define the critical of the function θ by

Cθ(x, z) := {d ∈ Tdom θ(x) | θ
↓(x; d) = 〈d, z〉}, (x, z) ∈ dom θ × X. (3.10)

Let (δ1, δ2) = 0. The RCQ is said to hold at a feasible solution x̄ of problem (3.1) if

(
g′(x̄)

IX

)
X+

(
TP(g(x̄))

Tdom θ(x̄)

)
=

(
Y

X

)
. (3.11)

By the equations in (2.1), the SRCQ is said to hold at a stationary point x̄ for ȳ ∈ M(x̄, 0, 0) if

(
g′(x̄)

IX

)
X+

(
TP(g(x̄)) ∩ ȳ⊥

Cθ(x̄,−∇xl(x̄, ȳ))

)
=

(
Y

X

)
. (3.12)

The critical cone at a feasible solution x̄ of problem (3.1) is given by

C(x̄) :=
{
d ∈ X | g′(x̄)d ∈ TP(g(x̄)), d ∈ Tdom θ(x̄), f

′(x̄)d+ θ↓(x̄; d) ≤ 0
}
. (3.13)

If x̄ is a stationary point of problem (3.1) and ȳ ∈ M(x̄, 0, 0), then

C(x̄) =
{
d ∈ X | g′(x̄)d ∈ TP(g(x̄)), d ∈ Tdom θ(x̄), f

′(x̄)d+ θ↓(x̄; d) = 0
}

=
{
d ∈ X | g′(x̄)d ∈ TP(g(x̄)) ∩ ȳ

⊥, d ∈ Cθ(x̄,−∇f(x̄))
}
.
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Based on the equations in (2.2), we know that if θ is C2-cone reducible at x̄, then the SOSC at

x̄ for problem (3.1) with (δ1, δ2) = 0 takes the form of

sup
ȳ∈M(x̄,0,0)

{
〈d,∇2

xxl(x̄, ȳ)d〉 − ψ∗
(x̄,d)(−∇xl(x̄, ȳ))

}
> 0, ∀ d ∈ C(x̄) \ {0}, (3.14)

where ψ∗
(x,d)(·) is the conjugate function of ψ(x,d)(·) = θ

�
− (x; d, ·) for any x ∈ dom θ and any

d ∈ X.

Combining Propositions 3.1 and 3.2, we are ready to state the main result of this section.

Proposition 3.3. Let x̄ ∈ X be a local optimal solution of problem (3.1) with (δ1, δ2) = 0.

Suppose that the RCQ (3.11) holds at x̄. Assume that θ is C2-cone reducible and Lipschitz

continuous at x̄. Let ȳ ∈ M(x̄, 0, 0). Then the following two statements are equivalent to each

other:

• The SOSC (3.14) holds at x̄ and the SRCQ (3.12) holds at x̄ for ȳ.

• The point x̄ is a local optimal solution of problem (3.1) and the KKT solution mapping

SKKT is robustly isolated calm at the origin for (x̄, ȳ).

4. Variational Analysis of the Nuclear Norm Function

Throughout this section, we denote θ : Rm×n → R as the nuclear norm function. Obviously

dom θ = R
m×n. Since the nuclear norm function is convex and globally Lipschitz continuous,

for any X ∈ R
m×n, both θ↓−(X ; ·) and θ↓+(X ; ·) defined in Section 2 coincide with θ′(X ; ·), the

conventional directional derivative of θ at X [1, Section 2.2.3]. In addition, it is known that the

singular value function in R
m×m is second order directionally differentiable [22, Theorem 3.1].

This further implies the second order directional differentiability of the nuclear norm function,

i.e., both θ�− (X ; ·) and θ�+ (X ; ·) coincide with θ′′(X ; ·), the conventional second order directional

derivative of θ at X .

Fix an arbitrary matrix X ∈ R
m×n. Suppose that X admits the following singular-value

decomposition (SVD):

X = U [Diag(σ(X)) 0]V T = UDiag(σ(X))V T
1 , (4.1)

where U ∈ Om and V = [V1 V2] ∈ On are the left and right singular vectors of X with

V1 ∈ R
n×m and V2 ∈ R

n×(n−m). Define the index sets

a := {1 ≤ i ≤ m | σi(X) ∈ (1,+∞)}, (4.2a)

b := {1 ≤ i ≤ m | σi(X) ∈ [0, 1]}, c = {m+ 1, . . . , n}. (4.2b)

Denote the distinct singular values of X that are greater than 1 by ν1(X) > . . . > νr(X) > 1,

where r is a non-negative integer. We further divide the sets a and b into the following subsets:

al := {i ∈ a | σi(X) = νl(X)}, l = 1, . . . , r, (4.3)

b1 := {i ∈ b | σi(X) = 1}, b2 := {i ∈ b | 0 < σi(X) < 1}, b3 := {i ∈ b | σi(X) = 0}.

Let us first review the concept of Löwner’s operator and its differential properties. Suppose

that X ∈ R
m×n has the SVD (4.1). For any scalar function g : R → R, define the corresponding

matrix valued function G by

G(X) := U
[
Diag(g(σ1(X)), g(σ2(X)), . . . , g(σm(X)) 0

]
V T .
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Such a function is called Löwner’s operator associated with the function g, which is first studied

by Löwner in the context of symmetric matrices [13]. In particular, let φ : R → R be the scalar

function

φ(x) := max{x− 1, 0}, x ∈ R.

It is easy to verify that the proximal mapping of θ can be expressed as:

Proxθ(X) = U [Diag(φ(σ1(X)), . . . , φ(σm(X))) 0]V T , X ∈ R
m×n. (4.4)

Clearly Proxθ(·) can be taken as Löwner’s operator associated with the function φ. The direc-

tional derivate of Proxθ(·) can thus be obtained via the general formula regarding the directional

derivative of Löwner’s operator [7]. Obviously φ is directionally differentiable with the direc-

tional derivative

φ′(x; d) =





d if x > 1,

max{d, 0} if x = 1,

0 if x < 1,

x ∈ R, d ∈ R.

For any positive integer p, define linear matrix operators S : Rp×p → S
p and T : Rp×p → R

p×p

by

S(X) :=
1

2
(X +XT ), T (X) :=

1

2
(X −XT ), X ∈ R

p×p. (4.5)

Denote Ξ2
aa : R

m×n → R
|a|×|a|, Ξ1

ab : R
m×n → R

|a|×|b|, Ξ2
ab : R

m×n → R
|a|×|b| and Ξ2 :

R
m×n → R

|a|×|c| as, for all X ∈ R
m×n.





((Ξ2
aa)(X))ij :=

σi(X) + σj(X)− 2

σi(X) + σj(X)
, i = 1, . . . , |a|, j = 1, . . . , |a|,

((Ξ1
ab)(X))ij :=

σi(X)− 1

σi(X)− σj+|a|(X)
, i = 1, . . . , |a|, j = 1, . . . , |b|,

((Ξ2
ab)(X))ij :=

σi(X)− 1

σi(X) + σj+|a|(X)
, i = 1, . . . , |a|, j = 1, . . . , |b|,

((Ξ2)(X))ij :=
σi(X)− 1

σi(X)
, i = 1, . . . , |a|, j = 1, . . . , n−m.

Denote Γ1 : Rm×n × R
m×n → R

|a|×|a|, Γ2 : Rm×n × R
m×n → R

|a|×|b|, Γ3 : Rm×n × R
m×n →

R
|b|×|a| and Γ4 : Rm×n × R

m×n → R
|a|×|c| as, for all (X,H) ∈ R

m×n × R
m×n,





Γ1(X,H) := (S(H1))aa + Ξ2
aa(X) ◦ (T (H1))aa,

Γ2(X,H) := Ξ1
ab(X) ◦ (S(H1))ab + Ξ2

ab(X) ◦ (T (H1))ab ,

Γ3(X,H) := (Ξ1
ab(X))T ◦ (S(H1))ba + (Ξ2

ab(X))T ◦ (T (H1))ba ,

Γ4(X,H) := Ξ2(X) ◦Hac,

where ◦ denotes the Hadamard product between two matrices and H = [H1 H2] with H1 ∈

R
m×m and H2 ∈ R

m×(n−m). Then by [7, Theorem 3], the directional derivative of Proxθ(·) at

X ∈ R
m×n in the direction H ∈ R

m×n takes the form of
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P P

Prox1

θpX;Hq “ U

¨
˚̊
˚̊
˚̊
˚̋

Γ1pX, rHq Γ2pX, rHq Γ4pX, rHq

Γ3pX, rHq

Π
S
|b1|
`

pSp rHb1b1
qq 0 0

0 0b2ˆb2
0

0 0 0b3ˆb3

0

˛
‹‹‹‹‹‹‹‚

V T , (4.6)

where H̃ = UTHV .

In [19], Watson shows that the subdifferential of the nuclear norm function takes the fol-

lowing form:

∂θ(X) =
{
UaV

T
a + UbW [Vb V2]

T |W ∈ R
|b|×(n−|a|), ‖W‖2 ≤ 1

}
, X ∈ R

m×n. (4.7)

Therefore, for any H ∈ R
m×n, the directional derivative of θ at X in the direction H is given

by
θ′(X ;H) = sup

S∈∂θ(X)

〈H,S〉 = tr(UT
a HVa) + ‖UT

b H [Vb V2]‖∗. (4.8)

Let A = Proxθ(X) and B = Proxθ∗(X). Define the critical cone of θ at A for B as

Cθ(A,B) :=
{
H ∈ R

m×n | θ′(A;H) = 〈H,B〉
}
. (4.9)

Similarly, define the critical cone of θ∗ at B for A as

Cθ∗(B,A) :=
{
H ∈ R

m×n | (θ∗)′(B;H) = 〈H,A〉
}
. (4.10)

As can be seen from (3.14), in order to analyze the SOSC for problem (1.2), one needs to

compute the conjugate of the second order epiderivative of θ. This has already been done in [6].

Firstly, it follows from (4.4) that σ(A) = max{σ(X)− 1, 0}. Specifically,

σi(A) =

{
σi(X)− 1, if i ∈ a,

0 if i ∈ b.
(4.11)

Clearly A has r numbers of nonzero distinct singular values. Denote them by ν1(A) > . . . >

νr(A). The index sets a1, . . . , ar that depending on X in (4.3) also provides a partition of

(σi(A))i∈a, i.e.,

σi(A) = νl(A), ∀ i ∈ al, ∀ l = 1, . . . , r.

For l = 1, . . . , r, denote Ωal : R
m×n × R

m×n → R
al×al as

Ωal
(A,H) :=

(
S(H̃1)

)T
al

(
Diag(σ(A)) − νl(A)Im

)†(
S(H̃1)

)
al

+ (2νl(A))
−1H̃alcH̃

T
alc

+
(
T (H̃1)

)T
al

(
−Diag(σ(A)) − νl(A)Im

)†(
T (H̃1)

)
al

, (A,H) ∈ R
m×n × R

m×n,

where Im is the m×m identity matrix and Z† denotes the Moore-Penrose pseudoinverse of a

given matrix Z. Then for any H ∈ R
m×n, the conjugate of θ′′(A;H, ·) is

ψ∗
(A,H)(B) := (θ′′(A;H, ·))∗(B)

=2
∑r

l=1 tr
(
Ωal

(A,H)
)
+ 2〈Diag(σb(B)), UT

b HA
†HVb〉 ,

(4.12)
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where σb(B) = (σi(B))i∈b and H̃ = [H̃1 H̃2] = [UTHV1 U
THV2].

In the following, we present several properties regarding the critical cone of θ and the

directional derivative of Proxθ(·).

Proposition 4.1. Suppose that X ∈ R
m×n has the singular value decomposition (4.1). Let the

index sets a, b, a1, . . . , al, b1, b2, b3 be given by (4.2) and (4.3). Given any H ∈ R
m×n, denote

H̃ = UTHV for (U, V ) ∈ Om×n(X). Denote A = Proxθ(X) and B = Proxθ∗(X). Then the

following conclusions hold:

(i) H ∈ Cθ(A,B) if and only if H satisfies

rH “

¨
˚̊
˚̊
˚̊
˚̋

rHaa
rHab

rHac

rHba

Π
S
|b1|
`

p rHb1b1
q 0 0

0 0b2ˆb2
0

0 0 0b3ˆb3

0

˛
‹‹‹‹‹‹‹‚

. (4.13)

(ii) For any D ∈ R
m×n, H = Prox′θ(X ;H + D) if and only if H ∈ Cθ(A,B) and 〈H,D〉 =

−ψ∗
(A,H)(B), where the function ψ∗

(A,H)(·) is given in (4.12).

Proof. The result of part (i) can be obtained from [6, Proposition 10]. Now we derive (ii).

Suppose H = Prox′θ(C;H +D). Denote H̃ = [H̃1, H̃2] with H̃1 ∈ R
m×m and H̃2 ∈ R

m×(n−m).

Direct computations of ψ∗
(A,H)(B) given in (4.12) show that

ψ∗
(A,H)(B) =

∑

1≤l,t≤r

2

−νt(A)− νl(A)
‖(T (H̃1))alat

‖2 +
∑

1≤l≤r

4

−νl(A)
‖(T (H̃1))alb1‖

2

+
∑

1≤l≤r
1≤i−|a|−|b1|≤|b2|

(
2(1− σi(B))

−νl(A)
‖(S(H̃1))ali‖

2 +
2(σi(B) + 1)

−νl(A)
‖(T (H̃1))ali‖

2

)

+
∑

1≤l≤r
1≤i−|a|−|b1|−|b2|≤|b3|

(
2

−νl(A)
‖(S(H̃1))ali‖

2 +
2

−νl(A)
‖(T (H̃1))ali‖

2

)

+
∑

1≤l≤r

1

−νl(A)
‖(H̃c)alc‖

2.

(4.14)

Recall the formula of Prox′θ(X ; ·) is given in (4.6). We deduce that

rH “

¨
˚̊
˚̊
˚̊
˝

rHaa
rHab

rHac

rHba

rHb1b1
0 0

0 0b2ˆb2
0

0 0 0b3ˆb3

0

˛
‹‹‹‹‹‹‚
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and




D̃alat
=

2

νl(X) + νt(X)− 2
(T (H̃1))alat

, 1 ≤ l, t ≤ r,

(D̃ab)ij =
1

σi(X)− 1
(H̃ab)ij −

σj+|a|(X)

σi(X)− 1
(H̃ab)ji, i = 1, . . . |a|, j = 1, . . . , |b|,

(D̃ba)ji =
1

σi(X)− 1
(H̃ab)ji −

σj+|a|(X)

σi(X)− 1
(H̃ab)ij , i = 1, . . . |a|, j = 1, . . . , |b|,

(D̃ac)ij =
1

σi(X)− 1
(H̃ac)ij , i = 1, . . . , |a|, j = 1, . . . , n−m,

S
|b1|
+ ∋ H̃b1b1 = S(H̃b1b1) ⊥ S(D̃b1b1) ∈ S

|b1|
− ,

where D̃ = UTDV . Consequently, it follows from part (i) of this proposition that H ∈ Cθ(A,B).

Moreover, we have

〈D,H〉 = 〈d̃aa, H̃aa〉+ 〈d̃ab, H̃ab〉+ 〈d̃ba, H̃ba〉+ 〈d̃a2, H̃a2〉

=
∑

1≤t,l≤r

2

νl(X) + νt(X)− 2
‖(T (H̃1))alat

‖2 +
∑

1≤l≤r

4

νl(X)− 1
‖(T (H̃1))alb1‖

2

+
∑

1≤l≤r
1≤i−|a|−|b1|≤|b2|

(
2(1− σi(X))

νl(X)− 1
‖(S(H̃1))ali‖

2 +
2(σi(X) + 1)

νl(X)− 1
‖(T (H̃1))ali‖

2

)

+
∑

1≤l≤r
1≤i−|a|−|b1|−|b2|≤|b3|

(
2

νl(X)− 1
‖(S(H̃1))ali‖

2 +
2

νl(X)− 1
‖(T (H̃1))ali‖

2

)

+
∑

1≤l≤r

1

νl(X)− 1
‖(H̃2)alc‖

2.

Note from (4.11) that νl(A) = νl(X)− 1 for any l = 1, . . . , r. Hence, 〈D,H〉 = −ψ∗
(A,H)(B) by

(4.14) and the above equation. The converse of this statement can be established by reversing

the above arguments. �

Proposition 4.2. Suppose that X ∈ R
m×n has the singular value decomposition (4.1). Let the

index sets a, b, a1, . . . , al, b1, b2, b3 be given by (4.2) and (4.3). Given any H ∈ R
m×n, denote

H̃ = UTHV for (U, V ) ∈ Om×n(X). Denote A = Proxθ(X) and B = Proxθ∗(X). Then the

following conclusions hold:

(i) H ∈ Cθ∗(B,A) if and only if H satisfies S(H̃b1b1) ∈ S
|b1|
− and

p q p r q P
´

rH “

¨
˚̊
˚̊
˚̊
˚̊
˚̋

T p rHaaq 1

2
p rHab1

´ rHT

b1a
q rHab2

rHab3

1

2
p rHb1a

´ rHT

ab1
q rHb1b1

rHb1b2
rHb1b3

rHb2a
rHb2b1

rHb2b2
rHb2b3

rHb3a
rHb3b1

rHb3b2
rHb3b3

rHc

˛
‹‹‹‹‹‹‹‹‹‚

, (4.15)
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where the linear operators S(·) and T (·) are defined in (4.5).

(ii) H ∈ (Cθ(A,B))◦ if and only if φ∗(B,H)(A) = 0 and H ∈ Cθ∗(B,A), where φ∗(B,H)(·) is the

conjugate function of φ(B,H)(·) = (θ∗)
′′

(B;H, ·).

(iii) H ∈ (Cθ∗(B,A))◦ if and only if ψ∗
(A,H)(B) = 0 and H ∈ Cθ(A,B).

Proof. Part (i) follows from [6, Proposition 12]. To prove part (ii), we use a result from [6,

Proposition 16] stating that φ∗(B,H)(A) = 0 if and only if ψ∗
(A,H)(B) = 0 for any H ∈ R

m×n,

which is further equivalent to

H̃aa ∈ S
|a|, H̃ab1 = H̃T

b1a
, H̃ab2 = H̃T

b2a
= 0, H̃ab3 = H̃T

b3a
= 0, H̃ac = 0.

Then by part (i) of this proposition, one can see that φ∗(B,H)(A) = 0 and H ∈ Cθ∗(B,A) imply

that

H̃aa = 0, H̃ab = 0, H̃ac = 0, H̃ba = 0, S(H̃b1b1) ∈ S
|b1|
− .

In view of Proposition 4.1, this is equivalent to have H ∈ (Cθ(A,B))◦. To prove part (iii), it

suffices to note that either H ∈ (Cθ∗(B,A))◦ or ψ∗
(A,H)(B) = 0 with H ∈ Cθ(A,B) is equivalent

to P pC p qq p qp q “ P C p

rH “

¨
˚̊
˚̊
˚̊
˚̋

Sp rHaaq
1

2
p rHab1

` rHT

b1a
q 0 0

1

2
p rHb1a

` rHT

ab1
q Π

S
|b1|
`

p rHb1b1
q 0 0

0 0 0 0

0 0 0 0

0

˛
‹‹‹‹‹‹‹‚

.

The proof of this proposition is completed. �

5. The Robust Isolated Calmness of the KKT Solution Mapping

The aim of this section is to show that the SOSC for the primal problem (1.2) (the dual

problem (1.4)) is in fact equivalent to the SRCQ for the dual problem (1.4) (the primal prob-

lem (1.2)). Before proceeding, we mention that a variation of this result regarding the linear

semidefinite programming problem has been studied in [24].

Following the notation in the previous section, we use θ to denote the nuclear norm function

in R
m×n. Let ΩP ⊆ X and ΩD ⊆ R

e × R
d × R

m×n be the optimal solution sets of the primal

problem (1.2) and the dual problem (1.4), respectively, both being assumed to be non-empty.

It follows from (3.8) that the KKT optimality condition of problem (1.2) is given by

{
0 ∈ F∗∇h(FX) + C + ∂θ(X) +A∗y,

y ∈ NQ(AX − b),
(X, y) ∈ R

m×n × R
e. (5.1)

We write MP (X) ⊆ R
e as the set of Lagrange multipliers ȳ associated with X ∈ ΩP , i.e.,

ȳ ∈ MP (X) if and only if (X, ȳ) satisfies (5.1). Let MD(ȳ, w̄, S) ⊆ R
m×n be the set of

Lagrange multipliers associated with (ȳ, w̄, S) ∈ ΩD for problem (1.4), i.e., X ∈ MD(ȳ, w̄, S)
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if and only if (X, ȳ, w̄, S) solves the following KKT system:

{
AX − b ∈ NQ◦(y), FX ∈ ∂h∗(w),

X ∈ ∂θ∗(S), 0 = A∗y + F∗w + S + C,
(y, w, S,X) ∈ R

e × R
d × R

m×n × R
m×n. (5.2)

Since h is assumed to be essentially strictly convex, h∗ is essentially smooth [15, Theorem

26.3]. Thus, ∇h∗ is locally Lipschitz continuous and directionally differentiable on int (domh∗).

Moreover, ∂h∗(w) = ∅ whenever w 6∈ int (domh∗) [15, Theorem 26.1]. Therefore, if (5.2) admits

at least one solution, this KKT optimality condition can be equivalently written as

{
AX − b ∈ NQ◦(y), FX ∈ ∇h∗(w),

X ∈ ∂θ∗(S), 0 = A∗y + F∗w + S + C,
(y, w, S,X) ∈ R

e × R
d × R

m×n × R
m×n.

As in Section 3, we consider the canonical perturbation of problem (1.2) for the sake of subse-

quent sensitivity analysis:

min
X

h(FX) + 〈C,X〉+ ‖X‖∗ − 〈X, δ1〉

s.t. AX − b+ δ2 ∈ Q,

where δ1 ∈ R
m×n and δ2 ∈ R

e are perturbation parameters. For any given (δ1, δ2) ∈ R
m×n×R

e,

the KKT optimality condition then takes the form of

{
δ1 ∈ F∗∇h(FX) + C + ∂θ(X) +A∗y,

y ∈ NQ(AX − b + δ2),
(X, y) ∈ R

m×n × R
e. (5.3)

Let SKKT : Rm×n × R
e → R

m×n × R
e be the following KKT solution mapping:

SKKT(δ1, δ2) := {(x, y) ∈ R
m×n × R

e | (x, y) satisfies (5.3)}, (δ1, δ2) ∈ R
m×n × R

e. (5.4)

The RCQ of problem (1.2) at a feasible solution X ∈ R
m×n is given by

AR
m×n + TQ(AX − b) = R

e. (5.5)

Let (y, q) ∈ R
e × R

e satisfy y ∈ NQ(q). We denote the critical cone of Q at q for y and the

critical cone of Q◦ at y for q as

CQ(q, y) := TQ(q) ∩ y
⊥, CQ◦(y, q) := TQ◦(y) ∩ q⊥.

It is easy to verify that

(CQ(q, y))
◦ = CQ◦(y, q). (5.6)

The following theorem, which is the main result of our paper, demonstrates the equivalence

between the primal SOSC and the dual SRCQ.

Theorem 5.1. Let X ∈ R
m×n be an optimal solution of problem (1.2) with MP (X) 6= ∅. Let

ȳ ∈ MP (X). Denote S := −A∗ȳ − F∗∇h(FX) − C. Then the following two statements are

equivalent to each other:

(i) The SOSC holds at X for ȳ with respect to the primal problem (1.2), i.e.,

〈FH,∇2h(FX)FH〉 − ψ∗
(X,H)

(S) > 0, ∀ H ∈ C(x̄) \ {0}, (5.7)
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where C(X) := CQ(AX − b, ȳ) ∩ Cθ(X,S).

(ii) The SRCQ holds at ȳ for X with respect to the dual problem (1.4), i.e.,

F∗
R

d +A∗CQ◦(ȳ,AX − b) + Cθ∗(S,X) = R
m×n (5.8)

Proof. Firstly, let us assume that the statement (i) holds. Denote

E := F∗
R

d +A∗CQ◦(ȳ,AX − b) + Cθ∗(S,X).

Suppose on the contrary that E 6= R
m×n. Then cl(E) 6= R

m×n [15, Theorem 6.3]. Hence, there

exists D ∈ R
m×n but D 6∈ cl(E). Note that cl(E) is a closed convex cone. Let

D := D −Πcl(E)(D) = Π(cl(E))◦(D) 6= 0.

Obviously, 〈H,D〉 ≤ 0 for any H ∈ cl(E). This implies that

FD = 0, AD ∈ (CQ◦(ȳ,AX − b))◦, D ∈ (Cθ∗(S,X))◦.

Thus, it follows from (5.6) that AD ∈ CQ(AX − b, ȳ). From Proposition 4.2, we also have that

ψ∗
(X,D)

(S) = 0, D ∈ Cθ(X,S).

Therefore, D ∈ C(X) \ {0} and 〈FD,∇2h(FX)FD〉 − ψ∗
(X,D)

(S) = 0, which contradicts the

assumed SOSC (5.7) at X .

The reverse implication can be proved similarly. Suppose that the SOSC (5.7) fails to hold

at X for ȳ. Then there exists H ∈ C(X) \ {0} such that

〈FH,∇2h(FX)FH〉 − ψ∗
(X,H)

(S) = 0.

Since h is assumed to be essentially strictly convex, 〈FH,∇2h(FX)FH〉 > 0 for anyH ∈ R
m×n

such that FH 6= 0. It also follows from [6, Proposition 16] that ψ∗
(X,H)

(S) ≤ 0 for any

H ∈ R
m×n. Consequently,

FH = 0, ψ∗
(X,H)

(S) = 0.

We have from H ∈ C(X) \ {0} that

AH ∈ CQ(AX − b, ȳ), H ∈ Cθ(X,S).

Hence, we deduce from (5.6) and Proposition 4.2 that

H ∈ (A∗CQ◦(ȳ,AX − b))◦ ∩ (Cθ∗(S,X))◦ = (A∗CQ◦(ȳ,AX − b) + Cθ∗(S,X))◦.

By the assumed SRCQ (5.8) at ȳ for X , there exist w̃ ∈ R
d and H̃ ∈ A∗CQ◦(ȳ,AX − b) +

Cθ∗(S,X) such that H = F∗w̃ + H̃ . Then

〈H,H〉 = 〈H,F∗w̃ + H̃〉 = 〈H, H̃〉 ≤ 0,

which implies H = 0. This contradicts the previous assumption that H 6= 0. The proof is thus

completed. �

One can also establish an analogous result by swapping the roles of the primal and dual

problems in Theorem 5.1.
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Theorem 5.2. Let (ȳ, w̄, S) ∈ R
e × R

d × R
m×n be an optimal solution of problem (1.4) with

MD(ȳ, w̄, S) 6= ∅. Let X ∈ MD(ȳ, w̄, S). Then the following two statements are equivalent to

each other:

(i) The SOSC holds at (ȳ, w̄, S) for X with respect to the dual problem (1.4), i.e.,

〈Hw, (∇h
∗)′(w̄;Hw)〉 − φ∗

(S,HS)
(X) > 0, ∀ (Hy, Hw, Hs) ∈ C(ȳ, w̄, S) \ {0}, (5.9)

where the critical cone C(ȳ, w̄, S) is defined as

C(ȳ, w̄, S) :=

{
(Hy, Hw, HS) ∈ R

e × R
d × R

m×n

∣∣∣∣
A∗Hy + F∗Hw +HS = 0,

Hy ∈ CQ◦(ȳ,AX − b), HS ∈ Cθ∗(S,X)

}
.

(ii) The SRCQ holds at X for (ȳ, w̄, S) with respect to the primal problem (1.2), i.e.,

(
A

IRm×n

)
R

m×n +

(
CQ(AX − b, ȳ)

Cθ(X,S)

)
=

(
R

e

R
m×n

)
. (5.10)

Proof. With the help of Proposition 4.2, one can establish the assertion in the same fashion

as in Theorem 5.1. We omit the details here.

Finally, note that the epigraph of the nuclear norm function is C2-cone reducible [5, Proposi-

tion 4.3]. This fact allows us to establish the following equivalent characterizations of the robust

isolated calmness of the KKT solution mapping of problem (1.2) by combining Proposition 3.3,

Theorem 5.1 and Theorem 5.2.

Theorem 5.3. Let X ∈ R
m×n be an optimal solution of problem (1.2) and (ȳ, w̄, S) ∈ R

e ×

R
d × R

m×n be an optimal solution of problem (1.4). Assume that the RCQ (5.5) holds at X.

Then the following statements are equivalent to each other:

• The KKT solution mapping SKKT in (5.4) is robustly isolated calm at the origin for (X, ȳ).

• The SOSC (5.7) holds at X for ȳ with respect to the primal problem (1.2) and the SRCQ

(5.10) holds at X for (ȳ, w̄, S) with respect to the primal problem (1.2).

• The SOSC (5.7) holds at X for ȳ with respect to the primal problem (1.2) and the SOSC

(5.9) holds at (ȳ, w̄, S) for X with respect to the dual problem (1.4).

• The SRCQ (5.8) holds at ȳ for X with respect to the dual problem (1.4) and the SRCQ

(5.10) holds at X for (ȳ, w̄, S) with respect to the primal problem (1.2).

• The SOSC (5.9) holds at (ȳ, w̄, S) for X with respect to the dual problem (1.4) and the

SRCQ (5.8) holds at ȳ for X with respect to the dual problem (1.4).

It is worth mentioning that in this paper, we focus on the characterizations of the robust

isolated calmness of the KKT solution mapping for problem (1.2) when it admits a unique KKT

point. It would be certainly interesting to know to what extent our results can be extended

to the case when problem (1.2) admits non-unique solutions. We shall leave this as a future

research topic.
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