Block Symmetric Gauss－Seidel Iteration and Multi－Block Semidefinite Programming

Defeng Sun

Department of Applied MathematicsThe Hong Kong
POLYTECHNIC UNIVERSITY香港理工大學

School of Mathematics，Sichuan University
October 30， 2017

The standard semidefinite programming (SDP):

$$
\min _{X \in \mathcal{S}^{n}}\{\langle C, X\rangle \mid \mathcal{A} X=b, X \succeq 0\}
$$

The dual problem in its equivalent minimization form:

$$
\min _{y \in \mathbb{R}^{m}}\left\{-\langle b, y\rangle+\delta_{\mathcal{S}_{+}^{n}}(S) \mid \mathcal{A}^{*} y+S=C\right\}
$$

The Lagrangian function of the dual problem:

$$
\mathcal{L}(y, S ; X):=-\langle b, y\rangle+\delta_{\mathcal{S}_{+}^{n}}(S)+\left\langle X, \mathcal{A}^{*} y+S-C\right\rangle .
$$

The augmented Lagrangian function of the dual problem $(\sigma>0)$:

$$
\mathcal{L}_{\sigma}(y, S ; X):=\mathcal{L}(y, S ; X)+\frac{\sigma}{2}\left\|\mathcal{A}^{*} y+S-C\right\|^{2}
$$

An inexact augmented Lagrangian method (ALM) framework was used in SDPNAL:

$$
\left\{\begin{array}{l}
y^{k+1} \approx \underset{y \in \mathbb{R}^{m}}{\arg \min } \Phi_{\sigma_{k}}\left(y ; X^{k}\right), \\
X^{k+1}=\Pi_{\mathcal{S}_{+}^{n}}\left[X^{k}+\sigma\left(\mathcal{A}^{*} y^{k+1}-C\right)\right], \quad k=0,1,2, \ldots, \\
\sigma_{k+1}=\rho \sigma_{k} \text { or } \sigma_{k+1}=\sigma_{k}
\end{array}\right.
$$

where for a given X

$$
\begin{aligned}
\Phi_{\sigma}(y ; X): & =\min _{S \in \mathcal{S}_{+}^{n}} \mathcal{L}_{\sigma}(y, S ; X) \\
& =-\langle b, y\rangle+\frac{1}{2 \sigma}\left(\left\|\Pi_{\mathcal{S}_{+}^{n}}\left[X+\sigma\left(\mathcal{A}^{*} y-C\right)\right]\right\|^{2}-\|X\|^{2}\right)
\end{aligned}
$$

$\Phi_{\sigma_{k}}\left(y ; X^{k}\right)$ is continuously differentiable with respect to y and $\nabla_{y} \Phi_{\sigma_{k}}$ is strongly semismooth.
Newton-CG: y^{k+1} is computed via a semismooth Newton method in which each linear system is solved by a conjugate gradient method.

ALM: fast local linear convergence (arbitrary linear convergence rate) when the penalty parameter exceeds a certain threshold. But

- Sometimes can be hard and expensive to solve the inner subproblems exactly or to high accuracy, especially in high-dimensional settings;

■ Computationally, it is not economical to use the ALM during the early stage of solving the problem when the fast local linear convergence of ALM has not kicked in.

In SDPNAL, the boundary-point method of Rendl et al. [Computing, 78 (2006)] was used to warm-start the second-order method, i.e., one modified gradient step was used instead of solving the inner subproblem:

$$
\begin{aligned}
y^{k+1} & =y^{k}-\left(\sigma_{k} \mathcal{A} \mathcal{A}^{*}\right)^{-1} \nabla_{y} \Phi_{\sigma}\left(y ; X^{k}\right) \\
& =y^{k}-\left(\sigma_{k} \mathcal{A} \mathcal{A}^{*}\right)^{-1} \nabla_{y} \mathcal{L}\left(y^{k}, \widetilde{X}^{k+1}\right),
\end{aligned}
$$

with $\widetilde{X}^{k+1}=\Pi_{\mathcal{S}_{+}^{n}}\left[X^{k}+\sigma\left(\mathcal{A}^{*} y^{k}-C\right)\right]$. One can deduce that

$$
\sigma_{k} \mathcal{A} \mathcal{A}^{*} y^{k+1}=\sigma_{k} \mathcal{A} \mathcal{A}^{*} y^{k}-\mathcal{A}\left(\Pi_{\mathcal{S}_{+}^{n}}\left[X^{k}+\sigma\left(\mathcal{A}^{*} y^{k}-C\right)\right]\right)+b,
$$

which implies that

$$
-b+\mathcal{A} X^{k}+\sigma_{k} \mathcal{A}\left(\mathcal{A}^{*} y^{k+1}+S^{k+1}-C\right)=0
$$

with $\sigma S^{k+1}:=\Pi_{\mathcal{S}_{+}^{n}}\left[-\left(X^{k}+\sigma\left(\mathcal{A}^{*} y^{k}-C\right)\right]\right.$. Therefore,

$$
\left\{\begin{array}{l}
S^{k+1}=\arg \min _{S} \mathcal{L}_{\sigma_{k}}\left(y^{k}, S ; X^{k}\right) \\
y^{k+1}=\arg \min _{y} \mathcal{L}_{\sigma_{k}}\left(y, S^{k+1} ; X^{k}\right)
\end{array}\right.
$$

The doubly nonnegative SDP

$$
\min _{X \in \mathcal{S}^{n}}\left\{\langle C, X\rangle \mid \mathcal{A}_{E} X=b_{E}, \mathcal{A}_{I} X \geq b_{I}, \quad X \succeq 0, X \geq 0\right\}
$$

The more general convex quadratic SDP
$\min \left\{\left.\frac{1}{2}\langle X, \mathcal{Q} X\rangle+\langle C, X\rangle \right\rvert\, \mathcal{A}_{E} X=b_{E}, \mathcal{A}_{I} X \geq b_{I}, X \in \mathcal{S}_{+}^{n} \cap \mathcal{N}\right\}$.

■ $\mathcal{Q}: \mathcal{S}^{n} \rightarrow \mathcal{S}^{n}$: self-adjoint positive semidefinite;
■ $\mathcal{A}_{E}: \mathcal{S}^{n} \rightarrow \mathbb{R}^{m_{E}}$ and $\mathcal{A}_{I}: \mathcal{S}^{n} \rightarrow \mathbb{R}^{m_{I}}$ are linear maps;
■ $C \in \mathcal{S}^{n}, b_{E} \in \mathbb{R}^{m_{E}}$ and $b_{I} \in \mathbb{R}^{m_{I}}$ are given data;
■ \mathcal{N} : a closed convex set (e.g. $\mathcal{N}=\left\{X \in \mathcal{S}^{n} \mid L \leq X \leq U\right\}$).

[Fazel, Pong, Sun and Tseng, SIMAX, 34 (2013)]:

- The introduction of the semiproximal ADMM (alternating direction methods of multipliers).
[Sun, Yang and Toh, SIOPT, 25 (2015)]:
- A convergent 3-block ADMM (ADMM3c) for doubly nonnegative SDP: only requires an inexpensive extra step per iteration but it is theoretically convergent and practically even faster.
- The precursor of the block symmetric Gauss Seidel iteration technique.

Performance Profile (time) ($58 \theta_{+}, 7$ FAP, 95 QAP, 134 BIQ, 120 RCP problems) tol $=1 \mathrm{e}-06$

Figure: ADMM3c performs the best among a few first order methods (no inequality constraints).

Performance Profile (time) (134 BIQ problems) tol $=1 \mathrm{e}-05$

Figure: ADMM3c performs as good as the directly extended 4-block ADMM.
[Li, Sun and Toh, MP, 155 (2016)]:

- A Schur complement based (SCB) multi-block ADMM for convex quadratic conic programming;
■ The block symmetric Gauss-Seidel (sGS) iteration technique.
[Li, Sun and Toh, arXiv:1512.08872 (2015)] ${ }^{1}$
- The block sGS decomposition theorem;
- Its equivalence to the SCB reduction procedure;
- The quadratic part is not necessarily separable;
- Allows the updates of the blocks to be inexact.

[^0]The dual of the convex QSDP problem (1) in its equivalent minimization form:

$$
\begin{array}{cl}
\min & \delta_{\mathcal{N}}^{*}(-Z)+\frac{1}{2}\langle W, \mathcal{Q} W\rangle-\left\langle b_{E}, y_{E}\right\rangle-\left\langle b_{I}, y_{I}\right\rangle \\
\mathrm{s.t.} & Z-\mathcal{Q} W+S+\mathcal{A}_{E}^{*} y_{E}+\mathcal{A}_{I}^{*} y_{I}=C \tag{2}\\
& S \in \mathcal{S}_{+}^{n}, y_{I} \geq 0, W \in \mathcal{W}
\end{array}
$$

\mathcal{W} is an arbitrary subspace of \mathcal{S}^{n} containing Range (\mathcal{Q})
■ Generally, \mathcal{W} is \mathcal{S}^{n} or Range (\mathcal{Q}).
■ For first-order methods, $\mathcal{W}=\mathcal{S}^{n}$.

Fig. 1 Performance profiles of SCB- SPADMM, ADMM and ADMMGB for the tested large scale QSDP
Figure: SCB-ADMM performs the best for solving the tested QSDP problems (without inequality constraints).

An inexact block symmetric Gauss-Seidel (sGS) iteration

Let $s \geq 2$ be a given integer and $\mathcal{U}:=\mathcal{U}_{1} \times \cdots \times \mathcal{U}_{s}$ with all \mathcal{U}_{i} being finite dimensional real Euclidean spaces. For any $u \in \mathcal{U}$ we write $u \equiv\left(u_{1}, \ldots, u_{s}\right)$. Let $\mathcal{H}: \mathcal{U} \rightarrow \mathcal{U}$ be a given self-adjoint positive semidefinite linear operator and

$$
\mathcal{H} u:=\left(\begin{array}{cccc}
\mathcal{H}_{11} & \mathcal{H}_{12} & \cdots & \mathcal{H}_{1 s} \\
\mathcal{H}_{12}^{*} & \mathcal{H}_{22} & \cdots & \mathcal{H}_{2 s} \\
\vdots & \vdots & \ddots & \vdots \\
\mathcal{H}_{1 s}^{*} & \mathcal{H}_{2 s}^{*} & \cdots & \mathcal{H}_{s s}
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{s}
\end{array}\right),
$$

where $\mathcal{H}_{i i}$ are self-adjoint positive definite linear operators, $\mathcal{H}_{i j}$: $\mathcal{U}_{j} \rightarrow \mathcal{U}_{i}, i=1, \ldots, s-1, j>i$, are linear maps. We denote

$$
\mathcal{H}_{u}:=\left(\begin{array}{cccc}
0 & \mathcal{H}_{12} & \cdots & \mathcal{H}_{1 s} \tag{3}\\
& \ddots & \ddots & \vdots \\
& & \ddots & \mathcal{H}_{(s-1) s} \\
& & & 0
\end{array}\right), \mathcal{H}_{d}:=\left(\begin{array}{cccc}
\mathcal{H}_{11} & & & \\
& \mathcal{H}_{22} & & \\
& & \ddots & \\
& & & \mathcal{H}_{s s}
\end{array}\right)
$$

Note that $\mathcal{H}=\mathcal{H}_{d}+\mathcal{H}_{u}+\mathcal{H}_{u}^{*}$ and \mathcal{H}_{d} is positive definite.

Define the self-adjoint positive semidefinite linear operator $\operatorname{sGS}(\mathcal{H})$: $\mathcal{U} \rightarrow \mathcal{U}$ by

$$
\operatorname{sGS}(\mathcal{H}):=\mathcal{H}_{u} \mathcal{H}_{d}^{-1} \mathcal{H}_{u}^{*}
$$

For any $u \in \mathcal{U}$, denote

$$
u_{\leq i}:=\left\{u_{1}, \ldots, u_{i}\right\} \text { and } u_{\geq i}:=\left\{u_{i}, \ldots, u_{s}\right\}, i=1, \ldots, s
$$

Let $\widetilde{\delta}_{i}, \delta_{i} \in \mathcal{U}_{i}, \quad i=1, \ldots, s$ be given error tolerance vectors with $\widetilde{\delta}_{1}=\delta_{1}$. Define

$$
\begin{equation*}
d(\widetilde{\delta}, \delta):=\delta+\mathcal{H}_{u} \mathcal{H}_{d}^{-1}(\delta-\widetilde{\delta}) \tag{4}
\end{equation*}
$$

Let $\theta: \mathcal{U}_{1} \rightarrow(-\infty, \infty]$ be a given closed proper convex function and $b \in \mathcal{U}$ be a given vector. Consider the quadratic function

$$
h(u):=\frac{1}{2}\langle u, \mathcal{H} u\rangle-\langle b, u\rangle \quad \forall u \in \mathcal{U} .
$$

Suppose that $u^{-} \in \mathcal{U}$ is a given vector. We want to compute

$$
u^{+}:=\underset{u \in \mathcal{U}}{\arg \min }\left\{\theta\left(u_{1}\right)+h(u)+\frac{1}{2}\left\|u-u^{-}\right\|_{\mathrm{SGS}(\mathcal{H})}^{2}-\langle d(\widetilde{\delta}, \delta), u\rangle\right\} .
$$

Proposition 1 (Inexact block sGS decomposition)

Assume that $\mathcal{H}_{i i}, i=1, \ldots, s$ are positive definite. Then

$$
\widehat{\mathcal{H}}:=\mathcal{H}+\operatorname{sGS}(\mathcal{H})=\left(\mathcal{H}_{d}+\mathcal{H}_{u}\right) \mathcal{H}_{d}^{-1}\left(\mathcal{H}_{d}+\mathcal{H}_{u}^{*}\right) \succ 0 .
$$

Furthermore, for $i=s, s-1, \ldots, 2$ (the backwark sGS sweep), define

$$
\begin{equation*}
\tilde{u}_{i}:=\underset{u_{i}}{\arg \min }\left\{\theta\left(u_{1}^{-}\right)+h\left(u_{\leq i-1}^{-}, u_{i}, \widetilde{u}_{\geq i+1}\right)-\left\langle\widetilde{\delta}_{i}, u_{i}\right\rangle\right\} \tag{6}
\end{equation*}
$$

Then, the optimal solution u^{+}defined by (5) can be obtained exactly via

$$
\left\{\begin{align*}
& u_{1}^{+}:=\arg \min _{u_{1}}\left\{\theta\left(u_{1}\right)+h\left(u_{1}, \widetilde{u}_{\geq 2}\right)-\left\langle\delta_{1}, u_{1}\right\rangle\right\} \\
& u_{i}^{+}:=\arg \min _{u_{i}}\left\{\theta\left(u_{1}^{+}\right)+h\left(u_{\leq i-1}^{+}, u_{i}, \widetilde{u} \geq i+1\right)-\left\langle\delta_{i}, u_{i}\right\rangle\right\} \\
& i=2, \ldots, s \tag{7}
\end{align*}\right.
$$

Exact v.s. Inexact

- One should interpret \widetilde{u}_{i} and u_{i}^{+}as approximate solutions to the minimization problems without the terms involving $\widetilde{\delta}_{i}$ and δ_{i}.
- Once these approximate solutions have been computed, they would generate the error vectors $\widetilde{\delta}_{i}$ and δ_{i}.
- With these known error vectors, we know that \widetilde{u}_{i} and u_{i}^{+}are actually the exact solutions to the minimization problems in (6) and (7).

Highlight

- When solving the subproblems in the forward GS sweep in (7) for $i=2, \ldots, s$, we may try to estimate u_{i}^{+}by using \widetilde{u}_{i}, and in this case the corresponding error vector δ_{i} would be given by

$$
\delta_{i}=\widetilde{\delta}_{i}+\sum_{j=1}^{i-1} \mathcal{H}_{j i}^{*}\left(u_{j}^{+}-u_{j}^{-}\right)
$$

In order to avoid solving the i-th problem in (7), one may accept such an approximate solution $u_{i}^{+}=\widetilde{u}_{i}$ if the corresponding error vector satisfies an admissible condition such as $\left\|\delta_{i}\right\| \leq c\left\|\widetilde{\delta}_{i}\right\|$ for some constant $c>1$, say $c=10$.

Proposition 1 (Li-Sun-Toh)

Let $d(\widetilde{\delta}, \delta)$ be defined by (4). Then it holds that

$$
\begin{equation*}
\left\|\widehat{\mathcal{H}}^{-\frac{1}{2}} d(\widetilde{\delta}, \delta)\right\| \leq\left\|\mathcal{H}_{d}^{-\frac{1}{2}}(\delta-\widetilde{\delta})\right\|+\left\|\mathcal{H}_{d}^{\frac{1}{2}}\left(\mathcal{H}_{d}+\mathcal{H}_{u}\right)^{-1} \widetilde{\delta}\right\| \tag{8}
\end{equation*}
$$

Recall that

$$
\begin{gathered}
\mathcal{H}=\mathcal{H}_{d}+\mathcal{H}_{u}+\mathcal{H}_{u}^{*} \succeq 0 \\
\operatorname{sGS}(\mathcal{H}):=\mathcal{H}_{u} \mathcal{H}_{d}^{-1} \mathcal{H}_{u}^{*} \succeq 0 \\
\widehat{\mathcal{H}}:=\mathcal{H}+\operatorname{sGS}(\mathcal{H})=\left(\mathcal{H}_{d}+\mathcal{H}_{u}\right) \mathcal{H}_{d}^{-1}\left(\mathcal{H}_{d}+\mathcal{H}_{u}^{*}\right) \succ 0 .
\end{gathered}
$$

The block sGS decomposition theorem allows us to design a convergent (inexact) sGS-ADMM for solving convex multi-block composite programming problems including convex quadratic SDPs with doubly nonnegative constraints.
[Chen, Sun and Toh, MP, 161 (2017) 327-343]:
An inexact multi-block ADMM-type first-order method for solving high-dimensional multi-block convex composite optimization problems to medium accuracy with the essential flexibility that the inner subproblems are allowed to be solved only approximately, which is a combination of

■ An inexact 2-block majorized semi-proximal ADMM

- Inexact block symmetric Gauss-Seidel iteration with a nonsmooth block
- Only one cycle of an inexact sGS iteration instead of an unknown number of cycles, as the BCD-type methods.
- The freedom to solve large scale linear systems of equations approximately by an iterative solver such as the CG method.
- Without such a flexibility, one would be forced to modify the corresponding subproblem by adding an appropriately chosen "large" semi-proximal term so as to get a closed-form solution for the modified subproblem. But such a modification can sometimes significantly slow down the outer iteration.

$$
\begin{equation*}
\min _{x}\left\{\left.\theta(x)+\frac{1}{2}\langle x, \mathcal{Q} x\rangle+\langle c, x\rangle \right\rvert\, \mathcal{A} x-b=0, x \in \mathcal{K}\right\} \tag{9}
\end{equation*}
$$

- \mathcal{X}, \mathcal{Y} : finite-dimensional real Euclidean spaces endowed with inner product $\langle\cdot, \cdot\rangle$ and its induced norm $\|\cdot\|$
- $\theta: \mathcal{X} \rightarrow(-\infty,+\infty]:$ closed proper convex
- $\mathcal{Q}: \mathcal{X} \rightarrow \mathcal{X}$: self-adjoint positive semidefinite
- $\mathcal{A}: \mathcal{X} \rightarrow \mathcal{Y}$: linear mapping

■ $c \in \mathcal{X}, b \in \mathcal{Y}$ are given data, $\mathcal{K} \subseteq \mathcal{X}$: closed convex cone
"High-dimensional": $\mathcal{A} \mathcal{A}^{*}$ or \mathcal{Q} is extremely large to be explicitly stored or decomposed by Cholesky factorization.
Example: QSDP, QP, Robust PCA......

One can recast (9) (by introducing a slack variables $u \in \mathcal{X}$) as

$$
\begin{equation*}
\min \left\{\left.\theta(u)+\frac{1}{2}\langle x, \mathcal{Q} x\rangle+\langle c, x\rangle \right\rvert\, \mathcal{A} x-b=0, u-x=0, x \in \mathcal{K}\right\} \tag{10}
\end{equation*}
$$

Soving the dual of problems (9) is equivalent to

$$
\begin{align*}
& \min \theta^{*}(-s)+\frac{1}{2}\langle w, \mathcal{Q} w\rangle-\langle b, \xi\rangle \\
& \text { s.t. } s+z-\mathcal{Q} w+\mathcal{A}^{*} \xi=c, z \in \mathcal{K}^{*}, w \in \mathcal{W} \tag{11}
\end{align*}
$$

$\mathcal{W} \subseteq \mathcal{X}$ is a subspace containing $\operatorname{Range}(\mathcal{Q}), \theta^{*}$ is the Fenchel conjugate of θ, \mathcal{K}^{*} is the dual cone of \mathcal{K}.

Let m, n be two nonnegative integers, $\mathcal{Z}, \mathcal{X}_{i}, 1 \leq i \leq m$ and $\mathcal{Y}_{j}, 1 \leq j \leq$ n are finte dimensional real Euclidean spaces each endowed with $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$. Define $\mathcal{X}:=\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{m}$ and $\mathcal{Y}:=\mathcal{Y}_{1} \times \ldots \times \mathcal{Y}_{n}$. Problem (11) belongs to

$$
\begin{array}{ll}
\min _{x \in \mathcal{X}, y \in \mathcal{Y}} & p_{1}\left(x_{1}\right)+f\left(x_{1}, \ldots, x_{m}\right)+q_{1}\left(y_{1}\right)+g\left(y_{1}, \ldots, y_{n}\right) \\
\text { s.t. } & \mathcal{A}^{*} x+\mathcal{B}^{*} y=c . \tag{12}
\end{array}
$$

- $p_{1}: \mathcal{X}_{1} \rightarrow(-\infty, \infty]$ and $q_{1}: \mathcal{Y}_{1} \rightarrow(-\infty, \infty]:$ closed proper convex;
- $f: \mathcal{X} \rightarrow(-\infty, \infty)$ and $g: \mathcal{Y} \rightarrow(-\infty, \infty)$: convex, continuously differentiable with Lipschitz continuous gradients;
- $\mathcal{A}: \mathcal{X} \rightarrow \mathcal{Y}$ and $\mathcal{B}: \mathcal{X} \rightarrow \mathcal{Z}$ are defined such that their adjoints are given by $\mathcal{A}^{*} x=\sum_{i=1}^{m} \mathcal{A}_{i}^{*} x_{i}$ for $x=\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{X}$, and $\mathcal{B}^{*} y=$ $\sum_{j=1}^{n} \mathcal{B}_{3}^{*} y_{j}$ for $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathcal{Y}$ with $\mathcal{A}_{i}^{*}: \mathcal{X}_{i} \rightarrow \mathcal{Z}, i=1, \ldots, m$ and $\mathcal{B}_{j}^{*}: \mathcal{Y}_{j} \rightarrow \mathcal{Z}, j=1, \ldots, n$ are the adjoints of the linear maps $\mathcal{A}_{i}: \mathcal{Z} \rightarrow \mathcal{X}_{i}$ and $\mathcal{B}_{j}: \mathcal{Z} \rightarrow \mathcal{Y}_{i}$, respectively.

Define for convenience $p(x):=p_{1}\left(x_{1}\right)$ and $q(y):=q_{1}\left(y_{1}\right)$.
There exist self-adjoint positive semidefinite linear operators $\widehat{\Sigma}_{f}$: $\mathcal{X} \rightarrow \mathcal{X}$ and $\widehat{\Sigma}_{g}: \mathcal{Y} \rightarrow \mathcal{Y}$, such that for any $x, x^{\prime} \in \mathcal{X}$ and $y, y^{\prime} \in \mathcal{Y}$,

$$
\begin{align*}
f(x) & \leq \widehat{f}\left(x ; x^{\prime}\right):=f\left(x^{\prime}\right)+\left\langle\nabla f\left(x^{\prime}\right), x-x^{\prime}\right\rangle+\frac{1}{2}\left\|x-x^{\prime}\right\|_{\widehat{\Sigma}_{f}}^{2} \\
g(y) & \leq \widehat{g}\left(y ; y^{\prime}\right):=g\left(y^{\prime}\right)+\left\langle\nabla g\left(y^{\prime}\right), y-y^{\prime}\right\rangle+\frac{1}{2}\left\|y-y^{\prime}\right\|_{\widehat{\Sigma}_{g}}^{2} \tag{13}
\end{align*}
$$

Let $\sigma>0$. The majorized augmented Lagrangian function of problem (12) is defined by for any $\left(x^{\prime}, y^{\prime}\right) \in \mathcal{X} \times \mathcal{Y}$ and $(x, y, z) \in$ $\mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$,

$$
\begin{aligned}
\widehat{\mathcal{L}}_{\sigma}\left(x, y ;\left(z, x^{\prime}, y^{\prime}\right)\right):= & p(x)+\widehat{f}\left(x ; x^{\prime}\right)+q(y)+\widehat{g}\left(y ; y^{\prime}\right) \\
& +\left\langle z, \mathcal{A}^{*} x+\mathcal{B}^{*} y-c\right\rangle+\frac{\sigma}{2}\left\|\mathcal{A}^{*} x+\mathcal{B}^{*} y-c\right\|^{2} .
\end{aligned}
$$

If f and g are quadratic functions, by taking $\widehat{\Sigma}_{f}=\Sigma_{f}$ and $\widehat{\Sigma}_{g}=\Sigma_{g}$ the majorized augmented Lagrangian function is also the augmented Lagrangian function.

An inexact majorized semi-Proximal ADMM

Let $\mathcal{S}: \mathcal{X} \rightarrow \mathcal{X}$ and $\mathcal{T}: \mathcal{Y} \rightarrow \mathcal{Y}$ being two self-adjoint positive semidefinite linear operators and define

$$
\begin{equation*}
\mathcal{M}:=\widehat{\Sigma}_{f}+\mathcal{S}+\sigma \mathcal{A} \mathcal{A}^{*} \quad \text { and } \quad \mathcal{N}:=\widehat{\Sigma}_{g}+\mathcal{T}+\sigma \mathcal{B} \mathcal{B}^{*} \tag{14}
\end{equation*}
$$

Suppose that $\left\{w^{k}:=\left(x^{k}, y^{k}, z^{k}\right)\right\}$ is a sequence in $\mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$. For convenience, we define the two functions $\psi_{k}: \mathcal{X} \rightarrow(-\infty, \infty]$ and $\varphi_{k}: \mathcal{Y} \rightarrow(-\infty, \infty]$ by

$$
\begin{aligned}
\psi_{k}(x) & :=p(x)+\frac{1}{2}\langle x, \mathcal{M} x\rangle-\left\langle l_{x}^{k}, x\right\rangle, \\
\varphi_{k}(y) & :=q(y)+\frac{1}{2}\langle y, \mathcal{N} y\rangle-\left\langle l_{y}^{k}, y\right\rangle,
\end{aligned}
$$

where

$$
\begin{aligned}
& -l_{x}^{k}:=\nabla f\left(x^{k}\right)+\mathcal{A} z^{k}-\mathcal{M} x^{k}+\sigma \mathcal{A}\left(\mathcal{A}^{*} x^{k}+\mathcal{B}^{*} y^{k}-c\right) \\
& -l_{y}^{k}:=\nabla g\left(y^{k}\right)+\mathcal{B} z^{k}-\mathcal{N} y^{k}+\sigma \mathcal{B}\left(\mathcal{A}^{*} x^{k+1}+\mathcal{B}^{*} y^{k}-c\right) .
\end{aligned}
$$

Let $\left\{\varepsilon_{k}\right\}$ be a summable sequence of nonnegative numbers, and define

$$
\mathcal{E}:=\sum_{k=0}^{\infty} \varepsilon_{k}<\infty, \quad \mathcal{E}^{\prime}:=\sum_{k=0}^{\infty} \varepsilon_{k}^{2}<\infty .
$$

Algorithm (imsPADMM)

Let $\tau \in(0,(1+\sqrt{5}) / 2)$ be the step-length. Let $w^{0}:=\left(x^{0}, y^{0}, z^{0}\right) \in \operatorname{dom} p \times \operatorname{dom} q \times \mathcal{Z}$ be the initial point. For $k=0,1, \ldots$ Choose \mathcal{S} and \mathcal{T} such that $\mathcal{M} \succ 0$ and $\mathcal{N} \succ 0$.

1. Compute x^{k+1} and $d_{x}^{k} \in \partial \psi_{k}\left(x^{k+1}\right)$ s.t. $\left\|\mathcal{M}^{-\frac{1}{2}} d_{x}^{k}\right\| \leq \varepsilon_{k}$ and

$$
\begin{equation*}
x^{k+1} \approx \bar{x}^{k+1}:=\underset{x \in \mathcal{X}}{\arg \min }\left\{\psi_{k}(x)=\widehat{\mathcal{L}}_{\sigma}\left(x, y^{k} ; w^{k}\right)+\frac{1}{2}\left\|x-x^{k}\right\|_{\mathcal{S}}^{2}\right\} . \tag{15}
\end{equation*}
$$

2. Compute y^{k+1} and $d_{y}^{k} \in \partial \varphi_{k}\left(y^{k+1}\right)$ s.t. $\left\|\mathcal{N}^{-\frac{1}{2}} d_{y}^{k}\right\| \leq \varepsilon_{k}$ and

$$
\begin{align*}
y^{k+1} \approx \bar{y}^{k+1} & :=\underset{y \in \mathcal{Y}}{\arg \min }\left\{\widehat{\mathcal{L}}_{\sigma}\left(\bar{x}^{k+1}, y ; w^{k}\right)+\frac{1}{2}\left\|y-y^{k}\right\|_{\mathcal{T}}^{2}\right\} \\
& =\underset{y \in \mathcal{Y}}{\arg \min }\left\{\varphi_{k}(y)+\left\langle\sigma \mathcal{B} \mathcal{A}^{*}\left(\bar{x}^{k+1}-x^{k+1}\right), y\right\rangle\right\} . \tag{16}
\end{align*}
$$

3. Compute $z^{k+1}:=z^{k}+\tau \sigma\left(\mathcal{A}^{*} x^{k+1}+\mathcal{B}^{*} y^{k+1}-c\right)$.

In imsPADMM, the main issue is how to choose \mathcal{S} and \mathcal{T}, and how to compute x^{k+1} and y^{k+1}.
Decomposition of $\widehat{\Sigma}_{f}$ and $\widehat{\Sigma}_{g}$, consistent with the decompositions of \mathcal{X} and \mathcal{Y} :

$$
\begin{gathered}
\widehat{\Sigma}_{f}=\left(\begin{array}{cccc}
\left(\widehat{\Sigma}_{f}\right)_{11} & \left(\widehat{\Sigma}_{f}\right)_{12} & \cdots & \left(\widehat{\Sigma}_{f}\right)_{1 m} \\
\left(\widehat{\Sigma}_{f}\right)_{12}^{*} & \left(\widehat{\Sigma}_{f}\right)_{22} & \cdots & \left(\widehat{\Sigma}_{f}\right)_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\widehat{\Sigma}_{f}\right)_{1 m}^{*} & \left(\widehat{\Sigma}_{f}\right)_{2 m}^{*} & \cdots & \left(\widehat{\Sigma}_{f}\right)_{m m}
\end{array}\right), \\
\widehat{\Sigma}_{g}=\left(\begin{array}{cccc}
\left(\widehat{\Sigma}_{g}\right)_{11} & \left(\widehat{\Sigma}_{g}\right)_{12} & \cdots & \left(\widehat{\Sigma}_{g}\right)_{1 n} \\
\left(\widehat{\Sigma}_{g}\right)_{12}^{*} & \left(\widehat{\Sigma}_{g}\right)_{22} & \cdots & \left(\widehat{\Sigma}_{g}\right)_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\widehat{\Sigma}_{g}\right)_{1 n}^{*} & \left(\widehat{\Sigma}_{g}\right)_{2 n}^{*} & \cdots & \left(\widehat{\Sigma}_{g}\right)_{n n}
\end{array}\right)
\end{gathered}
$$

Choose two self-adjoint positive semidefinite linear operators $\widetilde{\mathcal{S}}_{1}$: $\mathcal{X}_{1} \rightarrow \mathcal{X}_{1}$ and $\widetilde{\mathcal{T}}_{1}: \mathcal{Y}_{1} \rightarrow \mathcal{Y}_{1}$ satisfying
$\widetilde{\mathcal{M}}_{11}:=\widetilde{\mathcal{S}}_{1}+\left(\widehat{\Sigma}_{f}\right)_{11}+\sigma \mathcal{A}_{1} \mathcal{A}_{1}^{*} \succ 0, \widetilde{\mathcal{N}}_{11}:=\widetilde{\mathcal{T}}_{1}+\left(\widehat{\Sigma}_{g}\right)_{11}+\sigma \mathcal{B}_{1} \mathcal{B}_{1}^{*} \succ 0$, for making the subproblems involving p_{1} and q_{1} easier to solve.
We can assume that the well-defined optimization problems
$\min _{x_{1}}\left\{p\left(x_{1}\right)+\frac{1}{2}\left\|x_{1}-x_{1}^{\prime}\right\|_{\widetilde{\mathcal{M}}_{11}}^{2}\right\}$ and $\min _{y_{1}}\left\{q\left(y_{1}\right)+\frac{1}{2}\left\|y_{1}-y_{1}^{\prime}\right\|_{\tilde{\mathcal{N}}_{11}}^{2}\right\}$
can be solved to arbitrary accuracy for any given $x_{1}^{\prime} \in \mathcal{X}_{1}$ and $y_{1}^{\prime} \in \mathcal{Y}_{1}$.
For $i=2, \ldots, m$, choose a linear operator $\widetilde{S}_{i} \succeq 0$ such that

$$
\widetilde{\mathcal{M}}_{i i}:=\widetilde{\mathcal{S}}_{i}+\left(\widehat{\Sigma}_{f}\right)_{i i}+\sigma \mathcal{A}_{i} \mathcal{A}_{i}^{*} \succ 0,
$$

and similarly, for $j=2, \ldots, n$, we choose a linear operator $\widetilde{\mathcal{T}}_{j} \succeq 0$ such that

$$
\widetilde{\mathcal{N}}_{j j}:=\widetilde{\mathcal{T}}_{j}+\left(\widehat{\Sigma}_{g}\right)_{j j}+\sigma \mathcal{B}_{j} \mathcal{B}_{j}^{*} \succ 0 .
$$

Algorithm (sGS-imsPADMM)

Choose $\tau \in(0,(1+\sqrt{5}) / 2)$. Let $\left\{\widetilde{\varepsilon}_{k}\right\}_{k \geq 0}$ be a nonnegative summable sequence of real numbers. Let $\left(x^{0}, y^{0}, z^{0}\right) \in \operatorname{dom} p \times \operatorname{dom} q \times \mathcal{Z}$ be the initial point. For $k=0,1, \ldots$,
1a. for $i=m, \ldots, 2$ compute
$\widetilde{x}_{i}^{k+1} \approx \underset{x_{i} \in \mathcal{X}_{i}}{\arg \min }\left\{\widehat{\mathcal{L}}_{\sigma}\left(x_{\leq i-1}^{k}, x_{i}, \widetilde{x}_{\geq i+1}^{k+1}, y^{k} ; w^{k}\right)+\frac{1}{2}\left\|x_{i}-x_{i}^{k}\right\|_{\widetilde{S}_{i}}^{2}\right\}$,
$\widetilde{\delta}_{i}^{k} \in \partial_{x_{i}}{\stackrel{\mathcal{L}_{i}}{\mathcal{L}}}_{\sigma}\left(x_{\leq i-1}^{k}, \widetilde{x}_{i}^{k+1}, \widetilde{x}_{\geq i+1}^{k+1}, y^{k} ; w^{k}\right)+\widetilde{\mathcal{S}}_{i}\left(\widetilde{x}_{i}^{k+1}-x_{i}^{k}\right),\left\|\widetilde{\delta}_{i}^{k}\right\| \leq \widetilde{\varepsilon}_{k}$.
1b. For $i=1, \ldots, m$ compute
$x_{i}^{k+1} \approx \underset{x_{i} \in \mathcal{X}_{i}}{\arg \min }\left\{\widehat{\mathcal{L}}_{\sigma}\left(x_{\leq i-1}^{k+1}, x_{i}, \widetilde{x}_{\geq i+1}^{k+1}, y^{k} ; w^{k}\right)+\frac{1}{2}\left\|x_{i}-x_{i}^{k}\right\|_{\widetilde{S}_{i}}^{2}\right\}$,
$\delta_{i}^{k} \in \partial_{x_{i}} \widehat{\mathcal{L}}_{\sigma}\left(x_{\leq i-1}^{k+1}, x_{i}^{k+1}, \widetilde{x}_{\geq i+1}^{k+1}, y^{k} ; w^{k}\right)+\widetilde{\mathcal{S}}_{i}\left(x_{i}^{k+1}-x_{i}^{k}\right),\left\|\delta_{i}^{k}\right\| \leq \widetilde{\varepsilon}_{k}$.

Algorithm (sGS-imsPADMM (continued))

2a. For $j=n, \ldots, 2$ compute
$\widetilde{y}_{j}^{k+1} \approx \underset{y_{j} \in \mathcal{Y}_{j}}{\arg \min }\left\{\widehat{\mathcal{L}}_{\sigma}\left(x^{k+1}, y_{\leq j-1}^{k}, y_{j}, \widetilde{y}_{\geq j+1}^{k+1} ; w^{k}\right)+\frac{1}{2}\left\|y_{j}-y_{j}^{k}\right\|_{\widetilde{\mathcal{T}}_{j}}^{2}\right\}$,
$\widetilde{\gamma}_{j}^{k} \in \partial_{y_{j}} \widehat{\mathcal{L}}_{\sigma}\left(x^{k+1}, y_{\leq j-1}^{k}, \widetilde{y}_{j}^{k+1}, \widetilde{y}_{\geq j+1}^{k+1} ; w^{k}\right)+\widetilde{\mathcal{T}}_{j}\left(\widetilde{y}_{j}^{k+1}-y_{j}^{k}\right),\left\|\widetilde{\gamma}_{j}^{k}\right\| \leq \widetilde{\varepsilon}_{k}$.
2b. For $j=1, \ldots, n$ compute
$y_{j}^{k+1} \approx \underset{y_{j} \in \mathcal{Y}_{j}}{\arg \min }\left\{\widehat{\mathcal{L}}_{\sigma}\left(x^{k+1}, y_{\leq j-1}^{k+1}, y_{j}, \widetilde{y}_{\geq j+1}^{k+1} ; w^{k}\right)+\frac{1}{2}\left\|y_{j}-y_{j}^{k}\right\|_{\widetilde{\mathcal{T}}_{j}}^{2}\right\}$,
$\gamma_{j}^{k} \in \partial_{y_{j}} \widehat{\mathcal{L}}_{\sigma}\left(x^{k+1}, y_{\leq j-1}^{k+1}, y_{j}^{k+1}, \widetilde{y}_{\geq j+1}^{k+1} ; w^{k}\right)+\widetilde{\mathcal{T}}_{j}\left(y_{j}^{k+1}-y_{j}^{k}\right),\left\|\gamma_{j}^{k}\right\| \leq \widetilde{\varepsilon}_{k}$.
3. Compute $z^{k+1}:=z^{k}+\tau \sigma\left(\mathcal{A}^{*} x^{k+1}+\mathcal{B}^{*} y^{k+1}-c\right)$.

Define the linear operators

$$
\begin{align*}
& \widetilde{\mathcal{M}}:=\widehat{\Sigma}_{f}+\sigma \mathcal{A} \mathcal{A}^{*}+\operatorname{Diag}\left(\widetilde{\mathcal{S}}_{1}, \ldots, \widetilde{\mathcal{S}}_{m}\right) \tag{17}\\
& \widetilde{\mathcal{N}}:=\widehat{\Sigma}_{g}+\sigma \mathcal{B B ^ { * }}+\operatorname{Diag}\left(\widetilde{\mathcal{T}}_{1}, \ldots, \widetilde{\mathcal{T}}_{n}\right)
\end{align*}
$$

Define $\widetilde{\mathcal{M}}_{u}$ and $\widetilde{\mathcal{N}}_{u}$ analogously as \mathcal{H}_{u} in (3) for $\widetilde{\mathcal{M}}$ and $\widetilde{\mathcal{N}}$, and

$$
\widetilde{\mathcal{M}}_{d}:=\operatorname{Diag}\left(\widetilde{\mathcal{M}}_{11}, \ldots, \widetilde{\mathcal{M}}_{m m}\right), \quad \widetilde{\mathcal{N}}_{d}:=\operatorname{Diag}\left(\widetilde{\mathcal{N}}_{11}, \ldots, \widetilde{\mathcal{N}}_{n n}\right)
$$

Then, $\widetilde{\mathcal{M}}:=\widetilde{\mathcal{M}}_{d}+\widetilde{\mathcal{M}}_{u}+\widetilde{\mathcal{M}}_{u}^{*}$ and $\widetilde{\mathcal{N}}:=\widetilde{\mathcal{N}}_{d}+\widetilde{\mathcal{N}}_{u}+\widetilde{\mathcal{N}}_{u}^{*}$.

Moreover, we define the following linear operators:

$$
\begin{gathered}
\operatorname{sGS}(\widetilde{\mathcal{M}}):=\widetilde{\mathcal{M}}_{u} \widetilde{\mathcal{M}}_{d}^{-1} \widetilde{\mathcal{M}}_{u}^{*}, \quad \operatorname{sGS}(\widetilde{\mathcal{N}}):=\widetilde{\mathcal{N}}_{u} \widetilde{\mathcal{N}}_{d}^{-1} \widetilde{\mathcal{N}}_{u}^{*} \\
\widehat{\mathcal{S}}:=\operatorname{Diag}\left(\widetilde{\mathcal{S}}_{1}, \ldots, \widehat{\mathcal{S}}_{m}\right)+\operatorname{sGS}(\widetilde{\mathcal{M}}), \quad \widehat{\mathcal{M}}:=\widehat{\Sigma}_{f}+\sigma \mathcal{A} \mathcal{A}^{*}+\widehat{\mathcal{S}}, \\
\widehat{\mathcal{T}}:=\operatorname{Diag}\left(\widetilde{\mathcal{T}}_{1}, \ldots, \widetilde{\mathcal{T}}_{n}\right)+\operatorname{sGS}(\widetilde{\mathcal{N}}) \quad \text { and } \quad \widehat{\mathcal{N}}:=\widehat{\Sigma}_{g}+\sigma \mathcal{B} \mathcal{B}^{*}+\widehat{\mathcal{T}} .
\end{gathered}
$$

Define the two constants

$$
\begin{align*}
& \kappa:=2 \sqrt{m-1}\left\|\widetilde{\mathcal{M}}_{d}^{-\frac{1}{2}}\right\|+\sqrt{m}\left\|\widetilde{\mathcal{M}}_{d}^{\frac{1}{2}}\left(\widetilde{\mathcal{M}}_{d}+\widetilde{\mathcal{M}}_{u}\right)^{-1}\right\|, \\
& \kappa^{\prime}:=2 \sqrt{n-1}\left\|\widetilde{\mathcal{N}}_{d}^{-\frac{1}{2}}\right\|+\sqrt{n}\left\|\widetilde{\mathcal{N}}_{d}^{\frac{1}{2}}\left(\widetilde{\mathcal{N}}_{d}+\widetilde{\mathcal{N}}_{u}\right)^{-1}\right\| \tag{18}
\end{align*}
$$

For any $k \geq 0$, and $\widetilde{\delta}^{k}=\left(\widetilde{\delta}_{1}^{k}, \ldots, \widetilde{\delta}_{m}^{k}\right), \delta^{k}=\left(\delta_{1}^{k}, \ldots, \delta_{m}^{k}\right), \widetilde{\gamma}^{k}=$ $\left(\widetilde{\gamma}_{1}^{k}, \ldots, \widetilde{\gamma}_{n}^{k}\right)$ and $\gamma^{k}=\left(\gamma_{1}^{k}, \ldots, \gamma_{n}^{k}\right)$ such that $\widetilde{\delta}_{1}^{k+1}:=\delta_{1}^{k+1}$ and $\widetilde{\gamma}_{1}^{k+1}:=\gamma_{1}^{k+1}$, we define
$d_{x}^{k}:=\delta^{k}+\widetilde{\mathcal{M}}_{u} \widetilde{\mathcal{M}}_{d}^{-1}\left(\delta^{k}-\widetilde{\delta}^{k}\right) \quad$ and $\quad d_{y}^{k}:=\gamma^{k}+\widetilde{\mathcal{N}}_{u} \widetilde{\mathcal{N}}_{d}^{-1}\left(\gamma^{k}-\widetilde{\gamma}^{k}\right)$.

Proposition 2

Suppose that $\widetilde{\mathcal{M}}_{d} \succ 0$ and $\widetilde{\mathcal{N}}_{d} \succ 0$ for $\widetilde{\mathcal{M}}$ and $\widetilde{\mathcal{N}}$ defined in (17). Let κ and κ^{\prime} be defined as in (18). Then, the sequences $\left\{w^{k}:=\left(x^{k}, y^{k}, z^{k}\right)\right\},\left\{\delta^{k}\right\},\left\{\widetilde{\delta}^{k}\right\},\left\{\gamma^{k}\right\}$ and $\left\{\widetilde{\gamma}^{k}\right\}$ generated by the sGS-imsPADMM are well-defined and it holds that

$$
\begin{equation*}
\widehat{\mathcal{M}}=\widetilde{\mathcal{M}}+\operatorname{sGS}(\widetilde{\mathcal{M}}) \succ 0, \quad \widehat{\mathcal{N}}=\widetilde{\mathcal{N}}+\operatorname{sGS}(\widetilde{\mathcal{N}}) \succ 0 \tag{20}
\end{equation*}
$$

Moreover, for any $k \geq 0, d_{x}^{k}$ and d_{y}^{k} defined by (19) satisfy

$$
\left\{\begin{array}{l}
d_{x}^{k} \in \partial_{x}\left(\widehat{\mathcal{L}}_{\sigma}^{k}\left(x^{k+1}, y^{k}\right)+\frac{1}{2}\left\|x^{k+1}-x^{k}\right\|_{\widehat{\mathcal{S}}}^{2}\right) \\
d_{y}^{k} \in \partial_{y}\left(\widehat{\mathcal{L}}_{\sigma}^{k}\left(x^{k+1}, y^{k+1}\right)+\frac{1}{2}\left\|y^{k+1}-y^{k}\right\|_{\widehat{\mathcal{T}}}^{2}\right) \tag{22}\\
\left\|\widehat{\mathcal{M}}^{-\frac{1}{2}} d_{x}^{k}\right\| \leq \kappa \widetilde{\varepsilon}_{k}, \quad\left\|\widehat{\mathcal{N}}^{-\frac{1}{2}} d_{y}^{k}\right\| \leq \kappa^{\prime} \widetilde{\varepsilon}_{k}
\end{array}\right.
$$

If in the imsPADMM, we choose $\mathcal{S}:=\widehat{\mathcal{S}}, \mathcal{T}:=\widehat{\mathcal{T}}$, then we have $\mathcal{M}=\widehat{\mathcal{M}} \succ 0$ and $\mathcal{N}=\widehat{\mathcal{N}} \succ 0$. Moreover, we can define the sequence $\left\{\varepsilon_{k}\right\}$ by $\varepsilon_{k}:=\max \left\{\kappa, \kappa^{\prime}\right\} \widetilde{\varepsilon}_{k} \forall k \geq 0$. The sequence $\left\{w^{k}\right\}$ generated by the sGS-imsPADMM always satisfies $\left\|\mathcal{M}^{-\frac{1}{2}} d_{x}^{k}\right\| \leq \varepsilon_{k}$ and $\left\|\mathcal{N}^{-\frac{1}{2}} d_{y}^{k}\right\| \leq \varepsilon_{k}$. Thus, $\left\{w^{k}\right\}$ can be viewed as a sequence generated by the imsPADMM with specially constructed semi-proximal terms.

■ sGS-imsPADMM is an explicitly implementable method to handle high-dimensional convex composite conic optimization problems.

- imsPADMM has a compact formulation which can facilitate the convergence analysis of the sGS-imsPADMM.
- We can use the \widetilde{x}_{i}^{k+1} computed in the backward GS sweep (Step 1a) to estimate x_{i}^{k+1} in the forward sweep (Step 1b) for $i=2, \ldots, m$.
- In this case, the corresponding error vector is given by

$$
\delta_{i}^{k}=\widetilde{\delta}_{i}^{k}+\sum_{j=1}^{i-1} \widetilde{\mathcal{M}}_{i j}\left(x_{j}^{k+1}-x_{j}^{k}\right)
$$

and we may accept the approximate solution $x_{i}^{k+1}=\widetilde{x}_{i}^{k+1}$ without solving an additional subproblem if $\left\|\delta_{i}^{k}\right\| \leq \widetilde{\varepsilon}_{k}$.
■ A similar strategy also applies to the subproblems in Step 2b for $j=2, \ldots, n$.

We only need to establish the convergence for imsPADMM!

Theorem 1

Suppose that the solution set $\overline{\mathcal{W}}$ to the KKT system of problem (12) is nonempty and the sequence $\left\{\left(x^{k}, y^{k}, z^{k}\right)\right\}$ is generated by the imsPADMM. Assume that ${ }^{2}$

$$
\begin{equation*}
\Sigma_{f}+\mathcal{S}+\sigma \mathcal{A} \mathcal{A}^{*} \succ 0 \quad \text { and } \quad \Sigma_{g}+\mathcal{T}+\sigma \mathcal{B B}^{*} \succ 0 \tag{23}
\end{equation*}
$$

Then, the sequence $\left\{x^{k}, y^{k}, z^{k}\right\}$ converges to a point in $\overline{\mathcal{W}}$.

[^1]To handle the inequality constraints in (2) we introduce a slack variable v to get

$$
\begin{align*}
\max & \left(-\delta_{\mathcal{N}}^{*}(-Z)-\delta_{\mathbb{R}_{+}^{m_{I}}}(v)\right)-\frac{1}{2}\langle W, \mathcal{Q} W\rangle-\delta_{\mathcal{S}_{+}^{n}}(S) \\
& +\left\langle b_{E}, y_{E}\right\rangle+\left\langle b_{I}, y_{I}\right\rangle \tag{24}
\end{align*}
$$

$$
\begin{array}{ll}
\text { s.t. } & Z-\mathcal{Q} W+S+\mathcal{A}_{E}^{*} y_{E}+\mathcal{A}_{I}^{*} y_{I}=C, \\
& \mathcal{D}\left(v-y_{I}\right)=0, \quad W \in \mathcal{W}
\end{array}
$$

where $\mathcal{D} \in \mathbb{R}^{m_{I} \times m_{I}}$ is a fixed positive definite matrix.

We construct QSDP test instances based on the doubly nonnegative SDP problems arising from relaxation of binary integer quadratic (BIQ) programming with a large number of inequality constraints that was introduced by Sun et. al. for getting tighter bounds:

$$
\begin{array}{ll}
\min & \frac{1}{2}\langle X, \mathcal{Q}(X)\rangle+\frac{1}{2}\langle Q, \bar{X}\rangle+\langle c, x\rangle \\
\text { s.t. } & \operatorname{diag}(\bar{X})-x=0, \quad \alpha=1, X=\left(\begin{array}{cc}
\bar{X} & x \\
x^{T} & \alpha
\end{array}\right) \in \mathcal{S}_{+}^{n}, \\
& X \in \mathcal{N}:=\left\{X \in \mathcal{S}^{n}: X \geq 0\right\}, \\
& \begin{cases}-\bar{X}_{i j}+x_{i} \geq 0, \\
-\bar{X}_{i j}+x_{j} \geq 0, \quad \forall i<j, j=2, \ldots, n-1 . \\
\bar{X}_{i j}-x_{i}-x_{j} \geq-1\end{cases}
\end{array}
$$

For convenience, we call them as QSDP-BIQ problems. When \mathcal{Q} is vacuous, we call the corresponding linear SDP problems as SDP-BIQ problems.

- The test data for Q and c are taken from the Biq Mac Library http://biqmac.uni-klu.ac.at/biqmaclib.html.
- We tested one group of SDP-BIQ problems and three groups of QSDP-BIQ problems with each group consisting of 80 instances with n ranging from 151 to 501 .
- We compare the performance of our sGS-imsPADMM with the directly extended multi-block sPADMM with the aggressive step-length of 1.618 on solving these SDP/QSDP-BIQ problems.
- Note: Although its convergence is not guaranteed, such a directly extended sPADMM is currently more or less the benchmark among first-order methods for solving multi-block linear and quadratic SDPs.

Stop the algorithm after 500,000 iterations, or

$$
\eta_{\mathrm{qsdp}}=\max \left\{\eta_{P}, \eta_{D}, \eta_{W}, \eta_{I_{1}}, \eta_{I_{2}}, \eta_{s_{1}}, \eta_{I_{3}}, \eta_{S_{2}}, \eta_{X}, \eta_{Z}\right\}<10^{-6}
$$

where

$$
\begin{aligned}
& \eta_{D}=\frac{\left\|\mathcal{A}_{E}^{*} y_{E}+\mathcal{A}_{I}^{*} y_{I}+S+Z-\mathcal{Q} W-C\right\|}{1+\|C\|}, \eta_{P}=\frac{\left\|\mathcal{A}_{E} X-b_{E}\right\|}{1+\left\|b_{E}\right\|} \\
& \eta_{I_{1}}=\frac{\left\|\min \left(0, y_{I}\right)\right\|}{1+\left\|y_{I}\right\|}, \eta_{I_{2}}=\frac{\left\|\min \left(0, \mathcal{A}_{I} X-b_{I}\right)\right\|}{1+\left\|b_{I}\right\|}, \eta_{I_{3}}=\frac{\left|\left\langle\mathcal{A}_{I} X-b_{I}, y_{I}\right\rangle\right|}{1+\left\|\mathcal{A}_{I} x-b_{I}\right\|+\left\|y_{I}\right\|} \\
& \eta_{S 1}=\frac{\left\|X-\Pi_{\mathcal{S}_{+}^{n}}(X)\right\|}{1+\|X\|}, \eta_{S 2}=\frac{|\langle X, S\rangle|}{1+\|X\|+\|S\|}, \eta_{W}=\frac{\|\mathcal{Q} X-\mathcal{Q} W\|}{1+\|\mathcal{Q}\|} \\
& \eta_{X}=\frac{\left\|X-\Pi_{\mathcal{N}}(X)\right\|}{1+\|X\|}, \eta_{Z}=\frac{\left\|X-\Pi_{\mathcal{N}}(X-Z)\right\|}{1+\|X\|+\|Z\|} .
\end{aligned}
$$

In addition, we also measure the duality gap:

$$
\eta_{g a p}:=\frac{\mathrm{Obj}_{\text {primal }}-\mathrm{Obj}_{\text {dual }}}{1+\left|\mathrm{Obj}_{\text {primal }}\right|+\left|\mathrm{Obj}_{\text {dual }}\right|}
$$

where

$$
\left\{\begin{array}{l}
\text { Obj }_{\text {primal }}:=\frac{1}{2}\langle X, \mathcal{Q} X\rangle+\langle C, X\rangle \\
\text { Obj }_{\text {dual }}:=-\delta_{\mathcal{N}}^{*}(-Z)-\frac{1}{2}\langle W, \mathcal{Q} W\rangle+\left\langle b_{E}, y_{E}\right\rangle+\left\langle b_{I}, y_{I}\right\rangle
\end{array}\right.
$$

For example, the subproblem corresponding to the block y_{I} in ADMM type methods with/without semi-proximal term has to be solved:

$$
\begin{equation*}
\min \left\{-\left\langle b_{I}, y_{I}\right\rangle+\frac{\sigma}{2}\left\|\left[\mathcal{A}_{I},-\mathcal{D}\right]^{*} y_{I}-r\right\|^{2}+\frac{1}{2}\left\|y_{I}-y_{I}^{-}\right\|_{\mathcal{T}}^{2}\right\} \tag{25}
\end{equation*}
$$

where \mathcal{T} is a self-adjoint positive semidefinite linear operator on $\mathbb{R}^{m_{I}}$, and r and y_{I}^{-}are given data.

Define $\mathcal{V}:=\mathcal{A}_{I} \mathcal{A}_{I}^{*}+\mathcal{D}^{2}$ and $\widetilde{r}:=b_{I}+\sigma\left(\mathcal{A}_{I},-\mathcal{D}\right) r+\mathcal{T} y_{I}^{-}$. Solving (25) is equivalent to solving the linear equation

$$
\begin{equation*}
(\sigma \mathcal{V}+\mathcal{T}) y_{I}=\widetilde{r} \tag{26}
\end{equation*}
$$

Remark: It is generally very difficult to compute the solution of (26) exactly for large scale problems if \mathcal{T} is the zero operator, i.e., not adding a proximal term.

Suppose that \mathcal{V} admits the eigenvalue decomposition

$$
\mathcal{V}=\sum_{i=1}^{n} \lambda_{i} \mathcal{P}_{i} \mathcal{P}_{i}^{*}
$$

with $\lambda_{1} \geq \ldots \geq \lambda_{n} \geq 0$. We can choose \mathcal{T} by using the first l largest eigenvalues and the corresponding eigenvectors of \mathcal{V}, i.e.,

$$
\begin{equation*}
\mathcal{T}=\sigma \sum_{i=l+1}^{n}\left(\lambda_{l+1}-\lambda_{i}\right) \mathcal{P}_{i} \mathcal{P}_{i}^{*} \tag{27}
\end{equation*}
$$

which is self-adjoint positive semidefinite.
Remark: it is more likely that such a \mathcal{T} is "smaller" than the natural choice of setting it to be $\sigma\left(\lambda_{1} \mathcal{I}-\mathcal{V}\right)$. Indeed we have observed in our numerical experiments that the latter choice always leads to more iterations compared to the choice in (27).
$(\sigma \mathcal{V}+\mathcal{T})^{-1}$ can be obtained analytically as

$$
(\sigma \mathcal{V}+\mathcal{T})^{-1}=\left(\sigma \lambda_{l+1}\right)^{-1} \mathcal{I}+\sum_{i=1}^{l}\left(\left(\sigma \lambda_{i}\right)^{-1}-\left(\sigma \lambda_{l+1}\right)^{-1}\right) \mathcal{P}_{i} \mathcal{P}_{i}^{*}
$$

Thus, we only need to calculate the first few largest eigenvalues and the corresponding eigenvectors of \mathcal{V} and this can be done efficiently via variants of the Lanczos method.

When the problem (25) is allowed to be solved inexactly, we can set $\mathcal{T}=0$ in (25) and solve the linear system $\sigma \mathcal{V}=\widetilde{r}$ by a preconditioned conjugate gradient (PCG) method.

■ In this setting, $(\sigma \mathcal{V}+\mathcal{T})^{-1}$ with \mathcal{T} defined in (27) can serve as an effective preconditioner.

Figure: Performance profiles of sGS-isPADMM and sPADMM4d on solving the SDP-BIQ problems.

Figure: Performance profiles of sGS-isPADMM and sPADMM5d on solving the QSDP-BIQ problems (group 1).

Figure: Performance profiles of sGS-isPADMM and sPADMM5d on solving the QSDP-BIQ problems (group 2).

Figure: Performance profiles of sGS-isPADMM and sPADMM5d on solving the QSDP-BIQ problems (group 3).

Table: The numerical performance of sGS-isPADMM and the directly extended multiblock ADMM with step-length $\tau=1.618\left(n>500\right.$, accuracy $\left.=10^{-6}\right)$

Problem	$m_{E} ; m_{I}$	n_{s}	Iteration $s G S-i s P \mid s P-d$	$\eta_{q s} d p$ $s G S-i s P \mid s P-d$	$\eta_{g a p}$ $s G S-i s P \mid s P-d$	Time $s G S-i s P \mid s P-d$
SDP-BIQ						
bqp500-2	$501 ; 374250$	501	$17525 \mid 82401$	$9.9-7 \mid 9.9-7$	$-6.3-7 \mid 2.3-8$	$42: 27 \mid 2: 12: 29$
bqp500-4	$501 ; 374250$	501	$15352 \mid 75995$	$9.9-7 \mid 9.9-7$	$-6.4-7 \mid-3.2-8$	$36: 53 \mid 1: 59: 52$
bqp500-6	$501 ; 374250$	501	$17747 \mid 78119$	$9.9-7 \mid 9.9-7$	$-1.6-7 \mid-2.4-8$	$45: 10 \mid 2: 04: 23$
bqp500-8	$501 ; 374250$	501	$20386 \mid 110825$	$9.9-7 \mid 9.9-7$	$-4.3-7 \mid 2.1-8$	$52: 04 \mid 3: 10: 43$
bqp500-10	$501 ; 374250$	501	$16407 \mid 68985$	$9.7-7 \mid 9.9-7$	$-5.6-7 \mid 3.7-9$	$39: 30 \mid 1: 46: 01$
gka1f	$501 ; 374250$	501	$9101 \mid 60073$	$9.9-7 \mid 9.9-7$	$-4.4-7 \mid 1.1-8$	$20: 22 \mid 1: 32: 22$
gka2f	$501 ; 374250$	501	$16193 \mid 74034$	$9.9-7 \mid 9.9-7$	$-2.7-7 \mid-1.1-8$	$39: 35 \mid 1: 59: 59$
gka3f	$501 ; 374250$	501	$16323 \mid 72563$	$9.9-7 \mid 9.9-7$	$-1.3-7 \mid 3.9-8$	$40: 38 \mid 1: 56: 28$
gka4f	$501 ; 374250$	501	$15502 \mid 63285$	$9.6-7 \mid 9.9-7$	$-6.1-7 \mid 3.4-8$	$36: 58 \mid 1: 41: 20$
gka5f	$501 ; 374250$	501	$17664 \mid 76164$	$9.9-7 \mid 9.9-7$	$-1.3-7 \mid 1.1-8$	$43: 45 \mid 2: 05: 14$
QSDP-BIQ $($ group 1$)$						
bqp500-2	$501 ; 374250$	501	$19053 \mid 71380$	$9.9-7 \mid 9.9-7$	$-1.2-7 \mid 1.1-8$	$1: 02: 31 \mid 1: 52: 02$
bqp500-4	$501 ; 374250$	501	$13905 \mid 67865$	$9.9-7 \mid 9.9-7$	$-8.9-7 \mid 7.8-8$	$43: 17 \mid 1: 46: 07$
bqp500-6	$501 ; 374250$	501	$17211 \mid 62562$	$9.9-7 \mid 9.9-7$	$-2.0-7 \mid 6.9-8$	$56: 23 \mid 1: 37: 19$
bqp500-8	$501 ; 374250$	501	$19742 \mid 85057$	$9.9-7 \mid 9.9-7$	$-4.9-7 \mid 7.0-8$	$1: 05: 09 \mid 2: 15: 52$
bqp500-10	$501 ; 374250$	501	$17690 \mid 65484$	$9.9-7 \mid 9.9-7$	$-2.3-7 \mid 6.7-8$	$58: 00 \mid 1: 43: 04$
gka1f	$501 ; 374250$	501	$8919 \mid 55669$	$9.9-7 \mid 9.9-7$	$-8.8-7 \mid 4.1-8$	$26: 42 \mid 1: 25: 01$
gka2f	$501 ; 374250$	501	$13587 \mid 61324$	$9.9-7 \mid 9.9-7$	$-4.5-7 \mid 2.1-8$	$42: 50 \mid 1: 37: 15$
gka3f	$501 ; 374250$	501	$13786 \mid 62438$	$9.9-7 \mid 9.9-7$	$-2.2-7 \mid 3.1-8$	$42: 55 \mid 1: 37: 29$
gka4f	$501 ; 374250$	501	$13953 \mid 57164$	$9.6-7 \mid 9.9-7$	$-7.2-7 \mid-3.4-8$	$44: 25 \mid 1: 31: 14$
gka5f	$501 ; 374250$	501	$15968 \mid 62001$	$9.9-7 \mid 9.9-7$	$-1.4-7 \mid 4.6-8$	$50: 22 \mid 1: 35: 40$

Table: The numerical performance of sGS-isPADMM and the directly extended multiblock ADMM with step-length $\tau=1.618\left(n>500\right.$, accuracy $\left.=10^{-6}\right)$

Problem	$m_{E} ; m_{I}$	n_{s}	Iteration $s G S-i s P \mid s P-d$	$\eta_{q s} d p$ $s G S-i s P \mid s P-d$	$\eta_{g a p}$ $s G S-i s P \mid s P-d$	Time $s G S-i s P \mid s P-d$
QSDP-BIQ (group 2)						
bqp500-2	$501 ; 374250$	501	$16506 \mid 79086$	$9.9-7 \mid 9.9-7$	$-1.2-7 \mid 4.2-8$	$52: 46 \mid 1: 52: 08$
bqp500-4	$501 ; 374250$	501	$8675 \mid 30677$	$9.9-7 \mid 9.9-7$	$2.7-8 \mid 2.3-8$	$25: 32 \mid 41: 15$
bqp500-6	$501 ; 374250$	501	$10043 \mid 42654$	$9.9-7 \mid 9.9-7$	$-3.0-8 \mid 8.3-8$	$29: 46 \mid 58: 58$
bqp500-8	$501 ; 374250$	501	$9410 \mid 43785$	$9.9-7 \mid 9.9-7$	$-2.5-8 \mid 2.9-8$	$27: 37 \mid 59: 05$
bqp500-10	$501 ; 374250$	501	$10656 \mid 35213$	$9.9-7 \mid 9.9-7$	$-3.6-8 \mid 8.8-8$	$32: 35 \mid 47: 00$
gka1f	$501 ; 374250$	501	$10939 \mid 52226$	$9.9-7 \mid 9.9-7$	$-5.8-8 \mid 3.8-8$	$36: 10 \mid 1: 16: 48$
gka2f	$501 ; 374250$	501	$7757 \mid 34660$	$9.9-7 \mid 9.9-7$	$-1.8-8 \mid 6.0-8$	$25: 17 \mid 48: 40$
gka3f	$501 ; 374250$	501	$11241 \mid 45857$	$9.9-7 \mid 9.9-7$	$-1.2-8 \mid 2.7-8$	$34: 55 \mid 1: 02: 59$
gka4f	$501 ; 374250$	501	$11706 \mid 37466$	$9.9-7 \mid 9.9-7$	$-3.7-8 \mid 6.4-8$	$36: 19 \mid 51: 25$
gka5f	$501 ; 374250$	501	$14229 \mid 48670$	$9.9-7 \mid 9.9-7$	$-4.8-8 \mid 9.8-8$	$42: 37 \mid 1: 06: 37$
QSDP-BIQ $($ group 3$)$						
bqp500-2	$501 ; 374250$	501	$18311 \mid 66867$	$9.9-7 \mid 9.9-7$	$-1.9-7 \mid 1.2-7$	$41: 33 \mid 1: 11: 30$
bqp500-4	$501 ; 374250$	501	$14169 \mid 65580$	$9.9-7 \mid 9.9-7$	$-7.8-7 \mid 1.1-7$	$30: 04 \mid 1: 10: 29$
bqp500-6	$501 ; 374250$	501	$16428 \mid 68301$	$9.9-7 \mid 9.9-7$	$-2.3-7 \mid 8.4-8$	$36: 25 \mid 1: 13: 20$
bqp500-8	$501 ; 374250$	501	$26308 \mid 107664$	$9.9-7 \mid 9.9-7$	$-4.0-7 \mid 9.5-9$	$1: 01: 17 \mid 2: 00: 06$
bqp500-10	$501 ; 374250$	501	$16398 \mid 57221$	$9.9-7 \mid 9.9-7$	$-2.8-7 \mid 8.6-8$	$37: 22 \mid 1: 06: 27$
gka1f	$501 ; 374250$	501	$14479 \mid 51294$	$9.9-7 \mid 9.9-7$	$-3.6-7 \mid 7.0-8$	$31: 05 \mid 59: 17$
gka2f	$501 ; 374250$	501	$9365 \mid 60799$	$9.9-7 \mid 9.9-7$	$-1.5-6 \mid-1.9-9$	$18: 30 \mid 1: 04: 14$
gka3f	$501 ; 374250$	501	$14175 \mid 57782$	$9.9-7 \mid 9.9-7$	$-3.2-7 \mid 2.0-8$	$30: 10 \mid 1: 01: 35$
gka4f	$501 ; 374250$	501	$13356 \mid 56588$	$9.8-7 \mid 9.9-7$	$-5.8-7 \mid-2.0-8$	$27: 42 \mid 1: 00: 10$
gka5f	$501 ; 374250$	501	$14122 \mid 58716$	$9.9-7 \mid 9.9-7$	$-1.4-7 \mid 9.3-8$	$29: 38 \mid 1: 01: 13$

- Combining an inexact 2-block majorized sPADMM and the recent advances in the inexact block symmetric Gauss-Seidel (sGS) technique

■ Only needs one cycle of an inexact sGS iteration, instead of an unknown number of cycles, to solve each of the subproblems involved.

- For the vast majority of the tested problems, the proposed sGSimsPADMM is 2 to 3 times faster than the directly extended multi-block PADMM even with the aggressive step length of 1.618 .

■ One does not need to sacrifice speed in exchange for convergence guarantee in developing ADMM-type first order methods, at least for solving high-dimensional linear and convex quadratic SDP problems to moderate accuracy.

- The merit that is brought about by solving the original subproblems inexactly without adding proximal terms is thus evidently clear.
- More powerful algorithms are needed such as SDPNAL for solving the standard SDP.

Reference on first－order methods
䍰 D．F．Sun，K．－C．Toh and L．Yang，A convergent 3－block semiproximal alternating direction method of multipliers for conic programming with 4－type constraints SIAM J．Optim．， 25 （2015）882－915．

固 X．D．Li，D．F．Sun and K．－C．Toh，A Schur complement based semi－ proximal ADMM for convex quadratic conic programming and exten－ sions，Math．Program．， 155 （2016）333－373．

囲 L．Chen，D．F．Sun and K．－C．Toh，An efficient inexact symmetric Gauss－Seidel based majorized ADMM for high－dimensional convex composite conic programming，Math．Program．， 161 （2017）237－270．

Reference on second-order methods

䍰 X.Y. Zhao, D.F. Sun, K.-C. Toh, A Newton-CG augmented Lagrangian method for semidefinite programming, SIAM J. Optim., 20 (2010) 1737-1765.
R.Q. Yang, D.F. Sun and K.-C. Toh, SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints, Math. Program. Comput., 7 (2015) 331-366.

圊 X.D. Li, D.F. Sun and K.-C. Toh, QSDPNAL: A two-phase augmented Lagrangian method for convex quadratic semidefinite programming, arXiv:1512.08872 (2015).

[^0]: ${ }^{1}$ Currently available at arXiv:1703.06629 (2017)

[^1]: ${ }^{2}$ In fact, the theorem is still valid if (23) is replaced by the condition that $\widehat{\Sigma}_{f}+\mathcal{S}+\sigma \mathcal{A} \mathcal{A}^{*} \succ 0$ and $\widehat{\Sigma}_{g}+\mathcal{T}+\sigma \mathcal{B} \mathcal{B}^{*} \succ 0$.

