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Abstract. We consider the problem of minimizing a sum of Euclidean norms with
linear constraints. In this paper we establish the optimality conditions, duality and
uniqueness results for the problem. It is shown that the problem has a dual problem
with duality theory very similar to that in linear programming. We then present two
semismooth Newton methods for the problem by solving the strongly semismooth equa-
tions derived from the optimality conditions. The methods are globally and quadrat-
ically convergent. In particular, the quadratic convergence of the methods are proved
without requiring strict complementarity. Preliminary numerical results are also re-
ported.
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1 Introduction

Consider the problem of minimizing a sum of Euclidean norms with constraints:

m
min Y |la; — ATz
i=1

st. zeX,

(1.1)

where a1,a9,---,am € R¢, A1, A, -+, Ay, € R¥%4 and X C R".

When X = ", (1.1) is the problem of minimizing a sum of Euclidean norms (the MSN
problem for abbreviation) studied in [1, 3, 19, 24, 30]. If X := {z € ®" : Blz = b}, then
(1.1) is the problem of minimizing a sum of Euclidean norms subject to linear equality
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constraints (the EMSN problem for abbreviation) [2]. In this paper, unless otherwise
stated, we assume that

X :={ze®": Bz =b,, BTz > b} (1.2)

is a nonempty set, where B, € R\ b, € R, B € R and b € R*. Let A =
[A1, Ao, -+, Ap), @ = (a1;a9;---;am), M = {1,2,---,m} and V = {1,2,---,v}. In this
paper, we make the following assumptions.

(A1) A has full row rank n;

(A2) Let S be the solution set of problem (1.1). For any z € S, define
I(z)={i: Bfz =b;,i€ V} and By =[B;, i€ I(z)].
The matrix [Be, By(z)] has full column rank.

Let

1@ =3 fi@), (13)
=1

where fi(z) = ||a; — AT z| for i = 1,2,---,m. If d = 1, then the problem (1.1) is equivalent
to a linear program [11]. The problem (1.1) is a convex programming problem, but its
objective function f is not differentiable at any point x satisfying a; — A;fpa: = ( for some i.
It arises in many applications, such as the VLSL design, the Euclidean facilities location
problem and the Steiner minimal tree problem under a given topology; e.g., see [3, 30, 31]
for details.

Many algorithms have been designed to solve the MSN problem and the EMSN problem.
For the MSN problem, Weiszfeld [29] gave a simple iterative algorithm in 1937. Later,
a number of important results were obtained along this line; see [6, 7, 12, 16, 18, 26,
27]. Practical algorithms for solving these problems began with the work of Calamai
and Conn [4, 5], and Overton [19], where they proposed projected Newton algorithms
with the quadratic rate of convergence. More recently, Andersen [1] presented a Newton
barrier method for solving this problem. In [2], Andersen and Christiansen developed
an algorithm for the EMSN problem by transforming it into a sequence of unconstrained
MSN problems based on I; penalty function approach. Andersen, Christiansen, Conn
and Overton [3] proposed a primal-dual interior-point method based on smoothing ||z| to
V||z||? + €2 and presented impressive computational results. Xue and Ye [30, 31] presented
polynomial time primal-dual potential reduction algorithms by transforming this problem
into a standard second-order cone problem. Qi and Zhou [24] presented a globally and
quadratically convergent method by solving a system of strongly semismooth equations
derived from the problem.

In [5, 19, 24], the global and quadratic convergence results were obtained under a
strict complementarity assumption. However, this condition is not satisfied for many MSN
problems. Therefore, one question arises: can one design a globally and quadratically
convergent method for the problem without assuming strict complementarity ? The main
goal of this paper is to answer this question.

In this paper we establish the optimality conditions, duality and uniqueness results
for the problem (1.1). The problem is shown to have a dual problem with duality theory



very similar to that in linear programming. The optimality conditions of the problem are
reformulated as strongly semismooth equations. We then present two semismooth Newton
methods for the problem by solving these strongly semismooth equations. The methods
are globally and quadratically convergent. In particular, the quadratic convergence of the
methods are proved without requiring strict complementarity.

The rest of the paper is organized as follows. In section 2, we present the optimality
conditions, duality theory and uniqueness results for (1.1). In section 3, we reformulate
the optimality conditions as two systems of strongly semismooth equations based on the
Robinson’s normal map [25], and the Fisher-Burmeister function [14]. We then present a
smoothing Newton method to solve the semismooth equation derived from the Robinson’s
map in section 4 and a generalized Newton method to solve the other semismooth equation
in section 5. In section 6, we report our preliminary numerical results. We conclude the
paper in section 7.

1.1 Notation and Terminology

For a continuously differentiable function F' : R* — R™, we denote the Jacobian of F' at
x € R™ by F'(z), whereas the transposed Jacobian as VF(z). In particular, if m = 1, the
gradient VF'(x) is viewed as a column vector.

Let F : R™ — R™ be a locally Lipschitzian vector function. By Rademacher’s theorem,
F is differentiable almost everywhere. Let {2 be the set of points where F' is differentiable.
Then the B-subdifferential of F' at z € R™ is defined to be

OpF(z) = { lim VF(z*)T}, (1.4)

TV —T
;z:kEQF

while Clarke’s generalized Jacobian of F' at z is defined to be
OF(z) = convOpF (z); (1.5)

see [10, 20, 23] for more details. The function F' is said to be semismooth at z if F is
directionally differentiable at x and for all V' € dF(z + h) and h — 0,

F(z+h) — F(z) = Vh + o(||h]). (1.6)

F is said to be p-order semismooth, p € (0,1], at x if F' is semismooth at z and for all
V €dF(x+ h) and h — 0,

F(z + h) — F(z) = Vh + O(|hl|**?). (1.7)

F is said to be strongly semismooth at z if F' is 1-order semismooth at z. The function F’
is termed a (strongly) semismooth function if it is (strongly) semismooth everywhere (see
[20, 23]). Here, o(]|h||) stands for a vector function e : R* — R™, satisfying
h

lim ﬂ =0

h=0 |||
while O(||h||?) stands for a vector function e : R* — R™ such that for some constants
M >0and d >0,

le(h)| < M|A|?



for all h satisfying ||h|| < 4.

Let @ : R — R™ be a locally Lipschitzian vector function. We say that & is BD-
regular at a point z if all V' € Op®(x) is nonsingular and ® is CD-regular at a point z if
all V € 0®(z) is nonsingular.

We denote the cardinality of a set A by |.A|. For a closed convex set 2 C ®" and z € R",
we let IIg(x) be the Euclidean projection of x onto €. If QO = R7, then we denote Ilg(x)
by x4+. To represent a large matrix with several small matrices, we use semicolons “;” for
column concatenation and commas “,” for row concatenation. This notation also applies
to vectors. We let I; denote the d X d identity matrix. Given a finite number of square
matrices @1, -+, Qn, we denote the block diagonal matrix with these matrices as block
diagonals by diag(Q1,---,Qn), or by diag(Q;,i =1,---,n). Welet Ry = {e € R:e > 0}
and R, = {¢ € R: e > 0}. Finally, we use € | 0 to denote the case that a positive scalar
€ tends to 0.

2 Optimality Conditions, Duality and Uniqueness Theorems

Duality for the MSN and EMSN problems has been studied in [1, 3, 19]. However, there are
few results on duality for (1.1). In this section we will establish the optimality conditions,
duality and uniqueness results of for (1.1). The following lemma will be used later. We
shall omit its proof since it is easy.

Lemma 2.1 Let f(z) = ||z||, x € R". Then
(i) y € 0f (z) if and only if ly[| <1 and |z|| —y"z = 0;

(ii) If = # 0, then 8f(z) = {5}

Lemma 2.2 Assuming that (A1) and (A2) hold, then the solution set S of the problem
(1.1) is bounded, and x € S if and only if there exist g € R and h € R¥ such that

0€ Zafz(x) — Beg — Bh,
=1

BT =1, (2.1)
| BTz —b)Th =0, h>0, BTz >b.
The solution set of (2.1) is also bounded.
Proof. It follows from (A1) that
min [|[ATz|| =7 > 0. (2.2)

flzl|l=1

From (2.2) we obtain
1Azl > 7] (2.3)



Now
> llai — Alz| > <leaz‘—AiTﬂcll) = [la — ATz|
i=1 i=1
> | ATz|| - [la]| = 7l|z]| - llall.

The above inequality shows that the solution set of (1.1) is bounded. It follows from (A1),
(A2) and Theorems 2.1.4, 2.2.5 and 2.3.2 in [15] that = € S if and only if there exist g € R!
and h € R such that system (2.1) holds and the solution set of (2.1) is bounded. "

From Lemma 2.1, we have for i € M,
8fi(x) = {—Aiyi: v € R yill < 1, llas — ATzl| — (as — Af2)Tyi =0}, (2.4)

and if a; — ATz # 0, then y; = (a; — AT x)/||a; — AF'z||. Thus (2.1) is equivalent to the
following system.

—Ay — Beg — Bh =0,
(BTz —b)'h=0, h>0, BTz>},
{ Blz =4b,, (2.5)

“y’L” Sla iEM,

U llas — AT z|| — (a; — AT2)Ty; =0, ie M,
where y = (y1;¥2; - - - ; Ym). The dual of problem (1.1) is as follow:

max aly+blg+b'h
(2.6)
st. (y;9;h) € Xp,

where
Xp :={(y;9;h) € R™™™: Ay + Beg+ Bh = 0,h > 0, [|ysl| < 1,i € M}.

Theorem 2.1 Let x € X, (y;9;h) € Xp and let =*, (y*;g*;h*) be optimal solutions to
problems (1.1) and (2.6), respectively. Then

aly+blg+b"h < f(z) (weak duality)

and
aTy* + bl g* + bTh* = f(z*) (strong duality).

Proof. Let x € X and (y;g;h) € Xp. Then

' Ay + 2T B.g + 2T Bh = 0.



By the Cauchy-Schwarz inequality,
aly+bYg+bTh = (a— ATz)Ty+ (b — BF2)Tg+ (b— BTz)Th

m

< D (ai—Alo) Ty

i=1
m
< > llas — ATzl = f(a).
i=1
This establishes the weak duality.

Let z* be an optimal solution to problem (1.1). It follows Lemma 2.2 and (2.5) that
there exist y € R, g € R! and h € R¥ such that

( —Ay — Beg— Bh =0,
(BTz* —b)Th=0, h>0, BTz*>b,
{ BZx*:be,

lyill <1, ieM,

( [lai = AT2*|| = (0 = AT2*)Tyi =0, ieM.
Thus (y; g;h) € Xp, and
aTy+blg+bTh = (a— AT2*)Ty+ (be — BT z*)Tg+ (b — BTz*)Th

= > (ai— ATz Ty

i=1
m

= > llai— Afz*| = f(a*),
=1

which proves that the strong duality holds. [

Let z* and (y*;g*;h*) be optimal solutions to problems (1.1) and (2.6), respectively.
We call z* and (y*;¢*;h*) a pair of optimal solutions to problems (1.1) and (2.6) if z*
and (y*;g*;h*) satisfy system in (2.5). We said that strict complementarity holds at
(z*; 9% g% b") if

(i) for Vi € M, ||yf|| < 1 whenever b; — AT z* = 0;

(ii) (BTz* —b); + hi #0for je V.

Let
My(z*) = {i € M : ||a; — AT z*|| = 0}.
Define
Ag = [Ai, i € My(z™)],
and

G = Y, Vi), (2.7)

i€ M\ Mo(z*)



where

1 T 1

Vifi(a*) = ——— AA] — ————
SR PP PR

Ai(a; — AT z*)(a; — AT2z*)T AT,

Let z* and (y*; g*; h*) be a pair of optimal solutions to problems (1.1) and (2.6). Define

T={i:Blz*>b,iecV}, (2.8)
J ={i:Blz* =b; and h} = 0,i € V}, (2.9)
K ={i:Bfz* =b; and b} > 0,i € V}, (2.10)
and
D(z*)={de®R": Bfd=0,Bld=0 for i € k}. (2.11)

We assume that
(A3) For all d € D(z*)\{0}, d*G(z*)d > 0;

(A4) The matrix [Ag, Be, Bi,i € J UK] has full column rank.

Theorem 2.2 Let z* and (y*;g*; h*) be a pair of optimal solutions to problems (1.1) and
(2.6). If x* and (y*; g*; h*) satisfy (A3) and (A4), then z* is a unique solution to problem
(1.1).

Proof. Suppose that ' # z* is another solution to problem (1.1). Let d = 2’ — z*. Then
it is readily shown that for all ¢ € [0,1], z(t) = z* + td is a solution of the problem by
using the convexity of f (thus, Y7, ||la; — ATz*|| = 7 |la; — AT z(t)||), and BYd = 0
and Bfd >0 for i € J UK. From Lemma 2.2 and (2.5), there exist y(t) € ®™¢, g(t) € R
and h(t) € R such that

—Ay(t) — Beg(t) — Bh(t) =0,

(BTz(t) —b)Th(t) =0, h(t) 20, BTz(t) >0,

Bl'z(t) = b, (2.12)

lw@) <1, ieM,

 Nlai — ATz(@)]] - (@i — AT2(t)wi(t) =0, i€M.

Next we prove by contradiction that (y(¢),g(t), h(t)) — (y*,g*,h*) as t — 0. There exists
§ € (0,1) such that for t € [0,6], Bfz(t) > b; for i € T and |la; — ATz(t)|| # 0 for i €
M\My(z*). Therefore, when t € [0, 6], h;(t) = 0 for i € T and y;(t) = (a; — ATz(t))/||ai —
AT z(t)|| for i € M\Mo(z*). Thus, h;(t) — h} for i € Z and y;(t) — y; for i € M\ My(z*)
as t — 0. Hence, from (A4) and the first equation in (2.12), {(y(¢), g(¢), h(t)),t € [0, ]}
is bounded. Suppose that there exists a sequence {t*} in [0,d] such that t* — 0 and



(y(t*), 9(t%), h(t¥)) — (7

' 9
and the fact that (y*, g*, h*

oo Aw) -y + D> A —y) + Be(g(t®) — g%)

h) # (y*,g*, h*) as k — +oo. From the first equation in (2.12)
) satisfies the first equation in (2.5), we have

i€Mo(x*) €M\ My(z*) ( )
2.13
+>_ Bi( —-hf)+ ) B —h}) =
€L 1€EJUK

Letting k — +oo and noting that y;(t*) — y? for i € M\My(z*) and h;(t*) = h} = 0 for
i € I, we have

> AiWi—yi)+B(g—g")+ >, Bilhi—hi)=0.

i€Mo(z*) i€ JUK

This contradicts (A4). Thus, (y(t),9(t),h(t)) — (v*,g*,h*) as t — 0. Note that from
(2.12), BI'd =0 for i € K. Hence, d € D(z*). For i € M\ My(z*), using Taylor expansion,

lai — AT (z* + td) || — [la; — AT "]
= —t|(ai— ATe")T/|la; - ATa*|| (ATd) + J2dTV2fi(a*)d + o(t?)
= —t(y)" (Al d) + 3t*d" V> fi(a*)d + o(t?).
Now for a sufficiently small ¢ > 0,

f(z* +td) — f(z¥)

= > (lai — AT @ +td)|| - [las — AT2")

=1

= Y Al > (e (Ul + R VR ) of))

i€Mop(z*) €M\ Mo(z*)
1
= X Hl4Adl- X ) (4Td) + St'd G(aT)d + o(t?)
i€Mp(z*) €M\ Mo (z*)
= Y 4l - Y wAw))d + PdGE)d o)
i€Mop(z*) €M\ Mo (z*)

1
= Yt (||A3’d|| + (y;)T(Ag’d)) +td" (Beg* + Bh*) + §t2dTG’(:c*)d +o(t?),
i€Mop(z*)

v

312dTG(z*)d + o(t?)

> 0, by (A3).



The fifth equation above follows from the fact that (y*,g*, h*) satisfies the first equation
in (2.5). However, f(z* 4 td) = f(z*) for all ¢ € [0, 1]. This contradiction shows that z* is
a unique solution to (1.1). n

Remark 1. For MSN problems studied in [5, 19], assumptions (A3) and (A4) reduce to
the following conditions.

(i) The matrix G(z*) is nonsingular;

(ii) Ap has full column rank.

The conditions (i) and (ii) are weaker than the conditions of Theorem 8.2 in [5] and
Theorem 3 in [19]. Moreover, in [5, 19|, to guarantee a solution of the problem to be a
strong (isolated) minimizer, the strict complementarity assumption is needed.

Remark 2. For the Euclidean single facility location (ESFL) problem [17], conditions (i)
and (ii) in Remark 1 hold. Let ai,a2,-,an be m (m > 2) distinct points in 2. Let

w1, ws, - - - ,wm be m positive weights. Find a point z € ®? that minimizes
m
f(z) = szﬂw — a;. (2.14)
i=1

This is called the ESFL problem. This problem can be easily transformed into a special
case of problem (1.1) where b; = w;a;, A} = wilp, i = 1,2,---,m, and X = R2. Clearly,
if a;, i+ = 1,---,m are collinear, then mingex f(z) = min{f(a;) : 1 < i < m}. In what
follows, we always assume that a;, i = 1,---,m are not collinear. For any z € R2, let
My(z) ={i € M : ||z — a;|| = 0}. Clearly, My(z) = 0 or My(x) only has one element. This
means (ii) holds. Define fij(z) = wi|lz — ail|, i = 1,2,---,m. It is easy to prove for any
z€eR G(z) =Y M\Mo(=) V2f;(x) is positive definite. This shows (i) holds.

3 Reformulation

In this section we reformulate the optimality conditions (2.5) as two systems of strongly
semismooth equations based on the Robinson’s normal map [25] and the Fisher-Burmeister
function [14]. These reformulations are important to our design of quadratically convergent
algorithms.
For i € M, it is readily shown that ||a; — Al z| — (a; — A¥z)Ty; = 0 and |jy;|| < 1 if
and only if y; is the solution to the following problem.
maximize (a; — ATz)Ts
subject to ||s|| <1, (3.1)
s € R4,
Thus there exist A\; € R and ¢; € R such that
ATz —ai+ Xy = 0, Xi>0,
s aluwl* =t 20 (3.2)
it = 0.
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From (3.2), if ATz —a; # 0 then \; = |la; — AT z|| and y; = (a; — AF2)/||a; — ATz].
Therefore (2.5) is equivalent to the following system:

( —Ay — Beg — Bh =0,
(BTz —b)"h =0, BTz >b, h>0,
BTz = b,

{ 3.3
ATw—ai+)\iyi:0, 1€ M, ( )

]

1 .
_§||y’l||2=t2a Z€M7

N | =

ﬁ

>
.

S*
|

0, ¢>0, \>0, i€ M.
Let
A = diag(N\ilg,7 € M), (3.4)

A=A 50m), em = (3;--+31) € R™, and S = ([y1]1% -+ -5 lyml*). Define F: R — R4,
where g =n+md+ 1+ v+ m, by

—Ay — B.g — Bh
ATz —a+ Ay
F(z,y,9,h,\) = Bz — b, , (3.5)
BTz —b
fen 15
and the set Q C R? by
Q={(z;y;9;h;A\) € RT: h >0, XA >0} (3.6)

Let u = (z;y; g; h; A). Then the system (3.3) is equivalent to the following box variational
inequality problem: find a vector u* = (z*; y*; g*; h*; \*) € £ such that

F) T (u—u*)>0, Vue. (3.7)

Lemma 3.1 F is a smooth monotone mapping in 2. Assuming that (A1) and (A2) hold,
then the set of solutions to (3.7) is bounded.

Proof. Let
J(y) = diag(yi,i € M). (3.8)
The Jacobian matrix of F' is given by
0 —A —-B. —B 0
AT A 0 0 J(y)
F'(z,y,9,h,\) = | BY 0 0 0 0 (3.9)
BT 0 0 0 0
0o —Jy¥ 0o 0 0
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Clearly, F' is positive semi-definite in Q as F” is the sum of a skew-symmetric matrix and a
diagonal matrix with nonnegative diagonals. Therefore, F' is a smooth monotone mapping
in Q. Moreover, from Lemma 2.2 and (3.3) the set of solutions to (3.7) is bounded. "

Let z = (x;y; 9;7; ) € R? and Ilg(2) be the Euclidean projection of z onto . It is well
known that solving (3.7) is equivalent to solving the following Robinson’s normal equation

E(z) := F(Ilg(2)) + z — q(z) =0 (3.10)
in the sense that if 2* is a solution of (3.10), then IIg(2*) = (z*;y*; g*; 7% ; s% ) is a solution

of (3.7), and conversely if v* is a solution of (3.7) then z* = u* — F(u*) is a solution of
(3.10); see [25].

Lemma 3.2 The function E is strongly semismooth. Assuming that (A1) and (A2) hold,
then the set of zeros of E is bounded.

Proof. It is readily shown that the function Ilg(-) is strongly semismooth. It follows from
Theorem 19 in [14] that E is strongly semismooth. From Lemma 3.1 the set of zeros of E
is bounded. ]

The system (3.3) can be reformulated into another equivalent system via the Fischer-
Burmeister function [14]

P(a,b) = Va2 +b—a—b. (3.11)
The main property of this function is the following characterization of its zeros:
Y(a,b) =0 <= a>0, b>0, ab=0.

The system that is equivalent to (3.3) is as follows:

(u) = P(z;959:54) = 0, (3.12)
where @ is defined by
Ay + Beg + Bh
ATz —a+ Ay
®(u) = (z;y;9; b A) := Blz — b, : (3.13)

€

(h, BTz — b)

'(p()‘a €m — S)

and
¥(h, BTz — b) = (¥(h, B{:E —b1);- (Ao, Bz — b)) € R,

P(Nem=8) = (AL1= [yl 59 (Am, 1 = ymll?)) € R™
Note that the function 1 is not differentiable at the origin, so ® is nonsmooth. However,
from the fact that v is strongly semismooth, we have that ® is strongly semismooth.

In recent years, globally and superlinearly (or quadratically) convergent Newton meth-
ods have been developed for solving the semismooth equations; see [9, 13, 21, 20, 23, 22,
28, 32]. In the next two sections we will apply the smoothing Newton method proposed by
Qi, Sun and Zhou in [22] to solving the semismooth equation (3.10) and use the generalized
damped Newton method in [13] to solve (3.12).
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4 The Smoothing Newton Method

In [8], Chen and Mangasarian presented a class of smooth approximations to the function
sy = max{0,s}. Among these smooth approximations, the Chen-Harker-Kanzow-Smale
smooth function is most commonly used. It is defined by

s+ Vs? + 4t?

. L (t,s) € Ry x R. (4.1)

¢(t’ 3) =

Proposition 4.1 The function ¢(t,s) has the following properties:
(i) For any given t > 0, ¢(t,s) is continuously differentiable;
(i) 0 < P(t,s) — sy < '¢t;
(ii1) 0 < ¢l(t,s) < 1.
Proof. See [8]. n

Define p : #2 — R by

[ et iftro
plt: ) = { max{0,s} if t=0. (4.2)

From Proposition 1 in [22], Theorem 19 in [14] and Proposition 4.1, we have the following
proposition.

Proposition 4.2 p has the following properties:
(i) p is a strongly semismooth function on R?;
(i) For any given t # 0, p(t,-) is continuously differentiable;
(ii3) p(t,s) > 0, for any given t # 0;
(iv) For any s € R and t >0, 0 < Ip(t,s)/0s < 1;
(v) If s* > 0, then
lim Op(t,s)/0s =1,

tk o+

sks*

(vi) If s* < 0, then
lim Op(t,s)/0s = 0.
th ot

sk_g*
Let v := (¢t;2) = (t;z;y; ;73 s) and
P(v) = (2395 9;p(t,m1); -+ p(t,70); P(E, 81); - -5 P(Es 8m)).-

Define H by

!
H(v) = ( F(P)+(1+t)z— P ) ’ (4.3)
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where P = P(v) and F is defined as in (3.5). From Propositions 4.2, H is continuously
differentiable on (R \ {0}) x R? and strongly semismooth on R x R?. Clearly, solving (3.10)
is equivalent to finding the zeros of H. Let

-ljt, = (OnaomdaolactaDt) and Pz, = diag(InaImd’IlaC'r"Ds)’
where
Ct = (Op(t,r1)/0t;--;0p(t,m,)/0t), Dy= (0p(t,s1)/0t;---;0p(t, 8m)/0t), (4.4)
C, = diag(9p(t,r;)/0ri,i € V) and Dg = diag(dp(t,s;)/dsi,i € M).

Define
P = dlag(p(ta Si)Idai € M)

Then we have the following lemma.

Lemma 4.1 For any v = (t,z) € R4+ x RY, the Jacobian of H is given by

1 0
H'(v) :=
(F(P)-I)Pl+2z F'(P)P.+(1+t)I,— P,
1 0 0 0 0 0
~BCy +tx tI, —A B, —BC, 0 (4.5)

JDi+ty AT Po+tlng O 0 JD,
- tg BT 0 ¢t 0 0 ’

tr—tC; BT 0 0 (1+tI,-C, 0

ts—tDy 0 -JT 0 0 (14 t)I,, — Ds

where J = J(y) is defined as in (3.8), and H'(v) is nonsingular.

Proof. Tt is readily shown that (4.5) holds by simple computation. For any v = (¢,2) €
R4+ x R, in order to prove H'(v) is nonsingular, we only need to prove that

W:=F'(P)P,+ (1+t)l;— P,

is nonsingular. Let N = (1 + ¢)I, — P,. From Proposition 4.2, P, and N are diagonal
matrices with positive diagonals. Because F’(P) is positive semi-definite, W is nonsingular.
Therefore, H'(v) is nonsingular. This completes the proof. [

Define the merit function ¥ by
U(v) = [ H()]?

and let
B(v) := ymin {1, ¥(v)}.

Now we will describe the smoothing Newton method for the zeros of H(v).
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Algorithm 4.1

Step 0. Choose t € R4 and v € (0,1) such that 4t < 1. Let o := (¢;04) € R x R9.

Choose constants § € (0,1), and o € (0,3). Let t° := ¢, 2° be an arbitrary initial

point in RI. Set v° = (t%2°) and k := 0.
Step 1. If H(v*) = 0 then stop. Otherwise, let By := B(vF).
Step 2. Compute AvF := (AtF, Az¥) by

HW*) + H' (v%) Ak = ;7. (4.6)

Step 3. Let I be the smallest nonnegative integer | satisfying
Tk + 8 AVF) < [1—20(1 —~E ) u (). (4.7)
Define vFt1 .= vk 4 5k AvF,
Step 4. Replace k by k+ 1 and go to Step 1.
Let v* = (0, 2*) and define
A(v*) = {lim H' (¢, 2%) : t* | 0% and 2% — 2*}. (4.8)

Clearly, A(v*) C 0gH (v*). It follows from Lemmas 3.2 and 4.1 that we have the following
theorems. The proofs of the theorems are similar to that of Theorems 4.6 and 4.8 in [24],
and we shall omit them.

Theorem 4.1 (i) An infinite sequence {v* = (t¥, 2%)} is generated by Algorithm 4.1, and

lim H(v*) =0, and Jim tF=0. (4.9)

k—+o0 —+00

(i) The sequence {v*} is bounded. Hence there exists at least an accumulation point, say
v* = (0,2*), of {v*} such that z* is a solution to (3.10).

Theorem 4.2 Suppose that v* is an accumulation point of an infinite sequence {vk} gen-
erated by Algorithm 4.1. Assume that all W € A(v*) are nonsingular. Then the whole
sequence {vk} converges to v* quadratically, i.e.,

[+ =] = Ol —v*|), (4.10)

and
\Il(vk'H) = O(\Il(vk)2). (4.11)

Let v* = (0;2*;y*; g%;7*;5*) be a solution of H(v) = 0. Then z*, (y*;¢*;7%) are a
pair of optimal solutions to problems (1.1) and (2.6). Recall the notation My(z*) used in
section 2, without loss of generality, we suppose that |la; — ATz*| = 0 for i = 1,---,7,
where j = |My(z*)|, and ||a; — AT2*|| > 0 for i = j+1,---,m. From (3.5), (3.10) and
(4.3), we have for i € M,

ATz — ai + (s7)+4F =0,
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and
* (% 1 * (|2
s; =(s7)+— 5(1 — lyi 11)-

Then s} <0,i=1,---,j and s} > 0,45 =j+1,---,m. Furthermore, s} = ||a; — A z*|| and
yf = (a; — ATx*)/||a; — ATz*|| fori =j+1,---,m. If a; — AFz* = 0 and ||y}|| < 1, then
57 < 0. Define

A0=[A1,---,Aj], and AZ[Aj,---,Am].

Then the Hessian matrix G(z*) of the function 37, fi(z) at z* is as follows.
G(z*) = AP, (Ign—jya — 1 JT) AT,
where
P, =diag(sjIg,i=j+1,---,m), (4.12)

and
J1 =diag(y;,i=7+1,---,m). (4.13)

From (3.5), (3.10) and (4.3),
BTz — b= -1t

Then BiTw* >bjand ry <0ifi €, BZTzL'* =b;and r; =0ifi € J, and BZTzL'* = b; and
r¥ > 0if ¢ € K. Here, B; is the ith row of B and Z, J and K are defined as in (2.8)-(2.10).

Proposition 4.3 Suppose that v* = (0;z*;y*; g*;7*;s*) is a solution of H(v) = 0 and
(x*;9*; g% 7%) satisfies (A3) and (A4). Then all W € A(v*) are nonsingular.

Proof. For any W € A(v*), there exists a sequence {v* = (t*; 2¥;y*; g*; 7%; s¥)} such that

1 0 0 0 0 0
—-BCy 0 ~-A  —-B., —BC: 0
. J*D; AT  P; 0 0 J*D
W= lim H'(v°%) = ;
k—-+o00 0 BT 0 0 0 0
0o BT 0 0 I,-C 0
0 0 —(JHT o0 0 L, — D

where J* = J(y*) is defined as in (3.8), C; and Dj are defined as in (4.4), and

P = ( 0 P ) D = < 0 Inj ) C; = diag(0z, C1, Tixy)-

Here
D, = diag(d;,i=1,---,7), d; € [0,1], and C; = diag(c;,i € J), ¢ € [0,1].

Without loss of generality, we suppose that ¢; € (0,1) for all ¢ € J. Otherwise, let
IT:=TU{ieTJ: =0}, K:=KU{ieJ:¢;=1},and T :=TJ\{t € J : ¢; =1orc; = 0}.
Let B = [Br,Bs,Bx| and C; = diag(l — ¢;,i € J). We also suppose that d; = 0
fori = 1,---,m1, d; € (0,1) for it = n3 +1,---,ne and d; = 1 for i = ng + 1,---,7.
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Then we have [y;|| = 1 for i = ny +1,---,j. Let N = diag(d;,;i = n1 +1,---,n2) and
N =diag(1 —d;,i =n1+1,--+,n2). Then D; = diag(0, N, I;_p,). Define

J01 =d1ag(y,*,z= 1)"'an1)a J02 Zdlag(y:’/lznl +1,"',TL2), (414)

and
Jos = diag(y;, i =n2+1,---,79). (4.15)

Let AOl = [Al, e ,Anl], A02 = [An1+1, e ,An2] and A03 = [An2_|_1, e ,Aj]. Then AO =
[Ao1, Ag2, Aps]. Let W be the following matrix

0 —Ap —Age —-Ag3s -A —-B. 0 -BsC; —Bx 0 0 0 0
AL 0 0 0 0 0 0 0 0 0 0 0 O
AL, 0 0 0 0 0 0 0 0 0 NJpp 0 O
Als 0 0 0 0 0 0 0 0 0 0 Joz O
AT 0 0 0 P 0 0 0 0 0 0 0 b4
BT 0 0 0 0 0 0 0 0 0 0 0 O
BY 0 0 0 0 0 I 0 0 0 0 0 0
BL 0 0 0 0 0 0 C1 0o 0 0 0 0
BE 0 0 0 0 0 0 0 0o 0 o0 o0 O

o -J§ o 0 0 0 0 0 0 I, 0 0 0

0 0 -J& o 0 0 0 0 0 0 N 0 0

0 0 0 -J& o0 0 o0 0 0 0 0 0 0

0 0 0 o -J& o o 0 0 0 0 0 0

To prove that W is nonsingular, it suffices to show that W is nonsingular. Let Wq = 0,
where ¢ = (q1;---;q13). Here, g1 € R™, gz € R™9, g5 € R127m)d, gy € RU—T g5 ¢
%(m—])d, q6 € §Rl7 qr € §R|I|7 gs € §R|‘7|7 g9 € §R|’C|> qi0 € éRnl7 q11 € §Rn2—n1’ q12 € RI7"2 and
q13 € R™ 7. Then we have

Ao192 + Ao2gs + Aosqa + Ags + Begs + B7Cigs + Brego = 0, (4.16)
Afiq1 =0, (4.17)

Abyq1 + NJoagin = 0, (4.18)

Afsq1 + Josqiz = 0, (4.19)

ATq + Pigs + Jiq13 = 0, (4.20)

Bl q1 =0, (4.21)

Blqi+q7 =0, (4.22)

BY g1+ Cigs =0, (4.23)

Biq1 =0, (4.24)
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—J6192 + q10 = 0, (4.25)
—Ji293 + Nqu1 =0, (4.26)
~JEa =0 (4.27)
and
JLgs = 0. (4.28)
It follows from (4.20) that
g5 =—P1ATq — P hqus. (4.29)

From (4.28) and (4.29),
JIPT A gy = —J{ Pr hqus = —A7 qus,
where A; = diag(s},i=j+1,---,m). Then we have
q3=—MJLP ATq = —JL ATq,. (4.30)
Pre-multiplying (4.29) by A, and applying (4.30), we get
Ags = —AP (Igy—jya — J1J7)ATqr = —G(z*)ay,

ie.,
Ags + G(z*)q1 = 0. (4.31)
Pre-multiplying (4.16) by ¢f , and applying (4.17), (4.21), (4.23) and (4.24), we have
a1 Ao2qs + a1 Aosqa + qi Ags — g3 C1Cigs = 0. (4.32)
Pre-multiplying (4.19) by ¢7 and applying (4.27),
¢i Atsqr = —4i Josqr2 = 0. (4.33)
From (4.26), we have B
q11 = N7 Jgags. (4.34)
Pre-multiplying (4.18) by ¢3 and applying (4.34),
@ Afamt = —@3 NJoaqu = —q3 NJoaN 7" a3 = —g3 NN ™" gs. (4.35)
From (4.31), (4.33), (4.35) and (4.32),
dFG(z*)ql + ¢ NN1g3 + ¢1 C1C1g8 = 0, (4.36)

where
NN7' = diag(d;/(1 —dy),i =n1+1,---,n9),
Ci1C1 = diag(ei(1 —¢),i € J).

By (4.21) and (4.24), ¢1 € D(z*). From (4.36) and (A3), we have ¢; = 0, g3 = 0 and
gz = 0 since NN~! and C;C] are positive definite. Hence g13 = 0 from (4.30), g5 = 0 from
(4.29), g7 = 0 from (4.22), ¢11 = 0 from (4.34) and ¢12 = 0 from (4.19). By (4.16) and
(A4), g2 = 0,94 = 0,96 = 0, and g9 = 0. From (4.25), gi9p = 0. Thus ¢ = 0. This implies
that W is nonsingular and the proof is completed. [

By combining Theorem 4.2 and Proposition 4.3 we can directly obtain the following
result.
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Theorem 4.3 Suppose v* = (0;x*;y*; g*;7*; s*) is an accumulation point of the infinite
sequence {v*} generated by Algorithm 4.1 and (z*;y*;g*;7%) satisfies (A3) and (A4).
Then the whole sequence {v*} converges to v* quadratically.

5 The Generalized Damped Newton Method

In this section we present a generalized damped Newton method for solving ®(u) = 0,
where @ is defined in (3.13). Let

Ou) = %@(U)Tcp(u). (5.1)

By Theorem 2.6.6 and the Corollary to Theorem 2.2.4 in [10], 8 is continuously differentiable
and
VO (u) = WId(u), (5.2)

for every W € 0®(u). For any u = (z;y; g; h; A) € RY, let
Io(w) = {i:Bfz=b;and h; =0,ieV},
Jo(u) = {i:|lyil| =1and \; =0,i € M}.

Define
0 A B. B 0
AT A 0 0 J
W=| BI 0 o o o [, (5.3)
D,BT 0 0 Dy 0
0 —2D3JT 0 0 Dy

where A and J = J(y) are defined as in (3.4) and (3.8) respectively. Here D; = diag(ai,- - -,
o), Dy = diag(p1,-- -, Bv), D3 = diag(n1, - -+, mm) and Dy = diag(6y, - - -, 6,) are diagonal
matrices whose diagonal elements are given by

Blz — b h;

o; = -1, Bi= -1
VB2 + (BT — b;)2 VB2 + (BT — b;)?2
if i € V\I(u), and a; = =1, B; =0 if 5 € Ip(u);
T 5 1

e " VAR (1= [l]2)2
if i € M\Jy(u), and n; = —1, ; = 0 if i € Jy(u). We have the following lemma.
Lemma 5.1 The matrizx W defined in (5.8) is an element of Op®(u).
Proof. We shall build a sequence of points {u* = (z*;4*;¢*; h*; \F)} such that & is

differentiable at u* and ®'(u*) converges to W. Let {t*} is a sequence of positive numbers
converging to 0. Define zF =z, y* =y, ¢* = g,
k h; 1€ V\Io(u),
Ptk ie Io(u),

A 1E M\Jo(u),
th e Jo(u).

and MF= {
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Then @ is differentiable at u*, and for i € Iy(u¥), af = —1 and BF = 0, and for i € Jo(u*),
n¥ = —1 and 0¥ = 0. Therefore, ®(u*) tends to W as k — +oo. "
Algorithm 5.1

Step 0. Choose u® € R4, 0 € (0,1/2), p € (0,1),7 > 0,a > 2. Set k = 0.

Step 1. If VO(u*) = 0, stop. Otherwise, select an element W* € 0p®(uF) and find a
solution AuF of the linear system

®(uF) + WrAu = 0. (5.4)
If (5.4) is not solvable, or if VO(uF)T Auk > —n| Auk||?, set AuF = —VO(uF).
Step 2. Let a = pjk, where ji is the smallest nonnegative integer j such that
@(uk + p’Auk) — ®(uk) < JijG(uk)TAuk.
Step 3. Set uF! := uF + o AuF and k:=k+1. Go to Step 1.
This algorithm is a generalization of the corresponding algorithm for the Fischer-Burmeister
equation in [13]. Just like Theorem 11 of [13], we have the following global and superlinear

convergence theorem for this algorithm. We omit its proof since it is similar to the one in
[13].

Theorem 5.1 Suppose an infinite sequence of points {u*} is generated by Algorithm 5.1.
Then each accumulation point of {u*} is a stationary point of ©. Moreover, if the sequence
{uF} has an accumulation point u* which is an isolated solution of ®(u) = 0, then the entire
sequence {uF} converges to u*.

Theorem 5.2 Suppose u* = (z*;y*; g*; h*; \*) is an accumulation point of {u*} generated
by Algorithm 5.1. If u* is a BD-regular solution of ®(u) = 0, then the entire sequence {u*}
converges to u* and the rate of convergence is Q)-quadratic.

Proposition 5.1 Suppose v* = (z*;y*; g*; h*; X*) is a solution of ®(u) = 0 and it satisfies
(A3) and (A4). Then ® is BD-regular at u*.

Proof. Let u* = (z*;y*;g*; h*; \*) is a solution of ®(u) = 0. Without loss of generality,
we suppose that |a; — ATz*||=0fori=1,---,4, and |ja; — A¥'z*|| > 0fori=j+1,---,m.
Then from (3.3), \f =0 for i = 1,---,5, and y} = (a; — AF2*)/||a; — ATz*|| and X} =
lai — A¥z*|| for i = j+1,---,m. Let
AOZ[Al,-",Aj] and AZ[AJ,,Am]
Then the Hessian matrix G(z*) of the function 372, fi(z) at z* is as follows.
G(z*) = AN~ (Ign—jya — J1JT ) AT,

where A1 = diag(\}Ig,i =35+ 1,---,m) and J; is defined as in (4.13).



20

For any W € 9p®(u*), W can be written as follows.

0 A B. B 0
AT A* 0o 0 J*
W = BT 0 o 0 0 |, (5.5)
D;BT 0 0 Di 0
0 -—2D3JT o0 o0 D;

where A* = diag(0,A1), J* = J(y*) is defined as in (3.8), and D} = diag(aj,---,a3),
Dj = diag(fi, -, B;), Dj = diag(nf, - ,n5,) and Df = diag(0],---,0;,) are diagonal
matrices. Here,
To* — b, *
of= TN g g A -1
V(02 + (B —b;)? V()2 + (BYz* — b;)2

if b} # 0 or BIz* > b;; o} and B} satisfy (o} +1)2+ (8 +1)2 < 1if b} = 0 and Bl z* = b;.
Fori=1,2,---,4, if ||yf|| < 1, then n} = 0 and 67 = —1, and if ||y]|| = 1, then 7} and 6}
satisfy (pf +1)2+ (6 +1)2<1. Fori=j+1,---,m, nf = —1 and 6} = 0. Define

R = {i:af=0,8=-1ieV}
S = {i:0f,0 € (-1,0),i € V},
T = {i:0of=-1,8=0,ieV}.

Then K C 7 C J UK, where J and K are defined in (2.9) and (2.10) respectively. We
write B as B = [Br, Bs, Br|. Let Dj = diag(0, A, —I;7), where A = diag(a;,i € S),
and Dj = diag(—Ig|,B,0), where B = diag(8;,i € S). Without loss of generality, we
suppose that nf =0 and 07 = -1 fori=1,---,nq, n,0; € (—1,0) for i =ny + 1,---,ng,
and 7, = —1 and 6f =0 fori =nyp+1,---,j. Let D} = diag(0,C, —Ij_pn,, —Im—;), where
C = diag(n,i = n1 +1,---,n2), and D} = diag(—1I,,,I',0,0), where I' = diag(6},i =
n1+1,---,n2). Let Jo1, Joz and Jog be defined as in (4.14) and (4.15), Apr = [A1,- -, An,],
Aga = [Ani41, -+, Any] and Agz = [Any41,- -+, Aj]. Then W can be rewritten as follows:

0 Apw A Az A B. Br Bs Br 0 0 0 0
AL 0 0 0 0 0 0 0 0 Ju O 0 O
AL, 0 0 0 0 0 0 0 0 0 Jz O 0
Ay 0 0 0 0 0 0 0 0 0 0 Jog O
AT 0 0 0 A, 0 0O 0 0 0 0 0 .4
BT 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 —-figg O 0 0 0 0 0

ABL 0 0 o 0 o0 o0 B 0 0 0 0 O
-BEY 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 o o0 o0 0 0 0 -I,, 0 0 0

0 0 -2cJ% o 0 0 0 0 0 0 T 0 0

0 0 0 2J6 0 0 0O 0 O O 0 0 0

0 0 0 o 2/, o 0 0 O O 0 0 0
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It is now easy to show that W is nonsingular by following the steps in proving W is
nonsingular in Proposition 4.3. [

By combining Theorem 5.2 and Proposition 5.1 we can directly obtain the following
result.

Theorem 5.3 Suppose u* = (z*;y*; g*; h*; \*) is an accumulation point of {u*} generated
by Algorithm 5.1. If u* is a solution of ®(u) = 0 and it satisfies (A3) and (A4), then the
entire sequence {uF} converges to u* and the rate of convergence is Q-quadratic.

6 Preliminary Numerical Experiments

We implemented Algorithm 4.1 in MATLAB and tested the method on the following ex-
amples.

Example 1. This is a SMT problem [30]. The starting point is z° = 0, where 0 is the
vector whose elements are all zero.

Example 2. This is a multi-facility location problem [19]. The starting point is 2% = 0.

The following two examples are generated randomly. We use the following pseudo-
random sequence:

Yo = 7,%iv1 = (445¢; + 1) mod 4096,i =1,2,---,

b = =1,2

Vi = qog ' = 12
Example 3. The elements of A4;,4 = 1,2,---,m, and those of a;,4 = 1,2,---,m, are
successively set to 91,9, - - -, in the order:

(A1)11, (A1)21, -5 (A1)n1, (A1)12, -5 (A1)ndy - -+ » (Am)nds

(a1)1,° -+, (a1)a, (@2)1, -+, (@m)ds

except that the appropriate random number is multiplied by 100 to give (A;);x or (a;); if
i mod 10 = 1. The starting point is 2% = 0.

Example 4. Same as Example 3 except with X = {z € R®" : x > 0}. The starting point
i 50
is 2Y = 0.

Throughout our computational experiments, we used the following parameters:
§ =0.5, o = 0.0005, t =0.001, and v =0.5.

We terminated the iteration when ||E(2*)||oc < le-6, where E is defined in (3.10). The
numerical results we obtained are summarized in Table 1. In this table, n, d and m specify
the problem dimensions, It denotes the number of iterations, which is also equal to the
number of Jacobian evaluations for the function H, NH denotes the number of function
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‘ Example H n ‘ d ‘ m ‘ It ‘ NH ‘ f(wk) ‘ ||E(zk)||OO ‘ CPU ‘

1 16 | 2 | 17 9 17 | 2.54e+01 | 1.12e-10 0.54

2 10| 2 | 55 13 | 25 | 2.26e+02 | 9.77e-11 3.34

3 1012 (100 |7 |17 | 6.86e+01 | 7.55e-07 6.54
10| 2 | 200 9 18 1.46e+02 | 4.55e-08 23.92
1012 (400 |9 19 | 2.83e+02 | 1.75e-07 89.34
10 | 2 | 600 10 | 19 4.38e¢+02 | 8.06e-12 200.46
10 | 2 | 800 10 | 20 | 5.74e+02 | 1.22e-07 365.22
10 | 2 | 1000 | 10 | 20 7.17e+02 | 1.87e-08 564.95

4 10| 2 | 100 30 | 97 | 6.89e+401 | 1.47e-08 36.98
10 | 2 | 200 |43 | 118 | 1.47e+02 | 2.35e-08 151.00
10 | 2 | 400 27 | 68 2.83e+02 | 1.10e-09 315.06
10 | 2 | 600 20 | 41 4.38¢+02 | 4.28e-07 426.64
10 | 2 | 800 26 | 40 5.75e+02 | 4.42¢-09 769.52
10| 2| 1000 | 12 | 22 7.17e+02 | 3.12e-07 657.52

Table 1: Numerical results for Algorithm 4.1

evaluations for the function H, f(z*) denotes the value of f(z) at the final iteration,
| E(2*)||0o denotes the value of | E(2)|c at the final iteration, and CPU denotes the CPU
time in second for solving the problem.

The results reported in Table 1 show that the algorithm performs well. The algorithm
was able to solve all examples after a small number of iterations. Moreover, from the
results of Examples 3 and 4, the number of iterations does not seem to increase with the
number of constraints.

7 Conclusion

In this paper we established the optimality conditions, duality and uniqueness results for
the problem of minimizing a sum of Euclidean norms with linear constraints and presented
two semismooth Newton methods for the problem by solving the strongly semismooth equa-
tions derived from the optimality conditions. The methods were globally and quadratically
convergent. In particular, the quadratic convergence of the methods were proved without
requiring strict complementarity.

We would point out that if specialized to MSN problems, Algorithm 4.1 appears to have
some theoretical advantages over some existing methods in [5], [19] and [24]. In particular,
we can prove the quadratic convergence under conditions (A3) and (A4) which is weaker
than the conditions used in [5] and [19] to prove quadratic convergence. For Algorithm
5.1, there remains some issues to be studied, for example, under what conditions is the
sequence generated by the algorithm bounded and when is a stationary point of © a zero
of ®(u) 7 Our numerical implementation of the algorithm is very preliminary. There are
numerous computational issues to be investigated in order to make the algorithm practically
efficient and robust. The main computational step in each iteration of Algorithm 4.1 lies
in solving the linear system (4.6). Thus, it is necessary for us to come up with ways to
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solve it efficiently by exploiting sparsity or special structures present in the problem data.
However, we shall leave these as further research topics.
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