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Numerical Experiments for a Class

of Squared Smoothing Newton Methods
for Box Constrained Variational
Inequality Problems

Guanglu Zhou', Defeng Sun' and Liqun Qi

Abstract In this paper we present a class of squared smoothing Newton meth-
ods for the box constrained variational inequality problem. This class of squared
smoothing Newton methods is a regularized version of the class of smoothing
Newton methods proposed in {25]. We tested all the test problem collections of
GAMSLIB and MCPLIB with all available starting points. Numerical results
indicate that these squared smoothing Newton methods are extremely robust
and promising.

Key Words variational inequality problem, smoothing approximation, smooth-
ing Newton method, regularization method, convergence.

1 INTRODUCTION

Consider the box constrained variational inequality problem (BVIP for short):
Findy* € X = {y € R"| a < y < b}, where a € {RU{—~00}}™, b€ {RU{o0}}"
and a < b, such that

(y—y)TF@y*) >0 foralye X, (1.1)

where F' : D — R" is a continuously differentiable function on some open
set D, which contains X. When X = R7, BVIP reduces to the nonlinear
complementarity problem: Find y* € ®7 such that

F(y’)€e®R? and F(y*)Ty* =0. (1.2)
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422 REFORMULATION

Let ITx be the projection operator on X. It is well known that solving BVIP
is equivalent to solving the following Robinson’s normal equation

E(z):=F(Mx(z)+z~Tx(x)=0 (1.3)

in the sense that if z* € R™ is a solution of (1.3) then y* := Iy (z*) is a solution
of (1.1), and conversely if y* is a solution of (1.1) then z* := y* — F(y*) is a
solution of (1.3) [27]. Let N :={1,2,---,n} and

I. ={i€N|a =-00 and b; = +x},
I, ={i€N|a >-0 and b; < +0},

I, ={ieNj|ai>—-0c0 and b; = +o0},
Iy, ={ieN|a =—-00 and b; < +o0}.
Define
W(z):= F(llx(2)) + z — [Ix(z) + aT (), (1.4)

where @ > 0 and T': R* — R is defined by

0 if 1€l

0 if 1€ 1y, .
Ti(z) = (M (z)); — al][F (Hs((I) I+ if ic Ia’ , 1 EN.

[(ILx () "-bJ[ Ix ()] if i€l

Properties of W(z) have been studied in [30] in the case that ¢; = 0 and
b; =+ooforalli € N.
We can easily prove the following lemna.

Lemma 1.1 E(z) = 0 if and only if W(z) = 0.

By using the Gabriel-Moré smoothing function for I1x(-), we can construct
approximations for W(-):

Gu,z) :i= M(u,z) + aS(u, ), (u,z) € R” x R", (1.5)
where M(u,z) := F(p(u,z)) + = — p(u,z) and S : 2™ — R™ is defined by

0 if i€l

0 if i€ I,
[pi(u,z) — a;]|pi(u, F(p(u,z)) +a) —a;] if i€l, °
[pi(u,z) = b][bi — pi(u, F(p(u,z)) +b)] if i€l

Si(u,z) = i€ N,

where p(u, z) was defined in [25] and will be reviewed in the next section. We
note that for any (u,z) € R" x R™, p(u,z) € X [25]. So we can assume that F'
has definition on X only in order that G(-) has definition on ™ x R”. This is
a very nice feature.

Recently, smoothing Newton methods have attracted a lot of attention in
the literature partially due to their superior numerical performance [1}, e.g.,
see [2, 3, 5, 6,7, 8,9, 10, 16, 23, 25, 31] and references therein. Among them
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the first globally and superlinearly (quadratically) convergent smoothing New-
ton method was proposed by Chen, Qi and Sun in [9]. The result of [9] has
been further investigated by Chen and Ye [10]. But they all assumed that F
had definition on the whole space R". Qi, Sun and Zhou in [25] avoided this
requirement by making use of the mapping M(-) and used one smoothing ap-
proximation function instead of using an infinite sequence of those functions.

Regularization methods for solving monotone complementarity problems
have been studied by several authors [4, 12, 20, 26, 29]. Facchinei and Kan-
zow [12] replaced the monotonicity assumption by a Py-function condition
and showed that many properties of regularization methods still hold for this
larger class of problems. Sun [29] proposed a regularization smoothing New-
ton method for solving nonlinear complementarity problem under the assump-
tion that F' is a Py-function and obtained some stronger results for monotone
complementarity problems. H.-D. Qi [20] proposed a regularized smoothing
Newton method for the nonlinear complementarity problem and the box con-
strained variational inequality problem by using the developments on regular-
ization methods and smoothing Newton methods. The global convergence of
this method was proved under the assumption that F is a Py-function and the
solution set of the problem (1.1) is nonempty and bounded.

In this paper we propose a class of squared smoothing Newton methods for
the box constrained variational inequality problem and present the numerical
results of this class of methods. This class of squared smoothing Newton meth-
ods is a regularized version of the class of smoothing Newton methods proposed
in [25]. In the next section we will give some definitions. This class of squared
smoothing Newton methods will be proposed in section 3. In section 4 we will
report numerical results of these methods. We then make some final remarks
in section 5.

To ease our discussion, we introduce some notation here: If u € R", diag(u)
is the diagonal matrix whose i-th diagonal element is u;. For a continuously
differentiable function ® : ™ — R™, we denote the Jacobian of ® at £ € R™ by

®'(z), whereas the transposed Jacobian as V®(x). || - || denotes the Euclidean
norm. If X is a subset in K", we denote by intX the interior of X. If V is
an m x m matrix with entries Vjg, j,k = 1,...,m, and J and K are index

sets such that 7, C {1,...,m}, we denote by Vs the |7| x |K| sub-matrix
of V consisting of entries Vi, j € J, k € K. If V7 is nonsingular, we
denote by V/Vy s the Schur-complement of V57 in V, ie., V/Vy5 = Vkx —
V}ijj_‘lj‘/j)c, where K = {1,...,m}\J.

2 SOME PRELIMINARIES

We first restate some definitions.

Definition 2.1 A matriz V € R**" is called
(a) Py-matriz if, for every x € R™ with z # 0, there is an indexr iy = io(z)
with
Tip 0 and gz, [Vzly, 2 0;
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(b) P-matriz if, for every x € ™ with ¢ # 0, it holds that

max r;[Vz]; > 0.
1

Definition 2.2 A function F: D —» R*, D C R, is called a
(a) Po-function on D if, for all z,y € D with ¢ # y, there is an index
to = ig(x,y) with

Tiy # Yip and (T, — i) [Fio (x) = Fioly)] > 05
(b) P-function on D if, for all x,y € D with ¢ # y, it holds that
ml?lx(fi ~y)[Filz) - Fi(y)] > 0;
(¢) uniform P-function on D if there is a constant p > 0 such that
max(z; —yi)[Fi(z) — Fi(y)] > pllz - yll?
holds for all x,y € D.

Definition 2.3 A function F: D — R", D C R, is called a
(a) monotone function on D if, for all x,y € D with r # vy,

(x -y [F(z) - F@) > 0;
(b) strictly monotone function on D of, for all x,y € D with x # y,
(= y)[F() - F(y)] > 0.

It is known that every uniform P-function is P-function and every P-function
is a Py-function. Moreover, the Jacobian of a continuously differentiable Fy-
function (uniform P-function) at a point is a Py-matrix (-matrix).

We now restate the definition of p(u,z), (u,z) € R" x R”*, given in [25].
For each i € N, pi{u,z) = q{u;,a;,b;,1;) and for any (i, c,d,w) € R x {RU
{—o0}} x {RU{oo}} x R with ¢ < d, q(, ¢, d, w) is defined by

Bl e, dyw) if g £0 21)

q(,u,c, d7 w) = { H[Cyd]mﬁ(’u)) if n= 0’

and ¢{u, ¢, d, w), (4, w) € Ry x R is a Gabricl-Moré smoothing approximation
function [14]. The definition of ¢(-) is as follows: Let p : R — R, be a density
function, i.e., p(s) > 0 and ffooo p(s)ds = 1, with a bounded absolute mean,
that is

K= /OO [slp(s)ds < co. (2.2)

For any three numbers ¢ € R U {—o0}, d € RU {00} with ¢ < d and ¢ € R, the
median function mid(-) is defined by

¢ ife<ec
mid(c,d,e) = M, ganle) =< e ife< e<d .
d ifd<e
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Then the Gabriel-Moré smoothing function ¢(u, ¢, d, w) for . gnx(w) [14] is
defined by

o0
Swesdw) = [ midte,dw—pip(s)ds, () € Ry xR (23)
If ¢ = —0co and/or d = oo, the value of ¢ takes the limit of ¢ as ¢ -+ —oo and/or

d — oo, correspondingly. For example, if ¢ is finite and d = oo, then
05(#, ¢, 00, ’LU) = lim ¢(U, ¢, d’,'UJ), (U, ’LU) € %++ x R.
d'— o0

For the sake of convenience, let ¢4 : Ry p X ® — R be defined by
bea(pp,w) = ¢, ¢, d,w),  (,w) € Ry xR (2.4)
and for any given g € Ry 4, let ¢ eq : ® = N be defined by

buca(w) == $lusc,d,w), w € R. (2.5)

Lemma 2.1 [14, Lemma 2.3] For any given u > 0, the mapping @ cq(-) is
continuously differentiable with

) (w—c)/n
d)ucd(w) = /(- p(s)dsv

w—d)/p

where ¢ 0q4(-) is defined by (2.5). In particular, ¢/, ,(w) € [0,1].

'
wed

Lemma 2.2 [25, Lemnma 2.2] The mapping ¢.q(-) defined by (2.4) is Lipschitz
continuous on N4y x R with Lipschitz constant L := 2max{1,«}.

Let geq ¢ ®? — R be defined by

Gealpt,w) = qlp, ¢, d,w),  (p,w) € B2, (2.6)
where q(u, ¢, d,w) is defined by (2.1).

Lemma 2.3 [25, Lemma 2.3] The mapping q.q(-) is globally Lipschitz contin-
uwous on R with the same Lipschitz constant as in Lemma 2.2.

Some most often used Gabriel-Moré smoothing functions like the neural net-
works smoothing function, the Chen-Harker-Kanzow-Smale smoothing function
and the uniform smoothing function are discussed in [25].

In this paper, unless otherwise stated, we always assume that ¢ € RU{-o00},
d€eRU{o0} and ¢ < d. By Lemma 2.2 of [14], for any (g, w) € R4y x R,

¢(p,c,d,w) € [c,d| N R,
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and so, for any (u,z) € R x R",
p(u,z) € X. (2.7

Then the mapping G(-) defined in (1.5) is well defined on R?" while F(-) is
only required to have definition on X, the feasible region.

From Lemma 2.1, for any given g € R4, @ucqa(-) is continuously differ-
entiable at any w € R. Moreover, for several most often used Gabriel-Moré
smoothing functions it can be verified that ¢.4(-) is also continuously differen-
tiable at any (i, w) € R4+ x R. In this paper, we are interested in smoothing
functions with this property, which we make as an assumptiorn.

Assumption 2.1 The function ¢.q4(-) is continuously differentiable at any (y,
U}) € %++ x R.

Let 2 := (u,z) € R™ x R*. For some X > 0, define G : R2* — R" by
Gi(2) = Gi(2) + Muipi(u, z), i € N,

where G(-) is defined in (1.5). Define H : R2* — R2" by

ma:(éb). (2.8)

Then H is continuously differentiable at any =z = (u,z) € R}, x ™ if Assump-
tion 2.1 is satisfied.
For any u € R% | and z € R", define c(u, z),d(u,z) € R" by

ci(u,z) = Op;(u,r)/0z;, d;(u,z) = Op;(u,x)/Ju;, i € N.
For any u € ®7, and z € R*, define DY (u,z), C¥(u,z), P¥(u,z), PY(u,z),
PX(u,z) € R™ by

di(u, F(p(u,z))+a) if i€, ,
d;(u, F(p(u,z))+b) if i€l

0 if 1€l Ul
DY(u,z) =

if 1€ l,Ul
cl(u F(p(u,z)) +a) if 1€l, ,
ci(u, F(p(u,z)) +b) if i€y

Cx(u T)

b; — pi(u,z) if i€l

0 if 1€ l,Uly
di(u,z)[pi(u, F(p(u,z)) +a) —a;] if 1 €1,
di(u, z)[b; — pi(u, F(plu,z)) +b)] if i€l

if i€ IoUly
PN(u,z) pl(u:c Y—a; if i€, ,

and

Proof.
know t
By dir
pi(). o
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and
0 if 1€ I,Ulg,

Pl-X(u,z) = ¢ c¢;(u,n)[pi(u, F(plu,z)) +a) —a;] if i€,
cilw, T)[b; — pi(u, F(plu,z)y + b)) if ¢ €1,

, 1€ N.

Theorem 2.1 Suppose that Assumption 2.1 holds for a chosen smoothing func-
teon
¢(,u’767daw): (/"aw) € §R++ x R. Then

(i) The mapping H(-) is continuously differentiable at any z = (u,x) € R}, x

R” and
I 0
H'(z) = , (2.9)
GL(z) G(2)
where
Gl (z) = [F'(p(2)) — I+ Miag(u)]diag(d(u, z)) + Adiag(p(z))
+adiag(PY (v, ) + adiag(P™ (u, z))diag(DY (u, x))
+adiag( PN (u, z))diag(CX (u, z)) F'(p(z))diag(d(u, x)),
C;(z) = {[I + adiag(PN(u,z))diag(CX (u,2))]F' (p(2))

+Adiag(u)} diag{c{u, z))
+1I — diag(c(u, 7)) + adiag(P (u, 1))

and for each i € N, ¢;(u,z) € [0,1].

(i1) If A > 0 and for some z € R, X R”, F'(p(2)) is a Py-matriz, then H'(z)
is nonsingular.

Proof. (i) Since Assumption 2.1 is satisfied for ¢(-), from the definition, we
know that H(-) is continuously differentiable at any 2z = (u,z) € R} x R™
By direct computation we have (2.9). From Lemma 2.1 and the definition of
pi(-), c;(u,x) € [0,1],i € N.

(i) Suppose that A > 0 and for some z € R}, x R*, F'(p(z)) is a Po-
matrix. From (i) and the definition of C¥ (u,z), PN (u,z) and P (u,z), we
have CX(u,z) € [0,1}, PV (u,z) > 0 and Pix(u,a:) > 0, for i € N. Then
Q = I + odiag(PN (v, r))diag(CX(u,z)) is a positive diagonal matrix. So
QF'(p(z)) is a Py-matrix and QF'(p(2)) + Adiag(u) is a P-matrix. From [7,
Lemma 2| we have that G’(z) is nonsingular. It then follows from (2.9) that
H'(z) is also nonsingular. .

In order to design high-order convergent Newton methods we need the con-
cept of semismoothness. Semismoothness was originally introduced by Mifflin
[19] for functionals. Convex functions, smooth functions, and piecewise linear
functions are examples of semismooth functions. The composition of semis-
mooth functions is still a semismooth function [19]. In [24], Qi and J. Sun
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extended the definition of semismooth functions to & : R™t - R™2, A |ocally
Lipschitz continuous vector valued function ® : ™t — R™2 has a generalized
Jacobian d®(z) as in Clarke [11]. ® is said to be semismooth at z € R™' | if

lim {Vh'} (2.10)

VESP(z+th!)
h!ah, tl0

exists for any h € R™'. It has been proved in [24] that ¢ is semismooth at
z if and only if all its component functions are. Also, ®'(zx; h), the directional
derivative of ® at z in the direction h, exists and equals the limit in (2.10) for
any h € R™ if ® is semismooth at z.

Lemma 2.4 [24] Suppose that ® : R — R™2 is a locally Lipschitzian func-
tion and semismooth at x. Then

(i) for any V € 0®(z + h), h — 0,
Vh — ®'(z; h) = of||h|D);
(ii) for any h — 0,
B(x + h) — B(z) — ¥ (z;h) = o([Ih]])-

The following lemma is extracted from Theorem 2.3 of [24].

Lemma 2.5 Suppose that ® : R™ — R™2 4s a locally Lipschitzian function.
Then the following two statements are equivalent:

(1) ®(:) is semismooth at x.
(ii) ® is directionally differentiable at x, and for any V € 9®(z + h), h — 0,
Vh— @' (z;h) = o([|h])-

A stronger notion than semismoothness is strong semismoothness. ®(-) is
said to be strongly semismooth at z if ® is semismooth at r and for any V' ¢
O0®(z+h), h -0,

Vh— &' (z;h) = O(||h]|?).

(Note that in [22] and [24] different names for strong semismoothness are used.)
A function & is said to be a (strongly) semismooth function if it is (strongly)
semismooth everywhere.

Recall that from Lemma 2.3 the function q.4(-) defined by (2.6) is globally
Lipschitz continuous on $2. Then, from Lemma 2.5 and the definition of strong
semismoothness, we can prove in the above mentioned three usual cases [25]
that q.q(-) is strongly semismooth at xr € R?, i.e., for any V € 9qc(z + h),
h—0,

Vh = gla(z; h) = O(IA]2). (2.11)
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3 A CLASS OF SQUARED SMOOTHING NEWTON METHODS

Choose u € R, and v € (0, 1) such that v||z|| < 1. Let z := (%,0) € R™ x R".
Define the merit function ¢ : 2" — R, by

Y(2) = | H()|?
and define g: R2™ 5 R, by
B(z) :=ymin{l,¢(z)}.

Let
Q= {z=(u,z) € R" xRN u> p(z)a}.

Then, because for any z € R2", 8(z) < v < 1, it follows that for any x € R",
(i, ) € .

Proposition 3.1 The following relations hold:

(i) H(2) =0 <= B(z) =0 <= H(2) = (2)z.

(ii) H(z) =0 = u =0 and y = Ux (z) s a solution of (1.1).

(iii) If z =y — F(y), where y is a solution of (1.1), then H(0,z) = 0.

The proof of this proposition is similar to that of Proposition 4.1 in [25], so we
omit it.

Algorithm 3.1

Step 0. Choose constants § € (0,1), 0 € (0,1/2), @ > 0 and A > 0. Let

u® =1, 2° € R™ be an arbitrary point and k := 0.

Step 1. If H(2*) = 0 then stop. Otherwise, let By := B(2*).
Step 2. Compute Az := (Au*, Azk) € R x R™ by
H(2*) + H'(2%) 02" = iz (3.1)
Step 3. Let i be the smallest nonnegative integer | satisfying
P(2F +8'Az%) <[1—20(1 = yllal)8' ]y (2*). (3.2)
Define 2kt := 2k 4§l Az¥,

Step 4. Replace k by k+ 1 and go to Step 1.

Remark. Algorithm 3.1 is actually the smoothing Newton method proposed
in [25] for the case that & = 0 and A = 0. When A > 0, Algorithm 3.1 has
better properties than the original version of the smoothing Newton method
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given in [25]. The parameter o is introduced in order to improve the numerical
performance.

Lemma 3.1 Suppose that F is a Py-function on X, A > 0 and that u,u € R"
are two positive vectors such that @ > @ > 0. Then for any sequence {z* =
(uf,z%)} such that i < u* < @ and ||z*|| = +o00 we have

Jimn ¥(z*) = +00. (3.3)

Proof. For the sake of contradiction, suppose that therc exists a sequence
{z% = (uF,2¥) € R" x R™} such that @ < u* < @, ||2¥]] = oo and ¥(2¥) is
bounded. It is easy to prove that

|mid(a;, b;, £¥)] & 00 = |z¥| = 00 and |z¥ — mid(a,, b, z¥)| 5 0, ie N

(3.4)

From Lemma 2.3 and the definition of p(-), there exists a constant L’ > 0 such
that

Ips(u*, a*) — mid(a;, b, 2¥)| < L'luff, i€ N. (3.5)

From (3.4) and (3.5) we have
Ipi(u*, 2)] = 0o = {|z* — p;(u*, £%)|} is bounded. (3.6)

Define the index set .J by J := {i € N | {p;j(u*,z¥)} is unbounded}. Then
it follows that J # @ because otherwise |G(z%)|| = ||F(p(z*)) + ¥ — p(z*) +
aS(z*) + Adiag(u¥)p(2*)|] = oo. Let z¥ = (@*, z*) € R™ x R™ be defined by

e Uk ifigd
J

“Tl0 ifie
and k zh ifi¢J .
Ii:{ol ifieg > ‘€N
Then pi(z%) ifigJ .
pi(zk):{rr:id(a,-,bi,O) ificg 0 ‘SN

Hence {||p(z*)||} is bounded. Because F is a Py-function on X, we have

0 < maxlpi(+*) - piGEIIIF () — Fip(z*)]
= max(pi(=*) - pEEP() — F(*) (37)

= [pi(2*) — p(ZO))[Fi(p(z*)) — Fi(p(Z))],

where ¢ € J is one of indices for which the maximum is attained, without loss
of generality, assumed to be independent of k. Since i € J, we have

Ipi()] = 0.
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From (3.7) and the boundedness of {F;(p(z¥))}, we have that Fi(p(z¥)) does
not tend to —oo if p;(z%) — 400 and Fi(p(z*)) does not tend to +oc if p;(2*) —
—00.

We now consider two cases.
Case 1: pi(z*) = +oo.
In this case, we have that i € I, UI,. Since S;(z*) > 0, from (3.6) we have

G‘,'(zk) = Fi(p(z%)) + xf ~ pi(z") +aS;(z*) + /\'ufpi(z") — +00.

Case 2: pi(2¥F) - —oo0.
In this case, i € I, U I,,. Since S;(z*) < 0, from (3.6) we have

Gi(z") = Fi(p(z")) + 2 — pi(2*) + aSi(2*) + Mufpi(z¥) = —o0.

In either case we get ¢)(z¥) — +oc, which is a contradiction. So we coriplete
our proof. -

Remark. Lemma 3.1 is not true if @ = 0 even if F is strictly monotone. To
see this, we may consider the function F(z) = e¢* — 1, z € R. This function
was provided by H.-D. Qi [21]. Suppose that X = R. Then ¥(z) = v? + F(x)?
and when r — —oc and u = 0, ¥(z) — 1. This clearly shows that ¥ may
have unbounded level sets. However, if the solution set of (1.1) is bounded, we
can prove the global convergence of our methods {see Theorem 3.1) under the
assumnption that F is a Fy-function on X.

Assumption 3.1 (i) F is a Py-function on X.
(1) The solution set of the problem (1.1) is nonempty and bounded.

Theorem 3.1 Suppose that Assumptions 2.1 and 8.1 are satisfied and A > 0.
Then the infinite sequence {2*} generated by Algorithm 3.1 is bounded and each
accumulation point 3 of {2*} is a solution of H(z) = 0.

Proof. By combining Lemma 3.1 and the proof of Theorem 4.1 [29] and
Theorem 4.6 {20}, we can prove this theorem. We omit the details. .

Theorem 3.2 Suppose that Assumptions 2.1 and 3.1 are satisfied, A > 0 and
2* is an accumulation point of the infinite sequence {2*} generated by Algo-
rithm 3.1. Suppose that H is semismooth at z* and that all V € OH(2*) are
nonsingular. Then the whole sequence {z*} converges to z*,

12571 = 27| = o(llz* — 27|)) (3.8)

and

ufth = ofuf), i€ N. (3.9)
Furthermore, if H is strongly semismooth at 2>, then

251 — 2*)f = O(ll2* — 27|I%) (3.10)
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and
uF =0 ((uh)?), ie N (3.11)

Proof. See [25, Theorem 7.1] for a similar proof. .
Next, we study under what conditions all the matrices V € 8H (z*) are non-
singular at a solution point z* = (u*,z*) € R® x R" of H(z) = 0. Apparently,
u* = 0 and z* is a solution of (1.3). For convenience of handling notation we
denote
T:={ija; <z} <b & Fi(Illx(z*)) =0, i e N},
J: = {‘L‘ ZE: :ai&Fi(lIX(I*))—_—O, iE]V}
Ufi] z7 = b & Fi(llx(z*)) =0, ¢ € N}
and )
K: = {ila}<a & F(Ilx(«*)) >0, 1€ N}
ufil z7 > b; & F;(Ix(z*)) <0, i € N}.

Then
TUJuUK=N.

By rearrangement we assume that VF(IIx(z*)) can be rewritten as

VF(Ily(z*))rr VFx(z*))ry VFIlx{z"))1x
VF(Iix(z*)) =] VF(Mx(z*))gr VFIx(z*))77 VFQlx(z"))sx
VF(IIx(z*))kz VF[x(z*))cs VFx(z*))kx

BVIP is said to be R-regular at «* if VF(IIx (x*))z7 is nonsingular and its
Schur-complement in the matrix

( VF(ILy (z*))z7  VF(Ilx(z*))17 )
VFE(Iix(z*))gz VF(x(«"))gg

is a P-matrix, see [28].

Proposition 3.2 Suppose that z* = (u",z*) € R"xR" is a solution of H(z) =
0. If BVIP is R-regular at z*, then all V € 8H(z*) are nonsingular.

Proof. It is easy to see that for any V € 9H(2") there exists a matrix
W = (W, W,) € 8G(z*) with W,, W, € R"™*" such that

1 0
v={, w )
Hence, proving that V' is nonsingular is equivalent to proving that W; is non-

singular. For any U = (U,,,U,) € dp(=*), by the definition of p, we have

U € 8p (2*) x Opal2™) x -+ x Opn(z*) = Ip(=").

Then
defini

wher¢

Defin

For a
(U, 1

whert

and

whe

and

Let
on:
1€




(3.11)

€ tH(27) are non-
= 1. Apparently,
wlling notation we

e as

Ty rt))zx
N J"))j;{ .
Iy )k

on<ingular and its

woiution of H(z) =

strogular.

€ #XISTS a4 matrix
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Then for each i € N, the ith row of U, U; € 9p;(2*). Apparently, from the
definition of p and Lemma 2.1,

U, = dia‘g{(ux)iu 1€ N}1
where (u;); is defined by
(we)i=1  ifiel
(uz); €0,1] ifieJ
(ug); =0 fiek
Define PV (z*) € R" by
0 if i€l,Ulg
PN =< pi(z®)—a; if i€, ,i€N.
l),’ - ])i(l‘) if ie Ib

For any W = (W,,W,) € 8G(z*) with W,,W, € R™*" there exist U =
(Uy,U,) € Op(z*) and CX(z*) € R™ such that

W, = Fp@E)U,+I1-U,
+adiag(P" (2*))diag(C¥ (27)) F'(p(z")) U
+adiag(PX (2*)),
where
0 if 1el,Uly
PX(z") = (ug)i[(Mx (F(p(z*)) +a)i —a;] if i€l, ,i€N
(ug)i[bi — (Mx (F(p(z*))+ b)s] if i€l
and
0 if 1€ l,Uly
CX(z)=< A, if iel, , i€N,
B; if i€l
where
1 if F;(Ix(z*)) >0
A; = 0 if Fi(Hx(l'*)) <0
€] € [0, 1] if Fi(Hx(I‘)) =0
and
0 if Fi(Ilx(z*)) >0
Bi = 1 if Fi(Hx(I*)) <0

€ € [O, 1] if Fi(llx(z*))=0

Let D = adiag(P" (z*))diag(C*(z*)). We have that D is a nonnegative diag-
onal matrix. By inspecting the structure of PX we have that PX = 0, for all
i € N. Then we have

W, =+ D)F'(p(z"))U, +I-U,.
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Let Q = WI(I + D)~!. Then
Q=UNVF(p(z"))+ (I -U,)(I+D)”!

Thus, for each i € J, there exists A; € [0,1] such that

VE(p(z")) ifiel
Qi=< ANVF(p (2*)) (1-X)(Q+ D) 'e; ifieJg
(1+Dzz) e ifiek

where e; 1s the ith unit row vector of " and VF(p(z*)); is the ith row vector
of VF(p(z*)), i € N. Then, by [13, Proposition 3.2] we can prove that Q,
and so W;, is nonsingular under the assuruption of R-regularity (note that
p(z*) =x(z*)). Hence, any V € OH(z*) is nonsingular. So, we complete our
proof. .

4 NUMERICAL RESULTS

Algorithm 3.1 was implemented in MATLAB and was run on a SUN Sparc
Server 3002 for all test problems with all available starting points from the
test problem collections GAMSLIB and MCPLIB [1] (note that there are three
starting points in ehl kost with the same data and so we only list the re-
sults for ehl kost with the first starting point in Table 1.2). Throughout the
computational experiments, unless otherwise stated, we chose the Chen-Harker-
Kanzow-Smale smoothing function and used the following parameters:

§=0.5,0=10""* 4 = 0.2¢,y = min{107%,0.2/||@||} and X = 0.05,

where e is the vector of all ones.

To improve the numerical behaviour of Algorithm 3.1, we replaced the stan-
dard (monotone) Armijo-rule by a nonmonotone line search as described in
Grippo, Lampariello and Lucidi [15], i.e., we computed the smallest nonnega-
tive integer ! such that

4+ 8N e (4.1)
and
P(* + 8" Az%) < Wi = 20(1 - yllal))8' ("), (4.2)
where W; is given by
Wi= max ¢(2)
j=k—mp,..., k

and where, for given nonnegative integers m and s, we set
myg = 0
if k < s at the kth iteration, whereas we set

my = min{mg_; + 1,m}
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at all other iterations. In our implementation, we use

m=28 and s=2.

We terminated our iteration when one of the following conditions was satisfied
k> 3000, R(z*) := ||p(z%) — x[p(z*) = F(p(z*))]]loo < 1075 or Is > 80,

where Is was the number of line search at each step.

Using this algorithmic environment, we made some preliminary test runs
using different values of the parameter a. In view of these preliminary exper-
iments, it seems that « should be large if the iteration point is far away from
a solution aud a should be reduced if the iteration point is getting closer to a
solution of the problem. This motivated us to use a dynamic choice of a for
our test runs. More preciscly, we updated a using the following rules:

(a) Set o = 10" at the beginning of each iteration.
(b) If R(z*) < 10, then set a = 100.

(¢) If R(z*) <1072 or k > 80, then set a = 1073,
(d) If R(z*) < 1073, then set a = 107°.

The numerical results which we obtained are summarized in Tables 1.1-
1.3. In these tables, Dim denotes the number of the variables in the problem,
Start. point denotes the starting point, Iter denotes the number of iterations,
which is also equal to the number of Jacobian evaluations for the function F,
NF denotes the number of function evaluations for the function F and R(z*)
denotes the value of R(z) at the final iteration.

The results reported in Tables 1.1-1.3 show that the squared smoothing
Newton methods are extremely promising and robust. The algorithm was able
to solve almost all the problems. There are just three problems with superscript
triple-asterisk which our algorithm was not able to solve because the steplength
was getting too small. They are gemmge, vonthmcp and hydroc20. However
we can solve these problems if we change some of the parameters. The results
reported for these three problems were obtained by letting a = 107'° and
A = 10~% while keeping other parameters unchanged.

Lastly, it is deserved to point out that domain violation phenomenon does
not occur during our computation because p(u, z) € intX for all (u,z) € R} x
R, This is a very nice feature of our methods.

5 CONCLUSIONS

In this paper we present a regularized version of a class of squared smoothing
Newton methods, originally proposed in [25], for the box constrained variational
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Table 1.1 Numerical results for the problems from GAMSLIB

Problem Dim Iter NF R(z*)
cafemge 101 29 30 8.0x1077
cammep 242 8 9 9.1x108
cammege 128 15 16 1.2x1077
cirimge 9 3 4 4.5%x10710
co2mge 208 36 140 4.1x10°8
dmemge 170 13 21 3.4x10713
ers82mcp 232 6 8 1.9x107*°
etamge 114 16 84 4.8x1079
finmge 153 10 11 7.8x10710
gemicp 262 1 2 1.9x1077
gemmge*** 178 15 18 6.6x107
hansmcp 43 9 18 6.2x1078
hansmge 43 72 75 2.4x1071°
harkmcp 32 14 18 6.5x10713
harmge 11 11 48 8.7x1078
kehomge 9 17 35 4.0x1073
kormcp 78 5 6 4.0x10-1
mromep 350 9 11 2.6x107°
nsmge 212 13 14 7.5x107 1Y
oligomep 6 7 11 1.1x1077
sammge 23 4 5 6.1x1078
scarfmep 18 10 14 4.9%x1079
scarfmge 18 14 19 1.5x10710
shovmge 51 88 90 2.3x1079
threemge 9 9 10 1.6x1071°
transmep 11 5 24 4.6x10710
twodmcep 6 6 7 1.3x1073
unstmge h) 8 9 1.3x1078
vonthmep*** 125 2609 19066 5.9x107°
vonthmge 80 94 516 1.8x1078
wallmcp 6 4 5 1.1x10-8

inequality problem. As can be seen from the numerical results, these methods
are fairly robust and promising. The global convergence of these methods were
proved under the assumption that F' is a Fp-function on X and the solution
set of the problem (1.1) is nonempty and bounded. This assumption may be
the weakest one known in the literature.

In Algorithm 3.1 we always assume that the iteration matrix H'(z) is non-
singular. This is guaranteed by assuming that F' is a Py-function on X. In
this paper, We have not discussed how to handle the case that H'(z) is singu-

lar.
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lar. By introducing a gradient direction if necessary, Kanzow and Pieper [18]
described a strategy for handling the singularity issue of the iteration matrices
for the smoothing Newton method proposed in [9]. Whether or not the idca
introduced in [18] is applicable to our method is an interesting question.
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Table 1.2 Numerical results for the problems from MCPLIB

Problem Dim Start. point NF R(z*)
bertsekas 15 9 4.1x1078
bertsekas 15 11 5.5%107°
bertsekas 15 87 3.8x107°
billups 1 19 7.3x 10710
bert_oc 5000 30 8.4x1077
bratu 5625 156 3.4x10710
choi 13 6 1.2x10710
colvdual 20 8 1.8x107 1
colvdual 20 10 5.5x107°
colvnlp 15 8 1.1x10"
colvnlp 15 10 1.8x107°
cycle 1 12 0

ehl k40 11 13 9.2x10°%
ehl k60 61 15 1.5x1078
ehl k80 81 15 4.6x10713
ehl_kost 101 17 1.3x10712
explep 16 8 1.0x10°7
freebert 15 10 2.3%x10°®
freebert, 15 70 4.7%x1077
freebert 15 10 2.4%x1078
freebert 15 10 5.5%x1078
freebert 15 987 1.9%x10°7
freebert 15 10 5.6x1078
gafni 35 10 1.4x107*
gafni 5 8 1.7x10710
gafni 5 15 1.5x10~ 1!
hanskoop 14 35 1.5x10~7
hanskoop 14 31 1.5x10712
hanskoop 14 37 1.0x10°7
hanskoop 14 29 5.1x10°11
hanskoop 14 11 2.6x10~%
hydroc06 29 10 2.5%x10°7
hydroc20*** 99 10 3.1x10°7
jel 6 7 1.3x10"8
josephy 4 30 6.1x10710
josephy 4 7 1.6x10°7
josephy 4 18 1.9x10712
josephy 1 6 1.2x1078
josephy 4 4 6 9.9x10°7
josephy 4 6 7 9.2x10710
kojshin 4 6 10 2.6x107¢
kojshin 4 7 8 5.5%1078
kojshin 4 1 19 7.9x10-14
kojshin 4 5 7 1.3x10~7
kojshin 4 6 9 3.5x1077
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93]

Table 1.3  (continued) Numerical results for the problems from MCPLIB

E ) Problem Dim Start. point Iter NF R(z*)
! }xm:: kojshin 4 (6) 6 9 2.5x1077
K "’(1“‘(4 mathinum 3 (1) 4 9 3.7x107°
'_‘ :”( 10 ‘10 mathinum 3 (2) 5 6 4.1x10712
T3 10:_ mathinum 3 (3) 9 13 2.6x1078
) i 1”41/0 mathinum 3 (4) 5 6 1.3x107°
""" X “er mathisumn 4 (1) 4 o 1.6x107"
F210” mathisum 4 (2) 5 6 2.3x107*
}‘Tx m“q mathisuimn 4 3) 10 11 5.0x10°10
)X 10*‘H mathisum 4 (4) 4 5 7.6x107°
L lx 10:9 methan08 31 (1) 5 6 6.6x1071°
Lx <107 nash 10 (1) 6 7 4.0x107*
:: 2% 10 ¥ nash 10 (2) 9 10 L4x 1077‘
- - obstacle 2500 (1) 7 8 5.5x10713
o107 obstacle 2500 (2) 9 13 5.8x10713
HO07 opt_cont31 1024 (1) 11 16 4.1x1071¢
L 310777 opt_cont127 4096 (1) 12 24 1.6x10°%
1 -"' X 107; opt_cont255 8193 (1) 14 33 3.1x107"
=307 opt_cont511 16384 (1) 16 54 5.6x107%
T x 10*8 pgvonl05s 105 (1) 71 200 6.3x1077
- }*1“:8 pgvonl05 105 (2) 13 34 1.0x1077
P07 pgvonl05 105 (3) 13 34 LOX1077
L ax10 : pevonl06 106 (1) 40 175 9.9x10°7
)6 10:9 pics 42 (1) 36 340 4.5x107 "3
P10 powell 16 (1) 87 304 1.0x10°7
1 :xlt)‘“ powell 16 (2) 20 22 5.0x1077
Lax107 powell 16 (3) 25 35 8.0x107
1 .-)xlU 1’2 powell 16 (4) 18 20 4.2x1077
1.5« 1()*7 powell_mep 8 (1) 6 7 6.5x107"?
Lox 10:“ powell_mep 8 (2) 7 8 1.8x10712
N 1 x 10*8 powell . mcep 8 (3) 8 9 4.7x1078
2610 , powell tcp 8 (4) 7 1.2x1077
29 10:7 scarfanum 13 (1) 9 18 5.4x10710
'j'i:ﬁ;% scarfanum 13 (2) 9 16 3.0x10710
1o scarfanum 13 (3) 8 9 6.3x1079
(’-1XIO_7 scarfasum 14 (1) 15 20 2.8x107°
L.6x 10412 scarfasum 14 (2) 20 43 1.6x10710
i?x 1378 scarfasum 14 (3) 15 28 2.1x10710
9‘3>>: 07 scarfbnum 39 (1) 18 76 5.2x 10712
5 2x10-10 scarfbnum 39 (2) 26 154 4.3x107 11
Yl scarfbsum 40 (1) 27 259 2.0x10712
26107/ scarfbsum 40 (2) 31 283 5.1x1077
._;.‘)_x10_14 sppe 27 (1) 60 386 1.9%x1077
A.9><IO_~ sppe 27 (2) 10 11 7.3x10713
1.3x10°7 tobin 42 (1) 18 86 2.5%10713
3.5x1077 tobin 42 (2) 11 29 2.7x10710




