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Abstract In this paper we present a class of sq~lared smoothing Newton meth- 
ods for the box constrained variational inequality problem. This class of squared 
smoothing Newton methods is a regularized version of the class of smoothing 
Newton methods proposed in [25]. We tested all the test problem collections of 
GAMSLIB and MCPLIB wit,h all available starting points. Nurrlerical results 
indicate t,hat these squared smoothing Newton methods are extremely robust 
and promising. 

Key Words variational inequality problem, smoothing approximation, smooth- 
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1 INTRODUCTION 

Consider the  box constrained variational inequality problem (BVIP for short): 
Find y* E X = {y E PLI a 5 y 5 b) ,  where a E {!RU{-CO})'~, b E {Ru{co)) '~ 
and a < b, such that 

(y - y * ) T ~ ( y * )  2 0 for all y E X ,  (1.1) 

where F : D -+ !Rn is a continuously differentiable function on some open 
set D ,  which contains X. When X = R 3 ,  BVIP  reduces t o  the nonlinear 
complementarity problem: Find y* E 33 such that 

F ( y * )  E 83 and F ( ~ * ) ~ ~ *  = 0. (1.2) 
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422 REFORMULATION 

Let I I x  be the projection operator on X. I t  is well known that solving BVIP 
is equivalent to solving the following Robinson's normal equation 

i ~ i  the sense that  if 2' E iRn is a solution of (1.3) then y* := I I x ( x * )  is a solution 
of (1.1), and conversely if y* is a solution of (1.1) then x* := y* - F ( y * )  is a 
solution of (1.3) [27]. Let N  := {1,2 , . . . ,71)  and 

Iw = { I €  N  1 a , = - c c  and b, = + m ) ,  
I,b = { i E  N  ( a ,  > -03 and b, <+m) ,  
I, = { i € N  l a , > - m  and b , = + m } ,  
Ib = {(i E N  1 a,  = -03 and b, < +m).  

Define 
W ( x )  := F ( I I x ( x ) )  + T - II.y(x) + a T ( x ) ,  (1.4) 

where a > 0 and T  : Rn -t En is defined by 

Properties of W ( x )  have beer1 studied in [30] in thc casc that a, = 0 arid 
b, = +m for all i  E N. 

We can easily prove the followirlg lenirna. 

Lemma 1.1 E ( x )  = 0 if and only if W ( x )  = 0.  

By using tile Gabriel-More smoothirig furictiori for IIx(.), we can construct 
approxiniations for W(.): 

where M ( u ,  x )  := F ( p ( u ,  x ) )  + x  - p(u ,  x )  and S : 92" -t Xn is defined by 

where y(u ,  2 )  was defined in [25] and will be reviewed in the next section. We 
note that for any ( u ,  2 )  E Rn  x iRn,  p(u,  x )  E X [25]. So we can assunie that F  
has definition on -Y only in order that  G ( . )  has definition on Rn x En.  This is 
a very nice feature. 

Recently, smoothing Newton niethods have attracted a lot of attention in 
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I 

the first globally and superlinearly (quadratically) convergent smoothing New- 
ton method was proposed by Chen, Qi and Sun in [9]. The result of [9] has 
been further investigated by Chen and Ye [lo]. But they all assurried that F 
had definition on the whole space Xn. Qi, Sun and Zhou in [25] avoided this 
requirement by making use of the mapping Id(.) and used one smoothing ap- 
proximation function instead of using an  infinite sequence of those functions. 

Regularization methods for solving rrionotone complernentarity problems 
have been studied by several authors [4, 12, 20, 26, 291. Facchinei and Kan- 
zow [12] replaced the monotonicity assumption by a Po-function condition 
and showed that many properties of regularization methods still hold for this 
larger class of problems. Sun [29] proposed a regularization smoothing New- 
ton method for solving nonlinear complerneritarity problerrl under the assump- 
tion that F is a Po-function and obtained some stronger results for monotone 

I complementarity problems. H.-D. Qi [20] proposed a regularized smoothing 
Newton method for the nonlinear cornplerrleritarity problem and the box con- 
strained variational irleqliality problem by using the develop~nents on regular- 

I ization ~net~hods and s~noothing Newton methods. The global convergence of 
this rriet,hod was proved under the assumption that F is a Po-function and the 
solution set of the problem (1.1) is nonempty and bounded. 

In this paper we propose a class of squared smoothing Newton methods for 
the box constrained variational inequality problem and present the numerical 
results of this class of methods. This class of squared smoothing Newton meth- 
ods is a regularized versiori of the class of smoothing Newton methods proposed 
in [25]. In the next section we will give some definitions. This class of squared 
smoothing Newton rrlethods will be proposed in section 3. In section 4 we will . 
report numerical results of these methods. We thcn make some final remarks 
in section 5. 

To ease our discussion, we introduce some notation here: If u E !Rn, diag(7~) 
is the diagonal matrix whose i-th diagonal element is ui. For a continuously 
differentiable function : !Rm -t ?Rm, we denote the Jacobian of a t  x E Xm by 
a l ( x ) ,  whereas the transposed Jacobian as V@(x).  1 1  . )( denotes the Euclidean 
norm. If X is a subset in Xn, we denote by i n t X  the interior of X .  If V is 
an m x m matrix with entries Y k ,  j , k = 1,. . . , m ,  and J and K are index 
sets such that J, K {I , .  . . , m),  we denote by VJK the 1,71 x 1x1 sub-matrix 
of V consisting of entries Vik, j E J, k E K. If VJJ is nonsingular, we 
denote by V/VJJ the Schur-complement of VJJ in V, i.e., V/VJJ := VKK - 
V,JV,;VJK, where K = { I , .  . . , m}\J. 

2 SOME PRELIMINARIES 

We first restate some definitions. 

Definition 2.1 A n~atr ix  V E !Rnxn is called a 
(a) Po-matrix if, for every x E 92" with x # 0, there is an index io = io(x) 

with 

xio # O  a n d  x ~ ~ [ V X ] ~ ,  2 0 ;  
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(b) P-matrix if, for every x E 8" with x # 0 ,  it holds that 

mas z, [Lrxli > 0. 
1 

Definition 2.2 A function F : D -+ P, D C Rn,  is called a 
(a)  Po-function on  D if, for all x , y  E D with z # y ,  there is an index 

io = io (z, y) with 

xi, # Y i o  and (xi, - ~i")[Fz, (2) - Fio(y)] 2 0; 

(b) P-furtction 071 D i f ,  for all x, r/ E D with 3: # y,. it holds that 

(c) uniform P-function 071 D if there is a coiastarzt p > 0 such that 

holds for all x, y E D. 

Definition 2.3 A fi17i(:tion F : D -+ Y?", D C Rn,  is called a 
( a )  rnonotorzc fi~i~.ctaor~ 071 D if. for all z, y E D with x # y,  

(:c - y)" [F(x)  - F(v)] 2 0; 

( b )  strictly monotorle f i~nction on D if, for all z, y E D with x # y ,  

(. - vIT[F(x) - F(Y)I > 0. 

It is known that every uniform P-f~inction is P-function arid every P- fu~~ct ion  
is n Po-function. Moreover, the Jacobian of a coritinuol~sly diffrrentiablc Po- 
furiction (uniforrn P-function) a t  a point is a Po-rnatxix (P-matrix). 

We now restate the definition of p(u, z ) ,  (u,  x) E %" x R", giver1 i r ~  (251. 
For each i E N,  p ~ ( u ,  2) = q ( ~ ~ i , a , ,  b,, xi) and for any (p ,  c,  d, w) E 8 x {X U 
{-m}} x {Y? u {co)) x R with c 5 d, q(p, c , d ,  w) is defined by 

4(1P1, ~7 4.1) if P # 0 
q(pjC'  '7 = { njc,d;nR(w) if = 0 (2.1) 

and 4(p ,  c, d, lo), (p, w) E R++ x !R is a Gabriel-Mori' smoothing approxirnatio~i 
furictiori [14]. The definition of 4(.) is as follows: Let p : X -+ X+ be a density 
furlction, i.e.: P(S) > 0 and Srrn p(s)ds = 1, with a bounded absolute rnean, 

For any three numbers c E X U {-m), d E X U {m} with c 5 d and e E X, the 
rnediari fur~ction mid(.) is defined by 

For t l  

and fc 
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Then the Gabriel-Mor6 smoothing function $(p ,  C, d, w )  for n[c,dlnn(?~~) [14] is 
defined by 

- ~ r . ;  , t ;~~~roxi!~i i~t ion - P _  t ) ~ ,  a density 
l e i !  < . . . , - o l ~ i t ~  mean, 

5 ,i ,:::1i c E R, the 

If c = - m  and/or d = m ,  the value of 4 takes the liniit of 4 as c + - m  and/or 
d + m ,  correspo~idingly. For example, if c is finite and d = m ,  then 

For the sake of convenience, let dCd : 32++ x 32 + R be defined by 

dcd(p, 1 0 )  := d ( ~ ,  C, d, w ) ,  ( P ,  ~ 1 )  E X++ x R (2.4) 

and for any given p E R++,  let dllcd : !R + R be defined by 

Lemma 2.1 (14, Lemma 2.31 For any given LL > 0 ,  the mappzng 4,,-d(.) is 
continuo.u~ly differentiable with 

where dPcd( . )  is defined by (2.5). 111 particular, dLCd(w) E [O,l]. 

Lemma 2.2 (25, Lerr~ma 2.21 The mapping d,d(.) defined by (2.4) is Lipschitz 
continuous on 8++ x R with Lipschitz constant L := 2 max{l, K ) .  

Let q,,i : 32% 32 be defined by 

where q(p,  C, d, w )  is defined by (2.1). 

Lemma 2.3 (25, Lemma 2.31 The mapping qrd(.) is globally Lipschitz contin- 
uous on R2 with the same Lipschitz constant as in  Lemma 2.2. 

Some most often used Gabriel-Mork smoothing functions like the neural net- 
works smoothing function, the Chen-Harker-Kanzow-Smale smoothing functiori 
and the uniform smoothing function are discussed in [25]. 

In this paper, unless otherwise stated, we always assume that c E 8 u { - m ) ,  
d E R U { m }  and c 5 d. By Lemma 2.2 of [14], for any ( p , w )  E R++ x 8 ,  
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and so, for any (u, z )  E Rn x Rn, 

Then the mapping G(.) defined in (1.5) is well defined on XZn while F ( . )  is 
only required to have definition on X , the feasible region. 

From Lemma 2.1, for any given p E R++, dPcd(.) is continuously differ- 
entiable at any w € X. Moreover, for several most often used Gabriel-Mor6 
smoothing functions it can be verified that dcd(.) is also continuously differen- 
tiable a t  any (p ,  w) E R++ x R. In this paper, we are interested in smoothing 
functions with this property, which we make as an assu~nptiori. 

Assumpt ion  2.1 The function 4,d(.) is continuously differentiable at any (11, 

w) E X++ x R. 

Let z := (u, z )  E Xn x Xn. For some X > 0, define G : XZn -t Xn by 

where G(.) is defined in (1.5). Define H : X" -t X2n by 

Then H is continuously differentiable at any z = (u, z )  E X;+ x Xn if Assump- 
tion 2.1 is satisfied. 

For any u E XT+ and z E Xn, define c(u, z ) ,  d(u, z )  E X" by 

For any u E RT+ and z E Xn, define Du(u,  z ) ,  CX (u, z), p N ( u ,  z ) ,  P"(u, z ) ,  
pX (u ,  x) E Xn by 

0 if i E I, U lab 
ci(u, F(p(u, x))  + a )  if i E I ,  l 

c i (u ,F(p(u ,z ) )+b)  if i E Ib 
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8 ! . y . : , , ~ ,  I I I > I ~  differ- 
,.-.-<: ~ ; ~ l l ~ r i ~ l - ~ l o r ~  
r::. : .,1.1!. diffcrell- 
5 . v . :  111 51l~~~otlli1lg 

E I-, "Id, 
E I .  
E I .  

arid 

if i E I, U lab 
(u, x)[p, (u ,  F(p(11,x)) + a )  - a,] if i t I, , i t iV. 

G(U, x)[b, - pZ(u ,  F(P(u,  x)) + b ) ]  if L E Ib 

T h e o r e m  2.1 Suppose that Assumption 2.1 holds for a chosen smoothir~y filnc- 
tion 

$(P,  c ,  dl w), (1.1, w )  E %++ x R. Then 

(i)  The mapping H ( . )  is contznuo~~sly dzflerentiahle at arty z = (11, x) E Rf + x 
Rn and 

(2.9) 

G:,(z) = [F1(p(z)) - I + Xdiag(uj]diag(d(u. L)) + Xdiitg(p(z)) 

+t t t l lag(~" (11, x ) )  + adiag(pN (11, x ) )d i ag (~ ( ' ( u ,  x)) 

+crdiag(pN (u, x))diag(cx (11, r ) )  F1(p(z))diag(d(u, x)) ,  

G: (2) = {[I + udiag(pN (u,  x ) )d i ag (~" (u ,  x ) ) ] ~ ' ( ~ ( z ) )  

+Xdiag(u)) diag(c(u, z)) 

+I - diag(c(u, z)) +- cxdiag(P (u ,  z ) )  

and jor each i E N ,  q ( u ,  x) E [0, 11. 

(ii) If X > O urtd for some z E %I;+ x F1(p(z)) is a Po-matrix, then H1(z) 
is nonsingular. 

Proof .  (i) Since Assumption 2.1 is satisfied for $(-), from the definition, wc 
know that H ( . )  is cont,inuously diffcreritiablc a t  any 2 = (u, z )  t R;+ x !J?7L. 
By direct computation we have (2.9). From Lemrria 2.1 and the definition of 
pi(.), c;(u,x) E [0, I], i E hi. 
(ii) Suppose that X > 0 and for solrie z E R:+ x %", F1(p(z)) is a Po- 
matrix. From (i) and the definition of C-' (u, x ) ,  PN (u, x) and PX (u, x) ,  we 
have C:(u,x) E [o, I], PiN(u, z )  2 0 and P F ( u ,  5 )  2 0, for i E N. Then 
Q = I +- cxdiag(PN (u, z))diag(Cx (u, z ) )  is a positive diagonal mat,rix. So 
QF1(p(z)) is a Po-matrix and QF1(p(z)) + Xdiag(u) is a P-mat,rix. From [7, 
Lexnma 21 we have that G':(z) is nonsingular. It then follows from (2.0) that 
H1(z) is also nonsingular. 

In order to design high-order convergent Newton methods we need the con- 
cept of semismoothness. Senlismoothness was originally introduced by Mifflin 
[19] for functionals. Corlvex functions, smooth functions, and piecewise linear 
functions are exarr~ples of semismooth functions. The composition of semis- 
mooth functions is still a semismooth function [19]. In 12.11, Qi and J. Sun 
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extended the definit,ion of semismooth functions to  a : Rml -+ R m 2 .  A locally 
Lipschitz continuous vector valued function : R7"L -+ ZTn2 has a generalized 
Jacobian 0+(x) as  in Clarke [ll .] .  a is said to be semismooth a t  x E Z m l ,  if 

lim {Vh'} 
V € e @ ( = + l h ' )  

(2.10) 
h l + h ,  110 

exists for any h E R m l .  It has been proved in [24] that is semismoot,h a t  
x if and only if all its component functiorls are. Also, @(x;  h), the directiorial 
der i~at~ive of a a t  x in the direction h,  exists and equals the limit in (2.10) for 
any h E !Rml if is seniismooth a t  x. 

L e m m a  2.4 1241 Suppose that : 8'"' -+ RTn2 is a locally Lipschitzian ~ I L ~ C -  
tion and senlismooth at x. Then 

(i) for any C' E a a ( x  + h) ,  h -+ 0, 

v h  - a l ( x ;  h) = ~(llrl l l) ;  

(ii) for any h -+ 0, 

@(x + 11) - a ( x )  - a l ( x ;  h) = o ( ~ ~ h ~ ~ ) .  

The followirig lemma is extrac:t,ed from Theorem 2.3 of [24]. 

L e m m a  2.5 S ~ ~ p p o s e  that a : Xml -+ Rr'12 is a locally Lipschitzian fiinction. 
Then the following two statements are eq~~ivalent: 

(i) a(.) is senlismooth at x .  

(ii) a is directionally differentiable at x, and for any I' E N ( x  + h ) ,  h -+ 0, 

Vh - a l ( x ;  h) = o(((hll). 

A stronger notion than semismoothness is strong seniismoothness. a ( . )  is 
said to  be strongly semismooth a t  x if a is semismooth a t  x and for any V E 
a+(, + h) ,  h -+ 0, 

C'h - a l ( x ;  h) = O(l)/~11~).  

(Note that iri [22] and [24] different names for strong semisnioothness are used.) 
A function a is said to  be a (strongly) semisniooth function if it is (strongly) 
semismooth everywhere. 

Recall that  from Lemma 2.3 the function qCn(.) defined by (2.6) is globally 
Lipschitz continuous on X2. Then, from Lemma 2.5 and the definition of strong 
semismoothness, we can prove in the above mentioned three usual cases [25] 
that qcd(.) is strongly semismooth a t  x E R2, i.e., for any C' E dqCd(x + h), 

C'h - q;,(x; h) = O((lh1(2). (2.11) 
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1 

Choose u E 87, and y  E ( 0 , l )  such that yllzlll < 1. Let E= (" 10) E R" x gn. 
Define the merit function $ : R2" + R+ by 

$ 4 ~ )  := l l ~ ( z ) l l ~  

and define /3 : q2'" R+ by 

Let 
(1 := { z  = (u ,  2) E R" x R n (  u  2 /3(z)ii}. 

Then, becal~se for a.ny z  E rR2n ,  @ ( z )  5 y  < 1, it follows that for any x  E Rn,  

Proposition 3.1 The follo711ing relations hold: 

(i) H ( z )  = 0  e / j ( z )  = 0  e H ( z )  = / 3 ( z ) ~ .  

(ii) H  ( z )  = 0  ==+ u  = 0  and y  = rIdY ( x )  is a solution of  (1.1). 

(iii) If x  = ?/ - F ( y ) ,  where y is a .solution of (1.1), then H ( 0 ,  x )  = 0.  

The proof of this proposition is sirrlilar to  that of Proposition 4.1 in [25],  so we 
ornit it,. 

Algorithm 3.1 

Step 0. Choose constants 6  E ( 0 ,  l ) ,  a  E ( 0 , 1 / 2 ) ,  cr 2 0  and X > 0 .  Let 
u0 := ii, 2' E Rn be an arbitrary point and k := 0 .  

Step 1. 1f H ( z k )  = 0  then stop. Otherwise, let Pk := /3 ( zk ) .  

Step 2. Compute A z k  := ( A u k , A x k )  E YIn x rRn by 

H ( z ~ )  + + ' ( z k ) A z k  = pkz.  

Step 3. Let lk be the smallest nonnegative integer 1 satisfying 

$ ( z k  + 6 ' A z k )  ) [ l  - 2 4 1  - y ~ l i i l l ) ~ ' ] $ ( z ~ ) .  

Define zk+' := zk + 6 1 k A z k ,  

Step 4. Replace k by k + 1  and go to Step 1. 

Remark. Algorithm 3.1 is actually the smoothing Newton method proposed 
in [25] for the case that a = 0  and X = 0. When X > 0 ,  Algorithm 3.1 has 
better properties than the original version of the smoothing Newton method 
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given in [25].  The parameter a is introduced in order to improve the numerical 
performance. 

Lemma 3.1 Suppose that F is a Po-function 071 X ,  X > 0 and that u ,  ii E R" 
ore two positive vectors such that >. ii > 0.  Then  for any sequence { z k  = 
( u k , x k ) )  such that ii 5 IL' 5 f i  and llx"] 4 +0;) we have 

l i ~n  + ( z k )  = +co. 
k - t  m 

(3.3) 

Proof. For the sake of contradiction, suppose that there exists a sequence 
{ z k  = ( u k , z k )  E Rn x Rn) such t,hat ii <_ u k  5 I ,  JJrklJ 4 co anti ~ ( z "  is 
bounded. It  is easy to  prove that 

1mid(ai, bi, x f ) l  4 co :, Jx f  1 4 0;) and (x f  - rnid(a,, bi ,  x::I( 4 0, i E N. 
(3.4) 

From Lemma 2.3 and the definitiorl of p( . ) ,  there exists a constant L' > 0 such 

lPz(ukr x k )  - mid(ai, bi, z:)) 5 L'lu:/ ,  i E N. (3 .5)  

Froru (3.4) and (3.5) wc have 

lyL(uk, x k ) J  4 0;) ==+ { ( x f  - p i ( t ~ k ,  z k ) l }  is 1)ound~d. (3.6) 

Define the indcx set .I by .I := { i  E N 1 { p i ( u k , x k ) )  is unbourlded). Theri 
it follows that J # 0 because otherwise JIG(zk)l l  = I ) F ( p ( ~ k ) )  + zk - p ( z k )  + 
a S ( z k )  + Xdiag(7~k)p(z")((  + co. Let zk = (I" T" E E'" x Rn be defiried by 

mid(ai ,b, ,O) if i E  J ' 

Hence { I I P ( z k ) J ( )  is bounded. Because F is a Po-function on X ,  we have 

0 5 max[p i ( z k )  - p i ( z k ) ] [ F i ( p ( z k ) )  - F , ( P ( z ~ I I ]  
Z E N  

= m a x [ p i ( z k )  - p i ( z k ) ] [ ~ i ( p ( z k ) )  - F i ( p ( z k ) ) ]  
I E J  

(3.7) 

= [ p i ( z k )  - p i ( z k ) ] [ ~ i ( p b k ) )  - F i ( ~ ( z ' ) ) ] ,  

where i E J is one of indices for which the maximum is attained, without loss 
of generality, assunled to  be independent of k. Since i E J ,  we have 

Ip i ( zk)J  + 00. 
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.\- n . t s  have 

k .  

~ : i + ~ l .  \vit,hout loss 
2 1 .  have 

From (3 .7 )  and the boundedness of { ~ i ( p ( z ~ ) ) ) ,  we have that ~ i ( p ( z ~ ) )  does 
not tend to -cu i f p i ( z k )  -+ t o o  and R'i(p(zk))  does not tend t,o +cc if p i ( z k )  --t 
-03. 

We now consider two cases. 
Case 1: p 1 ( z k )  _t +m. 
111 this case, we have that i E I, U la. Since S i ( z k )  2 0,  from (3 .6)  we have 

Case 2: p i ( z k )  --t -00. 

111 this case, i E I, U Ib. Since S i ( z k )  ) 0, frorn (3 .6)  we have 

In either case we get $( tk )  -+ +OC, which is a ront,radict,ion. So we coniplet,e 
our proof. m 

Remark. Lernnla 3.1 is riot true if .ii = 0 ever1 if F is strictly monotone. To 
see this, we n~ay  consider the function F ( x )  = e2 - 1 ,  x  E 91. Tliis function 
was provitletl by H.-D. Qi [21]. Suppose that X = 92. The11 $ ( z )  = u2 + F ( z ) ~  
and when z -t -cc arid ti = 0, $ ( z )  -t 1 .  This clearly shows that $I rnny 
have unbounded level sets. However, if the solution set of (1.1) is boundcd, we 
can prove the global corivergence of our met,hods (see Theorem 3.1) under the 
assurnption that F is a Po-function on X. 

Assumption 3.1 ( i )  E' is a Po-function 011 X 

(ii) The solution set of the problem (1.1) is nonenipty and bounded. 

Theorem 3.1 Suppose that Assumptzons 2.1 and 3.1 are satisfied and X > 0. 
Then the infinite sequence { z k }  generated by Algorithm 3.1 is bounded and each 
accumulation point i of { z k )  is a solution of I i ( z )  = 0. 

Proof. By conlbirring Lemma 3.1 and the proof of Theorern 4.1 [29] and 
Theorem 4.6 ['LO], we car1 prove this theorem. We omit the det,ails. 

Theorem 3.2 Suppose that Assumptions 2.1 and 3.1 are satisfied, X > 0 and 
z*  is an accumulation point of the infinite sequence { z k )  generated by Algo- 
rithm 3.1. Suppose that H is semismooth at z* and that all V E d H ( z * )  are 
nonsingulal-. Then the whole sequence { z k )  converges to z * ,  

and 
,ufC+' = o ( u ~ ) ,  i E N .  

Furthermore, if H is strongly semisniooth at z * ,  theri 
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and 
uk+l 1 = 0 u k  2 ((, i )  ) ,  i € N  

Proof. See [25, Theoreni 7.11 For a similar proof. m 

Next, we study under what cotlditions all the nlatrices V E a N  ( z * )  are non- 
singular a t  a solution point z* = ( u * , z * )  E 8" x Xn of H ( z )  = 0. Apparently, 
u* = 0 and 2' is a solution of (1.3). For convenience of handling notation wc 
denote 

X := {il ai < xt < bi & F i ( n x ( z * ) )  = 0, i E N),  

I U , 7 U K  = N .  

Bv rearrarleernent we assume tha t  V F ( n  y (2 ' ) )  can be rewritten as 

BVIP is said tlo be R-regular a t  x* if V F ( I I x ( x * ) ) z ~  is nonsingular ar~d its 
Schur-coniplement in the matrix 

Proposition 3.2 Suppose that z* = Cu*, x * )  E 8" x Rn is a solution of H ( z )  = 
0. If BVIP is R-regular at I*, then all V E a H ( z * )  are nonsingular. 

Proof. It is easy to see that for any V E a H ( z * )  there exists a matrix 
W = (W,, kV2) E aG(z*)  with I/,, I+', E FLx" such that 

Hence, proving that V is nonsingular is equivalent to proving that I+', is non- 
singular. For any C = (U,, U,) E ap(z*) ,  b y  the definition of p, we have 

For ;i 

(Uu.  

u-hc 

Lcr 
011; 

i E 
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E 1 l / i 1  z ' )  are non- 
= 1 1  .\pparerltly, 

:qi..ri: r~otation we 

,,n-lr~grll;~r a ~ i d  its 

g :!.,lt 11; is non- 
t p .  i\.f' have 

Then for each i E N, the i th  row of U, Ui E api(z*).  .4pparent,ly, from the 
definition of p and Lemma 2.1, 

where ( u , ) ~  is defined by 

Define P N ( z * )  E FL by 

For any W = (M.;,, M / ; )  E aG(z*)  with W,, WZ E %'"7L there exist U = 
(U,, Ux) E ap(z8) a11d C X ( z * )  E SrL such that 

CIrx = F1(p(z*))UX + I  - U, 

+adiag(pN(z*))diag(cX (z*))F1(p(z*))UX 

+adiag(px (z*)),  

where 

where 
if Fi(IIx (x*)) > 0 
if Fi(IIx(x*)) < 0 

el E [0, 11 if Fi( I Ix(x*))  = 0 

and 
if Fi(IIX(x*)) > 0 
if Fi(II,y(x*)) < 0 . 

€2 E [ O , l ]  if F , ( I Ix(x*))  = 0 

Let D = adiag(~~(z*))diag(C~(z*)). We have that D is a nonnegative diag- 
onal matrix. By inspecting the structure of P.' we have that P: = 0, for all 
i E ili. Then we have 
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Let Q = WT(I  + D)-'. Then 

Thus, for each i E J',  there exists A, E [O,1] such that 

where ei is the ith unit row vector of !Rn and VF(p(z*)) i  is the ith row vector 
of VF(p(z*)) ,  i E N. Then, by [13, Proposition 3.21 we can prove that Q, 
and so W,, is nonsingular under the assurription of R-regularity (note tliat 
p(z*) = nx(x*)).  Hence, any V E dH(z*)  is nonsingular. So, we cornplete our 
proof. 

4 NUMERICAL RESULTS 

Algorithm 3.1 was implcrncritcd in MATLAB and was run on a SUN Sparc 
Server 3002 for all test problems wit11 all available starting points from the 
test problem collections GAMSLIB and MCPLIB [ I ]  (note that there are tlirec 
starting points in e h l l o s t  with the sarrle data and so we only list the re- 
sults for e h l l o s t  with the first starting point in Table 1.2). Throughout the 
computatio~ial experiments, unless otherwise stated, we cliose the Chen-Harker- 
Kanzow-Smale smoothing function and used the following parameters: 

6 = 0.5, (T = lop4,  21 = 0.2e, y = min{loP5, 0.2/1(2111) and X = 0.05, 

where e is the vector of all ones. 
To improve the numerical behaviour of Algorithm 3.1, we replaced the stan- 

dard (monotone) Armijo-rule by a nonmonotone line search as described in 
Grippo, Lampariello and Lucidi [15], i.e., we computed the smallest nonnega- 
tive integer 1 such that 

zk + 6'Azk E a (4.1) 

and 
+(zk + 6'Azk) 5 Wk - 2 4 1  - yll21I1)b1+(zk), (4.2) 

where Wk is given by 
W k =  max +(zi) 

j=k-rn~ ,.... k 

and where, for given nonnegative integers m and s, we set 

1 
1.3. 
S t a  
wllil 
NF  
cicr~l 

7 
I i c ~  
t,o 51 
trip 
R'a:. 
R'C I 

rep 
X = 

I 
not 
8". 

if k 5 s at the kth iteration, whereas we set 
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:- .!.+. i t  11 row vector 
r. 1 . : : :  [)rove that Q ,  
.-,z-;:.trir\- (note that 
5 . u-f3 c,o~r~plete our 

- .  ... . , r ,  i t  SUN Sparc 
::r.r i~oirlts from the 
:!.,:: r t i(sr~ are three 
x .  , ' : i l , i .  list the re- 
2 I.iir.oi~ghoi~t the 
*. . :,I. , C'hcn-Harker- 

~~~a~- , l I l l~ ' tcrs :  

K*-. :+-;~iiic.cd thc stan- 
ct-!. <L- described in 
IF: -::.,illcst nonnega- 

a t  all other iterations. In our implementation, we use 

r n , = 8  and s = 2 .  

We terminated our iteration when one of the following condit,ions was satisfied 

where Is was the riun~her of line search a t  each step. 
Using this algorithmic er~virorirricnt, we ~ u a d c  sornc prelirniria.ry test runs 

using different values of the para~neter a.  111 view of thcsc prelinlir~ary exper- 
iments, it seenis that cu shonld 1,c large if the it,erat,ion point, is far away f ron~  
a solution arid cu should 1)c rednced if the iteration point is gctt,irig closer to  a 
solution of thc problcm. This rnotivat,c:d us to uscl a dyna.mic choice of a for 
our test runs. Morct precisely, wt: ul)dat,t:cl tr usirig the followir~g rules: 

(a) Set (Y = lo4 at the beginning of earh itcrat,ior~. 

(b) If ~ ( 3 : ' )  < 10, the11 set cu = 100. 

(c) If R(xk)  < or 12 > 80, then set a = 

(d) If R(X" < lop3, then set a = 

The ~lurnerical res~rlts which we obtair~ed are suni~narized in Tahlcs 1.1- 
1.3. In these tables, Dim denotes the  number of the variables i r ~  the problem, 
Start. point ticnotes the stdarting point, Iter denotes the rr~lrnbcr of iterations, 
which is also equal to the number of Jacobian evaluations for tho function F, 
NF dcrlotes the rlnniber of fnnction evaluations for the fiinction F and R ( x k )  
denotes the value of R(x) a t  the final iteration. 

The  result,^ reported in Tables 1.1-1.3 show that the squared smoothing 
Newton methods are extrerriely prorriising and robust. The algorithm was able 
to solve alrrrost all the problenls. There are just three problems with superscript 
triple-asterisk which our algorithm was not able to  solve because the steplength 
was getting too small. They are gemmge, vonthmcp and hydroc20. However 
we can solve these problems if we change some of the parameters. The results 
reported for these three problems were obtained by lettirig cu = lo-'' and 
X = 10-"while keeping other parameters unchanged. 

Lastly, it is deserved to  point out that domain violation phenomenon does 
not occur during our computation because p(u, x )  E in tX  for all (u ,  x) E !R;+ x 
!Rn. This is a very nice feature of our methods. 

5 CONCLUSIONS 

In this paper we present a regularized version of a class of squared smoothing 
Newton methods, originally proposed in [25], for the box constrained variational 
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Table 1.1 Numerical results for the problems from GAMSLIB 

Problem 

cafenlge 
cammcp 
carnmge 
cirimge 
co2rnge 
dmcmge 
ers82mcp 
etarnge 
finmge 
gemmcp 
gemmge*** 
hansmcp 
hansmge 
harkmcp 
harnlge 
kehorrlge 
kornlcp 
mr5mcp 
nsnlge 
oligorncp 
sammge 
scarfmcp 
scarfmge 
shovnlge 
threemge 
transmcp 
two3mcp 
unstmge 
vonth~ncp*** 
vont hmge 
wallmcp 

Dim Iter 

lar. 
drsc 
for. t 

int rc 

Ack 

Thp  
C O I l l ]  

inequality problem. As can be seen from the numerical results, these methods 
are fairly robust and promising. The global convergence of these nlettlods were 
proved under the assumption that F is a Po-function on X and the solution 
set of the problem (1.1) is rlonempty and bounded. This assumption may be 
the weakest orle known in the literature. 

In Algorithm 3.1 we always assume that the iteration matrix H 1 ( z )  is non- 
singular. This is guaranteed by assuming that F is a Po-function on X. In 
this paper, We have not discussed how to handle the case that H 1 ( z )  is singu- 
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. r i i t ~ ,  lrlethods 
c I I I ~ . ~  liods were 
nci r l ic~ solution 
cipt I O I ~  rnay be 

s HI( : )  is non- 
:I:( ) r i  011 -Y. In 
H'I:) is singu- 

lar. By introducing a gradient direction if necessary, Kanzow and Picper [18] 
described a strategy for handling the singularity issue of the iteration mat,rices 
for the snioothirig NewtJon method proposed i r i  [9]. Whether or not the idca 
introduced in [18] is applicable to our method is an interestirig question. 
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Table 1.3 (continued) Numerical results for the problems from MCPLIB 

-- 
Pro1)lc~ltl 

kojshiri 
niathin~lrri 
r~lathirl~~rll 
ma t,hirlu~~l 
r i i a th i r~~~~i l  
n ~ a t h i s u ~ ~ i  
mnthisrlrrl 
nlat,hisuirl 
rrlathisurn 
rnc~t,tlali08 
rlash 
riash 
oI)st,aclr 
ol~st,ac:lo 
opt _corlt,31 
o~,t_co'lt.l27 
opt(:ollt,2.55 
opt,_c:o11t,5ll 
pgvo11105 
pgvor1105 
pg~0111~)5 
pgvorllOG 
pies 
1,owcll 
powell 
powell 
powell 
powell_rrlcp 
powell_rrlcp 
powellJ1lcp 
powell~rlcp 
scarfanum 
scarfanum 
scarfanrim 
scarfasum 
scarfasum 
scarfasum 
scarfbnum 
scarfbnum 
scarfbsum 
scarfbsum 

sPPe 
sPPe 
tobin 
tobin 

St,art. point 


