
EFFICIENT DUALITY-BASED NUMERICAL

METHODS FOR SPARSE PARABOLIC

OPTIMAL CONTROL PROBLEMS

CHEN BO

(M.Sc., XMU, China; B.Sc., HIT, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE

2018

Supervisor:

Professor Sun De Feng, Main Supervisor

Professor Bao Wei Zhu, Co-Supervisor

Examiners:

Professor Zhao Gong Yun

Professor Toh Kim Chuan

Professor Michael Ulbrich, Technische Universität München





To my parents



DECLARATION

I hereby declare that the thesis is my original work and it has

been written by me in its entirety. I have duly

acknowledged all the sources of information which

have been used in the thesis.

This thesis has also not been submitted for any degree

in any university previously.

Chen Bo

June 7, 2018



Acknowledgements

I would like to express my deepest gratitude to my supervisor Professor Sun

Defeng for his professional guidance during these past four and a half years. From the

conic programming class, I have learned a lot of knowledge of convex optimization

from him. I have also benefited intellectually and mentally from his insightful and

patient guidance in both research and life. Moreover, I am very grateful for his

financial support for my fifth years study.

My sincere thanks also goes to Professor Bao Weizhu. Professor Bao Weizhu

acted as my co-supervisor and has helped me a lot on the part of partial differential

equation. I have also learned a lot about numerical analysis and finite element

method from him.

I am greatly indebted to Professor Toh Kim Chuan for his help on the numerical

implementation for the algorithms. It is very considerate to use his research grant

for extending my research assistant in NUS.

I also would like to convey my thanks to all the members in our optimization

group. I have learned a lot from the weekly seminar. And I have benefitted a lot

from the discussions with them and suggestions from them. In particular, I want to

thank Dr Song Xiaoliang for many great suggestions on the research and my thesis

v



vi Acknowledgements

writing. It is a very pleasant experience to cooperate with him.

As always, I owe my deepest gratitude to my parents for their constant and

unconditional love and support throughout my life. Last but not least, I am also

deeply indebted to my wife, Cai Shujun. Without her understanding, tolerance,

encouragement and love, I would have been nowhere.



Contents

Acknowledgements v

Summary ix

1 Introduction 1

1.1 Sparse parabolic optimal control problems . . . . . . . . . . . . . . . 1

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 11

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 An inexact block symmetric Gauss-Seidel iteration . . . . . . . . . . . 12

2.3 Accelerated block coordinate descent method . . . . . . . . . . . . . . 15

2.4 Augmented Lagrangian method . . . . . . . . . . . . . . . . . . . . . 18

3 Discretization 23

3.1 Finite element discretization . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Existence and uniqueness as well as optimality conditions . . . . . . . 29

3.3 Error estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



viii Contents

4 Accelerated block coordinate descent method 45

4.1 The sGS-imABCD method for solving SPOCPs . . . . . . . . . . . . 45

4.1.1 Numerical implementation . . . . . . . . . . . . . . . . . . . . 46

4.1.2 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Inexact majorized ABCD method for solving decoupled SPOCPs . . . 64

4.2.1 Numerical implementation . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Semismooth Newton augmented Lagrangian method 71

5.1 The SSNAL method for decoupled SPOCPs . . . . . . . . . . . . . . 72

5.1.1 Numerical implementation . . . . . . . . . . . . . . . . . . . . 72

5.1.2 Efficient computation of subproblems . . . . . . . . . . . . . . 74

5.2 Convergence and uniformly mesh-independence . . . . . . . . . . . . 76

5.3 The SSNAL method for decoupled SPOCPs with α being zero . . . . 82

5.3.1 Numerical implementation . . . . . . . . . . . . . . . . . . . . 83

6 Numerical experiments 87

6.1 Comparison methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 Inexact semi-proximal ADMM . . . . . . . . . . . . . . . . . . 87

6.1.2 Semismooth Newton method . . . . . . . . . . . . . . . . . . . 89

6.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Testing examples and setting . . . . . . . . . . . . . . . . . . 92

6.2.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Conclusions and future work 103

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 105



Summary

In this thesis, we apply efficient algorithms for solving sparse parabolic optimal

control problems (SPOCPs) and exploit convergence of those algorithms.

The objective function of SPOCPs contains both the L1-norm and the indicator

function of a box constraint. It is a nonsmooth optimization problem and hence

semismooth Newton method is preferred. Semismooth Newton method, though en-

joys the superlinear convergence rate, has several drawbacks for this type of problem.

The first drawback is that the approximate discretization of L1-norm may intro-

duce extra error. In order to avoid the extra error, we look into the dual problem,

which is an unconstrained multi-block optimization problem. In this approach, the

L1-norm is transformed into the indicator function of a unit ball. We give an error es-

timate for the our new discretization model, that is ‖uh,τ − u∗‖L2(ΩT ) = O(h+
√
τ).

To solve it efficiently, we apply the symmetric Gauss-Seidel (sGS) based inexact

majorized accelerated block coordinate descent method (sGS-imABCD) for the new

discretization model and the inexact majorized accelerated block coordinate descent

method (imABCD) for the conventional discretization problem, both of which have

a O(1/k2) computation complexity of optimal value. Based on the convergence of

optimal value, we exploit the convergence of the primal variable and the first order

optimality conditions. Later we also prove the uniformly mesh-independence of the

ix



x Summary

exact majorized ABCD method for solving the conventional discretization problem.

This forms the first part of my thesis.

We know that to obtain the fast superliner convergence rate, one needs a good

enough initial point for semismooth Newton method and also needs to solve the

semismooth Newton equation up to a very high accuracy. Obviously, it is hard

to judge whether the initial point is good enough or not. Moreover, when the L2

regularization parameter α is very small or when α is zero, the situation is often

very bad and the requirement of accuracy to solve the semismooth Newton method

is very strict. From the convergence analysis of the majorized ABCD method, we

know that the convergence rate is sensitive to the parameter α. Hence, in the second

part, we aim to find another efficient method to deal with the case when α is very

small or when α is zero. Still, we focus on the dual problem and introduce the

augmented Lagrangian method, which has a fast linear convergence rate. And for

the subproblem, we apply the semismooth Newton method, which will attain the

stopping criteria very quickly. We call it semismooth Newton augmented Lagrangian

(SSNAL) method. In the thesis, we illustrate the details of implementation for the

SSNAL method and prove the convergence of both primal and dual variables. For

the case α > 0, we prove the uniformly mesh-independence of the method, and its

robustness to the parameter α. For the case α = 0, the SSNAL method still works

very efficiently.

In the numerical experiments, we compare our methods with the inexact semi-

proximal alternative direction method (isPADMM), and the globalized semismooth

Newton method (SSN). Numerical results demonstrate that for α not very small,

both the imABCD method and the SSNAL method are very efficient in solving

all the problems given, while for small α, our SSNAL method outperforms other

methods for all the examples given. And we could see the robustness of the SSNAL

method to the parameter α. For the case α being zero, the SSNAL method is even

much more efficient than the isPADMM method.



Chapter 1
Introduction

1.1 Sparse parabolic optimal control problems

In the thesis, we focus on designing efficient algorithms for solving sparse parabolic

optimal control problems (SPOCPs) as following,

min
y∈Y,u∈Uad

J(y, u) =
1

2
‖y − yd‖2

L2(ΩT ) +
α

2
‖u‖2

L2(ΩT ) + β‖u‖L1(ΩT ) (P)

such that the following parabolic equation holds
yt −∆y = u+ yc in ΩT := Ω× (0, T ),

y(x, 0) = 0,∀x ∈ Ω,

y(x, t) = 0,∀x ∈ Γ, t ∈ [0, T ],

(1.1)

where

1. Ω is a convex, open and bounded domain with C1,1- or polygonal boundary,

Ω = (0, T )× Ω.

2. U = L2(ΩT ) := L2((0, T )× Ω), yd ∈ L2(ΩT ) is the desired state,

Y = W (0, T )

= {y ∈ L2((0, T );H1
0 (ΩT ))|yt ∈ L2((0, T ), H−1(Ω)), y(x, 0)|x∈Ω = 0}, hspace2cm

(1.2)

1



2 Chapter 1. Introduction

3. α ≥ 0, β > 0, Uad = {u ∈ U |a ≤ u(x, t) ≤ b, a.e. x ∈ Ω, t ∈ [0, T ]}, with

−∞ < a < 0 < b <∞ constant numbers.

The weak formulation of (1.1) is∫ T

0

〈yt(t), v(t)〉V ∗,V dt+

∫ T

0

a(y(t), v(t))dt =

∫ T

0

〈u(t) + yc(t), v(t)〉L2(Ω)dt, (1.3)

for all v ∈ L2(0, T ;H1
0 (Ω)), with the initial condition

y(x, 0) = 0,∀x ∈ Ω, (1.4)

where V = H1
0 (Ω), V ∗ = H−1(Ω), a(y(t), v(t)) :=

∫
Ω
∇y(t)∇v(t)dx.

The details can be referred to [45, Definition 1.28].

We choose the dual pairings such that we obtain the Gelfand triples,

H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω), (1.5)

with continuous and dense embeddings.

Now we can write the weak formulation (1.3) in the equivalent form

Ay = B(u− yc), (1.6)

with

1. A ∈ L(Y, L2((0, T );V ∗)) is defined by,

〈Ay, v〉L2((0,T );V ∗),L2((0,T );V ) =

∫ T

0

(〈yt(t), v(t)〉V ∗,V + 〈∇y(t),∇v(t)〉L2(Ω))dt,

(1.7)

for all v ∈ L2((0, T );V ). Here

L2((0, T );V ) := {y : [0, T ]→ X strongly measurable :

‖y‖L2((0,T ),V ) := (

∫ T

0

‖y(t)‖2
V dt)

1/2 <∞}
(1.8)

2. B ∈ L(L2(ΩT )) is defined by

〈Bu, v〉L2(ΩT ) =

∫ T

0

〈u(t), v(t)〉L2(Ω)dt,∀v ∈ L2((0, T );V ). (1.9)
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More detail can be referred to [45, Section 1.3].

Remark 1.1. Although we assume that the Dirichlet boundary condition y = 0

holds, it should be noticed that the assumption is not a restriction and our con-

siderations can also carry over to the more general boundary conditions of Robin

type
∂y

∂v
+ γy = g on ∂Ω× (0, T ), (1.10)

where g ∈ L2(∂Ω×[0, T ]) is given and γ ∈ L∞(∂Ω×[0, T ]) is nonnegative coefficient.

Remark 1.2. For opitimization problems with nonlinear PDE constraint, we may

apply SQP approach on the continuous level to make each subproblem be an min-

imization problem with linear constraint. Then it becomes the type of problem in

our setting, and we can apply our methods mentioned in the thesis to solve the SQP

subproblems.

The objective function of problem (P) contains both the L1-norm and the box

constraint. Hence it is nonsmooth. Here we put L1-norm in the objective to pro-

mote the sparsity of the control variable, and it has important applications, such as

actuator placement problems [25, 35]. In optimal control of distributed parameter

systems, it may be impossible or undesirable to put the controllers at every point of

the domain. Instead, we can decide to control the system by localizing the controls

in small regions.

By introducing two artificial variables v, z, we rewrite the primal problem as

min
y∈Y,u,v,z∈U

J(y, u, v, z) =
1

2
‖y − yd‖2

L2(ΩT ) +
α

2
‖u‖2

L2(ΩT ) + β‖v‖L1(ΩT ) + δUad(z)

s.t. Ay − B(u+ yc) = 0,

B(u− v) = 0,

B(u− z) = 0.

(1.11)

Let p, λ, µ be the Lagrangian multipliers for the three equalities respectively and
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let us define the Lagrangian functional as below

L(y, u, v, z; p, λ, µ) =J(y, u, v, z) + 〈p,Ay − B(u+ yc)〉+ 〈λ,B(u− v)〉

+ 〈µ,B(u− z)〉
(1.12)

We can then obtain the Lagrangian dual problem of (1.11) by firstly minimize

with respective to the the primal variables (y, u, v, z)and then maximize the La-

grangian multipliers (or called dual variables), and it is provided as below.

max
p,λ,µ

inf
y,u,v,z

L(y, u, v, z; p, λ, µ) (1.13)

We can simply it and obtain the equivalent minimization formulation as

min
µ,λ,p

Φ(µ, λ, p) :=
1

2
‖A∗p− yd‖2

L2(ΩT ) +
1

2α
‖λ+ µ− p‖2

L2(ΩT ) + 〈Byc, p〉L2(ΩT )

+ δ[−β,β](λ) + δ∗[a,b](µ)− 1

2
‖yd‖2

L2(ΩT ),

(D)

where

1. µ, λ ∈ L2(ΩT ), p ∈ L2((0, T );H1
0 (Ω)).

2. A∗ ∈ L(L2((0, T );V ), Y ∗) is the adjoint of A.

3. δ∗Uad(µ) := sup
x∈Uad

〈x, µ〉L2(ΩT ) is the conjugate function of the indicator function

δUad(·) with respective to the inner product induced by L2-norm.

4. δ[−β,β](·) is in fact the conjugate function of β‖ · ‖L1(ΩT ) with respective to the

inner product induced by L2-norm.

In other way, we would regard the two nonsmooth functions, β‖ · ‖L2(ΩT ) and

δ[a,b](·), as one function q. Then similarly, we introduce one additional variable w

and let λ be the Lagrangian multiplier for the equality B(u − w) = 0, and obtain

another dual problem as

min
λ,p

Φ̃(λ, p) :=
1

2
‖A∗p− yd‖2

L2(ΩT ) +
1

2α
‖λ− p‖2

L2(ΩT ) + 〈Byc, p〉L2(ΩT )

+ q∗(λ)− 1

2
‖yd‖2

L2(ΩT ),

(D̃)

with λ ∈ L2(ΩT ), p ∈ L2((0, T );H1
0 (Ω)).
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1.2 Literature review

The optimal control problem with control constraint, namely Problem (P) with

α > 0, β = 0, has been widely studied for decades, see e.g. [18, 33, 36, 44, 59, 70].

Most of the papers focus on the following three aspects, the discretization of the

continuous optimal control problem, the error estimate of the discretization and the

optimization methods to solve the discretized problem.

To tackle the problem (P) numerically, we have two different approaches. The

first one is first optimize then discretize. The idea is to get the first order optimality

condition of the continuous problem, then to discretize the linear equations, and

solve them numerically. The second approach is first discretize then optimize. That

is to discretize the variables and spaces to obtain a finite dimensional optimization

problem, and then utilize optimization algorithms to solve the discretized problem.

There are differing opinions regarding which route to take (see Collis and Heinken-

schloss [24] for a discussion). And for the discretization, finite element method is

often preferred because that it is often easy to obtain an error estimate as well as we

can approximate the solution with good enough basis functions, such as piece-wise

linear functions. To get a better error estimate, Hinze proposed a new discretization

method [44], the variational discretization, which requires more computation time

but often enjoys a higher order of error estimation.

Numerous results of error estimate for different optimal control problems are

proposed in recent papers, see e.g. [1, 10, 15–17, 33, 36, 60, 81]. For distributed con-

trol problems, Falk [33] and Geveci [36] presented the finite element analysis and

obtained the L2 error estimate, O(h), for piecewise constant approximations of con-

trol variables, while Meyer and Rösch [60] proved the same order of error estimate

for piecewise linear approximation. Casas, Mateos and Tröltzsch [16] presented

numerical analysis for Neumann boundary control of semilinear elliptic equations

and proved the error estimate, ‖u− uh‖L2(Ω) = O(h), for piecewise constant control

approximation. Casas and Mateos [15] further exploited the error estimate for piece-

wise finite element approximation, ‖u − uh‖L2(Ω) = o(h), and that for variational
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discretization, ‖u − uh‖L2(Ω) = O(h3/2). For parabolic optimal control problems,

Meidner and Vexler [57,58] considered the discrete approximation based on dG(0) in

time and finite element in space, they proved the estimate ‖u−uτ,h‖L2(ΩT ) = O(τ+h)

for piece-wise linear approximation and ‖u−uτ,h‖L2(ΩT ) = O(τ+h3/2) for variational

discretization. For further references we refer to the papers, [29,30,39,43,56,59,69].

Optimization method is also the key for solving optimal control problems effi-

ciently. For the control constrained optimal control problem, semismooth Newton is

often preferred due to its locally superlinear convergence rate, see e.g. [42,46,79,80].

Primal dual active set, which was later proved to be a special case of semismooth

Newton method [80], is also very popular as the choice for solving optimal problems,

see e.g. [5, 49]. Many other state-of-the-art algorithms have been applied to solve

the optimal control problem, such as SQP [37,38,40,61,86], ADMM [73], FISTA [71]

and ABCD [72].

Motivated by the optimal placement of actuators on piezoelectric plates [25,35],

the sparsity property of the control variables is considered. And sparse optimal

control problems with L1-cost function has been intensively studied recently. Georg

Stadler first proposed it in [74] to obtain the sparse optimal solution for the optimal

control problem with elliptic equation constraints. In the paper, the author studied

the optimality conditions for the problem and proposed the semismooth Newton

method for solving the sparse optimal control problem when the regularization pa-

rameter α > 0.

The first error estimate for sparse optimal control problem with L1-norm, as far

as we know, was provided by Wachsmuth and Wachsmuth [82] in 2011. In their

paper, they investigated two types of approximations for their problem. Firstly,

they studied the convergence of solutions if the regularization parameter α tends

to zero. Secondly, they studied finite element approximations for the regularized

problem. They proved that ‖uα − uα,h‖L2(Ω) ≤ C(h/α + h2/α3/2) for piecewise

constant discretization of the control variables and ‖uα − uα,h‖L2(Ω) ≤ Ch2/α for

variational discretization. Moreover, to have a decoupled form of objective function
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when using the piecewise linear discretization, they introduced the approximation

of the L1-norm. Under this approach, they were able to obtain the above error

estimate.

In [11,12], Casas, Herzog, and Wachsmuth analyzed the nonconvex case governed

by semilinear elliptic equations. They made use of the technique of approximation

of L1-norm, and then derived the error estimates for the nonconvex control problem

under three different discretization.

Apart from using L1-norm to induce sparsity, Clason and Kunisch in [22, 23]

investigated elliptic control problems with measure-valued controls to promote the

sparsity of the control. In their model, the L2-norm regularization is no longer

necessary, that is, α = 0. And they studied the dual problem of the sparse optimal

control problem instead of the primal problem, which is quite impressive. There are

also many sparse optimal control using measure-valued controls, e.g. [8,9,13,14,48,

50]. Furthermore, for parabolic equation constrained control problem, directional

sparsity was introduced by Herzog et al. in [41] to promote striped sparsity patterns.

To numerical solve Problem (P), many methods have been applied. Since we have

a nonsmooth term in the objective function, semismooth Newton method is often

the first choice. Its fast superlinear convergence rate and its capability to obtain

high accuracy of numerical solution make it a very efficient algorithm, see [45, 74,

82]. However, there are two drawbacks to use semismooth Newton for Problem

(P). Firstly, before using the semismooth Newton method, we have to adopt the

approximate discretization of L1-norm to discretize the objective function of the

primal problem. Hence, additional discretization error is inevitable. Secondly, to

obtain the fast superlinear convergence rate, one needs a good initial point and needs

to solve the semismooth Newton equation up to a very high accuracy. However, when

the L2-norm regularization parameter, i.e., α is very small or equals to zero, this

requirement is very strict and often hard to satisfy. Combing our error estimate

result of O(h +
√
τ), we see that it is no need to solve for high accuracy solution.

Hence, it is necessary to consider other efficient methods than semismooth Newton
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method for Problem (P).

Besides semismooth Newton method, there are also many efficient first-order

methods for choices, such as the recently popular ADMM method [21,27,34,54,75],

FISTA [4], APG method [47, 78], ABCD method [26, 76]. The ADMM method

was first applied to solve sparse optimal control problem by Song, Yu, Wang and

Zhang [73]. To apply the ADMM method, they also made use of the approximate L1-

norm to obtain a decouple objective function. Moreover, they use different choices

of the penalty term for different variable when using the ADMM. Hence it is called

inexact heterogeneous ADMM (ihADMM) in the paper. Numerical results showed

that the ihADMM method outperforms semismooth Newton method to obtain a

moderate accuracy. Later FISTA method was also utilized to solve sparse optimal

control problem by Schindele in [71], where it was called Fast Inexact Proximal

method (FIP). In theory, we see that FISTA method has a computation complexity

of O(1/k2), which is faster than ADMM. However, in theory, the convergence of

sequences for FISTA is not guaranteed. And in numerical implementation, we need

to spend extra time to compute the Lipschitz constant at each iteration, which is

quite expensive.

Later in 2017, Song and Chen [72] applied ABCD method to solve sparse optimal

elliptic control problem. The ABCD method has the same O(1/k2) complexity

of optimal value, but different with FIP method, our method does not need to

compute the Lipschitz constant, and we can avoid the discretization error caused by

approximation of L1-norm.

1.3 Contributions

In this thesis, I aim at filling the gaps mentioned above.

In the first part, I focus on how to avoid the error caused by the approximate

discretization of L1-norm, and I extend the result of [72] to SPOCPs. Since Problem

(P) is a convex optimization problem, I am inspired to look into its dual problem,
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for which the L1-norm is changed to be a indicator function of a unit ball. Hence

instead of discretizing the primal problem, I discretize the dual problem. And when

exploiting the predual of the discretized dual problem, I find that actually I dis-

cretize the L1-norm in a new way. The new approximation is proved to be a better

one than the conventional approximation of L1-norm. And for the new discretiza-

tion of SPOCPs, I also provide the error estimate, which is O(h +
√
τ). As the

discretized dual problem turns out to be an unconstrained three-block optimiza-

tion problem, motivated by [26], I find that the state-of-the-art method, symmetric

Gauss-Seidel based inexact majorized accelerated block coordinate descent method

(sGS-imABCD) can be a suitable algorithm to solve Problem (P). I illustrate the im-

plementation of sGS-imABCD. In the theory, I prove the convergence of the primal

variable and the first order optimality conditions. If SPOCPs are discretized with

the general approximation of L1-norm, I apply the imABCD method to solve it. The

difference is that I regard the two nonsmooth terms as one, and obtain an uncon-

strained two-block dual problem. Convergence of both the primal and dual variables

are provided, and under proper assumptions, I also prove that the imABCD method

has the uniformly mesh-independence property, which means the convergence rate

of all the discretized problems is independent of the mesh-size when the mesh-size

is fine enough.

In the second part, I consider the case when the L2 regularization parameter

α is small or is zero. Both semismooth Newton method and ABCD method are

sensitive to the parameter α, hence I need to consider another method for this situ-

ation. Impressed by the linear convergence rate of Semismooth Newton Augmented

Lagrangian (SSNAL) method, and motivated by recently published paper [53], we

come up with the idea to transfer the unconstrained optimization problem into a

linear equation constrained optimization problem and apply the SSNAL method.

When augmented Lagrangian method is applied to solve the dual problem of the

model problem, the dimension of SSNAL subproblem can be reduced due to the

sparsity structure of problem (P). Besides, the SSNAL method enjoys a fast linear
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convergence rate for the solution sequence obtained from the outer iteration. And

for the subproblem, I apply the semismooth Newton method to solve it efficiently to

achieve the stopping criteria. I illustrate the details of implementation of the algo-

rithm and present the convergence results. Furthermore, given the proper choice of

initial penalty parameter σ, I prove the uniformly mesh-independence of the method.

And the SSNAL method also shows the robustness to the regularization parameter

α. For the case α = 0, the SSNAL method also works very efficiently.

1.4 Thesis organization

The rest of the thesis is organized as follows. In Chapter 2, I provide the prelim-

inaries that will be used in the subsequent chapters. In Chapter 3, I illustrate the

finite element discretization. Existence and uniqueness of Problem (P) are shown

in sequence. Later I give an error estimate for our discretization of the SPOCPs. In

Chapter 4, I proposed the sGS-imABCD method for the SPOCPs and the imABCD

method for the decoupled SPOCPs. Convergence results are provided in the sub-

sections. Furthermore, I prove the uniformly mesh-independence for solving the

decoupled SPOCPs. In Chapter 5, devoted to solving the case α is very small or

is zero, I propose the SSNAL method, which applies semismooth Newton method

for its subproblem. Convergence results are established in sequence. For the case

α > 0, I prove the uniformly mesh-independence and show the robustness to the

regularization parameter α. For the case α = 0, I also illustrate the implementation

and the convergence results. In Chapter 6, I provide some comparison methods,

and some examples. Numerical results reconfirm the theory provided and show that

imABCD method works well for α not very small, and the SSNAL method, for any

choice of α, outperforms other method provided. And we conclude in Chapter 7.



Chapter 2
Preliminaries

2.1 Notations

• Let n be a given integer. We use Sn to denote the space of all n×n symmetric

matrices, Sn+ to denote the space of all n× n positive semidefinite matrices,

• Denote X as a finite dimensional Euclidean space endowed with an inner

product 〈·, ·〉 and its induced norm ‖ · ‖, and M : X → X as a self-adjoint

positive semidefinite linear operator. We write M 1
2 as a self-adjoint positive

semidefinite linear operator such that M 1
2M 1

2 = M, which always exists.

For any x, y ∈ X , we define 〈x, y〉M := 〈x,My〉 and ‖x‖M :=
√
〈x,Mx〉.

Furthermore, we denote the induced norm on the space L(X ,Y) as follow:

‖A‖ = sup{‖Ax‖ : x ∈ X with ‖x‖ = 1}.

• Given a closed convex set C ⊆ X and a point x ∈ C, denote TC(x) as the

tangent cone of C at x and NC(x) as the normal cone of C at x. We define

dist(x, C) := infy∈C ‖x− y‖.

• Given a closed convex cone K ⊆ X , denote K∗ as the dual cone of K and K◦

as the polar cone of K.

11
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• Given a convex function f : X → (−∞,+∞], we use domf to denote the

effective domain of f , and epif to denote the epigraph of f . We also use

the notation f ∗ to denote the Fenchel’s conjugate function of f , and Proxf

as the proximal mapping of f . Furthermore, we say f is a LC1 function if it

is continuously differentiable and its gradient is Lipschitz continuous, and we

say f is C2 if it is twice continuously differentiable.

• Given a set of matrices X := (X1, X2, . . . Xs) ∈ Rn1×m1 × Rn2×m2 × . . . ×

Rns×ms for some positive integers s, n1, n2, . . . , ns and m1,m2, . . . ,ms, we

denote Diag(X) as a block diagonal matrix whose ith main block diagonal is

given by Xi for i ∈ {1, 2, . . . , s}.

2.2 An inexact block symmetric Gauss-Seidel it-

eration

In this section, we first introduce the symmetric Gauss-Seidel (sGS) technique

proposed recently by Li, Sun and Toh [51]. It is a powerful tool to solve a convex

minimization problem whose objective is the sum of a multi-block quadratic function

and a non-smooth function involving only the first block, which plays a vital role in

our subsequent algorithm designing.

Let s ≥ 2 be a given integer and X := X1 × X2 × ... × Xs where Xi are real

finite dimensional Euclidean spaces. The sGS technique aims to solve the following

unconstrained nonsmooth convex optimization problem approximately

minφ(x1) +
1

2
〈x,Qx〉 − 〈r, x〉, (2.1)

where x := (x1, ..., xs) ∈ X with xi ∈ Xi, i = 1, ..., s, φ : X1 → (−∞,+∞] is a closed

proper convex function, Q : X → X is a given self-adjoint positive semidefinite

linear operator and r := (r1, ..., rs) ∈ X is a given vector.

For notational convenience, we denote the quadratic function in (2.1) as

h(x) :=
1

2
〈x,Qx〉 − 〈r, x〉, (2.2)
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and the block decomposition of the operator Q as

Qx :=


Q11 Q12 · · · Q1s

Q∗12 Q22 · · · Q2s

...
...

. . .
...

Q∗1s Q∗2s · · · Qss




x1

x2

...

xs

 , (2.3)

whereQii : Xi → Xi, i = 1, ..., s are self-adjoint positive semidefinite linear operators,

Qij : Xj → Xi, i = 1, ..., s− 1, j > i are linear maps whose adjoints are given by Q∗ij.

Here, we assume that Qii � 0,∀i = 1, ..., s. Then, we consider a splitting of Q

Q = D + U + U∗, (2.4)

where

U :=


0 Q12 · · · Q1s

. . . · · · Q2s

. . . Q(s−1)s

0

 (2.5)

denotes the strict upper triangular part of Q and D := Diag(Q11, ...,Qss) � 0 is the

diagonal of Q. For later discussions, we also define the following self-adjoint positive

semidefinite linear operator

sGS(Q) := T = UD−1U∗. (2.6)

For any x ∈ X , we define

x≤i := (x1, x2, ..., xi), x≥i := (xi, xi+1, ..., xs), i = 0, 1, ..., s+ 1,

with the convention x≤0 = x≥0 = ∅. Moreover, in order to solve the problems

inexactly, we introduce the following two error tolerance vectors:

δ′ :≡ (δ′1, ..., δ
′
s), δ :≡ (δ1, ..., δs),

with δ′1 = δ1. Define

∆(δ′, δ) = δ + UD−1(δ − δ′).
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Given x̄ ∈ X , we consider solving the following problem

x+ := arg minx

{
φ(x1) + h(x) +

1

2
‖x− x̄‖2

T − 〈x,∆(δ′, δ)〉
}
. (2.7)

Then, the following sGS decomposition theorem, which is established by Li, Sun

and Toh in [52], shows that computing x+ in (2.7) is equivalent to computing in

an inexact block symmetric Gauss-Seidel type sequential updating of the variables

x1, ..., xs.

Theorem 2.1. [52, Theorem 2.1]. Assume that the self-adjoint linear operators Qii
are positive definite for all i = 1, ..., s. Then, it holds that

Q+ T = (D + U)D−1(D + U∗) � 0. (2.8)

Furthermore, given x̄ ∈ X , for i = s, ..., 2, suppose we have computed x′i ∈ Xi defined

as follow,

x′i : = arg min
xi∈Xi

φ(x̄1) + h(x̄≤i−1, xi, x
′
≥i+1)− 〈δ′i, xi〉,

= Q−1
ii

(
ri + δ′i −

i−1∑
j=1

Q∗jix̄j −
s∑

j=i+1

Qijx′j

)
,

(2.9)

then the optimal solution x+ defined by (2.7) can be obtained exactly via

x+
1 = arg min

x1∈X1

φ(x1) + h(x1, x
′
≥2)− 〈δ1, x1〉,

x+
i = arg min

xi∈Xi
φ(x+

1 ) + h(x+
≤i−1, xi, x

′
≥i+1)− 〈δi, xi〉,

= Q−1
ii

(
ri + δi −

i−1∑
j=1

Q∗jix+
j −

s∑
j=i+1

Qijx′j

)
, i = 2, ..., s.

(2.10)

Remark 2.1. (a). In (2.9)and (2.10), x′i and x+
i should be regarded as inexact

solutions to the corresponding minimization problems without the linear error terms

〈δ′i, xi〉 and 〈δi, xi〉. Once these approximate solutions have been computed, they
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would generate the error vectors δ′i and δi as follows:

δ′i = Qiix′i −

(
ri −

i−1∑
j=1

H∗jix̄j −
s∑

j=i+1

Qijx′j

)
, i = s, ..., 2,

δ1 ∈ ∂φ(x+
1 ) +Q11x

+
1 −

(
r1 −

s∑
j=2

H1jx
′
j

)
,

δi = Qiix+
i −

(
ri −

i−1∑
j=1

Q∗jix+
j −

s∑
j=i+1

Qijx′j

)
, i = 2, ..., s.

With the above known error vectors, we have that x′i and x+
i are the exact solutions

to the minimization problems in (2.9) and (2.10).

(b). In actual implementations, assuming that for i = s, ..., 2, we have computed

x′i in the backward GS sweep for solving (2.9), then when solving the subproblems in

the forward GS sweep in (2.10) for i = 2, ..., s, we may try to estimate x+
i by using

x′i, and in this case the corresponding error vector δi would be given by

δi = δ′i +
i−1∑
j=1

Q∗ji(x′j − x̄j).

In practice, we may accept such an approximate solution x+
i = x′i for i = 2, ..., s, if

the corresponding error vector satisfies an admissible condition such as ‖δi‖ ≤ c‖δ′i‖

for some constant c > 1, say c = 10.

For the latter purpose, we present the following proposition, which can be found

in [52].

Proposition 2.1. [52, Proposition 2.1]. Suppose that Q̂ = Q + T is positive

definite. Let ξ = ‖Q̂−1/2∆(δ′, δ)‖. It holds that

ξ ≤ ‖D−1/2(δ − δ′)‖+ ‖Q̂−1/2δ′‖. (2.11)

2.3 Accelerated block coordinate descent method

Let us consider a general class of unconstrained, multi-block convex optimization

problems with coupled objective function, that is

min
u,v

θ(u, v) := p1(u) + p2(v) + φ(u, v), (2.12)
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where p1 : U → (−∞,+∞] and p2 : V → (−∞,+∞] are two convex functions

(possibly nonsmooth), φ : U × V → (−∞,+∞] is a smooth convex function with

Lipschitz continuous gradient mapping, and U , V are real finite dimensional Hilbert

spaces.

To solve (2.12), in 2015, Chambolle and Pock [19] proposed the accelerated alter-

native descent (AAD) algorithm for this situation that the joint objective function

is quadratic. However, their method does not take the inexactness of the solutions

of associated subproblems into account. Hence, it is not suitable for the practical

application. Later, Sun, Toh and Yang [76] proposed an inexact accelerated block

coordinate descent (iABCD) method when the subproblem arg minu p1(u) + φ(u, v)

has an explicit solution. They applied the Danskin-type theorem to reduce the two-

block problem into one block and then utlized the accelerated proximal gradient

method to solve the reduced one-block problem. With the help of the symmetric

Gauss-Seidel technique [51], the model problem (2.12) can be extended to a multi-

block unconstrained optimization problem with only two block nonsmooth terms.

They proved that the iABCD method has a O(1/k2) iteration complexity of the

optimal value. For a more general case when the subproblem mentioned above can

not be solved exactly, Cui [26, Chapter 3] in 2016 proposed the inexact majorized

accelerated block coordinate descent (imABCD) method. Under suitable assump-

tion on φ and some inexact criteria, the O(1/k2) complexity of optimal value can

also be obtained.

Next, let us give a brief sketch of the inexact majorized ABCD method. To deal

with the general model (2.12), we need some more conditions and assumptions on

φ. Let us denote ω := (u, v) ∈ U ×V . Assume ∇φ be globally Lipschitz continuous,

and hence there exist two self-adjoint positive semidefinite linear operators Q and

Q̂ : U × V → U × V such that for any ω, ω′ ∈ U × V , it holdes

φ(ω) ≥ φ(ω′) + 〈∇φ(ω′), ω − ω′〉+
1

2
‖ω′ − ω‖2

Q,

and

φ(ω) ≤ φ̂(ω;ω′) := φ(ω′) + 〈∇φ(ω′), ω − ω′〉+
1

2
‖ω′ − ω‖2

Q̂.
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We further decompose the operators Q and Q̂ into the following block structures:

Qω :=

 Q11 Q12

Q∗12 Q22

 u

v

 , Q̂ω :=

 Q̂11 Q̂12

Q̂∗12 Q̂22

 u

v

 , ∀ω = (u, v) ∈ U×V ,

and assume Q and Q̂ satisfy the following conditions.

Assumption 2.1. [26, Assumption 3.1] There exist two self-adjoint positive

semidefinite linear operators D1 : U → U and D2 : V → V such that

Q̂ := Q+ Diag(D1,D2).

Furthermore, Q̂ satisfies that Q̂11 � 0 and Q̂22 � 0.

Now we present the inexact majorized acclerated block coordinate descent algo-

rithm as follow.

Algorithm 1: (Inexact majorized ABCD algorithm for (2.12))

Input: (u1, v1) = (ũ0, ṽ0) ∈ dom(p)× dom(q). Let {εk} be a summable

sequence of nonnegative numbers, and set t1 = 1, k = 1.

Output: (ũk, ṽk)

Iterate until convergence:

Step 1 Choose error tolerance δku ∈ U , δkv ∈ V such that

max{δku, δkv} ≤ εk/max{‖Q̂−1
11 ‖, ‖Q̂−1

22 ‖}.

Compute 
ũk = arg min

u∈U
{p1(u) + φ̂(u, vk;ωk)− 〈δku, u〉},

ṽk = arg min
v∈V
{p2(v) + φ̂(ũk, v;ωk)− 〈δkv , v〉}.

Step 2 Set tk+1 =
1+
√

1+4t2k
2

and βk = tk−1
tk+1
∀ k. Compute

uk+1 = ũk + βk(ũ
k − ũk−1), vk+1 = ṽk + βk(ṽ

k − ṽk−1).

Here we state the convergence result without proving. For the detailed proof,

one can see [26, Chapter 3].
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Theorem 2.2. [26, Theorem 3.2] Suppose that Assumption 2.1 holds and the

solution set Ω of the Problem (2.12) is non-empty. Let ω∗ ∈ Ω. Assume that
∞∑
i=1

iεi <

∞. Then the sequence {ω̃k} := {(ũk, ṽk)} generated by the imABCD algorithm

satisfies that

θ(ω̃k)− θ(ω∗) ≤ 2‖ω̃0 − ω∗‖2
H + c0

(k + 1)2
, ∀k ≥ 1,

where c0 is a constant number, and H := Diag(D1,D2 +Q22).

2.4 Augmented Lagrangian method

In this section, we introduce the augmented Lagrangian method and its conver-

gence theory.

Firstly, let us introduce the proximal point algorithm for solving a fundamental

problem of determining an element z such that 0 ∈ T (z).

The proximal point algorithm is presented as

zk+1 ≈ Pk(z
k), where Pk = (I + ckT )−1 (PPA)

and for any starting point z0, it generates a convergent sequence {zk} in H.

To obtain its inexact form, we need two general criteria for the approximate

calculation of Pk(z
k) as follow,

‖zk+1 − Pk(zk)‖ ≤ εk,
∞∑
k=1

εk <∞, (2.13)

‖zk+1 − Pk(zk)‖ ≤ δk‖zk+1 − zk‖,
∞∑
k=1

δk <∞. (2.14)

For more details, one can refer to [55,67].

Definition 2.1. Let X,Y be real Hilbert space with inner product 〈·, ·〉. A multifunc-

tion T : X→ Y is said to be metrically subregular at z̄ ∈ X for y ∈ Y with modulus

κ > 0 if (x̄, ȳ) ∈ gph(T ) and there exists neighborhoods U of x̄ and V of ȳ such that

dist(x, T−1(ȳ)) ≤ κdist(ȳ, T (x) ∩ V),∀x ∈ U , (2.15)
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or equivalently, T is said to metrically subregular at z̄ for ȳ with modulus κ > 0 if

there exists a nieghborhood U ′ of z̄ such that

dist(x, T−1(ȳ)) ≤ κdist(ȳ, T (x)),∀x ∈ U ′. (2.16)

Proposition 2.2. [28, Proposition 2.1] Let H be a real Hilbert space endowed with

the inner product 〈·, ·〉 and θ : H → (−∞,+∞] be a proper lower semicontinuous

convex function. Let v̄, x̄ ∈ H satisfy (x̄, v̄) ∈ gph(∂θ). Then ∂θ is metrically

subregular at x̄ for v̄ if and only if there exists a neighborhood U of x̄ and a constant

κ > 0 such that

θ(x) ≥ θ(x̄) + 〈v̄, x− x̄〉+ κdist2(x, (∂θ)−1(v̄)),∀x ∈ U . (2.17)

Remark 2.2. From [2], if the second order condition is valid with parameter κ > 0,

one can also estimate the metric subregularity parameter to be at least 1/κ.

Hence we can see that if θ is strongly convex with modulus a > 0, then for any

(x̄, 0) ∈ gph(∂θ), we have the second order growth condition

θ(x) ≥ θ(x̄) +
a

2
‖x− x̄‖2,∀x ∈ H. (2.18)

This equation above is equivalent to say that equation (2.17) in Proposition 2.2

is satisfied with x̄ = x̄, v̄ = 0 and κ = a/2. Then by the remark above or by [2], one

has that ∂θ is metrically subregular at x̄ for origin with the parameter at least 2/a.

Let f0 : Rn → R be a lower semicontinuous convex function. For i = 1, 2, · · · ,m,

let fi : Rn → R be an affine function. We consider the convex programming problem
min
x∈Rn

f0(x)

s.t. fj(x) = 0, j = 1, · · · ,m.
(2.19)

For Problem (2.19), the Lagrangian function and augmented Lagrangian function

are defined as follow respectively,

l(x, ω) = f0(x) +
m∑
i=1

ωifi(x), ∀x ∈ Rn, ω ∈ Rm

lσ(x, ω) = f0(x) +
m∑
i=1

ωifi(x) +
σ

2

m∑
i=1

|fi(x)|2,∀x ∈ Rn, ω ∈ Rm, σ > 0.
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Then we can propose the augmented Lagrangian method for the problem (2.19)
xk+1 ≈ arg min

x∈Rn
lσk(x, ω

k),

ωk+1
i = ωki + σkfi(x

k+1), for i = 1, 2, · · · ,m.
(ALM)

The inexact forms are executed with the following stopping criteria

φk(x
k+1)− inf

x
φk(x) ≤ ε2k/2σk, εk ≥ 0,

∞∑
k=0

εk <∞, (2.20)

φk(x
k+1)− inf

x
φk(x) ≤ (δ2

k/2σk)‖ωk+1 − ωk‖2, δk ≥ 0,
∞∑
k=0

δk <∞, (2.21)

dist(0, ∂φk(x
k+1)) ≤ (δ′k/σk)‖ωk+1 − ωk‖2, 0 ≤ δk → 0. (2.22)

where φk(x) := lσk(x, ω
k).

The ordinary dual problem associated with (2.19) is

maximize g(ω) over all ω ∈ Rm, (2.23)

where g(ω) := inf
x∈Rn

l(x, ω).

The following result shows the relation between augmented Lagrangian method

and the general proximal point algorithm (PPA) in the case of T = Tg, or in other

words,

Pk(ω) := (I + σkTg)
−1(ω) = arg max

ω∈Rm
{g(ω)− (1/2σk)|ω − ωk|2}. (2.24)

Proposition 2.3. [66, Proposition 6] For Pk as defined as in (2.24), and sequence

{(xk, ωk)} generated from (ALM) for (2.19) , we have

|ωk+1 − Pk(ωk)|2/2σk ≤ Lσk(x
k;ωk)− inf

x
Lσk(x;ωk). (2.25)

Remark 2.3. From the above proposition, we can see that {(xk, ωk)} can also be

regarded as generated from the inexact PPA for Problem (2.24). Or in other word,

inexact ALM method can be regarded as a special case of inexact PPA method.

Hence we can analysis the convergence rate of inexact ALM through the conver-

gence result for inexact PPA.
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We define some useful multifunctions as follow:

Tf = ∂f, Tg = −∂g, Tl(x, ω) = {(u, v)|(u,−v) ∈ ∂l(x, ω)},

and 
T−1
f (v) := arg min

x∈Rn
{f(x)− x · v},

T−1
g (µ) := arg max

ω∈Rn
{g(ω) + ω · µ},

T−1
l (v, µ) := arg min

x∈Rn
max
ω∈Rm

{l(x, ω)− x · v + ω · µ},

(2.26)

where l(x, ω) = f0(x) +
m∑
i=1

ωifi(x), f(x) = sup
ω∈Rm

l(x, ω), g(ω) = inf
x∈Rn

l(x, ω).

Theorem 2.3. [28, Theorem 4.2] Suppose optimal solution set T−1
f (0) to Problem

(2.19) is nonempty. Let {(xk, ωk)} be an infinite sequence generated by the Algorithm

(ALM) with stopping criteria (2.20). Then the whole sequence {xk} is bounded and

converges to some x̄ ∈ T−1
f (0), and the sequence {ωk} satisfies for all k ≥ 0,

(a) If Tg is metrically subregular at ω̄ for the origin with modulus κg, then under

criterion (2.21), there exists k ≥ 0 such that for all k ≥ k̄, ηk < 1 and

dist(ωk+1, T−1
g (0)) ≤ θkdist(ω

k, T−1
g (0)), (2.27)

where

1 > θk =
(
κg/
√
κ2
g + σ2

k + 2δk

)
(1− δk)−1 → θ∞ = κg/

√
κ2
g + σ2

∞

(θ∞ = 0, if σ∞ =∞).

(b) If in addition to stopping criteria (2.21) and the metric subregularity of Tg at

ω̄ for the origin, one has stopping criteria (2.22), T−1
f (0) is non-empty and

bounded and the following condition on Tl: there exist two constants κl ≥ 0

and ε > 0, any (x, ω) satisfying dist((x, ω), T−1
f × {ω̄}) ≤ ε,

dist((x, ω), T−1
l (0)) ≤ κldist(0, Tl(x, ω)). (2.28)

Then there exists k̃ > 0 such that for all k ≥ k̃, δk < 1, and

dist(xk+1, T−1
f (0)) ≤ θ′kdist(ω

k, T−1
g (0)), (2.29)

where θ′k = κlσ
−1
k (1 + δ′k)(1− δ′k)→ θ′∞ = κl/σ∞(θ′∞ = 0, if σ∞ =∞).





Chapter 3
Discretization

To solve the continuous optimization problem (P), we need to discretize it first.

There are two approaches. One is first optimize then discretize, another is first

discretize then optimize [24]. In the thesis, I choose the latter approach. And for

the discretization, we consider the finite element discretization for the space and

backward Euler for the time.

In this chapter, I provide a new discretization for both the primal problem (P)

and its dual (D). For numerical comparison, I also provide the conventional dis-

cretization in which I apply an approximation of L1-norm in the objective function

of the primal problem (P). Then I study the uniqueness and existence of the optimal

solution and also exploit the first order optimality conditions. Finally, I propose the

error estimate of the new discretization.

3.1 Finite element discretization

Firstly, let us give some assumptions.

We consider a family of regular and quasi-uniform triangulations {Th}h>0 of Ω̄.

For each cell R ∈ Th, let us define the diameter of the set R by ρR := diamR and

define σR to be the diameter of the largest ball contained in R. The mesh size of

the grid is defined by h = maxR∈Th ρR. We suppose that the following regularity

23
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assumptions on the triangulation are satisfied which is standard in the context of

error estimates:

Assumption 3.1 (Regular and quasi-uniform triangulations). There exist two pos-

itive constants κ and δ such that

ρT
σT
≤ κ,

h

ρT
≤ δ,

hold for all R ∈ Th and all h > 0. Moreover, let us define Ω̄h =
⋃
R∈Th R, and let

Ωh ⊂ Ω and Γh be its interior and its boundary, respectively. We assumed that Ω̄h

is convex and that all boundary vertices of Ω̄h are contained in Γh, such that

|Ω \ Ωh| ≤ ch2, (3.1)

where | · | denotes the measure of the set and c > 0 is a constant.

On account of the homogeneous boundary condition of the state equation, we

define

Wh = {wh ∈ C(Ω̄)|wh|T ∈ P1, for all T ∈ Th, and wh = 0 in Ω̄ \ Ωh}, (3.2)

where P1 denotes the space of polynomials of degree less than or equal to 1.

Let τ be the uniform time grid, NT := T
τ

, and 0 = t0 < t1 < · · · < tNT = T .

Denote Ωh,T = Ωh × [0, T ], and set Ij := (tj−1, tj], then we seek

Yh,τ = {yh,τ ∈ C(Ω̄T )|yh,τ (·, t)|Ω̄ ∈ Wh and yh,τ (x, ·)|Ij ∈ P0, j = 1, · · · , NT} (3.3)

as the discrete space, where P0 denotes the space of piecewise constant polynomials.

As mentioned above, we also use the same discrete space to discretize the control u,

and define

Uh,τ = {uh,τ ∈ C(Ω̄T )|uh,τ (·, t)|Ω̄ ∈ Wh and uh,τ (x, ·)|Ij ∈ P0, j = 1, · · · , NT}.

(3.4)

For a given regular and quasi-uniform triangulation Th with nodes {xi}Nhi=1, let

{φi}Nhi=1 be a set of nodal basis functions, which span Yh,τ as well as Uh,τ and satisfy
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the following properties:

φi ≥ 0, ‖φi‖∞ = 1, i = 1, 2, · · · , Nh,

Nh∑
i=1

φi = 1.

The elements uh,τ ∈ Uh,τ and yh,τ , yd,h ∈ Yh,τ can be represented in the following

forms, respectively, ∀t ∈ [0, T ],

uh,τ (·, t) =

Nh∑
i=1

ui(t)φi, yh,τ (·, t) =

Nh∑
i=1

yi(t)φi, (3.5)

and

yd,h(·, t) =

Nh∑
i=1

yid(t)φi, yc,h(·, t) :=

Nh∑
i=1

yic(t)φi. (3.6)

For i = 1, 2, · · · , NT , j = 1, 2, · · · , Nh, let us denote that

ui,j = uj(ti), ui = (ui,1, ui,2, · · · , ui,Nh)T ∈ RNh ,

yi,j = yj(ti), yi = (yi,1, yi,2, · · · , yi,Nh)T ∈ RNh .
(3.7)

Let Uad,h,τ denote the discrete feasible set, which is defined by

Uad,h,τ := Uh,τ ∩ Uad ⊂ Uad. (3.8)

where Uad := {u ∈ U |a ≤ u(x, t) ≤ b, a.e. x ∈ Ω, t ∈ [0, T ]}, with −∞ ≤ a < 0 <

b ≤ +∞.

And let yc,h, yd,h be the L2-projection of yc and yd onto Yh,τ , respectively,

yc,h,τ =

Nh∑
i=1

yicφi, yd,h,τ =

Nh∑
i=1

yidφi. (3.9)

Then we can obtain the weak form of the problem (P),
min

yh,τ∈Yh,τ ,uh,τ∈Uh,τ
J(yh,τ , uh,τ ) =

1

2
‖yh,τ − yd,h,τ‖2

L2(ΩT ) +
α

2
‖uh,τ‖2

L2(ΩT )

+ β‖uh,τ‖L1(ΩT ) + δUad,h,τ (uh,τ )

s.t. 〈Ah,τyh,τ , φi〉Uh,τ =〈Bh,τ (uh,τ + yc,h,τ ), φi〉Uh,τ ,∀vh,τ ∈ Uh,τ .
(3.10)
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From the perspective of numerical implementation, we introduce the stiffness

matrix and the mass matrix as follow:

Kh =

(∫
Ωh

〈∇φi(x),∇φj(x)〉dx
)Nh
i,j=1

,Mh =

(∫
Ωh

φi(x)φj(x)dx

)Nh
i,j=1

. (3.11)

We use backward Euler for the time and rewrite the problem (3.10) in the fol-

lowing way,
min
y,u∈Rm

J(y, u) =
T

NT

NT∑
i=1

{1

2
‖yi − yd,i‖2

Mh
+
α

2
‖ui‖2

Mh
+ β‖

Nh∑
j=1

ui,jφj‖L1(Ω)

+ δ[a,b](ui)}

s.t. F1yi+1 =F2yi +M(ui+1 + yc,i+1), i = 0, 1, · · · , NT − 1.

(3.12)

where m = Nh ×NT , F1 = NT
T
Mh +Kh, F2 = NT

T
Mh,

y = (yT1 , y
T
2 , · · · , yTNT )T ∈ Rm,

u = (uT1 , u
T
2 , · · · , uTNT )T ∈ Rm,

yd = (yTd,1, y
T
d,2, · · · , yTd,NT )T ∈ Rm,

yc = (yTc,1, y
T
c,2, · · · , yTc,NT )T ∈ Rm.

(3.13)

Define B = Diag(Mh,Mh, · · · ,Mh) ∈ Rm×m, and

A =



F1 0 0 · · · 0

−F2 F1 0 · · · 0

· · · · · · · · · · · · · · ·

0 · · · −F2 F1 0

0 · · · 0 −F2 F1


(3.14)

From the invertibility of the mass matrix Mh, and stiffness matrix Kh, we can

see that F1 is invertible and thus obtain that A is also invertible. And from the

symmetric positive definiteness of Mh, we obtain that B is also symmetric positive

definite.
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Applying the notation A,B, we can derive the simplified form of problem (3.12),
min
y,u∈Rm

J(y, u) =
1

2
‖y − yd‖2

B +
α

2
‖u‖2

B + β

NT∑
i=1

‖
Nh∑
j=1

ui,jφj‖L1(Ω) + δ[a,b](u)

s.t. Ay =B(u+ yc).

(Ph,τ )

It is clear that the discrete L1-norm ‖
Nh∑
j=1

ui,jφi‖L1(Ω) is a coupled form with

respect to (ui,j), which can not be written as a matrix-vector form. And the subgra-

dient with respect to the function uh,τ , i.e. νh,τ ∈ ∂uh,τ‖uh,τ‖L1(ΩT ), will not belong

to a finite-dimensional subspace. Hence, if directly solving (Ph,τ ), it is inevitable to

bring some difficulties for the numerical calculation. To overcome these difficulties,

in [82], the authors introduced a lumped mass matrix Wh which is a diagonal matrix

defined as

Wh := Diag

(∫
Ωh

φi(x)dx

)Nh
i=1

. (3.15)

They defined an alternative discretization of the L1-norm:

‖xh,τ‖L1
h(Ωh,T ) :=

NT∑
j=1

Nh∑
i=1

|xj,i|
∫

Ωh

φi(x)dx =

NT∑
j=1

‖Whxj‖1, for all xh,τ ∈ Uh,τ ,

(3.16)

which is a weighted l1-norm for the coefficients of xh,τ . More importantly, the

following results about the mass matrix Mh and the lumped mass matrix Wh hold.

Proposition 3.1. [83, Table 1] ∀ z ∈ RNh, the following inequalities hold:

‖z‖2
Mh
≤ ‖z‖2

Wh
≤ γ‖z‖2

Mh
, where γ =

 4 if n = 2,

5 if n = 3.
(3.17)

∫
Ωh

|
n∑
i=1

ziφi(x)| dx ≤ ‖Whz‖1. (3.18)
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Thus we obtain another discretization of Problem (3.10) as follow
min
y,u∈Rm

J(y, u) =
T

NT

NT∑
j=1

{1

2
‖yj − yd,j‖2

M +
α

2
‖uj‖2

M + β‖Whuj‖1 + δ[a,b](uj)}

s.t. F1yj+1 = F2yj +M(uj+1 + yc,j+1), j = 0, 1, · · · , NT − 1.

y0 = 0.

(3.19)

Furthermore, we define q(u) := β‖Cu‖1 + δ[a,b](u) for convenience, and then

simplify Problem (3.19) as follow,
min
y,u∈Rm

J(y, u) =
1

2
‖y − yd‖2

B +
α

2
‖u‖2

B + q(u)

s.t. Ay = B(u+ yc).

(P̃h,τ )

where C = Diag(Wh,Wh, · · · ,Wh) ∈ Rm×m.

This is the conventional way of discretization for the primal problem (P), where

the l1-norm is approximated by a decoupled function.

Noticed that the conjugate function of the l1 norm is a unit ball indicator func-

tion, we consider to discretize the dual problem instead of the primal problem. We

present the discretized dual problem (D) directly as follow,

min
p,λ,µ∈Rm

Φ(p, λ, µ) =
1

2
‖A∗p−Byd‖2

B−1 +
1

2α
‖p− λ− µ‖2

B + 〈Byc, p〉

+ δ[−β,β](λ) + δ∗[a,b](Bµ)− 1

2
‖yd‖2

B.

(D̂h,τ )

To mention a bit more, its predual is
min
y,u∈Rm

J(y, u) =
1

2
‖y − yd‖2

B +
α

2
‖u‖2

B + β‖Bu‖1 + δ[a,b](u)

s.t. Ay = B(u+ yc).

(P̂h,τ )

or 
min

yh,τ∈Yh,τ ,uh,τ∈Uh,τ
J(yh,τ , uh,τ ) =

1

2
‖yh,τ − yd,h,τ‖2

L2(ΩT ) +
α

2
‖uh,τ‖2

L2(ΩT )

+ β‖uh,τ‖L̃1
h(ΩT ) + δUad,h,τ (uh,τ )

s.t. Ah,τyh,τ =Bh,τ (uh,τ + yc,h,τ ).

(P̂′h,τ )
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where

‖u‖L̃1
h(ΩT ) := τ

NT∑
j=1

Nh∑
i=1

|
∫

Ω

uh,τ (x, tj)φi(x)dx|,∀uh,τ ∈ Uh,τ . (3.20)

It is important to know that Problem (P̂h,τ ) is different from the Problem (P̃h,τ )

defined above in the l1-norm term of the objective functional, the former is ‖Bu‖1

is while the latter is ‖Cu‖1.

In the conventional approximate discretization, the l1-norm term is decoupled

with respective to u, which is more convenient to study and choose suitable algo-

rithm, like ADMM method. In the new discretiztaion, though the l1-norm term is

not decoupled, we will prove it in Section 3.3 that this new approximation for l1-

norm turns out to be a better one, and later in Chapter 6, the numerical experiments

show the new discretization has slightly small error than the new discretization.

In this section, we will only present details of discretization for Problem (P̂h,τ )

and Problem (D̂h,τ ). Similar results can be obtained for Problem (P̃h,τ ) and its dual

problem.

3.2 Existence and uniqueness as well as optimal-

ity conditions

Before the discretization, we would like to exploit the existence and uniqueness of

optimal solutions to Problem (P) and the corresponding discretized problems (P̂h,τ ).

Firstly, we provide the existence and uniqueness of the weak solution defined in

the equation (1.3).

Theorem 3.1. [32, Theorem 5]. For every u ∈ L2(ΩT ) and yc ∈ L2(ΩT ), the

parabolic equation has a unique weak solution y ∈ H1
0 (Ω). Furthermore,

‖y‖L2(H1
0 (Ω),[0,T ]) ≤ Cp(‖u‖L2(ΩT ) + ‖yc‖L2(ΩT )) (3.21)

for a constant Cp depending only on Ω and T .
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We present the existence of a minimizer for Problem (P) in the following propo-

sition.

Proposition 3.2. Problem (P) has a unique solution u∗ ∈ L2(ΩT ).

Proof. We consider a feasible and minimizing sequence {(yn, un)}n∈N ⊂ L2(ΩT ) of

(P), with u0 = 0, and y0 be the weak solution for the state equation (1.3) with u0.

Then (y, u) = (y0, 0) is feasible to problem (P). Since {(yn, un)}n∈N is a mini-

mizing sequence, we have that the objective function J(y, u) should have a upper

bound 1
2
‖y0− yd‖2

L2(ΩT ) for {(yn, un)}n>k with k large enough. Hence we can obtain

that {un}n>k should be bounded by a constant 1√
α
‖y0 − yd‖L2(ΩT ).

Since L2(ΩT ) is a Hilbert space, we can extract a subsequence, {uni}i∈N of the

bounded sequence {un}n∈N, such that {uni}n∈N converges to a u∗ ∈ L2(ΩT ) in weak

topology.

Let us define y∗, {yn}n∈N to be the corresponding weak solution for state equation

(1.3) with respect to u∗, {un}n∈N. Then by the weak lower semicontinuity of the

objective function J , we deduce

lim
i→∞

inf J(yni , uni) ≥ J(y∗, u∗).

Hence (y∗, u∗) is a minimizer of (P). And the uniqueness of the optimal solution is

due to the strong convexity of the objective function.

In the next proposition, we provide the optimality condition. It can be derived

easily from results in [45, Lemma 1.12, Theorem 1.51].

Proposition 3.3 (First-order optimality condition). The pair function (y∗, u∗) is

the optimal solution of (P), if and only if there exists adjoint variables (p∗, λ∗), such

that the following conditions hold

Ay∗ = B(u∗ + yc),

A∗p∗ = yd − y∗,

αu∗ = B∗(p∗ − λ∗),

u∗ = ΠUad(soft((u
∗ + B∗λ∗), β)).

⇔ (∗)

(3.22)
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where

ΠUad(v(x)) = max{a,min{v(x), b}},

soft(v(x), β) = sgn(v(x)) ·max(|v(x)| − β, 0).

(∗) : 〈−p∗ + αu∗, u− u∗〉+ β(‖u‖L1(ΩT ) − ‖u∗‖L1(ΩT )) ≥ 0, ∀u ∈ Uad.

Remark 3.1. For the continuous problem, we can also obtain the relationship be-

tween optimal control and optimal adjoint function as

u∗ = ΠUad(
1

α
soft(p∗, β)). (3.23)

And this property is useful for the estimation of upper bound of ‖u∗‖L2(H1(Ω),[0,T ])

and for the construction of numerical examples.

Hence, from the first order optimality (3.22) and the uniqueness of optimal so-

lution (y∗, u∗), we can conclude the existence and uniqueness of the solution for our

problem (D̃).

Proposition 3.4. Problem (D̃) has a unique optimal solution (p∗, λ∗).

Similarly, we can prove the existence and uniqueness of the discretized problem

(P̂′h,τ ) and the first order optimality conditions. Here we provide the propositions

without proof as below.

Proposition 3.5. Problem (P̂′h,τ ) has a unique solution u∗h,τ ∈ L2(ΩT ).

Proposition 3.6 (Discrete first-order optimality condition). Let the pair function

(y∗h,τ , u
∗
h,τ ) be the optimal solution of (P̂′h,τ ), if and only if there exists adjoint vari-

ables (p∗, λ∗), such that the following conditions hold in the weak sense

Ah,τy∗h,τ = Bh,τ (u∗h,τ + yc),

A∗h,τp∗h,τ = yd − y∗h,τ ,

αu∗h,τ = B∗h,τ (p∗h,τ − λ∗h,τ ),

u∗h,τ = ΠUad,h,τ (soft((u
∗
h,τ + B∗h,τλ∗h,τ ), β)).

⇔ (∗∗)

(3.24)

where

(∗∗) : 〈−p∗h,τ + αu∗h,τ , u− u∗h,τ 〉+ β(‖u‖L̃1
h(ΩT ) − ‖u

∗
h,τ‖L̃1

h(ΩT )) ≥ 0,∀u ∈ Uad,h,τ .
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3.3 Error estimate

In this section, we give an error estimate for our new discretization problem

(P̂h,τ ).

For the convenience, we introduce several interpolation operators as follow:

(Πhu)(x, t) :=

Nh∑
i=1

πi(u)(t)φi(x), πi(u)(t) :=

∫
Ω
u(x, t)φi(x)dx∫

Ω
φi(x)dx

,

(Ihu)(x, t) :=

Nh∑
i=1

u(xi, t)φi(x),

(Iτu)(x, t) = (Πτu)(x, t) := u(x, tj),∀t ∈ (tj−1, tj],

Πh,τ = Πτ ◦ Πh, Ih,τ = Iτ ◦ Ih.

(3.25)

where ◦ is the function composition operator, {xi}Nhi=1 ⊂ Ω are the nodal points

corresponding to the nodal basis {φi}Nhi , such that

φi(xj) = δi,j, ∀i, j = 1, · · · , Nh. (3.26)

We called Πh,τ ,Πh the quasi-interpolation operator, Ih,τ , Ih the nodal interpola-

tion operator.

We have Ih ◦ Ih = Ih, but both of Πh, Ih are not orthogonal projections.

To prove the error estimate, we provide some propositions as follow.

Proposition 3.7. For all v ∈ L2((0, T );H1(Ω)), such that v is Lipschitz continuous

with respect to t, there exist constant C1
I , C

2
I , independent of h, τ , such that

‖v − Ihv‖L2(ΩT ) ≤ C1
Ih|v|L2((0,T );H1(Ω)),

‖Iτv − v‖L2(ΩT ) ≤ C2
I τ.

(3.27)

where ΩT := Ω× [0, T ],

L2((0, T );H1(Ω)) :=

{
y ∈ L2(ΩT ) :

∫ T

0

∫
Ω

|yx(t, x)|2dxdt <∞
}
,

and |v|L2((0,T );H1(Ω)) :=
(∫ T

0

∫
Ω
|vx(t, x)|2dxdt

) 1
2
.
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Therefore, there exists CI independent of h, τ , such that

‖v − Ih,τv‖L2(ΩT ) ≤ CI(h|v|L2((0,T );H1(Ω)) + τ), (3.28)

Furthermore, there exists C3
I independent of h, τ , such that

|‖v‖L1(ΩT ) − ‖Ih,τv‖L1(ΩT )| ≤C3
I (h|v|L2((0,T );H1(Ω)) + τ). (3.29)

Proof. By [6, Corollary 4.4.24], we can derive the first inequality.

And

‖Iτv − v‖2
L2(ΩT ) =

∫
Ω

NT∑
j=1

∫ tj

tj−1

|v(x, tj)− v(x, t)|2dtdx

≤
∫

Ω

NT∑
j=1

∫ tj

tj−1

L2(tj − t)2dtdx

=(µ(ΩT )L2/3)τ 2

(3.30)

where L is the Lipschitz constant for z with respect to t.

Here C2
I :=

√
µ(ΩT )L2/3 is the constant number we want.

Therefore

|‖v‖L1(ΩT ) − ‖Ih,τv‖L1(ΩT )| ≤‖v − Ih,τv‖L1(ΩT )

≤
√
µ(ΩT )‖v − Ih,τv‖L2(ΩT )

≤
√
µ(ΩT )(‖v − Ihv‖L2(ΩT ) + ‖Ihv − Ih,τv‖L2(ΩT ))

≤
√
µ(ΩT )(C1

πh|v|L2((0,T );H1(Ω)) + C2
πτ)

≤C3
I (h|v|L2((0,T );H1(Ω)) + τ).

(3.31)

where C3
π := max{C1

π, C
2
π}
√
µ(ΩT ).

Proposition 3.8. For all z ∈ L2((0, T );H1(Ω)), such that z is Lipschitz continuous

with respect to t, we have

h‖z − Πhz‖L2(ΩT ) + ‖z − Πhz‖L2(H−1(Ω),[0,T ]) ≤ C1
πh

2‖z‖L2((0,T );H1(Ω)),

‖z − Πτz‖L2(ΩT ) ≤ C2
πτ, ‖z − Πτz‖L2(H−1(Ω),[0,T ]) ≤ C3

πτ.
(3.32)
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Hence,

‖z − Πh,τz‖L2(ΩT ) ≤ Cπ(h‖z‖L2((0,T );H1(Ω)) + τ),

‖z − Πh,τz‖L2(H−1(Ω),[0,T ]) ≤ C ′π(h2‖z‖L2((0,T );H1(Ω)) + τ).
(3.33)

The constant numbers c1
π, c

2
π, c

3
π, cπ, c

′
π are all independent of h, τ .

Proof. The first inequality can be referred to [7]. And the second inequality is similar

to that in Proposition 3.7.

Let us denote S be the solution mapping of the parabolic equation (1.3), and

Sh,τ be the solution mapping of its discretization. From [77, Theorem 1.5], we have

Proposition 3.9. For any z ∈ L2(ΩT ), there exist C1
s , C

2
s , independent of h, τ , such

that

‖(S − Sh,τ )z(tn)‖L2(Ω) ≤ C1
s (h2 + τ), n = 1, · · · , NT ,

‖(S∗ − S∗h,τ )z(tn)‖L2(Ω) ≤ C2
s (h2 + τ), n = 1, · · · , NT .

(3.34)

Given the projections, we can define the approximate L1-norm as follow

‖u‖L1
h(ΩT ) := ‖Ih,τ |u|‖L1(ΩT ),

‖u‖L̃1
h(ΩT ) := τ

NT∑
j=1

Nh∑
i=1

|
∫

Ω

(Ih,τu)(·, tj)φi(x)dx|.
(3.35)

Remark 3.2. Here we extend the L̃1
h-norm defined in (3.20) to the whole space

L2(ΩT ).

In the following proposition, we prove the relationship between different approx-

imations of L1-norm.

Proposition 3.10. For any u ∈ L2(ΩT ), we have

‖Πh,τu‖L̃1
h(ΩT ) ≤ ‖Πh,τu‖L1(ΩT ) ≤ ‖u‖L̃1

h(ΩT ) ≤ ‖Ih,τu‖L1(ΩT ) ≤ ‖u‖L1
h(ΩT ),

‖Πh,τu‖L1(ΩT ) ≤ ‖u‖L1(ΩT ) + C3
I (h2‖u‖L2((0,T );H1(Ω)) + τ) + ch2,

(3.36)

where C3
I is defined in (3.29), c is defined in (3.1).
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Furthermore, for any u ∈ L2((0, T );H1(Ω)), we have

|‖u‖L̃1
h(ΩT ) − ‖u‖L1(ΩT )| ≤

√
µ(ΩT )C ′π(h2‖u‖L2((0,T );H1(Ω)) + τ) + ch2, (3.37)

where C ′π is defined in (3.33).

Proof. By definition, we have

‖Πh,τu‖L̃1
h(ΩT ) = τ

NT∑
j=1

Nh∑
k=1

|
∫

Ωh

Nh∑
i=1

〈u(·, tj), φi〉∫
Ωh
φi(x)dx

φi(x)φk(x)dx|,

‖Πh,τu‖L1(ΩT ) = τ

NT∑
j=1

∫
Ωh

|
Nh∑
i=1

〈u(·, tj), φi〉∫
Ωh
φi(x)dx

φi(x)|dx,

‖u‖L̃1
h(ΩT ) = τ

NT∑
j=1

Nh∑
k=1

|
∫

Ωh

Nh∑
i=1

u(xi, tj)φi(x)φk(x)dx| = τ

NT∑
j=1

Nh∑
k=1

|〈u(·, tj), φk〉|,

‖Ih,τu‖L1(ΩT ) =

∫ T

0

∫
Ωh

|
Nh∑
i=1

u(xi, t)φi(x)|dxdt = τ

NT∑
j=1

∫
Ωh

|
Nh∑
i=1

u(xi, tj)φi(x)|dx,

‖u‖L1
h(ΩT ) = τ

NT∑
j=1

∫
Ωh

|
Nh∑
i=1

|u(xi, tj)|φi(x)|dx = τ

NT∑
j=1

Nh∑
i=1

∫
Ωh

|u(xi, tj)|φi(x)dx.

(3.38)

Hence we have

‖Πh,τu‖L̃1
h(ΩT ) =τ

NT∑
j=1

Nh∑
k=1

|
∫

Ωh

Nh∑
i=1

〈u(tj), φi〉∫
Ωh
φi(x)dx

φi(x)φk(x)dx|

≤τ
NT∑
j=1

Nh∑
k=1

∫
Ωh

|
Nh∑
i=1

〈u(tj), φi〉∫
Ωh
φi(x)dx

φi(x)|φk(x)dx

=τ

NT∑
j=1

∫
Ωh

|
Nh∑
i=1

〈u(tj), φi〉∫
Ωh
φi(x)dx

φi(x)|dx

=‖Πh,τu‖L1(ΩT ).

(3.39)

Then

‖Πh,τu‖L1(ΩT ) =τ

NT∑
j=1

∫
Ωh

|
Nh∑
i=1

〈u(tj), φi〉∫
Ωh
φi(x)dx

φi(x)|dx

≤τ
NT∑
j=1

∫
Ωh

Nh∑
i=1

|〈u(tj), φi〉|∫
Ωh
φi(x)dx

φi(x)dx

=‖u‖L̃1
h(ΩT ).

(3.40)
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Later, we deduce

‖u‖L̃1
h(ΩT ) =τ

NT∑
j=1

Nh∑
k=1

|
∫

Ωh

Nh∑
i=1

u(xi, tj)φi(x)φk(x)dx|

≤τ
NT∑
j=1

Nh∑
k=1

∫
Ωh

|
Nh∑
i=1

u(xi, tj)φi(x)|φk(x)dx

=τ

NT∑
j=1

∫
Ωh

|
Nh∑
i=1

u(xi, tj)φi(x)|
Nh∑
k=1

φk(x)dx

=τ

NT∑
j=1

∫
Ωh

|
Nh∑
i=1

u(xi, tj)φi(x)|dx

=‖u‖L1(ΩT ).

(3.41)

And we have

‖u‖L1(ΩT ) =τ

NT∑
j=1

∫
Ωh

|
Nh∑
i=1

u(xi, tj)φi(x)|dx

≤τ
NT∑
j=1

∫
Ωh

Nh∑
i=1

|u(xi, tj)|φi(x)dx

=‖u‖L1
h(ΩT ).

(3.42)

For the second inequality, we obtain

‖Πh,τu‖L1(ΩT ) =τ

NT∑
j=1

∫
Ωh

|
Nh∑
i=1

〈u(·, tj), φi〉∫
Ωh
φi(x)dx

φi(x)|dx

≤τ
NT∑
j=1

∫
Ωh

Nh∑
i=1

|〈u(·, tj), φi〉|∫
Ωh
φi(x)dx

φi(x)dx

=τ

NT∑
j=1

Nh∑
i=1

|〈u(·, tj), φi〉|

=τ

NT∑
j=1

∫
Ωh

Nh∑
i=1

|u(x, tj)|φi(x)dx

=τ

NT∑
j=1

∫
Ωh

|u(x, tj)|dx

≤C3
I (h2‖u‖L2((0,T );H1(Ω)) + τ) + ch2 + ‖u‖L1(ΩT ).

(3.43)
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where the last inequality is by Proposition 3.7 and equation (3.1).

Finally,

|‖u‖L̃1
h(ΩT ) − ‖u‖L1(ΩT )| ≤‖u‖L1(ΩT ) − ‖Πh,τu‖L1(ΩT ) + ch2

≤‖u− Πh,τu‖L1(ΩT ) + ch2

≤
√
µ(ΩT )‖u− Πh,τu‖L2(H−1(Ω),[0,T ]) + ch2

≤
√
µ(ΩT )C ′π(h2‖u‖L2((0,T );H1(Ω)) + τ) + ch2

(3.44)

where the last inequality is by Proposition 3.8.

Remark 3.3. From the inequality (3.29), we can derive that

|‖u‖L1
h(ΩT ) − ‖u‖L1(ΩT )| =|‖Ih,τ |u|‖L1(ΩT ) − ‖u‖L1(ΩT )|

≤C3
I (h‖u‖L2((0,T );H1(Ω)) + τ).

(3.45)

Thus, comparing the above inequality and inequality (3.37), we can see that

‖u‖L̃1
h(ΩT ) is a better approximate of ‖u‖L1(ΩT ) than ‖u‖L1

h(ΩT ), especially for the

situation τ = 0, when the parabolic equation degenerates into an elliptic equation.

Before we prove the error estimate, we give the bounds on the condition number

of the mass matrix and the stiffness matrix.

Proposition 3.11. [31, Theorem 1.29, 1.32]. For P1 approximation on a regular

and quasi-uniform subdivision of Rn which satisfies Assumption 3.1, and for any

x ∈ RNh, the mass matrix Mh approximates the scaled identity matrix in the sense

that

c1h
2 ≤ xTMhx

xTx
≤ c2h

2, if n = 2, and c1h
3 ≤ xTMhx

xTx
≤ c2h

3, if n = 3.

The stiffness matrix Kh satisfies

d1h
2 ≤ xTKhx

xTx
≤ d2, if n = 2, and d1h

3 ≤ xTKhx

xTx
≤ d2h, if n = 3.

where the constants c1, c2, d1 and d2 are independent of the mesh size h.

We further exploit the relationship between the L2((0, T );H1(Ω)) norm and the

L2(ΩT ) norm.
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Proposition 3.12. Given uh,τ ∈ Uh,τ , h0 > 0, for any 0 < h < h0, we have

‖uh,τ‖L2((0,T );H1(Ω)) ≤ CH‖uh,τ‖L2(ΩT )h
−1. (3.46)

Proof.

‖u‖2
L2((0,T );H1(Ω)) =τ

NT∑
j=1

∫
Ω

(

Nh∑
i=1

u(xi, tj)φi(x))2dx+ τ

NT∑
j=1

∫
Ω

(

Nh∑
i=1

u(xi, tj)∇φi(x))2dx

=τ(uTBu+ uT Ãu) ≤ c2h
2
0u

Tu+ d2u
Tu,

(3.47)

where u = (uT1 , u
T
2 , · · · , uTNT ), uTj = {u(xi, tj)}Nhi=1, Ã = Diag(Kh, · · · , Kh).

Similarly, we have

‖u‖2
L2(ΩT ) =τ

NT∑
j=1

∫
Ω

(

Nh∑
i=1

u(xi, tj)φi(x))2dx = τuTBu ≥ c1h
2uTu. (3.48)

Hence

‖u‖2
L2((0,T );H1(Ω)) ≤

c2h
2
0u

Tu+ d2u
Tu

c1h2uTu
‖u‖2

L2(ΩT )

=
c2h

2
0 + d2

c1

‖u‖2
L2(ΩT )h

−2

(3.49)

Under the propositions above, we can then prove the error estimate as below.

Theorem 3.2. Let (y∗, u∗), (y∗hτ , u
∗
h,τ ) be the optimal solution for the continuous

problem (P) and (P̂′h,τ ) respectively. Given h0 > 0, τ0 > 0, for any 0 < h < h0, 0 <

τ < τ0, there exists a constant C0 such that,

α‖u∗−u∗h,τ‖2
L2(ΩT ) +‖y∗− y∗h,τ‖2

L2(ΩT ) ≤ C0(
β

α
h2 +

1

α
(h2 + τ) +

1

α2
(h2 + τ)2). (3.50)

Proof. By the optimality conditions for the continuous and discretized problems, we

have

〈−p∗ + αu∗, u∗h,τ − u∗〉L2(ΩT ) + β(‖u∗h,τ‖L1(ΩT ) − ‖u∗‖L1(ΩT )) ≥ 0,

〈−p∗h,τ + αu∗h,τ ,Πh,τu
∗ − u∗h,τ 〉L2(ΩT ) + β(‖Πh,τu

∗‖L̃1
h(ΩT ) − ‖u

∗
h,τ‖L̃1

h(ΩT )) ≥ 0.

(3.51)
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Add them together we have

〈p∗h,τ − p∗, u∗h,τ − u∗〉L2(ΩT ) − α‖u∗h,τ − u∗‖2
L2(ΩT ) + 〈p∗h,τ − αu∗h,τ , u∗ − Πh,τu

∗〉L2(ΩT )

+β(‖u∗h,τ‖L1(ΩT ) − ‖u∗‖L1(ΩT ) + ‖Πh,τu
∗‖L̃1

h(ΩT ) − ‖u
∗
h,τ‖L̃1

h(ΩT )) ≥ 0.

(3.52)

That is

α‖u∗h,τ − u∗‖2
L2(ΩT ) ≤〈αu∗h,τ − p∗h,τ ,Πh,τu

∗ − u∗〉L2(ΩT ) + 〈p∗h,τ − p∗, u∗h,τ − u∗〉L2(ΩT )

+ β(‖u∗h,τ‖L1(ΩT ) − ‖u∗‖L1(ΩT ) + ‖Πh,τu
∗‖L̃1

h(ΩT ) − ‖u
∗
h,τ‖L̃1

h(ΩT ))

=〈αu∗ − p∗,Πh,τu
∗ − u∗〉L2(ΩT ) + α〈u∗h,τ − u∗,Πh,τu

∗ − u∗〉L2(ΩT )

+ 〈p∗h,τ − p∗, u∗ − Πh,τu
∗〉L2(ΩT ) + 〈p∗h,τ − p∗, u∗h,τ − u∗〉L2(ΩT )

+ β(‖u∗h,τ‖L1(ΩT ) − ‖u∗‖L1(ΩT ) + ‖Πh,τu
∗‖L̃1

h(ΩT ) − ‖u
∗
h,τ‖L̃1

h(ΩT ))

:=I1 + I2 + I3 + I4 + I5.

(3.53)

From the box constraint, we know ‖u∗‖L2(ΩT ) and ‖u∗h,τ‖L2(ΩT ) are bounded.

Then H1-norm of the states y∗, y∗h,τ , and the adjoint states p∗, ph,τ are bounded.

Hence we can choose a large enough constant C1 > 0, independent of α, h, τ and a

constant α0, such that: for all 0 < α ≤ α0 and 0 < h < h0, 0 < τ < τ0,

2‖p∗‖L2((0,T );H1(Ω)) + ‖y∗‖L2((0,T );H1(Ω)) + ‖y∗h,τ‖L2((0,T );H1(Ω))

+ T (β + α(b− a))µ(Ω)
1
2 + ‖y∗ − yd‖L2(ΩT ) + ‖u∗h,τ‖L2(ΩT ) ≤ C1.

(3.54)

By (3.23), we have

‖u∗‖L2((0,T );H1(Ω)) ≤
1

α
‖p∗‖L2((0,T );H1(Ω)) + T (

β

α
+ b− a)µ(Ω)

1
2 ≤ α−1C1. (3.55)

And we can then obtain

‖αu∗ − p∗‖L2((0,T );H1(Ω)) ≤ 2‖p∗‖L2((0,T );H1(Ω)) + T (β + α(b− a))µ(Ω)
1
2 ≤ C1.

(3.56)
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By Proposition 3.8, we see that

I1 =〈αu∗ − p∗,Πh,τu
∗ − u∗〉L2(ΩT )

≤‖αu∗ − p∗‖L2((0,T );H1(Ω))‖Πh,τu
∗ − u∗‖L2(H−1(Ω),[0,T ])

≤C1C
′
π(C1α

−1h2 + τ)

≤C2(α−1h2 + τ),

(3.57)

where C2 := max{C2
1C
′
π, C1C

′
π, C

′
π}.

And

I2 =α〈u∗h,τ − u∗,Πh,τu
∗ − u∗〉L2(ΩT )

≤α
4
‖u∗h,τ − u∗‖2

L2(ΩT ) + α‖Πh,τu
∗ − u∗‖2

L2(ΩT )

≤α
4
‖u∗h,τ − u∗‖2

L2(ΩT ) + αC ′π(h‖u∗‖L2((0,T );H1(Ω)) + τ)2

≤α
4
‖u∗h,τ − u∗‖2

L2(ΩT ) + αC ′π(α−1C1h+ τ)2

≤α
4
‖u∗h,τ − u∗‖2

L2(ΩT ) + αC2(α−1h+ τ)2,

(3.58)

where the second inequality is by Proposition 3.8.

For I3, we have

I3 =〈p∗h,τ − p∗, u∗ − Πh,τu
∗〉L2(ΩT )

=〈S∗h,τ (yd − Sh,τ (u∗h,τ + yc))− S∗(yd − S(u∗ + yc)), u
∗ − Πh,τu

∗〉L2(ΩT )

=〈(S − Sh,τ )(u∗h,τ + yc), S(u∗ − Πh,τu
∗)〉L2(ΩT )

+ 〈(S∗ − S∗h,τ )(y∗h,τ − yd), u∗ − Πh,τu
∗〉L2(ΩT )

− 〈S(u∗h,τ − u∗), S(u∗ − Πh,τu
∗)〉L2(ΩT )

+ 〈(S∗h,τ − S∗)yd, u∗ − Πh,τu
∗〉L2(ΩT )

≤1

2
‖(S − Sh,τ )(u∗h,τ + yc)‖2

L2(ΩT ) + ‖S(u∗ − Πh,τu
∗)‖2

L2(ΩT )

+
1

α
‖(S∗ − S∗h,τ )(y∗h,τ − yd)‖2

L2(ΩT ) +
α

2
‖u∗ − Πh,τu

∗‖2
L2(ΩT )

+
1

α
‖(S∗h,τ − S∗)yd‖2

L2(ΩT ) +
1

2
‖S(u∗h,τ − u∗)‖2

L2(ΩT ).

(3.59)
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By Proposition 3.8 and Proposition 3.9, we know

‖(Sh,τ − S)(u∗h,τ + yc)‖L2(ΩT ) ≤ max
tn
‖(Sh,τ − S)(u∗h,τ + yc)(tn)‖L2(Ω) ≤ C1

s (h2 + τ),

‖(S∗h,τ − S∗)zh,τ‖L2(ΩT ) ≤ max
tn
‖(S∗h,τ − S∗)zh,τ (tn)‖L2(Ω) ≤ C2

s (h2 + τ),

‖Πh,τz − z‖L2(ΩT ) ≤ Cπ(h‖z‖L2(H1(Ω),[0,T ) + τ),

‖Πh,τz − z‖L2(H−1(Ω),[0,T ]) ≤ C ′π(h2‖z‖L2(H1(Ω),[0,T ]) + τ).

(3.60)

Hence

I3 ≤‖S(u∗ − Πh,τu
∗)‖2

L2(ΩT ) +
1

2
‖S(u∗h,τ − u∗)‖2

L2(ΩT )

+ (C3)2((h2 + τ)2 +
1

α
(h2 + τ)2 + α(α−1h+ τ)2),

≤‖S‖2
L(H−1,L2)‖u∗ − Πh,τu

∗‖2
L2(H−1(Ω),[0,T ]) +

1

2
‖S(u∗h,τ − u∗)‖2

L2(ΩT )

+ (C3)2((h2 + τ)2 +
1

α
(h2 + τ)2 + α(α−1h+ τ)2)

≤(C4)2((α−1h2 + τ)2 + (h2 + τ)2 +
1

α
(h2 + τ)2 + α(α−1h+ τ)2) +

1

2
‖S(u∗h,τ − u∗)‖2

L2(ΩT ).

(3.61)

where C3 := max{C1
s , 2C

2
s , Cπ, C

′
π, CπC1, C

′
πC1}, C4 := max{C3, ‖S‖L(H−1,L2)}.

Similarly, we obtain

I4 =〈p∗h,τ − p∗, u∗h,τ − u∗〉L2(ΩT )

=〈S∗h,τ (yd − Sh,τ (u∗h,τ + yc))− S∗(yd − S(u∗ + yc)), u
∗
h,τ − u∗〉L2(ΩT )

=〈(S − Sh,τ )(u∗h,τ + yc), S(u∗h,τ − u∗)〉L2(ΩT ) + 〈(S∗ − S∗h,τ )(y∗h,τ − yd), u∗h,τ − u∗〉L2(ΩT )

− ‖S(u∗h,τ − u∗)‖2
L2(ΩT ) + 〈(S∗h,τ − S∗)yd, u∗h,τ − u∗〉L2(ΩT )

≤‖(S − Sh,τ )(u∗h,τ + yc)‖2
L2(ΩT ) +

2

α
‖(S∗ − S∗h,τ )(y∗h,τ − yd)‖2

L2(ΩT ) +
α

4
‖u∗h,τ − u∗‖2

L2(ΩT )

+
2

α
‖(S∗h,τ − S∗)yd‖2

L2(ΩT ) −
3

4
‖S(u∗h,τ − u∗)‖2

L2(ΩT )

≤4(C3)2((h2 + τ)2 +
1

α
(h2 + τ)2) +

α

4
‖u∗h,τ − u∗‖2

L2(ΩT ) −
3

4
‖S(u∗h,τ − u∗)‖2

L2(ΩT ).

(3.62)
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Finally, for I5, by Proposition 3.10, we have

I5 =β(‖u∗h,τ‖L1(ΩT ) − ‖u∗‖L1(ΩT ) + ‖Πh,τu
∗‖L̃1

h(ΩT ) − ‖u
∗
h,τ‖L̃1

h(ΩT ))

≤β(
√
µ(ΩT )C3

Ih
2‖u∗h,τ‖L2((0,T );H1(Ω)) + C ′πh

2‖u∗‖L2((0,T );H1(Ω)) + 2τ + 2ch2)

≤C4β(h2‖u∗h,τ‖L2((0,T );H1(Ω)) + α−1h2 + h2 + τ)

≤C4β(h2(‖u∗‖L2((0,T );H1(Ω)) + ‖u∗h,τ − u∗‖L2((0,T );H1(Ω))) + α−1h2 + h2 + τ)

(3.63)

where C4 := max{
√
µ(ΩT )C3

I , C
′
πC1, 2, 2c}.

Hence, it remains to estimate ‖u∗h,τ − u∗‖L2((0,T );H1(Ω)).

‖u∗h,τ − u∗‖L2((0,T );H1(Ω)) ≤‖u∗h,τ − Ih,τu∗‖L2((0,T );H1(Ω)) + ‖Ih,τu∗ − u∗‖L2((0,T );H1(Ω))

≤CH‖u∗h,τ − Ih,τu∗‖L2(Ω)h
−1 + C4

I ‖u∗‖L2(H1(Ω,[0,T ])) + C2
I τ

≤CHh−1(‖u∗h,τ − u∗‖L2(Ω) + ‖u∗ − Ih,τu∗‖L2(Ω))

+ C4
I ‖u∗‖L2(H1(Ω,[0,T ]) + C2

I τ

≤CHh−1‖u∗h,τ − u∗‖L2(Ω) + CHCI(‖u∗‖L2((0,T );H1(Ω)) + h−1τ)

+ C4
I ‖u∗‖L2(H1(Ω,[0,T ]) + C2

I τ

≤C5h
−1(‖u∗h,τ − u∗‖L2(Ω) + τ) + 2α−1.

(3.64)

where C5 := max{CH , CHCI , C4
IC1, C

2
I , τ0}.

Hence we have

I5 ≤C4β(h2(‖u∗‖L2((0,T );H1(Ω)) + ‖u∗h,τ − u∗‖L2((0,T );H1(Ω))) + α−1h2 + h2 + τ)

≤C4β(h2α−1C1 + C5h(‖u∗h,τ − u∗‖L2(Ω) + τ) + 3α−1h2 + h2 + τ)

≤C6βh‖u∗h,τ − u∗‖L2(Ω) + C6β(2α−1h2 + hτ + h2 + τ)

≤2(C6)2β2h2 +
1

8
‖u∗h,τ − u∗‖2

L2(Ω) + C6β(2α−1h2 + hτ + h2 + τ).

(3.65)
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From (3.57), (3.58), (3.61), (3.62) and (3.65), we can conclude that

α

8
‖u∗h,τ − u∗‖2

L2(ΩT ) +
1

4
‖S(u∗h,τ − u∗)‖2

L2(ΩT )

≤C2((α−1h2 + τ) + α(α−1h+ τ)2) + 5(C4)2((α−1h2 + τ)2 + (h2 + τ) +
1

α
(h2 + τ)2)

+ (2(C6)2β2h2 + C6β(2α−1h2 + hτ + h2 + τ))

≤C0((α−1 + 1 + α−1β + β2)h2 + (α−2 + α−1)h4 + (1 + β)τ + (α + 1 + α−1)τ 2 + βhτ),

(3.66)

where the last inequality is by the fact that when h, τ are chosen small enough,

many terms can be omitted, and C0 := max{C2, 5(C4)2, 2(C6)2, 2C6}.

Corollary 3.1. Let (y∗, u∗) be the optimal solution of problem (P), (y∗h,τ , u
∗
h,τ ) be

the optimal solution of problem (P̂h,τ ), then for each h0 > 0, τ0 > 0, α0 > 0, β0 > 0

small enough, there exists a constant C0, such that for all 0 < α ≤ α0, 0 < h ≤

h0, 0 < τ ≤ τ0, 0 < β ≤ β0, it holds

‖u∗h,τ − u∗‖L2(ΩT ) ≤ C0(
h+ τ

α
+
h2

α
3
2

+

√
τ

α
+

√
βhτ

α
),

‖S(u∗h,τ − u∗)‖L2(ΩT ) ≤ C0(
h+ τ√
α

+
h2

α
+
√
τ +

√
βhτ),

‖y∗h,τ − y∗‖L2(ΩT ) ≤ C0(
h+ τ√
α

+
h2

α
+
√
τ +

√
βhτ).

(3.67)

Remark 3.4. Later in the numerical experiment, we will check the error order with

respect to the mesh-size h to be at least 1, given fixed α, β, τ .





Chapter 4
Accelerated block coordinate descent

method

In this chapter, we consider solving the dual problems of the discretized primal

problems (Ph,τ ) and (P̃h,τ ).

Conventionally, we can discretize the primal problem with the approximate L1-

norm, and then derive the dual problem. In this way, we will apply the inexact

majorized ABCD method introduced in Chapter 2 to solve the discretized problem.

As the approximate discretized L1-norm is decoupled, we call problem (Ph,τ ) the

decoupled SPOCP.

Besides, to avoid the approximation of L1-norm, we study the dual problem

(D). Through solving the dual problem, we avoid the error caused by approxima-

tion. For implementation, we utilize the symmetric Gauss-Seidel technique, which

is introduced in Section 2.2, with the inexact majorized ABCD method.

4.1 The sGS-imABCD method for solving SPOCPs

We discretize the dual problem and obtain the following discretized problem,

min
µ,λ,p∈Rm

Φ(µ, λ, p) :=
1

2
‖A∗p−Byd‖2

B−1 +
1

2α
‖λ+ µ− p‖2

B + 〈Byc, p〉

+ δ[−β,β](λ) + δ∗[a,b](Bµ)− 1

2
‖yd‖2

B.

(D̂h,τ )

45
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It is an unconstrained optimization problem with two separable nonsmooth

terms. Therefore we apply the previous mentioned imABCD method to solve it.

For later use, we also provide its pre-dual problem as follow,

min
y,u,v,w∈Rm

J(y, u, v, w) =
1

2
‖y − yd‖2

B +
α

2
‖u‖2

B + β‖Bu‖1 + δ[a,b](u)

s.t. Ay = B(u+ yc),

B(u− v) = 0,

B(u− w) = 0.

(4.1)

where p, λ, µ are the Lagrangian multipliers for the equalities constraints, respec-

tively.

4.1.1 Numerical implementation

Now, we can apply Algorithm 1 to (D̂h,τ ), with µ taken as one block, and (λ, p)

as the other one. For convenience, we denote z = (µ, λ, p) and

φ(z) = φ(µ, λ, p) =
1

2α
‖λ+ µ− p‖2

B −
1

2
‖yd‖2

B. (4.2)

Obviously φ is quadratic with the Hessian matrix

Q =
1

α


B B −B

B B −B

−B −B B

 . (4.3)

Additionally, we assume that there exist two self-adjoint positive semidefinite op-

erators D1 and D2, such that Assumation 2.1 holds. Then we can majorize φ(µ, λ, p)

at z′ = (µ′, λ′, p′) as

φ(z) ≤ φ̂(z; z′) =φ(z) +
1

2
‖µ− µ′‖2

D1
+

1

2

∥∥∥∥∥∥
 λ

p

−
 λ′

p′

∥∥∥∥∥∥
2

D2

. (4.4)
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The framework of imABCD for (D̂h,τ ) is given below:

Algorithm 2: (imABCD algorithm for (D̂h,τ))

Input: (µ1, λ1, p1) = (µ̃0, λ̃0, p̃0) ∈ dom(δ∗[a,b])× [−β, β]× RNh . Set k = 1, t1 = 1.

Output: (µ̃k, λ̃k, p̃k).

Iterate until convergence

Step 1 Compute

µ̃k = arg min δ∗[a,b](Bµ) + φ(µ, λk, pk) +
1

2
‖µ− µk‖2D1

− 〈δkµ, µ〉,

(λ̃k, p̃k) = arg min δ[−β,β](λ) +
1

2
‖A∗p−Byd‖2B−1 + 〈Byc, p〉

+φ(µ̃k, λ, p) +
1

2

∥∥∥∥∥∥
 λ

p

−
 λk

pk

∥∥∥∥∥∥
2

D2

− 〈δkλ, λ〉 − 〈δkp , p〉.

Step 2 Set tk+1 =
1+
√

1+4t2k
2 and βk = tk−1

tk+1
, Compute

µk+1 = µ̃k + βk(µ̃
k − µ̃k−1), pk+1 = p̃k + βk(p̃

k − p̃k−1),

λk+1 = λ̃k + βk(λ̃
k − λ̃k−1).

Now we discuss the issue on how to choose the two operators D1 and D2.

From the perspective of both theoretical analysis and numerical implementation,

it is very important to choose two appropriate and effective operators D1 and D2.

For the numerical efficiency, the general principle is to achieve the goal that both

D1 and D2 can be as small as possible while the corresponding subproblems can be

solved relatively easily.

Firstly, for the proximal term 1
2
‖µ− µk‖2

D1
, we choose

D1 :=
1

α
γBC−1B − 1

α
B, where γ =

 4 if n = 2,

5 if n = 3.
(4.5)

Here C is defined in section 3.1 as C = Diag(Wh,Wh, ·,Wh), with Wh being the

stiffness matrix.

The µ-subproblem, though, does not have an analytical solution, we can solve it

in a rather cheap way. The details will be explained later.
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Next, we focus on the choice of the operator D2. The objective function of (λ, p)-

subproblem is a sum of a two-block quadratic function and a non-smooth function

involving only the first block λ. Inspired by the inexact sGS technique, which is

introduced in Section 2.2, we hope to find a proper D2 such that solving the above

subproblem is equivalent to solve the following subproblems by order:
p̂k = arg min

1

2
‖A∗p−Byd‖2

B−1 +
1

2α
‖p− λk − µ̃k‖2

B + 〈Byc, p〉 − 〈δ̂kp , p〉,

λ̃k = arg min
1

2α
‖λ− (p̂k − µ̃k)‖2

B + δ[−β,β](λ)− 〈δkλ, λ〉+
1

2
‖λ− λk‖2

Dλ ,

p̃k = arg min
1

2
‖A∗p−Byd‖2

B−1 +
1

2α
‖p− λ̃k − µ̃k‖2

B + 〈Byc, p〉 − 〈δkp , p〉.

(4.6)

Let

Q′ := 1

α

 B −B

−B B

 (4.7)

It is obvious that Q′11 = Q′22 = B, and thus Q′11, Q′22 are both positive definite.

Then by Theorem 2.1, we only need to choose the D2 = sGS(Q′) +Dλ.

Here we add a proximal term Dλ, in order to make the λ-subproblem in (4.6)

have a decouple form. To address this problem and make the subproblem having a

closed form solution, we take advantage of the relationship between the matrix B

and the matrix C and set Dλ = 1
α

(C −B).

In summary, we choose D2 to be

D2 = sGS(Q′) +
1

α

 C −B 0

0 0

 =
1

α

 C 0

0 0

 . (4.8)

where sGS(·) can refer to Section 2.2.

Based on the choice of D1 and D2, we get the majorized Hessian matrix Q̂ as

Q̂ = Q+
1

α


γBC−1B −B 0 0

0 C 0

0 0 0

 . (4.9)

Then, according to the choice of D1 and D2, we give the detailed framework of

our inexact sGS based majorized ABCD method (called sGS-imABCD) for (D̂h,τ )

as follows.
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Algorithm 3: (sGS-imABCD algorithm for (D̂h,τ))

Input: (µ1, λ1, p1) = (µ̃0, λ̃0, p̃0) ∈ dom(δ∗[a,b])× [−β, β]× RNh . Let {εk} be a

nonincreasing sequence of nonnegative numbers such that
∞∑
k=1

kεk <∞. Set

k = 1, t1 = 1.

Output: (µ̃k, λ̃k, p̃k)

Iterate until convergence,

Step 1 Choose error tolerance δkµ, δ̂
k
p , δ

k
p such that

max{‖δkµ|‖, ‖δ̂kp |‖, ‖δkp |‖} ≤ εk.

Compute

µ̃k = arg min
µ

1

2α
‖µ− (pk − λk)‖2B + δ∗[a,b](Bµ) +

1

2
‖µ− µk‖2D1

− 〈δkµ, µ〉,

p̂k = arg min
p

1

2
‖A∗p−Byd‖2B−1 +

1

2α
‖p− λk − µ̃k‖2B + 〈Byc, p〉 − 〈δ̂kp , p〉,

λ̃k = arg min
λ

1

2α
‖λ− (p̂k − µ̃k)‖2B + δ[−β,β](λ) +

1

2α
‖λ− λk‖2C−B,

p̃k = arg min
p

1

2
‖A∗p−Byd‖2B−1 +

1

2α
‖p− λ̃k − µ̃k‖2B + 〈Byc, p〉 − 〈δkp , p〉.

Step 2 Set tk+1 =
1+
√

1+4t2k
2 and βk = tk−1

tk+1
, Compute

µk+1 = µ̃k + βk(µ̃
k − µ̃k−1), pk+1 = p̃k + βk(p̃

k − p̃k−1),

λk+1 = λ̃k + βk(λ̃
k − λ̃k−1).

Numerical computation of the block µ and λ subproblems

For the first subproblem of Algorithm 3 in kth iteration, at first glance, there

is no closed form solution for the variable µ. However, if we introduce an artificial

variable ξ = Bµ, we can obtain a closed form solution about ξ. Thus, solving

the subproblem about the variable µ can be tranformed to solving the following
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subproblem first,

ξ̃k = arg min
1

2α
‖ξ −B(pk − λk)‖2

B−1 + δ∗[a,b](ξ) +
1

2α
‖ξ − ξk‖2

γC−1−B−1

= arg min
1

2α
‖ξ − (ξk +

1

γ
C(pk − λk − µk))‖2

γC−1 + δ∗[a,b](ξ).
(4.10)

then solve for µ̃k = B−1ξ̃k.

To solve (4.10), we first introduce the proximal mapping proxfM(·) with respect

to a self-adjoint positive definite linear operator M, which is defined as,

proxfM(x) = arg min
z
{f(z) +

1

2
‖z − x‖2

M}, ∀x ∈ X , (4.11)

where f is a closed proper convex function f and X is a finite-dimensional real

Euclidean space.

For the proximal mapping, we have the following Moreau identity which is shown

in [51, Proposition 2.4]:

x = proxfM(x) +M−1proxf
∗

M−1(Mx), (4.12)

where f ∗ is the conjugate function of f . Thus, making use of the Moreau identity

(4.12), we derive

ξ̃k = vk − α

γ
CΠ[a,b](

γ

α
C−1vk), (4.13)

where

vk = Bµk +
1

γ
C(pk − λk − µk). (4.14)

Hence we obtain the analytic form of solution for the z-subproblem (4.10). And

this is the important reason why we choose the proximal term 1
2α
‖µ− µk‖2

γBC−1B−B

for µ.

Now we discuss the numerical method to solve for µ̃k = B−1ξ̃k. Based on the

eigenvalues bounds for the mass matrix given in [83], we suggest that it is an ap-

propriate choice to use a fix number steps of Chebyshev semi-iteration to represent

approximation of B−1. For more details on the Chebyshev semi-iteration method we

refer to [65,84]. In actual numerical implementation, we use 20 steps of Chebyshev
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semi-iteration and set the error tolerance to be 10−12, which can guarantee the error

vector ‖δkµ‖2 ≤ εk.

For the block λ, since the matrix C is a diagonal positive definite matrix, we

easily derive that

λ̃k = Π[−β,β](s
k),

where sk = λk + C−1B(p̂k − µ̃k − λk).

For the approximate discretized problem, we compute the λ-subproblem in a

similar way, 
wk =

1

γ
(pk − µk + γC−1Bλk − λk),

z =Π[−β,β](w
k),

λ =B−1C(z).

(4.15)

An efficient iteration method and preconditioner for the block p̂ subprob-

lem

The main computation time of our sGS-imABCD algorithm is on solving p-

subproblem. Thus, it is crucial to improve the efficiency of our algorithm by em-

ploying a fast strategy to solve the p-subproblems. For the subproblem about p̂k,

if we ignore the error vector δ̂kp , it is obvious to see that solving the subproblem is

equivalent to solving the following system:

AB−1(A∗p̂k −Byd) +
1

α
B(p̂k − λk − µ̃k) +Byc = 0. (4.16)

Since A∗p = B(yd − y), then (4.16) can be rewritten as:

Awk+1 ≡

 B −αA

A∗ B

 p̂k

ŷk

 =

 B(λk + µ̃k − αyc)

Byd

 . (4.17)

Clearly, the linear system (4.17) is a special case of the generalized saddle-point

system, thus some Krylov-based methods can be used to inexactly solve the linear

system by constructing a good preconditioner. From the structure of the equation,
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the preconditioner is given as

P =
1

α

 B −αA

A∗
√
α(A+ A∗)

 . (4.18)

which is introduced in [3], is employed to precondition the generalized minimal

residual (GMRES) method for solving (4.17). About the spectral properties of the

preconditioned matrix P−1A, we introduce the following theorem, see [3] for more

details.

Theorem 4.1. [3, Proposition 4]. When P is used to precondition the matrix A,

the eigenvalues of the preconditioned matrix P−1A are contained within the interval

[1
2
, 1] if α > 0 and ker(A) ∩ ker(B) = {0}. Therefore, the bound κ(P−1A) ≤ 2.

Since B is positive definite, we can see that ker(A) ∩ ker(B) ⊂ ker(B) = {0}.

In actual implementations, the action of the preconditioning matrix, when used

to precondition the Krylov subspace methods, is realized through solving a sequence

of generalized residual equations of the form

P

 x

y

 =

 f1

f2

 . (4.19)

By making use of the structure of the matrix P , we obtain the following procedure

for computing the vector

 x

y

,

Algorithm 4: Numerical implementation for (4.19)

1 . Solve H1g = f1 +
√
αf2.

2 . Compute Bg and f1 −Bg.

3 . Solve H2h = f1 −Bg.

4 . Compute x = g + h and y = −h/
√
α.

Here H1 = B +
√
αA∗, H2 = B +

√
αA.
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Remark 4.1. Noticed that B is block diagonal matrix, A∗ is block upper triangular

matrix, hence H1 is a block upper triangular matrix. Thus we can solve the linear

equation H1g = f1 +
√
αf2 from the last block to the first block. And each small

linear equations can be inexactly handled with some alternative efficient methods,

e.g., preconditioned conjugate gradient (PCG) method, Chebyshev semi-iteration or

some multigrid scheme. Similarly, we can see that H2 is a block lower triangular

matrix, and we can solve the equation from the first block to the last block.

It is well known that the convergence behavior of iterative solution methods will be

precisely characterized in terms of κ(Mh) and κ(Kh), which represents the condition

number of Mh and Kh, respectively. Then about the bounds on the condition number,

we can have the following results, one can see Proposition 1.29 and Theorem 1.32

in [31] for more details.

In addition, let (r̂k1 , r̂
k
2) be the residual error vector, which means: B −αA

A∗ B

 p̂k

ŷk

 =

 B(λk + µ̃k − αyc) + r̂k1

Byd + r̂k2

 , (4.20)

and δ̂kp = r̂k1/α + AB−1r̂k2 , thus in the numerical implementation we can require

‖r̂k1‖2 + ‖r̂k2‖2 <
εk

max{1/α, ‖A‖2‖B−1‖2}
, (4.21)

to guarantee the error vector ‖δ̂kp‖2 ≤ εk.

An efficient predictor for the block p̃ subproblem

In Step 1 of Algorithm 3, actually we do not need to solve the p block subproblem

twice in the majority situation. In practice, to improve the efficiency of our sGS-

imABCD algorithm, we design an efficient predictor for the block p̃ subproblem to

check whether to solve it.

Obviously, to solve the block p̃ subproblem, we only need to replace λk by λ̃k in

the right-hand term of (4.17). Then we have B −αA

A∗ B

 p̃k

ỹk

 =

 B(λ̃k + µ̃k − αyc)

Byd

 . (4.22)
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Hence, all the numerical techniques for the block p̂ is also applicable for the block

p̃.

We can often avoid solving the linear system if p̂k is already sufficiently close to

p̃k. More specifically, if we employ p̂k to approximate p̃k, then the residual vector

for (4.22) is given by  r̃k1

r̃k2

 =

 B(λ̃k − λk)− r̂k1
−r̂k2

 , (4.23)

which means δ̃kp = 1
α

(B(λ̃k − λk)− r̂k1)− A∗B−1r̂k2 .

If the condition

‖r̃k1‖2 + ‖r̃k2‖2 <
εk

max{1/α, ‖A‖2‖B−1‖2}
, (4.24)

is satisfied, which also guarantees that ‖δ̃kp‖2 ≤ εk, then we need not solve the linear

system (4.22) and take p̃k = p̂k.

In order to measure the accuracy of an approximate optimal solution (µ, λ, p)

for (D̂h,τ ), we can introduce the KKT condition for (Ph,τ ) and (D̂h,τ ) as below

0 = B(y − yd) + A∗p,

0 = αu− p+ λ+ µ,

0 = Ay −Bu−Byc,

0 = u− Π[a,b](u+Bµ),

0 = λ− Π[−β,β](λ+Bu).

(4.25)

Thus, let ε be a given accuracy tolerance, we terminate our sGS-imABCD method

when η < ε.

The relative residual η is given by

η = max {η1, η2, η3, η4}, (4.26)

where

η1 =
‖B(y − yd) + A∗p‖

1 + ‖Byd‖
, η2 =

‖Ay −Bu−Byc‖
1 + ‖Byc‖

,

η3 =
‖u− Π[a,b](u+Bµ)‖

1 + ‖u‖
, η4 =

‖λ− Π[−β,β](λ+Bu)‖
1 + ‖λ‖

,

and u = (p− λ− µ)/α.
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4.1.2 Convergence results

From Chapter 2, we know that we only get the convergence of optimal value for

the method to solve the general problems. However, the convergence of KKT or

solution sequence can be obtained for our SPOCPs and decoupled SPOCPs.

The result is based on the convergence of optimal value. Firstly we prove the

second order growth condition, then use it to show the convergence of KKT condition

and primal solution sequence.

Second order growth condition for bounded sets

Proposition 4.1. Given any x̄ ∈ Rn, assume that U1 is a bounded neighborhood of

x̄, v̄ is a bounded vector in Rn, such that U1 ⊂ ηB1(0), v̄ ∈ ∂δ∗[a,b](x̄) for some η > 0,

then there exists κ > 0, the following inequality holds,

δ∗[a,b](x)− δ∗[a,b](x̄) ≥ 〈v̄, x− x̄〉+ κdist2(x, ∂δ∗[a,b](v̄)), ∀x ∈ U1, (4.27)

where κ depends on η and v̄ only.

Proof.

v̄ ∈ ∂δ∗[a,b](x̄)⇔ x̄ ∈ ∂δ[a,b](x̄). (4.28)

It is easy to compute that

∂δ[a,b](v̄i) =


{0}, v̄i ∈ (a, b),

R−, v̄i = a,

R+, v̄i = b.

(4.29)

(1) If v̄i ∈ (a, b)⇒ x̄i = 0.

Case 1: xi < 0⇒ δ∗[a,b](xi) = axi,

The inequality (4.27) is then

〈a, xi〉 − 0 ≥ 〈v̄i, xi − 0〉+ κ|xi|2. (4.30)

Since x ∈ U1 ⊂ CB1(0), we can choose κ = (v̄i − a)/η.
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Case 2: xi ≥ 0⇒ δ∗[a,b](xi) = bxi.

The inequality (4.27) is then

〈b, xi〉 − 0 ≥ 〈v̄i, xi − 0〉+ κ|xi|2. (4.31)

Similarly, we choose κ = (b− v̄i)/η.

(2) If v̄i = b⇒ (∂δ∗[a,b])
−1(v̄i) = R+.

Case 1: xi ≥ 0, then dist(xi,R+) = 0, the inequality (4.27) is obvious.

Case 2: xi < 0⇒ δ∗[a,b](xi) = axi,

The inequality (4.27) is then

〈a, xi〉 − 〈b, x̄i〉 ≥ 〈b, xi − x̄i〉+ κ|xi|2. (4.32)

We just need to choose κ = (b− a)/η.

(3) If v̄i = a, similarly, we pick κ = (b− a)/η, then the inequality (4.27) holds.

Hence, if we seek κ = min
a<v̄i<b

{b− v̄i, v̄i− a}, we show that the inequality (4.27) is

valid for all x ∈ U1 ⊂ ηB1(0).

Proposition 4.2. Given any x̄ ∈ Rn, assume that v̄ is a bounded vector in Rn, such

that v̄ ∈ ∂δ[−β,β](x̄) for some η > 0, then there exists κ > 0, the following inequality

holds,

δ[−β,β](x)− δ[−β,β](x̄) ≥ 〈v̄, x− x̄〉+ κdist2(x, (∂δ[−β,β])
−1(v̄)),∀x ∈ U2, (4.33)

where κ depends on β, v̄ only.

Proof. It is easy to compute that

∂δ[−β,β](x̄i) =


{0}, x̄i ∈ (−β, β),

R−, x̄i = −β,

R+, x̄i = β.

(4.34)
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(1) If x̄i ∈ (−β, β)⇒ v̄i = 0⇒ (∂δ[−β,β])
−1(v̄i) = (−β, β).

So dist(x, (∂δ[−β,β])
−1(v̄i)) = 0, the inequality (4.33) holds automatically.

(2) If x̄i = β ⇒ v̄i ∈ R+ ⇒ (∂δ[−β,β])
−1(v̄i) = {β}.

The inequality (4.33) is then

〈v̄i, xi − β〉+ κ|xi − β|2 ≤ 0. (4.35)

Since xi ∈ [−β, β], we take κ = v̄i/(2β), then

κ|xi − β|2 ≤ 〈v̄i, β − xi〉. (4.36)

(3) If x̄i = −β, similarly, we obtain that κ = −v̄i/(2β).

Hence we choose κ = min
v̄i 6=0
{|v̄i|/(2β)}, the inequality (4.33) holds for all x ∈

[−β, β].

Proposition 4.3. Let f1(µ) = δ∗[a,b](Bµ), given any x̄ ∈ Rn, assume that U2 is a

bounded neighborhood of x̄, v̄ is a bounded vector in Rn, such that U2 ⊂ ηB1(0), v̄1 ∈

∂f1(µ̄) for some η > 0, then there exists κ > 0, the following inequality holds,

δ∗[a,b](Bµ)− δ∗[a,b](Bµ̄) ≥ 〈v̄1, µ− µ̄〉+ κdist2(µ, (∂f1)−1(v̄1)),∀µ ∈ U2, (4.37)

where κ depends on η, v̄1, λmin(B).

Proof. By Proposition 4.1, we obtain

δ∗[a,b](Bµ)− δ∗[a,b](Bµ̄) ≥ 〈v̄, Bµ−Bµ̄〉+ κ1dist
2(Bµ, (∂δ∗[a,b])

−1(v̄))

≥ 〈v̄1, µ− µ̄〉+ κ1λ
2
min(B)dist2(µ, (∂f1)−1(v̄1)),

(4.38)

where v̄1 = Bv̄, κ = κ1λ
2
min(B), and the last inequality is because that (∂δ∗[a,b])

−1(v̄) ⊂

B(∂f1)−1(v̄1) and ‖Bµ−Bµ̄‖ ≥ λmin(B)‖µ− µ̄‖.
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Theorem 4.2. Let us denote

f1(µ) = δ∗[a,b](Bµ),

f2(λ) = δ[−β,β](λ),

f3(p) =
1

2
‖A∗p−Byd‖2

B−1 + 〈p,Byc〉,

g(µ, λ, p) =
1

2α
‖p− λ− µ‖2

B,

Φ(µ, λ, p) = g(µ, λ, p) + f1(µ) + f2(λ) + f3(p),

(4.39)

then we have the second order growth condition for Φ,

Φ(µ, λ, p)− Φ(µ̄, λ̄, p̄) ≥ κdist2((µ, λ, p), (∂Φ)−1(0)), (4.40)

for all p ∈ U1, µ ∈ U2, λ ∈ [−β, β], where U1, U2 ⊂ ηB1(0) are bounded sets, κ

depends on η, β, ū = (p̄−λ̄−µ̄)/α and the bounded linear subregularity subdifferential

sets.

Proof. By Proposition 4.2, 4.3 and the strong convexity of f3, we have

Φ(µ, λ, p)− Φ(µ̄, λ̄, p̄) =g(µ, λ, p)− g(µ̄, λ̄, p̄) + f1(µ)− f1(µ̄) + f2(λ)− f2(λ̄) + f3(p)

− f3(p̄)

≥〈∇g(µ̄, λ̄, p̄), (µ− µ̄, λ− λ̄, p− p̄)〉+ κ1dist
2((µ, λ, p), D1)

+ 〈v̄1, µ− µ̄〉+ κ2dist
2(µ,D2) + 〈v̄2, λ− λ̄〉+ κ3dist

2(λ,D3)

+ 〈∇f3(p̄)〉+
1

2
λmin(AB−1A∗)‖p− p̄‖2

=〈∇g(µ̄, λ̄, p̄) + (v̄1, v̄2, v̄3), (µ− µ̄, λ− λ̄, p− p̄)〉+ κ1dist
2(µ,D1)

+ κ2dist
2(µ,D2) +

1

2
λmin(AB−1A∗)‖p− p̄‖2,

(4.41)

where κ1 = 1
2
λ+

min(B) is half of the smallest positive eigenvalue of B.
D1 ={(µ, λ, p)|B(p− λ− µ)/α = −v̄1 = v̄2 = v̄3},

D2 =(∂f1)−1(v̄1),

D3 =(∂δ[−β,β])
−1(v̄2).

(4.42)
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Then we have −v̄1 = v̄2 = v̄3 = Bū. Thus κ2, κ3 depend on η, β, Bū, a, b only.

And we denote

D4 = {(µ, λ, p)|µ ∈ D2, λ ∈ D3, AB
−1(A∗p−Byd) +Byc = Bū}. (4.43)

Then from the bounded linear subregularity of the two polyhedral sets {D1, D4},

we have

max{dist((µ, λ, p), D1), dist((µ, λ, p), D4), } ≥ κ4dist((µ, λ, p), D1 ∩D4). (4.44)

Therefore, we get

Φ(µ, λ, p)− Φ(µ̄, λ̄, p̄) ≥ κdist2((µ, λ, p), (∂Φ)−1(0)),∀p ∈ U1, µ ∈ U2, λ ∈ [−β, β],

(4.45)

where κ is chosen as min{κ1, κ2, κ3,
1
2
λmin(AB−1A∗)} ∗ κ4.

Convergence results for discretized problem

From Cui’s thesis [26, Theorem 3.2], we obtain the iteration complexity of opti-

mal value as below.

Theorem 4.3. Assume that
∞∑
i=k

kεk <∞. Let {ξk} := {(pk, λk, µk)} be the sequence

generated by the Algorithm 3 to solve Problem (D̂h,τ ), ξ∗ ∈ (∂Φ)−1(0). Then we have

Φ(ξk)− inf
ξ

Φ(ξ) ≤ 2‖ξ0 − ξ∗‖2
H + c0

(k + 1)2
(4.46)

where c0 is a constant number, H := Diag(D1,D2 +Q22), and Φ(·) is the objective

function of the dual problem (D̂h,τ ).

From the previous section, we have the second order growth condition as follow,

κdist2(ξk, (∂Φ)−1(0)) ≤ Φ(ξk)− inf
ξ

Φ(ξ) = O(1/k2). (4.47)

Hence we arrive at that

dist(ξk, (∂Φ)−1(0)) = O(1/k). (4.48)
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By the definition of (∂Φ)−1(0), we know it is the set of points ξ = (p, λ, µ)

satisfying the following equations
AB−1A∗p− Ayd +B(p− λ− µ)/α = 0,

B(p− λ− µ)/α ∈ ∂f2(λ),

B(p− λ− µ)/α ∈ ∂f1(µ).

(4.49)

From equation (4.48) and property of the distance function, we know there exists

ξ̂k = (p̂k, λ̂k, µ̂k) ∈ (∂Φ)−1(0), such that ‖ξk − ξ̂k‖ = O(1/k).

Let rk = (rkp , r
k
λ, r

k
µ) = ξ̂k − ξk. For the sack of simplicity, we also denote

rk0 = (rkp − rkλ − rkµ)/α, xk = (pk − λk − µk)/α, then we have
AB−1A∗(pk + rkp)− Ayd +B(xk + rk0) = 0,

B(xk + rk0) ∈ ∂f2(λk + rkλ),

B(xk + rk0) ∈ ∂f1(µk + rkµ).

(4.50)

From Algorithm 3, we see that λk ∈ Domf2 = [−β, β], µk ∈ Domf1 = Rm. And

from above equation (4.50), we get λk + rkλ ∈ Domf2, µ
k + rkµ ∈ Domf1

Since f1, g1 are closed convex polyhedral functions, it is not hard to obtain the

properties as follow.

Proposition 4.4. If f is closed convex polyhedral function, then f are Lipschitz

continuous on its effective domain.

Proof. From [68, page 172], we know that any polyhedral function f can be expressed

in the form

f(x) = h(x) + δC(x), (4.51)

where

h(x) = max{〈x, b1〉 − β1, · · · , 〈x, bk〉 − βk}, (4.52)

C = {x|〈x, bk+1〉 ≤ βk+1, · · · , 〈x, bl〉 ≤ βl}. (4.53)

It is clear that its domain C is polyhedral convex set, which, therefore, is a locally

simplicial set.
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By [68, Theorem 10.2], we have f is continuous on its domain C.

And by the definition of h, we see that f is Lipschitz continuous in C with

L = max{b1, · · · , bk}.

Now we want to prove our main result, the convergence results as below.

Proposition 4.5. Let {ξk} := {(pk, λk, µk)} be the sequence generated by the Algo-

rithm 3 to solve Problem (D̂h,τ ), uk = (pk − λk − µk)/α , and denote ũk = ΠD(uk),

where D = Domf1 ∩Domf2, then

F (x̃k)− F (x∗) = O(1/k), (4.54)

where u∗ is the unique optimal solution of Problem (P̂h,τ ), and

F (u) :=
1

2
‖A−1B(u+ yc)− yd‖2

B +
α

2
‖u‖2

B + δ[a,b](u) + β‖Bu‖1.

Therefore,

‖ũk − u∗‖ = O(1/
√
k). (4.55)

Moreover, the KKT condition of Problem (P̂h,τ ) has an O(1/k) iteration com-

plexity.

Proof. From the coercivity of Φ, we obtain that {ξk}, {uk} are both bounded se-

quences.

For simplicity, we denote

F̃ (y, u, v, w) :=
1

2
‖A−1B(u+ yc)− yd‖2

B +
α

2
‖u‖2

B + δ[a,b](w) + β‖Bv‖1,(4.56)

h(v) := β‖Bv‖1. (4.57)

It is easy to obtain that

f2(λ) = δ[−β,β](λ) = h∗(Bλ). (4.58)

As we know

− Φ(ξk) = inf
y,u,v,w

L(y, u, v, w; ξk) = L(ȳk, ūk, v̄k, w̄k; ξk). (4.59)
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where L(y, u, v, w; ξ) := F̃ (y, u, v, w) + 〈p,Ay−Bu〉+ 〈λ,B(u− v)〉+ 〈µ,B(u−w)〉

is the Lagrangian function of primal problem (P̂h,τ ), (ȳk, ūk, v̄k, w̄k) satisfying the

following conditions, 

B(ȳk − yd) + A∗pk = 0,

αūk −B(pk − λk − µk) = 0,

Bλk ∈ ∂h(v̄k),

Bµk ∈ ∂δ[a,b](w̄
k).

(4.60)

Then

F (x̃k) + Φ(ξk) =F (x̃k)− L(ȳk, x̄k, v̄k, w̄k; ξk)

=(
1

2
‖A−1B(ũk + yc)− yd‖2

B −
1

2
‖ȳk − yd‖2

B

− 〈pk, Aȳk −B(ūk + yc)〉) + (
α

2
‖ũk‖2

B −
α

2
‖ūk‖2

B)

+ (h(ũk)− h(v̄k)− 〈λk, B(ūk − v̄k)〉)

+ (δ[a,b](ũ
k)− δ[a,b](w̄

k)− 〈µk, B(ūk − w̄k)〉)

:=I1 + I2 + I3 + I4.

(4.61)

From equation (4.60), we obtain that

ūk = (pk − λk − µk)/α = uk,

ȳk = yd −B−1A∗pk),

h(v̄k)− 〈v̄k, Bλk〉 = −h∗(Bλk),

δ[a,b](w̄
k)− 〈w̄k, Bµk〉 = −δ∗[a,b](Bµk).

(4.62)

From the choice of ξk, x̃k and equation (4.50), we get the following conditions
AB−1A∗(pk + rkp)− Ayd +B(uk + rk0) = 0,

h(uk + rk0)− 〈uk + rk0 , B(λk + rkλ)〉 = −h∗(B(λk + rkλ)) = f2(λk + rkλ),

δ[a,b](u
k + rk0)− 〈uk + rk0 , B(µk + rkµ)〉 = −δ∗[a,b](B(µk + rkµ)).

(4.63)

We have that uk + rk0 ∈ D = Domf1 ∩Domf2, so

‖ũk − ūk‖ =‖ΠD(uk)− uk‖ = dist(uk, D) ≤ ‖rk0‖ = O(1/k). (4.64)
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Hence

I1 =
1

2
‖A−1B(ũk + yc)− yd‖2

B −
1

2
‖ȳk − yd‖2

B − 〈pk, Aȳk −B(ūk + yc)〉

=〈BA−1(B(ũk + yc)− Aȳk), A−1B(ũk + yc) + ȳk − 2yd〉

− 〈pk, Aȳk −B(ūk + yc)〉

≤C(‖Aȳk −B(ũk + yc)‖+ ‖Aȳk −B(ūk + yc)‖)

≤C(2‖Aȳk −B(uk + yc)‖+ ‖B(ũk − uk)‖)

=C(2‖Ayd − AB−1A∗pk −B(uk + yc)‖+ ‖B(ũk − uk)‖)

≤C(2‖AB−1A∗rkp +Brk0‖+ ‖Brk0‖)

≤C(2‖AB−1A∗‖‖rkp‖+ 3‖B‖‖rk0‖) = O(1/k).

(4.65)

where the constant C is the upper bound of the sequences {ξk}k≥1, {xk}k≥1.

And

I2 =
α

2
‖ũk‖2

B −
α

2
‖uk‖2

B ≤ α‖B(ũk + uk)‖‖ũk − uk‖ = O(1/k). (4.66)

Later, we compute

I3 =h(ũk)− h(v̄k)− 〈λ̄k, B(ūk − v̄k)〉

=(h(ũk)− h(uk + rk0)) + (h(uk + rk0)− 〈B(λk + rkλ), u
k + rk0〉)

− (h(v̄k)− 〈v̄k, Bλk〉) + (〈B(λk + rkλ), r
k
0〉+ 〈Brkλ, uk〉)

=(h(ũk)− h(uk))− (h∗(B(λk + rkλ))− h∗(B(λk)))

+ (〈B(λk + rkλ), r
k
0〉+ 〈Brkλ, xk〉)

≤(L+ C)(‖rk0‖+ ‖rkλ‖) = O(1/k).

(4.67)

where the last inequality is due to the Lipschitz continuity of h and h∗ in their

effective domains, with L being the maximum of their Lipschitz constants.

Similarly, we prove I4 = O(1/k).

Hence

|F (ũk)− inf
u
F (u)| = |F (ũk) + inf

ξ
Φ(ξ)|

≤ |F (x̃k) + Φ(ξk)|+ |Φ(ξk)− inf
ξ

Φ(ξ)|

= O(1/k) +O(1/k2) = O(1/k).

(4.68)
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Thus, from the strongly convexity of F , we can easily deduce that

‖x̃k − x∗‖ = O(1/
√
k). (4.69)

Furthermore, we also obtain the convergence of KKT equations of the dual prob-

lem.

‖AB−1A∗pk − Ayd +B(pk − λk − µk)/α‖ = ‖AB−1A∗rkp +Brk0‖ = O(1/k)

(4.70)

Therefore, we arrive at the estimate

‖uk − Proxh(uk +Bλk)‖ = ‖uk + rk0 − rk0 − Proxh(uk +Bλk)‖

≤ ‖rk0‖+ ‖Proxh(uk + rk0 +B(λk + rkλ))− Proxh(uk +Bλk)‖

≤ 2‖rk0‖+ ‖B‖‖rkλ‖ = O(1/k).

(4.71)

Similarly we obtain the inequality

‖uk − Π[a,b](u
k +Bµk)‖ ≤ 2‖rk0‖+ ‖B‖‖rkµ‖ = O(1/k). (4.72)

4.2 Inexact majorized ABCD method for solving

decoupled SPOCPs

Moreover, for the sake of comparison of numerical experiments, we also apply

the inexact majorized ABCD method to solve the dual problem of (P̃h,τ ) in this

section.

Since the proximal mapping of q has a explicit form, we consider only introducing

one variable v, such that B(u− v) = 0. Thus we rewrite the primal problem as,
min
y,u∈Rm

J(y, u) =
1

2
‖y − yd‖2

B +
α

2
‖u‖2

B + q(v)

s.t. Ay = B(u+ yc),

B(u− v) = 0.

(4.73)
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Let us denote p, λ to be the Lagrangian multipliers for two equalities constraints,

respectively, then we obtain the dual problem, in its equivalent minimization form,

as below,

min
λ,p∈Rm

Φ̃(λ, p) :=
1

2
‖A∗p−Byd‖2

B−1 +
1

2α
‖λ− p‖2

B + 〈Byc, p〉

+ q∗(Bλ)− 1

2
‖yd‖2

B.

(D̃h,τ )

We present the details of the implementation and then prove the convergence

result of the primal and dual variables and the optimality condition in the following

subsections. Finally we exploit the uniformly mesh-independence property, which

means the number of iteration is independent of the mesh-size when the mesh is fine

enough.

4.2.1 Numerical implementation

Now, we can apply Algorithm 1 to (D̃h,τ ), with u = p, v = λ, and

p1(u) =
1

2
‖A∗p−Byd‖2

B−1 + 〈Byc, p〉 −
1

2
‖yd‖2

B,

p2(v) = q∗(Bλ), φ(u, v) =
1

2α
‖λ− p‖2

B.
(4.74)
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Then we present the algorithm framework as follows.

Algorithm 5: (inexact majorized ABCD algorithm for (D̃h,τ))

Input: (λ1, p1) = (λ̃0, p̃0) ∈ domq∗ × RNh . Let {εk} be a nonincreasing

sequence of nonnegative numbers such that
∞∑
k=1

kεk <∞. Set

k = 1, t1 = 1.

Output: (λ̃k, p̃k)

Iterate until convergence

Step 1 Choose error tolerance δ̂kp , δ
k
p such that max{‖δkp‖, ‖δkλ‖} ≤ εk. Compute

p̃k = arg min
p

1

2
‖A∗p−Byd‖2

B−1 +
1

2α
‖p− λk‖2

B + 〈Byc, p〉 − 〈δ̃kp , p〉,

= (αAB−1A∗ +B)−1(αAyd +B(λk − αyc) + αδ̂kp),

λ̃k = arg min
λ
q∗(Bλ) +

1

2α
‖λ− p̃k‖2

B +
1

2
‖λ− λk‖2

Dλ + 〈λ, δkλ〉.

Step 2 Set tk+1 =
1+
√

1+4t2k
2

and βk = tk−1
tk+1

, Compute

pk+1 = p̃k + βk(p̃
k − p̃k−1), λk+1 = λ̃k + βk(λ̃

k − λ̃k−1).

Remark 4.2. In general, we only need
∑∞

k=1 kεk < ∞. In practice, we tend to

compute the p-subproblem exact enough, such as let εk = min{ 1
k3
, 10−8}. When we

let εk = 0, we call this method exact ABCD method.

We now discuss the issue of the choice the proximal term Dλ.

It is an important thing to choose a proper proximal term. We hope to add a

proximal term as small as possible while expecting the subproblem can be solved

efficiently.

Since we have a nonsmooth functional q∗ in the subproblem, it is reasonable to

choose the proximal term such that the subproblem has an analytic solution. Firstly,

we introduce z = Bλ, then solving the λ-subproblem is equivalent to solving the
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follow systems
z̃k = arg min

z
q∗(z) +

1

2α
‖z −Bp̃k‖2

B−1 +
1

2
‖z −Bλk‖2

B−1DλB−1 ,

λ̃k = B−1z̃k + δλ

(4.75)

To make sure that the z-subproblem has a explicit solution, we choose

Dλ =
1

α
(γBC−1B −B), γ =

 4, if n = 2,

5, if n = 3.
(4.76)

Then we have

z̃k = arg min
z
q∗(z) +

1

2α
‖z −Bp̃k‖2

B−1 +
1

2
‖z −Bλk‖2

B−1DλB−1

=
1

γ
C(p̃k − λk) + zk − α

γ
CProx

α
γ
C

q (
1

α
(p̂k − λk) +

γ

α
C−1zk)

(4.77)

where

(Prox
α
γ
C

q (x)) : = Π[a,b](soft(x,
γ

α
β)),

soft(x, c) : = max(0, |x| − c) · sign(x).

(4.78)

Detail of the implementations of p-subproblem is the same as that in the previous

section. And so is the preconditioner issue. We omit the details here.

For the approximate discretized problem, the KKT is given as follow,

0 = B(y − yd) + A∗p,

0 = αu− p+ λ+ µ,

0 = Ay −Bu−Byc,

0 = u− Π[a,b](α
−1soft(αu+ C−1B(p− αu), β)).

(4.79)

4.2.2 Convergence results

In previous section, we see that ABCD method has the convergence results of

both the primal variable and KKT equations when is applied to solve the SPOCPs.

For the decoupled SPOCPs, we can also obtain the convergence results of the dual

variables, and the uniformly mesh-independence of the method.
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Our result is based on the convergence of the optimal value. Firstly we prove

convergence of the primal and dual variables and the KKT equations, and then we

show that the imABCD method has the uniformly mesh-independence property.

To prove convergence and uniformly mesh-independence, we also need the fol-

lowing property. You are referred to [85, Theorem 1.12] for the detail.

Proposition 4.6. Let M be a symmetric matrix given by

M =

 A B

B∗ C

 , (4.80)

Assume C positive definite, let us denote Schur complement of C by M/C := A −

BC−1B∗, then

(1) M is positive semidefinite ⇔M/C is positive semidefinite,

(2) M is positive definite ⇔M/C is positive definite.
(4.81)

Let us define

ψ(p, λ) :=
1

2
‖A∗p−Byd‖2

B−1 +
1

2α
‖λ− p‖2

B + 〈Byc, p〉. (4.82)

We obtain its Hessian  AB−1A∗ + 1
α
B − 1

α
B

− 1
α
B 1

α
B

 . (4.83)

From the above proposition, we know 1
α
B, which is in the bottom right corner of

the matrix, is positive definite. And its Schur complement, AB−1A∗, is also positive

definite. Thus the Hessian is positive definite.

Since both q∗ is a convex function with respect to (p, λ), and Φ̃(p, λ) = ψ(p, λ) +

q∗(λ), the objective function Φ̃ in the dual problem is also strongly convex with

modulus at least the smallest eigenvalue of ∇2ψ. Combining it with the convergence

of objective function value, we can obtain the convergence of dual variables, the KKT

conditions and the primal variable u := (p− λ)/α. The details are provided in the

following theorem.
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Theorem 4.4. Assume that u∗h,τ is the optimal solution of Problem (P̃h,τ ), ξ∗h,τ :=

(p∗h,τ , λ
∗
h,τ ) is the optimal solution of its dual problem. Let {ξkh,τ} := {(pkh,τ , λkh,τ )}

be the sequence generated by the exact majorized ABCD method, that is εk = 0

for all k, then there exists a constant c2, independent of the mesh-size h, τ and the

regularization parameter α, such that

‖ξ∗h − ξkh‖ ≤ c2/αk,

‖u∗h − ukh‖ ≤ c2/α
2k.

(4.84)

Proof. From the convergence of the optimal value, we have

Φ̃(ξkh)− Φ̃(ξ∗h) ≤
2‖ξ0

h − ξ∗h‖2
H

(k + 1)2
≤ Ch2

α(k + 1)2
, (4.85)

where

H =

 0 0

0 1
α
B + γ

α
(BC−1B −B)

 . (4.86)

As we analysis before the theorem, Φ̃ is strongly convex, then we can obtain

‖ξkh − ξ∗h‖ ≤
√
C/c

α(k + 1)
, (4.87)

where ch2 is the strongly convexity modulus for Φ̃.

Hence it sufficient to prove the ψ strongly convexity modulus ch2, with C inde-

pendent of the meshsize h, or equivalently, the hessian ∇2ψ is positive definite with

the modulus cλmin(B), where c is independent of the mesh-size.

Therefore, it is sufficient to prove that M − cDiag(B,B) is positive semidefinite.

By the previous proposition, we need to prove that there exists c > 0 such that both

( 1
α
− c)B � 0 and AB−1A∗ + ( 1

α
− c− 1

α−α2c
)B � 0.

Since we have λmin(AB−1A∗) = O(h2), λmax(B) = O(h2). There exists c1 > 0,

such that AB−1A∗ � c1B.

Thus, we require that c satisfies the following inequality
0 < c <

1

α
,

c− 1

α
+

1

α− α2c
≤ c1.

(4.88)
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Let x = 1 − αc ∈ (0, 1), then the inequality system is equivalent to prove the

existence of x ∈ (0, 1), such that f(x) := x2 + αc1x − 1 ≥ 0. It is not hard to

conclude that, when x ∈ [
−αc1+

√
α2c21+1

2αc1
, 1), f(x) ≥ 0. We hope to find as large c as

possible, so we set

c = (1− xmin)/α =
2c1

2 + αc1 +
√
α2c2

1 + 4
. (4.89)

And because u∗ = (p∗ − λ∗ − µ∗)/α and u∗h,τ = (p∗h,τ − λ∗h,τ − µ∗h,τ )/α, we can

obtain the second inequality easily.

From [26], we know c0 is just the sum of iεi. In theory, we require
Nh∑
i=1

iεi < ∞.

However, in practice, we often choose εi very small, like 10−10. If we specifically

choose εk = h2/k3, we can obtain the result below.

Corollary 4.1. Assume u∗h,τ be the optimal solution of the problem (P̂′h,τ ), ξ∗h,τ :=

(p∗h,τ , λ
∗
h,τ ) be the optimal solution of its dual problem. Let {ξkh,τ} := {(pkh,τ , λkh,τ )} be

the sequence generated by the imABCD method, with εk = h2/k3 for all k, then there

exists a constant c3, independent of the mesh-size h, τ and regularization parameter

α, such that

‖ξ∗h − ξkh‖ ≤ c3/αk,

‖u∗h − ukh‖ ≤ c3/α
2k.

(4.90)

Remark 4.3. From the corollary, we see that the convergence rate of the majorized

ABCD method can be affected by the parameter α. And we reconfirm it in the

numerical experiment part.



Chapter 5
Semismooth Newton augmented

Lagrangian method

From previous chapter, we know convergence rate of imABCD method would be

affected by the L2 regularization parameter α. Hence when α is very small or is

zero, it is necessary to consider other methods.

Impressed by the linear convergence rate of augmented Lagrangian method(ALM),

and motivated by the recently published paper [53], we see that the SSNAL method

would be a suitable method for choice. For the outer iteration, the SSNAL method

uses the augmented Lagrangian method, which has a better and better linear con-

vergence rate. For the inner iteration, we solve the ALM subproblem with semis-

mooth Newton method, which is very efficient when the initial point is good enough.

Furthermore, the SSNAL method makes good use of the sparsity structure of our

problem and thus it can reduce dimension of the linear equation for the ALM sub-

problem.

In this chapter, we present the details of the implementation of the SSNAL

method. And we proposed the convergence theory of the primal and dual vari-

ables. Then we give the uniform mesh-independence property of the SSNAL method.

Moreover, we also obtain the robustness of our method to the parameter α, given a

proper initial penalty parameter σ.

71
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For the case α equals to zero, the SSNAL method still solve the problem. And

we also present the convergence theory.

5.1 The SSNAL method for decoupled SPOCPs

In this section, we apply the SSNAL method to solve the approximate discretized

problem (P̃h,τ ).

We introduce one additional variable v, such that B(u− v) = 0 and we rewrite

problem (P̃h,τ ) as 
min
y,u∈Rm

J(y, u) =
1

2
‖y − yd‖2

B +
α

2
‖u‖2

B + q(v)

s.t. Ay = B(u+ yc),

B(u− v) = 0.

(5.1)

Denote p, λ to be the Lagrangian multipliers for two equalities constraints, re-

spectively, we obtain the dual problem, in its equivalent minimization form, as

below,

min
λ,p,z∈Rm

θ(p, λ, z) :=
1

2
‖A∗p−Byd‖2

B−1 +
1

2α
‖λ− p‖2

B + 〈Byc, p〉+ q∗(z)− 1

2
‖yd‖2

B

such that C−
1
2 (Bλ− z) = 0.

(D̃′h,τ )

Remark 5.1. Here actually we use the scaling technique to make the equality having

the same scale with the objective function, and moreover, when we look at its dual

problem, we obtain a better strong convexity modulus bounded below by a constant

independent of mesh-size.

5.1.1 Numerical implementation

The Lagrangian function of Problem (D̃′h,τ ) is given as

L(p, λ, z;ω) =
1

2α
‖p−λ‖2

B+
1

2
‖A∗p−Byd‖2

B−1 +q∗(z)+〈p,Byc〉+〈ω,C−
1
2 (Bλ−z)〉,



5.1 The SSNAL method for decoupled SPOCPs 73

where ω is the Lagrangian multiplier for the equality C−
1
2 (Bλ − z) = 0. Actually

you will find that the optimal control u satifsies u = C−
1
2ω.

Applying the SSNAL method, we obtain that,

Algorithm 6: SSNAL method for problem (D̃′h,τ )

Iterate the following steps for k = 1, 2, · · ·

Step 1

(pk, λk) = arg min
p,λ

Lσk(p, λ, z(p, λ);uk) + 〈δp, p〉+ 〈δλ, λ〉 (5.2)

= arg min
p,λ

φ(p, λ) + 〈δkp , p〉+ 〈δkλ, λ〉, (5.3)

or equivalently to solve the equations (inexactly) for (pk, λk),
h1 :=

1

α
Bpk + AB−1(A∗pk −Byd)−

1

α
Bλk +Byc = 0,

h2 := − 1

α
Bpk +

1

α
Bλk +BProxC/σkq (σkC

−1Bλk + uk) = 0.
(5.4)

Step 2

zk = ProxσkC
−1

q∗ (Bλk+Cu/σk) = Bλ+
1

σk
Cu− 1

σk
CProxC/σkq (σkC

−1Bλk+u).

Step 3 Update the multiplier

uk+1 = uk + σkC
−1(Bλk − zk) = ProxC/σkq (σkC

−1Bλk + uk).

and the penalty parameter σk+1 = τσk.

Then check if residual of the KKT condition is less than given tolerance.

Here we define

(ProxC/σq (x)) : = Π[a,b](soft(x, σβ)),

soft(x, σβ) : = sgn(x) ·max{|x| − σβ, 0},

φ(p, λ) : = min
z
Lσ(p, λ, z;uk).
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And the KKT equation is given as
A∗p+B(y − yd) = 0,

Ay −B(u+ yc) = 0,

u− Π[a,b](α
−1soft(αu+ C−1B(p− αu), β)) = 0.

(5.5)

5.1.2 Efficient computation of subproblems

For the outer iteration, we know that augmented Lagrangian method has a

linear convergence rate. To make the whole algorithm efficient, we solve the inner

subproblem (5.4) with the famous semismooth Newton method.

Algorithm 7: Semismooth Newton method

Iterate the following steps for j = 0, 1, · · ·

Step 1 Select an element Vj ∈ ∂BF (xj) and find an approximate solution dj to

F (xj) + Vjd = 0.

Step 2 Let mj be the smallest nonnegative integer m, such that

f(xj + ρmdj)− f(xj) ≤ τρm〈∇f(xj), dj〉.

Step 3 Set xj+1 = xj + ρmdj.

For our problem, x = (p, λ), F (x) = (h1(x)T , h2(x)T )T and f(x) = φ(p, λ). We

then obtain the Newton equation as follow 1
α
B + AB−1A∗ − 1

α
B

− 1
α
B 1

α
B + σBQB

 dp

dλ

 =

 −h1

−h2

 (5.6)

where Q = C−
1
2 Q̂, Q̂ ∈ ∂ProxC/σq (σC−

1
2Bλ+u1) = ∂Π[a,b](soft(σC

− 1
2Bλ+u1, σβ)).

As C and Q̂ are both positive semi-definite diagonal matrices, Q is still diagonal,

and also positive semi-definite. Hence there exists a low rank matrix Q1 ∈ Rm×r,

such that Q = Q1Q
∗
1. Define r = rank(Q).
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There are two cases to consider, r = 0 and r 6= 0. To make use of the sparsity

structure, we apply the Schur complement technique and the Sherman-Morrison

formulas.

If r = 0, the Newton equation then degenerates into 1
α
B + AB−1A∗ − 1

α
B

− 1
α
B 1

α
B

 dp

dλ

 =

 −h1

−h2

 (5.7)

Obviously, it is equivalent to solve these equations in order
Ady = h1 + h2,

A∗dp = −Bdy,

dλ = dp − αH2.

(5.8)

If r 6= 0, we make use of the Schur complement to simplify the computation.

Firstly we obtain

(
1

α
B + σBQB)−1 = α(B−1 − ασQ1D

−1Q∗1) (5.9)

with Q1 satisfies Q = Q1Q
∗
1 and D := Ir + ασQ∗1BQ1.

Hence by the Schur complement, one obtains

(AB−1A∗ + σBQ1D
−1Q∗1B)dp = −h1 − h2 + ασBQ1D

−1Q∗1h2 := hp. (5.10)

Then we introduce an additional variable dy := −B−1A∗dp, and get σBQ1D
−1Q∗1B/ζ −A/ζ

A∗ B

 dp

dy

 =

 −hp/ζ
0

 (5.11)

where hp := −h1 − h2 + ασBQ1D
−1Q∗1h2, ζ = (1 + ασ)/σ.

To solve this non-symmetric two blocks system efficiently, we need to find a

proper preconditioner. We approximate the term σB∗Q1D
−1Q∗1B/ζ by B, then use

the preconditioner proposed in [3].

If we introduce one more variable dx = D−1Q∗1Bdp, and then obtain a three block

linear equation 
B 0 A∗

0 σD −σ(BQ1)∗

A −σBQ1 0




dy

dx

dp

 =


0

0

hp

 . (5.12)
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For this system, we choose the preconditioner to be Diag(B, σD,AB−1A∗).

Later we calculate dλ by dλ = dp − αH2 − ασQ1D
−1Q∗1(Bdp − αh2).

Finally we use the line search to get proper step length.

We summarize the whole process as the following algorithm.

Algorithm 8: SSNCG for subproblem (5.4)

Iterate the following steps for j = 0, 1, · · · .

Step 1. Solve the equation for djp,
B 0 A∗

0 σD −σ(BQ1)∗

A −σBQ1 0




djy

djx

djp

 =


0

0

hp

 .

and compute djλ by

djλ = djp − αH2 − ασQ1D
−1Q∗1(Bdjp − αh2).

Step 2. Line search: Let mk is the first nonnegative integer m, such that

φ(pj + ρmdjp, λ
j + ρmdjλ) ≤ φ(pj, λj) + τρm〈∇φ(pj, λj), (djp, d

j
λ)〉

Then set (pj+1, λj+1) = (pj, λj) + ρmk(djp, d
j
λ);

Check stopping criteria (B):

dist2(0, ∂φ(pj+1, λj+1)) ≤ min{ b
σk
δ2
k,
δ′2k
σ2
k

}‖uk+1 − uk‖2
C−1 .

If satisfied, stop and let (pk, λk) = (pj+1, λj+1). Otherwise go to Step 1.

where ∇φ(p, λ) = (h1, h2), with h1, h2 given in (5.4).

5.2 Convergence and uniformly mesh-independence

In this section, we will prove some convergence results for SSNAL method, in-

cluding the convergence of primal vairables u, the uniformly mesh-independence and
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the robustness to the parameter α.

Similar to Section 2.4, we introduce some notations for Problem (D̃′h,τ ).

Let x := (p, λ, z), and define

l(x, ω) := L(p, λ, z;ω), f(x) := sup
u
l(x;ω)g(ω) := inf

x
l(x, ω)

Tf = ∂f, Tg = −∂g, Tl(x1, x2) = {(u1, u2)|(u1,−u2) ∈ ∂l(x1, x2)}

and

T−1
f (v) := arg min

x∈Rn
{f(x)− x · v},

T−1
g (µ) := arg max

ω∈Rn
{g(ω) + ω · µ},

T−1
l (v, µ) := arg min

x∈Rn
max
ω∈Rm

{l(x, ω)− x · v + ω · µ},

According to Theorem 2.3, we only need to prove the metric subregularity of the

multi-functions Tg and Tl.

The following property gives us an approach to prove the subregularity of Tl.

Proposition 5.1. [62, Theorem 7.5]. Let ω̄ be a feasible solution to the dual problem

(D̃′h,τ ), and q be a convex piece-wise linear function. Then Tl is metric subregular at

((0, 0), (x̄, v̄)) and x̄ is a local optimal solution to problem (P̃h,τ ) if and only if the

following conditions are valid:

(i) the collection of Lagrange multipliers for problem (D̃′h,τ ) at x̄ given by

Λcom(ω̄) := {v ∈ Rn|∇xl(x̄, v) = 0, v ∈ ∂q∗(z̄)} is a singleton , {v̄}. (5.13)

(ii) second order sufficient optimality condition (SOSC) holds, i.e.

〈∇xxl(x̄, ω̄)y, y〉 > 0, for all 0 6= y ∈ Rm with By ∈ K(z̄, v̄). (5.14)

where z̄ = Bx̄,K(z̄, v̄) := {w ∈ T (z̄,Domq∗)|〈v̄, w〉 = dq∗(z̄)(w)} is the critical

cone for q∗ at (z̄, v̄) with dq∗(z̄)(w) := lim inf
u→w,t↓0

(q∗(z̄ + tu)− q∗(z̄))/t.

Under this proposition, we can prove the metric subregularity of Tg, Tl for our

problem.
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Proposition 5.2. For Problem (D̃′h,τ ), Tg is metrically subregular at ω̄ for origin,

and Tl is is metrically subregular at (x̄, ω̄) for origin.

Proof. We see that

Tg(ω) = −∂g(ω)

= BA∗−1B(A−1B(C−
1
2ω + yc)− yd) + αC−

1
2BC−

1
2ω + C−

1
2∂q(C−

1
2ω)

(5.15)

It is easy to verify that Tg is strongly monotone with modulus α/4. Hence Tg is

metric subregular at x for y, for all (x, y) ∈ gph(Tg).

To prove Tl is metric subregular, we only need to check the two conditions in

Proposition 5.1.

By Proposition 4.6, we can obtain that

∇2
xxl(x̄, ω̄) =

 1
α
B + AB−1A∗ − 1

α
B

− 1
α
B 1

α
B

 � 0

Thus (5.14) is then easy to verify.

For any feasible x = (p, λ, z), we can write down the Λcom(x) explicitly as a set

of point ω satisfying the following conditions

1

α
B(p− λ) + AB−1(A∗p−Byd) +Byc = 0,

1

α
B(λ− p) +BC−

1
2ω = 0,

0 ∈ ∂q∗(z)− C−
1
2ω,

C−
1
2 (Bλ− z) = 0.

Since the condition is also the KKT condition for problem (D̃′h,τ ), any point ω

satisfying the condition above should be the optimal solution to the dual problem

of (D̃′h,τ ), that is the optimal solution for the problem

min
ω∈Rm

J̃h(ω) =
1

2
‖AB−1C−

1
2ω − yd‖2

B +
α

2
‖C−

1
2ω‖2

B + q(C−
1
2ω). (5.16)

Due to the strongly convexity of the objective function, the optimal solution

should be unique. Thus (5.13) is also valid. Therefore, by Proposition 5.1, we

conclude that Tl is is metrically subregular at (z̄, x̄) for origin.



5.2 Convergence and uniformly mesh-independence 79

Then we can obtain the convergence result similar to Theorem 2.3.

Theorem 5.1. [28, Theorem 4.1] Suppose optimal solution set T−1
g (0) to Problem

(5.16) is nonempty. Let {(pk, λk, zk, uk)} be a sequence generated by the Algorithm

9, xk := (pk, λk, zk), ωk := C1/2uk. Then

(a) If Tg is metrically subregular at ω̄ for the origin with modulus κg, then there

exists k ≥ 0 such that for all k ≥ k̄,

dist(ωk+1, T−1
g (0)) ≤ θkdist(ω

k, T−1
g (0)), (5.17)

where

1 > θk =
(
κg/
√
κ2
g + σ2

k + 2δk

)
(1− δk)−1 → θ∞ = κg/

√
κ2
g + σ2

k

(b) If in addition to the metric subregularity of Tg at ω̄ for the origin, one has T−1
f (0)

is non-empty and bounded and the following condition on Tl: there exist two

constants κl ≥ 0 and ε > 0, any (x, ω) satisfying dist((x, ω), T−1
f × {ω̄}) ≤ ε,

dist((x, ω), T−1
l (0)) ≤ κldist(0, Tl(x, ω)). (5.18)

Then there exists k̃ > 0 such that for all k ≥ k̃, δk < 1, and

dist(xk+1, T−1
f (0)) ≤ θ′kdist(ω

k, T−1
g (0)), (5.19)

where θ′k = κlσ
−1
k (1 + δ′k)(1− δ′k)→ θ′∞ = κl/σ∞(θ′∞ = 0, if σ∞ =∞).

Here, we provide a more accurate convergence rate for our specific model prob-

lem.

Proposition 5.3 (New convergence rate). Suppose {uk} is the sequence generated

by the Algorithm 9, ωk := C1/2uk, then

‖ωk+1 − ω̄‖ ≤ (1 + ασk/4)−1 + δk
1− δk

‖ωk − ω̄‖. (5.20)
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Proof. By Remark 2.3, we know the sequence {ωk} can be regarded as generated

from the inexact PPA for the problem below

Pk(ω) := (I + σkTg)
−1(ω) = arg max

ω∈Rm
{g(ω)− (1/2σk)|ω − ωk|2}. (5.21)

We have ‖ωk+1 − Pk(ωk)‖ ≤ δk‖ωk+1 − ωk‖.

For simplicity, we define yk = ωk+1−Pk(ωk), then we have ‖yk‖ ≤ δk‖ωk+1−ωk‖

and ωk+1 − yk = Pk(ω
k).

And since Pk = (I + σkTg)
−1, we obtain (ωk − ωk+1 + yk)/σk ∈ Tg(ωk+1 − yk).

From the proof of Proposition 5.2, we see Tg is strongly monotone with modulus

α/4. By the definition of strong monotone and that 0 ∈ Tg(ω̄) we have

〈(ωk − ωk+1 + yk)/σk, ω
k+1 − yk − ω̄〉 ≥ α

4
‖ωk+1 − yk − ω̄‖2,

then

〈(ωk − ω̄)− (ωk+1 − yk − ω̄), ωk+1 − yk − ω̄〉 ≥ ασk
4
‖ωk+1 − yk − ω̄‖2.

So we get

(1 + ασk/4)‖ωk+1 − yk − ω̄‖2 ≤ 〈(ωk − ω̄), ωk+1 − yk − ω̄〉

≤ ‖ωk − ω̄‖‖ωk+1 − yk − ω̄‖.

Let both sides divided by ‖ωk+1 − yk − ω̄‖, and we obtain

‖ωk+1 − yk − ω̄‖ ≤ (1 + ασk/4)−1‖ωk − ω̄‖,

Hence we arrive at

‖ωk+1 − ω̄‖ ≤ (1 + ασk/4)−1‖ωk − ω̄‖+ ‖yk‖

≤ (1 + ασk/4)−1‖ωk − ω̄‖+ δk‖ωk+1 − ωk‖

≤ (1 + ασk/4)−1‖ωk − ω̄‖+ δk(‖ωk+1 − ω̄‖+ ‖ωk − ω̄‖)

As a result, we obtain

‖ωk+1 − ω̄‖ ≤ 1 + (1 + ασk/4)δk
(1 + ασk/4)(1− δk)

‖ωk − ω̄‖.
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Remark 5.2. It is easy to check that 1
1+ασ/4

< 1√
1+(ασ/4)2

. When ασ is large, like

4 or 40, the difference is small. Otherwise, when ασ is small, like 0.4 or 0.04, the

convergence rate can be a big difference. And in practice, α is often chosen very

small. Hence it is necessary for the new estimate of convergence rate.

It should be noticed that, although α is often chosen very small, we will pick

initial σ be very large, like 0.1/α, hence ασ → 0 will not happen. Thus SSNAL

method will enjoy a fast linear convergence rate.

Now we provide the convergence for the optimal control u and uniformly mesh-

independence of the SSNAL method.

Theorem 5.2. Let ūh,τ be the optimal solution to (D̃′h,τ ), {ukh,τ}k≥0 be sequences

generated from continuous and discretized augmented Lagrangian method, then for

all mesh size h, τ > 0, we have

‖C
1
2 (uk+1

h,τ − ūh,τ )‖ ≤
(1 + ασk/4)−1 + δk

1− δk
‖C

1
2 (ukh,τ − ūh,τ )‖. (5.22)

Therefore, we have

‖uk+1
h,τ − ūh,τ‖ ≤ C0ρ

k+1‖u0
h,τ − ūh,τ‖,

where ρ = ((1 + ασ0/4)−1 + δ0)/(1− δ0), C0 = c2/c1, c1, c2 are the same as that in

Proposition 3.11.

Proof. Let wkh,τ = C1/2ukh,τ , w̄h,τ = C1/2ūh,τ . Then from the previous proposition,

we can derive that

‖ωk+1
h,τ − ω̄h,τ‖ ≤

(1 + ασk/4)−1 + δk
1− δk

‖ωkh,τ − ω̄h,τ‖. (5.23)

Therefore

‖C
1
2 (uk+1

h,τ − ūh,τ )‖ ≤
(1 + ασk/4)−1 + δk

1− δk
‖C

1
2 (ukh,τ − ūh,τ )‖. (5.24)

Remember that C = Diag(Wh, · · · ,Wh) = 2Diag(Mh, · · · ,Mh). By Proposition

3.11, which states bounds of the eigenvalues for the stiffness matrix and the mass

matrix, we have 2c1 ≤ λmin(C) ≤ λmax(C) ≤ 2c2.
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Hence

‖uk+1
h,τ − ūh,τ‖ ≤ C0ρ

k+1‖u0
h,τ − ūh,τ‖, (5.25)

where ρ = ((1 + ασ0/4)−1 + δ0)/(1− δ0), C0 = c2/c1.

Remark 5.3 (Robustness). If we choose σ0 = 1/α, we obtain the convergence

rate ρ = ((1.25)−1 + δ0)/(1− δ0), independent of the parameter α. Hence, we can

conclude that the SSNAL method is robust to the parameter α.

In fact, J̃h is a strongly convex function with the modulus b = α/4+b0 > α/4, and

if again we choose the σ0 = 1/α, we have the convergence rate ρ = ((1 +ασ0/4)−1 +

δ0)/(1− δ0) = ((1.25+b0/(4α))−1 +δ0)/(1− δ0). Hence when α decreases, we obtain

a better convergence rate, which means the SSNAL method can deal with problems

with a small α better than that with a large one.

5.3 The SSNAL method for decoupled SPOCPs

with α being zero

Now we consider the model problem when α = 0, that is
min

y∈Y,u∈Uad
J(y, u) =

1

2
‖y − yd‖2

L2(ΩT ) + β‖u‖L1(ΩT )

s.t. Ay = B(u+ yc),

u ∈ Uad = [a, b]

(5.26)

We discretize the problem using the approximation discretization of L1-norm,

and obtain the discretize problem as
min
y,u∈Rm

J(y, u) =
1

2
‖y − yd‖2

B + q(u)

s.t. Ay = B(u+ yc).

(5.27)

We denote p as the Lagrangian multiplier for equality Ay −B(u+ yc) = 0, then

derive the dual problem as
min
p,z

θ(p, z) =
1

2
‖A∗p−Byd‖2

B−1 + q∗(z) + 〈p,Byc〉

s.t. C−
1
2 (Bp− z) = 0.

(5.28)
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5.3.1 Numerical implementation

In this subsection, we present the numerical implementation of SSNAL method.

The Lagrangian function of our problem is given as follow

L(p, z;ω) =
1

2
‖A∗p−Byd‖2

B−1 + q∗(z) + 〈p,Byc〉+ 〈ω,C−
1
2 (Bp− z)〉.

where ω is the Lagrangian multiplier for the equality C−
1
2 (Bp− z) = 0, and similar

with the previous section, we know u = C−
1
2ω.

Applying the SSNAL method, we obtain that

Algorithm 9: SSNAL method for Dual problem (5.28)

Iterate the following steps for k = 0, 1, · · ·

Step 1

pk = arg min
p
Lσk(p, z(p);u

k) + 〈δp, p〉

= arg min
p
φ̃(p) + 〈δp, p〉,

(5.29)

or equivalently to solve the equation (inexactly) for p,

h̃1 := AB−1(A∗p−Byd) +Byc +BProx
1
σk
C

q (σkC
−1Bp+ uk) = 0.

Step 2

zk = ProxσkC
−1

q∗ (Bpk+Cuk/σk) = Bpk+
1

σk
Cuk− 1

σk
CProxC/σkq (σkC

−1Bpk+uk).

Step 3 Update the multiplier

uk+1 = uk + σkC
−1(Bk − zk) = ProxC/σkq (σkC

−1Bpk + uk),

and the penalty parameter σk+1 = σk ∗ τ .

Then check the KKT conditions.

where

(ProxC/σq (x)) : = Π[a,b](soft(x, σβ)),

soft(x, σβ) : = sgn(x) ·max{|x| − σβ, 0},

φ̃(p) : = min
z
Lσ(p, z(p);uk).

(5.30)
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Afterward, to solve for the equations in Step 1, we use the semismooth Newton

method to solve the equation below,

(AB−1A∗ + σBQB)dp = −h̃1. (5.31)

where 
Q = C−

1
2 Q̂C−

1
2 Q̃,

Q̂ ∈ ∂Π[a,b](C
− 1

2 soft(σC−
1
2Bp+ u, σβ)),

Q̃ ∈ ∂soft(σC−
1
2Bp+ u, σβ).

(5.32)

Since C, Q̂, Q̃ are all positive semi-definite diagonal matrices, Q is also diagonal

and positive semi-definite, and there still exists a diagonal Q1 ∈ Rm×r, such that

Q = Q1Q
T
1 .

Let r = rank(Q). We consider for these two cases, r = 0 and r 6= 0.

If r = 0, the Newton equation is then

AB−1A∗dp = −h̃1. (5.33)

Obviously, it is equivalent to solve these equations in orderAdy = h̃1,

A∗dp = −Bdy.
(5.34)

If r 6= 0, one obtains that

(AB−1A∗ + σBQB)dp = −h̃1. (5.35)

And we introduce an additional variable dy := −B−1A∗dp, then have B A∗

− 1
σ
A BQB

 dy

dp

 =

 0

− 1
σ
h̃1

 (5.36)

To solve this non-symmetric two blocks system efficiently, we choose a specific

preconditioner similar to that in [3].

Then we use the line search to get proper step length.
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We write it as the following algorithm.

Algorithm 10: Semismooth Newton method for subproblem (5.29)

Iterate the following steps for j = 0, 1, · · · .

Step 1. Solve the equation for djp,

(AB−1A∗ + σBQB)djp = −h̃1.

Step 2. Line search: let mj be the first nonnegative integer such that

φ̃(pj + ρmdjp)− φ̃(pj) ≤ τρm〈∇φ̃(pj), djp〉 = τρm〈h̃1, d
j
p〉,

Then set pj+1 = pj + ρmjdjp.

Check stopping criteria (B′):

dist2(0, ∂φ̃(pj+1)) ≤ min

{
b

σk
δ2
k,

(
δ′k
σk

)2
}
‖uk+1 − uk‖2

C−1 .

If it is satisfied, stop and let pk = pj+1. Otherwise go to Step 1.





Chapter 6
Numerical experiments

In this chapter, we demonstrate the numerical experiments and results for solv-

ing some SPOCPs. From the numerical experiments, we reconfirm the theoretical

results given in previous chapters. And we also provide some comparison methods

to solve the decoupled SPOCPs. Numerical experiments show that our methods,

especially semismooth Newton augmented Lagrangian method(SSNAL), outperform

other methods given.

6.1 Comparison methods

In this section, we provide some efficient existing methods for solving the decou-

pled SPOCPs of the type,


min
y,u∈Rm

J(y, u) =
1

2
‖y − yd‖2

B +
α

2
‖u‖2

B + q(u)

s.t. Ay = B(u+ yc).

(6.1)

6.1.1 Inexact semi-proximal ADMM

This is an efficient algorithm proposed by Fazel, Maryam, Pong, Sun and Tseng

[34] in 2013.

87
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Here we rewrite our problem as
min
u,v∈Rm

J(u, v) =
1

2
‖A−1B(u+ yc)− yd‖2

B +
α

2
‖u‖2

B + q(v)

s.t. B
1
2 (u− v) = 0

(6.2)

We denote the λ̃ = B
1
2λ be the multiplier for the equality constraint. The

Lagrangian function is defined as

Lσ(u, v;λ) =
1

2
‖A−1B(u+ yc)− yd‖2

B +
α

2
‖u‖2

B + q(v) + 〈Bλ, u− v〉+
σ

2
‖u− v‖2

B.

(6.3)

Algorithm 11: (isPADMM algorithm for (6.2))

Input: (u0, v0, λ0). Set k = 1.

Output: (uk+1, vk+1, λk+1)

Iterate until convergence

Step 1

uk+1 = arg min
u

1

2
‖A−1B(u+ yc)− yd‖2B +

α

2
‖u‖2B + 〈Bλk, u〉+

σ

2
‖u− vk‖2B,

=(BA−1B + (α+ σ)A∗)−1(A∗(σvk − λk) +Byd −BA−1Byc).

(6.4)

Step 2

vk+1 = arg min
v

σ

2
‖v − uk+1‖2B − 〈Bλk, v〉+ q(v) +

σ

2
‖v − vk‖2C−B,

=Π[a,b](soft(v
k +

1

σ
C−1Bλk + C−1B(uk+1 − vk), β

σ
)).

(6.5)

Step 3 Update the multiplier λk+1 = λk + τσ(uk+1 − vk+1).

To solve the subproblem in Step 1, we introduce one additional variable y(=

A−1B(u+ yc)), and solve the linear system as follow Buk+1 +Byc − Ayk+1 = 0,

A∗((α + σ)uk+1 − σvk + λk) +B(yk+1 − yd) = 0,

⇔

 B −A

(α + σ)A∗ B

 uk+1

yk+1

 =

 −Byc
Byd + A∗(σvk − λk)


(6.6)
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The KKT condition for our problem is given as
B(y − yd) + A∗(αu+ λ) = 0,

Ay −B(u+ yc) = 0,

u− Π[a,b](α
−1soft(αu+ C−1B(p− αu), β)) = 0.

(6.7)

Obviously, this method can also deal with the case α = 0.

In this case, the third equation of the KKT system is changed to be

u− Π[a,b](Csoft(C
−1(u+Bλ), β)) = 0. (6.8)

6.1.2 Semismooth Newton method

Here we also provide the globalized semismooth Newton method for numerical

comparison.

We reduce our problem (6.1) as the form given as follows

min
u

J̃(u) =
1

2
‖A−1B(u+ yc)− yd‖2

B +
α

2
‖u‖2

B + β‖Cu‖1 + δ[a,b](u). (6.9)

Firstly, we see the KKT equations are
A∗p+B(y − yd) = 0,

Ay −B(u+ yc) = 0,

u− Π[a,b](α
−1soft(αu+ C−1B(p− αu), β)) = 0.

(6.10)

Or we can reduced it to be

F (u) = u− Π[a,b](α
−1soft(αu+ C−1B(Tu− αu), β)) = 0. (6.11)

where Tu = Su+B(A−∗B(A−1Byc − yd)), S = BA−∗BA−1B + αB � 0.

Due to the semismooth of the functions Π[a,b](·), soft(·, β), F is also semismooth.

We can then use semismooth Newton method to solve our problem.

To obtain a good enough solution to equation (6.11), we need to solve the linear

equations (6.10) up to a very high accuracy. For example, to obtain the accuracy of

10−5 for equation (6.11), we need to solve the equations (6.10) up to the accuracy
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10−5(hτ)2α. If we choose h = 2−5, τ = 2−6 and α = 5 × 10−5, we need to solve

equations (6.10) up to the accuracy 10−16.

Hence it is very costly to apply semismooth Newton method when the α is very

small or when the mesh-size is very fine.

To provide a globalized method, we will need the line search technique. Here

we use the line search technique mentioned in [63, Algorithm 1]. We present the

framework of globalized semismooth Newton method as follow.

Algorithm 12: (Globalized semismooth Newton method for (6.11))

Let σ ∈ (0, 1), iterate until convergence

Step 1. Select an Vk ∈ ∂BF (uk) and find an approximate solution dk to

F (uk) + Vkd = 0, (6.12)

such that

‖F (uk) + Vkd‖ ≤ ηk‖F (uk)‖, (6.13)

where ηk := min{η, ‖F (uk)‖}.

Step 2. Let mk be the smallest nonnegative integer m such that

f(uk + ρmdk)− f(uk) ≤ −σρmf(uk). (6.14)

Set uk+1 = uk + ρmkdk.

where f(u) = 1
2
‖F (u)‖2.

Another approach to apply the line search is to use the smoothing Newton

method, which require us to find a smoothing function for F . For the detail, you

can referred to [64].
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6.2 Numerical examples

We begin by describing the algorithmic details which are common to all examples

unless otherwise mentioned.

Discretization. As shown in Section 3.1, the discretization is carried out using

piecewise linear and continuous finite elements for the space and backward Euler for

the time.

The assembly of the mass and the stiffness matrices, as well as the lump mass

matrix, is left to the iFEM software package, see [20].

To present the finite element error estimates results, it is convenient to introduce

the experimental order of convergence (EOC), which is defined as follows: given two

grid sizes h1 6= h2, let

EOC :=
logE(h1)− logE(h2)

log h1 − log h2

, (6.15)

where E(h) with h > 0 is a positive error function.

It follows from this definition that if E(h) = O(hγ), then EOC ≈ γ. The error

function E(·) investigated in the present section is given by

E(h) := ‖u− uh‖L2(Ω). (6.16)

Initialization. For all numerical examples, we choose the initial values as zero

for all algorithms.

Parameter setting. For the isPADMM method, the step-length τ for La-

grangian multipliers is chosen as τ = 1.68, and the penalty parameter σ was initially

chosen as σ = α, and we update the σ every 10 iterations via the comparison of the

primal and dual feasibility.

For the SSNAL method, initially we choose σ = 1/α when α > 0, and increase

σ by multiplying a constant ρ. When α = 0, initially we choose σ = h2.

Stopping criterion. In our numerical experiments, we terminate all the algo-

rithms when the corresponding relative residual η < 10−5. We choose this tolerance

since the error estimate is at most O(h) ≥ 10−4 when h ≥ 2−10.
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Computational environment. All our computational results are obtained by

MATLAB Version 9.0(R2016a) running on a computer with 64-bit MacOS 10.12.6

operation system, Intel(R) 2.7 GHz Intel Core i5 and 8GB of memory.

6.2.1 Testing examples and setting

Before giving the specific examples, we first introduce the following procedure,

which can help us formulate sparse optimal control problems.

Algorithm 13: Construct the optimal control problem

Step 1 . Choose y∗ ∈ L2(H1
0 (Ω), [0, T ]) and p∗ ∈ L2(H1

0 (Ω), [0, T ]) arbitrarily.

Step 2 . Set

u∗ :=


min{p

∗ − β
α

, b}, on x ∈ ΩT : p∗(x) > β,

max{p
∗ + β

α
, a}, on x ∈ ΩT : p∗(x) < −β,

0, elsewhere.

Step 3 . Set yc = ∂ty
∗ −∆y∗ − u∗ and yd = −∂tp∗ −∆p∗ + y∗.

According to Proposition 3.6, we find that Algorithm 13 provides an optimal

solution (y∗, u∗) of the sparse optimal control problem (P). Thus we can construct

examples of which we know the exact solution through the above procedure.

We rewrite the problem as follow,

min J(y, u) =
1

2
‖y − yd‖2

L2(ΩT ) +
α

2
‖u‖2

L2(ΩT ) + β‖u‖L1(ΩT )

s.t. ∂ty −∆y =u+ yc, in ΩT := Ω× [0, T ],

y(·, t) =0 on ∂Ω× (0, T ),

y(x, 0) =0, x ∈ Ω

u ∈ Uad ={v|a ≤ v(x, t) ≤ b, a.e x ∈ Ω, t ∈ (0, T )}.

Example 6.1. Here, we consider the problem with control u ∈ L2(ΩT ) on the unit

square Ω = (0, 1)2, T = 1 with choices of α, β and box constraint [a, b] as below

(i) α = 0.5, β = 0.5, a = −1 and b = 1;
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(ii) α = 5× 10−5, β = 5× 10−3, a = −100 and b = 100.

It is a constructed problem, thus we set y∗ = 2xy sin(2πx) sin(2πy)t and p∗ =

2xy sin(2πx) sin(2πy)(1 − t). Then through Algorithm 13, we can easily get the

optimal control solution u∗, the source term yc and the desired state yd.

Example 6.2. In this example, we consider the problem with control u ∈ L2(ΩT )

with Ω = B1(0), T = 1, and the choices of α, β and box constraint [a, b] are as below

(i) α = 0.5, β = 0.5, a = −100 and b = 100;

(ii) α = 5× 10−5, β = 5× 10−3, a = −100 and b = 100.

And let r =
√
x2 + y2, define

p1(r) =



128αr2 + β − 1.5αa, if 0 ≤ r < 1/16,

β + 16αa(r − 1/8), if 1/16 ≤ r < 1/8,

a1r
3 + a2r

2 + a3r + a4, if 1/8 ≤ r < 3/16,

− β − 16αb(r − 3/16), if 3/16 ≤ r < 1/4,

256αb(r − 9/32)2 − β − 5/4αb, if 1/4 ≤ r < 5/16,

− β − 16αb(3/8− r), if 5/16 ≤ r < 3/8,

a5(r − 3/8)3 + a6(r − 3/8)2 + 16αb(r − 3/8)− β, if 3/8 ≤ r ≤ 1/2,

(6.17)

where

a1 = 16384β + 4096aα− 4096αb, a2 = 1792αb− 2048aα− 7680β,

a3 = 1152β + 336aα− 256αb, a4 = 12αb− 18aα− 55β,

a5 = 1024αb− 1024β, a6 = 192β − 256αb.

(6.18)

And the optimal adjoint function is given as

p(r, t) := 4p1(r)(1− t2). (6.19)
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Furthermore, we let

y6(r) = −16/9br3 + 3/2br2 + b9 log(b10r) + c6;

y5(r) = br2/4 + b7 log(b8r) + c5 + y6(5/16);

y4(r) = 16/9br3 − 3/4br2 + b5 log(b6r) + c4 + y5(1/4);

y3(r) = y4(3/16) + c3 + b3 log(b4r);

y2(r) = a/2r2 − 16/9ar3 + b1 log(b2r) + c2 + y3(1/8);

y1(r) = ar2/4 + c1 + y2(1/16).

(6.20)

where

b1 = 5/1536, b2 = 8, b3 = −35/1536, b4 = 16/3, b5 = 25/384,

b6 = 4, b7 = −55/384, b8 = 16/5, b9 = −845/1536, b10 = 8/3,

c1 = 5/1024, c2 = 25/1152, c3 = 0, c4 = 55/576,

c5 = −125/1024, c6 = −75/128;

(6.21)

And the optimal state function is given as

y∗(r, t) =

 4yi(r)t
2, if (i− 1)/16 ≤ r < i/16, i = 1, · · · , 6,

0, elsewhere.
(6.22)

Then through Algorithm 13, we can easily get the optimal control solution u∗,

the source term yc and the desired state yd.

Example 6.3. Here, we consider the problem with control u ∈ L2(ΩT ) on the unit

square Ω = (0, 1)2, T = 1, and we choose the parameters α, β and box constraint

[a, b] as below

(i) α = 0.5, β = 0.5, a = −0.5 and b = 0.5;

(ii) α = 5× 10−5, β = 5× 10−3, a = −30 and b = 30.

We choose yc = 104 sin 2πx sin 2πy, yd = sin(2πx) exp(2x) sin(2πy) sin(πt). Ob-

viously, this is an example with explicit optimal control unknown.

Example 6.4. Here, we consider the problem with control u ∈ L2(ΩT ) on the unit

square Ω = (0, 1)2, T = 1 with choices of α, β and box constraint [a, b] as below
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(i) α = 0.5, β = 0.5, a = −1 and b = 1;

(ii) α = 5× 10−5, β = 5× 10−3, a = −5 and b = 5.

To have a more complicate problem, we set y∗ = sin(πx) sin(πy)(8(t− 0.5)3 + 1)

and p∗ = 2β sin(2πx) exp(0.5x) sin(4πy)(t2−1), which is related to the parameter β.

Then through Algorithm 13, we can easily get the optimal control solution u∗, the

source term yc and the desired state yd.

Remark 6.1. Here, I will explain about the examples

1. Example 1, 2, 4 are examples with explicit optimal solution u constructed. We

can use them to check the error estimate and uniformly mesh-independence

results.

2. We choose large α (= 0.5) for two reasons. Firstly, according to Corollary

3.1, we have ‖u∗h,τ − u∗‖L2(ΩT ) ≤ C0(h/α + h2/α3/2), if β, τ are fixed. If α is

too small, the dominated term would be h2/α3/2. Hence we choose α = 0.5 to

check the error order with respective to the mesh-size is at least 1. Secondly,

we choose large α to check the efficiency of the imABCD method.

3. For different choices of α and β, we have provide the numerical results in Table

6.6 and Table 6.7, where we reconfirm the robustness of the SSNAL method.

6.2.2 Numerical results

Error order and error estimate

Firstly, we aim to check our error estimate given in Chapter 3.

Table 6.1, Table 6.2 and 6.3 show the iteration, residual and computation time,

L2 error and the experimental order of convergence(EOC) for both imABCD method

for (D̃h,τ ) and sGS-imABCD method for (D̂h,τ ) with the mesh-size varying from 2−3

to 2−7.
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From those tables, we see that the convergence order with respect to the mesh-

size h is always greater than 1 when the mesh is fine, which confirms our error

estimate of optimal control u with respective to meshsize h is at least O(h).

By comparing the performance of sGS-imABCD and imABCD methods for

(D̂h,τ ) and (D̃h,τ ), we also see the L2 error obtained from our new discretization

is often smaller than that from the approximate discretization.

Table 6.1: Example 1 (i) with α = 0.5, β = 0.5: the performance of imABCD for

(D̃h,τ ) and isGSABCD for (D̂h,τ ). Here I choose a fixed time-step τ = 2−6.

Method h Iteration Residual η CPU time/s ‖u∗h,τ − u∗‖L2 EOC

imABCD

2−3 18 5.46e-06 2.34 0.049138 -

2−4 17 8.98e-06 5.57 0.012785 1.94

2−5 18 7.12e-06 24.42 0.003910 1.54

2−6 18 9.86e-06 110.58 0.001241 1.66

2−7 19 6.68e-06 574.48 0.000411 1.59

sGS-imABCD

2−3 9 6.55e-06 1.10 0.032631 -

2−4 10 2.99e-06 2.93 0.010996 1.60

2−5 12 6.67e-06 13.52 0.003548 1.63

2−6 15 4.71e-06 78.82 0.001167 1.60

2−7 15 9.54e-07 375.15 0.000398 1.55
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Table 6.2: Example 2 (i) with α = 0.5, β = 0.5: the performance of imABCD for

(D̃h,τ ) and isGSABCD for (D̂h,τ ). Here I choose a fixed time-step τ = 2−6.

Method h Iteration Residual η CPU time/s ‖u∗h,τ − u∗‖L2 EOC

imABCD

2−3 17 9.67e-06 1.82 67.282657 -

2−4 16 6.25e-06 3.75 39.838774 0.76

2−5 16 6.57e-06 15.01 17.488693 1.19

2−6 18 7.51e-06 88.69 6.008151 1.54

2−7 18 9.85e-07 379.07 2.880253 1.39

sGS-imABCD

2−3 17 7.69e-06 1.63 67.297358 -

2−4 17 7.11e-06 3.75 39.800728 0.76

2−5 18 6.92e-06 14.78 17.498566 1.19

2−6 20 5.35e-06 73.94 5.968034 1.55

2−7 20 7.13e-06 372.34 2.861820 1.06

Table 6.3: Example 4 (i) with α = 0.5, β = 0.5: the performance of imABCD for

(D̃h,τ ) and isGSABCD for (D̂h,τ ). Here I choose a fixed time-step τ = 2−6.

Method h Iteration Residual η CPU time/s ‖u∗h,τ − u∗‖L2 EOC

imABCD

2−3 17 8.43e-06 2.01 0.2388831 -

2−4 18 5.53e-06 6.76 0.104037 1.20

2−5 17 7.40e-06 28.08 0.026016 1.99

2−6 16 8.00e-06 117.20 0.008680 1.58

2−7 17 7.47e-06 620.83 0.002995 1.54

sGS-imABCD

2−3 15 5.36e-06 1.45 0.126118 -

2−4 16 3.41e-06 3.81 0.080597 0.65

2−5 15 2.81e-06 16.89 0.023205 1.80

2−6 16 6.13e-06 80.01 0.008141 1.51

2−7 17 8.15e-06 393.83 0.002863 1.51
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Now let us check the uniformly mesh-independence of the sGS-imABCD method,

the imABCD method and the SSNAL method proven in Chapter 4 and Chapter 5.

From Table 6.1, Table 6.2, Table 6.3, we see that the iteration numbers of

the imABCD method and the sGS-imABCD method show some consistency that

they keep steady while the mesh-size refines, and we call it the uniformly mesh-

independence property. Especially, we find that the iteration numbers for imABCD

method stay almost the same for all the examples when mesh-size varies.

Table 6.4: The performance of SSNAL method for solving Example 1 (i), Example

2 (i) and Example 4 (i) with fixed time-step τ = 2−6. Here, iter is is the outer

iteration, Newton iter is the number of Newton equations solved.

h Index of performance Example 1(i) Example 2(i) Example 4(i)

2−3

iter(Newton iter) 8(7) 8(7) 8(7)

residual η 1.85e-06 2.46e-06 5.45e-06

CPU time/s 2.17 1.70 2.23

2−4

iter(Newton iter) 8(7) 8(7) 8(7)

residual η 3.07e-06 9.25e-06 2.57e-06

CPU time/s 3.84 3.64 4.10

2−5

iter(Newton iter) 8(7) 9(8) 9(8)

residual η 3.25e-06 1.15e-06 1.16e-06

CPU time/s 14.99 17.35 18.33

2−6

iter(Newton iter) 8(7) 8(7) 9(8)

residual η 2.52e-06 8.43e-06 1.12e-06

CPU time/s 68.21 82.83 82.80

2−7

iter(Newton iter) 8(7) 8(7) 8(7)

residual η 1.86e-06 6.62e-06 8.20e-06

CPU time/s 373.72 561.22 418.09

Table 6.4 provides the performance of SSNAL for the example 6.1(i), 6.2(i) and
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6.4(i) with the mesh-size h varying from 2−3 to 2−7, τ = 2−6. In the table, #dofs

stands for the number of degrees of freedom for the control variable on each grid

level.

From Table 6.4, we see that SSNAL method also shows a good mesh-independence

property. Both the outer iteration number and Newton step number are almost the

same for different choices of mesh-size.

Efficiency

Table 6.5: The performance of imABCD, SSNAL, isPADMM and SSN methods for

the all examples with different choice of α and β. Here I choose the mesh-size of

space to be h = 2−5, and the time-step to be τ = 2−6.

imABCD SSNAL isPADMM SSN
Problem

iter time iter time iter time iter time

(i) 18 24.42 8(7) 15.00 24 34.12 3 23.19
Example 1

(ii) 84 210.07 10(9) 64.40 108 206.27 6 125.34

(i) 16 15.02 9(8) 17.35 25 23.57 6 37.11
Example 2

(ii) 97 180.75 10(9) 47.56 90 97.18 8 109.66

(i) 17 19.94 7(6) 13.52 22 24.80 3 21.18
Example 3

(ii) 59 143.73 4(3) 10.21 137 128.81 4 21.29

(i) 17 28.08 9(8) 18.33 24 30.24 3 21.18
Example 4

(ii) 62 122.67 8(7) 29.21 57 88.80 4 67.42

Due to the mesh-independence of our methods, we do not need to provide the

numerical experiments of all mesh-sizes. Here we choose the mesh-size h = 2−5 and

the time-step τ = 2−6. We aim to compare our methods, imABCD method, the

SSNAL method, with the state-of-art methods, the isPADMM and the globalized

semismooth Newton method(SSN). And the numerical results are provided in Table

6.5.
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From Table 6.5, we see that the imABCD method shows moderate efficiency for

all the examples with large α, especially for Example 6.2(i). And for all examples

except for Example 6.2 (i), the SSNAL method outperforms other methods. In

particular, when α is small, the SSNAL method can be at least twice faster than

the rest methods of all the methods provided.

Robustness

Now we also study the robustness of SSNAL method to the parameter α.

In Table 6.6 and Table 6.7, we provide the numerical performance of SSNAL

method for all the examples with β = 5 × 10−1 and β = 5 × 10−3, and α being

5× 10−1, 5× 10−2, 5× 10−3, 5× 10−4 and 5× 10−5 respectively.

Table 6.6: The performance of SSNAL for the all examples with different choice of α

and fixed β = 0.5. The mesh-size of space is h = 2−5, and the time-step is τ = 2−6.

Problem Index of performance
α

5e-1 5e-2 5e-3 5e-4 5e-5

Example 1
iter 9(8) 8(7) 6(5) 3(2) 2(1)

CPU time/s 23.71 21.43 15.49 6.67 4.23

Example 2
iter 9(8) 8(7) 8(7) 7(6) 4(3)

CPU time/s 16.42 18.40 17.30 16.15 8.24

Example 3
iter 8(7) 6(5) 3(2) 2(1) 2(0)

CPU time/s 16.42 11.65 5.26 3.12 1.59

Example 4
iter 8(7) 8(7) 8(7) 6(5) 6(5)

CPU time/s 17.05 20.05 25.38 19.52 20.49
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Table 6.7: The performance of SSNAL for the all examples with different choice of

α and fixed β = 5 × 10−3. The mesh-size of space is h = 2−5, and the time-step is

τ = 2−6.

Problem Index of performance
α

5e-1 5e-2 5e-3 5e-4 5e-5

Example 1
iter 14(13) 14(13) 14(13) 14(13) 12(11)

CPU time/s 41.60 50.02 74.47 85.60 76.14

Example 2
iter 15(14) 15(14) 15(14) 14(13) 12(11)

CPU time/s 32.06 41.26 45.94 50.93 56.98

Example 3
iter 14(13) 12(11) 9(8) 2(1) 2(1)

CPU time/s 30.89 23.18 16.98 3.18 3.55

Example 4
iter 15(14) 15(14) 15(14) 15(14) 13(12)

CPU time/s 31.38 34.52 46.16 63.16 57.06

It can be found from Table 6.6 and Table 6.7 that, the iteration number de-

crease along the decrease of α. This confirms the result concluded in Remark 5.3

that SSNAL method is even better for solving decoupled SPOCPs with small L2

regularization parameter α.

Finally, let us consider using the SSNAL method to solve problems with α = 0.

We can no longer use the Algorithm 13 to construct an example with explicit optimal

solution. However, we still use the functions yc, yd, and parameters β, a, b the same

as in the examples 6.1(i),6.2(i),6.3(i) and 6.4(i). Table 6.8 provides the comparison

of the SSNAL method and the isPADMM method for solving the examples with

given parameters yc, yd, β, a, b.

We find that the SSNAL method can solve the problems at least 6 times faster

than the isPADMM method for the examples provided.
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Table 6.8: The performance of SSNAL and isPADMM for the all examples with

α = 0. Here we choose the mesh-size of space to be h = 2−5, and the time-step to

be τ = 2−6.

Problem β Index of performance SSNAL isPADMM

iter 3(6) 31
Example 1 5e-1

CPU time/s 7.55 69.22

iter 4(14) 41
Example 2 5e-1

CPU time/s 11.43 65.27

iter 3(6) 41
Example 3 5e-1

CPU time/s 7.86 57.29

iter 2(4) 35
Example 4 5e-1

CPU time/s 8.95 69.55



Chapter 7
Conclusions and future work

7.1 Conclusions

In this thesis, we study algorithms for solving the sparse optimal parabolic control

problems.

From the view of duality, we figure out a new discretization of the continuous

problem, which can avoid the approximation of the L1-norm and avoid the inevitable

additional error at the same time. We give the error estimate for the new discretiza-

tion, which is O(h+
√
τ), and we reconfirm the error order in numerical experiments.

Given the discretized dual problem is an unconstrained optimization problem,

we propose the sGS-imABCD method to solve the new discretization problem. In

general the convergence of the dual variables is not necessary for APG or ABCD

method. However, we are able to prove the convergence of the primal variable

and KKT conditions based on the convergence of the optimal value and the special

structure of our problems. For the conventional discretized problem, we are able to

prove the convergence of both the primal variable and dual variable. Further, we

prove the uniformly mesh-independence of the imABCD, which means the iteration

number is independent of the mesh when the mesh-size is at very fine level.

Later, devoted to deal with the case when α is very small or α is zero, we consider

the semismooth Newton augmented Lagrangian method (SSNAL), which has a fast

103
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linear convergence rate, and we solve the subproblem efficiently by semismooth

Newton method. Moreover, the SSNAL method makes good use of the sparsity

structure of our problems. We illustrate the implementation of the method. And

we also provide the convergence results and an improved convergence result as well.

When α > 0, we prove the uniformly mesh-independence of the SSNAL method with

respect to the mesh-size h. We also obtain the robustness of the SSNAL merthod

to regularization parameter α when the initial σ is properly chosen. Our SSNAL

method can also solve decoupled SPOCPs for the case α = 0, which is much more

efficient than the isPADMM method.

Numerical results show that both the imABCD method and the SSNAL method

present the high efficiency to solve the decoupled SPOCPs when α is not too small.

And SSNAL method outperforms isPADMM, Semismooth Newton method (SSN)

and imABCD method for all α, especially when α is very small. And numeri-

cal results also reconfirm the theoretical results about the error estimate of new

discretization method. Both the imABCD method and the SSNAL method show

the uniformly mesh-independence in numerical experiments. Moreover, the SSNAL

method also shows the robustness to the parameter α.

7.2 Future work

In the future, there are still some work to be done.

1. We can consider to extend our convergence results for both ABCD method

and SSNAL method to the methods in function space. In particular, we hope

to extend the uniformly mesh-independence property for SSNAL method to

mesh-independence.

2. We may also analysis convergence theory about the case α = 0.
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