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Summary

Image restoration and recognition are basic tasks in imaging and vision science. One key
question in image recovery or recognition is how to effectively express the essential charac-
teristic of images. In the last decade, the sparse representation or approximation of images
has been one popular approach to regularize images in recovery or characterize images in
recognition. The basic idea in sparse representation of images is that most images are com-
pressible in some domain, i.e., an image of interest can be effectively expressed by the linear
combination of very few atoms in some system (so-called dictionary). Owing to significant
variations of image content, the dictionary used for sparsely expressing images has been
adaptive to images of interest. As a whole, such procedure is the so-called sparse coding.

The sparse coding contains two coupled parts: one is how to compute sparse coefficients
of the input under the dictionary and the other is how to find the dictionary that can generate
optimal sparse coefficients. Therefore, in most applications, it leads to a challenging non-
convex optimization problem. Many numerical methods have been proposed to solve such
a non-convex optimization problem. However, most existing methods are derived from the
heuristic arguments and often there are not convergence results provided for these methods.
In this dissertation, we aim at developing fast numerical methods to solve variational prob-
lems often seen in practical sparse coding problems. Furthermore, the convergence analysis
of these proposed methods are also established in this dissertation.

This dissertation begins by investigating the convergence behavior for iterative data-
driven tight frame construction scheme [19] that is a solver for the dictionary learning prob-
lem with orthogonal constraint on the learned dictionary. We established the sub-sequence
convergence property of the iteration scheme proposed in [19], and further showed that the
method proposed in [19] can be modified to have sequence convergence property. In addi-
tion, an extension of the above orthogonal dictionary learning is proposed by fixing part of
atoms of learned dictionary. This extension can further accelerate the dictionary learning
process with satisfactory results in image restoration.

The second part of this dissertation is devoted to developing fast and convergent nu-

merical methods to solve ¢y norm based dictionary learning problem [1] which is to learn a
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redundant dictionary without the orthogonal constraint on the learned dictionary. Based on
proximal methods, our proposed method is theoretically proved to generate a convergent se-
quence that converges to a stationary point of the original non-convex minimization problem
with comparable results in image restoration and face recognition. Moreover, our proposed
method is much faster than the K-SVD method [1], which is validated in experiments.

The third part of this dissertation developed a hybrid proximal method for solving the
incoherent dictionary learning problem as the low mutual coherence of a dictionary is an
important property that ensures the optimality of the sparse code generated from this dic-
tionary. The proposed incoherent dictionary learning method is not only of proved conver-
gence, but also can benefit many sparse coding based face and object recognition methods,
as shown in the experiments.

The final part of this dissertation applied the sparse representation to the visual tracker
by modeling the target appearance using a sparse approximation over a template set. We
proposed a modified the ¢; tracker to improve the tracking accuracy and a fast numerical
solver for the resulting /; norm related minimization problem, using accelerated proximal
gradient method. The real time performance and tracking accuracy of the proposed tracker
is validated with a comprehensive evaluation involving eight challenging sequences and five

alternative state-of-the-art trackers.
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Chapter 1

Introduction

Recently, image restoration and recognition have become more and more important in image
processing, visual tracking, object recognition, etc. Usually, image restoration aims at re-
covering a corrupted image by enhancing image features without introducing artifacts while
image recognition is to identify and detect objects or features in an image or video sequence.
The main difficulty for image restoration and recognition is to find the "good" representa-
tion for the input images. The so-called sparse coding method is now a well-established and
powerful tool to provide good representation of input images, which represents given data
by the linear combination of few elements of certain set. Such a set can be a system or a
dictionary and elements in the set are called atoms. More specifically, let D = {d;}]"_ CR"
denotes a set with m atoms, given an input signal y € R", the sparse approximation over D
is to find a linear expansion D¢ = Y], cxdj using fewest atoms of D that approximates y
within an error bound €. Mathematically, the sparse approximation can be formulated as

the following minimization problem:
min lcllo, st |ly—Dclj> <€, (1.1)

where ||¢||o counts the number of nonzero elements in ¢. The problem (1.1) is a challenging
NP-hard problem and only sub-optimal solutions can be found in polynomial time. Most

existing algorithms either use greedy algorithms to iteratively select locally optimal solu-
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d dictionary

Noisy image DCT dictionary: 30.03 db  Learned dictionary: 30.59 db

Figure 1.1: Pre-defined dictionary, learned dictionary and their denoising results

tions(e.g. orthogonal matching pursuit(OMP) [81]), or replace the non-convex ¢, norm by
its convex relaxation ¢; norm (e.g. basis pursuit [24]). Besides the numerical difficulty of
solving minimization (1.1), another fundamental problem for the sparse coding of y is how

to define the set & such that the signal y has an optimal sparse approximation.

The earliest work is focused on designing orthonormal bases, e.g. discrete cosine trans-
form [69], wavelets [29, 59]. Owing to better performance in practice, over-complete sys-
tems have been more recognized in sparsity-based image processing problems. In particular,
as a redundant extension of orthonormal bases, tight frames are now wide-spread in many
applications as they have the same efficient and simple decomposition and reconstruction
schemes as orthonormal bases. Many types of tight frames has been proposed for sparse im-
age modeling including shift-invariant wavelets [25], framelets [30, 72], curvelets [20] and
many others. These tight frames are optimized for signals with certain functional properties,

which do not always hold true for natural images. Therefore, a more efficient approach to
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sparsely approximate images of interest, the so-called dictionary learning, is to construct
the certain set that adaptive to the inputs. See Figure 1.1 as an illustration. The basic idea is
to construct a dictionary from training samples that maximizes the sparsity of the approxi-
mation. More concretely, given training samples Y := {yi}le C R", the dictionary learning

is formulated as the following optimization problem:

pomin k; lve— D3+ Alelo, st lda=1k=1,...p,  (12)
where C = {C'k}£:1 denotes the sparse coefficients of training set ¥, D denotes the learned
dictionary and the set & denotes the desired property of the learned dictionary D. The
minimization (1.2) is an NP-hard problem where the challenge comes from two sources:
the non-convex and non-smooth of ¢y norm and the bi-linearity of the dictionary D and the

sparse coefficients C.

In this thesis, based on different structures of the learned dictionary, we investigated
the following three types of dictionary learning problems: orthogonal dictionary learning,
redundant dictionary learning and incoherent dictionary learning. Using proximal methods,
we rigorously proved the proposed numerical methods generate convergent sequences. The
resulting numerical methods not only achieve comparable performance as existing sparse
coding based methods in image restoration and recognition, but also significantly outper-

form other methods in terms of computational efficiency.

1.1 Background

Before moving to the main body of this thesis, we first introduce the background related
to this thesis including the dictionary learning based image restoration and recognition,

dictionary learning algorithms and proximal methods.
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1.1.1 Dictionary learning for image restoration and recognition

In this section, we introduce some applications of dictionary learning problems including
image restoration and recognition, which motivate our research.

Dictionary learning for image denoising. The first successful application of dictionary
learning is image denoising when the observed image is corrupted by white Gaussian noise
[1]. Let Y = {g,.8>,--- ,gq} C R" be the collection of patches from the observed image,

the denoising procedure in [1] is as follows.

1. Generate the training data ¥ = {y,ys,..., yp} C R" where each column correspond-
ing to a vectored image patch. There are two ways to generate the training data: one
is to get image patches from a large natural image dataset, the other is to select image

patches from the noisy image itself.

2. Learn the dictionary D via solving the ¢y norm related minimization (1.2). A detailed

review of dictionary learning algorithms will be given in section 1.1.2.

3. Find the sparse approximation ¢ for each patch g, by solving the minimization:
. 2
min |lecllo, st |8, —Derll; < &,

where D is the learned dictionary and € is some pre-defined approximation accuracy.

4. Reconstruct the estimated image. First, we reconstruct the estimation of the image
patches G = {81, gq} using the product of learned dictionary D and sparse coeffi-
cients C = {c1,...,¢,}. Then, we average all the image patches to obtain the restored
image. That is, taking out all i-th pixel estimations Xy,...,%, from restored image

patches {g; }7_,, the i-th pixel estimation is given by %Z;Zl £j.

It is shown in figure 1.1 that the learned dictionary has some oriented atoms and obtains
better denoising result. Besides, it is also worth to note that the choice of the training data
and the averaging process are two key steps in the above denoising approach. It is reported in

[1] that generating training data from the noisy image always obtain better denosing results
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Figure 1.3: Some exemplar face images from Extend Yale face database B.

than generating training data from a general image dataset. The averaging process can be

viewed as a reconstruction of a shift-invariant operator to image patches [19].

Dictionary learning for image inpainting. The dictionary learning for image denoising
is generalized to solve image inpainting problem [54] where some pixels of the observed
image are missing. The procedure for image inpainting proposed in [54] is the same as
image denoising results except the step of learning dictionary step. In the dictionary learning

stage, it attempts to solve the ¢ norm related minimization:

p

1
i —|M —Dep) |3+ Allel, 1.3
Juin k;zll kO (Vk 112+ Allels (1.3)

where M is the mask of image patch y;. Compared to (1.8), the addition of the mask M,
does not significantly change the dictionary learning problem, it also applies an alternating
scheme to solve (1.3). Another approach for solving image inpainting problems is to learn
a dictionary from a interpolated estimation of the image and refined it on the estimation of

the in-painted image. See figure 1.2 is one image inpainting result from [7].

Dictionary learning for image recognition. Different from image restoration problems,
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image recognition aims at identifying images of different categories. See some exemplar
face images in figure 1.3 from Extended Yale face database B [38]. As a consequence, it
requires discriminative representations of images as well as good approximations.

The dictionary learning method has been proven to have good reconstruction ability
in image restoration, and been extended for image recognition problem [45, 53, 55, 65,
86, 87, 95] by imposing the discrimination of the learned dictionary. One approach to
learn a discriminative dictionary is to construct a separate dictionary for each class [53].
Another more promising approach is to unify the dictionary learning and classifies training
into a mixed re-constructive and discriminative formulation [45, 55, 65, 86, 87, 95]. As
the second approach is used in this thesis, we introduce the main procedure in [45, 95] for

image recognition as follows.

1. Select training samples {(y;, Hy)};_, from database, where y, is the training image
or image feature and Hy is a binary vector denotes the associated label. For instance,
H; =(0,...,0,1,0,...,0) denotes i-th category label if all the entries of Hy are zero
except the i-th entry. A usual way to generate training data is to randomly choose a

fixed number of images from each class of database.

2. Learn a discriminative dictionary D and a linear classifier W simultaneously via solv-
ing non-convex minimization problems. In [95], it combines the discriminative ability

and representative ability into a single minimization which is formulated as

14

min Y [ly, = Deillz+ YIHe = Werlls + BIW I3, st flexlo <s, %k, (1.4)
WE k=1

In [45], an additional label consistent constraint is imposed in (1.4) which is formu-

lated as
- - 2 2 2
min Y [y, —Dells + af|Q — AC|[7 + BI|H — WC|7, s.t. [lexllo < 5,9k, (1.5)
DWAC /=
where Q = (qy,...,qy) are pre-defined some "discriminative" sparse code. For ex-

ample, ¢g; = (0,...,0,1,1,0,... ,O)T is the discriminative sparse pattern for the i-th
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training sample y;. Both problems (1.4) and (1.5) are solved solved by the K-SVD

method [1] which will be introduced in section 1.1.2.

3. Normalize the atoms in learned dictionary D and adjust the weights of linear classifier

W. In concrete, this step is done by

dl d2 dm
D = R sy 5
Uah Tk Tdul)

w1 wo Wi,
W = ( ).

dill2” |dall2” 7 [|dml|2

4. Identify the category of a new image y. Compute the sparse coding ¢ of test image y

via solving the £y norm minimization problem:
min [y —Del3 + olelo

The category of the test image y is determined by j = argmax{(Wc¢);, Vi}.
i

The above dictionary learning based image recognition has demonstrated impressive recog-

nition accuracy in face recognition and object recognition, as shown in [45, 95].

1.1.2 Dictionary learning algorithms

Based on the different sparsity prompting functions, dictionary learning algorithms can be
divided into the following three categories: ¢y norm regularization, ¢; norm regularization
and non-convex norm regularization. In the next, we will introduce numerical methods
related to the above above three kinds of regularizations.

{o norm regularization. The /y norm based dictionary learning can be formulated as solv-

ing the following minimization:

p

1
min ~|lye — D3, st ||exllo < s,Vk=1,...,p, 16
Dc9,C ,;2”)% kll2 llerllo < p (1.6)

where s is the sparsity level. The first approach for solving (1.6) is the so-called MOD

(method of optimal directions) which is proposed by Engan et al. in [35]. It takes an
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alternative minimization between the dictionary D and sparse coefficients C. In concrete, it

updates (C*, D¥) via the following two steps.

« Sparse approximation for C. Fix the dictionary DX, it directly solves the £y norm

related minimization problem:

1
min — Z ly — Dcl|3, s.t. |lc]jo < s. (1.7)
© 23
The minimization (1.7) is an NP-hard problem and only sub-optimal solutions are ob-
tained via greedy algorithms including matching pursuit, orthogonal matching pursuit

(OMP) [81] and modified version of OMP [82].

* Dictionary update for D. Fix the sparse coefficients ck!

and the dictionary D is
updated via

D! =Ty (Ye(cch) ™,
where I1 is the orthogonal projection operator.

Another more promising approach for solving (1.6) is the K-SVD method [1]. It also takes
an alternating approach between D and C. When the dictionary D is fixed, it uses the OMP
to update sparse coefficients. When sparse coefficients C is fixed, it updates the dictionary D
column by column via the singular value decomposition (SVD). Despite its great success in
practice, there is no available convergence analysis of the /() norm based dictionary learning.
/1 norm regularization. The ¢; norm regularization method [63] is first proposed by Ol-
shausen et al. to approximate vectors that most of entries have small amplitude. In recent
years, owing to the fundamental progress in compressed sensing, a replacement of non-
convex {p norm by convex ¢; norm has been proposed to the ¢; norm based dictionary

learning [44, 54, 57, 58] which is formulated as:

D

1
: v, — Denll2 + A ) 1.8
grine X5l Dedli+ Alel 8)

Although the minimization (1.8) is a bi-linear minimization problem, it is convex when
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fixing D or C. A straightforward way to solve (1.8) is also takes an alternative way between
D and C. In the sparse coding stage, a number of efficient numerical solvers have been
applied to different applications such as homotopy method [33] in [57]; the accelerated
gradient method [84] or fast iterative shrinkage thresholding algorithm [10] in [44]; the fixed
point method [42] in [56]. In the dictionary update stage, In the stage of dictionary update,
the atoms in the dictionary either are updated one by one or are simultaneously updated.
One-by-one atom updating is implemented in [44, 57] as it has the closed form solution. The
projection gradient method is used in [56] to update the whole dictionary together. Recently,

a convergent algorithm for solving (1.8) is proposed based on the proximal methods.

Non-convex norm regularization. As shown in [43, 94], the ¢; norm penalty tends to
have biased estimation for large coefficients and sometimes results in over-penalization.
Thus, several non-convex relaxations of £y norm are proposed for better accuracy in sparse
coding. For example, the non-convex minimax concave (MC) penalty is used in [78] as
the replacement of £y norm and gives a convergent algorithm for sparse coding. For other
non-convex relaxations (e.g. smoothly clipped absolute deviation [43], log penalty[37]), the
proximal-based algorithms have been proposed in [40, 67, 79] to solve the minimization
problem with these non-convex regularization terms. The convergence analysis of these
non-convex relaxation methods is only limited to subsequence convergence. It is not clear

whether they are globally convergent or not.

1.1.3 Proximal methods

Nowadays, proximal methods are widely applied for solving non-smooth, constrained min-
imization problems. In this section, we briefly review these methods closely related this
thesis (see [64] for a detailed review). Let 7 be a positive constant and f : R" — R({J{+4oo}
be a proper and lower semi-continuous function bounded below, the proximal operator

Proxf : R" — R"of f is defined as

1
Proxf(x) = argminf(u)+5||u—x||%. (1.9)
u
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It is worth to note that the range of the proximal operator (1.9) is nonempty and compact
for any 7 € (0, 4o0) [15] without the convexity assumption of f. In the following, we re-
view proximal methods for solving both convex minimization problems and non-convex
minimization problems.

Proximal methods for convex minimization problems. Consider the minimization

min f(x) +g(x) (1.10)

where f:R" — R and g : R" — R[J{+eo} are closed proper convex and f is differentiable.

The proximal gradient method updates x*! via

X = Proxf, (x* — AFV (), (1.11)

where A% > 0 is a step size. If V£ is Lipschitz continuous with constant L, then x* generated
by (1.11) converges to the global minimizer with rate O(1/k) when A% = 4 € (0,1/L]. It
has been further proved in [27] that the scheme (1.11) converges if A¥ € (0,2/L).

The accelerated version of proximal gradient method, the so-called accelerated proximal

gradient method, is proposed by introducing an extrapolation step. It updates x**! via

Y = ko (e — Y,

= Prox‘;’{k(yk+1 — ARV (),

(1.12)

where ®* € [0, 1) is the extrapolation parameter and A is the step size. It reduces to the
proximal gradient method if @ = 0. These parameters must be chosen carefully to accel-

erate the convergence. Typically, in [10, 84], it takes

ok = (1 — 1) /1, (1.13)

14, /14412
where #;, 1= T’H and tp =t_; = 1. When V£ is Lipschitz continuous with constant
L, the objective value at x* which is generated by (1.12) converges with rate O(1/k*) which

is optimal among all first order methods if Ak = A € (0,1/L] and @* is chosen as (1.13).
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Proximal methods (1.11) and (1.12) can be easily applied to solve the following ¢; reg-
ularized minimization

o1
min [y —Del[3 +Alle[, (1.14)

by setting f(¢) = %||y—Dc||% and g(c) = A||¢||1. The proximal operator in (1.11) and (1.12)

have closed form solutions which are given by the following lemma:

Lemma 1.1.1. The minimization rr;in Slx—=y|3+Allx||1 has unique minimizer
x" = sign(y) © max(|y| - 4,0),

where © denotes the Hadamard product.

Proximal methods for non-convex minimization problems. In recent years, proximal
methods [2, 3, 15] have been proposed to solve the non-convex minimization problem of
the form:

min H(x,y) = F(x) +Q(x.y) + G(y), (1.15)

where F, G are lower semi-continuous and Q is Lipschitz continuous with constant L.

The proximal alternating method [2] updates (x**!1,y**1) via

k
A1 cargmin F(x) + 0(x, y°) + GOF) + - [lx — 213
x 2 (1.16)

. Ak
Y eargmin F (¢ 1) + 0 y) + G) + T lly — ¥
y

It has been proved that the sequence generated by the scheme (1.16) converges to the sta-
tionary point of (1.15) if (AX, u¥) = (A, u) € R% and H(x,y) is a KL-function [14].

In general, the scheme (1.16) requires solving the non-smooth and non-convex minimiza-
tion problems in each step which often has no closed form solutions. Therefore, the proxi-
mal linearized alternating method [15] has been proposed such that each subproblem has a
closed form solution. Instead of solving the subproblems as (1.16), the alternating proximal

linearized algorithm replaces the smooth term Q in (1.16) by its first order linear approxi-
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mation:

k
3 (%) + GOF) + 5l — 72

1 ¢ argmin, F(x) + A(
. A k
yl e argmmyF(xk N+ 0 (k1 yky (¥ )+G(}’)+%H)’—)’k”%~

(1.17)

where

Ot 1) (6) = Q0 ) + (.08, 39, 5 — 25,
Q(xk,yk)(y):Q( k k) < )?Q( ),y_yk%

and pk, A% are carefully chosen step sizes. For instance, if (u*,A%) = (u,A) € R and
Ww,A > L, it has been proved in [15] that the sequence (xk, yk) generated by the scheme

(1.17) converges to the stationary point of (1.15) when H(x,y) is a KL function.

1.2 Motivations and contributions of the dissertation

This thesis brings two main contributions to sparse coding based image restoration and
recognition problems. Firstly, we systemically investigated ¢y norm based dictionary learn-
ing problems for image restoration and recognition by imposing several structures on the
learned dictionary. Secondly, we developed some proximal methods for solving the result-
ing non-convex minimization problems. Compared to the existing ¢y norm based dictionary
learning methods, our proposed methods have the following two main advantages: one is
its theoretical guarantee of the generated sequence, which is the first available theoretical
convergence analysis for /) norm based dictionary learning problem; the other is its great
gain in computational efficiency which might make our methods more scaleable for big data.
Additionally, based on the accelerated proximal gradient method, we developed a real time
visual tracker that uses the sparse approximation of the target. In the next, we present these

results with more details.



1.2 Motivations and contributions of the dissertation 13

0.4

0.35/ s Algl |
e Alg.2

.
.
.
[ .
0.3F 4%
\J
\d
\d
g

0.25f

-
sanne" " ag gt ' a g gy uun®”

O L L L L L ! L
0 20 40 60 80 100 120 140 160 180 200

lterations

Figure 1.4: The increments of [|C*"! — C*|| ¢ of algorithm in [19] and the modified algorithm

1.2.1 Data-driven tight frame construction

Recently, Cai et al. [19] proposed a variational model to learn a tight frame system that
is adaptive to the input image in terms of sparse approximation. The tight frame construc-
tion scheme proposed in [19] requires solving an ¢y norm related non-convex minimization

problem:

min IC—D'Y||%+A3|Cllo, st D'D=m'I,, (1.18)
DER’”X’",CGR”’X”

where D contains framelet filters and C contains the canonical frame coefficients. An al-
ternating iteration is proposed in [19] for solving (1.18), which is very fast as both sub-
problems in each iteration have closed-form solutions. It is shown that, with comparable
performance in image denoising, the proposed adaptive tight frame construction runs much
faster than other generic dictionary learning methods (e.g. the K-SVD method [1]). How-

ever, Cai et al. [19] did not provide any convergence analysis of the proposed method.

As a sequel to [19], chapter 2 provides the convergence analysis of the alternating it-
erative method proposed in [19] for solving (1.18). In that chapter, we showed that the
algorithm provided by [19] has sub-sequence convergence property. In other words, we
showed that there exists at least one convergent sub-sequence of the sequence generated

by the algorithm in [19] and any convergent sub-sequence converges a stationary point of
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Figure 1.5: Convergence behavior: the norms of the increments of the coefficient sequence
ct generated by the K-SVD method and the proposed method.

(1.18). Moreover, we empirically observed that the sequence generated by the algorithm
proposed in [19] itself is not convergent. See figure 1.4 as an illustration. Motivated by the
theoretical interest, we modified the algorithm proposed in [19] by adding a proximal term
in the iteration scheme, and then showed that the modified algorithm has sequence conver-
gence. In other words, the sequence generated by the modified method convergences to a
stationary point of (1.18). Moreover, we extended the data-driven tight frame construction

when some of filters are fixed which is formulated as the following minimization:

min _ ||Y —[A,D]C||%+A||Cllo, s.t. [A,D]"[A,D] = I, (1.19)
DeR"™*r CeRMm*p

where r < m and A € R"™<("=7) ig the predefined filters. The extension of (1.19) can further

accelerate the dictionary learning process as reported in experiments.
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1.2.2 Redundant dictionary learning

Compared to the orthogonal dictioanry learning (1.18), a more general approach is to learn
a redundant dictionary that is maximizing the sparse degree of the approximation. Math-
ematically, the redundant dictionary learning is formulated as the following non-convex

minimization problem:

min |Y —DC||% +A||C|lo, s.t. ||di]l2 = 1,Yk. (1.20)
DeRm*n CeRnx<p

where n > m. The non-convexity of minimization (1.20) comes from two sources: the
sparsity-prompting functional {p norm and the bi-linearity between the dictionary D and the
codes {ck}le. Most existing approaches (e.g. [1, 44, 56, 57]) take an alternating iteration
between two modules: sparse approximation for updating {ck},’;l and dictionary learning
for updating dictionary D. Despite the success of these alternating iterative methods in
practice, none of them established the global convergence property, i.e., the whole sequence
generated by the method converges to a stationary point of (1.20). These schemes can only
guarantee that the functional values are decreasing over the iterations, and thus there exists
a convergent sub-sequence as the sequence is always bounded. Indeed, the sequence gener-
ated by the popular K-SVD method [1] is not convergent as its increments do not decrease
to zero. See figure. 1.5 for an illustration. The global convergence property is not only of
great theoretical importance, but also likely to be more efficient in practical computation as

many intermediate results are useless for a method without global convergence property.

In chapter 3, we proposed an alternating proximal linearized method for solving (1.20).
The main contribution of the proposed algorithm lies in its theoretical contribution to the
open question regarding the convergence property of ¢y norm based dictionary learning
methods. In that chapter, we showed that the whole sequence generated by the proposed
method converges to a stationary point of (1.20). Moreover, we also showed that the conver-
gence rate of the proposed algorithm is at least sub-linear. To the best of our knowledge, this
is the first algorithm with global convergence for solving £y norm based dictionary learning

problems. The proposed method can also be used to solve other variations of (1.20) with
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small modifications, e.g. the ones used in discriminative K-SVD based recognition methods
[45, 95]. Compared to many existing methods including the K-SVD method, the proposed
method also has its advantage on computational efficiency. The experiments showed that
the implementation of the proposed algorithm has comparable performance to the K-SVD

method in two applications: image de-noising and face recognition, but is noticeably faster.

1.2.3 Incoherent dictionary learning

In chapter 4, we considered the problem of sparse coding that explicitly imposes additional
regularization on the mutual coherence of the dictionary, which can be formulated as the

following minimization problem:

) 1 o
min Y5y~ Deil3 + Alleillo) + 5 IDTD- 11,
D {c;}i_, i (1.21)

st. |ldjlo=1,1<j<m.

where D is the learned dictionary, and C is the sparse coefficients. Our motivations and
contributions are presented in the following.

The need of an incoherent dictionary for sparse coding. Once a dictionary is learned,
the sparse code for each input is then computed via some pursuit methods, e.g. orthogo-
nal matching pursuit [81], basis pursuit [24]. The success of these methods for finding the
optimal sparse code depends on the incoherence property of the dictionary. In [81], Tropp
showed that that the OMP can recover the exact support of the coefficients whenever mutual
coherence p is less that 1/(2S — 1) where S is the number of nonzero entries of the correct
coefficients. It is further proved in [75] that the similar requirement on the mutual coher-
ence is also needed for ensuring the correctness of the thresholding-based sparse coding
algorithms. In practice, it is also observed that a dictionary with high mutual coherence will
impact the performance of sparse coding based methods; see e.g [13, 68, 87].

The need of a variational model that explicitly regularizes mutual coherence. In a
quick glance, the widely used K-SVD method [1] for sparse coding considered a variational

model which has no explicit functional on minimizing the mutual coherence of the result,
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1.e., it considered a special case of (1.21) with & = 0. However, the implementation of the
K-SVD method implicitly controlled the mutual coherence of the dictionary by discarding
the "bad" atom which is highly correlated to the ones already in the dictionary. Such an
ad-hoc approach certainly is not optimal for lowering the overall mutual coherence of the
dictionary. In practice, the K-SVD method may still give a dictionary that contains highly
correlated atoms, which will lead to poor performance in sparse approximation, see [28] for

more details.

The need of a convergent algorithm. The minimization problem (1.21) is a challenging
non-convex problem. Most existing methods that used the model (1.21) or its extensions,
e.g. [45, 56, 95], simply call some generic non-linear optimization solvers such as the
projected gradient method. Such a scheme is slow and not stable in practice. Furthermore,
all these methods at most can be proved that the functional value is decreasing at each
iteration. The sequence itself may not be convergent. From the theoretical perspective, a
non-convergent algorithm certainly is not satisfactory. From the application perspective,
the divergence of the algorithm also leads to troublesome issues such as when to stop the

numerical solver, which often requires manual tune-up.

In chapter 4, we proposed a hybrid alternating proximal scheme for solving (1.21).
Compared to the K-SVD method that controls the mutual coherence of the dictionary in
an ad-hoc manner, the proposed method is optimized for learning an incoherent dictionary
for sparse coding. Compared to the generic numerical scheme for solving (1.21) adopted
in the existing applications, the convergence property of the proposed method is rigorously
established in the chapter. We showed that the whole sequence generated by the proposed
method converges to a stationary point. As a comparison, only sub-sequence convergence
can be proved for existing numerical methods. The whole sequence convergence of an it-
eration scheme is not only of theoretical interest, but also important for applications as the

number of iterations does not need to be empirically chosen to keep the output stable.
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Figure 1.6: Demonstration of the improvement of APG-L1 tracker (red) over BPR-L1 (blue)
on tracking accuracy.

1.2.4 L1 visual tracker

In chapter 5, the sparse representation has been applied to visual tracker by modeling the tar-
get appearance using sparse approximation over a template set, which leads to the so-called
L1 tracker as it needs to solve a ¢; norm related minimization problem for many times.
While these L1 trackers showed impressive tracking accuracies, they are very computation-
ally demanding and the speed bottleneck is the solver to ¢ norm related minimizations. In
Appendix, we developed an L1 tracker that not only runs in real times but also enjoys better
robustness than other L1 trackers. In our proposed L1 tracker, a new ¢; norm related mini-
mization model is proposed to improve the accuracy by adding an ¢, norm regularization on
the coefficients associated with trivial templates. See figure 1.6 as an example. Moreover,
based on the accelerated proximal gradient method, a fast numerical solver is developed to

solve the resulting #; norm related minimization problem.

1.3 Notation

The following definitions and notations are used in this thesis for discussion. For example,
we denote Y € R™*" be a m x n matrix, Y;; be the entry at row i and column j of ¥, y; be
the j-th column of the matrix ¥ and y; be the i-th element of the vector y.

Given a vector y, for g > 2, its £,-norm and ¢ pseudo-norm are defined as
Iyllg = (L Iy;1)"9, Iyllo = #{j,y; # O}
J

Given a matrix Y, its Frobenius norm [|Y||r, ¢o pseudo-norm ||Y||op and uniform norm
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||Y || are defined as

1¥[lF = (L 1Y3 %)%, 1Y o =#{(i.j) : Yi; # O}, 1¥[leo = max|¥ ;.
i.J ’

Given a set .2, the indicator function /() is defined as

0, if xe 2,

Ly (x) = .
+oo, if x& 2.

Given A > 0 and matrix Y, the hard thresholding operator T) (Y) is defined as

Yij7 if ’Y,‘j’ > A,
[T(Y)]ij=q 0, if [¥;;| <A;
{0,Y,;}, if |Yij| = A.






Chapter 2

Data-driven tight frame construction for

image restoration

2.1 Introduction

It is now well established that sparse modelling is a very powerful tool for many image
recovery tasks, which models an image as the linear combination of only a small number
of elements of some system. Such a system can be either a basis or an over-complete sys-
tem. When using the sparsity prior of images to regularize image recovery, the performance
largely depends on how effective images of interest can be sparsely approximated under the
given system. Therefore, a fundamental question in sparsity-based image regularization is
how to define a system such that the target image has an optimal sparse approximation. Ear-
lier work on sparse modelling focuses on the design of orthonormal bases, such as discrete
cosine transform [70], wavelets [29, 59]. Owing to their better performance in practice,
over-complete systems have been more recognized in sparsity-based image recovery meth-
ods. In particular, as a redundant extension of orthonormal bases, tight frames are now
wide-spread in many applications as they have the same efficient and simple decomposition
and reconstruction schemes as orthonormal bases. Many types of tight frames has been pro-
posed for sparse image modelling including shift-invariant wavelets [25], framelets [30, 72],

curvelets [20] and many others. These tight frames are optimized for the signals with certain
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functional properties, which do not always hold true for natural images. As a consequence,
a more effective approach to sparsely approximate images of interest is to construct tight

frames that are adaptive to the inputs.

In recent years, the concept of data-driven systems has been exploited to construct adap-
tive systems for sparsity-based modelling (see e.g. [1, 19, 49, 54]). The basic idea is to
construct the system that is adaptive to the input so as to obtain a better sparse approxima-
tion than the pre-defined ones. Most sparsity-based dictionary learning methods ([1, 49, 54])
treat the input image as the collection of small image patches, and then construct an over-
complete dictionary for sparsely approximating these image patches. Despite the impres-
sive performance in various image restoration tasks, the minimization problems proposed
by these methods are very challenging to solve. As a result, the numerical methods proposed
in past for these models not only lack rigorous analysis on their convergence and stability,

but also are very computational demanding.

Recently, Cai et al. [19] proposed a variational model to learn a tight frame system that
is adaptive to the input image in terms of sparse approximation. Different from the existing
over-complete dictionary learning methods, the adaptive systems constructed in [19] are
tight frames that have perfect reconstruction property, a property ensures that any input can
be perfectly reconstructed by its canonical coefficients in a simple manner. The tight frame
property of the system constructed in [19] not only is attractive to many image processing
tasks, but also leads to very efficient construction scheme. Indeed, by considering a special
class of tight frames, the construction scheme proposed in [19] only requires solving an £

norm related non-convex minimization problem:

min IC=D"Y||%2+A3|Cllo, st D'D=m'1,, 2.1)
DeRme’CGRan

where D contains framelet filters and C contains the canonical frame coefficients. An alter-
nating iteration is proposed in [19] for solving (2.1), which is very fast as both sub-problems
in each iteration have closed-form solutions. It is shown that, with comparable performance

in image denoising, the proposed adaptive tight frame construction runs much faster than
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other generic dictionary learning methods (e.g. the K-SVD method [1]). However, Cai et
al. [19] did provide any convergence analysis of the proposed method.

As a sequel to [19], this chapter provides the convergence analysis of the alternating
iterative method proposed in [19] for solving (2.1). In this chapter, we showed that the
algorithm provided by [19] has sub-sequence convergence property. In other words, we
showed that there exists at least one convergent sub-sequence of the sequence generated
by the algorithm [19] and any convergent sub-sequence converges a stationary point of
(2.1). Moreover, we empirically observed that the sequence generated by the algorithm
proposed in [19] itself is not convergent. Motivated by the theoretical interest, we modified
the algorithm proposed in [19] by adding a proximal term in the iteration scheme, and then
showed that the modified algorithm has sequence convergence. In other words, the sequence

generated by the modified method convergences to a stationary point of (2.1).

2.2 Brief review on data-driven tight frame construction

and related works

In this section, we gave a brief review on tight frames, data-driven tight frames proposed
in [19] and some most related works. Interesting readers are referred to [18, 76] for more

details.

2.2.1 Tight frames and data-driven tight frames

For a Hilbert space /7, a sequence {x,} C J€ is a tight frame for ¢ if
||x||2 = Z|(x,x,,>|2, for any x € 7,
n

or equivalently, x =Y, (x,x,)x,,x € 7. The sequence { (x,x,) } is called the canonical frame
coefficient sequence. A tight frame {x,} is an orthonormal basis for . if and only if

||lxa]] = 1 for all x,. A tight frame has two associated operators: the analysis operator W
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defined by
W xe X — {(x,xy)} € lr(N)

and its adjoint operator W' (often called the synthesis operator):
W' :{a,} €l(N)— Zanxn €.

Then, the sequence {x,} C S is a tight frame if and only if W'W = I, where I denotes
the identity operator of .7#°. The tight frames considered in [19] are single-level un-decimal
discrete wavelet systems generated by all integer shifts of a set of filters {a;j,as,- - ,a,}.
For any filter @ € (»(7Z), let %, : {2(Z) — ¢2(7Z) denote its associated convolution operator
defined by

[Za(V)](n) = [axV](n) = Z a(n—kyv(k), Yve lr(Z). (2.2)
kez?

Then, for a given set of framelet filters, we define its associated analysis operator W by
1T T T T
W= [yal(,A)vyaz(f.)f“ 7ym(*‘)] . (23)

The rows of W form a tight frame for ¢,(Z) if and only if W 'W = I, and the corresponding

synthesis operator is the transpose of W, denoted by W .

The data-driven tight frame construction proposed in [19] constructs the set of framelet

filters {a;}"", via solving the following problem:

. T
{mlr}n v—W(ai,az,- ,a,)8l|3 + A3 |v]o, st W' W=L (2.4)
V,14i i=1
where g denotes the input signal, {a /}Tzl denotes the set of framelet filters of the adap-
tive tight frame, and v denotes the canonical coefficient vector of g. Here and throughout
this chapter, ||v||p stands for the number of non-zero elements of v and | - ||z denotes the

Frobenius norm.
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2.2.2 Data-driven tight frame construction scheme

For general framelet filters, the minimization problem (2.4) is very challenging to solve.
Therefore, a special class of framelet filters are considered in [19], which is composed by
m? 2D real-valued framelet filters {a J}Ti | CR™™ Let D denote the associated filter matrix
defined by

A=a,,ay,....4,;|,

where @; denotes the vector form of a; by concatenating all columns of a; to a column
vector. It is shown in [19, Proposition 3] that the rows of W defined by {a j}’}il C Rmxm
form a tight frame for ¢?(Z), provided that ATA = %Imz. Thus, the minimization problem

(2.4) for general tight frame construction is simplified to the following one:

1

min_|[v—W(A)g||z +A3|v]lo, st ATA=—I,. (2.5)
v,{ai}?’:2 | m

The problem (2.5) can be re-formulated in terms of image patches as follows. Let {§g}§:1 C

R™ denotes the set of all image patches of size m x m densely sampled from the image g.

For each patch vector gy, let ¥, =A'g, € R™ denotes the vector generated by the inner

. 5 2 .
product between g, and all m? framelet filters {a j}T:r Define three matrices as follows,

I . 2
Y= \/Lﬁ[glag%“'?gL] S R™ XL;
D := JmA = J/mlay,ds,...,d4,,] € R"¥", (2.6)

C:=[1,%2,...,%,] € R™W*L,

Then, it is shown in [19] that the minimization (2.5) is equivalent to

min L||C—DTY||%+)LQ||C||0, st. D'D=1I,,.2, (2.7)
DeRm Xm 7C‘eﬂ%l‘n X

where A denotes some pre-defined regularization parameter.

The minimization model (2.7) is solved in [19] via an alternating scheme between D

and C. More specifically, given the current estimate (Dy,Cy), the next iteration updates it
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via the following scheme:

Dy € argmin ||C;—D'Y|%, st D'D=I;
DeRm?xm? (2.8)

Ci+1 € argmin ||C— D/, Y||% +A2||C||o.

CERmzxL

It is shown in [19] that both sub-problems in (2.8) have closed-form solutions given by
Dy :=UV/; Ci €Ty (DY), (2.9)

where U and V| are given by the singular value decomposition (SVD) of ¥ C,;r such that

Y C,I =U kaV,;r. See Algorithm 1 for the summary of the alternating iteration scheme [19].

Algorithm 1 Alternating iteration scheme [19] for solving (2.7).
1: INPUT: Input image g;
2: OUTPUT: Adaptive filter set D;
3: Main Procedure:
1. Set initial filter matrix D and coefficient matrix Cy.
i1. Construct the patch matrix ¥ as (2.6).
iii. Fork=0,1,---,

1. compute the SVD of Y C,;r =U kEkV,;r;

2. D1 :=UV/] and Ciyy € Ty (D], Y).

2.2.3 Related works

The minimization (2.7) is an £y norm related non-convex problem with quadratic constraints.
Algorithm 1 proposed in [19] for solving (2.7) alternatingly updates the filter matrix D by
the SVD and updates the coefficient matrix C by hard thresholding the coefficients from the
last estimate. Such an iterative hard thresholding on wavelet frame coefficients approach
has been used in solving various linear inverse problems in image recovery, see e.g. the

wavelet frame based image super-resolution methods [22, 23].
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As a sparsity prompting functional, the ¢y norm is also used in other sparse approxima-
tion based dictionary learning methods. The popular K-SVD method [1] proposed the fol-
lowing minimization model for learning an over-complete dictionary D = {d,d>,...,d,} C

R” with m > n:

1
min —||Y =DC||% +A||Cllo, st |dil2=1,i=1,2,...,n. (2.10)
DeRm<m CeRmxp 2

An alternating iteration scheme between D and C is used in the K-SVD method for solving
(2.10). Different from the model (2.7) proposed in [19], the ¢y norm related minimization
problem for updating the code C is a challenging one. The greedy algorithm, such as orthog-
onal matching pursuit, is used in [1] for estimating the code. Therefore, the computational
cost of the K-SVD method is much higher than Algorithm 1.

Both the K-SVD method and Algorithm 1 perform noticeably better in image denoising
than other wavelet frame based methods. The advantage of Algorithm 1 over the K-SVD
method lies in its computational efficiency. Despite their impressive performances in prac-
tice, both methods lack the convergence analysis. Indeed, it is empirically observed that
the sequences generated by both methods are not convergent. In this chapter, we first pro-
vided the convergence analysis for Algorithm 1 by showing that the sequence generated by
Algorithm 1 has sub-sequence convergence. Then we proposed a modified version of Algo-

rithm 1 for solving (2.7) and established the sequence convergence of the new algorithm.

2.3 Sub-sequence convergence property of Algorithm 1

In this section, we will show that the sequence generated by Algorithm 1 has sub-sequence
convergence property, i.e., there exists at lease one convergent subsequence and every con-
vergent subsequence converges to a stationary point of (2.7). Before establishing the main
result, we first introduce the definition of the stationary point of non-convex and non-smooth

functions.

Definition 2.3.1. Let f : R" — RU{+oo} be a proper lower semi-continuous function.
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1 The domain of f is defined by domf := {x € R": f(x) < +oo}.

2 For each x € domf, x is called the coordinate-wise minimum of f if it satisfies

FEA (0, ydy, -+ ,0)) < f(x), Ve, 1 <k <n,

where x = (x1,X2,+ -+ ,Xp)-

3 The Fréchet subdifferential o f is defined by

8Ff(x):{z:liminff(y)_f(x)_<z’x_y> > 0} (2.11)

o [y —x|
for any x € domf and dr f(x) = 0 if x ¢ domf.

4 For each x € domf, x is called the stationary point of f if it satisfies 0 € dr f(x).

Remark There are several definitions for stationary points of proper lower semi-continuous

functions. In [83], the stationary point x is defined as

liming FHAY) —f(%) >0

, Vy€eR".
210 A Y

In [3], the stationary point x of f is defined by 0 € d f(x), where d f is the limiting subdif-

ferential given by
af(x) = {Z D 3x, = x, f(xn) = f(x),20 € aFf(xn) — Z}'

The definition of stationary points used in this chapter is different from the definitions used

in [83] and [3]. Indeed, ours is stronger than the other two definitions.

To simplify notations, define 2" = {D € R7xm* . DTp — 2} and define Q¢ = R <N ,
Qp =R"™*" QO — (Qc,Qp). Define

f(€)=2A%|Cllo, Q(C,D)=|D'Y—C|, g(D)=145(D), (2.12)
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where 19 (D) =0, if D € 2" and + otherwise. Then, the minimization (2.7) can be re-
written as

CEQ?glEQDL(C,D) .= f(C)+Q(C,D) +g(D). (2.13)

Before proving the sub-sequence convergence property of Algorithm 1, we first establish
some facts and results related to (2.13). Firstly, the function g is a lower semi-continuous
function, as 2" is a compact set. Secondly, it can be seen that for any Z = (C,D), the

function Q(Z) satisfies the following properties:

.

Q(C,D) = Q(Cy,D)+(VcQ(Cy,D),C—Cy) +o(||C~Ci][F), VC1 € Qc;
Q(C,D) = Q(C,Dy)+ (VpQ(C,D,),D — D) +o(|D—Di|f), VD € Qp; (2.14)

Q(C,D)

Q(C,Dy)+(VQO(C1,D1),Z—Z)) +0(|Z—Z,||r), VZ, € Qz,

\

olllxlr) —

where of [x|r) is defined by lim ({71

Lemma 2.3.2. The sequence Z; := (Cy,Dy) generated by Algorithm 1 is a bounded se-

quence. For any convergent sub-sequence Z with limit point Z* = (C*,D*), we have
lim f(Cy)=f(C*), and lim L(Zy)=L(Z").
k' — oo k' — o0
Proof. By the definition of (2.9), we have
L(Zy) < L(Cy—1,Dr) < L(Cy—1,Dp—1) < --- < L(Zy),
which implies

IClF = ID{Y|IF <IIDSY —C¥lF < VL(Zo), k=1,2,.... (2.15)

Together with (2.15) and the fact that D, € 2, we have Z; is bounded. Next, by the

definition of (2.9), we also have

O(Cy,Dy)+ f(Cp) <O(C,Dy)+ f(C), VC € Q. (2.16)
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By substituting C by C* and taking k" — oo in (2.16), we have liminfy_, .. f(Cy) < f(C").
Together with the fact that f(C) = A2||C||o is lower semi-continuous and Cyy — C* as k' —
+o0, we have

liminf f(Cy) = £(C*).
k' — oo

Since Dy € 2 for all k' and 2" is a compact subset, D* € 2" and g(D*) = g(Dy) =0
for all k’. Tt can be seen that Q(Cy,Dy) — Q(C*,D*) as k' — +oo, as Q is a continuous
function. In addition, L(Z;) is decreasing by (2.15) and L > 0, which implies that L(Zy,) is
a convergent sequence. Consequently, we have

lim f(Cy) = f(C"),

k' —+oo

since f(C) = L(Z) — Q(Z) — g(D). Moreover, we have
lim L(Zy)= lim f(Cy)+ lim O(Cy,Dy)+ lim g(Dy)
k! —-o0 k! —-o0 k! —4-o0 k' — oo

= f(€C")+Q(C",D") +¢(D").
ThUS, limk/_>+ooL(Zk/) = L(Z*) |

Lemma 2.3.3. Let Z; := (Cy, Dy) denote the sequence generated by Algorithm 1 and let Q.

denote the set that contains all limit points of Z. Then Q. is not empty and
L(C*,D") = ig{lfL(Ck,Dk), V(C*,D*) € Q,.

Proof. By Lemma 2.3.2, Z; is a bounded sequence. Thus, the set Q. is a non-empty set.
Moreover, the set €, is also a compact set as Q, = ‘ﬂ m Notice that L(Zy) is a
decreasing sequence and L(Z) > 0. Then, there exists sjoenl\lléC 2cé)nstant p such that iI]:fL(Zk) =
p. Take any Z* € Q, and assume Zy — Z* as k' — +oo. By lemma 2.3.2, we have that

lim L(Zy)=L(Z*) =p. |
k! —4-o0

At last, we show that the sequence generated by Algorithm 1 has sub-sequence conver-

gence property.
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Theorem 2.3.4. The sequence Z; := (Cy,Dy) generated by Algorithm 1 has at least one

limit point, and any limit point of the sequence Zy is a stationary point of (2.13).

Proof. By Lemma 2.3.3, the sequence Z; := (Cy, D) generated by Algorithm 1 has at least
one limit point. For any limit point Z! = (C ! ,D') of the sequence Z;, let {Z;,} be the sub-
sequence of Z; that converges to Z'. Without loss of generality, assume the sub-sequence

{Zy} converges to Z> = (C*,D?). By the definition of the second step in (2.9), we have
Q(Cyx,Dy)+ f(Cx) < Q(C,Dy) + f(C), VC € Qc. (2.17)

Taking k' — o0 in (2.17). By Lemma 2.3.2, we have
g(D")+0(C', D"+ f(C") < g(D")+Q(C,D") + £(C), VC € Qc, (2.18)

which implies

L(C',D") <L(C,D"),VC e Qc. (2.19)

As Zy . is defined from Zy by (2.9), we have

O(Cuv, Dy y1) +8(Dy11) < O(Cy,D) +g(D), VD € Qp;

Q(Cr11,Dp11) + f(Cry1) £ O(C,Dypyy) + f(C), VC € Qc.

The summation of the first inequality and the second inequality with C = Cy gives
8(Dy+1) + Q(Cs1,Dp11) + f(Cr41) < g(D) + Q(Cp, D) + f(Cr). (2.20)
Taking k' — o< in (2.20). By Lemma 2.3.2 and Lemma 2.3.3, we have
L(C',D") = L(C* D*) < L(C',D). (2.21)

Thus, the combination of (2.19) and (2.21) shows that the point (C 1,D1) is a coordinate-
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wise minimum point of (2.13). Therefore, for any 8z = (8¢, dp), we have

L(Z'+68;)—L(Z"

liminf
182)|—0 [tA]
liminf Q(Z'+68,) - 0(Z") + f(C' + &) — f(C") +g(D" + 5p) — g(D")
162]|—0 |6z
 timing (VQ(Z").87) + 1(C" +8¢) — £(C') +¢(D' +8p) —2(D")
182]| -0 [eAl
~fiming (Q(C1 +8¢,DY) — 0(C', DY) —o(||5c||) + £(C' + &) — F(C)
162]|—0 |16zl
L 0(C',D'+6) —0(C', DY) —o(||3p]) + (D" + 8p) _g(Dl))
el
e —olldl) —e(lol) _
=N 162]] :

where the first inequality is from (2.14) and the second inequality is from the fact that
Z' = (C I,Dl) is the coordinate-wise minimum point of (2.13). By Definition (2.3.1), the

point Z! is a stationary point of (2.13). |

2.4 A modified algorithm for (2.7) with sequence conver-

gence

In the previous section, we showed that the sequence generated by Algorithm 1 has sub-
sequence convergence property. The next question is whether the sequence itself is conver-
gent or not. The experiments show that it is not the case; see Fig.2.1 (a) for the increments
of the sequence C;. The lack of sequence convergence is not crucial to the applications in
image recovery, as the result we are seeking for is not the frame coefficient vector but the
image synthesized from the coefficients. See Fig. 2.1 (b) for an illustration. However, the
divergence of the coefficient sequence could cause severe stability issue when the coefficient
set is the one needed, e.g. in the case of sparse coding based recognition tasks. Motivated
by both theoretical interest and the needs from applications, we proposed a modified version

of Algorithm (1) with sequence convergence property, i.e., the sequence generated by the
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new algorithm converges to a stationary point of (2.13).

The modification on Algorithm 1 for gaining sequence convergence is done by adding
a proximal term in each iteration, a technique which has been used in other alternating
iterative methods to ensure the convergence. For example, the proximal method proposed
in [3] for solving a class of non-convex and non-smooth functions. The modified version of

Algorithm 1 updates the estimates of C and D via solving the following problems:

2.
F

Dy € argmin L(Cy, D) + A¢|| D — Dy|
D (2.22)
Cii1 € afgéninL(C,Dkﬂ) + || C — Ci|%,

where Ay, ty € (a,b) and a,b > 0. It can seen that the new iteration (2.22) adds two addi-
tional proximal terms, A¢||D — Dy ||% and  ||C — Cy ||, to the original iteration (2.8). Same

as (2.8), both minimization problems in (2.22) also have closed-form solutions.

Proposition 2.4.1. The solution of (2.22) is given by

Dy =UV,,
" L (2.23)
+i
Civ1 € Ty il Hhukk ),
where U,V is given by the SVD onC,(T + MDDy = UkaVkT.
Proof. The proof is exactly the same as that of (2.9) provided in [19]. |

See Algorithm 2 for the summary of the modified algorithm for solving (2.13).

2.4.1 Convergence analysis of Algorithm 2

In this section, we first establish the sub-convergence property of Algorithm 2. Then we es-
tablish the sequence convergence of the algorithm by showing that the sequence is a Cauchy
sequence and converges to a stationary point of (2.13). The main proof is built on the results
presented in [3] about the convergence analysis of proximal methods for solving a class of

non-smooth and non-convex problems.
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Algorithm 2 Proximal alternating iteration scheme for solving (2.7).
1: INPUT: Input image g;
2: OUTPUT: Adaptive filter set D;
3: Main Procedure:
1. Set initial filter matrix D and coefficient matrix Cy.
ii. Construct the patch matrix ¥ as (2.6).
iii. Fork=0,1,---,

1. compute the SVD of Y C,;r +MD=U kaV,j;

D/, Y+l~lka)
1+ py

2. Dk+1 = UkV]—cl— and Ck+1 S Tl\/ﬂk+1(

Theorem 2.4.2. Let Z;. := (Cy, Dy) denote the sequence generated by Algorithm 2. Then, Z;,
has at least one convergent subsequence and every convergent subsequence of Zj, converges

to a stationary point of (2.13).
Proof. By the definition of (2.22), we have

L(Cy,Dy+1) + M||Dyy 1 — Dy||7 < L(Cy, Dy,

L(Ciy1,Dii1) + el|Chit — CillF < L(Cy, D).

Sum up both inequalities and by the fact that a < py, A < b, we have
L(Zy) — L(Ziy1) 2 a||Zy — Zya H}zv > 0. (2.24)

By the same argument for (2.15), we have Z; is bounded and has at least one limit point.

By (2.24), we obtain

k
L(Zo) —L(Zi1) = Y. dl|Zj — Zj41 |1} (2.25)
j=0

let k — o0 in (2.25), together with the facts that L(Z;) > 0 and L(Zy) is a decreasing

sequence, we have

~+oo
Y 1Zk — Zis |[F < +oo,
=1
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which implies that
lim ||Zk - Zk+1 ||F =0. (226)
k—>—+oo

Let Z' := (C I,D') denote any limit point of Z, i.e., there exists a sub-sequence Z;
converges to Z'. In the next, we prove that the sub-sequence Z . also converges to VA
For any & > 0, there exists Ny such that || Zy — Z'||r < €/2 and ||Zy — Zp1||Fr < €/2 for
all K > Ny. The first inequality is from the fact that Z; converges to Z' and the second one
is from (2.26). Thus, for all k¥’ > Ny,

1Zi 1 —Z'|F < |Zb — Zpsr|lF + |1 Zo — ZM||F < &. (2.27)

Consequently, we have Zy | — Z Vas k! — 4oo.

By the definition of (2.22), we have that, for any C € Q,
L(Cy41,Dy11) +a||Cyi1 —C||F < L(C,Dy11) +b||C — C ||}

Similar to the derivation of (2.16), by setting C = C Uand taking K’ — oo in the inequality

above, we have Eminf f(Cui) < f (Cl). As f is alower semi-continuous function, we have
l*>+oo
liminf f(Cyp1) = f(C).
k' —+o0

By the same arguments in the proof of Lemma 2.3.2, we have k/linjw f(Cuyr) = f(CH.
Again, by using the same arguments for k/l_i)nlw f(Crp1), we also have k/l_i{jr&oo f(Cp) =
f(CY). Notice that Dy € 27, k=1,2,..., and 2 is a compact set. Thus, g(Dy) =
g(Dy.1) = g(D") = 0 and Q is continuous, which leads to

lim L(Zy) = k/linle(Zk/ L1) =L(C',DY). (2.28)

k! ——oo

By the definition of C in (2.22), we have

L(Cyy1,Dy11) +a||Cyiy —Cpl|F < L(C,Dy 1) +b||C—Cy||F,VC € Qc.
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Taking k' — oo in the inequality above, together with (2.28) and (2.26), we have
L(C", D" < L(C'+C,D") +b|C|%, VC € Q. (2.29)
Again, by the definition of (2.22), we have

L(Cy,Dy1) + A || Dy — Dy |3 < L(Cp, D) + Ay||D — Dy |3 (2.30)

L(Cy41,Dp 1) + M ||Crs1 — Cp||F < L(C,Dpy1) + piy||C — Cp || 7.

Recall that A/, tr € (a,b). Then,
L(Zy 1) +al|Zyy —Zy||% < L(Cy,D) +b||D—Dyl||%, YD € Qp.
Taking k' — oo in above, together with (2.28) and (2.26), we have
L(C',D") < L(C',D'+D)+b|D|%, VD € Qp.

Consequently, for any d = (6¢, Op) € (¢, Q2p), we have

L(Z'+d)-L(Z"

liminf
4]0 ]
:1|i£r|nan<Zl +d)-0(Z")+f(C' +(T|C¢3H_ F(CY +g(D' + 8p) — g(D")
—0
Zl‘Tgﬂlng‘ <VQ(ZI)7d> +f<C] + 5C) Nd]h(cl) +g(D1 + 6D) _g(Dl)
=1iminf(Q(C1 +8¢,D') — 0(C!,D") —o(||éc|) + f(C' +c) — f(C")
d]|—0 Ild]]
+ Q(C17D1 +6D) - Q(CI,DI) —0(||5D||) +g(D1 +6D) —g(Dl)>
||l
>hminf—0(||5c|!)—0(H5D||)—b(||5c|!%+||5DH%) _o.
~ |ld[|=0 |ld]]

By Definition 2.3.1, we have Z! is a stationary point of (2.13). |
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In the next, we will establish the convergence of the sequence Z; = (Cy, Dy) generated

by (2.22) by showing that it satisfies the so-called finite length property, i.e.,

—+oo
Y NZii1 — Zi||p < oo
k=1

Clearly, a sequence with finite length property is a Cauchy sequence. Together with The-
orem 2.4.2, we have the sequence Z; converges to a stationary point of (2.13). The proof
is based on the convergence analysis developed in a series of papers ( [3, 14, 15]), which
studied the convergence of the iteration scheme (2.22) for solving (2.13) with respect to a

class of objective functions.

Theorem 2.4.3. [3, Theorem 9] The sequence Z; = (Cy,Dy) generated by the iteration
(2.22) has finite length property if the following conditions hold:

1. L(C,D) is a K-L function;

2. Zi,k=1,2,... is a bounded sequence and there exists some positive constants a,b

such that A, Ly € (a,b),k=1,2,...;
3. VO(C,D) has Lipschitz constant on any bounded set.

In Theorem 2.4.3, there are three conditions to ensure the sequence satisfies the finite length
property. The first condition requires that the objective function L satisfies the so-called
Kurdyka-Lojasiewicz (K-L) property in its effective domain; see [15, Definition 3] for more
details on K-L property. Given a function, it is often not easy to check whether it satisfies
the K-L property. Nevertheless, it is shown in [14, Remark 5] and [14, Theorem 11] that

any so-called semi-algebraic function satisfies the K-L property.

Definition 2.4.4. [15] A subset S of R" is called a semi-algebraic set if there exists a finite

number of real polynomial functions g;;,h;; such that

S= Uﬂ{u cR": g,-j(u) = O,h,-j(u) < 0}
Jjoi
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A function f(u) is called a semi-algebraic function if its graph {(u,t) € R" x Rt = f(u)}

is a semi-algebraic set.

Theorem 2.4.5. Let Z; = (Cy,Dy) denote the sequence generated by (2.22). Then, the

sequence Zy has the finite length property and thus is a Cauchy sequence.

Proof. The proof is done by showing that Theorem 2.4.3 is applicable to the objective func-
tion (2.13) and the sequence Z; generated by (2.22). Thus, we only need to verify all three
conditions in Theorem 2.4.3.

The first condition in Theorem 2.4.3 is verified by showing that all three terms in the ob-
jective function L given by (2.13) are semi-algebraic functions. The second term Q(C,D) =
;HDTY C|| is clearly a semi-algebraic function as it is a real polynomial. Next, it can

be seen that the set 2" = {DER’" xm? :D'D=1}= ﬂ ﬂ {D:Y" dydji =6} isa
j=1k=1
semi-algebraic set. Thus, the last term g(D) = I 4 (D) is also a semi-algebraic function, as

it is shown in [2] that indicator functions of semi-algebraic sets are semi- algebraic func-
tions. Regarding the first term f(C) = A?||C||o. The graph of F = ||C||o is S = U Ly &
{(C,k): ||C|lo=k}. Foreachk=0,--- ,m?L,let % = {J:J C{1,--- ,m’L},|J| = k} then

Ly= U {(C,k):Cj =0}. It can be seen that the set {(C,k) : Cje = 0} is a semi-algebraic
Jes k

setin R"*L x R. Thus, F (C) =|C||o is a semi-algebraic function, as the finite union of the
semi-algebraic set is still semi-algebraic.

Regarding the second condition in theorem 2.4.3, the boundness of the sequence Z; =
(Cy,Dy) is ensured by Theorem 2.4.2. Moreover, by the definition of (2.22), there exist two
positive constants a,b > 0 such that A, y € (a,b) fork=1,2,....

For the last condition in theorem 2.4.3, notice that the function O(C,D) = 1||C—D 'Y |%

is a smooth function. Thus, for any bounded set .#, there exists a constant M > 0 such that
IVO(Cy,D1) —VQ(Ca,D»)||r <M||(Ci,Dy) — (C2,D5)||F

for any (Cy,D;) € # and (C2,D;) € A . |

In summary, we have the following result regarding the convergence of Algorithm 2.
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Figure 2.1: Convergence behavior of Algorithm 1 and Algorithm 2. (a) The ¢, norm of the
increments of the framelet coefficient vector at each iteration; and (b) the PSNR values of
the intermediate results at each iteration when denoising the image "boat" with noise level
o =20.

Corollary 2.4.6. The sequence Z; := (Cy,Dy) generated by Algorithm 2 converges to a
stationary point of (2.13).

2.5 Experiments on image denoising

There are two main parts in this section: one is the convergence analysis of the method
proposed in [19] and the other is the modifications of the original algorithm for gaining
stronger convergence property. The later is more of theoretical interest and for potential
benefit to other applications. Thus, the experimental evaluation done in this chapter for
image denoising is not as comprehensive as [19]. The data-driven tight frame based image
denoising is done as follows. Let f = g+ £(0) denote some noisy observation of g, where
€(o) is the additive i.i.d. Gausssian noise with zero mean and standard deviation o. Taking
f as the input and using 8 x 8 DCT as the initial guess, the filters of data-drive tight frame
{ay,ay,--- ,a64} are contructed using Algorithm 1 (or Algorithm 2). Then the denoised

result, denoted by g, is obtained via hard thresholding:

g=W' (T (Wy)),
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Barbara Boat Couple Fingerprint Hill Lena

Figure 2.2: Six test images

Image Babara Boat
c 10 20 30 40 50 10 20 30 40 50
Alg. 1;8 | 34.36 | 30.60 | 28.42 | 26.88 | 25.67 | 33.62 | 30.38 | 28.39 | 27.06 | 25.99
Alg.1;16 | 34.63 | 31.07 | 29.07 | 27.60 | 26.48 | 33.59 | 30.41 | 28.45 | 27.18 | 26.08
Alg.2;8 | 34.34 | 30.58 | 28.34 | 26.89 | 25.74 | 33.61 | 30.29 | 28.39 | 26.94 | 25.87
Alg.2;16 | 34.63 | 31.14 | 29.02 | 27.58 | 26.41 | 33.58 | 30.39 | 28.48 | 27.16 | 26.13
Image Fingerprint Hill
c 10 20 30 40 50 10 20 30 40 50
Alg. 1;8 | 32.23 | 28.32 | 26.18 | 24.67 | 23.52 | 33.28 | 30.22 | 28.56 | 27.36 | 26.48
Alg. 1; 16 | 32.25 | 28.40 | 26.34 | 24.95 | 23.88 | 33.28 | 30.30 | 28.61 | 27.52 | 26.63
Alg.2;8 | 32.20 | 28.27 | 26.13 | 24.66 | 23.46 | 33.26 | 30.20 | 28.45 | 27.25 | 26.38
Alg.2;16 | 32.24 | 28.38 | 26.33 | 24.93 | 23.87 | 33.22 | 30.23 | 28.64 | 27.50 | 26.65

Image Couple Lena
Alg. 1;8 | 33.63 | 30.09 | 28.16 | 26.72 | 25.68 | 35.52 | 32.25 | 30.22 | 28.80 | 27.60
Alg. 1;16 | 33.55 | 30.19 | 28.27 | 26.95 | 25.87 | 35.65 | 32.56 | 30.58 | 29.16 | 28.14
Alg.2;8 | 33.49 | 30.05 | 28.02 | 26.64 | 25.61 | 35.47 | 32.29 | 30.25 | 28.77 | 27.57
Alg.2;16 | 33.52 | 30.10 | 28.25 | 26.93 | 25.89 | 35.64 | 32.53 | 30.51 | 29.16 | 28.06

Table 2.1: PSNR values of the denoised results

where W denotes the analysis operator determine by {a; ?4:1 and 1 is thresholding param-
eter determined by noise level. Throughout all experiments, the parameter A is fixed at
A = 2.70 for both Algorithm 1 and Algorithm 2. The other settings for Algorithm 1 are
the same as [19]. For Algortithm 2, we set the maximum number of iteration to 70 and set
A = 0.047, 1y, = 0.024 for all k.

We starts with the demonstration of convergence behavior of Algorithm 1 proposed in
[19] and Algorithm 2 proposed in this chapter. See Fig. 2.1 (a) for the comparison of the ¢,
norm of the increments of the frame coefficient vectors CX generate by two algorithms. It
can be seen that the coefficient sequence generated by Algorithm 1 does not converge while
the one generated by Algorithm 1 converges. However, the lack of sequence convergence of

Algorithm 1 does not impact its performance of image denoising, as shown in Fig. 2.1. The

PSNR values of the denoised results from both algorithms are summarized in Table 2.1 with
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respect to different images and different noise levels. It can be seen that the performances

of both algorithms in image denoising are very close in terms of PSNR value.

2.6 Extensions

In this section, we extended the data-driven tight frame construction scheme when part of

the filters are fixed during the learning process.

2.6.1 Problem formulation

Given an image g, let G = {g,-,8,,} € R"*™ denote the training set of image patches
of size /n x \/n collected from the image after vecterization. The image patches for the
training can be selected randomly or regularly. Now we consider the sparse approximation
problem for the set G under an orthogonal dictionary D := [A, D] € R"*" whose columns
refer to dictionary atoms. The dictionary has two sub-dictionaries in our implementation:
one is A € R~ which contains the input orthogonal atoms known as good ones from
other sources; the other is D € R"*" which denotes the set of atoms need to be learned from

the input image. The orthogonal constraint on the dictionary says that
D'D=1,=-A"A=1, ;D' D=1;ATD=0.

We propose to learn the orthogonal dictionary D via solving the following minimization
model

min |G~ [A,DIV|[7+2%(|V|lo,
DcRnxr Y cRnxm (231)

st. D'D=1;A"D=0.
It is noted that r = n if the set A is empty.
The minimization (2.1) is quite similar to the model (3.2) used in the K-SVD method ,
except some additional linear and bi-linear constraints on D. In the next, we will show that

the minimization (2.31) is much easier to solve than (3.2).
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2.6.2 Numerical method

Same as the K-SVD method, we take an alternating iterative scheme to solve (2.31). More
specifically, let D be the initial dictionary to start (e.g. the DCT dictionary or multi-scale

wavelet dictionary). Then for k =0,1,..., K —1,

1. sparse coding: given the dictionary D™ with orthogonal columns, find the sparse

code V¥ via solving

VK .= argmin||G — [A,DP]V |2 + 12|V ||o. (2.32)
VeRnxm

2. dictionary updating: given the sparse code 7408 update the dictionary via solving

the minimization:

D* V) .= argmin||G — [A, D]V®)||2,
DcRnx<r (233)
s.t. DTD — IhATD = O

Then, we show that both the minimization (2.32) for sparse coding and (2.33) for dic-
tionary update are trivial to solve. Indeed, each of them has an explicit solution. Define
D = [A, D], Then by the definition of A and D), we have D'D= I,. The next proposi-

tion gives an explicit solution to (2.32).

Proposition 2.6.1. (sparse coding) Suppose that b'b= I,. The following minimization

problem,

min||G — DV || +A*[V]lo, (234)
has a unique solution given by V* =T, (bTG).

Proof. By the fact that b'b= I,, the minimization (2.34) is the equivalent to the following
minimization

. AT
min|[D° G- V|7 +A%|[V]o, (2.35)
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which can rewritten as

b
or equivalently the summation of multiple independent univariate minimization problems

min (V;;— (D' G)i;)> +A[Vij|.
iy WVijt

Recall that minimization problem min,cg ||x — y||5 + A2||x||o has a unique solution x* =

T),(y). Thus, the unique minimizer for (2.34) is T}, (bTG). [
T T
For dictionary update, let vk = [ng) ,Vg{) ]T, where ng) denotes the codes associ-

ated with A and Vg() associated with D). Let 2, denote the orthogonal projection operator

from R” to the space spanned by the columns of A: Z,v =A(A " v),¥v € R". Then, the next

proposition gives the explicit solution to the minimization (2.33).
Proposition 2.6.2. (dictionary updating) The following constrained minimization

minpcpn<r |G — (AV4 +DVp)||%

(2.36)
st. D'D=1,,A'"D=0

has a unique solution given by D* = PQT, where P and Q denote the orthogonal matrices

defined by the following SVD
(I,— Z,)GV}) =PrQ'.

Proof. The objective function in (2.36) is equal to

|G—AV 4 —DVp||%
(2.37)
=||G—AV4||}+||DVp|[F —Tr((G—AV,4) ' DVp).

IfD'D=1Iand A" D =0, then the first two terms in (2.37) are constant and Tr((AV 4) "DV p) =
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0. Therefore, the minimization (2.36) is equivalent to
mngr(DTGV{,), st D'D=1,A"D=0. (2.38)

Consider the following SVD: (I,, — (@A)GVLT) — PYQ". From the Theorem 4 in [96], D =

PQ" is the minimizer of the following minimization problem

max Te(D' (I — 24)GV}), st. D'D=1,. (2.39)
6 nxr

Notice that the space spanned by the columns P is equal to the one spanned by the columns
of (I— QZA)GVIT) which is orthogonal to the space spanned by A. Therefore, A' D =
ATPQ" = 0. Put all together, we have D = PQ" is the minimizer to the following mini-

mization problem

max Tr(D'(I— 24)GV}),
DeRrr (2.40)
st. D'D=1,A"D=0.

Together with the fact

D'GV),=D'P2,GV})+D'(I1-24)GV) ran)
Q2.
=D'(I- 2,)GV},

The last equality in (2.41) holds when the constraint A" D = 0 is satisfied. ]

Therefore, each iteration in the proposed alternative iteration scheme is very simple.
There is no need to use any iterative scheme for solving any minimization problem when
doing the sparse coding and dictionary updating. The sparse coding is done via a hard
thresholding operation and the dictionary updating is done via a single SVD. See Algo-

rithm 3 for the complete description of the algorithm.
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Algorithm 3 Extended orthogonal dictionary learning
Input: image patches G, input orthogonal atoms A
Output: learned dictionary D
Main procedure:

1. Set the initial guess DO,

2. Fork=0,1,...,K,
.
@V =1, (D¥ G);

(b) run the SVD for the matrix

.
(I, — 2,06V =PrQ’:

(c) D) .= pQT.
3.D:=D%*V).

2.6.3 Complexity analysis of Algorithm 3

In this section, we give a detailed analysis on the computational complexity of Algorithm 3
for sparsity-based orthogonal dictionary learning. Let m denotes the number of training

patches in G and consider the worst scenario in which no pre-defined atoms are provided,

i.e. D € R,

The sparse coding of Alg. 3 uses 2mn? operations to obtain the matrix product D' G and
mn? operations in hard thresholding. Let K denote the average number of non-zero entries
in each column of V. For dictionary update of Alg. 3, the number of operations required to
calculate the multiplications GV T is 2mnK. The standard algorithm to obtain the singular
value decomposition of GV € R™" takes 21n3 operations [40]. So, the total number of

operations in one iteration of Alg. 3 is

T = 3mn? + 2mnkK +21n° (2.42)

The K-SVD method [34] is very computationally demanding. The OMP used for sparse
coding is known to be slow. The dictionary update of the K-SVD method need to call SVD
operators for 4n times. Thus, a fast approximate K-SVD method is developed in [74] which
use batch-OMP for sparse coding and replacing SVD by matrix-vector multiplication. The

complexity analysis of the approximate K-SVD method (the dimension of dictionary is set



46 Data-driven tight frame construction for image restoration

Sparse Coding Dictionary learning Total
Approx. | m(8n*+4K*n+ 12Kn)+ 2OmKn + 6473 m(8n* +4nK?> +32Kn+ K?>)
K-SVD [74] mK> + 16n> +80n°
m(3n* +2Kn)
Alg.3 3mn* 2mKn+21n? a1

Table 2.2: Complexity analysis for one iteration

4n by default), together with ours are listed in table 2.2. Clearly, Algorithm 3 requires far
less operations. The computational efficiency in real applications will be further investigated

in the section of experiments.

2.6.4 Applications in image restoration

The sparsity-based online orthogonal dictionary learning Algorithm 3 is very simple to
implement and also very computationally efficient. To evaluate its performance in image
restoration in terms of recovery quality and computational efficiency, we applied Algo-

rithm 3 on two sample image restoration tasks: image denoising and image in painting.

Image denoising. Algorithm 3 can be directly applied on de-noising by taking the noisy
image as the input image for training. It is known in signal processing that most noise are in
the high-pass channels. Thus, we fix a low-pass filter in the dictionary and only learn n — 1

high-pass filters from the input image. That is, we define A = [@y] € R"*!, where
ao=n""?01,1,....1]".

Clearly, the orthogonal constraint ag D =0 on D ensures that all atoms in D € R”*"~! are
high-pass filters. After generating the training matrix G by randomly sampling the image
patches of size \/n X y/n from the noisy image, the dictionary D is learned from Algorithm 3.
Then the de-noised image is reconstructed from the de-noised patch matrix IA)T;L1 (ﬁTG) by
averaging the overlaping pixels, where D = [@p,D]. For computationally efficiency, the

training patches are uniformly selected from the image at random. See Algorithm 3 for the
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outline of the algorithm.

Image inpainting. Image in-painting is about recovering the missing values of image pixels
or removing unwanted content from the image, which can be formulated as solving the

following under-determined linear inverse problem:
flk)y=g(k)+e, keA".

where g denote the image for recovery, A denotes the region for in-painting and A¢ denotes
its complement, and € denotes noise. Using a dictionary D generated from wavelet frame

filters, Cai et al. [16] proposed the following iteration scheme for in painting f:
G = (1—P\)F +P\D" (T, DGY)), (2.43)

where P, is the diagonal projection matrix whose diagonal element equals to 1 if in A
and 0 otherwise, G*) are image patch matrices from g% and f respectively. In our im-
plementation, we use the same iteration scheme. Different from image denoising, during
each iteration of Algorithm 3, we use the newest estimate g'¥) to generate the training patch

matrix. See Algorithm 5 for details.

Algorithm 4 Denoising via orthogonal dictionary learning
Input: noisy image g
Output: denoised image g*
Main procedure:
1. Initilization.
(a) synthesizing image patch matrix G from g;
(b) defining A = [ay] for some low-pass filter ay.
2. Learning a dictionary D* using Algorithm 3 with input
G and A = [ay).
3. De-noising patch matrix G* := DT, (ﬁTG) with
b=[A D
4. Synthesizing the denoised image g* from G* by
averaging the overlapping pixels.
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Algorithm 5 Inpainting via orthogonal dictionary learning
Input: image g and inpainting region A
Output: inpainted image g*
Main procedure:
1. Initialization.
(a) initilizing an in-painted image g by interpolation;
(b) synthesizing patch matrix G'% from g9 and
defining A = [ay].
2. Fork=0,1,... K,
(a) learning a dictionary DK using one iteration of
Algorithm 3 with input G%) and A = [ag);
(b) synthesizing the image A%*+D) from the denoised
patch matrix G* := DT), (ﬁTG);
(c) defining g*+1) := (I — Py)(g) + PyhKH D),
3. g* = g(K+D),

2.6.5 Experiments

In this section, we evaluate the performance of the proposed orthogonal diction learning
on image denoising and image in-painting. The experiments are conducted in MATLAB
R2011b (64bit) Linux version on a PC workstation with an INTEL CPU (2.4GHZ) and 48G
memory. The initial dictionary is generated by the local DCT transform: either 8 x 8 or
16 x 16. The image patches for training are uniformly selected from the input image at
random. For image size 512 x 512 and patch size 16 x 16, about 4 x 10* patches are used

for training.

Computational efficiency. Under the same software and hardware environment, Algo-
rithm 3 is compared to the widely used over-complete dictionary learning: the K-SVD
algorithm [34] and its fast version, the approximated K-SVD algorithm [74] with the imple-
mentations from the original authors !. Table 2.6.5 listed the detailed running time of each
module in K-SVD method, approximated K-SVD method and Agorithm 3. For each itera-
tion, clearly Algorithm 3 is much faster than both the K-SVD method and the approximate
K-SVD method.

The shorter running time for each iteration does not imply the algorithm run faster,

Uhttp://www.cs.technion.ac.il/ ronrubin/software.html
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implementation module 8x8 | 16x16

dictionary update | 8.60 | 24.87
sparse coding 1.19 2.18
dictionary update | 0.56 1.45
sparse coding 1.44 3.50
dictionary update | 0.02 0.15
sparse coding 0.04 0.18

K-SVD [34]

Approx. K-SVD [74]

Algorithm 3

Table 2.3: Running time (seconds) breakdown on one iteration of the K-SVD method, ap-
proximated K-SVD method and the implementation of Algorithm 3 with patch size 8 x 8
and 16 x 16.

Patch size\ | running time (sec.) | K-SVD | Approx. | Alg. 3
method vs. PSNR (dB) K-SVD
3 % 8 time 20275 | 98.35 2.02
PSNR 28.51 28.61 | 28.44
time 484.25 | 206.49 | 12.11
16 x 16
PSNR 27.86 27.84 | 28.93

Table 2.4: Running time of the K-SVD method, approximated K-SVD method with 15
iterations and Algorithm 3 with 30 iterations.

as it might has slow convergence. Thus, we conduct another test on the overall running
time when applying the three methods on image de-noising. The tested image is the image
"Barbara" of 512 x 512 in the presence of i.i.d. Gaussian noise with s.t.d. o = 30. Totally
15 iterations are used in the K-SVD method and the approximate K-SVD method as more
iterations do no improve the PSNR value anymore. Table 2.6.5 listed the total running time
of the two K-SVD methods and Alg. 3. While all three methods have comparable PSNR

values, our method is much faster that the other two.

Image denoising. Algorithm 4 for image denoising is evaluated on several tested images
shown in Fig. 2.4 with different noise levels. In our experiments, we set A = 3.5¢ and
A1 = 2.7 as the thresholding value for the dictionary learning process. Our results are
compared against two fixed transform based thresholding methods: linear spline framelet
[30] and 8 x 8 DCT, the PCA-based non-local hierarchical method [31] and the K-SVD
denoising method [34] with patch size of both 8 x 8 and 16 x 16. See Table 2.5 for the list
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of PSNR values of the results and Fig.2.3 for a visual illustration.

(e) K-SVD (f) Alg. 4

Figure 2.3: The dictionaries learned from the image "Barbara" with noise level o = 20 using
the K-SVD method and Algorithm 3. The atom size is 8 x 8.

Image Inpainting. Algorithm 5 is only tested on two sample image in-painting problems.
The first example is the text removal from the image ([11]). The second example is to filling
missing pixels in the image ([78]). In the first example, the results are compared to the
classic in-painting method [11], and two dictionary learning based methods derived from
the K-SVD method ([78]). The main difference between two dictionary learning methods
lies in the choice of sparsity promoting functional: one uses the ¢; norm and the other one
uses MC penalty. The results are shown in Fig. 2.5, together with two zoom-in regions
shown in the top-left and top-right corner of the image for easier inspection. It is seen that
the result from Algorithm 5 has less artifacts than others. In the second example, the values
of 50% of image pixels are missing at random. Algorithm 5 and two dictionary learning
methods [78] are applied to recover the missing pixel values. See Figure. 2.6 for the visual
illustration of the results. It is seen that Algorithm 5 outperformed the methods derived from

the K-SVD methods.
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fingerprint hill lena

Figure 2.5: Comparison of text removal. (a) image with overlapped texts; (b-e) correspond
to the results from [11], two over-complete dictionary learning method with ¢; norm sparsity
penalty and MC penalty ([78]), and Algorithm 5.

b

Figure 2.6: Image inpainting with 50% random missing pixels. (a) Original image; (b)
corrupted image; (c-e) the results from from two over-complete dictionary learning method
with /] norm sparsity penalty and MC penalty ([78]), and Algorithm 5.
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Image Babara Boat
c 10 20 30 40 50 10 20 30 40 50
DCT; 8 x 8 34.13 | 30.24 | 2796 | 2641 | 25.15 | 33.49 | 30.01 | 27.96 | 26.51 | 25.42
linear framelet 32.08 | 2798 | 25.76 | 24.25 | 23.18 | 32.80 | 29.36 | 27.25 | 25.74 | 24.48
hierarchical PCA | 34.52 | 30.85 | 28.92 | 27.38 | 26.00 | 33.65 | 30.23 | 28.24 | 26.75 | 25.57
K-SVD; 8 x 8 3448 | 30.86 | 28.57 | 26.92 | 25.47 | 33.67 | 30.41 | 28.44 | 27.04 | 25.94
K-SVD; 16 x 16 | 34.09 | 30.27 | 27.81 | 26.09 | 24.78 | 33.06 | 29.48 | 27.28 | 25.89 | 24.86
Alg.4; 8 3434 | 30.58 | 28.44 | 2694 | 25.75 | 33.64 | 30.33 | 28.38 | 27.00 | 25.95
Alg.4; 16 34.56 | 31.00 | 28.94 | 27.44 | 26.31 | 33.51 | 30.26 | 28.36 | 27.00 | 25.99
Image Fingerprint Hill
c 10 20 30 40 50 10 20 30 40 50
DCT; 8 x 8 3225 | 2829 | 26.08 | 24.49 | 23.27 | 33.24 | 30.02 | 28.26 | 26.94 | 2591
linear framelet 3044 | 2649 | 24.26 | 2270 | 21.45 | 32.69 | 29.46 | 27.58 | 26.12 | 24,96
hierarchical PCA | 32.33 | 28.38 | 26.31 | 24.83 | 23.62 | 33.41 | 30.20 | 28.59 | 27.34 | 26.31
K-SVD; 8 x 8 32.40 | 2847 | 26.29 | 2470 | 23.19 | 33.38 | 30.20 | 28.39 | 27.15 | 26.28
K-SVD; 16 x 16 | 31.88 | 27.69 | 25.26 | 23.49 | 22.22 | 32.81 | 29.38 | 27.38 | 25.99 | 24.94
Alg.4; 8 x 8 3224 | 2833 | 26.17 | 24.68 | 23.47 | 33.27 | 30.21 | 28.51 | 27.31 | 26.43
Alg.4;16 x 16 3225 | 2835 | 2625 | 24.86 | 23.81 | 33.18 | 30.19 | 28.54 | 27.40 | 26.54
Image Couple Lena
o 10 20 30 40 50 10 20 30 40 50
DCT; 8 x 8 3341 | 29.86 | 27.79 | 26.33 | 25.25 | 35.29 | 31.86 | 29.74 | 28.17 | 26.90
linear framelet 33.06 | 29.42 | 27.24 | 25.60 | 2439 | 34.22 | 30.69 | 28.52 | 26.83 | 25.50
hierarchical PCA | 33.56 | 29.95 | 27.86 | 26.41 | 2532 | 35.39 | 32.25 | 30.47 | 29.03 | 27.70
K-SVD; 8 x 8 33.55 | 30.01 | 27.90 | 26.40 | 2531 | 35.56 | 32.45 | 30.49 | 29.03 | 27.82
K-SVD; 16 x 16 | 32.87 | 29.10 | 26.85 | 25.19 | 24.08 | 35.02 | 31.71 | 29.57 | 28.06 | 26.78
Alg.4; 8x 8 33.57 | 30.04 | 28.06 | 26.62 | 25.57 | 35.52 | 3231 | 30.32 | 28.84 | 27.66
Alg.4; 16 x 16 3340 | 2997 | 28.05 | 26.70 | 25.71 | 35.52 | 32.40 | 30.49 | 29.09 | 27.95

Table 2.5: PSNR values of the denoised results
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2.6.6 Discussion and conclusion

In this subsection, we proposed an extended orthogonal dictionary learning for image restora-
tion, as an replacement of the widely used K-SVD method. The performance of the pro-
posed orthogonal dictionary learning method is comparable to the K-SVD method, but it
runs much faster than the K-SVD method. Such a significant improvement on the speed
could be very important to many image restoration application when dealing with image
of very large size or processing many images. In future, we would like to study how to
effectively combine the non-local scheme and the proposed orthogonal dictionary learning

method to develop better image restoration methods.






Chapter 3

Redundant dictionary learning for image

restoration and recognition

3.1 Introduction

In recent years, sparse coding has been widely used in many applications [80], e.g. image
recovery, machine learning, and recognition. The goal of sparse coding is to represent given
data by the linear combination of few elements taken from a set learned from given training
samples. Such a set is called dictionary and the elements of the set are called atoms. Let
D = {d\}]"_; C R" denote an over-complete dictionary composed of m(> n) atoms. Then,
for a signal y € R”, its sparse approximation over D is about finding a linear expansion
Dc =Y | cxdy using the fewest elements that approximates y with an error bound €. The
sparse approximation for an input signal can be formulated as the following optimization
problem:

min [|c[lo, subject to ||y — De||5 < &. (3.1)
ceRlﬂ

The problem (3.1) is a challenging NP-hard problem and only sub-optimal solutions can
be found in polynomial time. Most existing algorithms either use greedy algorithms to
iteratively select locally optimal solutions (e.g. orthogonal matching pursuit (OMP) [81]),

or replace the non-convex ¢y norm by its convex relaxation ¢; norm (e.g. basis pursuit [24]).
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Figure 3.1: Convergence behavior: the norm of the increments of the coefficient sequence
ct generated by the K-SVD method and the proposed method.

The dictionary for sparse approximation is usually learned from given training sample
to maximizes the efficiency of sparse approximation in terms of sparsity degree. More
concretely, given a training set of p signals ¥ := {y, }¥_; C R", the dictionary learning is

often formulated as the following minimization problem:

14

. I )
min =¥k — Dei 3 4 Allexlfo, (3.2)
D7{Ck}£_1kgl 2

subject to ||di|lo = 1,k =1,2,...,m, where ¢ = {ck}izl denotes the sparse coefficients of

training set ¥ and D denotes the learned dictionary.

3.1.1 Motivation

The minimization problem (3.2) is a non-convex problem whose non-convexity comes from
two sources: the sparsity-prompting functional ¢y norm and the bi-linearity between the
dictionary D and the codes {ck}fz |- Most existing approaches (e.g. [1, 44, 56, 57]) take an

alternating iteration between two modules: sparse approximation for updating {ck}izl and
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dictionary learning for updating dictionary D.

Despite the success of these alternating iterative methods in practice, to best of our
knowledge, none of them established the global convergence property, i.e., the whole se-
quence generated by the method converges to a stationary point of (3.2). These schemes
can only guarantee that the functional values are decreasing over the iterations, and thus
there exists a convergent sub-sequence as the sequence is always bounded. Indeed, the se-
quence generated by the popular K-SVD method [1] is not convergent as its increments do
not decrease to zero. See Fig. 3.1 for an illustration. The global convergence property is not
only of great theoretical importance, but also likely to be more efficient in practical com-

putation as many intermediate results are useless for a method without global convergence

property.

3.1.2 Main contributions

In this chapter, we proposed an alternating proximal linearized method for solving (3.2). The
main contribution of the proposed algorithm lies in its theoretical contribution to the open
question regarding the convergence property of ¢y norm based dictionary learning methods.
In this chapter, we showed that the whole sequence generated by the proposed method
converges to a stationary point of (3.2). Moreover, we also showed that the convergence
rate of the proposed algorithm is at least sub-linear. To the best of our knowledge, this is
the first algorithm with global convergence for solving ¢y norm based dictionary learning

problems.

The proposed method can also be used to solve other variations of (3.2) with small mod-
ifications, e.g. the ones used in discriminative K-SVD based recognition methods [45, 95].
Compared to many existing methods including the K-SVD method, the proposed method
also has its advantage on computational efficiency. The experiments showed that the imple-
mentation of the proposed algorithm has comparable performance to the K-SVD method in

two applications: image de-noising and face recognition, but is noticeably faster.
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3.2 Related work

In this section, we give a brief review on dictionary learning and related applications. Based
on the used sparsity prompting functional, the existing dictionary learning methods can be

classified into the following three categories.

3.2.1 /ynorm based methods

The most popular £y norm based dictionary learning method is the K-SVD method [1] which
used the model (3.2) for image denoising. Using many image patches from the input image
as the training set, the K-SVD method alternatively iterates between sparse approximation
and dictionary updating. The sparse approximation is based on the OMP method and the

dictionary is estimated via sequential column-wise SVD updates.

The K-SVD method showed good performance in image de-noising and is also used in
face/object recognition by adding some additional fidelity term in (3.2). For example, the
so-called discriminative K-SVD method in [45, 95] seeks the sparse code that minimizes

both reconstruction error and classification error as follows,

14

min 1 P
~|lye — Dex|l3 +
D.W. {c:}_, kzl 2 kzl

™™

16— Wel 3,

. 3.3
st. lleilo<tj=12....p, (3.3)

Iwillo < 1, Jldell2 < Lk=1,2,...,m,

where W = [wy,...w,,] denotes the linear classifier learned from the training set and £; de-
notes the binary encoded class label of the k-th sample. Both dictionary update and sparse
approximation is done via calling the K-SVD method. Also using the ¢y norm related op-
timization model, a fast method is proposed in [19] for learning a tight frame, which has

closed form solutions for both sparse approximation and dictionary update.
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3.2.2 Convex relaxation methods

As a convex relaxation of ¢y norm, the ¢; norm has been used in many dictionary learning
methods to improve the computational feasibility and efficiency of sparse coding; see e.g.
[44, 56, 57, 90]. All these methods also take an alternating scheme between sparse coding
and dictionary updating. In the stage of sparse approximation which requires solving a ¢;
norm related minimization problem, various methods have been used in different applica-
tions, including the accelerated gradient method [84] or fast iterative shrinkage thresholding
algorithm [10] in [44]; the fixed point method [42] in [56]. In the stage of dictionary update,
the atoms are either updated one by one or are simultaneously updated. One-by-one atom
updating is implemented in [44, 57] as it has closed form solutions. The projection gradient
method is used in [56] to update the whole dictionary together. The convergence analy-
sis is provided for the proximal method proposed in [90] for the ¢; norm based dictionary

learning.

3.2.3 Non-convex relaxation methods

As shown in [43, 94], the /| norm penalty tends to have biased estimation for large coeffi-
cients and sometimes results in over-penalization. Thus, several non-convex relaxations of
{o norm are proposed for better accuracy in sparse coding. For example, the non-convex
minimax concave (MC) penalty [94] is used in [78] for sparse dictionary learning. For other
non-convex relaxations, e.g. smoothly clipped absolute deviation [43] and log penalty [37],
the proximal methods have been proposed in [67, 79] to solve the minimization problems
with these non-convex regularization terms. The convergence property of these methods is

limited to the subsequence convergence.
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3.3 Algorithm and convergence analysis

3.3.1 Problem formulation

The original model (3.2) does not impose any constraint on the code {c;}. When a dic-
tionary with high redundancy is adopted, some elements of the sparse coefficient vector
could have unusual large values, which in general are not correct. Thus, we slightly mod-
ify the model (3.2) by adding a bound constraint on {c;}. Then, the minimization model

considered in this chapter is defined as follows,

1 )4
min = Y ||¥x—Deil5+ A ecllo
D7{ck}£:1 2];1

stldella=1,1 <k <m;|eello <M,1<k<p,

(3.4)

where M is a pre-defined upper-bound for all elements of {¢;}. It is noted that the bound
constraint on {cy }« is mainly for improving the stability of the model (3.2), which can be set
to a sufficiently large value to avoid any negative impact on the accuracy of the coefficients.
For the simplicity of discussion, letY = [y;,...,y p] denote the training sample matrix and let
C =[cy,...cp| denote the coefficient matrix. Let 2" = {D € R : ||di|» = 1,1 <k <m}
denote the feasible set for the dictionary D, and let € = {C € R™*?: ||k || <M, 1 <k < p}
denote the feasible set for the coefficient matrix C. Then the model (3.4) can be expressed

in the following compact form:

1
min ~|¥ =DC|3+A|[Cllo, st. DeZ,CE%. (3.5)
DcRrxm CcRm<p 2

In the next, we will present an alternating proximal method for solving (3.5), as well as the

convergence analysis.
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3.3.2 Alternating proximal method

The proposed algorithm is based on the proximal method [15] for solving the following

non-convex problem:

rgiynH (x,y) = F(x) +0(x,y) + G(y), (3.6)

where F(x),G(y) are proper lower semi-continuous functions, and Q(x,y) is a smooth func-
tion with Lipschitz gradient on any bounded set. The proximal method proposed in [15]

updates the estimate of (x,y) via solving the following proximal problems:

[l
A cargmin F (x) + (x — x5, V,0(xF, ¥5)) + %Hx —x*3;
x p 3.7)
Y cargminG(y) + (v . V0 y0) + Ly 513,
Yy

where t,i and t,% are two appropriately chosen step sizes. Using the so-called proximal oper-

ator [71] defined as

t
Prox/ (x) := argmin F (u) + §||u—x]|%, (3.8)
u

the minimizations (3.7) are equivalent to the following proximal problem:

1
e Proxfl (xk — t—IVQ(xk»)’k)),
k

i‘ (3.9)
ytle Prox,; - t—ZVQ(x"“,yk))-
k

The minimization problem (3.5) can be expressed in the form of (3.6) by setting

F(C)=|Cllo+1%(C);
0(C,D) = 5||Y — DC|
G(D) =14 (D),

2, (3.10)

where [ 5 (D) denotes the indicator function of D that satisfies [ (D) =0if D € 2 and oo

otherwise. Then using proximal operators, we propose the following alternating iterative
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scheme for solving (3.5): let D be the initial dictionary, then for { =0,1,---,

1. sparse approximation: given the dictionary DY, find the sparse code C () that sat-

isfies

€ € Proxf, , (€~ Lo, D), 3.11)
i 74

where A, is an estimated step size (more on this later).

2. dictionary update: given the sparse code C ©), update the dictionary D,(f) = {d,(fH ) My

atom by atom:

1

A (0) ~
d'" e Proxl(f{,EDk ‘(D" - —kVDkQ(C(@,Dz(f))), (3.12)
g 1
where ,
Dl(< ) = [dgg—i_l)a T 7dl(c£——~_11)’dk’d/(ci)-l’. . ’dglg)];
1~)]((z) _ [dﬁ”l),--- ,d,(ﬁl),d,(f),d;(ﬁp“' ,d01,

and ,ulf is a step size need to be estimated.

Each iteration above requires solving two optimization problems (3.11) and (3.12). In the

next, we show that both have closed form solutions. Define

Ty =~V Lveoc—) p");

O _
/ ~(£)
s, =d) ~ 1,v4,0C).D").

Then by a direct calculation, two optimization problems (3.11) and (3.12) are equivalent to

¢ € argmin 24 |C— T |3 +1ICllo,

Ccv
(3.13)
d\" € argmin|di— s |2, 1 <k <m.
Idilo=1

Proposition 3.3.1. Suppose that M is chosen such that M > \/2A /Ay, two minimization
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problems in (3.13) have the closed form solutions given by

. L
c) = mm{T\/m(T(C)),M};

(&) _ O 710 G-19)
d,’ =s."/ls; 2,1 <k <m.

Proof. The proof of the solution to the second problem in (3.13) is trivial. The first is easy to
obtain as it can be decomposed into the summation of independent minimization problems

with respect to each variable. |

Setting of step sizes. There are two step sizes, Ay in (3.11) and [.Lé‘ in (3.12), need to be set
during the iteration. The step size A, can be chosen as Ay = max{pL(D")), £} where £ > 0

is a constant, p > 1 and L(D")) satisfies
IVe(Q(€1,DY)) = VcQ(C2, DY) < L(DY) €1 — €3]

The step size f can be chosen as uf = max{pL(Z,(f)),ﬁ} where Z,(f) = (C(z),D(Z))\d,(f),
£>0,p>1and L(Z,(f)) satisfies

V4 V4 V4
Vg, (0(Z,d}) ~ V402 ,d})| < L(Z")|d} — d}|,

for any pair dj,D?. Consequently, we can choose L(D') = HD(Z)TD(@H F and L(Z,(f)) =
[C(@C(Z)T]k?k,Vk —=1,2,---,m. It can be seen that the sequence L(D¥)) is a bounded se-
quence since each column in D is of unit norm. Moreover, the sequence L(Z,(f)) is also
a bounded sequence since both C and D are bounded. See Alg.6 for the outline of the

proposed dictionary learning method that solves (3.5).

Iteration complexity. The main computational cost of our algorithm 6 lies in the matrix
product in the sparse coding stage. So, the algorithm 6 has O(mnp) iteration complexity
which is less than O(mnp + szp), the iteration complexity of the accelerated version of

the K-SVD method [74], where K is the predefined sparsity level.

Remark Algorithm 6 can be further accelerated by updating its associated coefficients right

after one dictionary item is updated. The coefficient update can be done using least squares



64 Redundant dictionary learning for image restoration and recognition

Algorithm 6 Proximal method for dictionary learning

1: INPUT: Training signals Y

2: OUTPUT: Learned Dictionary D

3: Main Procedure:
1. Initialization: set dictionary D(O), p>1,0>0.
2. For{=0,1,---
(a) Sparse approximation:

A =max{pL(D\"), };

r¢)=c5-veoc 5.0
0 _ o (0)

C( ) = mm{T\/m(TC ),M}

(b)fork=1,---,m,

(c) Dictionary update: fork=1,---,p,

uf = max{pL(z}").L}:
(0)

1 ~
s =d) - FVa2(C. D)
1

V4 V4 V4
d" =515t

(d) L(D(€+1)) _ “D(€+1)TD(€+I)HF_

(3.15)

(3.16)
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regression on the same support of the previous one .

3.4 Global convergence of Algorithm 6

Before proving the global convergence of Alg. 6, we first introduce the definition of the

critical points of a non-convex function given in [15].

Definition Given the non-convex function f : R” — RU{+eo} is a proper and lower semi-

continuous function and domf = {x € R" : f(x) < +oo}.

* For x € domf, its Fréchet sub-differential of f is defined as

9f(x) = {u: liminf L) =S = .y =)

>0}
YXYFEX |y — x|

and d f(x) = 0 if x & dom.

* The Limiting Sub-differential of f at x is defined as
Af(x) ={u e R":3x* - x, f(x**) — f(x) and u* € I f(x*) — u}.

* The point x is a critical point of f if 0 € d f(x).

Remark
e If x is a local minimizer of f then 0 € 9 f(x) C 9 f(x).

* If (C,D) is the critical point of (3.5), then we have

(D'DC)[i, j] = (D'Y)li, j] if C[i, j] # 0.

Theorem 3.4.1. [Sequence convergence] The sequence generated by the algorithm 6, {(C @) DO }

is a Cauchy sequence and converges to a critical point of (3.5).

'The convergence analysis for the accelerated implementation can be done using similar arguments for
Alg. 6
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Proof. The proof is built upon Theorem 1 from [15].

Theorem 3.4.2. [15] The sequence z0 = (x(g),y(é)) generated by the iteration (3.7) con-

verges to the critical point of (3.6), if the following conditions hold:
1. H(x,y) is a KL function;

2. Z(Z),E =1,2,--- is a bounded sequence and there exists some positive constant {,0

such that t} 17 € (£,0),0=1,2,-;
3. VQ(x,y) has Lipschitz constant on any bounded set.

The first condition requires that the objective function satisfies the so-called Kurdyka-
Lojasiewicz (KL) properties in its effective domain; see Definition 3 in [15] for more details
on KL properties. It is shown in Remark 5 and Theorem 11 in [14] that any so-called semi-
algebraic function satisfy the Kurdyka-Lojasiewicz property. In the next, we first give the
definition of the semi-algebraic sets and functions, followed by the proof that the objective
function (3.6) defined via (3.10) is a semi-algebraic function.

The next lemma establishes that the objective function (3.6) defined via (3.10) is a semi-

algebraic function.

Lemma 3.4.3. Each term in the function (3.6) defined via (3.10) is a semi-algebraic func-

tion, and thus the function (3.6) defined via (3.10) is a semi-algebraic function.

Proof. For Q(C,D) = %HY — DC||% is areal polynomial function, Q(C, D) is a semi-algebraic
function [15].

It is easy to notice that the set 2" = {D € R : ||di|2 = 1,1 <k <m} = {D:

$] D,%j = 1} is a semi-algebraic set. And the set ¢ = {C € R™*?|||ck||cc <M} = ijzl U {C:

||k ||« = j} is a semi-algebraic set. Therefore, the indicator functions I (C) and I4- (D) are
semi-algebraic functions from the fact that the indicator function for semi-algebraic sets are
semi-algebraic functions [2].

For the function F(C) = ||C||o. The graph of F is S = ;UI;L/( £ {(C,k) : ||C||o = k}. For

eachk=0,--- ,mp,let /3 ={J:J C{1,--- ,mp},|J]| :k}: then Ly = U {(C,k):Cje =
JeS
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0,C; # 0}. It is easy to know the set {(C,k) : Cjc = 0,C; # 0} is a semi-algebraic set in
R™*P x R. Thus, F(C) = ||C||o is a semi-algebraic function since the finite union of the

semi-algebraic set is still semi-algebraic [15]. |

For the second condition in theorem 3.4.2, CY) € € and DY) € 2 for any / =1,2,---,
which implies Z (0) = (C m,D(@) is a bounded sequence. In addition, for ¢ =1,2-- -, the step
size Ay = max(pL(D), 1) is bounded above since L(D'¥)) = |[DOTDO |z and D € 2.
The same holds for the step size {uf}" , since yf = max(pL(Z,(f)),i) where L(Z,(f)) =
C ¢ (Z)T] k. is bounded above. Consequently, there exists [,/ > 0 such that A, ,u,f e (L)
for any k, /.

For the last condition in theorem 3.4.2, notice that the function Q(C,D) = %HY —DC|%
is a smooth function. More specifically, VO(C,D) = (D' (DC —Y),(DC —Y)C") has

Lipschitz constant on any bounded set. In other words, for any bounded set .#, there exists

a constant M > 0, such that for any {(Cy,D),(C>2,D;)} C A,
IVO(Cy1,Dy) —VQ(Ca, D7) || < M|[(Cy,Dy) — (Ca, D2) .

Remark Different from the subsequence convergence property, the global convergence

property is defined as: (C,D) — (C,D), as £ — +oo.
Next, we show that Algorithm 1 has at least of sub-linear convergent rate.

Theorem 3.4.4. [Sub-linear convergence rate] The sequence generated by the Alg. 6, {(C @, D(g))},
converges to a critical point (C,D) of (3.5) at least in the sub-linear convergence rate, i.e.

there exist some @ > 0, such that
I(c, D) — (€,D)|| < e~ 251 (3.17)

where 0 € (3,1).

Proof. The proof is a direct application of the following theorem established in [2].
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Proposition 3.4.5 ([2]). For a given semi-algebraic function f(u), for all u € domf, there
exists 0 € [0,1), N € (0, 4o0] a neighborhood U of u and a concave and continuous function
0(s) = cs' =9 s € [0,n) such that for all u € U and satisfies f(i) € (f(u), f(u) +n), the
following inequality holds

!

¢ (f(u) — f(u))dist(0,9f(u)) > 1 (3.18)
where dist(0,d (@) = max{||u*|| : u* € df(@)}.

Theorem 3.4.6 ([2]). If the objective function is semi-algebraic, Z¥) = (x(*) y(©)) generated

by the iteration (3.7), and Z = (X,¥) is its limit point. Then
e IfO =0, VAQ converges to Z in finite steps.
« If0 € (0,1/2], then 3w > 0 and 7 € [0,1), such that | Z\Y) — Z|| < w1’
e If0 € (1/2,1), then 3w > 0 such that | Z©) — Z|| < w21,

where 0 corresponding to the desingularizing function ¢(s) = cs' =9 defined in proposition

3.4.5.

In the proposed Alg.6, notice that % — 0 as ¢/ — +oo, where 7 € [0,1) and 6 €
0201

(1/2,1). Thus, the sequence Z'*) converges to Z at least in sub-linear rate. |

3.5 Experiments

In this section, the practical performance and computational efficiency of the proposed ap-
proach is evaluated on two applications: image de-noising and face recognition. The ex-
periments on these two applications showed that, using the same minimization model, the
performance of our approach is comparable to the K-SVD based method, but is more com-

putationally efficient with less running time.
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Lena512 man512 peppers512

Figure 3.2: Test images.

3.5.1 Image denoising

Alg. 6 for image denoising is evaluated on tested images shown in Fig. 3.2 with different
noise levels. Through all the experiments, we set A = 1062 as the thresholding value for
dictionary learning process. Same as the K-SVD method [34], the dimension of the dictio-
nary is set to m = 4n and the initialization is done via filling in 8 x 8 local DCT transform
and leaving others zero vectors. The maximum iteration of Alg. 6 is set as 30. After the
dictionary is learned via training samples, the image is de-noised using the coefficients from
the OMP method under the learned dictionary in one pass. The results is compared to the
DCT-based thresholding method and the K-SVD denoising method [34] with patch size
8 x 8. See Table 3.1 for the list of PSNR values of the results and Fig. 3.4 for a visual illus-
tration of the denoised images. Fig. 3.3 shows the dictionaries learned from noise image by
both the K-SVD method and the proposed method. It can be seen that the performance of

our approach is comparable to the K-SVD method.
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Figure 3.3: The dictionaries learned from the image "Lena512" with noise level ¢ = 30
using the K-SVD method and Alg.6. The atom size is 8 x 8.

The computational efficiency of the proposed one is compared to the accelerated ver-
sion of the K-SVD method, the approximated K-SVD Algorithm [74] with the implementa-
tion from the original authors?. All two methods run on the same environment: MATLAB
R2011b (64bit) Linux version on a PC workstation with an INTEL CPU (2.4GHZ) and 48G
memory.The average running time of each iteration is: 2.81 seconds (K-SVD) vs. 0.71 sec-
onds (ours). Fig. 3.5 shows the comparison of the overall running time of the accelerated
implementation of Alg.6 and the K-SVD method to denoise image "Lena512" with noise
level o = 25. Clearly, Alg.6 is noticeably faster than the approximate K-SVD method when

learning the dictionary of the same size.

3.5.2 Face recognition

Alg. 6 can also be applied to recognition tasks using the model (3.5) by simply replacing the
K-SVD module by the proposed one. The performance is evaluated on two face datasets:
Extended YaleB dataset [38] and AR face dataset [60]. The one used our approach is com-
pared to three K-SVD based methods: LC-KSVD [45], D-KSVD [95] and K-SVD [1]. The

Zhttp://www.cs.technion.ac.il/ ronrubin/software.html
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noisy image (¢ = 25) restored image

Figure 3.4: Visual illustration of noisy images and denoised results
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Image Boat512 Fingerprint512

c 5 10 15 20 25 5 10 15 20 25
DCT; 8 x8 |36.79 | 33.49|31.34|29.96 | 28.90 | 36.34 | 32.25 | 29.68 | 28.29 | 26.85
K-SVD; 8 x 8 |37.17 | 33.64 | 31.73 | 30.36 | 29.28 | 36.59 | 32.39 | 30.06 | 28.47 | 27.26
Ours; 8 x 8 |37.02|33.57|31.62|30.20 | 29.16 | 36.59 | 32.35|29.97 | 28.28 | 27.03
Image Lena512 Man512

o 5 10 15 20 25 5 10 15 20 25
DCT; 8 x 8 [38.29 | 35.25|33.39|32.03 | 30.96 | 37.16 | 33.12 | 31.01 | 29.65 | 28.67
K-SVD; 8 x 8 | 38.59 | 35.47 | 33.70 | 32.38 | 31.32 | 37.61 | 33.62 | 31.45 | 30.13 | 29.11
Ours; 8 x 8 |38.49 |35.41|33.57|32.25|31.19|37.46 | 33.47 | 31.43 | 30.02 | 29.00
Image Hill512 Peppers512

o 5 10 15 20 25 5 10 15 20 25
DCT; 8 x8 |36.54]32.93|31.11|30.02 | 29.00 | 37.06 | 34.48 | 33.02 | 31.89 | 30.95
K-SVD; 8 x 8 136.99 | 33.34 | 31.43 | 30.17 | 29.19 | 37.77 | 34.72 | 32.37 | 32.26 | 31.39
Ours; 8 x 8 |36.94 | 33.31|31.29|30.02 | 29.06 | 37.68 | 34.64 | 33.22 | 32.14 | 31.18

Table 3.1: PSNR values of the denoised results

HE Ours
B <K-SVD

500 [

400 -

300 |-

time cost (s)

200 -

6x6 8x8 10x10 12x12 14x14 16x16
dimension of atom

Figure 3.5: Overall running time of our method and the K-SVD de-noising method with
comparable PSNR values.

Table 3.2: Training time (seconds) on two face datasets.

Dataset K-SVD | D-KSVD | LC-KSVD | Ours
Extended YaleB | 44.46 63.47 184.64 10.52
AR Face 55.03 70.43 256.12 22.75
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Table 3.3: Classification accuracies (%) on two face datasets.

Dataset K-SVD | D-KSVD | LC-KSVD | Ours
Extended YaleB | 93.10 94.10 95.00 95.66
AR Face 86.50 88.80 93.70 94.41

experimental setting is set the same as [45, 95]:

Extended Yale B: The extended YaleB database [38] contains 2,414 images of 38 human
frontal faces under about 64 illumination conditions and expressions. There are about 64
images for each person. The original images were cropped to 192 x 168 pixels. Following
[95], we project each face image into a 504-dimensional feature vector using a random
matrix of zero-mean normal distribution. The database is randomly split into two halves.
One half which contains 32 images for each person was used for training the dictionary. The

other half was used for testing.

AR Face Database: The AR face database [60] consists of over 4000 frontal images from
126 individuals. For each individual, 26 pictures were taken in two separate sessions. The
main characteristic of the AR database is that it includes frontal views of faces with different
facial expressions, lighting conditions and occlusion conditions. Following the standard
evaluation procedure from [45, 95], we use a subset of the database consisting of 2,600
images from 50 male subjects and 50 female subjects. For each person, twenty images are
randomly picked up for training and the remaining images are for testing. Each face image

is cropped to 165 x 120 and then projected onto a 540-dimensional feature vector.

We set the thresholding parameter A to be 10~#/2 and initialize the dictionary with iden-
tity matrix. Besides the classification accuracies, we also evaluate the training time of all
compared approaches under the same environment. The results of all the tested methods are
listed in Table 3.3 and Table 3.2. It can be seen that our approach performs consistently with

the state-of-the-art methods while have noticeable advantages on computational efficiency.
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3.6 Summary

In this chapter, we proposed an alternating proximal method iteration scheme for solving
{p norm based dictionary learning problems in sparse coding. The proposed one not only
answered the open question regarding the existence of a convergent method for solving ¢
norm based dictionary learning problems, but also showed the computational efficiency on
two practical applications. In future, we will investigate the applications of the proposed

framework for solving other non-convex minimization problems in computer vision.



Chapter 4

Incoherent dictionary learning for image

recognition

4.1 Introduction

Recently, sparse coding has been one important tool in many applications ([80]) including
image recovery, machine learning, recognition and etc. Given a set of input patterns, most
existing sparse coding models aim at finding a small number of atoms (representative pat-
terns) whose linear combinations approximate those input patterns well. More specifically,
given a set of vectors {y;,y5,..., yp} C R", sparse coding is about determining a dictionary
(the set of atoms)

{d17d27"'7dm} C Rna

together with a set of coefficient vectors {cy,...,¢,} C R™ with most elements close to
zero, so that each input vector y; can be approximated by the linear combination y; ~
Y, cj(£)d,. The typical sparse coding method, e.g. K-SVD [1], determines the dictionary
{d\,d>,...,d,} via solving an optimization problem with sparsity-prompting functional on
the coefficients:

p

Dgnir}) (Ilyi—Deill3 +Allcillo), subjectto ||djlla=1,1<j<m,  (4.1)
nCifi—1 =1
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where || - ||o counts the number of non-zero entries and D = {dy,...,d,,} is the dictionary
for sparse coding. It is well known that the above minimization (4.1) is an NP-hard problem
and only sub-optimal solution can be obtained in polynomial time. Most existing methods
use an alternating iteration scheme to solve (4.1).

Despite the success of sparse coding in many applications, the sequence generated by
most existing numerical solvers for solving the non-convex problem (4.1) can only guar-
antee that the functional value of (4.1) is decreasing at each iteration, which can not guar-
antee the generated sequence is convergent. Indeed, the sequence generated by the K-SVD
method is not convergent; see Fig. 4.1 for an illustration. Moreover, as it has been mentioned
in the literature, good performance of sparse coding in various recognition tasks requires
imposing some additional constraints of the dictionary. One of such essential dictionary

properties is the so-called mutual coherence:

H(D) = max|(d;.d;), (4.2)
i#]

which further increases the technical difficulty of designing an effective numerical method
with theoretical soundness. Although there is no such term in (4.1), the existing imple-
mentation of the K-SVD method implicitly tries to avoid learning a dictionary with high
mutual coherence by discarding the learned atom which has large mutual coherence with

the existing ones in each iteration.
In this chapter, we consider the problem of sparse coding that explicitly imposes addi-
tional regularization on the mutual coherence of the dictionary, which can be formulated as

the following minimization problem:

) 1 a
min, Z(Ellyi—DCJI%HLHciHo)+5||DTD—II|%,
Dieihizy i (4.3)

st. |ldjl2=1,1<j<m.

The minimization models similar to (4.3) have been used in several sparse coding based
systems; see e.g. [9, 52, 68]. As a more general optimization problem which contains the K-

SVD model (4.1) by setting & = 0, the optimization problem (4.3) is a even harder problem
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to solve.

This chapter aims at developing a fast alternating iteration scheme specifically designed
for solving (4.3). As shown in the experiments, compared to the generic dictionary gen-
erated by the K-SVD method, the dictionary generated by the proposed method has much
lower mutual coherence and it provides better performance in several sparse coding based
recognition tasks. Moreover, in contrast to the existing numerical solvers for (4.3), we pro-
vided the rigorous analysis on the convergence of the proposed method. It is mathematically
proved that the whole sequence generated by the proposed method converges to a stationary
point of the problem, while the existing analysis of all other solvers only shows that the
functional values of the sequence is decreasing or equivalently only a sub-sequence is con-
vergent. The whole sequence convergence of an iteration scheme is not only of theoretical
interest, but also important for applications, e.g. the number of iterations does not need to

be empirically chosen for obtaining stability.

4.1.1 Motivation and main contributions

The main motivation of this chapter is two-fold: one is the need for learning an incoherent
dictionary for sparse coding in many applications, and the other is the need of a numerical

solver for solving (4.3) with proved convergence property.

Motivation

The need of an incoherent dictionary for sparse coding. Once a dictionary is learned, the
sparse code for each input is then computed via some pursuit methods, e.g. orthogonal
matching pursuit [81], basis pursuit [24]. The success of these methods for finding the
optimal sparse code depends on the incoherence property of the dictionary. In [81], Tropp
showed that that the OMP can recover the exact support of the coefficients when mutual
coherence u is less that 1 /(25 — 1) where S is the number of nonzero entries of the correct
coefficients. It is further proved in [75] that the similar requirement on the mutual coher-
ence is also needed for ensuring the correctness of the thresholding-based sparse coding

algorithms. In practice, it is also observed that a dictionary with high mutual coherence will
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impact the performance of sparse coding based methods; see e.g [13, 68, 87].

The need of a variational model that explicitly regularizes mutual coherence. In a quick
glance, the widely used K-SVD method [1] for sparse coding considered a variational model
which has no explicit functional on minimizing the mutual coherence of the result, i.e., it
considered a special case of (4.3) with ¢ = 0. However, the implementation of the K-
SVD method implicitly controlled the mutual coherence of the dictionary by discarding
the "bad" atom which is highly correlated to the ones already in the dictionary. Such an
ad-hoc approach certainly is not optimal for lowering the overall mutual coherence of the
dictionary. In practice, the K-SVD method may still give a dictionary that contains highly
correlated atoms, which will lead to poor performance in sparse approximation, see [28] for
more details.

The need of a convergent algorithm. The minimization problem (4.3) is a challenging non-
convex problem. Most existing methods that used the model (4.3) or its extensions, e.g.
[45, 56, 95], simply call some generic non-linear optimization solvers such as the projected
gradient method. Such a scheme is slow and not stable in practice. Furthermore, all these
methods at most can be proved that the functional value is decreasing at each iteration. The
sequence itself may not be convergent. From the theoretical perspective, a non-convergent
algorithm certainly is not satisfactory. From the application perspective, the divergence of
the algorithm also leads to troublesome issues such as when to stop the numerical solver,

which often requires manual tune-up.

Main Contributions

In this chapter, we proposed a hybrid alternating proximal scheme for solving (4.3). Com-
pared to the K-SVD method that controls the mutual coherence of the dictionary in an
ad-hoc manner, the proposed method is optimized for learning an incoherent dictionary for
sparse coding. Compared to the generic numerical scheme for solving (4.3) adopted in the
existing applications, the convergence property of the proposed method is rigorously estab-
lished in the chapter. We showed that the whole sequence generated by the proposed method

converges to a stationary point. As a comparison, only sub-sequence convergence can be
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proved for existing numerical methods. The whole sequence convergence of an iteration
scheme is not only of theoretical interest, but also important for applications as the number

of iterations does not need to be empirically chosen to keep the output stable.

4.1.2 Related work

In this section, we gives a brief review on most related generic dictionary learning methods

and incoherent dictionary learning methods for sparse coding.

Generic Dictionary Learning Methods

Among many existing dictionary learning methods, the so-called K-SVD method [1] is
the most widely used one. The K-SVD method solves the problem (4.3) with o« = 0 by
alternatively iterating between sparse code C and the dictionary D. The sparse code C is
estimated by using the OMP method [81]: at each step, one atom is selected such that it is
most correlated with the current residuals and finally the observation is projected onto the
linear space spanned by the chosen atoms. In the dictionary update stage for estimating D,
the atoms are updated sequentially by using the rank-1 approximation to current residuals
which can be exactly solved by the SVD decomposition. Most other existing dictionary
learning methods (e.g. [44, 56, 57, 67]) are also based on the similar alternating scheme
between the dictionary update and sparse code estimation. In [44, 57], the atoms in the
dictionary are updated sequentially with closed form solutions. The projection gradient
descent method is used in [56] to update the whole dictionary. For the ¢y norm related
minimization problem in the stage of sparse code estimation, many relaxation methods have
been proposed and the ¢; norm based relaxation is the most popular one; see e.g. [44, 56,
57,90]. Among these methods, the convergence analysis is provided in [90] for its proximal
method. Recently, an proximal alternating linearized method is presented in [8] to directly
solve the £y norm based optimization problem for dictionary learning. The method proposed

in [8] is mathematically proved to be globally convergent.
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Incoherent Dictionary Learning Methods

There are two types of approaches to learn an incoherent dictionary for sparse coding. The
first one is to add an additional process in the existing generic dictionary learning method
to lower the mutual coherence, e.g. [9, 52]. Both [52] and [9] added the decorrelation step
after the dictionary update stage in K-SVD method. In [52], the de-correlation is done via
minimizing the distance between the learned dictionary generated by the K-SVD method
and the space spanned by the dictionaries with certain mutual coherence level. However,
this projection step doesn’t consider the approximation error and may significantly increase
the whole minimization functional value. Thus, in [9], the iterative projection method is
introduced to lower the mutual coherence of the dictionary, together with an additional dic-
tionary rotation step to improve the approximation error of the de-correlated dictionary.
The other way to learn the incoherent dictionary is directly solving a minimization model
that contains the functional related the mutual coherence of the dictionary, e.g. [7, 68]. In
[68], an additional regularization term on mutual coherence is added to (4.1) when being
applied in image classification and clustering. The approach presented in [9] used the OMP
method in sparse code estimation and method of optimal coherence-constrained direction
for dictionary update. In [7], the orthogonality constraints on the dictionary atoms are ex-
plicitly added in the variational model for dictionary learning such that its mutual coherence
is always 0. With the performance comparable to the K-SVD method in image recovery,
the orthogonal dictionary based method [7] is significantly faster than the K-SVD method.
Such advantages on computational efficiency comes from the fact that both sparse code

estimation and dictionary update have closed-form solutions in [7].

4.2 Incoherent dictionary learning algorithm

We first give an introduction to the definitions and notations used in this section. We define

Y be a matrix, y; be the j—th column of ¥ and y;; be the (i, j)—th element of Y. Given the

1/2

matrix Y, the Frobenius norm of Y is defined by ||Y||r = (Zhjy%j) , its £p norm [|Y||o is

defined as the number of nonzero entries of ¥ and the infinity norm of ||Y || = max; ;{|yi;|}.



4.2 Incoherent dictionary learning algorithm 81

Define the hard thresholding operator Ty (D)[i, j] = d;j if |d;j| > A and T)(D)[i,j] =0

otherwise.

4.2.1 Problem formulation

Given the training samples Y = (y,...,y,) € R"*7, we consider the sparse approximation
of Y by the redundant dictionary D € R™. Same as [68], we can introduce the regu-
larization |[D'D — 1 H% to the variational model to minimize the mutual coherence. The

variational model of incoherent dictionary learning model is given as follows,

. 1 o
min ~||Y —DC|[z +A|Cllo+ = ||[D"D—I||7,
st ||djlla=1,1<j<ms|cillee <M, 1<i<m,

where D = (dy,...,d,) ER™™ C=(c[,...,c,)" € R™P and M is the predefined upper
bound for the elements in C. It is noted that the predefined upper bound M is mainly for the
stability of the algorithm, which is allowed to be set arbitrarily large. For the simplicity of
discussion, define 7 = {D = (dy,...,dy) eR"”":||dj|p=1,1<j<m}and € ={C=
(e, vep) T €R™P leille <M, 1 <i<m}. Then the model (4.4) can be reformulated
as

1 a
min S |[¥ —~DC||3+A|Cllo+ EHDTD—IH%, st.De 9P, Cc . (4.5)

)

In the next, we will propose the hybrid alternating proximal algorithm for solving (4.5) with

the whole sequence convergence property.

4.2.2 A hybrid alternating proximal algorithm

The algorithm for solving (4.4) is based on a hybrid scheme that combines the alternating
proximal method [3] and the alternating proximal linearized method [15], which are about

tackling the non-convex minimization problem of the form:

min H(x,y) = F(x)+ Q(z) + G(y), (4.6)

z=(x,y)
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where F, G are proper lower semi-continuous functions and Q is the smooth function with
Lipschitz derivatives on any bounded set, that is, for the bounded set %, there exists a

constant L > 0, such that |[VQ(z1) — VO(22)|lr < L||z1 — 22||lF, 21,22 € Z.

The alternating proximal method [3] updates the (x,y) via as follows,

. k
Xe+1 € argmin, F (x) +Q(x,ye) + Gve) + i [lx — x| “

. k
Yer1 € argmin F(x1) + Qs 1,y) + G(O) + & [ly — elI3

where u*, A* are suitable step sizes. In general, the scheme (4.7) requires solving the non-
smooth and non-convex minimization problems in each step which often has no closed form
solutions. This motivates a linearized version of alternating proximal algorithm [15] such
that each subproblem has a closed form solution. Instead of solving the subproblems as
(4.7), the alternating proximal linearized algorithm replaces the smooth term Q in (4.7) by

its first order linear approximation:

X k
Xg41 € argmin, F'(x) + ( o) X) +Gyi) + 5 [1x — 7

4.8)
. A k
Vi1 € argminy F (g )+Q () ) +GO) + %||y—yk||,27.

where Q(y, 1) (¥) = Q(xk, yi) + (VeQ(xt, yi) s X —Xk), Q) ) = Qs yie) + (Vy Qi i),y —

yk), and uk, A* are carefully chosen step sizes.

Although the proximal linearized method has closed form solutions for all sub-problems,
it requires more iterations to converge than the proximal method as it only provides approx-
imated solutions to two-subproblems in (4.7). The problem (4.5) we are solving is different
from the generic model considered in the proximal method, as the first sub-problem for
sparse code estimation in (4.7) has a closed-form solution while the second one does not.
Motivated by this observation, we proposed a hybrid iteration scheme which uses the for-
mulation of the proximal method for sparse code estimation and uses the formulation of the
proximal linearized method for dictionary update. In other words, it is a hybrid version that
combines both the proximal method and the proximal linearized method. As a result, the

proposed one also has the closed form solutions for all sub-problems at each iteration, but
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converges faster than the proximal linearized method.

Remark Although both (4.7) and (4.8) are the alternating schemes between two variables,
they can be extended to the case of the alternating iteration among a finite number of blocks

[4, 15].

The iterations (4.7) and (4.8) can be re-written by using the proximal operator [71]:

t
Prox! (x) := argmin F (u) + EHM —x|)%.
u

Then, the minimization (4.7) can be re-written as

X1 € PVOXZ:Q("yk)(Xk), 4.9)
G+ , '
Vit1 € Prox$, O(Xp41 )<)’k)>
and the minimization (4.8) can be re-written as
X1 € Proxt, (xp — 2 V,.0(x, 1)),
+1 uk( kv x (X%, %)) (4.10)

Yir1 € Prox§ (v — 2: VyQ(xir1,3%))-

Remark It is shown in [15] that the proximal operator defined in (4.9), (4.10) are well

defined, i.e., the solution sets of (4.7) and (4.8) are nonempty and compact.

The minimization (4.4) can be expressed in the form (4.6) by setting

F(C) = A[Cl[o+ 6#(C),
Q(C,D)=3|Y —DC|3+|D"D-1|3, (4.11)
G(D) = 64(D),

where 84 (C) and 84 (D) are indicator functions, that is 84 (x) =0ifx € 2 and 84 (x) =

+oo if x ¢ 2. We propose the following alternating scheme to solve (4.4).
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Sparse Code Estimator

given the dictionary d 5, we update the sparse code ck {cT "L, row by row as follows:

F(U%+Q(U*,DW _ )
IOy <<, (4.12)

k
c§~ ) € Proxu;(
(0T

where U’J‘.:(c1 ,...,c(k)T T (k=DT c(k_l)T)T

i21:€5Ci1 ey Cm
(4.12) is easy to solve as it has closed form solution. Define 5”]" = {i|d;j #0,1 <i<n}

for 1 < j < m. The minimization

andRI*=Y - Y d -y d k=1, By direct calculation, the minimization (4.12) is
i<j i>j
equivalent to

k

H;
) cargmin~c; — ¢ ||F+ Y. e/ —dije;llF +Allesllo, (4.13)
CG% leyk

where R/ = (P1*7  plAT)T e R7P,

Proposition 4.2.1. Suppose M is chosen such that M > |2~ A \where r =Y d2 + uk i the
/ i€. 5/’ k

minimization (4.13) has the closed form solution for all 1 < j < m, given by

C;k) :min(TW Z dljr]k—f—[lj Ek 1))/1”];),M) (4.14)
165’]‘

Proof. By direct calculation, it can be seen that he minimization (4.13) is equivalent to the

following minimization.

k . k
M cargminrlle; — (Y dirl* 4+ uke ) /KR 42 ejo- (4.15)
cje‘é’ lejﬂk

The variables in the minimization (4.15) above are separable. Thus, it is easy to see that the

solution of (4.15) is exactly the one defined by (4.14). |
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Dictionary Update

Given the sparse code c®, we update the dictionary D+ — {d J} ' , atom by atom as
follows:

dS-kH) € ProxG( g )(d(‘k) !

TRNC) Mvd o(c™,vhy), (4.16)

where

Y

st =@, .a"Y d;a% (k)y

j—1 Jt1e
k¢ q(kt1) (k+1) (k) (k)
Vj—(d1 ,...,dj_1 ,dj ,de,

Denote d/*f = dﬁk) — ﬁvd ,0(C ), V’;), Then (4.16) can be reformulated as:
j

dE-kH) ¢ argmin||d; — d’*||3, 4.17)
Idjll2=1

From (4.17), it is easy to know d§k+1) —d’*/||d7K||, for 1 < j < m.

There are two step sizes, ,uj-‘ and QLJI.‘ needed to be set in the calculation. The step size u;‘
can be set arbitrarily as long as there exists a,b > 0 such that u;‘ €(a,b),Vk=1,2,....j=
l,...,m. The step size /'LJ’.‘ can be chosen as QLJ’.‘ = max(a,pL(dE-k))), where the 7LJ’-‘ can be

chosen so as to

1V4,0(C®.D}) —v,4,0(C™,D3)||p < L(d)||d} —d3]F, (4.18)

for all d},d? eR” WhereD (d(kH), . d(kJrll),d’J,dEjzl,
k) (k)T

canchooseuj:uo andL(d];):cg. ¢; -|-O¢||V’J‘-||2f0ra11]:1,2,...,mandk:1,2,....

,d,(,,]f)),i: 1,2. Typically, we

It can been seen that L(d’;) is a bounded sequence since C is bounded in the model (4.5).

See the Alg. 7 for the outline of the proposed incoherent dictionary learning method that

solves (4.5).
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Algorithm 7 Incoherent dictionary learning algorithm via solving (4.5).
1: INPUT: Training signals Y;
2: OUTPUT: Learned Incoherent Dictionary D;
3: Main Procedure:
1. Set the initial dictionary D), p > 1,4 >0 and K € N.
2.Fork=0,1,....K,
(a) Sparse Coding: for j =1,...,m, let ,Yf ={i: dl.(jl-c) #0,1 <i<n},

RTINS PORC
i<j i>]
= Z diirl* + k=) k _ Z d* + u*
iy THic; T ij T Hj (4.19)
iesf ies*
(k) . ik k
¢’ =min(T (e/*/r5),M).
J ,/2},/r§» J
(b) Update the step size: for j=1,...,m

v = e 1) =il v aV¥

(c) Dictionary Update: let ,uj-‘ = max{pL(d];)7a}, fork=1,...,m,

. k 1 k+1 i j
a* =dl - u_fv""Q(C(k)’V];); dtY =ik )| d . (4.20)
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4.3 Convergence analysis of Algorithm 7

Before proving the convergence property of the Alg.7, we define the critical points for the

non-convex and non-smooth functions [15].

Theorem 4.3.1. [Convergence Property] The sequence {(C (k),D(k))} generated by the al-

gorithm 7, is a Cauchy sequence and converges to the critical point of (4.5).

Proof. See Appendix A. |

4.4 Experiments

We used the proposed incoherent dictionary learning method in sparse coding based recog-
nition systems. The basic procedure is as follows. Firstly, the dictionary is learned from the
training set using Alg. 7. Then, the sparse code C for each sample in the training set, as well
as the test set, is calculated using the proximal alternating algorithm [64]. At last, a linear
classifier is trained and tested on the sparse codes. Two applications are considered in the
experiments: face recognition and object classification. The experimental results showed
that using the incoherent dictionary learned from the proposed method, the sparse coding

based recognition systems may have some additional performance gain.

4.4.1 Experimental setting

The performance is evaluated on two applications: face recognition on the Extended YaleB
dataset [38] and the AR face dataset [60], and object classification on the Caltech-101

dataset [36]. Our approach is compared to two dictionary learning based methods:

* K-SVD (Baseline) [1] : The basic procedure is similar to ours, i.e., the dictionary is
trained using K-SVD and the sparse codes are used to train a linear classifier. The

dictionary learning process and the classifier training process are independent.

e D-KSVD [95] : This method is an extension of the above baseline method, which

incorporates the classification error into the objective function of K-SVD dictionary
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learning. The dictionary and the linear classifier are trained simultaneously.

Note that both methods are built upon the K-SVD dictionary learning method [1] which
does not impose dictionary incoherence, and all the tested methods are based on a simple

linear classifier. The experimental setting is as follows:

» Extended Yale B : The extended YaleB database [38] contains 2,414 images of 38
human frontal faces under about 64 illumination conditions and expressions. There
are about 64 images for each person. The original images were cropped to 192 x 168
pixels. Each face image is projected into a 504-dimensional feature vector using a
random matrix of zero-mean normal distribution. The database is randomly split into
two halves. One half was used for training the dictionary which contains 32 images

for each person, and the other half was used for testing.

* AR Face : The AR face database [60] consists of over 4000 frontal images from 126
individuals. For each individual, 26 pictures were taken in two separate sessions. The
main characteristic of the AR database is that it includes frontal views of faces with
different facial expressions, lighting conditions and occlusion conditions. A subset of
the database consisting of 2,600 images from 50 male subjects and 50 female subjects
is used. For each person, twenty images are randomly picked up for training and the
remaining images are for testing. Each face image is cropped to 165 x 120 and then

projected onto a 540-dimensional feature vector.

* Caltechl0l1 : The Caltech101 dataset [36] contains 9,144 images from 102 classes
(i.e., 101 object categories with 8677 images and one additional “background category
with 467 images) including vehicles, plants, animals, cartoon characters, and so on.
The number of images in each category varies from 31 to 800. We use 20 samples
per category for training the dictionary as well as the classifier and the rest for testing.

The spatial pyramid feature presented in [95] is computed on each image as input.

To obtain reliable results, each experiment is repeated 30 times with different random

splits of the training and testing images. The final classification accuracies are reported as
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Table 4.1: Classification accuracies (%) on two face datasets and one object dataset.

Dataset K-SVD D-KSVD Ours
Extended YaleB 93.10 94.10 95.72
AR Face 86.50 88.80 96.18
Caltech-101  68.70 68.60 72.29

the average of each run. Throughout the experiments, we fix the sparsity parameter A to be
0.005 and the coherence parameter 3 to be 1. The iteration number K in Alg. 7 is fixed to
be 10. The dictionary size is set 540 on the two face datasets and 3000 on the Caltech-101

dataset.

4.4.2 Experimental results

The results and the conclusions are summarized as follows.

* Convergence behavior. The convergence behaviors of the K-SVD method and Alg. 7
on the YaleB face dataset are compared in Fig. 4.1, which plots the Frobenius norm
of the increments of the sparse codes generated by two algorithms at each iteration. It
can be seen that the code sequence generated by the K-SVD method does not converge
to zero, which means that the K-SVD method has at most sub-sequence convergence.
In contrast, the increments of the code sequence generated by Alg. 7 converges to zero

which shows that the whole sequence converges.

* Mutual coherence of dictionary. The matrices of the mutual coherence of the dic-
tionaries learned from the YaleB dataset are shown in Fig. 4.3, and its normalized
histograms are shown in Fig. 4.2. It can be seen that mutual coherence of the dictio-
nary from our approach can be significantly lower than that from the K-SVD method

when the regularization parameter § on mutual coherence is set sufficiently large.

* Classification performance. The classification results are listed in Table 4.1. It can

be seen that our approach performs slightly better than the compared methods.
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Figure 4.3: The mutual coherence matrices of the dictionaries learned from the YaleB face
dataset using the K-SVD method and Alg.7. The ith-column and jth-row element in each
matrix represents the mutual coherence between the ith and j-th atom.
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4.5 Summary and conclusions

This chapter aims at developing an alternating iteration scheme for learning an incoherent
dictionary, which is the first available incoherent dictionary learning method with proved
sequence convergence. The proposed work not only is of theoretical interest from the view-

point of optimization, but also might be useful to practical sparse coding based applications.

Appendix A

In this appendix, we give a detailed proof of Theorem 7. The proof of Theorem 7 is built

upon Theorem 2.9 in [4].

Theorem 4.5.1. ([4]) Assume H(z) is a proper and lower semi-continuous function with
infH > —oo, the sequence {z(k)}keN is a Cauchy sequence and converges to the critical

point of H(z), if the following four conditions hold:

(P1) Sufficient decrease condition. There exists some positive constant py, such that

HEM) = HE D) > py 4D —2O)F, vk=1,2,.....

(P2) Relative error condition. There exists some positive constant py > 0, such that

W Dl < palld D — B, wh) € GH(EW), Vh=1,2,....

(P3) Continuity condition. There exists a subsequence {z(kf)} jen and Z such that

25 =z H(ZM)) 5 H(Z), as j— +oo.

(P4) H(z) is a KL function. H(z) satisfies the Kurdyka-Lojasiewicz property in its effec-

tive domain.
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Let ZW) .= (C (k)7D(k)) denote the sequence generated by the algorithm 7. Firstly, it can
be seen that the objective function H(Z) = F(C) + Q(Z) + G(D) is the proper, lower semi-
continuous function and bounded below by 0 where F, Q, G are defined in (4.11). Secondly,
the sequence {Z®)},cn generated by algorithm 7 is bounded since D) € 2 and C N Y%
for all k =1,2,.... In the next, we show that the sequence {Z(k)} satisfies the condition

(P1)-(P4) using the following four lemmas.

Lemma 4.5.2. The sequence {Z®)}cn satisfies

k
(T, p0) < HEY.DW) - el ),

k+1) vy (k+1) jilk ,1 (k+1) Ak—r(dW)y (k+1) (k)12 4.21)
for 1 < j<m, where
(k) _ (T k)T (k=1)T (k=1)T (k) k—1
T = @ T e =,
k k k) (k-1 _ k _ :
v =@V, .. a" a4k, vi) =Dt
Proof. From (4.12), we know
k
¢ e argminF (e%) + Q(U%, D% V) + %ch ~c ), (4.23)

CJE%

By the optimality of cﬁk) in (4.23), we have

k
_ M - _
F(eh)+ 0T, D4 V) + e~V < F(ef_)+ o, . D* ).

Sum G(D(k_])) on both sides of the above inequality, we have the first inequality in (4.21).

From (4.16), we know

k

dgk) e argminG(S’}) + (Vde(C(k);Vﬁk_)ﬂadj _dﬁk_l)> + Tdej _dg'k_l)H%
djE@
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The above inequality implies

. L _
G(d}) + (Va, Q€W Ve ). df —df V) + =2 df —df VR < G(vh ). 429

From (4.18), we have

o L@@ _
k k—1 k k—1
(€, V) <€, V] )+ (V4,0 Vi )),af —df V) + L) V7
(4.25)
Together with (4.24), the second inequality in (4.21) is satisfied. |
Sum up the above inequalities, we can obtain
H(Cc® DWy — g(c*+1) plk+h)y
k k_7(q% (4.26)
o My k) (& Ai—=Ld;”) e k
> Y. (Gl =Pl + ==l ~d )
j:

Using the fact that there exist a,b > 0 such that a < /,Lf,/'LJk < b and 7Lk > L(dgk)), we can

establish the sufficient decreasing property (P1) for {Z } keN-

Lemma 4.5.3. Let wl) = (wh' ... w2 T and wit) = (W) ..., wi) where
{ wg = Ve,0(Z0) =V, o(T P, D% V) — k(e 1),
' )

[
w;):Vde(z(k))_vde(C( (k)) lk(dgk d&k—l)%

(4.27)

and (Tgk),V( ) is defined in (4.22). Then, w (w(clf),wD)) € 0H(Z®) and there exists a

constant p > 0, such that
WHllF < pl|2® — 2%V

Proof. The optimality condition of (4.12) is

Ve, (T% D) (el — V) 1k =, (4.28)
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where u’j‘ € I, F (T’]‘) Therefore, the following holds

uh = —(V,0(T%, DY) + pk(el - 1)) (4.29)

Since F(C) = [Cllo = X} ll¢;llo, we have u’]‘ € 8ch(C(k)). From (2?), it is easy to know

u’; - VCJ.Q(Z(")) € d.,H (Z™®)). Therefore, we have

Ve,0(2%) = Ve, 0(T5, D* ) — (el — V) € a1 (Z ).

Similarly, by optimality condtion of (4.16), we have
V4,0(C®,VE 1 25@¥ —a* V) vk =0, (4.30)

where & € 94, G(V*). Since 7 = (/- {D : ||d;||» = 1}, we have % € 9;,G(D™)). From
(??), we know v]; +Va4,0(Z )y e da;H(Z ()). Consequently, we have

V4,0Z") ~v4,0(c® vh) ~ 2@\ —al") € 9,,H(z®).

Since C¥) € € and DY) € 2 for all k € N, the sequence {Z*)};cy is a bounded se-

quence. Let {ZW} C 2, the following inequality holds: there exists L > 0, such that
IVzO(Z1) —VzQ(Z>)|Fr < L|Z1 - Z5||F, V21,2, € Z, (4.31)

since Q has lipschitz continuous gradient. Therefore, we have

Iwell <ufle? = eV lr +11Ve,0(2Y) = Ve, 0T}, d* D)

k k— AL k— _
<blle eV )p LY e — V)4 1d® — a D 5)
= (4.32)

=(b+(m—j)L)lcf! = eVl +L)ld® — V|5

<((m+ 1)L+ 0|20 - 20V ¢
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Similarly, we also have

Iwpll <81 —d% V) p 1 v,4,020) - V4,00 V)|

<bl|d —d "V p+ LY |14 —dV)lr) (433)
i=]

<(mL+b)2® —Z¢ |

Therefore, by w* = (W(C{< ) , wg()), we have

m . .
W e =Y Iwelle +lwplr < pIZ® — 25|, (4.34)
j=1

where p = m((2m+ 1)L+ 2b).

Lemma 4.5.4. The sequence {Z®)} .y satisfies the Continuity condition (P3).

Proof. Since C® € ¢ and DY € Z for all k € N, the sequence {Z(k) }en is a bounded
sequence and there exists a sub-sequence {Z/)} jen such that zZ\~) — Z = (U,D). Since
Z*i=1) ig also a bounded sequence, without loss of generality, assume Z ki=1) 5 Z,. In the

next, we first show that Z = Z;. By the lemma 4.5.2, we have
H(Z® D)~ H(ZW) > py)|z® - 26 V|7,

where p; > b. So, H (Z(k)) is a decreasing sequence and from the fact that H (Z(O)) <
+o0, H(Z) > 0, we have klim H(Z®) = A where H is some constant. Summing from

—o0
k=0to N, we have

N
HEZ®)-HEZY) <p Y |20 -Z0 ),
k=1

let N — +o< in the above, we have

oo H(ZOY— A
Y iz g < AE ]
k=1 p1
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which implies klim |1Z®) — Z*=D]||z = 0. So, for any € > 0, there exists J € N, such that
— o0
forall j > N, |Z*) —Z%i=D||r < £/2 and || Z*) — Z||r < £/2. Tt implies

12470 = 2))p < 2%~ 2%V |p + 2% - Z|F <.

Consequently, ZKi=1) 5 Z as Jj — oo

Let F(C) =YL, fj(c;), where fj(c;) = |¢jllo. From (4.12), we have for all £,

k
k . _ u; k—1
e’ Gargn;nfj<cj>+Q<U§,D<k 1>>+71Hc,._c§. 2,
(.‘jE(

Let ¢; = u; in the above inequality, we have

k k
- Hj - _ M _
£+ o8, D) 4+ 2L — eV < f(u) + 05, D4 )+ s — Y
(4.35)
where U’; = (cgk)T,...,cg.]i)lTujT,cg.i_ll)T,...,cf,lf_l)T)T. Choose k = k; and let j — +oo in

(4.35), using the fact that Z&i—1) — Z, we have

. ks
timsup £;(c}") < f(u;).
JrFee

Since fj is a lower semicontinuous function, we have jl_1>r£w fj(cg 1)) = fj(u;). By the same

argument, we have for all j=1,... ,m, .linILl fj(cg-k’)) = fj(u;). Since Q is a smooth func-
Jrteo

tion and G(D™®) = 0, Vk € N, we have

lim Q(Zz®))=0(Z), lim G(D%))=G(D).
J—rtoo J—tee

This implies

lim H(Z%)) = lim F(C®))+Qz*))+G(D*)) = H(Z).
J—rtoo J—ree
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For the property (P4), see [15] for the definition. An important class of functions that

satisfies the Kurdyka-Lojasiewicz property is the so-called semi-algebraic functions [15].

Theorem 4.5.5. ([15]) Let f is a proper and lower semicontinuous function. If f is semi-

algebraic then it satisfies the K-L property at any point of domf.

Lemma 4.5.6. All the function F(C), Q(Z) and G(D) defined in (4.11) are semi-algebraic
functions. Moreover, H(Z) = F(C) + Q(Z) + G(D) is the semi-algebraic function.

Proof. For Q(C,D) = 3||Y —DC|++%||D" D —1|% is areal polynomial function, O(C,D)
is a semi-algebraic function [15].

It is easy to notice that the set Z = {Y € R"": ||di|. = 1,1 <k <m} = {Y:
Y1_1yi; = 1} is a semi-algebraic set. And the set ¢’ = {C € R"™*?|||¢r[|. <M} = UL, Up_ {C:
|lek|l« = j} is a semi-algebraic set. Therefore, the indicator functions 84 (C) and 64 (D) are
semi-algebraic functions from the fact that the indicator function for semi-algebraic sets are
semi-algebraic functions [2].

For the function F(C) = ||C||o. The graph of F is S = ”[f Ly = {(C,k) : ||C|lo = k}. For
eachk=0,--- ,mp,let S, ={J:JC{l,--- ;mp},|J| = I?]iothen Ly= U {(Ck):Cje =
0,Cy # 0}. It is easy to know the set {(C,k) : C;c =0,C; # 0} is a sejrii;lgebraic set in
R™*P »x R. Thus, F(C) = ||C||o is a semi-algebraic function since the finite union of the
semi-algebraic set is still semi-algebraic.

Consequently, H(Z) is a semi-algebraic function since the finite summation of semi-

algebraic functions are still semi-algebraic [15]. ]






Chapter 5

Sparse coding based visual tracking

5.1 Introduction

Visual tracking has been an active research topic in computer vision community as it is
widely applied in the automatic object identification, automated surveillance, vehicle navi-
gation and many others. Despite great progresses in last two decades, due to many factors in
real life, many challenging problems still remains when designing a practical visual tracking
system. For example, sophisticated object shape or complex motion, illumination changes
and occlusions all may cause serious stability issues for a visual tracker (see a more detailed
discussion in [92].

Recently, sparse representation and compressed sensing technique (e.g. [21, 32]) for
finding a sparse solution of an under-determined linear system has drawn a great deal of
attention in both mathematics and many applied fields, including visual tracking [47, 51,
61, 62, 89]. Similar to sparsity-based approach for face recognition developed in [86], these
tracking methods express a target by a sparse linear combination of the templates in the
template space, i.e., the target is well approximated by the linear combination of only a
few templates. Benefitting from the stable recovery capability of sparse signal using the ¢;
norm minimization (e.g. [21]), these trackers have demonstrated good robustness in various
tracking environments.

In the L1 tracker first proposed by [61], hundreds of ¢; norm related minimization prob-
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lems need to be solved for each frame during the tracking process. The solver for the ¢,
norm minimizations used in [61] is based on the interior point method which turns out to be
too slow for tracking. A minimal error bounding strategy is introduced [62] to reduce the
number of particles, equal to the number of the ¢ norm minimizations for solving. A speed
up by four to five times is reported in [62], but it is still far away from being real time. An
efficient solver for the ¢ norm related problems has been the key to use the L1 tracker in
practice.

Moreover, in the existing L1 tracker, trivial templates are included in the template dic-
tionary such that its sparse linear combination will present the occlusions and image noise
in the target. However, as we empirically observed, the sparse linear combination of the
trivial templates sometimes include parts of the object in the target, which will result in a
loss of tracking accuracy in some sequences.

Built upon the same framework of the L1 tracker [61, 62], this chapter aims at develop-
ing a more robust L1 tracker which runs in real time. There are two main contributions in the
proposed approach. One is the introduction of a new ¢; norm related minimization model
which empirically showed improvements on the tracking accuracy over the model used in
[61]. The other more significant contribution is the introduction of a very fast numerical
method to solve the resulting ¢ norm minimization problems which leads to a real time L1
tracker. It is noted that the ¢; minimization problem shown in [61] is just a special case of
our ¢; minimization problem. Thus, the proposed numerical method can also be applied to

the original L1 tracker to make it a real-time tracker.

5.2 Related work

Among many approaches for real world visual tracking problem, discriminative tracking
and generative tracking are two different categories with different formulations. Tracking
problem is formulated as a binary classification problem in discriminative tracking methods.
Discriminative trackers locate the object region by finding the best way to separate object

from background; see e.g. [5, 6, 85, 93]. In [5], a feature vector is constructed for every
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pixel in the reference image and an adaptive ensemble of classifiers is trained to separate
pixels that belong to the object from the ones in the background. Online multiple instance
learning is used in [6] to achieve robustness to occlusions and other image corruptions.
Sparse Bayesian learning is used in [85]. Global mode seeking is used in [93] to detect the

object after total occlusion and reinitialize the local tracker.

Generative tracking method is based on the appearance model of target object. Tracking
is done via searching target location with best matching score by some metric; see e.g.
eigentracker [12], mean shift tracker [26], incremental tracker [73] and covariance tracker
[66]. To adapt to pose and illumination changes of the object, appearance model is often

dynamically updated during the tracking.

Sparse representation have been applied to tracking problem in [61], and later exploited
in [51]. In [61], a tracking candidate is sparsely represented by target templates and trivial
templates. In [51], group sparsity is integrated and very high dimensional image features
are used for improving tracking robustness. In these approaches, the sparse representation
is obtained via solving a ¢;-norm related minimization problem [61] or {y-norm related
minimization in [50, 51]. It is well known that £y-norm related minimization is an NP-hard
problem. The large-scale ¢;-norm related minimization is also a challenging problem due
to the non-differentiability of /; norm. The numerical methods for solving ¢;-norm related
minimization in [61] is based on the interior point method [46], which is very slow when

solving large-scale /{-norm minimizations.

In recent years, there have been great progresses on fast numerical methods for solving
large-scale ¢;-norm related minimization problems arising in image science, such as Lin-
earized Bregman iteration [17], Split Bregman method [39] etc. Meanwhile, Yang et al.
[91] has done a comprehensive study of the ¢; norm related minimization on robust face
recognition. Among all these methods, one promising approach is the so-called accelerated
proximal gradient (APG) method introduced by [84] for minimizing the summation of one
smooth function and one non-differential function. The APG method is used in [77] to solve

a unconstrained ¢ norm related problem related to image restoration.
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5.3 Introduction to LL1 Tracker

Our tracker is closely related to the L1 tracker proposed by Mei and Ling [61]. The main
differences lie in a different minimization model and a much faster numerical solver for the
resulting #; norm minimization problems. We first give a brief review on the L1 tracker

within the particle filter framework proposed in [61, 62].

Particle Filter: The particle filter provides an estimate of posterior distribution of random

variables related to Markov chain. In visual tracking, it gives an important tool for esti-
mating the target of next frame without knowing the concrete observation probability. It
consists of two steps: prediction and update. Specially, at the frame 7, denote x; which
describes the location and the shape of the target, y;.,_; = {y;,¥2, -+ ,¥,_;} denotes the
observation of the target from the first frame to the frame ¢ — 1. Particle filter proceeds two

steps with following two probabilities:

P(Xe|¥i4—1) = /P(Xt|Xt1)P(Xt1|Y1:z1)dxt1»

(Y X)) p(Xe|y14-1)
P(Xely1y) = .
! p(Yt|Y1:t71)

The optimal state for the frame 7 is obtained according to the maximal approximate posterior
probability: x; = argmax, p(X|y;.)-

The posterior probability (2) is approximated by using finite samples S; = {x} ,x? --- ,xV}
with different weights W = {w! , w? ... w/} where N is the number of samples. The sam-
ples are generated by sequential importance distribution I1(x,|y;.;,X1;—1) and weights are

updated by: . o
i i (VX)) p(xilx;_ )
C T Iy X 1)

(5.1)

In the case of TI(x;|y;.;,X14—1) = p(X|x;_1), the equation (5.1) has a simple form wi o
w'_, p(y,|x}). Then, the weights of some particles maybe keep increasing and fall into the
degeneracy case. To avoid such a case, in each step, samples are re-sampled to generate new

sample set with equal weights according to their weights distribution.
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Sparse Representation: The sparse representation model aims at calculating the observa-

tion likelihood for sample state x,, i.e. p(z/|x;). At the frame 7, given the target tem-
plate set T, = [t} t?,--- t7], let S, = {x},x?,--- ,xV} denote the sampled states and let
O; = {y!,y?,---,y"} denote the corresponding candidate target patch in target template

space. The sparse representation model is then:
yi =Toap +1a;, vy, €0y, (5.2)

where 1 is the trivial template set (identity matrix) and a! = [a};a!] is sparse. Additionally,
nonnegative constraints are imposed on aiT for the robustness of the L1 tracker [61]. Conse-
quently, for each candidate target patch y!, the sparse representation of y/ can be found via

solving the following ¢;-norm related minimization with nonnegative constraints:
L 2
min > ||y; —Aallz +4]lal[1, a0, (5.3)

where A = [Ty, 1, —1].

Finally, the observation likelihood of state X! is given as
i 1 i i (12
p(z|xt) = mexp{—ally; — Teer[|2}, (5.4)

where « is a constant controlling the shape of the Gaussian kernel, I'" is a normal factor and
ciT is the minimizer of (5.3) restricted to T,. Then, the optimal state x; of frame ¢ is obtained
by

X’ = argmax p(z;|x!). (5.5)
X;ES[

In addition, a template update scheme is adopted in [61] to overcome pose and illumination

changes.

Minimal Error Bound: In [61], the /;-norm related minimization problem (5.3) is solved

by the interior point method which is very slow. A minimal error bounding method is then
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proposed in [62] to reduce the number of needed ¢; minimizations. Actually, their method

is based on the following observation:
ITa—y|3>[ITa—y|3, vaeRY, (5.6)

where

4 = argmin ||T,a—y||3. (5.7)
a

Consequently, for any samples X, its observation likelihood has the following upper bound:

[ 1 4 i i
p(ulx) < pexp{-a|Ta-y|3} = q(|x), (5:8)

where g(yi|x!) is the probability upper bound for state xi. It is seen that if g(z|x;) <
i—1 . , .

ﬁ Y p(z:]x]), then the sample x! will not appear in the resample set. In other words, X!
=1

can be discarded without being processed. Thus, a two-stage resample method is proposed

in [62] to significantly reduce the number of samples needed in tracking.

5.4 Real time L1 Tracker

Even though the minimal error bound [62] was proposed to reduce the computation load
for L1 tracker, there are still many ¢;-norm related minimizations for solving during the
tracking process, For example, in the sequence car with 620 frames, around 80,000 ¢;-
norm related minimizations (5.3) needs to be solved with minimal error bound resampling
scheme in [62]. Therefore, the speed bottleneck in the L1 tracker is how to solve the £;-norm
related minimization (5.3) much faster, in the scale of hundreds of times.

Also, as seen in the model (5.3), the trivial templates are included in the template dictio-
nary such that its sparse linear combination will represent the occlusions and image noise
in the target. However, as we observed in the experiments, the sparse linear combination
will sometimes include parts of the object in the target which may lead to a loss of tracking
accuracy in some sequences.

In this section, we first proposed a modified version of the minimization problem (5.3)
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such that the sparse linear combination of trivial templates can represent the occlusions and
image noise more accurately. Then, based on the accelerated proximal gradient approach
[84], we proposed a fast numerical method for solving the resulting ¢; norm related min-
imization problem such that the tracker runs in real time. It is noticed that the developed

method is also applicable to original minimization problem in (5.3).

5.4.1 A modified /; norm related minimization model

There are two types of templates in the template dictionary used by (5.3): target templates
and trivial templates. The target templates are updated dynamically for representing target
objects during the tracking process. The trivial templates (identity matrix /) is for repre-
senting occlusions, background and noise. However, since parts of objects may also be
represented by the trivial templates, the region detected by the original tracker sometimes

does not fit the target very accurately.

We take a modified version of (5.3) for improving tracking accuracy. The new model
is based on the following observation. When there are no occlusions, the target in the next
frame should be well approximated by a sparse linear combination of target templates with
a small residual. Thus, the energy of the coefficients in a associated with trivial templates,
named frivial coefficients, should be small. On the other hand, when there exist noticeable
occlusions, the target in the next frame cannot be well approximation by any sparse lin-
ear combination of target templates, the large residual (corresponding to occlusions, back-
ground and noise in an ideal situation) will be compensated by the part from the trivial
templates, which leads to a large energy of the trivial coefficients. The minimization (5.3)

is obviously not optimal since it does not differentiate these two cases.

In other words, to optimize the usage of the trivial templates in the tracking, we need
to adaptively control the energy of the trivial coefficients. That is, when occlusions are
negligible, the energy associated with trivial templates should be small. When there are

noticeable occlusions, the energy should be allowed to be large. This motivation leads to
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the following minimization model for L1 tracker
1 1al2 Moy oo
min [y —A‘all +Alal}i + [las[l2, st ar =0, (5.9)

where A’ = [T, 1], a= [ar;a,] are the coefficients associated with target templates and trivial
templates respectively, and the parameter (, is a parameter to control the energy in trivial
templates. In our implementation, the value of u; for each state is automatically adjusted
using the occlusion detection method [62]. That is, if occlusions are detected, u; = 0;
otherwise L, is set as some pre-defined constant.

The benefit of the additional £, norm regularization term ||a/||3 is illustrated in 1. 5.1. In
Fig. 5.1, about 30 percent of object energy is contained in trivial templates from minimiza-
tion (5.3). In other words, trivial templates can not distinguish the object and background.
On the other hand, we can see the trivial templates coefficients from minimization (5.9) are
small and lead to better tracking results. At last, we note that the original minimization (5.3)

is a special case of the minimization (5.9) by setting u; = 0.

5.4.2 Fast numerical method for solving (5.9)

The proposed method for solving the minimization problem (5.9) is based on the acceler-

ated proximal gradient (APG) approach [84].

APG approach. The APG method is originally designed for solving the following uncon-
strained minimization:

minF (a) + G(a), (5.10)

where F(a) is an differentiable convex function with Lipschitz continuous gradient! and
G(a) is a non-smooth but convex function. The outline of the APG method is given in
Algorithm 8. The efficiency of the APG method is justified by its quadratic convergence;

see Theorem 5.4.1. However, we emphasize here that the APG method is fast only for

Ithe gradient of F is Lipschitz continuous if | VF (x) — VF(y)|| < L||x — ||, Vx,y € R, for some constant
L.
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Figure 5.1: Illustration of the L1 tracker on the sequence lemming using the model (5.3) and
the L1 tracker using the proposed model (5.9). The first and the second row: results using
(5.3) and using (5.9) respectively. Last row: the energy ratio ||a;||2/||al|2. The left graph is
from (5.3) and the right is from (5.9).
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particular type of function G. During each iteration of Algorithm 1, we need to solve a
minimization in Step 2. So, the quadratic convergence of APG is materialized only when

the sub-problem in Step 2 has an analytic solution.

Theorem 5.4.1. ([84]) Let {} is the sequence generated by Algorithm 8. Then within
K = O(\/L/¢) iterations, {04} achieves €-optimality such that ||ag — o*|| < €, where a*

is one minimizer of (5.10).

Algorithm 8 the generic APG approach in [84]

1. Setog = 00— :0€RNandsetto:t_1:1.

2. For k=0,1,..., iterate until convergence

fi_1—1

Brr1 = o4+ 75— (04 — 04— );
. VF

041 = argminL|ja — By + )2 4 Ga), (5.11)

a
/1442
1= —5

Reformulation of (5.9) for applying APG method. As we see, the original APG method
is designed for unconstrained minimization problem which can not be directly applied to
(5.9). Thus, we need to convert the constrained minimization model into an unconstrained
problem. Let 1 € RY denote the vector with all entries are equal to 1 and let IM (a) denote
the indicator function defined by
0, a~0;
1pv(a) = (5.12)
- 4o, otherwise.

It is easy to see that the minimization (5.9) is equivalent to the following minimization

problem:

1
argmmEHy_A/aH%—kAl;aT +Alla|| + %Ha,”%—kl]@i(ar). (5.13)
a
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Then, the APG method can be applied to (5.13) with

1
F(a) =~ |ly—A'a3+ Aljar + 2 [[a/|3,
2 2 (5.14)

G(a) = [|a/|[1 + 1g~ (ar).

All steps in Algorithm 8 are trivial except Step 2, in which we need to solve an optimization
problem:
VF (Br+1)

. L
O 11 :argmm§||a—[3k+1+TH%+G(3), (5.15)
a

For general function G, it cannot be directly solved. However, in our setting, we have the
analytic solution for (5.15); see Proposition 5.4.2. The algorithm for solving ¢{-norm related

minimization (5.9) is given in Algorithm 9.

Proposition 5.4.2. If F(a) and G(a) are defined in (5.14), then the minimization problem
(5.15) has the following solution:

O+1|7 = max (0, gx41|7)

(5.16)
1|1 =% 1. (8kr1l1)-
where gr1 = Pri1— %"*') and T is the soft-thresholding operator: T (x) = sign(x) max(|x| —
A,0).
Proof. The optimization problem (5.15) is expressed as follows,
. L 2
min {|a = gi1][2 + 1g;: (ar) + a1 (5.17)
Since the variables of a are independent, (5.17) is the same as
. L )
min [[ar — ge+1|7(2 + 1r; (ar),
! (5.18)

L
min= ||as — g1 )13 + A lar]|1-
a 2

It is easy to see the solution of first minimization in (5.18) is the projection of gi 1|7 to the

R, space, i.e. max(0, gy 1|7). For the second minimization in (5.18), all the variables are
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independent. So, we only need to solve the following minimization :
. L 2 2
min = {|y —x[[3 +Aflx{li = f(x), (5.19)
where x,y € R. The minimizer of (5.19) can be expressed as a soft thresholding operation:
x=T,.(y) = sgn(y) xmax(|y| - L,0). (5.20)

Thus, we have a; = T) 7 (gx+1]7) as the minimizer of (5.18). |

Algorithm 9 Real Time Numerical algorithm for solving the minimization (5.9)

() Setop=0_; =0 RN andsetto=1_; = 1.

(i) For k =0,1,..., iterate until convergence

( tr1—1

Bis1:= oy + i (o — o4—1);

k1|7 = Brilr — (AT (A Bis1 —¥))|r/L— A17;

8111 = Bl — (AT (ABiy1 —¥))|1/L
—uBs1lr/L;

O+1|7 := max(0,gx+1|7)s

1|1 = Ta /0 (8kr1l1);

feer = (144 /1+42) /2.

Tight Lipschitz constant L estimation. There is only one parameter, the Lipschitz con-
stant L of VF, is involved in Algorithm 9. This Lipschitz constant L plays a crucial role in
the above algorithm. Algorithm 8 with an wrong L will either diverges or converges very
slowly. Next, we give a tight upper bound of L for F' defined in (5.14) such that L is auto-
matically set with optimal performance; see Proposition 5.4.3. The detailed description of

the proposed real time L1 tracker, called APG-LI tracker, is given in algorithm 10.

Proposition 5.4.3. Let F denote the function defined in (5.14) with A" = [T, 1], where T is
template set and I is the identity matrix. The upper bound of the Lipschitz constant L for
VF is given as follows,

L< A+t +1, (5.21)
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Algorithm 10 APG-L1 Tracker

1: Input:
Current frame F;;
Sample Set S, = {x_ |} |;
Template set T = {t;}7_,.
fori=1toN do

Drawing the new sample Xf from XLI;

Preparing the candidate patch y’ in template space;

Solving the least square problem (5.7);
Computing g; according to (5.8);

end for
Sorting the samples in descent order according to g;
Setting i = 1 and 7 = 0.
: whilei <N and g; > 7 do
Solving the minimization (5.9) via Algorithm 9;
Computing the observation likelihood p; in (5.4);
T= 1T+ 5ypi;
i=i+1;
: end while
: Setpj:O,VjZi.
: Output:
: Finding the x; according to (5.5);
: Detecting the occlusion [62] and update u in (5.9);
: Updating the template set T,_; [62];
: Updating the sample set S,_; with p.

D A A

[ NS T O T NG T NS R (O R e e e e e e
R S O N R =

where Ay is the largest singular value of T.
Proof. From (5.14), we have

V2F(x) riroT (5.22)
X) = . .
T (1+w)d

Assume T = UXV " by singular value decomposition, where U and V are orthonormal ma-

trices, ¥ € R™N(m < N) with Z;; = A; and A1 > A, > ... > A, > 0. It is easy to know
2 . . . A ZTE ZT 2
V<F(x) is similar to M = . S0 Armax = Amax < Appax
r (I+up)1

AFmaxs Mimax and Ay, are the largest singular values of V2F (x), M and T respectively. W

+ 1+ u, where
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5.5 Experiments

Through the experiments, APG algorithm is implemented with matlab, t; =5 in (5.9) when

the occlusion is not detected and 0 otherwise, and A = 10~2 in Algorithm 9.

5.5.1 Comparison with the existing .1 Tracker

The computation efficiency and tracking accuracy of the proposed APG-L1 tracker is first
compared to that of the BPR-L1 tracker [62] on ten sequences. The average running time of
the proposed APG-based solver v.s. the interior point method used [62] is about 1 : 150. As
a result, the average running time of the APG-L1 tracker v.s. the BPR-L1 tracker is around
1:20, with 600 particles. The APG-L1 tracker achieves about average 26 frames per second
with 600 particles on a PC with Intel 17-2600 CPU (3.4GHz). The output bounding boxes
of the target from the two tackers are similar in many sequences, while the results from

APG-L1 are more accurate on some challenging sequences.

Figure 5.2: Demonstration of the improvement of APG-L1 tracker (red) over BPR-L1 (blue)
on tracking accuracy.

5.5.2 Qualitative comparison with other methods

The performance of the proposed APG-L1 tracker is also evaluated on eight publicly avail-
able video sequences and is compared with five latest state-of-the-art trackers named Incre-
mental Visual Tracking (IVT) [73], Multiple Instance Learning (MIL) [6], Visual Tracking
Decomposition (VTD) [48], Incremental Covariance Tensor Learning (ICTL) [88], and On-
line AdaBoost (OAB) [41]. The tracking results of the compared methods were obtained

using the codes provided by the authors with the default parameters and using the same
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initial positions in the first frame.

The sequence jump was captured outdoors. The target was jumping and the motion
blurs are very severe. Results on several frames are presented in Fig. 5.4 (a). The APG-L1
tracker, IVT, OAB, and MIL tracks the target faithfully throughout the sequences. The other
trackers fails track the target when there are abrupt motion and severe motion blur.

The sequence car shows a vehicle undergoes drastic illumination changes as it passes be-
neath a bridge and under trees. Tracking results on several frames are shown in Fig. 5.4 (b).
The APG-L1 tracker and IVT can track the target well despite the drastic illumination
changes, while the other trackers lose the target after it goes through the bridge.

Results of the sequence singer are shown in Fig. 5.4 (c). In this sequence, we show the
robustness of our algorithm in severe illumination changes and large scale variations. Only
our APG-L1 tracker and the VTD tracker can track the target throughout the sequence.

In the sequence woman (Fig. 5.4 (d)), only the APG-L1 tracker is able to track the target
during the entire sequence. The other trackers drift to the man when he occludes the target
due to his similar appearance as the target.

In the sequence pole, a person is walking away from the camera and is occluded by the
pole for a short time (Fig. 5.4 (e)). The IVT loses the target from the start and the VTD
starts to drift off the target at frame 274 and finally loses the target. All the rest successfully
track the target but our APG-L1 tracker recovers the target scale better.

Results on the sequence sylv are shown in Fig. 5.4 (f), where a moving animal doll is
undergoing challenging pose variations, lighting changes and scale variations. The IVT, and
VTD eventually fails at frame 605 as a result of drastic pose and illumination changes. The
rest trackers are able to track the target for this long sequence while our APG-L1 tracker
performs with higher accuracy.

Results of the sequence deer are shown in Fig. 5.4 (g). In this sequence, we show the
robustness of our algorithm in background clutters and the fast motion. Only our APG-L1
tracker and VTD can track the target through the sequence.

Fig. 5.4 (h) shows the results on the sequence face. Many trackers start drifting from the
target when the man’s face is severely occluded by the book. The APG-L1 tracker and IVT
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| MIL | OAB [ ICTL | VID | IVT | ours |

jump | 0.030 | 0.030 | 0.198 | 0.221 | 0.020 | 0.025
car 0.749 | 0.786 | 0.326 | 0.313 | 0.049 | 0.048
singer | 0.299 | 0.466 | 0.503 | 0.056 | 0.155 | 0.069
woman | 0.361 | 0.179 | 0.323 | 0.339 | 0.148 | 0.032
pole | 0.007 | 0.010 | 0.008 | 0.049 | 0.572 | 0.003
sylv. | 0.069 | 0.058 | 0.096 | 0.203 | 0.197 | 0.032
deer | 0.022 | 0.060 | 0.306 | 0.027 | 0.110 | 0.017
face | 0.120 | 0.144 | 0.137 | 0.209 | 0.053 | 0.062

| Ave. ]0.207 ] 0217 | 0.237 | 0.177 | 0.163 | 0.036

Table 5.1: The average tracking errors. The error is measured using the Euclidian distance
of two center points, which has been normalized by the size of the target from the ground
truth. The last row is the average error for each tracker over all the test sequences.

handle this very well and continue tracking the target when the occlusion disappears.

5.5.3 Quantitative comparison with other methods

To quantitatively evaluate the robustness of the APG-L1 tracker under challenging condi-
tions, we manually annotated the target’s bounding box in each frame for all test sequences.
The tracking error evaluation is based on the relative position errors (in pixels) between the
center of the tracking result and that of the annotation. As shown in Fig.5.3 and Table 5.1,
the APG-L1 tracker achieves comparable to the best performer on the sequence jump, singer

and face to the best-performed trackers, and on all the other sequences it performs best.

5.6 Conclusion

In summary, based on the framework of L1 tracker [61, 62], we developed a real time L1
visual tracker with improved tracking accuracy. The accuracy improvement is achieved via a
new minimization model for finding the sparse representation of the target and the real time
performance is achieved by a new APG based numerical solver for the resulting ¢; norm
minimization problems. The experiments also validated the high computational efficiency

and better tracking accuracy of the proposed APG-L1 tracker.
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Figure 5.3: The tracking error for each test sequence. The error is measured the same as in Table 5.1
and the legend as in Fig.5.4.
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Figure 5.4: Tracking results of different algorithms for sequences jump(a), car(b), singer(c),
woman(d), pole(e), sylv(f), deer(g) and face(h).
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