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Error bounds

Given two subsets S and T and a nonnegative valued residual function
r : S ∪ T → R+ satisfies

r(x) = 0⇐⇒ x ∈ S, ∀ x ∈ T.

An error bound of the pair (S, T ) in terms of r(·) is of the form

dist(x, S) ≤ c r(x)ρ︸ ︷︷ ︸
a surrogate measure of dist(x, S)

, ∀ x ∈ T

for some positive constants c and ρ.

We focus on the case that ρ = 1.
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Error bounds

In optimization, the existence of error bounds is closely related to

the (upper) Lipschitz continuity / isolated calmness / calmness of the
solution mappings

the strong metric regularity / metric regularity / strong metric sub-
regular / metric subregularity of the subdifferentials of the essential
objective functions

quadratic growth conditions of the optimization problems
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Error bounds

Applications of the error bounds:

the stopping rules for iterative algorithms

the convergence rates of iterative algorithms

exact penalty functions
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Error bounds for convex composite optimization problems

Consider the convex composite optimization problems

min h(Ax) + 〈c, x〉+ p(x)

s.t. Bx ∈ b+Q,

h: a smooth and strongly convex function

p: a proper closed convex function, may not be smooth

A,B: linear operators

Q: a closed convex set

c, b: given data
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Error bounds for convex composite optimization problems

The perturbed problem:

P (u, v)
min h(Ax) + 〈c, x〉+ p(x)− 〈x, u〉
s.t. Bx+ v ∈ b+Q,

where u and v are two perturbation parameters
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Three types of error bounds

For some positive constants ε and κ:

Primal type error bounds:

dist(x,SOLP ) ≤ κ‖u‖, ∀ x solves P (u, 0), ∀ u ∈ Bε(0)

Dual type error bounds:

dist(y,SOLD) ≤ κ‖v‖, ∀ y solves P (0, v), ∀ v ∈ Bε(0)

KKT type error bounds:

dist((x, y), SOLKKT) ≤ κ‖(u, v)‖,

∀ (x, y) being the KKT solution of P (u, v), ∀ (u, v) ∈ Bε(0)
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Three types of error bounds

For convex optimization problems, the linear convergence rate of the itera-
tion sequence can be derived from the error bounds:

The primal type error bounds: the proximal point algorithm

The dual type error bounds: the dual sequence of the augmented
Lagrangian method

The KKT type error bounds: the proximal augmented Lagrangian
method; the alternating direction method of multipliers
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Sufficient conditions of error bounds

A set-valued mapping G is called metrically subregular at ū for v̄ if (ū, v̄) ∈
gphG and there exist δ > 0, ε > 0 and κ > 0 such that

dist(u,G−1(v̄)) ≤ κdist(v̄, G(u) ∩ Bδ(v̄)) ∀u ∈ Bε(ū).

Let Q ⊆ U be a pointed convex closed cone (a cone is said to be pointed if
z ∈ Q and −z ∈ Q implies that z = 0). The closed convex set K ⊆ V is
said to be C2-cone reducible at X ∈ K to the cone Q, if there exist an open
neighborhood W ⊆ V of X and a twice continuously differentiable mapping
Ξ : W → U such that: (i) Ξ(X) = 0 ∈ U; (ii) the derivative mapping
Ξ′(X) : V→ U is onto; (iii) K ∩W = {X ∈ W | Ξ(X) ∈ Q}. A function p
is called C2-cone reducible if epi p is a C2-cone reducible set.

Examples of C2-cone reducible sets: convex polyhedral sets; positive semidefinite
cone; epigraph of Ky Fan k-norm functions
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Sufficient conditions of error bounds

The primal type error bounds hold under one of the following two conditions:

∂p(·) (subdifferential) and NQ(·) are metrically subregular and there
exists a KKT point satisfying the partially strict complementarity con-
dition with respect to the complementarity condition s ∈ ∂p(x)

p(·) and Q are C2-cone reducible and the primal second order sufficient
condition holds (the solution is unique)
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Sufficient conditions of error bounds

Consider the case that p is a spectral function, i.e.,

p(·) = g ◦ σ(·)

for some absolutely symmetric function g, or

p(·) = g ◦ λ(·)

for some symmetric function g, where σ(·) and λ(·) are singular value and eigenvalue
functions of a given matrix, respectively.

Examples of spectral functions:

g(x) = δRn
+

(x) −→ p(X) = δSn+(X) (the indicator function over the positive

semidefinite cone)

g(x) = ‖x‖1 −→ p(X) = ‖X‖∗ (the nuclear norm function)

g(x) =

n∑
i=1

log xi −→ p(X) = log detX
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Sufficient conditions of error bounds

Let p be a spectral function, then

the metrically subregular of ∂g =⇒ the metrically subregular of ∂p

the C2-cone reducibility of g =⇒ the C2-cone reducibility of p

[Cui, Ding and Zhao, SIAMOPT (2017)]

If g is a convex piecewise linear quadratic function, then ∂g is metrically
subregular [Robinson (1981), J. Sun (1986)]

This implies the metric subregularity of ∂δSn+(·) (which is the normal cone
of Sn+) and ∂‖ · ‖∗
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Sufficient conditions of error bounds

For the convex quadratic semidefinite programming

min 1
2〈X,QX〉+ 〈C,X〉

s.t. AX = b, l ≤ BX ≤ u, X ∈ Sn+,

the primal error bound holds if there exists a partial strict complementarity
KKT solution satisfying

rank(X) + rank(S) = n.

Do not need the strict complementarity with respect to l ≤ BX ≤ u.
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Sufficient conditions of error bounds

The KKT type error bounds are much more difficult to be satisfied.

Example 1

Consider the following SDP problem and its dual:

min
x∈S2

|x11|+ δS2+(x)

s.t. x12 + x21 + 2x22 = 2

max
s∈S2

s22 − δS2−(s)

s.t. s12 + s21 − s22 = 0, |s11| ≤ 1.

SOLP =

{(
0 0
0 1

)}
, SOLD =

{(
s̄11 0
0 0

) ∣∣∣∣ − 1 ≤ s̄11 ≤ 0

}
.
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Sufficient conditions of error bounds

For the above example:

there exists a KKT point satisfying the strict complementary condition
(so that both the primal and the dual type error bounds hold at every
solution point)

the primal solution is unique; the dual solution set is bounded

the primal SOSC holds at the unique primal solution

the dual SOSC holds at s̄ =

(
s̄11 0
0 0

)
with s̄11 ∈ [−1, 0)

the KKT type error bound fails at (x̄, s̄) with s̄ =

(
0 0
0 0

)
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error bounds and convergence rates of the ALM

Recall the convex optimization problem

min f0(x) := h(Ax) + 〈c, x〉+ p(x)

s.t. Bx ∈ b+Q

Let σ > 0 be a given penalty parameter. The augmented Lagrangian func-
tion:

Lσ(x, y) := f0(x) +
1

2σ

(
‖ΠQ◦ [y + σ(Bx− b)]‖2 − ‖y‖2

)
The augmented Lagrangian method (ALM):{

xk+1 ≈ arg min
{
ζk(x) := Lσk(x, yk)

}
,

yk+1 = ΠQ◦ [yk + σk(Bxk+1 − b)], k ≥ 0.
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error bounds and convergence rates of the ALM

The (super)linear convergence rates of the ALM:

Powell (equality constrained problem): assume the SOSC and the LICQ
(“arbitrarily fast linear convergence”)

Rockafellar (convex nonlinear programming): assume the Lipschitz con-
tinuity of the dual solution mapping at the origin

Bertsekas (nonlinear programming): assume the strict complementar-
ity, the SOSC and the LICQ
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error bounds and convergence rates of the ALM

For solving the convex composite optimization problems, a direct extension
of [Rockafellar 1976, Luque 1984] shows that

under the dual type error bounds, the dual sequence {yk} generated
by the ALM convergences asymptotically Q-superlinearly

under the KKT type error bounds, the primal sequence {xk} generated
by the ALM convergences asymptotically R-superlinearly

If the KKT type error bounds fail, what about the convergence rates of the
primal sequence or KKT residues?
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error bounds and convergence rates of the ALM
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Figure: The KKT residual norm of the sequence generated by the ALM for solving
Example 1 with different values of the penalty parameter σk.
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error bounds and convergence rates of the ALM

Stopping criteria for the global convergence and local convergence rates [Rockafellar
1976]:

(A) ζk(xk+1)− inf ζk ≤ ε2k/2σk,
∞∑
k=0

εk <∞,

(B) ζk(xk+1)− inf ζk ≤ (η2k/2σk)‖yk+1 − yk‖2,
∞∑
k=0

ηk <∞,

Under the dual type error bound (with modulus κ):

dist (yk+1,SOLD) ≤ µk dist (yk,SOLD), µk → κ/
√
κ2 + σ2

∞ dual sequence

‖ΠQ◦(Bxk+1 − b)‖ ≤ µ′k dist (yk,SOLD), µ′k → 1/σ∞ primal feasibility

|〈yk+1,Bxk+1−b〉| ≤ µ′′k dist (yk,SOLD), µ′′k → ‖y∞‖/σ∞ complementarity

f0(xk+1)−inf (P) ≤ µ′′′k dist (yk,SOLD), µ′′′k → ‖y∞‖/σ∞ primal objectives
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Implementable criteria

For any given k ≥ 0 and yk ∈ Y, let

yk+1 := ΠQ◦ [yk + σk(Bxk+1 − b)]

wk+1 := ∇h(Axk+1)

sk+1 := Proxp∗ [xk+1 − (A∗w̃k(xk+1) + B∗ỹk(xk+1) + c)]

zk+1 := (wk+1, yk+1, sk+1)

ek+1 := xk+1 − Proxp[x
k+1 − (A∗w̃k(xk+1) + B∗ỹk(xk+1) + c)]

Note that ek+1 = 0⇐⇒ xk+1 = arg min ζk(x)

If the Slater condition holds, then (A) and (B) can be implemented via

(A′) ‖ek+1‖ ≤ ε̂2k/σk

1+‖xk+1‖+‖zk+1‖ min
{

1
‖∇h∗(wk+1)‖+‖yk+1−yk‖/σk+1/σk

, 1
}

(B′) ‖ek+1‖ ≤ (η̂2k/σk)‖yk+1−yk‖2
1+‖xk+1‖+‖zk+1‖ min

{
1

‖∇h∗(wk+1)‖+‖yk+1−yk‖/σk+1/σk
, 1
}
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Solving the subproblems via the semismooth Newton-CG
method

Given the semismooth equation

F (x) = 0

The semismooth Newton method:

xk+1 = xk − V −1k F (xk), V k ∈ ∂F (xk)

(∂F (xk): the Clarke generalized Jacobian of F at xk)

The nonsingularity of ∂F (x∗) =⇒ the superlinear convergence of {xk}
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Examples

Lasso problem:

min
1

2
‖Ax− b‖2 + λ‖x‖1

The dual SOSC holds (nonlinear programming: the KKT type error
bounds hold) =⇒ both primal and dual ALMs have the superlinear
convergence rates

The dual constraint nondegeneracy fails (the primal problem may have
multiple solutions) =⇒ primal semismooth Newton ×
The primal constraint nondegeneracy holds =⇒ dual ALM + semis-
mooth Newton
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Examples

Sparse estimation of a Gaussian graphical model:

minX�0 − log detX + 〈S,X〉+ ‖X‖1,

s.t. AX = b,

where S is a given sample covariance matrix.

The strict complementarity with respect to − log detX holds =⇒ both
primal and dual ALMs have the superlinear convergence rates

The primal constraint nondegeneracy fails =⇒ dual ALM + semis-
mooth Newton ×
The dual constraint nondegeneracy holds =⇒ primal ALM + semis-
mooth Newton
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Thank you!
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