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Given two subsets S and T and a nonnegative valued residual function
r:SUT — R* satisfies

r(z)=0<=2x€8S, VzeTl.
An error bound of the pair (S,7T) in terms of 7(-) is of the form

dist(z, S) < cr(z)? , YxeT
~——
a surrogate measure of dist(z, 5)

for some positive constants ¢ and p.

We focus on the case that p = 1.
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In optimization, the existence of error bounds is closely related to
@ the (upper) Lipschitz continuity / isolated calmness / calmness of the
solution mappings

@ the strong metric regularity / metric regularity / strong metric sub-
regular / metric subregularity of the subdifferentials of the essential
objective functions

@ quadratic growth conditions of the optimization problems
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Applications of the error bounds:

@ the stopping rules for iterative algorithms
@ the convergence rates of iterative algorithms

@ exact penalty functions
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Error bounds for convex composite optimization problems

Consider the convex composite optimization problems

min h(Az) + (¢, z) + p(z)
st. Bxreb+ Q,

h: a smooth and strongly convex function
p: a proper closed convex function, may not be smooth
A, B: linear operators

Q: a closed convex set

¢, b: given data
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Error bounds for convex composite optimization problems

The perturbed problem:

min  h(Az) + (c,x) + p(z) — (x,u)

P(u,v
() st. Br+veb+Q,

where u and v are two perturbation parameters
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Three types of error bounds

For some positive constants € and «:

@ Primal type error bounds:

dist(z,SOLp) < k||lu|l, V x solves P(u,0), Vu € B.(0)

@ Dual type error bounds:

dist(y, SOLp) < k||v||, V ysolves P(0,v), ¥ v € B.(0)

o KKT type error bounds:

dist((z,y), SOLkxr) < &l|(u, v)|,
V (z,y) being the KKT solution of P(u,v), V (u,v) € B-(0)
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Three types of error bounds

For convex optimization problems, the linear convergence rate of the itera-
tion sequence can be derived from the error bounds:

@ The primal type error bounds: the proximal point algorithm

@ The dual type error bounds: the dual sequence of the augmented
Lagrangian method

o The KKT type error bounds: the proximal augmented Lagrangian
method; the alternating direction method of multipliers
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Sufficient conditions of error bounds

@ A set-valued mapping G is called metrically subregular at @ for v if (@,v) €
gph G and there exist 6 > 0, ¢ > 0 and k > 0 such that

dist(u, G™(9)) < rdist(v, G(u) NBs (D)) Yu € B.(a).

@ Let Q C U be a pointed convex closed cone (a cone is said to be pointed if
z € Q and —z € Q implies that z = 0). The closed convex set L C V is
said to be C2-cone reducible at X € K to the cone Q, if there exist an open
neighborhood W C V of X and a twice continuously differentiable mapping
Z : W — U such that: (i) 2(X) = 0 € U; (ii) the derivative mapping
Z(X):V = Uis onto; (i) KNW ={X ¢ W|Z(X) € Q}. A function p
is called C2-cone reducible if epip is a C2-cone reducible set.

Examples of C2-cone reducible sets: convex polyhedral sets; positive semidefinite
cone; epigraph of Ky Fan k-norm functions
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Sufficient conditions of error bounds

The primal type error bounds hold under one of the following two conditions:

@ Op(-) (subdifferential) and Ng(-) are metrically subregular and there
exists a KKT point satisfying the partially strict complementarity con-
dition with respect to the complementarity condition s € dp(x)

e p(-) and Q are C%-cone reducible and the primal second order sufficient
condition holds (the solution is unique)
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Sufficient conditions of error bounds

Consider the case that p is a spectral function, i.e.,
p(-)=gooa()
for some absolutely symmetric function g, or
p(-) =goA()

for some symmetric function g, where o(-) and A(+) are singular value and eigenvalue
functions of a given matrix, respectively.

Examples of spectral functions:

® g(z) = bry (x) — p(X) = s (X) (the indicator function over the positive
semidefinite cone)

0 g(z) = ||z|s — p(X) = || X« (the nuclear norm function)
@ g(x) = Zlogzi — p(X) = logdet X
i=1
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Sufficient conditions of error bounds

Let p be a spectral function, then

@ the metrically subregular of 0g = the metrically subregular of dp
o the C%-cone reducibility of ¢ = the C?-cone reducibility of p
[Cui, Ding and Zhao, SIAMOPT (2017)]

If g is a convex piecewise linear quadratic function, then Og is metrically
subregular [Robinson (1981), J. Sun (1986)]

This implies the metric subregularity of 9dsn (-) (which is the normal cone
of S7) and 9| - [«
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Sufficient conditions of error bounds

For the convex quadratic semidefinite programming
min (X, QX) + (C, X)
st. AX =0, [<BX<u, Xec8Y,

the primal error bound holds if there exists a partial strict complementarity
KKT solution satisfying

rank(X) + rank(S) = n.

Do not need the strict complementarity with respect to | < BX < u.
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Sufficient conditions of error bounds

The KKT type error bounds are much more difficult to be satisfied.

Consider the following SDP problem and its dual:

min  |z11] + de2 (z max S99 — 02 (S
ity e 4= G () max sz — gz ()
s.t.  x12 + 21 + 2199 = 2 s.t. s394+ 821 — 822 =0, [s11] < 1.

SOLP={<0 ?)} SOLD={<§(1)1 8) ‘ —1§§ugo}.
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Sufficient conditions of error bounds

For the above example:

@ there exists a KKT point satisfying the strict complementary condition
(so that both the primal and the dual type error bounds hold at every
solution point)

@ the primal solution is unique; the dual solution set is bounded

@ the primal SOSC holds at the unique primal solution

o the dual SOSC holds at 5 — ( S 0

0 0 > with 511 € [—1,0)

@ the KKT type error bound fails at (z, 5) with § = ( 8 8 )
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error bounds and convergence rates of the ALM

Recall the convex optimization problem

min  fO(z) := h(Az) + (¢, z) + p(z)
st. Breb+ Q

Let o > 0 be a given penalty parameter. The augmented Lagrangian func-
tion:

1
Lo(z,y) == f2(x) + 55 (IMeely + o (B — O = llyl1?)
The augmented Lagrangian method (ALM):

Pt ~ arg min {Ck(:ﬂ) = Lg, (fb’ayk)} )
yk+1 = HQO [yk =+ O'k(Bxk+1 - b)], k 2 0
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error bounds and convergence rates of the ALM

The (super)linear convergence rates of the ALM:

o Powell (equality constrained problem): assume the SOSC and the LICQ
(“arbitrarily fast linear convergence”)

@ Rockafellar (convex nonlinear programming): assume the Lipschitz con-
tinuity of the dual solution mapping at the origin

@ Bertsekas (nonlinear programming): assume the strict complementar-
ity, the SOSC and the LICQ
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error bounds and convergence rates of the ALM

For solving the convex composite optimization problems, a direct extension
of [Rockafellar 1976, Luque 1984] shows that

o under the dual type error bounds, the dual sequence {y*} generated
by the ALM convergences asymptotically Q-superlinearly

o under the KKT type error bounds, the primal sequence {z*} generated
by the ALM convergences asymptotically R-superlinearly

If the KKT type error bounds fail, what about the convergence rates of the
primal sequence or KKT residues?
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Figure: The KKT residual norm of the sequence generated by the ALM for solving
Example 1 with different values of the penalty parameter oy.
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error bounds and convergence rates of the ALM

Stopping criteria for the global convergence and local convergence rates [Rockafellar
1976]:

(A)  Cr(a*Th) —inf ¢ < €7 /20, Z g < 00,
k=0

o0
(B)  Ce(a**h) —inf Gp < (F/200) 9" = o512 D me < oo,
k=0

Under the dual type error bound (with modulus «):

e dist (y**1,SOLp) < py dist (y*,SOLp), ux — k/+/K2 + 02, dual sequence
[Tlgo (Ba* 1 —b)|| < wj dist (y*,SOLp), pf — 1/0s  primal feasibility

|(y*+L, Bak+1 —b)| < pf dist (y*,SOLp), uf — ||y>°||/oe complementarity

fO(xM ) —inf (P) < pf’ dist (y*, SOLp), u} — ||[y>||/0s primal objectives
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Implementable criteria

For any given k > 0 and y* € Y, let
YRt =Tl go [y* + op(Bz*+1 — b))
whtl .= Vh(Az*+!)

sFH1 = Prox,- [z" ! — (A @ (2% 1) + B*gF (2F 1) + ¢)]

K41 . gkl o k41 kt1
Z = (M R S

eF 1= g+l — Prox, [2F 1 — (A*@F (2FH1) + B*gF (a8 1) + ¢)]

Note that e¥*! = 0 <= 2¥*! = arg min (; ()

If the Slater condition holds, then (A) and (B) can be implemented via

2
/ k+1 En/ok : 1
(A) e < Ty eee mm{Hw*(wwwﬂw,ykH/ml/gh, 1 }

(B ||e*+|| < (@i /o)lly™ "~y min{

1
e E EL VA= (wh D[+ [ly Tt —y*[|/or+1/0k ! }
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Solving the subproblems via the semismooth Newton-CG

method

Given the semismooth equation
F(z)=0
The semismooth Newton method:
" =2 —VIIR@R),  VE e oF(a)
(OF (x%): the Clarke generalized Jacobian of F' at x*)

The nonsingularity of 9F (z*) = the superlinear convergence of {z*}
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Lasso problem:

1
min §||.Aa: — b||2 + A|z|]1

@ The dual SOSC holds (nonlinear programming: the KKT type error
bounds hold) = both primal and dual ALMs have the superlinear
convergence rates

@ The dual constraint nondegeneracy fails (the primal problem may have
multiple solutions) = primal semismooth Newton x

@ The primal constraint nondegeneracy holds = dual ALM + semis-
mooth Newton v/
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Sparse estimation of a Gaussian graphical model:
miny,o —logdet X + (S, X) + || X1,

s.t. AX =0,

where S is a given sample covariance matrix.

@ The strict complementarity with respect to —log det X holds = both
primal and dual ALMs have the superlinear convergence rates

@ The primal constraint nondegeneracy fails = dual ALM + semis-
mooth Newton X

@ The dual constraint nondegeneracy holds = primal ALM + semis-
mooth Newton v/
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Thank you!
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