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STRONG SEMISMOOTHNESS OF EIGENVALUES OF SYMMETRIC 
MATRICES AND ITS APPLICATION TO INVERSE 

EIGENVALUE PROBLEMS* 

DEFENG SUNt AND JIE SUNt 

Abstract. It is well known that the eigenvalues of a real symmetric matrix are not everywhere 
differentiable. A classical result of Ky Fan states that each eigenvalue of a symmetric matrix is 
the difference of two convex functions, which implies that the eigenvalues are semismooth functions. 
Based on a recent result of the authors, it is further proved in this paper that the eigenvalues of a 
symmetric matrix are strongly semismooth everywhere. As an application, it is demonstrated how 
this result can be used to analyze the quadratic convergence of Newton's method for solving inverse 
eigenvalue problems (IEPs) and generalized IEPs with multiple eigenvalues. 

Key words. symmetric matrices, eigenvalues, strong semismoothness, Newton's method, inverse 
eigenvalue problems, quadratic convergence 
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1. Introduction. The theory of semismooth functions developed in the last 
decade has been successful in analyzing the quadratic convergence of Newton's method 
for nondifferentiable (nonsmooth) equations; it is well received by the optimization 
community, but is perhaps not well known by researchers in numerical analysis. In 
this paper we take the inverse eigenvalue problem (IEP) as an example to show how 
this theory can be used in analyzing matrix-related equations. For applications of the 
IEP the interested reader is referred to the paper of Friedland, Nocedal, and Overton 
[10], the book of Xu [27], and the references therein. For general nonsmooth analysis 
involving eigenvalues of symmetric matrices and a survey on eigenvalue optimization, 
see Lewis [12] and Lewis and Overton [13], respectively. 

Let S be the linear space of symmetric matrices of size n. Let A : ~R -+ S be 
continuously differentiable. Given n real numbers { ~ 

1A7, 
which are arranged in 

the decreasing order A* > ... > A*, the IEP is to find a vector c* EE R such that 

Ai(A(c*)) = Al for i = 1,..., n. A typical choice for A(c) is 

n 

(1) A(c) = Ao + ?ZcAj, 
j=1 

where Ao, A1,..., An E S. In this case, A(c) is an affine function of c. 
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Define F: R" - -+n by 

, (A(c)) - 1 
(2) F(c)= I 

An(A(c)) - A* 

Then the IEP is equivalent to finding c* E Rn to be a solution of the following 
equation: 

(3) F(c) = 0. 

Of course, there are other ways to formulate the IEP as a system of equations. For 
instance, we may solve F(c) = 0, where 

det(A(c) - ATI) 
(4) F(c)= 

det(A(c) - A*I) 

A Newton method was proposed by Biegler-Kbnig [2] for model (4), which gener- 
alizes an algorithm of Lancaster [11]. However, as analyzed by Friedland, Nocedal, 
and Overton [10], model (2) seems to be always preferred over model (4) both from 
theoretical and computational points of view. Thus, we concentrate on model (2) in 
this paper. The convergence theory we are going to present is based on a property of 
F called strong semismoothness (defined later). It is well known that for X E S the 
eigenvalues of X, as functions of X, are not everywhere differentiable. However, we 
shall show that they are strongly semismooth and therefore quadratic convergence of 
Newton's method is a natural result when applied to equations involving eigenvalues. 
In doing so, we also give a constructive proof for a difficult result of Chen and Tseng 
[4] on upper semicontinuity of a set-valued mapping of orthogonal matrices. 

The concept of semismoothness of functionals was originally studied by Mifflin [14] 
while strong semismoothness was introduced by Qi and Sun in [18] for vector valued 
functions. Recently, both concepts are further extended to matrix valued functions 
[24]. Generally speaking, strong semismoothness of an equation is tied with quadratic 
convergence of the Newton method applied to the equation and semismoothness cor- 
responds to superlinear convergence. It was shown that smooth functions, piecewise 
smooth functions, and convex and concave functions are semismooth functions. They 
are not, however, necessarily strongly semismooth functions. 

To see the motivation of this paper more clearly, let us consider the following 
example: 

x=[Xl X2] 

where x1, x2, and 23 are parameters. In this case, we have 

x + + /( 
- 

X3)2 
+ 4x Xl + X3 

- 
V/(Xl - X3)2 

+- 
4x2 

A1(X) = and A2(X)= 2 2 
(5) 
Since A 1() and A2(.) are not differentiable at X with xl = X3 and x2 = 0, a gradient- 
dependent numerical method (e.g., Newton's method) may get into trouble when 
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hitting those points. In addition, theoretical analysis gets tricky without differentia- 
bility. Further inspection reveals that A11(.) is a convex function and A2(') is a concave 
function. Hence, both of them are semismooth functions and a nonsmooth version of 
Newton's method [18] might be applied to equations containing A1(.) and A2('). This 
should be not a coincidence. Let fm(X) be the sum of m largest eigenvalues of X. 
Then, Ky Fan's maximum principle [8, 1] says that for each i = 1,... ,n, 

fi(') 
is a 

convex function. This result implies that 
* A1 (.) is a convex function and An () is a concave function; and, 
* for i = 2,..., n - 1, Ai(.) is the difference of two convex functions. 

Since convex and concave functions are semismooth and the difference of two semis- 
mooth functions is still a semismooth function [14], Ky Fan's result shows that 
A, (.), ... , n(.) are all semismooth functions. It is therefore expected, when applying 
the nonsmooth Newton method to IEPs, the convergence rate is at least superlinear. 
A more interesting question is, Are all A1 (.),..., An(.) strongly semismooth functions 
(therefore implying quadratic convergence)? In this paper, based on a recent result 
of the authors [24], we will give an affirmative answer to the above question. 

The organization of this paper is as follows. Some basic facts on semismoothness 
are presented in section 2. Some nonsmooth versions of the Newton method, which 
we call relative generalized Newton methods, are introduced in section 3. Section 4 
concentrates on showing the strong semismoothness of eigenvalues of a symmetric 
matrix. The quadratic convergence of the relative generalized Newton methods for 
IEPs and generalized IEPs is proved in section 5. Section 6 gives a summary and a 
few possible future research topics. 

Some notations to be used are as follows. 
* S is the set of real symmetric matrices; 0 is the set of all n x n orthogonal 

matrices. 
* A superscript "T" represents the transpose of matrices and vectors. For 

a matrix M, Mi., and Mj represent the ith row and jth column of M, 
respectively. 

* Unless otherwise specified, all vector norms are 2-norms and matrix norms 
are Frobenius norms: |IMII := trace (MTM)1/2. 

* A diagonal matrix is written as diag (01,..., on) and a block-diagonal matrix 
is denoted by diag (B,,..., Bs), where B1,... , B are matrices. 

* The eigenvalues of X E S is designated by Ai(X), i = 1,..., n, and A(X) 
diag (A•(X), 

. . . , An(X)) . 
* We write X = O(a) (respectively, o(a)) if IIXIIIIal is uniformly bounded 

(respectively, tends to zero) as a -* 0. 

2. Some basic facts on semismoothness. 

2.1. Semismooth functions. Let G: 2" -~, am be a locally Lipschitz contin- 
uous function. We regard the r x r symmetric matrix space as a special case of '8 
with s = r(r + 1)/2. Hence the discussions of this subsection apply to matrix variable 
and/or matrix valued functions as well. 

According to Rademacher's theorem, G is differentiable almost everywhere. Let 
DG be the set of differentiable points of G and let G' be the Jacobian of G whenever 
it exists. Denote 

&BG(x) := {V E • 
'mx V = lim G'(xk), xk 

e 
DG}. xk --+X 

Then Clarke's generalized Jacobian [5] is 

(6) OG(x) = conv{OBG(x)}, 
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where "conv" stands for the convex hull in the usual sense of convex analysis [20]. 
DEFINITION 2.1. Suppose that G : Rnn -- ,m is a locally Lipschitz continuous 

function. G is said to be semismooth at x E ~n if G is directionally differentiable at 
x and for any V E OG(x + Ax) 

G(x + Ax) - G(x) - V(Ax) = o(llAxll). 

G is said to be p-order (0 < p < oo) semismooth at x if G is semismooth at x and 

(7) G(x + Ax) - G(x) - V(Ax) = O(|IAx|ll+"). 
In particular, G is called strongly semismooth at x if G is 1-order semismooth at x. 

A function G is said to be a (strongly) semismooth function if it is (strongly) 
semismooth everywhere on Jn. It is shown that the composition of (strongly) semis- 
mooth functions is still a (strongly) semismooth function (see [14, 9]). 

The next result [24, Theorem 3.7] provides a convenient tool for proving strong 
semismoothness. 

THEOREM 2.2. Suppose that G : n" , Rm is locally Lipschitzian and direction- 

ally differentiable in a neighborhood of x. Then for any p E (0, oo) the following two 
statements are equivalent: 
(a) for any V E G(x + Ax), 

G(x + Ax) - G(x) - V(Ax) = O(IAx|ll+p); 

(b) for any x + Ax E DG, 

(8) G(x + Ax) - G(x) - G'(x + Ax)(Ax) = O(||Axll'+P). 

2.2. Generalized Newton methods. Suppose that G : '" 
-••" 

is locally 
Lipschitz continuous. Based on OG(x), Qi and Sun [18] proposed the following Newton 
method for solving G(x) = 0. 

Generalized Newton method I. Given x0 c CR, for k = 0, 1,..., 

(9) Xk+l - Xk v- Vk1G(xk), 

where Vk E OG(xk). 
The following convergence theorem for the generalized Newton method I is estab- 

lished in [18]. 
THEOREM 2.3. Suppose that G(x*) = 0. If all V E OG(x*) are nonsingu- 

lar and G is semismooth at x*, then there exists a neighborhood N(x*) of x* such 
that for any x0 E N(x*) the generalized Newton method I is well defined and is 

Q-superlinearly convergent. Moreover, if G is strongly semismooth at x*, then (9) 
converges Q-quadratically. 

To relax the nonsingularity assumption on OG(x*), Qi [17] introduced the follow- 

ing method based on the concept of OBG(x). 
Generalized Newton method II. Given x0 E cn, for k = 0, 1,..., 

(10) xk+l = k - Vl G(xk), 

where Vk E OBG(xk). 
The convergence theorem for the generalized Newton method II is the same as 

Theorem 2.3 except that dG is replaced by 0BG. 
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Now, let us consider the following composite nonsmooth equation: 

(11) G(x) := 0(1(x)) = 0, 

where 4 : " -- +Rm is nonsmooth but of special structure and IF : ~Z --+ Rn is 

continuously differentiable. It is noted that neither OG(x) nor OBG(x) is easy to 
compute even if 04(y), OB4(y), and I'(x) are available. To circumvent the difficulty 
in computing 0G(x) and OGB(x), Potra, Qi, and Sun [16] introduced the following 
concept of generalized Jacobian: 

QGG(x) = O4T(X))W'(X) 
where "Q" stands for "quasi." We shall see in the later discussion that Q9G(x) is 
more convenient to compute than 0G(x) and 0BG(x) for IEPs. 

Generalized Newton method III. Given xz e n, for k = 0, 1,..., 

(12) Zk+l 
1 

Xk - VglG(xk), 

where Vk E Q G(xk). 
The following convergence theorem for the generalized Newton method III for 

solving (11) is proved in [16, Theorem 5.3]. 
THEOREM 2.4. Suppose that G is defined by (11) and G(x*) = 0. If all V E 

OQG(x*) are nonsingular and P is semismooth at I(x*), then there exists a neigh- 
borhood N(x*) of x* such that for any xz E N(x*) the generalized Newton method III 
is well defined and is Q-superlinearly convergent. Moreover, if D is strongly semis- 
mooth at xI(x*) and Q' is Lipschitz continuous around x*, then (12) converges Q- 
quadratically. 

3. Relative generalized Newton methods. It should be noted that, apart 
from the semismoothness, another key assumption for the superlinear convergence 
of the generalized Newton methods I-III is the nonsingularity of 0G(x*), OBG(x*), 
or OQG(x*). However, this may not be satisfied in general for IEPs with multiple 
eigenvalues. In order to weaken the nonsingularity assumption on the generalized 
Jacobians, we shall introduce the concept of relative generalized Jacobians and the 
corresponding generalized Newton methods based on the concept of relative general- 
ized gradient introduced by Clarke [5, p. 231]. 

Let S be a subset of R'". For instance, in the context of matrix functions, S could 
represent the set of all nonsingular matrices. The S-relative generalized Jacobian 

0lsG(x) of G at x is defined by 

0lsG(x) := {V I V is a limit of Vi e OG(yi), yi E S, yi --x}. 

The following result can be proved in an analogous way to [5, Proposition 6.2.1]. 
We omit the details. 

LEMMA 3.1. Let G be Lipschitz continuous near x. Then we have the following: 
(a) O|sG(x) is a compact subset of OG(x). 
(b) OlsG(x) = oG(x) if x lies in the interior part of S; lsG(x) = 0 if (x + B)n 

S = 0 for some e > 0; and OlsG(x) is nonempty if x E cl(S), the closure of 
S. 

(c) OlsG(-) is upper semicontinuous at x. 
Now, we can introduce our first relative generalized Newton method for solving 

G(x) = 0. 
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Relative generalized Newton method I. Given x0 E ~", for k = 0,1,..., and 
xk E S, 

(13) Zk+l = k -k V-1G(xk) 

where Vk E OIsG(xk). 
In the following analysis, we assume that the relative generalized Newton method 

I does not find a solution of G(x) = 0 in a finite number of steps. 
THEOREM 3.2. Suppose that G(x*) = 0 and x* E cl(S). If all V E OIsG(x*) are 

nonsingular and G is semismooth at x*, then there exists a neighborhood N(x*) of 
z* such that for any x0 E N(x*) n S the relative generalized Newton method I either 

stops in a finite number of steps with some xk V S or generates an infinite sequence 

{xk} E N(x*) nS and the whole sequence converges Q-superlinearly to x*. Moreover, 
if G is strongly semismooth at x*, then the rate of convergence is Q-quadratic. 

Proof. By using Lemma 3.1, there exist a neighborhood N(x*) of x* and a positive 
number n such that for any x e N(x*) n S, all V E IsG(x) are nonsingular and 

(14) IIV-ll( < K?? 

Since G is semismooth at x*, by shrinking N(x*) if necessary, we have for all x E 
N(x*)n S and V E o|sG(x), 

1 
(15) IG(x) - G(x*) - V(x - x*) l ? -lx - x*1I. 

By using (14) and (15), we have for k = 0, 1,... that 

Ixk+1 _ x*1l - IIxk - VClG(xk) - X* 1 

= IIVC-[G(xk) - G(x*) - Vk(x - x*)] 
< IIVk1lll|G(xk) - G(x*) - Vk(x - x*)II 

K1Xk _ X*, <- 2 
- IL 

which implies that if (13) does not stop at some step with xk S, then {xk} E 
N(x*) n S and the whole sequence converges to x* linearly. 

Next, suppose that (13) does not stop at some step with xk S. Since G is 
semismooth at x* and xk -+ x*, we have 

G(xk) - G(x*) - Vk(xk _- *) = o(xk - * 

which, together with (13), implies that 

IIxk+I• _ k - V (k) - x* 
-= V-1l[G(xk) - G(x*) - Vk(x - x*)]l 

= O(||G(xk) - G(x*) - Vk(x - x*)I) 
= o(|IXk - _x*l). 

This proves the superlinear convergence of {xk }. 
By the above argument, we can see that if G is strongly semismooth at x*, then 

(13) either stops in finitely many steps with some xk V S or generates an infinite 
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sequence {xk} E N(x*) nS and the whole sequence converges Q-quadratically to x*. 
This completes the proof. 0 

The proof of Theorem 3.2 might serve as an example to show the simplicity of 
the analysis of Newton's method by using the concept of (strong) semismoothness. 
Parallel to the definition of OBG(x) and OQG(x), we define 

OBIsG(x) := {VI V is a limit of Vi E aBG(Yi), Yi E S, Yi --+ x} 

and 

OQIsG(x) := {VI V is a limit of Vi E QG(yi), Yi E S, Yi -* x}. 

Similar to Lemma 3.1, we have the following lemma. 
LEMMA 3.3. Let G be Lipschitz continuous near x. Then we have the following: 
(a) dBIsG(x) and OQlsG(x) are compact subsets of OsG(x) and 9QG(x), respec- 

tively. 
(b) OBIsG(x) = OsBG(x) and OQIsG(x) = OQG(x), if x lies in the interior part 

of S; OBISG(x) = OQlsG(x) = 0 if (x + eB) n S = 0 for some e > 0; both 
9BIsG(x) and 9QIsG(x) are nonempty if x E cl(S), the closure of S. 

(c) BI|sG(') and 9OQsG(.) are upper semicontinuous at x. 
Analogously, we define the second and third relative generalized Newton methods. 

Relative generalized Newton method II (III). Given xz E n, for k = 0, 1,..., and 
xk e S, 

(16) Xk+l k - V-1G(xk), 

where Vk E aBIsG(xk) (Vk E aQISG(Xk) in method III). 
The following theorem can be similarly proved by using Lemma 3.3 and the 

approach of proving Theorems 3.2. We omit the details. 
THEOREM 3.4. Suppose that G(x*) = 0 and x* E cl(S). If all V E OlsG(x*) 

(V E OQIsG(x*) in method III) are nonsingular and G is semismooth at x* (4 is 
semismooth at 1(x*) in method III), then there exists a neighborhood N(x*) of x* 
such that for any xz E N(x*) n S the relative generalized Newton methods II and 
III either stop in a finite number of steps with some xk V S or generate an infinite 
sequence {xk} E N(x*) n S and the whole sequence converges Q-superlinearly to x*. 
Moreover, if G (D in method III) is strongly semismooth at x* (at II(x*) and X' 
is Lipschitz continuous around x* in method III), then the rate of convergence is 
Q-quadratic. 

4. Strong semismoothness of eigenvalues. As a building block for applying 
relative generalized Newton methods, we shall prove the strong semismoothness of 
eigenvalues of symmetric matrices in this section. Suppose X E S. Then, there exists 
an orthogonal matrix Q E O such that X satisfies 

(17) QTXQ = A(X) := diag(A,1(X),..., An(X)), 

where A•1(X) > ... > A,(X). 
We define a "configuration vector" K to distinguish different eigenvalues. Let 

(18) K := {fko, ki,..., ki} 

with 1 = k0o < k1 < ... < k = n + 1 such that there is a change of eigenvalues at ki. 
Namely for t = 1,..., 1, 

(19) A(X) = 

Akt-1 
(X), s E [kt-i, kt - 1], 
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where we use the simple notation [kt-l, kt - 1] to represent the index set 
{kt-1, kt-1+ 

1, ..., kt - 1}. 
Let H E S and let P (depending on H) be an orthogonal matrix such that 

(20) PT(A(X) + H)P = A(Y) := diag (Ai(Y),..., ,An(Y)) 

where A1 (Y) > ... > A,(Y) and Y := A(X) + H. 
After the above preparation, we can state the following result, which was essen- 

tially proved in the derivation of Lemma 4.2 of [24]. 
LEMMA 4.1. For any H E S and H - O0, we have 

1 

(21) Pij 
= 

O(IIHII), i,j= 1,....,n, (i,j) U {[kt-lkt -1] x [kt-l,kt -1]}. 
t=l1 

Proof. It has been proved in the proof of Lemma 4.2 of [24] that (21) is true for 

any H E S such that A(X) + H is nonsingular and H --+ 0. 
Next, we prove that (21) is also true for the case that A(X) + H is singular and 

H --+ 0. It is easy to check that the conclusion of this lemma holds if H = 0. Hence, 
we can assume H =A 0. Define 

Amin(Y) = min m Ai(Y)l and 
A;=diag(A1,..., An), 

A (Y):O 

whereI 
Y":= 

(y2)? and for i= 1,...,n 

- Ai(Y)1 
if Ai(Y) 0,, 

Amin(Y(I) min{ , |IHI|2} otherwise. 

Denote 

S=- PAkPT - A(X). 

Hence, PT[A(X) + H]P = A is nonsingular. By noting the fact H = H+ O(||Hl2), it 
follows that (21) also holds for the case that A(X) + H is singular and H -+ 0. This 

completes the proof. O 
Define a "truncated" matrix WE Rn xn as follows: 

(22) Wij = Pij if (i,j) E U {[kt-1, kt - 1] x [kt-1, kt - 1]}, i,j = 1 ...n. 
t=l 

1 

0 otherwise, 

Hence, from Lemma 4.1, we know that for any H - 0, 

(23) W = P + O(IIHII). 

It is noted, however, that W may not be an orthogonal matrix but has a block- 

diagonal structure with each block corresponding to a set of identical eigenvalues of 
X. That is, 

W = diag (W1,..., Wi), 

where 

Wt = (Pij)ckt-1 for t= 1,...,1. 
i,j=kt-1" 
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Since P E O, by using Lemma 4.1 and (22), for t = 1, . . . , I and i, j = 1,... , kt - kt-1, 
we have for any H -- 0, 

(24) I(Wt).j 12 
= + O(lIIH2) and 

((Wt).i, 
(Wt).i) = O(HIIH2), i 

It is obvious from (24) that for any H E S sufficiently close to 0 the columns of Wt 
are independent because 

Zi3j(Wt).j =0 ? 3j[1O + O(IIHI12)] = o(-H112) 1 = 0 V j. 
J 

For each t = 1,..., 1, let Pt be a matrix of the same order of Wt and be obtained 
by applying the Gram-Schmidt orthogonalization algorithm to each Wt; i.e., for j = 

1,..., kt - kt-1, let 

j-1 

(25) (VVt).j 
= 

(Wt).j - ((Pt).i, (Wt).j)(Pt).i and (Pt).j 
= 
(w).=j/ll(W).jll- 

i= 1 

By (24) and (25), for i, j = 1,..., kt - kt-1, t = 1,..., 1, we have for any H - 0 that 

(26) I(!t).j112 
= 1, (Pt).j = (Wt).j + O(1H112) and ((Pt).j, (Pt).i) 

= 0, i - 
j. 

Denote 

(27) P= diag(Pi,..., P). 

Then, we have the following lemma. 
LEMMA 4.2. For any H E S sufficiently small, the matrix P defined by (27) and 

(25) is an orthogonal matrix and satisfies 

(28) PTA(X)P = A(X). 

Furthermore, for any H -+ 0, 

(29) P = P + O(IIHII). 

Proof. By (26), we know that each Pt, t = 1,..., 1, is an orthogonal matrix. Since 

Ak-tl (X) 
. 

- 
kty _1(X), 

t = 1, ... , 1, we have 

Pt diag 
(Ak-,_ (X),.... 

., 

,-Akl(X))Pt 

= diag 
(Ak-t_ 

(X), . . , Ak -1(X)). 

Hence, P is an orthogonal matrix and satisfies (28). By using (23) and (26), we 
directly obtain (29). This completes the proof. O 

For any AX E S, let U E O (depending on X and AX) be any orthogonal matrix 
such that 

(30) UT(X + AX)U = A(X + AX) := diag (A1(X + AX),..., An(X + AX)), 

where A1(X + AX) ... > >A,(X + AX). 
By using the above lemma, we have the following result. 
LEMMA 4.3. For any AX E S sufficiently small and U satisfying (30), there 

exists a V E 0 such that 

(31) VTXV = A(X) and U = V + O(IIAXII). 
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Proof. Let P = QTU and H = QTAXQ, where Q is defined in (17). Then, by 
Lemma 4.2, for any such defined P, there exists P E O such that 

PT A(X)P = A(X) 
and 

P 
_ 

+ O(IIHII) = P + O(llAXll). 
Let V = QP. Then V E O, 

VTXV = PTQTXQP = PTA(X)P = A(X), 

and for any AX --- 0 

U = V + O(IIAXII). 
This completes the proof. 0 

A similar result to Lemma 4.3 has also been proved in [4] based on a so-called 

sin(O) theorem in [21, Theorem 3.4]. The proof provided here is due to a direct 
comparison between entries of P and P and it indeed furnishes an algorithm for 
computing V. 

One direct result of Lemma 4.3 is that the (normalized) eigenvectors of symmetric 
matrices, though not continuous, are upper Lipschitz continuous. To see this, for any 
Z E S, let 

b(Z) := {U E 01UTZU is diagonal}, 

and let 

S:= {M E S| 
IMl,51<1, 

ij- 1,...,n}. 

PROPOSITION 4.4. For any X E S, there exists a constant p > 0 such that 

(32) U(X + AX) c U(X) + l JAX IS 

for all AX sufficiently small. 
Proof. For any U E (X + AX), there exists a diagonal matrix D(X + AX) such 

that 

UT(X + AX)U = D(X + AX). 

Let R E nxn be a permutation matrix such that 

RD(X + AX)RT = A(X + AX) 

with 
A•(X 

+ AX) > 
..- 

>. 
An(X + AX). Let U = URT. Then we obtain UT(X + 

AX)U = A(X+AX). Hence, by Lemma 4.3, there exists a V E O such that VTXV = 
A(X) and 

U = v + O(llaAXI), 
i.e., 

u = VR + O(llAXll) 
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because RT =R-1 and IIRTII = 5-. Let V = VR. Then 

VTV = RTTVrR = RTR = I, and VTXV = (VR)TXVR = RTA(X)R 

is a diagonal matrix. Hence, we have proved V E (X) and for AX -- 0 

U = V + O(IIAXID. 

This implies that there exists a p> 0 such that (32) holds. 0 
In section 1 we have seen from an example of a two by two matrix that the eigen- 

values are not differentiable if X has multiple eigenvalues. This can be easily extended 
to the general case: A(.) is not differentiable at X if X has multiple eigenvalues. On 
the other hand, by [26, pp. 66-68] and [25, Theorem 2.3] we know that if X has 
distinct eigenvalues, then A(.) is analytic in a neighborhood of X. Hence, we have 
the following lemma. 

LEMMA 4.5. A(.) is analytic in a neighborhood of X if and only if X E S has 
distinct eigenvalues. 

Next, we cite a useful formula for the derivative of A(X) when X E S has distinct 

eigenvalues. 
LEMMA 4.6 (see [21, p. 185, Corollary 2.4]). For any X E S, if X has distinct 

eigenvalues, then A(-) is continuously differentiable at X and for any AX E S 

(33) A'(X)(AX) = qi(X)TAXqi(X), i = 1,..., n. 

For any X E S, let Q(X) E 0 be such that Q(X)TXQ(X) = A(X) with A)(X) 2 
... 2 A,(X). Define 

qi(X) = (Q(X)).i, i = 1, . .,n. 

The following result is our main theorem of this section. 
THEOREM 4.7. A(.) is a strongly semismooth function. 
Proof. By Ky Fan [8] and Mifflin [14], A(.) is a semismooth function. Thus, we 

only have to prove (8) with p = 1. Let DA = {Y E SI Y has distinct eigenvalues}. By 
Lemma 4.5, DA is the subset of S on which A is continuously differentiable. Clearly, 
DA is dense in S. 

Suppose that Xo E S is a given matrix. For any X e DA, denote AX = X - Xo. 
For i = 1,..., n from Xqi(X) = Ai(X)qi(X), we have 

(34) qi(X)TXoqi(X) + qi(X)TAXqi(X) = Ai(X). 

By Lemma 4.3, there exists a p > 0 such that for any X sufficiently close to Xo there 
exists a matrix Q(Xo) E O (depending on the choice of X) such that Q(Xo)TXoQ(Xo) 
= A(Xo) and 

(35) |lqi(X) - qi(Xo)l < p|lX - Xol, 

where qi(Xo) := (Q(Xo)).i, i = 1,.. .,n. Hence, from (34), (35), and the local 
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Lipschitz continuity of A(.), for i = 1,..., n, X E DA, and AX -- 0, we have 

Ai(X) = qi(X)T [Xoqi(Xo) + Xo(q (X) - qi(Xo))] + qi(X)TAXqi(X) 

= Ai(Xo)qi(X)Tqi(Xo) + qi(X)TX [qi(X) - qi(Xo)] + O(/|AXXl2) 

+ qi(X)TAXqi(X) 

= Ai(Xo)qi(X)Tqi(Xo) + Ai(X)qi(X)T [qi(X) - qi(Xo)] 

+ qi(X)TAXqi(X) + O(|HAX112) 

= Ai(Xo)qi(X)Tqi(Xo) + [Ai(Xo) + O(11AXI1)] qi(X)T [qi(X) - qi (Xo)] 

+ qi(X)TAXqi(X) + O(|IAX112) 

= Ai(Xo)qi(X)Tqi(X) + qi(X)TAXqi(X) + O(H1AXII2) 

(36) = Ai(Xo0) + qi(X)TAXqi(X) + O(l1AX112), 

which, according to Lemma 4.6, implies 

Ai(X) - Ai(Xo) - (X)(AX) = O(AXll)2 i 1,..., n. 

This, together with Theorem 2.2, implies that for X --+ Xo and V E &A(X), 

A(X) - A(Xo) - V(X - Xo) = O(lX - Xo 112). 

Hence, (8), and therefore the strong semismoothness of A(.), is proved. O 

5. Newton's method for inverse eigenvalue problems. In this section, we 
shall show how the strong semismoothness of eigenvalues of symmetric matrices can 
be used to analyze the quadratic convergence of Newton's method for solving IEPs. 
Unless stated otherwise, A : Jn -- S is assumed to be continuously differentiable 
everywhere and F :~R -• ~" is defined by (2), i.e., 

A, (A(c)) - A* 1 

An(A(c)) - AXn 

where 
{A*}J_, 

are given n numbers and arranged in the decreasing order. Then the 
IEP is equivalent to finding c* E R" such that F(c*) = 0. 

For any c C nn, let Q(c) C 0 be a subset of Rnx" such that for any Q(c) E Q(c) 
we have 

Q(c)TA(c)Q(c) = A(A(c)) 

with AI(A(c)) ... ? A,(A(c)). For any Q(c) E Q(c), define 

qi(c) = (Q(c))., i 1,..., n. 

Let &A(c)/&cj be the partial derivative of A(c) with respect to cj, j = 1, ..., n. Then 
for any c E Rn 

aQF(c) = OBA(A(c))(A'(c)) 
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is well defined. By using Lemmas 4.5 and 4.6 and [24, Theorem 2.5], we have the 

following result. 
PROPOSITION 5.1. 

(a) For any c E n, VR OQF(c) if and only if there exists a Q(c) e Q(c) such 
that 

(37) Vi. = [qi(c)T(oA(c)l/Oc)qi(c),..., qi(c)T(oA(c)/Ocn)qi(c)] . 

(b) If c E n is such that A(c) has distinct eigenvalues, then F is continuously 
differentiable at c and for any Q(c) e Q(c) 

(38) Ff(c) = [qi(c)T(aA(c)/8cl)qi(c),..., qij(c)T(aA(c)/cn)qi(c)] . 

Hence, according to Proposition 5.1, a generalized Newton method for solving the 
IEP can be described as follows. 

ALGORITHM 5.1 (a generalized Newton method). 
Step 0. Choose a starting point value co. k := 0. 

Step 1. Compute a Q(ck) E Q(Ck) and form Vk E QF(ck) according to Proposi- 
tion 5.1. 

Step 2. Set ck+1 := ck + Ack, where Ack is computed by F(ck) + VkAck = 0. 

Step 3. Replace k by k + 1 and go to Step 1. 
In the above generalized Newton method, at the kth step one needs to compute 

eigenvectors Q(ck) and eigenvalues A(A(ck)). Once they are computed, F(ck) and 

Vk E &QF(ck) can be formulated easily. If A(c) takes form (1) and at each step A(ck) 
has distinct eigenvalues, Algorithm 5.1 reduces to the Newton method considered by 
many authors, e.g., see [15, 10] and references therein. 

THEOREM 5.2. Suppose that F is defined by (2) and F(c*) = 0. If all V E 

OQF(c*) are nonsingular and A' is Lipschitz continuous around c*, then there exists 
a neighborhood N(c*) of c* such that for any co E N(c*) Algorithm 5.1 is well defined 
and the iterates {ck} converge to c* Q-quadratically. 

Proof. From Theorem 4.7, we know that A(-) is strongly semismooth everywhere. 
Hence, by Theorem 2.4 we obtain the conclusion of this theorem. O 

Theorem 5.2 contains a very general convergence result for the quadratic conver- 

gence of Newton's method for solving IEPs. However, the nonsingularity assumption 
on aQF(c*) is too strong for IEPs when A(c*) has multiple eigenvalues. To relax this 

condition, let S C R" be defined by 

(39) S = c{ce C n A(c) has distinct eigenvalues}. 

Then, by Lemma 4.5 and Proposition 5.1 for any c E S, F(.) is continuously differen- 
tiable at c and 

-BF(c) 
= 8QF(c) = F(c) = {F'(c)}. 

THEOREM 5.3. Suppose that F is defined by (2), F(c*) = 0, and S is defined by 
(39). If (i) for each k, ck E S and c* E clS; (ii) all V E OBisF(c*) are nonsingular; 
and (iii) A' is Lipschitz continuous around c*, then there exists a neighborhood N(c*) 
of c* such that, for any co E N(c*), Algorithm 5.1 is well defined and the iterates {ck} 
converge to c* Q-quadratically. 

Proof. By using Theorems 3.4 and 4.7, we obtain this theorem. 0 
In Theorem 5.3, we need only the nonsingularity of OB IsF(c*) rather than oQF(c*). 

The price to pay is that all the iterates must stay in S, where S is defined by (39). 
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Since Rn\S is usually a null set, this condition is reasonable for IEPs [10, pp. 647-648]. 
For illustration, let us consider the following IEP with 

F(c)[ AX(A(c))- 
A 

A2 (A(c)) - A*2 

A(c) = c 0 1 +c2 1 0 

and 
A, 

= 
, 

1 = 1. Then, A (A(c)) = cI + Ic21, A2(A(c)) = cl - c2l, and S = {c E 
W21 C2 = 0}. The function F has a unique solution at c* = (1, 0). Note that A(c*) 
has a multiple eigenvalues at c* and 

1 -1 c1 1 
sF(c*) 

- 

= , 

.'1 - Therefore, all V E OB IsF(c*) are nonsingular. 
It was probably Nocedal and Overton [15] who first discussed the quadratic con- 

vergence of Newton's method for solving IEPs with multiple eigenvalues. In their 
proof, a theorem of Rellich [19] on analytic matrix functions was invoked. In [10], 
by using the eigenprojector, Friedland, Nocedal, and Overton presented a different 
elegant proof on the quadratic convergence of Newton's method for solving IEPs with 
multiple eigenvalues. The latter did not use Rellich's theorem. Our results in this 
paper could be thought of as a generalization of their method I by explicitly exploring 
the strong semismoothness of the eigenvalue functions. 

Before we finish this section, let us consider the generalized inverse eigenvalue 
problem (GIEP). Let C : R'n 

- S and D : •" - S be continuously differentiable 
and D(c) be positive definite whenever c E Q, an open subset of R". Given n real 
numbers 

{A}= 1, 
which are arranged in the decreasing order A > ... > AX, the 

GIEP is to find a vector c* E -Q such that the symmetric generalized eigenvalue 
problem C(c*)x = AD(c*)x has the prescribed eigenvalues A*,...,A*. If D(c) = I, 
then the GIEP is the IEP considered above. It is readily seen that the GIEP can be 
converted into the form of solving F(c) = 0 with 

SA, (A(c)) - A* 1 
(40) F(c)= , c E Q, 

An (A(c)) - An 

where A(c) = D(c)-1C(c)D(c)-• 
Dai and Lancaster [7] and Dai [6] considered a special case of the GIEP, i.e., C(c) 

and D(c) are defined by 

n n 

(41) C(c) = Co + ciCi, D(c) = Do + ZciDi, 
i=1 i=1 

where Co, C1, .. .., C,, Do, D1,... D E S and D(c) is positive definite whenever c E Q. 
When C(c) and D(c) take the form (41), Dai and Lancaster [7] proposed the 

following Newton method for solving the GIEP. 
ALGORITHM 5.2 (a Newton method of Dai and Lancaster [7]). 

Step 0. Choose a starting point value co. k := 0. 
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Step 1. Compute C(ck) = Co + Z~n1 C, D(ck) = Do + E 1 ckDj 
Step 2. Set ck+1 := ck + Ack, where Ack is computed by F(ck) + F'(ck)Ack = 0. 
Step 3. Replace k by k + 1 and go to Step 1. 

The following theorem gives an affirmative answer to a conjecture made in [7, 
p. 11] on the quadratic convergence of Algorithm 5.2, which was supported by numer- 
ical experiments. 

THEOREM 5.4. Suppose that c* E Q such that F(c*) = 0. If (i) for each k, A(ck) 
has distinct eigenvalues and F'(ck) is invertible; and (ii) limsupk--,oo IF'(ck)-l1l 
< 00, then there exists a neighborhood N(c*) of c* such that for any co E N(c*) 
the iterates {ck} generated by Algorithm 5.2 converge to c* Q-quadratically. 

Proof. Since A(ck) has distinct eigenvalues, F is continuously differentiable at ck. 
Note that Algorithm 5.2 is a special case of Algorithm 5.1. By using Theorems 4.7 
and 3.4 with S = {co, cl,...}, we get the conclusion of the theorem. 0 

6. Summary and possible future research topics. In this paper we review 
basic concepts of semismoothness and Newton's method for semismooth equations. 
We show the strong semismoothness of eigenvalues of symmetric matrices and demon- 
strate how this result can be used to provide a unified analysis for the quadratic 
convergence of the Newton-type methods for IEPs and GIEPs. 

We feel that several topics could be further investigated. First, it would be 
interesting to look at the strong semismoothness of the functions arising from other 
IEPs, e.g., the least square IEPs [10]. Second, we could develop nonsmooth quasi- 
Newton [22] methods, rather than Newton's method, for IEPs and GIEPs. Chan and 
Tseng [3] provided such an approach for IEPs with distinct eigenvalues. The problem 
is still unsolved in the case of multiple eigenvalues. Third, it is desirable to have a 
"smoothing" version of the Newton method discussed in this paper; namely, we find 
a parameterized function H(e, x) for a strongly semismooth function F(x) such that 
H(E, y) -- F(x) as (e, y) - (0+,x) and that H(E,x) is differentiable for E $ 0. It 
is proved in [23] that any nonsmooth function has approximate smoothing functions, 
but the proof does not give any concrete smoothing functions for IEPs. It is then 
interesting to ask what smoothing function could be used for IEPs. 
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