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Abstract Correlation stress testing is employed in several financial models for de-
termining the value-at-risk (VaR) of a financial institution’s portfolio. The possible
lack of mathematical consistence in the target correlation matrix, which must be pos-
itive semidefinite, often causes breakdown of these models. The target matrix is ob-
tained by fixing some of the correlations (often contained in blocks of submatrices)
in the current correlation matrix while stressing the remaining to a certain level to re-
flect various stressing scenarios. The combination of fixing and stressing effects often
leads to mathematical inconsistence of the target matrix. It is then naturally to find the
nearest correlation matrix to the target matrix with the fixed correlations unaltered.
However, the number of fixed correlations could be potentially very large, posing a
computational challenge to existing methods. In this paper, we propose an uncon-
strained convex optimization approach by solving one or a sequence of continuously
differentiable (but not twice continuously differentiable) convex optimization prob-
lems, depending on different stress patterns. This research fully takes advantage of
the recently developed theory of strongly semismooth matrix valued functions, which
makes fast convergent numerical methods applicable to the underlying unconstrained
optimization problem. Promising numerical results on practical data (RiskMetrics
database) and randomly generated problems of larger sizes are reported.
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1 Introduction

Stress testing, an important tool to “gauge how the value of an institution’s portfolio
of securities and derivatives will be affected by large movements in, say, stock prices
or exchange rates” (Fender, Gibson, and Mosser [12]), is conducted on a regular basis
by financial institutions. One common feature of the stress testing in several financial
models, such as the covariance VaR and the Monte Carlo VaR models (Alexander
[1, Sect. 9.6]), is to determine the value-at-risk (VaR) of a bank’s portfolio via the
stressed covariance matrices.

Covariance matrix based stress testing is often known as the correlation stress test-
ing because of the way that the stress is reflected. Suppose that V is the current esti-
mated covariance matrix based on historical data. By decomposing V as V = DCDT ,
where D is a diagonal matrix with positive entries representing volatilities and C is
the correlation matrix,1 one can stress volatilities (perturbing the diagonal terms of
D) separately from stressing correlations (Kupiec [17]). However, unlike the diag-
onal matrix D, alterations in the correlation matrix C may cause breakdown of the
underlying VaR models because the newly formed matrix, denoted by ̂C and is of-
ten referred to in the literature as the target correlation matrix, is no longer guaran-
teed to be positive semidefinite, an essential mathematical property that any covari-
ance/correlation matrix must satisfy. Finger [13] illustrated this, in association with
the covariance VaR model in RiskMetrics [20], by constructing an example.

The obstacle in conducting correlation stress testing is due to the fact that there
are several desirable properties including the positive semidefiniteness that the target
correlation matrix ̂C must possess simultaneously. One such situation is the case that
some of the correlations in ̂C should be kept unchanged. To see why this is so in
reality, let us consider a portfolio consisting of n assets {s1, . . . , sm, sm+1, . . . , sn}.
Then the current estimated correlation matrix C takes the form C =

(

C1 C2

CT
2 C3

)

, where

C1 ∈ R
m×m is the correlation matrix corresponding to the first group of assets

{s1, . . . , sm}, C3 ∈ R
(n−m)×(n−m) is the correlation matrix for the second group of

assets {sm+1, . . . , sn}, and C2 ∈ R
m×(n−m) is the cross-group correlation matrix that

contains correlations between every pair of si and sj , with si in the first group and sj
in the second group.

Suppose now that we aim to conduct stress testing on the assets in the second
group of our portfolio by changing correlations in C3 to form a new symmetric ma-
trix ̂C3.2 Of course, not all correlations in C3 are necessarily subject to change. While
the correlations in C2 may or may not be changed depending on different situations,

1A real symmetric matrix is called a correlation matrix if it is positive semidefinite and all its diagonal
entries are ones.
2Each financial institution has its own views on how ̂C3 can be forecasted. We will not address this issue
here. Rather we focus on calibrating improperly stressed correlation matrices.



Correlation stress testing for value-at-risk: an unconstrained convex 429

the ones in C1 should not be altered (see Finger [13] for a concrete example consist-
ing of four Asian currencies and three non-Asian currencies). The target correlation

matrix ̂C should therefore take the form ̂C =
(

̂C1 ̂C2
̂CT

2
̂C3

)

with ̂C1 = C1 and/or ̂C2 = C2.

However, when ̂C2 is not properly selected (e.g., ̂C2 = C2), the matrix ̂C may fail to
be positive semidefinite even if ̂C3 is positive (semi)definite. This phenomenon will
lead to physically infeasible negative volatilities of some assets if ̂C were used to
calculate the VaR of a portfolio. So, immediately a replacement matrix X for ̂C has
to be introduced. In order to compute a meaningful VaR under the stress testing, this
replacement must be positive (semi)definite and in the meantime captures the stress
information in ̂C3. An intrinsic question then arises: what is the best replacement and
in what sense? The main purpose of this paper is to answer this question.

Many authors from the finance industry and the academia (Finger [13], Ku-
piec [17], Rebonato and Jäckel [25], Bhansali and Wise [5], Rapisrada, Brigo, and
Mercurio [24], León et al. [18], Turkey, Epperlein, and Christofides [34], Dash [10],
to name only a few) have considered the correlation stress testing problem in different
scenarios by adding various constraints on the replacement matrix X. The constraints
in these scenarios may look rather different. But, they actually can be classified and
completely captured through the following three types of constraints.

(H1) All of the diagonal elements of X must be 1,
(H2) X has to be positive semidefinite (mathematical consistence), and
(H3) Xij = ̂Cij for some indices (i, j) ∈ B, where the index set B specifies the loca-

tions of the fixed correlations.

Sometimes, we need the positive definiteness constraint, which replaces (H2):

(H2′) X is positive definite.

Constraints (H1) and (H2) together ensure that X is a correlation matrix. Con-
straint (H3) simply specifies those correlations that are not allowed to change. The
index set B may assume various forms. The positive definiteness constraint (H2′) is
particularly important in methods where it is used of the inverse of a covariance ma-
trix, e.g., RiskMetrics VaR model using conditional covariance matrix (RiskMetrics
document [20, Page 185]) or the Cholesky factor of a covariance matrix, e.g., the
Monte Carlo VaR model (Alexander [1, Sect. 9.4]).

As mentioned above, there are a few available methods known to the finance com-
munity to select a replacement matrix X satisfying some/all of the constraints. For
example, ignoring the fixed element constraint (H3), the hyperspherical decomposi-
tion method of Rebonato and Jäckel [25] and its modified variant by Bhansali and
Wise [5] and Kercheval [16] try to find the nearest correlation matrix to ̂C (mea-
sured in the Frobenius norm of matrices). See also Chaps. 23 and 24 in Dash [10] for
more treatments on this case. However, the resulting optimization problem is highly
nonlinear and nonconvex.3 The shrinkage method of Kupiec [17] and the sequen-
tial single-stress method of Turkey, Epperlein, and Christofides [34], where the case

3The hyperspherical decomposition method can be adapted to incorporate the constraint (H3), but it would
lead to a nonlinearly constrained nonconvex optimization problem, which is often very difficult to solve
for a global solution.
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̂C1 = C1 and ̂C2 = C2 is formally referred to as the local correlation stress testing,
both are capable of handling the constraints (H1)–(H3), but, as commented by Rebon-
ato and Jäckel [25] that “there is no way of determining to what extent the resulting
matrix is optimal in any easily quantifiable sense”.4 Finger’s method as well as other
spectral decomposition based methods proposed in those studies also suffer similar
drawbacks.

On a parallel development in matrix analysis and optimization research, there
also exist a number of successful methods of finding the nearest correlation ma-
trix to a given matrix. Those methods include the alternating projection method of
Higham [15], quasi-Newton methods of Malick [19] and Boyd and Xiao [7], New-
ton’s method of Qi and Sun [22], and the inexact primal dual path-following method
of Toh, Tütüncü, and Todd [33]. Although all of those methods are conceptually ap-
plicable to handle the fixed element constraint (H3), theory and numerical experiment
are mainly developed to address the constraints (H1) and (H2). The general consen-
sus in those studies is that the nearest correlation matrix problem of satisfying (H1)
and (H2) can be efficiently solved even when n is moderately large. However, the
presence of the fixed correlation constraint (H3) may cause a great deal of difficulty
to existing methods.

The first issue that has to be dealt with is the feasibility problem. If the fixed cor-
relations are not from an existing positive correlation matrix there may not even exist
a true correlation matrix satisfying the fixed correlations (e.g., the problem is not
well posed). This is why we assume that the current correlation matrix C is positive
definite.5 The second issue is the extra computational complexity that the fixed cor-
relation constraint may bring to a already very difficult problem when n is large. For
some cases, this extra complexity may not cause too much concern. The commonly
studied local correlation stress testing in Turkey, Epperlein, and Christofides [34],
for example, can be reduced to a nearest correlation matrix via the Schur comple-
ment decomposition technique. Therefore, the extra complexity can be removed for
this case. However, for many other cases this extra complexity has to be dealt with
directly or indirectly. Furthermore, the total number, which is sometimes very large
and is denoted by κ(B), of the fixed correlations alone is not an accurate indicator
for the complexity. The structure of B (i.e., whereabouts of those fixed correlations)
seems to be another attribute in the complexity. Therefore, in this paper we mainly
address the case where the stressed correlations have band structure, which is equiv-
alent to say that B is contained in a fixed diagonal square block. The major reason
for considering this case is that theory and algorithms can be developed nicely and
can be readily extended to more general cases. The third issue is whether or not a
large number of fixed correlations may cause loss of the quadratic convergence of
Newton’s method developed for the case without the fixed correlation constraint.

To put it in another way, in correlation stress testing we face a task that requires
to construct a correlation matrix with a large number of pre-fixed elements. On top

4The comment is only on the shrinkage method, but it apparently applies to the sequential single-stress
method.
5In practice, C may not be positive definite due to various reasons including insufficiency of historical
data and numerical truncations. To make sure that the fixed correlations do come from a positive definite
correlation matrix, Algorithm 3.1 (with τ > 0) will be used to achieve this purpose at a very low cost.
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of this, one is to seek such a correlation matrix that is nearest to a given target matrix
(measured in the Frobenius norm here and throughout the paper). Moreover, we need
a fast algorithm to accomplish the task. Combination of all of those features gives
rise to a very challenging task.

The main purpose of this paper is to solve this challenging problem via an uncon-
strained optimization approach, which refers to either the Lagrangian dual approach
or the augmented Lagrangian dual approach, depending on different situations in the
correlation stress testing. Roughly speaking, the Lagrangian dual approach is for the
case when κ(B) is relatively small and the augmented Lagrangian dual approach is
for the case when κ(B) is relatively large. Considerable part of this paper is devoted
to modelling and methodology. In the modelling part, we formulate the correlation
stress testing problem via convex optimization techniques, distinguishing several in-
teresting cases from each other (Sect. 2). In the methodological part, we describe
in details how the Lagrangian dual method (Sect. 3) and the augmented Lagrangian
dual method (Sect. 4) can be developed to solve the modelled convex optimization
problems. At the core of either of the approach is the quadratically convergent New-
ton method (Algorithm 3.1), which involves heavy calculations to reach formulae
necessary for its numerical implementation and is only made possible due to recent
advances on the theory of strongly semismooth matrix valued functions. We include
the calculation as well as some theoretical proofs in Appendices (Appendix A, B,
and C).

The purpose of this arrangement is threefold. Firstly, for readers who are famil-
iar with the Lagrangian and augmented Lagrangian theory, the methodological part
clearly shows what the best of the theory we can have when coming to the correlation
stress testing. Secondly, for readers who are not very familiar with the theory, the
minimal coverage of the methodology provides sufficient material to understand it
without having to referring to a vast number of related references. Last but not least,
for practitioners who may be only interested in how to use the methodology proposed
here, we provide concrete algorithms (Algorithm 3.1 and Algorithm 4.3) and formu-
lae (Appendix A) to make it easier for them to adapt the companion MATLAB codes
(available at http://www.math.nus.edu.sg/~matsundf) to their own correlation stress
testing problems. We hope that the superb numerical evidence reported in this paper,
backed by strong theoretical convergence results, may lead to further research on this
important topic and relieve practitioners from spending countless hours searching for
an efficient numerical method for dealing with the challenging task of conducting the
correlation stress testing in their financial models.

The paper is thus organized as follows. In the next section, we formulate the cor-
relation stress testing problem of various types as a convex optimization problem. We
study its Lagrangian dual and the augmented Lagrangian dual approaches in the next
two sections. Section 5 contains our numerical results for examples collected from
the relevant literature and some randomly generated hard problems. We conclude the
paper in Sect. 6. Appendices include detailed calculations necessary for implement-
ing the Newton method and some theoretical proofs.

Notation: S n and S n+ are, respectively, the linear space of n × n symmetric matri-
ces and the cone of positive semidefinite matrices in S n; and ‖ · ‖ is the Frobenius
norm defined by the trace inner product 〈A,B〉 = tr(AB) for A,B ∈ S n. Sometimes,
we use X � (�)0 meaning X is positive (semi-) definite.

http://www.math.nus.edu.sg/~matsundf
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For X ∈ S n, X+ denotes the orthogonal projection onto S n+ and Xij denotes the
(i, j)th entry of X. We use ◦ to denote the Hardmard product of matrices, i.e., for any
A,B ∈ S n

A ◦ B = [AijBij ]ni,j=1.

The matrix E denotes the matrix of all ones in S n. For subsets α and β of
{1,2, . . . , n}, Bαβ denotes the submatrix of B indexed by α and β . For any pair (i, j),
we use Eij to denote the matrix whose (i, j)th entry is 1 and all other entries are ze-
ros. Let e denote the vector of all ones. For a vector x, Diag(x) is the diagonal matrix
whose diagonal entries are the vector x. Conversely, for a square matrix X, diag(X)

denotes the vector formed by the diagonal entries of X.

2 The convex optimization formulation

This section contains a straightforward convex optimization reformulation of find-
ing the nearest correlation matrix to ̂C satisfying constraints (H1), (H2) or (H2′),
and (H3). We will distinguish several cases with each having its own importance. In
particular, we will treat the case B 
= ∅ and B = ∅ separately. We will also address
how to handle the positive definiteness constraint (H2′) in our formulation.

2.1 The case B 
= ∅
Recall that the index set B specifies the locations of fixed correlations in ̂C. For the
purpose of later development, we assume that B takes the following general form:

B := {(i�, j�) | i� < j�, � = 1, . . . , κ} (1)

for some κ ≤ n(n − 1)/2. We often use κ(B) to indicate the dependence of κ on B.
Let c be the vector in R

κ obtained by stacking up the fixed correlations ̂Cij , (i, j) ∈ B
column by column from top to bottom. Then, for any 1 ≤ � ≤ κ , there exists a unique
index (i, j) ∈ B such that c� = Cij . Because of this, to facilitate our description, for
a vector z ∈ R

κ , without causing confusion we often write z ≡ (zij )(i,j)∈B to match
the structure of B.

The following two examples illustrate what B and c may look like.

Example 2.1 (Local correlation stress testing of Turkey, Epperlein, and Christofides
[34]) In this example, ̂C1 = C1 and ̂C2 = C2. Then

{

B = {(i, j) | i = 1, . . . ,m, j = i + 1, . . . , n},
cij = Cij , for (i, j) ∈ B.

(2)

Example 2.2 (Band correlation stress testing) Compared to Example 2.1, ̂C2 in this
example is allowed to change freely while ̂C1 = C1 remains unchanged

{

B = {(i, j) | 1 ≤ i < j ≤ m},
cij = Cij , for (i, j) ∈ B.

(3)
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The special structure of B in the local correlation stress testing in Example 2.1
allows us to use the Schur complement decomposition to transform it to a nearest
correlation matrix problem of reduced dimension. Consequently, this case can be
handled more directly and solved efficiently by existing methods (see Sect. 3.2). As
suggested already by its name, the band correlation stress testing in Example 2.2
indicates that the stressed correlations (i.e., those not in B) form a structure of band.
The importance of this case is with its generality in the sense that the approach and
analysis developed can be readily extended to cover more general cases including the
“rectangular” B (see, Remark R2 in Sect. 3.3).

Once we have the location index set B and the fixed correlation vector c, any
replacement correlation matrix X must satisfy the following conditions:

X ∈ Cn and Xij = cij for all (i, j) ∈ B, (4)

where Cn is the set of all n × n correlation matrices. Note that B only specifies the
upper part of fixed elements in X. But, since X is a symmetric matrix, the lower part
of fixed elements is automatically included.

Our eventual goal is to find the nearest correlation matrix to ̂C from all those
of satisfying conditions in (4). This leads to the following least-square optimization
problem:

min
1

2
‖X − ̂C‖2

s.t. Xii = 1, i = 1, . . . , n,

Xij = cij , (i, j) ∈ B,

X ∈ S n+.

(5)

Note that the objective function in (5) is quadratic in X and all the constraints are
linear except X being in S n+, which is a closed convex cone. So, (5) is a convex
optimization problem.

To single out the linear equations in (5), we define two linear operators A1 : S n �→
R

n and A2 : S n �→ R
κ , respectively, by

A1(X) := diag(X) and (A2(X))ij := Xij for (i, j) ∈ B. (6)

Note that in (6), for each X ∈ S n, A2(X) is a column vector in R
κ with the notation

being explained earlier. Recall that e is defined to be the vector of all ones in R
n.

Problem (5) can thus be equivalently written as

min
1

2
‖X − ̂C‖2

s.t. A1(X) = e,

A2(X) = c,

X ∈ S n+.

(7)

This is the problem we aim to solve in this paper. To alleviate the concern about the
feasibility issue of this problem as well as the unconstrained dual problems to be
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developed in the next section, we assume that this problem is strictly feasible. Ap-
parently, a sufficient condition for the strict feasibility is that the current correlation
matrix C is positive definite, which is a practical condition required in the financial
industry.

2.2 The case B = ∅

This is the simplest case of (7) and is often referred to as the nearest correlation
matrix problem (Higham [15]):

min
1

2
‖X − ̂C‖2

s.t. A1(X) = e,

X ∈ S n+.

(8)

This problem is always strictly feasible, e.g., X = I , regardless whether C is positive
definite or not. There are n linear constraints comparing to n + κ(B) in (7), where
κ(B) could be significantly larger than n (i.e., κ(B) � n).

The nearest correlation matrix problem (8) also distinguishes itself from the gen-
eral problem (7) numerically. Problem (8) can be efficiently solved even when n is
large (e.g., n = 2,000), say, by Newton’s method of Qi and Sun [22] or the inexact
primal-dual path-following method of Toh, Tütüncü, and Todd [33]. We will make
use of this fact in two aspects. First, the Lagrangian dual approach, on which the
quadratically convergent Newton’s method [22] for solving problem (8) is based on,
is extended to the case B 
= ∅. The computational efficiency consideration of handling
a large number κ(B) of constraints will naturally lead us to consider an augmented
Lagrangian dual approach, which handles constraint (H3) more directly. Second,
problem (8) is used to generate a good starting point for methods developed for the
case B 
= ∅.

2.3 Incorporating the positive definiteness constraint (H3)

In a straightforward way, we can add the positive definiteness constraint (H2′) to
formulation (7) as follows

min
1

2
‖X − ̂C‖2

s.t. A1(X) = e,

A2(X) = c,

X − τI ∈ S n+,

(9)

where 0 < τ < 1 is a user-specified parameter, usually small (e.g., τ = 0.5 × 10−4),
to ensure that the solution matrix is positive definite. Because of this, problem (9)
will be called the regularized version of problem (7).

After simple linear transformations, problem (9) can be reformulated to the form
of (7), but with different input matrix and right-hand side constant vector. Specifically,
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let Y ≡ X − τI . Then (9) is equivalent to

min
1

2
‖Y − (̂C − τI )‖2

s.t. A1(Y ) = (1 − τ)e,

A2(Y ) = c,

Y ∈ S n+.

(10)

We see that the input matrix now becomes (̂C − τI ) (versus ̂C in (7)) and the right-
hand side constant vector corresponding to the linear operator A1 now becomes (1 −
τ)e (versus e in (7)). It is obvious that these two problems have the same level of
complexity. The only issue that warrants attention is about the choice of τ . To ensure
the strict feasibility of (9), τ has to satisfy 0 ≤ τ < λmin(C), the smallest eigenvalue
of C. Problem (9) and its equivalent form (10) with 0 ≤ τ < λmin(C) are the main
problems we intend to solve. When τ = 0, (9) reduces to (7).

The above discussion also applies to the case where B = ∅. We simply write it
down below without further comments for easy reference later on:

min
1

2
‖X − ̂C‖2

s.t. A1(X) = e,

X − τI ∈ S n+,

(11)

where 0 < τ < 1. This problem is always strictly feasible and always yields a positive
definite matrix nearest to ̂C. The corresponding equivalent form for (11) is as follows

min
1

2
‖Y − (̂C − τI )‖2

s.t. A1(Y ) = (1 − τ)e,

Y ∈ S n+.

(12)

3 A Lagrangian dual Newton method

It has been widely recognized that the difficulty in updating a correlation matrix to
a desired one is to keep it being positive semidefinite. In other words, the constraint
X ∈ S n+ is where the difficulty arises. Moreover, in correlation stress testing, another
type of difficulty comes from preserving constraint (H3), especially when κ(B) is not
very small. In this section, we shall focus on dealing with these two types of difficul-
ties, by extending the generalized Newton’s method studied in Qi and Sun [22] based
on a Lagrangian dual approach proposed by Rockafellar [26] for general constrained
optimization problems.
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3.1 General discussions

Consider the following least-square semidefinite optimization problem:

min
1

2
‖X − X0‖2

s.t. A(X) = b,

X ∈ S p
+,

(13)

where X0 ∈ S p is given, A : S p → R
q is a linear operator, and b ∈ R

q . Define the
ordinary Lagrangian function l : S p

+ × R
q → R by

l(X,y) := 1

2
‖X − X0‖2 + 〈y, b − A(X)〉, (X,y) ∈ S p

+ × R
q . (14)

Let θ : R
q → R be defined by

θ(y) := − inf
x∈S p

+
l(X,y), y ∈ R

q .

Then the dual of problem (13) takes the following form:

max −θ(y)

s.t. y ∈ R
q .

(15)

The function θ(y) has a nice analytical form. To present this form, for any X ∈ S p
+,

we let 	S p
+(X) denote the metric projection of X onto S p

+, i.e., 	S p
+(X) is the unique

optimal solution to the following convex programming problem

min
1

2
‖Y − X‖2

s.t. Y ∈ S p
+.

(16)

Then for any y ∈ R
q , we have

θ(y) = 1

2
‖X0 + A∗y‖2 − 1

2
‖X0 + A∗y − 	S p

+(X0 + A∗y)‖2 − 〈b, y〉 − 1

2
‖X0‖2,

(17)
where A∗ : R

q → S n is the adjoint6 of A. Since S p
+ is a closed convex cone, we

know from Zarantonello [35] that

θ(y) = 1

2
‖	S p

+(X0 + A∗y)‖2 − 〈b, y〉 − 1

2
‖X0‖2, y ∈ R

q (18)

6For the linear operator A : S p → R
q , its adjoint A∗ : R

q �→ S p is defined by 〈A∗y,X〉 = 〈y, A(X)〉
for any X ∈ S p and y ∈ R

q .
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and that θ is a continuously differentiable convex function with its gradient at y being
given by

∇θ(y) = A	S p
+(X0 + A∗y) − b, y ∈ R

q . (19)

Recall that the generalized Slater condition is said to hold for the convex optimiza-
tion problem (13) if

{

A : S p → R
q is onto,

∃ X ∈ S p
+ such that A(X) = b, X ∈ int(S p

+),
(20)

where “int” denotes the topological interior of a given set. The classical duality theory
for convex programming of Rockafellar [26] says that under the generalized Slater
condition (20), the following hold: For every real number η, the level set {y ∈ R

q :
θ(y) ≤ η} is closed, bounded, and convex; and the unique solution to the original
problem (13) is given by

X∗ = 	S p
+(X0 + A∗y∗), (21)

where y∗ ∈ R
q is any optimal solution to the dual problem (15). The relation (21)

suggests the following approach: first solve the unconstrained convex optimization
problem (15) for y∗ and then obtain the unique solution to the original problem (13)
by (21). This is exactly the well-known Lagrangian dual approach outlined by Rock-
afellar [26]. However, θ fails to be twice continuously differentiable because the met-
ric projector 	S p

+ is not continuously differentiable. This seems to imply that one
may not be able to get quadratic convergence when Newton’s method is applied to
the unconstrained convex optimization problem (15). As a matter of fact, the classical
Newton’s method is invalid in this situation as the Hessian of θ(·) at some points may
not exist at all. Fortunately, the recent study conducted by Qi and Sun [22] for the
nearest correlation matrix problem (8) indicates that one may still expect a quadrat-
ically converging Newton’s method by using the fact 	S p

+ is strongly semismooth
everywhere in S p , a key property proven by Sun and Sun [31] and extended by Chen,
Qi, and Tseng [8] to some more general matrix valued functions.

Denote

F(y) := ∇θ(y) = A	S p
+(X0 + A∗y) − b, y ∈ R

q . (22)

Since 	S p
+ is globally Lipschitz continuous with modulus 1, the mapping F is Lip-

schitz continuous on R
q . According to Redemacher’s Theorem [29, Sect. 9.J], F is

differentiable almost everywhere on R
q . We let

DF := {y ∈ R
q | F is differentiable at y}.

Let F ′(x) denote the Jacobian of F at y ∈ DF . The B-subdifferential of F at y ∈ R
q ,

a name coined by Qi [23], is then defined by

∂BF(y) := {V ∈ R
q×q | V is an accumulation point of F ′(yk), yk → y, yk ∈ DF }.
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The generalized Jacobian in the sense of Clarke [9] is the convex hull of ∂BF(y), i.e.,

∂F (y) = conv ∂BF(y).

If F is strictly differentiable at y, Clarke’s generalized Jacobian of F at y reduces to
the classical Jacobian of F at y, i.e., ∂F (y) = {F ′(y)}. The generalized Hessian of θ

at y ∈ R
q is defined as

∂2θ(y) := ∂F (y).

Define

̂∂2θ(y) := A ∂	S p
+(X0 + A∗y)A∗, y ∈ R

q .

By Clarke [9, Page 75], we know from (22) that for y ∈ R
q and d ∈ R

q ,

∂2θ(y)d ⊆̂∂2θ(y)d,

which implies that if every element in ̂∂2θ(y) is positive definite, then so is every
element in ∂2θ(y).

Given the above preparations, we can extend directly the generalized Newton
method developed in [22] from the nearest correlation problem (8) to problem (15)
with ∂2θ(·) being replaced bŷ∂2θ(·).

Algorithm 3.1 (Newton’s Method)

Step 0. Given y0 ∈ R
q , η ∈ (0,1), μ ∈ (0,1), and ρ ∈ (0,1/2). k := 0.

Step 1. Select an element Vk ∈ ̂∂2θ(yk) and apply the conjugate gradient (CG)
method of Hestenes and Stiefel [14] to find an approximate solution dk to

∇θ(yk) + Vkd = 0 (23)

such that

‖∇θ(yk) + Vkd
k‖ ≤ ηk‖∇θ(yk)‖, (24)

where ηk := min{η,‖∇θ(yk)‖}. If (24) is not achievable or if the condition

∇θ(yk)T dk ≤ −ηk‖dk‖2 (25)

is not satisfied, let dk := −B−1
k ∇θ(yk), where Bk is any symmetric positive

definite matrix in S q .
Step 2. Let jk be the smallest nonnegative integer j such that

θ(yk + ρjdk) − θ(yk) ≤ μρj∇θ(yk)T dk.

Set tk := ρjk and yk+1 := yk + tkd
k .

Step 3. Replace k by k + 1 and go to Step 1.

The implementation of Algorithm 3.1 heavily hinges on the availability of comput-
ing an element from the set̂∂2θ(yk) for all k. Thanks to recent progress on variational
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analysis of the metric projector 	S p
+ , the set ̂∂2θ(yk) can be completely character-

ized. See Appendix A for a detailed account. On the theoretical side of Algorithm 3.1,
by Qi and Sun [22] and Bai, Chu, and Sun [4], we readily have the following conver-
gence results.

Theorem 3.2 Assume that both {‖Bk‖} and {‖B−1
k ‖} in Algorithm 3.1 are uniformly

bounded. Then, an infinite sequence {yk} is generated by Algorithm 3.1 and any ac-
cumulation point y∗ of {yk} is a solution to the unconstrained convex optimization
problem (15). Furthermore, if every element in̂∂2θ(y∗) is positive definite at any ac-
cumulation point y∗ of {yk}, then the whole sequence {yk} converges quadratically
to the unique solution y∗ of (15).

Note that if the generalized Slater condition (20) holds (which is true for our cor-
relation stress testing problems), then the infinite sequence {yk} generated by Al-
gorithm 3.1 is guaranteed to be bounded and thus has at least one accumulation
point y∗ which solves problem (15). In Theorem 3.2, the crucial condition for obtain-
ing the quadratic convergence of {yk} is on the positive definiteness of every element
in ̂∂2θ(y∗). Actually, in proof of this theorem one important hidden condition has
also been used: the strong semismoothness of the metric projector 	S p

+ . However,
as mentioned earlier, this has already been settled by Sun and Sun [31]. So, in the
subsequent analysis, we shall mainly focus on checking the positive definiteness of
all elements in̂∂2θ(y∗).

3.2 Local correlation stress testing

Recall that for this case (B, c) is given by (2). We shall make use of the special
structure of B. Let X have the conformal structure of C as

X =
(

X1 X2

XT
2 X3

)

with X1 ∈ S m. For the sake of simplicity and for this subsection only, we let τ = 0.
The argument below carries through for τ > 0 with minor modifications.

It is easy to see that problem (9) (now assuming τ = 0) has the following equiva-
lent formation:

min
1

2
‖X − ̂C‖2

s.t. (X3)ii = 1, i = 1, . . . , n − m,

X =
(

C1 C2

CT
2 X3

)

∈ S n+

⇐⇒

min
1

2
‖X3 − ̂C3‖2

s.t. (X3)ii = 1, i = 1, . . . , n − m,

X =
(

C1 C2

CT
2 X3

)

∈ S n+.

(26)
Note that C is assumed to be positive definite. Therefore, X ∈ S n+ if and only if the
Schur complement (X3 − CT

2 C−1
1 C2) of C1 in X is positive semidefinite. This leads
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to the following equivalent problem of (26):

min
1

2
‖X3 − ̂C3‖2

s.t. (X3)ii = 1, i = 1, . . . , n − m,

(X3 − CT
2 C−1

1 C2) ∈ S n−m+ .

(27)

Let Y := X3 − CT
2 C−1

1 C2. Then problem (27) becomes

min
1

2
‖Y − (̂C3 − CT

2 C−1
1 C2)‖2

s.t. Yii = 1 − di, i = 1, . . . , n − m,

Y ∈ S n−m+ ,

(28)

where d := diag(CT
2 C−1

1 C2). We have

Proposition 3.3 It holds that di < 1, i = 1, . . . , n − m.

Proof From

C =
(

C1 C2

CT
2 C3

)

� 0,

we know that the Schur complement

C3 − CT
2 C−1

1 C2 � 0.

Thus, we have for each i ∈ {1, . . . , n − m} that

0 < (C3 − CT
2 C−1

1 C2)ii = (C3)ii − (CT
2 C−1

1 C2)ii = 1 − di,

which completes the proof. �

Problem (28) is of the type of the nearest correlation matrix problem (8) with a
reduced dimension of (n − m) and the diagonal entries of Y being positive numbers
instead of being all ones. This type of problem can be quite efficiently solved by
Algorithm 3.1 as shown by Qi and Sun [22]. Note that for problem (28), the gener-
alized Slater condition holds and that all elements in the corresponding set ̂∂θ(y∗)
(= ∂θ(y∗) in this case) at any solution y∗ to the dual problem are positive definite
(Qi and Sun [22]). Therefore, we can obtain that when Algorithm 3.1 is applied to the
dual of problem (28), the infinitely generated sequence {yk} converges quadratically.

Once the optimal solution Y ∗ of problem (28) is found, the optimal solution X∗
of the local correlation stress testing problem (26) can be recovered by

X∗ :=
(

C1 C2

CT
2 Y ∗ + CT

2 C−1
1 C2

)

.
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3.3 The band correlation stress testing

Recall that for this case (B, c) is given by (3) and any replacement matrix X has to
satisfy the following constraint:

X =
(

C1 X2

XT
2 X3

)

� 0.

Therefore, the Schur complement decomposition technique cannot be applied to this
constraint as X2 is no longer fixed.

Let A1 : S n �→ R
n and A2 : S n �→ R

κ be defined by (6). Then, we have

A∗
1(x) = Diag(x) for x ∈ R

n and A∗
2(z) = 1

2

∑

(i,j)∈B
zij (E

ij +Eji) for z ∈ R
κ .

(29)
Define A : S n → R

n+κ by

A(X) :=
[

A1(X)

A2(X)

]

, X ∈ S n. (30)

Then, obviously, A : S n → R
(n+κ) is surjective. The adjoint of A takes the following

form

A∗(y) = A∗
1(x) + A∗

2(z), y ≡ (x, z) ∈ R
n × R

κ . (31)

For any τ ∈ [0,1), let bτ = ((1 − τ)eT , cT )T . Then problem (10) can be written as

min
1

2
‖Y − (̂C − τI )‖2

s.t. A(y) = bτ ,

Y ∈ S n+,

(32)

which is a special case of problem (13). Here, we allow τ = 0 in order to include
problem (7).

For any X ∈ S n, denote X+ ≡ 	S n+(X). Thus, by Sect. 3.1, we know that the
unconstrained dual problem of (32) turns to be

min θτ (y)

s.t. y ∈ R
n+κ ,

(33)

where

θτ (y) = 1

2
‖((̂C − τI ) + A∗(y))+‖2 − bT

τ y − 1

2
‖̂C − τI‖2, y ∈ R

n+κ .

Let τ ∈ [0, λmin(C)). By using the facts that C is positive definite and A : S n →
R

(n+κ) is onto, we know that the generalized Slater condition (20) for problem (32)
holds. Thus, Algorithm 3.1 will generate a bounded sequence {yk} when it is applied
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to problem (33). Let y∗ be an accumulation point of {yk}. We shall next establish the
quadratic convergence of {yk} by showing that all elements in ̂∂θτ (y

∗) are positive
definite.

Proposition 3.4 Assume that τ ∈ [0, λmin(C)). Let y∗ ∈ R
n+κ be an optimal solution

to problem (33). Then any element in̂∂2θτ (y
∗) is symmetric and positive definite.

Proof See Appendix B. �

Now we are ready to present our convergence result for solving (33).

Theorem 3.5 Assume that τ ∈ [0, λmin(C)). Let the sequence {yk} be generated by
Algorithm 3.1 applied to the unconstrained dual convex optimization problem (33).
If both {‖Bk‖} and {‖B−1

k ‖} in Algorithm 3.1 are uniformly bounded, then the whole
sequence {yk} converges to the unique solution of (33) quadratically.

Proof First, by Theorem 3.2 and the fact that the generalized Slater’s condition (20)
for problem (32) holds, we know that {yk} is bounded, which implies that {yk} has
at least one accumulation point, say y∗. This point also must be an optimal solution
to problem (33). Therefore, from Proposition 3.4 and Theorem 3.2, we conclude that
the whole sequence {yk} converges to y∗ quadratically. �

We make a few remarks regarding using Algorithm 3.1.

(R1) The matrix ̂C can be any symmetric matrix. It may have nothing to do with the
current correlation matrix C. The resulting optimal solution is just the nearest
correlation matrix to ̂C satisfying the constraints involved.

(R2) For the Newton method to converge quadratically, C does not have to be pos-
itive definite. What we really need in the proof of, say, Proposition 3.4, is that
the leading m × m principle submatrix of C is positive definite. The matrix C

being positive definite is merely a nice sufficient condition. This observation
allows us to consider more general situations. For example, B may take the
“rectangular” form

B := {(i, j) | i = 1, . . . ,m, j = i + 1, . . . ,m1}
for any m1 ≥ m. Such an index set B simply means that we fix the corre-
lations contained in the rectangular submatrix Cαβ with α := {1, . . . ,m} and
β := {1, . . . ,m1}.

The proof of Proposition 3.4 can readily be extended to cover the rectangular
case. The proof, instead of using the positive definiteness of the leading m × m

principal submatrix of C, now uses the positive definiteness of all the (m+1)×
(m + 1) principal submatrices of the form Cα̃α̃ with

α̃ := {1,2, . . . ,m} ∪ {j} and m ≤ j ≤ m1.

Furthermore, the fixed elements may not even form a block of submatrix
(refer to the 5-factor example in the numerical experiment section). We may
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explore it further to state sufficient conditions ensuring the quadratic conver-
gence for this case, but it would be more involved.

(R3) If the sequence {yk} generated by the Newton method converges to y∗ quadrat-
ically, then the corresponding matrix sequence {Y k} defined by

Y k = ((̂C − τI ) + A∗(yk))+

converges to the solution Y ∗ = ((̂C − τI ) + A∗(y∗))+ and satisfies

‖Y k+1 − Y ∗‖ = ‖((̂C − τI ) + A∗(yk+1))+ − ((̂C − τI ) + A∗(y∗))+‖
≤ ‖A∗(yk+1 − y∗)‖ = O(‖yk − y∗‖2),

where the non-expansion property of the projection operator has been used.

4 An augmented Lagrangian dual approach

Note that the dimension of the unknown vector in the Lagrangian dual function θτ (y)

in problem (33) is (n + κ(B)). When κ(B) is large, the unconstrained convex opti-
mization problem (33) is often costly to solve as it may need a large number of CG
iterations to solve an (n + κ(B)) × (n + κ(B)) linear equation at each step even it
is well-posed in theory. This computational consideration prompts us to study the
augmented Lagrangian method, which attempts to solve a sequence of unconstrained
convex optimization problems of lower dimensions.

Recall that problem (5) and its regularized version (9) can be uniformly written as

min
1

2
‖X − ̂C‖2

s.t. Xii = 1, i = 1, . . . , n,

Xij = cij , (i, j) ∈ B,

X − τI ∈ S n+,

(34)

where τ ∈ [0,1). Another way to look at problem (34), different from the Lagrangian
dual approach introduced in the last section, is to first eliminate all the fixed correla-
tions from the problem and then to solve the resulted problem of reduced dimension.
This is of particular interest when the number of fixed correlations is much larger
than the number of ones to be stressed.

This new way of looking at problem (34) leads to the development of the aug-
mented Lagrangian dual approach, which goes along the following line: After elim-
inating the fixed correlations in problem (34), we have its equivalent version (35),
whose Lagrangian dual (36) is no longer unconstrained. To get an unconstrained con-
vex problem, we study its augmented Lagrangian dual problem (43). The augmented
Lagrangian method is then applied to this problem. To address the fast convergence
of the method, we relate the iterate Y k+1 in (46) to the solution of the proximal-type
problem (47) so that Rockafellar’s classical result on the proximal method can be
applied. This saves us from giving a complete convergence analysis from scratch.
Below is the detailed account of the augmented Lagrangian dual approach.
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Let N denote the indices of those correlations not in B, i.e.,

N := {(i, j) | 1 ≤ i < j ≤ n} \ B.

Let κ̄ := κ̄(N ) be the number of indices in N . For the convenience of subsequent
discussions, we introduce a linear operator A : S n �→ R

κ̄ by

A(Y ) := x with xij = Yij for (i, j) ∈ N ,

where, as in Sect. 2, for any x ∈ R
κ̄ we write x ≡ (xij )(i,j)∈N to match the structure

of N . Let A∗ : R
κ̄ �→ S n be the adjoint of the linear operator A. Then for any x ∈ R

κ̄ ,
the symmetric matrix A∗

(x) takes the following form

[ A∗
(x)]ij =

⎧

⎪

⎨

⎪

⎩

0 if i = j,

0 if (i, j) ∈ B,

1
2xij if (i, j) ∈ N ,

1 ≤ i ≤ j ≤ n.

Denote the symmetric matrix A0 ∈ S n by

[A0]ij =

⎧

⎪

⎨

⎪

⎩

1 if i = j,

cij if (i, j) ∈ B,

0 if (i, j) ∈ N ,

1 ≤ i ≤ j ≤ n

and the vector ĉ ∈ R
κ̄ by

(ĉ)ij := ̂Cij , (i, j) ∈ N .

Then, in consideration of the fact that ̂Cij = Cij for all (i, j) ∈ B (i.e., the fixed
correlations in the target matrix), problem (34) becomes

min
1

2
‖x − ĉ‖2

s.t. Aτ + A∗
(x) ∈ S n+,

(35)

where we add “ 1
2 ” to the objective function for the sake of convenience and for any

τ ∈ [0,1), we write Aτ ≡ A0 − τI .
Let l0 : R

κ̄ × S n → R be the ordinary Lagrangian function for problem (35), i.e.,

l0(x,Y ) := 1

2
‖x − ĉ‖2 − 〈Y,Aτ + A∗

(x)〉, (x,Y ) ∈ R
κ̄ × S n.

Then, the Lagrangian dual of problem (35) is

max −
(

〈Y,Aτ + A∗
(ĉ)〉 + 1

2
‖A(Y )‖2

)

s.t. Y ∈ S n+,

(36)
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which is no longer an unconstrained problem as problem (33). The Karush-Kukn-
Tucker (KKT) conditions, i.e., the first order optimality conditions for problem (35),
are

{∇xl0(x,Y ) = x − ĉ − A(Y ) = 0,

S n+ � (Aτ + A∗
(x)) ⊥ Y ∈ S n+,

(37)

where “(Aτ + A∗
(x)) ⊥ Y ” means that the two matrices are orthogonal, i.e., 〈Aτ +

A∗
(x), Y 〉 = 0. Any point (x∗, Y ∗) ∈ R

κ̄ × S n satisfying (37) is called a KKT point.
By using the fact that S n+ is a self-dual cone, we know from Eaves [11] that (x∗, Y ∗) ∈
R

κ̄ × S n satisfying (37) if and only if (x∗, Y ∗) is a solution to the following system
of nonsmooth equations

Fτ (x,Y ) ≡
[

x − ĉ − A(Y )

Y − [Y − (Aτ + A∗
(x))]+

]

=
[

0
0

]

, (x,Y ) ∈ R
κ̄ × S n.

Next, we shall study the existence (and uniqueness) of a KKT point (x∗, Y ∗) ∈
R

κ̄ × S n and the local Lipschitz invertibility of Fτ near (x∗, Y ∗). Denote

gτ (x) ≡ Aτ + A∗
(x), x ∈ R

κ̄ .

Assume that τ ∈ [0, λmin(C)). Then, since the objective function in problem (35) is
strongly convex and the feasible set is nonempty (e.g., C itself is a feasible solution),
problem (35) has a unique optimal solution x∗. Furthermore,

X∗ := gτ (x
∗) + τI

is the unique optimal solution to (34), and hence

Y ∗ := gτ (x
∗) (38)

is the optimal solution of (10).
Let TS n+(gτ (x

∗)) denote the tangent cone of S n+ at gτ (x
∗) in the sense of convex

analysis. We use lin (TS n+(gτ (x
∗))) to denote the largest linear space contained in

TS n+(gτ (x
∗)). Then, we have the following useful result.

Lemma 4.1 Assume that τ ∈ [0, λmin(C)). Then the following constraint nondegen-
erate condition holds at x∗:

A∗
(Rκ̄ ) + lin (TS n+(gτ (x

∗))) = S n. (39)

Proof See Appendix C. �

Lemma 4.1 implies that there exists a unique Y ∗ ∈ S n+ such that (x∗, Y ∗) is the
unique KKT point satisfying (37). See Bonnans and Shapiro [6] for a general discus-
sion on this. Then, we can obtain the local Lipschitz invertibility of Fτ near (x∗, Y ∗).
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Proposition 4.2 Assume that τ ∈ [0, λmin(C)). Then there exist a neighborhood O
of (x∗, Y ∗) in R

κ̄ × S n and a constant ν > 0 such that

‖Fτ (x,Y ) − Fτ (x̃,˜Y)‖ ≥ ν−1‖(x,Y ) − (x̃,˜Y)‖ ∀(x,Y ) and (x̃,˜Y ) ∈ O.

Proof This follows directly from the strong convexity of the objective function
in (35), Lemma 4.1, and [30, Theorem 4.1]. �

Now, we are ready to introduce the augmented Lagrangian dual approach for solv-
ing problem (35). Let σ > 0. The augmented Lagrangian function for problem (35)
is

Lσ (x,Y ) := 1

2
‖x − ĉ‖2 + 1

2σ
{‖(Y − σgτ (x))+‖2 − ‖Y‖2}, (x,Y ) ∈ R

κ̄ × S n.

(40)
Strictly speaking, the augmented Lagrangian function Lσ should also depend on the
prescribed constant τ . We drop this dependence as it can be seen clearly from the con-
text. Here, we will omit the details on deriving this augmented Lagrangian function
as excellent discussions on augmented Lagrangian functions for general optimization
problems can be found easily in the literature, e.g., Sect. 11.K in Rockafellar and
Wets [29]. For any Y ∈ S n, the augmented Lagrangian function Lσ (·, Y ) is strongly
convex in x and continuously differentiable with

∇x(Lσ )(x,Y ) = x − ĉ − A(Y − σgτ (x))+, x ∈ R
κ̄ . (41)

For any Y ∈ R
κ̄ , let xσ (Y ) be the unique optimal solution to

min Lσ (x,Y )

s.t. x ∈ R
κ̄ .

(42)

The augmented Lagrangian dual problem then takes the following form

max −ϑσ (Y )

s.t. Y ∈ S n,
(43)

where ϑσ : S n → R is defined by

ϑσ (Y ) := −Lσ (xσ (Y ),Y ), Y ∈ S n. (44)

The function ϑσ (·) is a continuously differentiable convex function in S n with

∇(ϑσ )(Y ) := σ−1[Y − (Y − σgτ (xσ (Y )))+], Y ∈ S n. (45)

Note that both ϑσ (Y ) and ∇(ϑσ )(Y ) depend implicitly on the unique optimal solution
xσ (Y ) to problem (42). While for each Y ∈ S n, the computation of xσ (Y ) can be
obtained by applying the quadratically convergent Newton’s method–Algorithm 3.1
to (42) directly, it is not clear immediately if Algorithm 3.1 can be applied to solve
the augmented Lagrangian dual problem (43). However, recent research conducted
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by Sun, Sun, and Zhang [32] reveals that when σ is sufficiently large, the augmented
Lagrangian method in the context of general nonlinear semidefinite programming
problems including problem (43) can be locally treated as an approximate version of
Algorithm 3.1. The augmented Lagrangian method for solving problem (43) can be
stated as follows.

Algorithm 4.3 (An Augmented Lagrangian Method)

Step 0. Given σ0 > 0. Let x0 ∈ R
κ̄ be arbitrary and Y 0 ∈ S n+ be the initial estimated

Lagrangian multiplier. k := 0.
Step 1. Let θk(·) ≡ Lσ (·, Y k). Define

̂∂2θk(x) := I + σ A∂	S n+(Y k − σgτ (x))A∗
, x ∈ R

κ̄ .

Compute xk+1 = xσk
(Y k) by applying Algorithm 3.1 to problem (42) for

Y = Y k , i.e.,

min θk(x)

s.t. x ∈ R
κ̄ ,

with the starting point xk .
Step 2. Compute Y k+1 by

Y k+1 := (Y k − σkgτ (x
k+1))+ (46)

and update σk to σk+1 ≥ σk .
Step 3. Replace k by k + 1 and go to Step 1.

Comparing (46) with (45), we can see that at the kth iteration of Algorithm 4.3:

Y k+1 = Y k − σk∇(ϑσk
)(Y k) = Y k − Y k + (Y k − σkgτ (x

k+1))+
= (Y k − σkgτ (x

k+1))+,

which implies that Algorithm 4.3 is a gradient descent method of steplength σk at the
kth iteration. This suggests that Algorithm 4.3 may converge very slowly. However,
as we mentioned earlier, locally Algorithm 4.3 can be treated as a kind of approximate
generalized Newton’s method. So good convergence may still be expectable. In fact,
from [28, Proposition 6],7 we know that Y k+1 is the unique optimal solution to the
following “proximal-type” problem centered at Y k :

max −
(

〈Y,Aτ + A∗
(ĉ)〉 + 1

2
‖A(Y )‖2 + 1

2σk

‖Y − Y k‖2
)

s.t. Y ∈ S n+,

(47)

which implies that Algorithm 4.3 is a proximal point algorithm applied to the La-
grangian dual problem (36). This connection allows us to use the convergence theory

7One needs to slightly modify the proof given by Rockafellar for nonlinear convex programming to include
the problem discussed here.
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developed by Rockafellar [27, 28] for proximal point methods for maximal monotone
operators.

Theorem 4.4 8 Assume that τ ∈ [0, λmin(C)). Let {Y k} be a sequence generated by
Algorithm 4.3 with limk→∞ σk = σ∞ < +∞. Then, {Y k} converges to Y ∗. Further-
more, let ν > 0 be the constant obtained in Proposition 4.2. Then for all k sufficiently
large,

‖Y k+1 − Y ∗‖ ≤ ak‖Y k − Y ∗‖,
where

ak := ν
√

ν2 + σ 2
k

→ a∞ = ν
√

ν2 + σ 2∞
< 1. (48)

Proof This is a direct application of [27, Theorem 2] (also cf. [28, Theorem 5]) and
Proposition 4.2. �

We conclude this section by making the following remarks about Algorithm 4.3.

(R1) The computation of xk+1 for Y = Y k in Step 1 of Algorithm 4.3 can be ob-
tained very rapidly by applying the quadratically convergent Algorithm 3.1 to
problem (42) with the starting point xk . This is particularly the case when xk

is not far away from the solution x∗. Note that there is no need to do one more
spectral decomposition to get Y k+1 in Step 2 as, from (41), it has already been
computed in Step 1 when xk+1 is computed.

(R2) From Theorem 4.4, (37), (41), and (46), we know that {xk} converges to x∗
with

‖xk+1 − x∗‖ = ‖A(Y k+1 − Y ∗)‖ ≤ ak‖Y k − Y ∗‖,
where ak is defined in (48).

5 Numerical experiments

In this section, we report our numerical experiments conducted for the correlation
stress testing problem carried out in MATLAB 7.1 running on a PC Intel Pentium IV
of 2.40 GHz CPU.

Our first numerical experiment is to test some examples of small scales available
in the literature. These examples include: a 7-factor example in Finger [13], a 4-factor
example in Turkay, Epperlein, and Christofides [34], a 12-factor example in Rebon-
ato and Jäckel [25], and a 5-factor example in Bhansali and Wise [5]. For all these

8Theoretically speaking, in order to make Algorithm 4.3 practical, one should consider the case that

xk+1 ≈ xσk
(Y k) instead of xk+1 = xσk

(Y k). However, from computational point of view, this consid-
eration is not of vital importance when the quadratically convergent Algorithm 3.1 is applied to solving
problem (42).
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examples, Newton’s method–Algorithm 3.1 found better solutions. Instead of list-
ing all these numerical results, we just use the 5-factor example [5] to illustrate the
performance of Algorithm 3.1.

In the 5-factor example in [5], the target matrix ̂C is given by

̂C =

⎛

⎜

⎜

⎜

⎜

⎝

1 −0.50 −0.30 −0.25 −0.70
1 0.90 0.30 0.70

1 0.25 0.20
1 0.75

1

⎞

⎟

⎟

⎟

⎟

⎠

.

The confidence matrix of (7) in [5] indicates that the managers are highly confident
that correlations in the boldface font, i.e., ̂C12, ̂C14, ̂C15, and ̂C23, are accurately esti-
mated and want to keep those correlations unchanged. This means for this example

B = {(1,2), (1,4), (1,5), (2,3)}.
Algorithm 3.1 (with τ = 0 as the current correlation matrix is not available) found
the following nearest correlation matrix

C∗ =

⎛

⎜

⎜

⎜

⎜

⎝

1.0000 −0.5000 −0.2830 −0.2500 −0.7000
1.0000 0.9000 0.3391 0.6134

1.0000 0.2179 0.2710
1.0000 0.7198

1.0000

⎞

⎟

⎟

⎟

⎟

⎠

.

The sum of the squared difference between the target matrix ̂C and the optimally cali-
brated correlation matrix C∗ is ‖C∗ − ̂C‖2 = 0.0326, which is much smaller than the
corresponding sum of the squared difference 1.0343 between ̂C and the correlation
matrix found in (7) of [5]. This also indicates that the hyperspherical decomposition
method employed in [5] may not be able to produce an optimal correlation matrix.

Our next experiment is to test the capabilities of our algorithms on two relatively
large scale examples. The first is a 387 × 387 correlation matrix case taken from the
database of the RiskMetrics and the second one is randomly generated with n = 1,000
and 1,500, respectively.

Example 5.1 The current matrix C is the 387 × 387 1-day correlation matrix (as
of June 15, 2006) from the lagged datasets of RiskMetrics (www.riskmetrics.com/
stddownload_edu.html). The publicly available 25-day and the regulatory correlation
matrices were also tested. The numerical performance9 of our algorithms for the two
matrices was similar to the 1-day matrix and was thus not reported here.

Example 5.2 The current matrix C is a randomly generated correlation matrix by
using MATLAB’s built-in function randcorr. For the numerical testing purpose,

9The stress testing on the three matrices bears no physical meaning as to which correlations should be
justifiably stressed. Our purpose here is solely to test the capability of our algorithms handling real and
large correlation matrices.

http://www.riskmetrics.com/stddownload_edu.html
http://www.riskmetrics.com/stddownload_edu.html
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the matrix C is deliberately generated to be ill-conditioned with very large and very
small eigenvalues.10

Note that the current correlation matrix C in Examples 5.1 and 5.2 needs to be
preprocessed in order to ensure that the calibrated optimal correlation matrix X∗ ≥ τI

(we take τ = 0.5×10−4 in our tests, but obviously allow other choices to be specified
by the users). Actually, the current matrix C in Example 5.1 contains small negative
eigenvalues and the current matrix C in Example 5.2 is very close to be singular.
For the local stress testing, we apply Algorithm 3.1 to the nearest correlation matrix
optimization problem (12) to get an updated positive definite matrix C ≥ τ0I (we
take τ0 = 1.0 × 10−4 as τ0 should be larger than τ ). For the band stress testing, we
apply Algorithm 3.1 to update only the top left m by m principal submatrix of C, i.e.,
C1, to ensure that the smallest eigenvalue of the updated C1 is at least τ0.

In our numerical experiments for Examples 5.1 and 5.2, the target correlation ma-
trix ̂C is stressed in the following way:

̂Cij :=
{

Cij if (i, j) ∈ B,

(1 − 0.1) × Cij + 0.1 × Gij if (i, j) /∈ B,

where G is a randomly generated real symmetric matrix satisfying Gij ∈ [−1,1] for
i 
= j and Gii = 1 for all i and j .

The initial parameters used in our numerical tests are more or less quite standard.
More specifically,

• For Algorithm 3.1: η = 10−5, μ = 10−4, and ρ = 0.5. The stopping criterion is
‖∇θ(yk)‖ ≤ 10−6. The starting point is y0 = 0.

• For Algorithm 4.3: σ0 = 100 and σi = min{10σi−1,105} for i ≥ 1. The stop-
ping criterion is ‖Fτ (x

k+1, Y k)‖ ≤ 10−6 with τ = 0.5 × 10−4. The starting point
(x0, Y 0) is obtained by applying Algorithm 3.1 to the nearest correlation matrix
optimization problem (12).

We list our numerical results for Example 5.1 and Example 5.2 in Tables 1–4,
where It., Func., and Res. stand for the number of total linear equations solved, the
number of function evaluations, and the residual at the final iterate (‖∇θ(yk)‖ or
‖Fτ (x

k+1, Y k)‖), respectively. Moreover, in Tables 1 and 3, Test type indicates the
stress testing type: “Local” means the local stress testing and “Band” refers to the
band stress testing. The Levels in Tables 2 and 4 indicates the number of calls to
Algorithm 3.1 at Step 1 in Algorithm 4.3.

We make several observations about our numerical experiments in the following.

• The preprocessing step should be an integrated part of the stress testing as the cur-
rent correlation matrix may even fail to be positive semidefinite due to insufficient
historical data or numerical truncations. The quadratically convergent Newton’s
method–Algorithm 3.1 makes this step easy to implement.

10The following was used to generate the correlation matrix C: n1 = round(n/10);
d1 = rand(n1,1)/n; k =min(10, n-m); d3 = n*rand(k,1); d = rand(n,1);
d(1:n1) =d1; d(n-k+1:n,1)=d3; d = n*d/sum(d); C =gallery(’randcorr’,d);
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Table 1 Numerical results of
Example 5.1 for Algorithm 3.1 Test type m cputime Iter. Func. Res.

Local 5 44 s 12 13 1.0 × 10−8

Local 50 1 m 19 s 10 11 2.9 × 10−10

Local 100 1 m 43 s 15 18 2.4 × 10−9

Local 200 26 s 13 17 7.1 × 10−7

Local 300 18 s 28 52 2.7 × 10−8

Local 385 13 s 3 4 3.2 × 10−8

Band 5 22 s 6 7 1.4 × 10−7

Band 10 34 s 7 8 1.0 × 10−10

Band 20 53 s 7 8 1.8 × 10−7

Band 30 5 m 33 s 12 13 8.9 × 10−7

Band 40 11 m 25 s 14 15 6.9 × 10−9

Band 50 14 m 07 s 13 14 3.6 × 10−7

Band 100 1 h 08 m 31 s 14 15 3.5 × 10−9

Band 150 3 h 01 m 31 s 20 21 5.7 × 10−8

Table 2 Numerical results of
Example 5.1 for Algorithm 4.3 m Levels cputime Iter. Func. Res.

386 5 1 m 53 s 21 31 2.2 × 10−8

385 4 2 m 42 s 20 29 2.6 × 10−7

384 4 4 m 05 s 21 30 8.4 × 10−7

380 5 8 m 40 s 24 34 1.7 × 10−7

377 6 15 m 24 s 31 43 1.3 × 10−7

370 6 21 m 34 s 31 44 2.6 × 10−7

350 9 1 h 15 m 46 s 51 75 7.3 × 10−7

300 13 3 h 11 m 18 s 73 120 9.2 × 10−7

• The local stress testing problem can be solved quite efficiently, regardless the size
of m, by Algorithm 3.1.

• The band stress testing problem is more difficult to solve than the local stress test-
ing problem when m becomes larger. Algorithm 3.1 should be used to solve the
band stress testing problem with a relatively small m and Algorithm 4.3 is more
favorable when m is close to n.

• The randomly generated problem is relatively easier to solve than the problem from
the market data.

• The numerical results reported in Tables 1–4 indicate that our approach is highly
efficient. For examples, in Table 3 for the band stress testing with n = 1,500 and
m = 500, we need to solve at each step a linear equation of 125,250 unknowns and
in Table 4 for n = 1,500 and m = 1,200, we need to solve at each step a linear
equation of 405,850 unknowns.
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Table 3 Numerical results of Example 5.2 for Algorithm 3.1

Test type n m cputime Iter. Func. Res.

Local 1,000 5 7 m 34 s 6 7 2.4 × 10−9

Local 1,000 100 5 m 43 s 12 13 6.4 × 10−11

Local 1,000 500 1 m 40 s 11 14 3.0 × 10−7

Local 1,000 998 41 s 3 4 1.2 × 10−10

Local 1,500 5 34 m 08 s 6 7 1.4 × 10−7

Local 1,500 200 16 m 09 s 12 13 4.7 × 10−7

Local 1,500 750 6 m 06 s 12 13 2.1 × 10−7

Local 1,500 1,498 2 m 28 s 3 4 3.1 × 10−10

Band 1,000 5 2 m 55 s 5 6 8.6 × 10−9

Band 1,000 10 3 m 33 s 5 6 8.2 × 10−7

Band 1,000 20 3 m 40 s 5 6 5.4 × 10−7

Band 1,000 50 5 m 20 s 6 7 5.4 × 10−11

Band 1,000 100 5 m 55 s 6 7 5.8 × 10−11

Band 1,000 200 9 m 04 s 6 7 1.4 × 10−7

Band 1,000 300 12 m 55 s 7 8 2.1 × 10−10

Band 1,500 5 9 m 12 s 5 6 7.4 × 10−8

Band 1,500 50 18 m 02 s 6 7 6.2 × 10−9

Band 1,500 100 21 m 35 s 6 7 1.9 × 10−7

Band 1,500 250 36 m 04 s 7 8 1.6 × 10−10

Band 1,500 500 1 h 10 m 02 s 8 9 1.2 × 10−7

Table 4 Numerical results of Example 5.2 for Algorithm 4.3

n m Levels cputime Iter. Func. Res.

1,000 999 3 11 m 13 s 12 20 2.8 × 10−8

1,000 995 3 24 m 24 s 24 34 1.3 × 10−8

1,000 990 3 44 m 10 s 15 34 1.9 × 10−7

1,000 900 4 1 h 51 m 26 s 20 47 1.4 × 10−8

1,000 700 4 3 h 32 m 30 s 25 68 2.8 × 10−8

1,500 1,499 3 32 m 30 s 11 22 5.8 × 10−9

1,500 1,490 3 1 h 00 m 58 s 15 31 5.7 × 10−7

1,500 1,450 3 2 h 05 m 59 s 17 35 9.8 × 10−7

1,500 1,400 4 3 h 38 m 04 s 19 39 1.8 × 10−8

1,500 1,200 4 10 h 44 m 27 s 25 60 3.3 × 10−8

6 Conclusion

In this paper, we developed an unconstrained convex optimization approach for the
difficult correlation stress testing problem. The key for the success of our approach
strongly hinges on the efficiency of the quadratically convergent Newton method–
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Algorithm 3.1, which makes use of recently developed theory of strongly semismooth
matrix valued functions. We believe that the research conducted here can relieve
practitioners from being troubled by lack of efficient numerical algorithms and al-
low them to pay more attention to their financial models. On the other hand, the
methodology developed here is not confined to the correlation stress testing problem.
It can certainly be used to deal with similar problems where an improper covari-
ance/correlation matrix needs to be calibrated.

Appendix A: Characterizing the set ̂∂2θ(y)

There are two issues that have to be addressed before employing Algorithm 3.1:

(i) Calculating one element Vy ∈̂∂2θ(y) at an arbitrary point y; and
(ii) Characterizing the whole set̂∂2θ(y∗) at the solution point y∗.

The first issue is related to the practical implementation of Newton’s method where
in each step Vk is required; and the second issue is necessary to study the convergence
rate of the method by assessing the nonsingularity of every element in ̂∂2θ(y∗) (see
Theorem 3.2). We address the two issues separately below.

(i) Calculating one element Vy ∈ ̂∂2θ(y). Recall that F(·) = ∇θ(·) is defined
by (22), i.e.,

F(y) := ∇θ(y) = A	S p
+(X0 + A∗y) − b, y ∈ R.

For any given X ∈ S p
+, let λ(X) be the eigenvalue vector of X with its components

being arranged in the nonincreasing order, i.e., λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X). Let O
denote the set of all orthogonal matrices in R

p×p and OX be the set of orthornormal
eigenvectors of X defined by

OX := {P ∈ O| X = P Diag[λ(X)]P T }.
For simplicity, let

X(y) := X0 + A∗(y), λ(y) := λ(X(y)).

We further have the spectral decomposition

X(y) = P Diag(λ(y))P T , P ∈ OX(y).

Define three sets of indices associated with λ(y) by

α(y) := {i|λi(y) > 0},
β(y) := {i|λi(y) = 0},
γ (y) := {i|λi(y) < 0}.

When the dependence of those sets on y is clear from the context, y is often omitted
for simplicity. Let Wy : S p → S p be defined by

WyH = P(My ◦ (P T HP))P T ∀H ∈ S p, (49)
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where

My :=

⎛

⎜

⎜

⎜

⎝

Eαα Eαβ (νij )i∈α
j∈γ

Eβα 0 0

(νji)i∈α
j∈γ

0 0

⎞

⎟

⎟

⎟

⎠

, νij := λi(y)

λi(y) − λj (y)
, i ∈ α, j ∈ γ.

Since Wy ∈ ∂B	S p
+(X(y)) (cf. Pang, Sun, and Sun [21]), we obtain that

Vy := AMy A∗ ∈̂∂2θ(y).

Then, for any h ∈ R
q we have

Vyh = A(P (My ◦ (P T A∗(h)P )P T ). (50)

Note that there is no need to form the matrix Vy explicitly for our numerical imple-
mentation.

(ii) Characterization of the whole set ̂∂2θ(y). Define a set of symmetric matrices
at y by

My :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

M ∈ S p | M =

⎛

⎜

⎜

⎜

⎝

Eαα Eαβ (νij )i∈α
j∈γ

Eβα (ωij )i∈β
j∈β

0

(νji)i∈α
j∈γ

0 0

⎞

⎟

⎟

⎟

⎠

,

ωij = ωji ∈ [0,1]
for i, j ∈ β

νij = λi(y)/(λi(y) − λj (y))

for i ∈ α, j ∈ γ

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

.

We note that My is a compact set and 1 > νij > 0 for any M ∈ My . Then, from
Chen, Qi, and Teng [8] or Pang, Sun, and Sun [21], we obtain that

̂∂2θ(y)h ⊆ conv{A(W(A∗(h)))| W ∈ Wy} for any h ∈ R
q, (51)

where Wy consists of all W : S p → S p such that

W(H) = P(M ◦ (P T HP))P T ∀H ∈ S p

for some P ∈ OX(y) and M ∈ My .
We now specify the two characterizations to the problems we have encountered in

the Lagrangian dual approach and the augmented Lagrangian dual approach respec-
tively.

(iii) Specialization to problem (33). In the Lagrangian dual approach, θ takes the
form θτ in (33). The corresponding F is given by

F(y) = A((̂C − τI ) + A∗(y))+ − bτ ,
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where

A =
(

A1

A2

)

and A∗(y) = A∗
1(x) + A∗

2(z) for y = (x, z) ∈ R
n × R

κ .

The matrix Vy can be characterized via the formula (50) with λ(y) being the eigen-
values of the matrix ((̂C − τI ) + A∗(y)) of having the spectral decomposition:

((̂C − τI ) + A∗(y)) = P Diag(λ(y))P, P ∈ O((̂C−τI)+A∗(y)).

In the formula, α, β , and γ are respectively the set of indices of positive, zero, and
negative eigenvalues of ((̂C − τI )+ A∗(y)). Moreover,̂∂2θτ (y) is also characterized
in using the same spectral decomposition.

(iv) Specialization to problem (42). In the augmented Lagrangian dual approach
(see Algorithm 4.3), when Algorithm 3.1 was applied to problem (42), θ takes the
form Lσ (x,Y ) defined in (40) with x being a variable and Y being fixed. In this case
(see also (41))

∇θ(x) = ∇xLσ (x,Y ) = x − ĉ − A(Y − σgτ (x))+, x ∈ R
κ̄ .

As we just did for calculating Vy , we can calculate a matrix Vx ∈̂∂2θ(x) by the
following formula

Vxh = h + σ A(P (Mx ◦ (P T A∗
(h)P )P T ), h ∈ R

κ̄ (52)

with

Mx :=

⎛

⎜

⎜

⎜

⎝

Eαα Eαβ (νij )i∈α
j∈γ

Eβα 0 0

(νji)i∈α
j∈γ

0 0

⎞

⎟

⎟

⎟

⎠

, νij := λi(x)

λi(x) − λj (x)
, i ∈ α, j ∈ γ,

where λ(x) is the eigenvalue vector of the matrix
(

Y −σgτ (x)
)

of having the spectral
decomposition:

Y − σgτ (x) = P Diag(λ(x))P, P ∈ O(Y−σgτ (x)).

In the formula, α, β , and γ are respectively the set of indices of positive, zero, and
negative eigenvalues of (Y − σgτ (x)).

Notice that in this case, due to the form of ∇θ(x), any matrix in ̂∂2θ(x) has two
parts with the first being the identity matrix I and the second being a positive semi-
definite matrix (e.g., see Vx ). Therefore, any matrix in̂∂2θ(x) is always positive def-
inite. Consequently, Algorithm 3.1 is always quadratically convergent when applied
to problem (42).

Appendix B: Proof of Proposition 3.4

We first need a technical lemma.
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Lemma 6.1 Let Y ∗ be the optimal solution of problem (10) so that X∗ = Y ∗ + τI is
the optimal solution of problem (9). Suppose Y ∗ has r positive eigenvalues and has
the following spectral decomposition:

Y ∗ = P Diag(λ∗
1, . . . , λ

∗
r ,0 . . . ,0)P, P ∈ OY ∗ .

Let P = [P1,P2], where P1 ∈ R
n×r and P2 ∈ R

n×(n−r) respectively denote the first r

columns and the last (n − r) columns of P . For any matrix Z ∈ S n of the form

Z =
(

Z1 0
0 Diag(xm+1, . . . , xn)

)

, Z1 ∈ S m,xm+1, . . . , xn ∈ R (53)

satisfying the condition

P T
1 Z = 0,

we have Z = 0.

Proof The explicit form of Y ∗ in terms of the eigenvectors in P and the positive
eigenvalues λ∗

1, . . . , λ
∗
r is

Y ∗ =
(

Y ∗
ij =

r
∑

�=1

(λ∗
�Pi�Pj�)

)

i,j=1,...,n

. (54)

The consequences of this explicit form, together with the fact that Y ∗ satisfies the
constraints in (10), are

Y ∗
ij =

r
∑

�=1

(λ∗
�Pi�Pj�) = Cij , ∀(i, j) ∈ B (55)

and

Y ∗
ii =

r
∑

�=1

(λ∗
�P

2
i�) = 1 − τ, ∀i = 1, . . . , n. (56)

Now suppose Z takes the form (53) and satisfies

� := P T
1 Z = P T

1

(

Z1 0
0 Diag(xm+1, . . . , xn)

)

= 0.

We prove Z = 0 in the following two cases.
Case 1. j > m. For this case we calculate

0 = �ij = xjPji = xjP
2
ji , i = 1, . . . , r.

Multiplying λ∗
i with �ij and summing over i = 1, . . . , r , we have

0 =
r

∑

i=1

(λ∗
i �ij )
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= xj

r
∑

i=1

(λ∗
i P

2
ji)

= xj (Y
∗
jj )

2 (by (56))

= (1 − τ)xj (notice 0 ≤ τ < 1).

This proves xj = 0 for j = m + 1, . . . , n.
Case 2. j ≤ m. For this case

0 = �ij =
m

∑

�=1

P�iZ�j , i = 1, . . . , r.

Therefore,

λ∗
i �

2
ij =

m
∑

�=1

λ∗
i Z

2
�jP

2
�i + 2

m−1
∑

�=1

m
∑

k=�+1

λ∗
i PkiP�iZkjZ�j .

Summing over the index i = 1, . . . , r gives

0 =
r

∑

i=1

λ∗
i �

2
ij =

m
∑

�=1

[

Z2
�j

(

r
∑

i=1

(λ∗
i P

2
�i)

)]

+ 2
m−1
∑

�=1

m
∑

k=�+1

[

ZkjZ�j

(

r
∑

i=1

(λ∗
i PkiP�i)

)]

=
m

∑

�=1

[Z2
�jY

∗
��] + 2

m−1
∑

�=1

m
∑

k=�+1

[ZkjZ�jY
∗
k�] (by (54))

=
m

∑

�=1

(1 − τ)Z2
�j + 2

m−1
∑

�=1

m
∑

k=�+1

[ZkjZ�j (C1)k�]

(by (3), (55), and (56))

= ZT·j (C1 − τI )Z·j (by (C1)�� = 1 − τ for � = 1, . . . ,m),

where Z·j denotes the j th column of Z1. Because 0 ≤ τλmin(C), we have τ <

λmin(C1), which implies (C1 − τI ) is positive definite. Therefore, Z·j = 0 for any
j ≤ m. This proves Z1 = 0.

Putting Case 1 and Case 2 together we have proved Z = 0. This completes the
proof. �

Proof of Proposition 3.4 Recall that y∗ is an optimal solution of (33). Denote

C∗ = (̂C − τI ) + A∗(y∗).



458 H. Qi, D.F. Sun

Suppose C∗ has the spectral decomposition

C∗ = P Diag(λ∗
1, . . . , λ

∗
r , λ

∗
r+1, . . . , λ

∗
n)P

T , P ∈ OC∗

and suppose it has r positive eigenvalues λ∗
1, . . . , λ

∗
r . Define

α∗ := {i | λ∗
i > 0, i = 1, . . . , n} = {1, . . . , r},

β∗ := {i | λ∗
i = 0, i = 1, . . . , n},

γ ∗ := {i | λ∗
i < 0, i = 1, . . . , n}.

It follows from the general formula (21) that the optimal solution Y ∗ of problem (10)
is given by

Y ∗ = P Diag(λ∗
1, . . . , λ

∗
r ,0, . . . ,0)P T , P ∈ OY ∗ .

Recall that (B, c) is given by (3). For a given point y = (x, z) ∈ R
n ×R

κ , it follows
from (29) and (31) of calculating A∗

1, A∗
2, and A∗ that

A∗(y) = A∗
1(x) + A∗

2(z) := Z =
(

Z1 0

0 Diag(xm+1, . . . , xn)

)

, (57)

where Z1 is defined by

(Z1)ij :=
⎧

⎨

⎩

0.5zij if j > i,

0.5zji if j < i,

xi if j = i,

i, j = 1, . . . ,m.

Suppose that V is an arbitrary element in ̂∂2θτ (y
∗). We need to prove that V is

nonsingular. Suppose there exists y = (x, z) ∈ R
n+κ such that

V (y) = 0. (58)

We need to show y = 0 in order to establish the nonsingularity of V . Now we suppose
that (58) holds. It then follows from the inclusion relation (51) (see (iii) in Appen-
dix A for the application of (51) to function θτ in (33)) that there exists a matrix
M ∈ My∗ such that

V (y) = A(P (M ◦ (P T HP))P T ) with H := A∗
1(x) + A∗

2(z), (59)

and M is given by

M =

⎛

⎜

⎜

⎜

⎝

Eα∗α∗ Eα∗β∗ (νij )i∈α∗
j∈γ ∗

Eβ∗α∗ (ωij )i∈β∗
j∈β∗

0

(νji)i∈α∗
j∈γ ∗

0 0

⎞

⎟

⎟

⎟

⎠

,

for some ωij = ωji ∈ [0,1],
for i, j ∈ β

νij = λ∗
i /(λ

∗
i − λ∗

j )

for i ∈ α∗, j ∈ γ ∗.
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Note that the matrix P in the above equation is the one that yields the spectral de-
composition of (̂C − τI ) + A∗(y∗). We then have

〈y,V (y)〉 = 〈y, A(P (M ◦ (P T HP))P T )〉
= 〈A∗(y),P (M ◦ (P T HP))P T 〉 (by definition of the adjoint)

= 〈P T (A∗(y))P,M ◦ (P T HP)〉 (by the property of trace)

= 〈P T HP,M ◦ (P T HP)〉 (by A∗(y) = A∗
1(x) + A∗

2(z)).

Let H̃ := P T HP . Then by the Hardmard product we have

〈y,V (y)〉 = 〈H̃ ,M ◦ H̃ 〉

≥
∑

i∈α∗

(

∑

j∈α∗∪β∗
H̃ 2

ij +
∑

j∈γ ∗
νij H̃

2
ij

)

≥ ν

r
∑

i=1

n
∑

j=1

H̃ 2
ij ,

where ν := mini∈α∗,j∈γ ∗ νij > 0.
By assumption (58) we have

H̃ij = 0 ∀i = 1, . . . , r and j = 1, . . . , n.

This means that the first r rows of H̃ are zero, which, by recalling P = [P1,P2],
implies

P T
1 HP = 0. (60)

Since P is nonsingular, this equation, together with (57) and (59), means

� := P T
1 H = P T

1 (A∗
1(x) + A∗

2(z)) = P T
1

(

Z1 0

0 Diag(xm+1, . . . , xn)

)

= 0. (61)

Now the result in Lemma 6.1 implies that Z1 = 0 and xj = 0 for all j = m+1, . . . , n.
By the way Z is defined, we know that x = (y, z) = 0. Hence V is nonsingular. The
proof is completed. �

Appendix C: Proof of Lemma 4.1

Proof Recall that gτ (x
∗) is positive semidefinite. We assume that it has r positive

eigenvalues and it has the following spectral decomposition:

gτ (x
∗) = P Diag(λ1, . . . , λr ,0, . . . ,0)P T , P ∈ Ogτ (x∗).
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It is also known from (38) that Y ∗ = gτ (x
∗) is the optimal solution of (10). Therefore,

Lemma 6.1 applies to the eigenvector matrix P in the above decomposition.
The largest linear space lin(TS n+(gτ (x

∗))) contained in the tangent cone of S n+ at
gτ (x

∗) is given by (cf. Arnold [3]):

lin(TS n+(gτ (x
∗))) :=

{

P

(

U V

V T 0

)

P T : U ∈ S r , V ∈ R
r×(n−r)

}

.

Our first observation is that the set A∗
(Rκ̄ ) has the following characterization:

A∗
(Rκ̄ ) =

{

X ∈ S n
∣

∣

∣

〈Eij + Eji,X〉 = 0, for all (i, j) ∈ B
〈Eii,X〉 = 0, i = 1, . . . , n

}

.

That is, A∗
(Rκ̄ ) is the intersection of the null spaces of Eij , ((i, j) ∈ B) and Eii ,

i = 1, . . . , n under the standard trace inner product.
Using this observation and the structure of lin(TS n+(gτ (x

∗))), it follows from a re-
sult [2, Theorem 1] that the constraint nondegeneracy (i.e., the primal nondegeneracy
in Alizadeh, Haeberly, and Overton [2]) holds if and only if the matrices

Bij :=
(

P T
1 AijP1 P T

1 AijP2

P T
2 AijP1 0

)

,
Aij = 0.5(Eij + Eji),

for (i, j) ∈ B and i = j = 1, . . . , n

are linearly independent.
We now prove the linear independence of those Bij . Suppose there exist y ∈ R

n

and z ∈ R
κ (recall κ = κ(B)) such that

n
∑

i=1

yiB
ii +

∑

(i,j)∈B
zijB

ij = 0. (62)

We want to prove y = 0 and z = 0. Taking into account of the special structure of
Eij ’s, it is easy to see (62) is equivalent to

(

P T
1 Diag(y)P1 P T

1 Diag(y)P2

P T
2 Diag(y)P1 0

)

+
(

P T
1 �P1 P T

1 �P2

P T
2 �P1 0

)

= 0,

where

� := 0.5
∑

(i,j)∈B
(zijE

ij + zijE
ji).

Due to the symmetry, the above equation is equivalent to the first r-rows being zeros,
i.e.,

P T
1 Diag(y)P + P T

1 �P = P T
1 (Diag(y) + �) = 0.

Note that the matrix (Diag(y) + �) has the exact structure of the matrix Z defined
in (53) when (B, c) is given by (3). Then Lemma 6.1 implies y = 0 and � = 0, which
in turn implies z = 0. This proves that the constraint nondegeneracy holds. �
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As discussed in Remark R2 in Sect. 3, the constraint nondegeneracy property can
be extended to other general cases including the rectangular B. Consequently, the
augmented Lagrangian method applies to stress testing in those general cases.

References

1. Alexander, C.: Market Models: A Guide to Financial Data Analysis. Wiley, New York (2001)
2. Alizadeh, F., Haeberly, J.-P.A., Overton, M.L.: Complementarity and nondegeneracy in semidefinite

programming. Math. Program. 77, 111–128 (1997)
3. Arnold, V.I.: On matrices depending on parameters. Rus. Math. Surv. 26, 29–43 (1971)
4. Bai, Z.-J., Chu, D., Sun, D.F.: A dual optimization approach to inverse quadratic eigenvalue problems

with partial eigenstructure. SIAM J. Sci. Comput. 29, 2531–2561 (2007)
5. Bhansali, V., Wise, B.: Forecasting portfolio risk in normal and stressed market. J. Risk 4(1), 91–106

(2001)
6. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York

(2000)
7. Boyd, S., Xiao, L.: Least-squares covariance matrix adjustment. SIAM J. Matrix Anal. Appl. 27,

532–546 (2005)
8. Chen, X., Qi, H.D., Tseng, P.: Analysis of nonsmooth symmetric matrix valued functions with appli-

cations to semidefinite complementarity problems. SIAM J. Optim. 13, 960–985 (2003)
9. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

10. Dash, J.W.: Quantitative Finance and Risk Management: A Physicist’s Approach. World Scientific,
Singapore (2004)

11. Eaves, B.C.: On the basic theorem of complementarity. Math. Program. 1, 68–75 (1971)
12. Fender, I., Gibson, M.S., Mosser, P.C.: An international survey of stress tests. Federal Reserve Bank

of New York, Current Issues in Economics and Finance, vol. 7, No. 10 (2001)
13. Finger, C.: A methodology for stress correlation. In: Risk Metrics Monitor, Fourth Quarter (1997)
14. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat.

Bur. Stand. 49, 409–436 (1952)
15. Higham, N.J.: Computing the nearest correlation matrix—a problem from finance. IMA J. Numer.

Anal. 22, 329–343 (2002)
16. Kercheval, A.N.: On Rebonato and Jäckel’s parametrization method for finding nearest correlation

matrices. Int. J. Pure Appl. Math. 45, 383–390 (2008)
17. Kupiec, P.H.: Stress testing in a Value-at-Risk framework. J. Deriv. 6(1), 7–24 (1998)
18. León, A., Peris, J.E., Silva, J., Subiza, B.: A note on adjusting correlation matrices. Appl. Math.

Finance 9, 61–67 (2002)
19. Malick, J.: A dual approach to semidefinite least-squares problems. SIAM J. Matrix Anal. Appl. 26,

272–284 (2004)
20. J.P. Morgan/Reuters: RiskMetrics™—Technical Document, 4th edn. New York (1996)
21. Pang, J.S., Sun, D.F., Sun, J.: Semismooth homeomorphisms and strong stability of semidefinite and

Lorentz complementarity problems. Math. Oper. Res. 28, 39–63 (2003)
22. Qi, H.D., Sun, D.F.: A quadratically convergent Newton method for computing the nearest correlation

matrix. SIAM J. Matrix Anal. Appl. 28, 360–385 (2006)
23. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res.

18, 227–244 (1993)
24. Rapisarda, F., Brigo, D., Mercurio, F.: Parameterizing correlations: a geometric interpretation. IMA

J. Manag. Math. 18, 55–73 (2007)
25. Rebonato, R., Jäckel, P.: The most general methodology for creating a valid correlation matrix for risk

management and option pricing purpose. J. Risk 2(2), 17–27 (2000)
26. Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)
27. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14,

877–898 (1976)
28. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex

programming. Math. Oper. Res. 1, 97–116 (1976)
29. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)



462 H. Qi, D.F. Sun

30. Sun, D.F.: The strong second order sufficient condition and the constraint nondegeneracy in nonlinear
semidefinite programming and their implications. Math. Oper. Res. 31, 761–776 (2006)

31. Sun, D.F., Sun, J.: Semismooth matrix valued functions. Math. Oper. Res. 27, 150–169 (2002)
32. Sun, D.F., Sun, J., Zhang, L.W.: The rate of convergence of the augmented Lagrangian method for

nonlinear semidefinite programming. Math. Program. 114, 349–391 (2008)
33. Toh, K.C., Tütüncü, R.H., Todd, M.J.: Inexact primal-dual path-following algorithms for a special

class of convex quadratic SDP and related problems. Pac. J. Optim. 3, 135–164 (2007)
34. Turkay, S., Epperlein, E., Christofides, N.: Correlation stress testing for value-at-risk. J. Risk 5(4),

75–89 (2003)
35. Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory I and II. In: Zaran-

tonello, E.H. (ed.) Contributions to Nonlinear Functional Analysis, pp. 237–424. Academic, New
York (1971)


	Correlation stress testing for value-at-risk: an unconstrained convex optimization approach
	Abstract
	Introduction
	The convex optimization formulation
	The case B <>Ø
	The case B=Ø
	Incorporating the positive definiteness constraint (H3)

	A Lagrangian dual Newton method
	General discussions
	Local correlation stress testing
	The band correlation stress testing

	An augmented Lagrangian dual approach
	Numerical experiments
	Conclusion
	Appendix A: Characterizing the set 2 theta(y)
	Appendix B: Proof of Proposition 3.4
	Appendix C: Proof of Lemma 4.1
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


