Numer. Math. (1998) 80: 305-324 NumeriSChe

Mathematik

(© Springer-Verlag 1998
Electronic Edition

Secant methods for semismooth equations

Florian A. Potra *, Liqun Qi 2**, Defeng SuR-**

! Department of Mathematics, University of lowa, lowa City, IA 52242, USA; e-mail:
potra@math.uiowa.edu

2 School of Mathematics, The University of New South Wales, Sydney, New South Wales
2052, Australia; e-mail: (Liqun Qi) L.Qi@unsw.edu.au, (Defeng Sun)
sun@alpha.maths.unsw.edu.au

Received October 16, 1996 / Revised version received July 25, 1997

Summary. Some generalizations of the secant method to semismooth equa-
tions are presented. In the one-dimensional case the superlinear convergence
of the classical secant method for general semismooth equations is proved.
Moreover a new quadratically convergent method is proposed that requires
two function values per iteration. For tmedimensional cases, we discuss
secant methods for two classes of composite semismooth equations. Most
often studied semismooth equations are of such form.

1. Introduction

The classical secant method is one of the most efficient algorithms for solv-

ing nonlinear equations. It has been used from the time of early Italian al-

gebraists and has been extensively studied in the literature. It is well known

that for smooth equations the classical secant method is superlinearly con-
vergent with Q-order at leastt + v/5)/2 = 1.618... (cf. [27]). Since,

with the exception of the first step, only one function value per step is used

its efficiency index as defined by Ostrowski [13] is aldo+ v/5)/2. The

first generalization of the secant method for systems of two nonlinear equa-
tions goes back to Gauss (cf. Goldstine [7]). For different generalizations

in the n-dimensional case see Ortega and Rheinboldt [12], Schwetlick [24],

Dennis and Schnabel [3], Potra an@P{18]. Newton-like methods based

on finite difference approximations of the Jacobian can also be considered
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306 F.A. Potra et al.

as generalized secant methods since they use only function values. Con-
sidering methods based only on function values is even more important in
the non-smooth case since computation of generalized Jacobians [1] or B-
differentials [19] may be very expensive. This paper represents an attempt
to generalize the secant method to some important classes of semismooth
equations.

In the third section of the present paper we make a complete analysis of
the classical secant method for semismooth one-dimensional equations. We
prove thatthe method retains superlinear convergence even in this case. More
precisely, depending on the sign configuration of the lateral derivatives at the
solution the secant method is either 2-step Q-quadratically convergent (if the
lateral derivatives have different signs) or 3-step Q-quadratically convergent
(if the lateral derivatives have the same sign). This implies that its R-order
of convergence is eithey’2 = 1.4142... or v/2 = 1.2599... Thus its
efficiency index in the sense of Ostrowski is at led&

In section four we analyze a modification of the classical secant method
that requires two function values per step and is Q-quadratically convergent
both in the smooth and the semismooth case. The efficiency index of the
method is at least/2 so that it is more efficient than the classical secant
method in case the lateral derivatives at the solution are different but have
the same sign. Moreover the distance between the iterates and the solution
converges monotonically to zero (at least locally) which is not the case with
the classical secant method where we only can guarantee that the distance
between every third iterate and the solution converges monotonically to zero.

In section five we generalize the above mentioned method tathe
dimensional case for two classes of composite semismooth equations. The
resulting method uses only function values to construct a special “finite dif-
ference approximation of the Jacobian” and is Q-quadratically convergent,
the same as the generalizations of Newton’s method considered by [22, 19,
15]. While these generalizations of Newton’s method require the computa-
tion of an element of the generalized Jacobian defined by Clarke [1] or of the
B-differential considered by Qi [19] at each step, our method requires only
computation of function values and therefore can be easily implemented.

Over the last couple of years, the superlinear convergence theory of the
generalized Newton methods established in[22, 19, 15] has been extensively
used in solving nonlinear complementarity problems, variational inequal-
ity problems, extended linear-quadratic programmih@;' optimization
problems, etc. (see [21,2,4,5,14,28], and especially [10] for a recent sur-
vey). All these methods require computation of generalized Jacobian or
B-differentials which is in general difficult. The secant methods presented
in section three of the present paper can be extended to solve important
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Secant methods for semismooth equations 307

subclasses of such problems as well. This subject will be treated in detail in
a future paper.

2. Some properties of semismooth operators

In what follows we will review some results relevant to the concept of
semismoothness. This concept was first introduced by Mifflin [11] for func-
tionals. Convex functions, smooth functions, and piecewise linear functions
are examples of semismooth functions. Products and sums of semismooth
functions are still semismooth (see [11]). In [22], Qi and Sun extended
the definition of semismooth functions to nonlinear operators of the form
F : R" — R™. We say thatF" : " — R™ is semismooth at if F' is
locally Lipschitz atz and the following limit

lim {Vh'}
VEOF (z+th!)
B! —h,t10

exists for anyh € R", wheredF is the generalized Jacobian defined by
Clarke [1],

OF (x) = convOpF(x),
where the B-differentiabg F'(z) is defined as [19]:

OpF(z) = {lim F'(z%) : 2 = z, Fis differentiable at xk} .

Most nonsmooth equations arising in applications involve semismooth op-
erators [15]. It was proved in [22] that#f is semismooth at, thenF”(z; h),
the directional derivative of' atx in directionh, exists and

(e _ . /
F (:E’ h) - Vea}}&th’) {Vh }
h'—h,tl0

Furthermore, the following lemma is proved:

Lemma 2.1 [22] Suppose thaf' : R — R™ is semismooth at. Then
(i) if h — 0 then for anyV € OF (x + h) we have

Vh— F'(z;h) = o(||h]]);
(i) if 72 — 0 then

F(x+ h) = F(z) — F'(z;h) = o(||h]]).
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We say thatf" : ®* — R™ is strongly semismooth atif F'is semis-
mooth atz and for anyV' € 0F (z + h), h — 0,

Vh—F'(z;h) = O(|[h]*).
Piecewise & functions are examples of strongly semismooth functions.

Assumen = m. A generalized Newton method for solving the non-
smooth equation

(2.1) F(z)=0
is defined by
(2.2) " =2F VIR, Vi € OF (2F).

A particular case of (2.2) is
(2.3) " = ok — VIR (R), Vi € 9gF(2F).

Suppose that* is a solution of (2.1). The generalized Newton method (2.2)
((2.3)) converges ta* superlinearly in a neighborhood of if F'is semis-
mooth atz* and allV € dF(z*) (V € dgF(z*)) are nonsingular; if the
function F' is strongly semismooth at‘, then the convergence is quadratic.
Although this superlinear convergence theory of the generalized Newton
methods (2.2) and (2.3), first established in [22,19,15], is quite satisfac-
tory, its practical implementation poses difficulties since the computation of
generalized Jacobians may be quite time consuming in some applications.
Therefore in the present paper we investigate iterative methods based only
on function values. We will first consider the one-dimensional case, where
the “generalized Jacobians” and the “B-differentials” have a simple form.
Indeed, by using Lemma 2.1 we can easily prove the following result:

Lemma 2.2 Suppose that' : ® — R is semismooth at. Then the lateral
derivativesF’(z+) = F'(z;1), F'(x—) = F'(x; —1) exist and we have

OpF(z) = {F'(x+),F'(z—)},0F (x) = conv{F'(z+), F'(z—)}.

Hence in order to apply a generalized Newton method we must be able
to efficiently compute lateral derivatives. In what follows we will consider
iterative methods where “generalized Jacobians” or “B-differentials” are
replaced by divided differences of the form:

F(z) - F(y)

r—y

If F'is Lipschitz on an intervaD containingz andy then F' is differ-
entiable almost everywhere according to Rademacher’'s Theorem, and by

(2.4) OF (z,y) =
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using the Lebesgue integral we obtain the following integral representation
of the divided difference:
1
(2.5) OF (z,y) = / F'(sz + (1 — 8)y)ds.
0
The above representation will be used in the proof of the next lemma.

Lemma 2.3 Suppose thaf’ is semismooth at* and denote the lateral
derivatives ofF' at z* by

(2.6) d~ = —F'(z*;—1) andd™ = F'(z*;1).
Then

(2.7) d~ —0F(u,v) =0(1) foralluta* vtz
(2.8) dt — 6F(u,v) =0o(1) forallu | z* v | z*

Moreover, ifF' is strongly semismooth at, then
(2.9) d” —0F(u,v) =O(jlu — ™|+ |v —2*|) forall u,v < z*;
(2.10)d" — §F(u,v) = O(|lu — *| + |[v — 2*|)  forall u,v > z*.

Proof.From Lemma 2.1, for all: T z* andv 1 2* we have

1
4= — §F(u,v) = —F'(2*, —1) —/0 F'(tu+ (1 — t)o)dt

_ /OI[F’(x* +(tu+ (1= t)o — ) (tu+ (1 — t)o — )

=o(1).

This proves (2.7). I is strongly semismooth at*, then for allu T z* and
vt x*

1
d= — §F(u,v) = —F'(2", —1) —/O F'(tu+ (1 — t)o)dt

_ /01 O(a* — tu — (1 — t)v)dt

= O(lu — ™[ + |v —z7]).

This proves (2.9). Relations (2.8) and (2.10) are proved similariy.

Numerische Mathematik Electronic Edition
page 309 of Numer. Math. (1998) 80: 305-324



310 F.A. Potra et al.

3. Secant methods for one-dimensional semismooth equations

With the divided difference defined in (2.4) the classical secant method can
be written as

(3.2) M = gk — SRk 2P TLR ().

If F: R — Ris smooth at a zero* andF’(z*) # 0, then this method
is superlinearly convergent in the sense that

24— 27| = of|a* — 2.

Moreover if F is Lipschitz in a neighborhood af* then the Q-order of con-
vergence of the classical secant methoélfbﬁ (see Traub [27]). However

the convergence of this method is rather difficult to analyze in the nonsmooth
case. In the first part of this section we will prove that the classical secant
method is still R-superlinearly convergent under the semismoothness as-
sumption but in general it is n@2-superlinearly convergent (for the notions

of R-order andQ-order see [12,17]). In fact we will prove that the clas-
sical secant method is 3-stép-superlinearly convergent for semismooth
equations in the sense that

253 — 27| = of|a* — 2.

This impliesR-superlinear convergence §f*} in the sense that

{)zk — 2% = o(1).

The classical secant method (3.1) depends on two starting points. In
order to simplify analysis we will consider a generic starting point and will
take the other starting point of a special form. More precisely we are going
to analyze the following iterative procedure depending on a generic starting
point z°.

Algorithm 3.1 (Classical secant method)
Step 1. Given® e R" andes € (0, 00). Letz ™! =20 4| F(2%)| F (20).
k:=0.
Step 2. Let
xk'H — I‘k _ 5F(xk,$k_1)_1F(xk).

Step 3%k :=k + 1. Go to Step 2.
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Theorem 3.2 Suppose that’ is semismooth at a solutiori* of (2.1) and
letd— andd™ be the lateral derivatives df at z*, as defined in (2.6). 0~
andd™ are both positive (or negative), then there are two neighborhdbds
andV of 2*, 1/ C V, such that for each® € ¢/ the algorithm (3.1) is well
defined and produces a sequence of iterdte®s such that

eV, k=-1,0,1,...
and{z*} converges ta:* 3-stepQ-superlinearly. Furthermore, if

|t —d|

— 1
min{|d*], jd ]}

then{z*} is Q-linearly convergent witlf)-factor o If F' is strongly semis-
mooth atz*, then{z"*} converges ta* 3-stepQ-quadratically.

Proof. We only need to consider the caBe< d~ < d*. The casd) <

dT < d~ may be discussed similarly. If both~ andd~ are negative, we
may considelG := —F instead ofF'. SinceF' is semismooth at* there

is a convex neighbourhood of z* such thatF' is Lipschitz continuous
on L. We will construct the convex neighbourhoadsand V' such that
z* €U CV C L. From the definition of:—! and the Lipschitz continuity
we deduce that=! — 2* = 2% — 2* + O(|2° — 2z*|?). Therefore for any
VY C £ we may choosg sufficiently small such that for all’ € ¢/ we have

(3.2) et evand(@® —z*)(z7! —2*) > 0.

According to Lemma 2.3, by choosing small enough we can guarantee
that
(3.3) 2max{d",d"} > |0F(z,y)| > 0.5min{d",d"},
whenever
z,y € Vand(z —z*)(y — z*) > 0.

Therefore according to (3.2) the algorithm is well definedifet 0 for any
20 el.

Now we assume that*, 2¥~! € V and we consider the following three
cases.

(i) 2%, 2%~ > 2*. Then according to (3.3)F(z*, z¥~1) is invertible
and from Lemma 2.3 we obtain

okt — g =gk — 5F(xk, xk_l)_lF(xk) —z*
= 6F(aF, 2F =)o F (2, 2% 1) — 6 F (2%, %)) (2% — 2¥)
= (dt +o(1))7tdt +o(1) — (dF + o(1))](z* — z*)

= o(z¥ — 2¥).
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(ii) =¥, 21 < 2*. Similarly to case (i), we can prove that

|2 — 2% = 0|2 — 27

(i) ¢! < 2* < 2¥ or2z* < 2* < 21, We will consider the first
case. The latter may be treated similarly. As in case (i) we can write

oFtl — ¥ = §F(aF 2P V) 7o F (2%, 2P 1) — SF (2, 2%))] (2% — 27).
(3.4)
By applying Lemma 2.3 we obtain

F(2*) — F(z*) + F(z*) — F(zF1)
ok — pk—1

SF(xF, 2k=1) =

dt(zF — x*) + o(|zF — z*|) + d~ (z* — 2*71) + o(|zF~! — z*|)

ok — k-1
= Xat + (1= M\)d™ +0(1),

where\® = (zF —2*)/(z* — 2%~1). Hence for alk such thatr*~! < z* <
x¥ we have

d™ +o(1) < SF(zF, 2% 1) < d™ +o(1).

Such a relation also holds for &llsuch thatr* < z* < zF~!. Then from
Lemma 2.3 and equation (3.4) we deduce that

|dF —d” +o(1)] o

3.5 k+1 % < o
(3:5) e T s e A e Tk

and

SE(xF o= "d™ — dt + o(1)](2F — 2¥)
< aFtt — p* < SF(2F, 21" Ho(1)] (2% — z*).

Therefore either* 1 < x* orz¥*1 > 2* andinthe latter cage*+! —z*| =
o(|z* — z*|). We first consider the cagé*! < z*. In this case we have

(3.6) xht2 — g
— 5F(a}k+1,xk)71[5F(xk+1,a:k) _ 5F(:Ck+1, x*))]($k+1 _ :C*)

Then from Lemma 2.3 and (3.6) we obtain in a similar manner that

g T —d to]

B7) et < T o)

x|

)
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and
5F(.’Ek+1,$k)_1[d+ —d + 0(1)]($k+1 _ x*)
< aFt? — g < SF (2P 2R~ Ho(1)] (2Rt — z¥).

Hencez*+? < z* or 2¥*2 > z* and in the latter caser**2 — z*| =
o(|Jz*+1 — 2*|). We first consider the cas€*2 < z*. But now we have
k1 k2 < 2* . From (i) and the above discussion we get

2" — ¥ = o(|2F T2 — 2*|) = o(|a™t! — 2*[) = o(|2* — 2)).
If %42, 2zF+1 > 2* then from (i) and the above proof we obtain,
’xk+3 N $*| _ O(|$k+2 _ QZ*D — O(kaJFl — (13*‘2> = 0(‘$k — 1'*’3)

If 2F+2 > z* 2F 1 < 2% or K2 < 2% 2kl > 2*, then we deduce
similarly that

|$k+3— *|< ’d+7d_+0(1)| ’$k+2—

1= min{dt, d ) + o(1) |

x |.

So, ifz*+2 > 2*, 2*+1 < 2*, we have
£ — %] = O(H* — a*)) = of(a*! — 7)) = offa* — 2.
On the other hand, it**2 < z*, z¥*1 > z* then we deduce from (i) that
2 — 0| = O+ — 2)) = o —2*]) = of|a — 2.
Thus in case (iii), we have at least
(3.8) |zh 3 — 2*| = o(|z* — z¥|).

If U = (z* — n,2* + n) andn > 0 is small enough ther® € ¢/ and
(3.8) implies

(3.9) ¥ eld, k=0,1,2,..
Also if n is small enough then from (3.5) it follows that
(3.10) |2 — 2% < 2az® — 2|, k=0,1,2,....

Finally from (3.9) and (3.10) it follows that
deV=("-Ca*+(), k=012,

where
¢ = max{4a?, 1}n.

Thus we have proved the 3-st€psuperlinear convergence of*}.
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Furthermore, itx < 1 then we have
) |.’L‘k+l _ $*|
limsup——— < @
k |2k — a¥|
If F'is strongly semismooth at*, we can prove thafz*} converges to
x* 3-step@)-quadratically by considering the above discussions and Lemma
2.3. O

In Theorem 3.2, we analyzed the convergence of the classical secant
method under the assumption thiéat, d* have the same sign. In the next
theorem we discuss the case whéreandd™ have different signs.

Theorem 3.3 Suppose thaf’ is semismooth at a solutiar* of (2.1). If

d~ and d™ do not vanish and have different signs, then there exist two
neighborhoods$/ and V of z*, Y C V, such that for each® € U/ the
algorithm (3.1) is well defined and produces a sequejndg such that

eV, k=-1,01,...

and {z"*} converges ta:* 2-stepQ-superlinearly. IfF is strongly semis-
mooth atz*, then{z"*} converges ta:* 2-stepQ-quadratically.

Proof. We assumé~ < 0 andd™ > 0. (The casel~ > 0 andd™ < 0 can

be treated similarly.) As in the proof of Theorem 3.2 we consider a convex
neighbourhood of z* such that is Lipschitz continuous o8 and we will
construct the convex neighbourhoddsnd) such thatt* ¢ &/ C V C L.

By using the Lipschitz continuity of' it is easily seen that

5F (x,y) = 6F(y,2") + o(1)
(3.11) whenever,y € £ and|z — z*| = o(|y — z¥]).

Thus ifz® € U and ifi/ is small enough then from Lemma 2.3 we deduce
thaté F(z°, x~1) does not vanish and therefore the itetaltés well defined.
Moreover for anyy C £ we can choosd small enough such that ! € V.
Now let us assume that, z*~! € V and let us consider the following
three cases.
(i) 2%, 25~ > z*. From (3.11) and Lemma 2.3 we obtain

SF(zF, 2% 1) = dT 4 o(1),
so thats F'(z*, z#=1)~! is well defined and we can write

oFl — o = §F(2F, V) 7O F (2%, 2P 1) — SF (2, )] (xh, — 2¥)
= (dt +0o(1))7d" +o(1) — (d* + o(1))](z* — z*)

= o(z¥ — 2%).
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(ii) %, 21 < 2*. Asin case (i), we can prove that

k+1 *

bt = o(aF — ).

(i) 2! < 2* < 2F or ¥ < 2* < 2F~1. We only consider the first
case. The latter case may be treated similarly. According to the algorithm,
we may choose such that:?, z=! > z* or 2°, 271 < z*. So (iii) does
not occur fork = 0. Suppose that we are in case (iii) and that at the previous
step we had either (i) or (ii). Then it is easily seen that

and

2M gt = SF (2R, P Y TSR (oF 2F ) — 0F (28, 2%)) (28 — )
= [0F(z 1 2%) 4+ o(1)] !
X[OF ("1 2*) 4 o(1) — 0F (aF, 2*)] (2% — 2¥)
= (d~ +0(1)7Yd™ —d" + o(1)](zF — ).

Therefore we have
Pt g* = O(2F — 2*) andz* T > 2t

This shows that if case (iii) occurs at tleth step and if at the previous
step we had (i) or (ii) then case (iii) will not occur at thie + 1)-th step.
Furthermore, since case (iii) does not occurifet 0, we deduce that when
case (iii) occurs at thi-th step then at the previous step we must have had
case (i) or (ii). Hence according to the argument used in (i), we obtain

(3.12) a2 gt = o(xM — %) = o(a® — ).

If U = (z* — n,2* +n) andn is small enough then’ € ¢/ and (3.12)
implies

(3.13) s eld, k=0,1,2,...
Let
_ ld—ad|
 min{|d—|,[d*|}’

Then if is small enough from the discussion in (i)-(iii) it follows that
(3.14) ]:rkH — 2| < 28|zF —2*|, k=0,1,2,...
Finally from (3.13) and (3.14) it follows that

Fev=>@*-Cz*+¢), k=012 .,
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Table 1. Iterates of secant method for (3.15)
xi
-5.076142%10°°
-2.512628%107°
1.275542%107°
-1.275477%107°
-4.251663% 10~ 1°
5.422900% 10~ 1°
-5.422900% 10~ *°
-1.8076636<101?
9.802617% 1038
10 | -9.802617% 1038
11 | -3.267539% 1038
12| 3.2 x1077

O©oO~NOO U WNBR|-—

Table 2. Iterates of secant method for (3.16)

:r?,

-5.076142k107°
-7.665944&10~°
3.891838%10~°
1.167729& 1078
-4.544615% 107
-6.8169236&10~ 17
3.098029&10~3%°
9.294089% 10~3°
-2.879336%107%°

©O~NOOUHAWNPR—

where
¢ = max{24, 1},

Thus we have proved that the sequefick} is well defined and relation
(3.12) shows that it converges 6 2-step@-superlinearly.

If F'is strongly semismooth at*, we may prove the 2-step-quadratic
convergence by considering Lemma 2.30

We end this section by giving two numerical examples illustrating the
order of convergence results obtained in Theorems 3.2 and 3.3. The com-
putations were performed Mathematica3.0 with 80 digit precision, but
only the first 8 significant digits are printed. For both examples we have

1 1
T T 500" T 100
In Table 1 we list the iterates produced by the classical secant method
for
_Jx(z+1) ifz<O
(3.15) F(z) = {—Qx(m —1)ifz>0
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In this case we hawé~ = 1, d* = 2 and the numerical results show clearly
that the sequence is 3-step Q-quadratically convergent.
Table 2 presents the iterates for

_ [—z(z+1) ifz<O
(3.16) F(z) = {—23:(33 —1)ifz>0
Hered~ = —1, d" = 1, and the 2-step Q-quadratic convergence is
evident.

4. A modified secant method for one-dimensional equations

Theorems 3.2 and 3.3 show that by using the classical secant method for
strongly semismooth equations we obtéifguadratic convergence with at
most 3 function evaluations per step. From the next lemma it follows that
the classical secant method for strongly semismooth equations-beder
atleasty/2 if d-dt > 0, andv/2if d—d*+ < 0.

Lemma 4.1 If {z*} is a convergent sequence with limit such that
2P — 27| = O(l2* — 2""),
then theR-order of convergence dfr*} is at leasty/r.
Proof. The proof is straightforward by using the methods of Ortega and
Rheinboldt [12] and Potra [17]. O

The next procedure uses only 2 function values per step and affains
superlinear (quadratic) convergence.

Algorithm 4.2 (A modified secant method)
Step 1. Given® € R" ande € (0, 00). Lety? = 204-¢|F(20)| F(20).
Compute F'(z°, y*). k := 0.
Step 2. Set
4.1) aF =gk — SR (ak ) TR ().
Step 3k :=k + 1. Set
y* = a4 e F(ah)| F ().
Go to step 2.

The above procedure is closely related to Steffensen’s method [25]. An
iterative procedure, very similar to Algorithm 4.2 was considered for gen-
eral operator equations in Banach spaces in [16, formula (24)]. The above
mentioned procedures are quadratically convergent in the smooth case. In
the next theorem we prove that Algorithm 4.2 is quadratically convergent
for strongly semismooth equations as well.
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Theorem 4.3 Suppose that* is a solution of (2.1) and” is semismooth
atz*. If d~ andd™ are nonzero, then the iteration (4.1) is well defined in a
neighborhood of:* and converges ta* Q-superlinearly. Furthermore, if
F is strongly semismooth at‘, the convergence i§-quadratic.

Proof. We may choose? sufficiently close tar* such that we have either
20,99 > 2* or 2, ¢y° < x*. According to Lemma 2.3, (4.1) is well defined
for k£ = 0. Itis easy to see that

y* — 2% = O(IF(e")?) = O(ja" — 2" ).
Then from Lemma 2.3,
SF(zF,y*) = 0F (2%, 2%) + o(1) = d* + o(1) (or = d~ + o(1)).
Therefore,

| = ot~ — P (e ) ()

< [6F(a*,y*) M| F (2*) = F(2*) = 6F (2, ") (2" — 2¥)]
0F (2%, ") Y|0F (2%, 2*) — 6F (%, y¥)[|2* — 27|
(4.2) = o(|xk —z¥).

IN

This completes the proof of superlinear convergencéadf}. If F is
strongly semismooth at*, we may prove similarly thafz*} converges to
z* Q-quadratically in a neighborhood of. 0O

5. Composite semismooth equations

In the previous section we have discussed a modified secant method for
one-dimensional semismooth equations. It appears difficult to extend it to
generalh-dimensional semismooth equations. However, most semismooth
equations arising from concrete problems such as nonlinear complemen-
tarity problems and variational inequalities have a special structure which
allows a generalization of the modified secant method considered above. In
what follows we will show that such a generalization is possible when the
operatorF' : ®* — R™ is of the form

(5.1) F(a) = #(G(2))
or
(5.2) F(z) = H(¥(x)),

where in (5.1)®@ : R™ — R™ is nonsmooth but of special structure and
G : ®" — R™ is continuously differentiable, while in (5.2 : R®P —
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R™ is continuously differentiable ané : R — RP is nonsmooth but of
special structure. For example, given a continuously differentiable mapping
E : R — R”, the nonlinear complementarity problem NER(s to find

x € 1" such that

>0, E(x)>0, z'E(z)=0.

Then NCPE) is equivalent to finding a solution of the following (nons-
mooth) equations:
(5.3) F(z) = min(z, E(z)) =0

or

(5.4) F(z) = (¢(x1, Br(2), oo (20, En(2))) = 0,

where the operatanin denotes the component-wise minimum of two vec-
tors andy : R2 — R is the Fischer-Burmeister function [6]:

P(a,b) =Va?+b*—(a+0b), abeR

Both (5.3) and (5.4) are of the form (5.1). Solving NEP (s also equivalent
to finding a solution of the nonsmooth equation

(5.5) F(z)=E(z4)+2z—24 =0,

inthe sense thatif solves NCPE) thenz := x— E(x) is a solution of (5.5),
and, conversely, if is a solution of (5.5) them := 2z, solves NCPE). The
function F' in (5.5) is clearly of the form (5.2). For more problems which
can be written under the form (5.1) or (5.2), see [15] and [23].

Let us first give an analogue to Algorithm 4.2 for solving (2.1) with
of the form (5.1). Let > 0 be a given constant. Then for amysuch that
F(x) # 0 we define the matrix

56) Vi) = (Vi)
with
_ G el F)le) ~ G
V@ =T gl
(5.7) i=1,...m, j5=1,...,n,

wheree; is thejth unit vector ofit™.

With the above notation we define the following iterative procedure for
solving equations of the form (5.1).

Algorithm 5.1 (A secant method fab(G(x)) = 0)
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Step 1. Givenr’ € R". Computel; := V(2°) whereV (z') is

defined as in (5.6) and (5.7) and get= 0.

Step 2. Compute alti;, € GB@(y)|y:(;($k) and setV,, = U, Vj.

Step 3. Set

(5.8) " = ok — W E ().

Step 4k := k + 1. ComputéV}, := V' (z*). Go to Step 2.

Before giving the convergence analysis of the above secant method, let

us explain, by means of an example, how it works for operakoof the
form (5.4). In this casen = 2n and we have

6@ =5 ) V@ = (1)

wherel € R™*"™ is the identity matrix and

Bi(z +e|| F(@)lle;) — Ei(z)
el F )| ’

T(x)ij =

Also
U(z) = (R(x), S(x)),
whereR(z), S(x) are diagonal matrices. #? + E;(z)? # 0 then

T (I
v} + Ei(x)? a7 + Ei(z)?

T

Rii(x) = —1.

If 22 + E;(z)? = 0 then we define
Rii(z) = a; — 1, Sii(x) =B — 1

for any«;, 3; € R such that? + g2 = 1.
Note that we only need the value 8fz) and we do not make any use
of the derivative ofE'(z).

Lemma 5.2 Suppose that* is a solution of (2.1) and’ is of the form (5.1)
with & locally Lipschitz around>(z*) and G continuously differentiable.
If all matrices W € 0P(y*)|y+—c(.+)G’'(z*) are nonsingular, then
there exist a neighborhood/ (z*) of * and a constantC' such that all
matricesW € 09(y)|y—q )V (), z € N(z*) are nonsingular and

W=l <c.

Proof. The proof follows easily by noting thés; &(-) is upper semi-contin-
uous, the sedsP(y)|,—c(2) is compact, and’ (r) — G'(z*) asz — z*.
0
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Theorem 5.3 Suppose that* is a solution of (2.1) and” is of the form
(5.1) with® semismooth af/(z*) and G continuously differentiable.

If all matricesW € 9g®(y*)|y»=c ()G’ (x*) are nonsingular, then the
iterative procedure (5.8) is well defined in a neighborhood:bfand the
sequence generated by it convergestd)-superlinearly. Furthermore, if
& is strongly semismooth &t (z*) and G’ is Lipschitz continuous at*,
then the convergence 3-quadratic.

Proof. According to Lemma 5.2, formula (5.8) is well defined for= 0.
From Lemmas 2.1 and 5.2 we get

5t — 2™ = fla* — W F ()|
< W HIIF@*) = F(a*) = Wi(a* —2")|
< Wi (19(G(a) ~D(G(a) - Ur(G(2") = G(a) |

+HUR(G(a*) = G(a*) = Vi(a® = 2*)1)
= o([|G(") = G(z")|)) + o(f|2* — a|)
(5.9) = o(||z* -z,
which completes the proof @p-superlinear convergence. In a similar man-

ner we get)-quadratic convergence under the strong semismoothness as-
sumptions. 0.

In order to construct a secant method for solving (2.1) whes of the
form (5.2), we consider the following matrix for any given constant 0
and anyz such thatF'(z) # 0:

(5.10) U(z) = (U(x)ij),
with
Hi(¥(z) +el|[F(z)le;) — Hi(¥(z))

el F(x)ll ’
1=1,...,n, j=1,...,p,

(5.11)  Ulx)y =

wheree; is thejth unit vector ofit?.

Algorithm 5.4 (A secant method fal (¥ (x)) = 0)

Step 1. Giverr® € R". Compute/y := U(z") as defined in (5.10)
and (5.11)k := 0.

Step 2. Compute &, € dg¥(2*) and SetV, = U, V;.

Step 3. Set

(5.12) " = 2 — W E(2h).

Step 4k := k + 1. Computel;, := U(z*). Go to Step 2.
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Similarly to Lemma 5.2 and Theorem 5.3, we have the following con-
vergence results for the above secant method.

Lemma 5.5 Suppose that* is a solution of (2.1) and’ is of the form (5.2)
with ¥ locally Lipschitz around:* and H continuously differentiable.

If all matricesW € H'(¥(z*))0g¥(x*) are nonsingular, then there
exist a neighborhoodV (x*) of z* and a constan€ such that all matrices
W e U(x)0g¥(x), z € N(z*) are nonsingular and

W= < c.
The proof of the above lemma is straightforward and therefore is omitted.

Theorem 5.6 Suppose that* is a solution of (2.1) and” is of the form
(5.2) with¥ semismooth at* and H continuously differentiable.

If all matricesW € H'(¥(z*))og¥(x*) are nonsingular, then the it-
erative procedure (5.12) is well defined in a neighborhood"ofind the
sequence generated by it convergesta)-superlinearly. Furthermore, if
¥ is strongly semismooth at* and H' is Lipschitz continuous ak (z*),
then the convergence (g-quadratic.

Proof. According to Lemma 5.5, iteration (5.12) is well defined ko« 0.
From Lemmas 2.1 and 5.5 we deduce that

2"+ — || = [|la* — 2* — W F )
< Wi I[F (2") = F(a*) = Wi(a® —2%))
< W HI(H (@ ()~ H(@ (")) = U (@ (2") =0 (27)) |
+| U (@ (2") = @ (%) = Vi(a® —2))]])
= o([|#(a") —w (@) + of||«* — =)
(5.13) = o||l=* — 2|,
which completes the proof @§-superlinear convergence. By a similar anal-

ysis, we can prove th@-quadratic convergence whenis strongly semis-
mooth. O

6. Final remarks

In this paper we discuss several secant methods for semismooth equa-
tions. For one-dimensional equations, we prove that the classical secant
method convergeR-superlinearly under the standard assumptions used in
the study of the generalized Newton method. A modification of the clas-
sical secant method requiring two function evaluations per step converges
Q@-superlinearly. Fon-dimensional semismooth equations, we give secant
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methods for two classes of composite semismooth equations. At present,
we cannot establish superlinear convergence for secant methods for solving
general semismooth equations. Fortunately, in practice, most semismooth
equations have the structure studied in this paper.

We note that for special composite semismooth equations, quasi-Newton
methods have been discussed in [21,26,8]. By considering the discussion
given in Sect. 5, we may generalize the quasi-Newton methods discussed in
the above cited papers to composite semismooth equations of the form (5.1)
or (5.2). For general nonsmooth equations, differentiability at the solution
has to be assumed in order to ensure superlinear convergence of quasi-
Newton methods as shown in [9,10], [20].
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