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Summary. Some generalizations of the secant method to semismooth equa-
tions are presented. In the one-dimensional case the superlinear convergence
of the classical secant method for general semismooth equations is proved.
Moreover a new quadratically convergent method is proposed that requires
two function values per iteration. For then-dimensional cases, we discuss
secant methods for two classes of composite semismooth equations. Most
often studied semismooth equations are of such form.

1. Introduction

The classical secant method is one of the most efficient algorithms for solv-
ing nonlinear equations. It has been used from the time of early Italian al-
gebraists and has been extensively studied in the literature. It is well known
that for smooth equations the classical secant method is superlinearly con-
vergent with Q-order at least(1 +

√
5)/2 = 1.618 . . . (cf. [27]). Since,

with the exception of the first step, only one function value per step is used
its efficiency index as defined by Ostrowski [13] is also(1 +

√
5)/2. The

first generalization of the secant method for systems of two nonlinear equa-
tions goes back to Gauss (cf. Goldstine [7]). For different generalizations
in the n-dimensional case see Ortega and Rheinboldt [12], Schwetlick [24],
Dennis and Schnabel [3], Potra and Pták [18]. Newton-like methods based
on finite difference approximations of the Jacobian can also be considered
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as generalized secant methods since they use only function values. Con-
sidering methods based only on function values is even more important in
the non-smooth case since computation of generalized Jacobians [1] or B-
differentials [19] may be very expensive. This paper represents an attempt
to generalize the secant method to some important classes of semismooth
equations.

In the third section of the present paper we make a complete analysis of
the classical secant method for semismooth one-dimensional equations. We
prove that the method retains superlinear convergence even in this case. More
precisely, depending on the sign configuration of the lateral derivatives at the
solution the secant method is either 2-step Q-quadratically convergent (if the
lateral derivatives have different signs) or 3-step Q-quadratically convergent
(if the lateral derivatives have the same sign). This implies that its R-order
of convergence is either

√
2 = 1.4142 . . . or 3

√
2 = 1.2599 . . . Thus its

efficiency index in the sense of Ostrowski is at least3
√

2.
In section four we analyze a modification of the classical secant method

that requires two function values per step and is Q-quadratically convergent
both in the smooth and the semismooth case. The efficiency index of the
method is at least

√
2 so that it is more efficient than the classical secant

method in case the lateral derivatives at the solution are different but have
the same sign. Moreover the distance between the iterates and the solution
converges monotonically to zero (at least locally) which is not the case with
the classical secant method where we only can guarantee that the distance
between every third iterate and the solution converges monotonically to zero.

In section five we generalize the above mentioned method to then-
dimensional case for two classes of composite semismooth equations. The
resulting method uses only function values to construct a special “finite dif-
ference approximation of the Jacobian” and is Q-quadratically convergent,
the same as the generalizations of Newton’s method considered by [22,19,
15]. While these generalizations of Newton’s method require the computa-
tion of an element of the generalized Jacobian defined by Clarke [1] or of the
B-differential considered by Qi [19] at each step, our method requires only
computation of function values and therefore can be easily implemented.

Over the last couple of years, the superlinear convergence theory of the
generalized Newton methods established in [22,19,15] has been extensively
used in solving nonlinear complementarity problems, variational inequal-
ity problems, extended linear-quadratic programming,LC1 optimization
problems, etc. (see [21,2,4,5,14,28], and especially [10] for a recent sur-
vey). All these methods require computation of generalized Jacobian or
B-differentials which is in general difficult. The secant methods presented
in section three of the present paper can be extended to solve important
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subclasses of such problems as well. This subject will be treated in detail in
a future paper.

2. Some properties of semismooth operators

In what follows we will review some results relevant to the concept of
semismoothness. This concept was first introduced by Mifflin [11] for func-
tionals. Convex functions, smooth functions, and piecewise linear functions
are examples of semismooth functions. Products and sums of semismooth
functions are still semismooth (see [11]). In [22], Qi and Sun extended
the definition of semismooth functions to nonlinear operators of the form
F : <n → <m. We say thatF : <n → <m is semismooth atx if F is
locally Lipschitz atx and the following limit

lim
V ∈∂F (x+th′)

h′→h,t↓0

{V h′}

exists for anyh ∈ <n, where∂F is the generalized Jacobian defined by
Clarke [1],

∂F (x) = conv∂BF (x),

where the B-differential∂BF (x) is defined as [19]:

∂BF (x) =
{
limF ′(xk) : xk → x, F is differentiable at xk

}
.

Most nonsmooth equations arising in applications involve semismooth op-
erators [15]. It was proved in [22] that ifF is semismooth atx, thenF ′(x;h),
the directional derivative ofF atx in directionh, exists and

F ′(x;h) = lim
V ∈∂F (x+th′)

h′→h,t↓0

{V h′}.

Furthermore, the following lemma is proved:

Lemma 2.1 [22] Suppose thatF : <n → <m is semismooth atx. Then
(i) if h → 0 then for anyV ∈ ∂F (x+ h) we have

V h− F ′(x;h) = o(‖h‖);

(ii) if h → 0 then

F (x+ h) − F (x) − F ′(x;h) = o(‖h‖).
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We say thatF : <n → <m is strongly semismooth atx if F is semis-
mooth atx and for anyV ∈ ∂F (x+ h), h → 0,

V h− F ′(x;h) = O(‖h‖2).

Piecewise C2 functions are examples of strongly semismooth functions.

Assumen = m. A generalized Newton method for solving the non-
smooth equation

F (x) = 0(2.1)

is defined by

xk+1 = xk − V −1
k F (xk), Vk ∈ ∂F (xk).(2.2)

A particular case of (2.2) is

xk+1 = xk − V −1
k F (xk), Vk ∈ ∂BF (xk).(2.3)

Suppose thatx∗ is a solution of (2.1). The generalized Newton method (2.2)
((2.3)) converges tox∗ superlinearly in a neighborhood ofx∗ if F is semis-
mooth atx∗ and allV ∈ ∂F (x∗) (V ∈ ∂BF (x∗)) are nonsingular; if the
functionF is strongly semismooth atx∗, then the convergence is quadratic.
Although this superlinear convergence theory of the generalized Newton
methods (2.2) and (2.3), first established in [22,19,15], is quite satisfac-
tory, its practical implementation poses difficulties since the computation of
generalized Jacobians may be quite time consuming in some applications.
Therefore in the present paper we investigate iterative methods based only
on function values. We will first consider the one-dimensional case, where
the “generalized Jacobians” and the “B-differentials” have a simple form.
Indeed, by using Lemma 2.1 we can easily prove the following result:

Lemma 2.2 Suppose thatF : < → < is semismooth atx. Then the lateral
derivativesF ′(x+) = F ′(x; 1), F ′(x−) = F ′(x;−1) exist and we have

∂BF (x) = {F ′(x+), F ′(x−)}, ∂F (x) = conv{F ′(x+), F ′(x−)}.
Hence in order to apply a generalized Newton method we must be able

to efficiently compute lateral derivatives. In what follows we will consider
iterative methods where “generalized Jacobians” or “B-differentials” are
replaced by divided differences of the form:

δF (x, y) =
F (x) − F (y)

x− y
.(2.4)

If F is Lipschitz on an intervalD containingx andy thenF is differ-
entiable almost everywhere according to Rademacher’s Theorem, and by
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using the Lebesgue integral we obtain the following integral representation
of the divided difference:

δF (x, y) =
∫ 1

0
F ′(sx+ (1 − s)y)ds.(2.5)

The above representation will be used in the proof of the next lemma.

Lemma 2.3 Suppose thatF is semismooth atx∗ and denote the lateral
derivatives ofF at x∗ by

d− = −F ′(x∗;−1) andd+ = F ′(x∗; 1).(2.6)

Then
d− − δF (u, v) = o(1) for all u ↑ x∗, v ↑ x∗;(2.7)

d+ − δF (u, v) = o(1) for all u ↓ x∗, v ↓ x∗.(2.8)

Moreover, ifF is strongly semismooth atx∗, then

d− − δF (u, v) = O(|u− x∗| + |v − x∗|) for all u, v < x∗;(2.9)

d+ − δF (u, v) = O(|u− x∗| + |v − x∗|) for all u, v > x∗.(2.10)

Proof.From Lemma 2.1, for allu ↑ x∗ andv ↑ x∗ we have

d− − δF (u, v) = −F ′(x∗,−1) −
∫ 1

0
F ′(tu+ (1 − t)v)dt

=
∫ 1

0
[F ′(x∗ + (tu+ (1 − t)v − x∗))(tu+ (1 − t)v − x∗)

−F ′(x∗; tu+ (1 − t)v − x∗)] 1
x∗−tu−(1−t)vdt

= o(1).

This proves (2.7). IfF is strongly semismooth atx∗, then for allu ↑ x∗ and
v ↑ x∗

d− − δF (u, v) = −F ′(x∗,−1) −
∫ 1

0
F ′(tu+ (1 − t)v)dt

=
∫ 1

0
O(x∗ − tu− (1 − t)v)dt

= O(|u− x∗| + |v − x∗|).
This proves (2.9). Relations (2.8) and (2.10) are proved similarly.ut
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3. Secant methods for one-dimensional semismooth equations

With the divided difference defined in (2.4) the classical secant method can
be written as

xk+1 = xk − δF (xk, xk−1)−1F (xk).(3.1)

If F : < → < is smooth at a zerox∗ andF ′(x∗) 6= 0, then this method
is superlinearly convergent in the sense that

|xk+1 − x∗| = o(|xk − x∗|).

Moreover ifF ′ is Lipschitz in a neighborhood ofx∗ then the Q-order of con-
vergence of the classical secant method is1+

√
5

2 (see Traub [27]). However
the convergence of this method is rather difficult to analyze in the nonsmooth
case. In the first part of this section we will prove that the classical secant
method is stillR-superlinearly convergent under the semismoothness as-
sumption but in general it is notQ-superlinearly convergent (for the notions
of R-order andQ-order see [12,17]). In fact we will prove that the clas-
sical secant method is 3-stepQ-superlinearly convergent for semismooth
equations in the sense that

|xk+3 − x∗| = o(|xk − x∗|).

This impliesR-superlinear convergence of{xk} in the sense that

k

√
|xk − x∗| = o(1).

The classical secant method (3.1) depends on two starting points. In
order to simplify analysis we will consider a generic starting point and will
take the other starting point of a special form. More precisely we are going
to analyze the following iterative procedure depending on a generic starting
pointx0.

Algorithm 3.1 (Classical secant method)

Step 1. Givenx0 ∈<n andε∈(0,∞). Letx−1 =x0 +ε|F (x0)|F (x0).
k := 0.
Step 2. Let

xk+1 = xk − δF (xk, xk−1)−1F (xk).

Step 3.k := k + 1. Go to Step 2.
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Theorem 3.2 Suppose thatF is semismooth at a solutionx∗ of (2.1) and
let d− andd+ be the lateral derivatives ofF atx∗, as defined in (2.6). Ifd−
andd+ are both positive (or negative), then there are two neighborhoodsU
andV of x∗, U ⊆ V, such that for eachx0 ∈ U the algorithm (3.1) is well
defined and produces a sequence of iterates{xk} such that

xk ∈ V, k = −1, 0, 1, . . .

and{xk} converges tox∗ 3-stepQ-superlinearly. Furthermore, if

α :=
|d+ − d−|

min{|d+|, |d−|} < 1,

then{xk} isQ-linearly convergent withQ-factorα. If F is strongly semis-
mooth atx∗, then{xk} converges tox∗ 3-stepQ-quadratically.

Proof. We only need to consider the case0 < d− ≤ d+. The case0 <
d+ ≤ d− may be discussed similarly. If bothd+ andd− are negative, we
may considerG := −F instead ofF . SinceF is semismooth atx∗ there
is a convex neighbourhoodL of x∗ such thatF is Lipschitz continuous
on L. We will construct the convex neighbourhoodsU and V such that
x∗ ∈ U ⊆ V ⊆ L. From the definition ofx−1 and the Lipschitz continuity
we deduce thatx−1 − x∗ = x0 − x∗ + O(|x0 − x∗|2). Therefore for any
V ⊆ L we may chooseU sufficiently small such that for allx0 ∈ U we have

x−1 ∈ V and(x0 − x∗)(x−1 − x∗) > 0.(3.2)

According to Lemma 2.3, by choosingV small enough we can guarantee
that

2 max{d+, d−} ≥ |δF (x, y)| ≥ 0.5 min{d+, d−},(3.3)

whenever
x, y ∈ V and(x− x∗)(y − x∗) > 0.

Therefore according to (3.2) the algorithm is well defined fork = 0 for any
x0 ∈ U .

Now we assume thatxk, xk−1 ∈ V and we consider the following three
cases.

(i) xk, xk−1 > x∗. Then according to (3.3)δF (xk, xk−1) is invertible
and from Lemma 2.3 we obtain

xk+1 − x∗ = xk − δF (xk, xk−1)−1F (xk) − x∗

= δF (xk, xk−1)−1[δF (xk, xk−1) − δF (xk, x∗))](xk − x∗)

= (d+ + o(1))−1[d+ + o(1) − (d+ + o(1))](xk − x∗)

= o(xk − x∗).
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(ii) xk, xk−1 < x∗. Similarly to case (i), we can prove that

|xk+1 − x∗| = o(|xk − x∗|).
(iii) xk−1 < x∗ < xk or xk < x∗ < xk−1. We will consider the first

case. The latter may be treated similarly. As in case (i) we can write

xk+1 − x∗ = δF (xk, xk−1)−1[δF (xk, xk−1) − δF (xk, x∗))](xk − x∗).
(3.4)
By applying Lemma 2.3 we obtain

δF (xk, xk−1) =
F (xk) − F (x∗) + F (x∗) − F (xk−1)

xk − xk−1

=
d+(xk − x∗) + o(|xk − x∗|) + d−(x∗ − xk−1) + o(|xk−1 − x∗|)

xk − xk−1

= λkd+ + (1 − λk)d− + o(1),

whereλk = (xk −x∗)/(xk −xk−1). Hence for allk such thatxk−1 < x∗ <
xk we have

d− + o(1) ≤ δF (xk, xk−1) ≤ d+ + o(1).

Such a relation also holds for allk such thatxk < x∗ < xk−1. Then from
Lemma 2.3 and equation (3.4) we deduce that

|xk+1 − x∗| ≤ |d+ − d− + o(1)|
min{d−, d+} + o(1)

|xk − x∗|,(3.5)

and

δF (xk, xk−1)−1[d− − d+ + o(1)](xk − x∗)
≤ xk+1 − x∗ ≤ δF (xk, xk−1)−1[o(1)](xk − x∗).

Therefore eitherxk+1 < x∗ orxk+1 > x∗ and in the latter case|xk+1−x∗| =
o(|xk − x∗|). We first consider the casexk+1 < x∗. In this case we have

xk+2 − x∗(3.6)

= δF (xk+1, xk)−1[δF (xk+1, xk) − δF (xk+1, x∗))](xk+1 − x∗).

Then from Lemma 2.3 and (3.6) we obtain in a similar manner that

|xk+2 − x∗| ≤ |d+ − d− + o(1)|
min{d−, d+} + o(1)

|xk+1 − x∗|,(3.7)
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and

δF (xk+1, xk)−1[d+ − d− + o(1)](xk+1 − x∗)
≤ xk+2 − x∗ ≤ δF (xk+1, xk)−1[o(1)](xk+1 − x∗).

Hencexk+2 < x∗ or xk+2 > x∗ and in the latter case|xk+2 − x∗| =
o(|xk+1 − x∗|). We first consider the casexk+2 < x∗. But now we have
xk+1, xk+2 < x∗. From (ii) and the above discussion we get

|xk+3 − x∗| = o(|xk+2 − x∗|) = o(|xk+1 − x∗|) = o(|xk − x∗|).
If xk+2, xk+1 > x∗, then from (i) and the above proof we obtain,

|xk+3 − x∗| = o(|xk+2 − x∗|) = o(|xk+1 − x∗|2) = o(|xk − x∗|3).
If xk+2 > x∗, xk+1 < x∗ or xk+2 < x∗, xk+1 > x∗, then we deduce
similarly that

|xk+3 − x∗| ≤ |d+ − d− + o(1)|
min{d+, d−} + o(1)

|xk+2 − x∗|.

So, ifxk+2 > x∗, xk+1 < x∗, we have

|xk+3 − x∗| = O(|xk+2 − x∗|) = o(|xk+1 − x∗|) = o(|xk − x∗|).
On the other hand, ifxk+2 < x∗, xk+1 > x∗ then we deduce from (i) that

|xk+3 − x∗| = O(|xk+2 − x∗|) = o(|xk+1 − x∗|) = o(|xk − x∗|2).
Thus in case (iii), we have at least

|xk+3 − x∗| = o(|xk − x∗|).(3.8)

If U = (x∗ − η, x∗ + η) andη > 0 is small enough thenx0 ∈ U and
(3.8) implies

x3k ∈ U , k = 0, 1, 2, ....(3.9)

Also if η is small enough then from (3.5) it follows that

|xk+1 − x∗| ≤ 2α|xk − x∗|, k = 0, 1, 2, ....(3.10)

Finally from (3.9) and (3.10) it follows that

xk ∈ V = (x∗ − ζ, x∗ + ζ), k = 0, 1, 2, ...,

where
ζ = max{4α2, 1}η.

Thus we have proved the 3-stepQ-superlinear convergence of{xk}.
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Furthermore, ifα < 1 then we have

lim sup
k

|xk+1 − x∗|
|xk − x∗| ≤ α.

If F is strongly semismooth atx∗, we can prove that{xk} converges to
x∗ 3-stepQ-quadratically by considering the above discussions and Lemma
2.3. ut

In Theorem 3.2, we analyzed the convergence of the classical secant
method under the assumption thatd−, d+ have the same sign. In the next
theorem we discuss the case whered− andd+ have different signs.

Theorem 3.3 Suppose thatF is semismooth at a solutionx∗ of (2.1). If
d− and d+ do not vanish and have different signs, then there exist two
neighborhoodsU and V of x∗, U ⊆ V, such that for eachx0 ∈ U the
algorithm (3.1) is well defined and produces a sequence{xk} such that

xk ∈ V, k = −1, 0, 1, . . .

and {xk} converges tox∗ 2-stepQ-superlinearly. IfF is strongly semis-
mooth atx∗, then{xk} converges tox∗ 2-stepQ-quadratically.

Proof.We assumed− < 0 andd+ > 0. (The cased− > 0 andd+ < 0 can
be treated similarly.) As in the proof of Theorem 3.2 we consider a convex
neighbourhoodL of x∗ such thatF is Lipschitz continuous onL and we will
construct the convex neighbourhoodsU andV such thatx∗ ∈ U ⊆ V ⊆ L.
By using the Lipschitz continuity ofF it is easily seen that

δF (x, y) = δF (y, x∗) + o(1)
wheneverx, y ∈ L and|x− x∗| = o(|y − x∗|).(3.11)

Thus ifx0 ∈ U and if U is small enough then from Lemma 2.3 we deduce
thatδF (x0, x−1) does not vanish and therefore the iteratex1 is well defined.
Moreover for anyV ⊆ L we can chooseU small enough such thatx−1 ∈ V.

Now let us assume thatxk, xk−1 ∈ V and let us consider the following
three cases.

(i) xk, xk−1 > x∗. From (3.11) and Lemma 2.3 we obtain

δF (xk, xk−1) = d+ + o(1),

so thatδF (xk, xk−1)−1 is well defined and we can write

xk+1 − x∗ = δF (xk, xk−1)−1[δF (xk, xk−1) − δF (xk, x∗)](xk − x∗)

= (d+ + o(1))−1[d+ + o(1) − (d+ + o(1))](xk − x∗)

= o(xk − x∗).
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(ii) xk, xk−1 < x∗. As in case (i), we can prove that

xk+1 − x∗ = o(xk − x∗).

(iii) xk−1 < x∗ < xk or xk < x∗ < xk−1. We only consider the first
case. The latter case may be treated similarly. According to the algorithm,
we may choosex0 such thatx0, x−1 > x∗ or x0, x−1 < x∗. So (iii) does
not occur fork = 0. Suppose that we are in case (iii) and that at the previous
step we had either (i) or (ii). Then it is easily seen that

xk − x∗ = o(xk−1 − x∗)

and

xk+1 − x∗ = δF (xk, xk−1)−1[δF (xk, xk−1) − δF (xk, x∗)](xk − x∗)
= [δF (xk−1, x∗) + o(1)]−1

×[δF (xk−1, x∗) + o(1) − δF (xk, x∗)](xk − x∗)
= (d− + o(1))−1[d− − d+ + o(1)](xk − x∗).

Therefore we have

xk+1 − x∗ = O(xk − x∗) andxk+1 > x∗.

This shows that if case (iii) occurs at thek-th step and if at the previous
step we had (i) or (ii) then case (iii) will not occur at the(k + 1)-th step.
Furthermore, since case (iii) does not occur fork = 0, we deduce that when
case (iii) occurs at thek-th step then at the previous step we must have had
case (i) or (ii). Hence according to the argument used in (i), we obtain

xk+2 − x∗ = o(xk+1 − x∗) = o(xk − x∗).(3.12)

If U = (x∗ − η, x∗ + η) andη is small enough thenx0 ∈ U and (3.12)
implies

x2k ∈ U , k = 0, 1, 2, ....(3.13)

Let

β :=
|d− − d+|

min{|d−|, |d+|} .

Then ifη is small enough from the discussion in (i)-(iii) it follows that

|xk+1 − x∗| ≤ 2β|xk − x∗|, k = 0, 1, 2, ....(3.14)

Finally from (3.13) and (3.14) it follows that

xk ∈ V = (x∗ − ζ, x∗ + ζ), k = 0, 1, 2, ...,
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Table 1. Iterates of secant method for (3.15)

i xi

1 -5.0761421×10−5

2 -2.5126285×10−5

3 1.2755427×10−9

4 -1.2754773×10−9

5 -4.2516638×10−10

6 5.4229009×10−19

7 -5.4229009×10−19

8 -1.8076636×10−19

9 9.8026179×10−38

10 -9.8026179×10−38

11 -3.2675393×10−38

12 3.2 ×10−75

Table 2. Iterates of secant method for (3.16)

i xi

1 -5.0761421×10−5

2 -7.6659448×10−5

3 3.8918385×10−9

4 1.1677298×10−8

5 -4.5446157×10−17

6 -6.8169236×10−17

7 3.0980298×10−39

8 9.2940895×10−39

9 -2.8793367×10−65

where

ζ = max{2β, 1}η.
Thus we have proved that the sequence{xk} is well defined and relation

(3.12) shows that it converges tox∗ 2-stepQ-superlinearly.
If F is strongly semismooth atx∗, we may prove the 2-stepQ-quadratic

convergence by considering Lemma 2.3.ut
We end this section by giving two numerical examples illustrating the

order of convergence results obtained in Theorems 3.2 and 3.3. The com-
putations were performed inMathematica3.0 with 80 digit precision, but
only the first 8 significant digits are printed. For both examples we have

x∗ = 0, x0 =
1

200
, x−1 =

1
100

.

In Table 1 we list the iterates produced by the classical secant method
for

F (x) =
{
x(x+ 1) if x < 0
−2x(x− 1) if x ≥ 0(3.15)
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In this case we haved− = 1, d+ = 2 and the numerical results show clearly
that the sequence is 3-step Q-quadratically convergent.

Table 2 presents the iterates for

F (x) =
{−x(x+ 1) if x < 0

−2x(x− 1) if x ≥ 0(3.16)

Hered− = −1, d+ = 1, and the 2-step Q-quadratic convergence is
evident.

4. A modified secant method for one-dimensional equations

Theorems 3.2 and 3.3 show that by using the classical secant method for
strongly semismooth equations we obtainQ-quadratic convergence with at
most 3 function evaluations per step. From the next lemma it follows that
the classical secant method for strongly semismooth equations hasR-order
at least 3

√
2 if d−d+ > 0, and

√
2 if d−d+ < 0.

Lemma 4.1 If {xk} is a convergent sequence with limitx∗ such that

|xk+p − x∗| = O(|xk − x∗|r),
then theR-order of convergence of{xk} is at least p

√
r.

Proof. The proof is straightforward by using the methods of Ortega and
Rheinboldt [12] and Potra [17]. ut

The next procedure uses only 2 function values per step and attainsQ-
superlinear (quadratic) convergence.

Algorithm 4.2 (A modified secant method)

Step 1. Givenx0 ∈ <n andε ∈ (0,∞). Lety0 = x0+ε|F (x0)|F (x0).
ComputeδF (x0, y0). k := 0.
Step 2. Set

xk+1 = xk − δF (xk, yk)−1F (xk).(4.1)

Step 3.k := k + 1. Set

yk = xk + ε|F (xk)|F (xk).

Go to step 2.

The above procedure is closely related to Steffensen’s method [25]. An
iterative procedure, very similar to Algorithm 4.2 was considered for gen-
eral operator equations in Banach spaces in [16, formula (24)]. The above
mentioned procedures are quadratically convergent in the smooth case. In
the next theorem we prove that Algorithm 4.2 is quadratically convergent
for strongly semismooth equations as well.
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Theorem 4.3 Suppose thatx∗ is a solution of (2.1) andF is semismooth
at x∗. If d− andd+ are nonzero, then the iteration (4.1) is well defined in a
neighborhood ofx∗ and converges tox∗ Q-superlinearly. Furthermore, if
F is strongly semismooth atx∗, the convergence isQ-quadratic.

Proof. We may choosex0 sufficiently close tox∗ such that we have either
x0, y0 > x∗ or x0, y0 < x∗. According to Lemma 2.3, (4.1) is well defined
for k = 0. It is easy to see that

|yk − xk| = O(|F (xk)|2) = O(|xk − x∗|2).
Then from Lemma 2.3,

δF (xk, yk) = δF (xk, x∗) + o(1) = d+ + o(1) (or = d− + o(1)).

Therefore,

|xk+1 − x∗| = |xk − x∗ − δF (xk, yk)−1F (xk)|
≤ |δF (xk, yk)−1||F (xk) − F (x∗) − δF (xk, yk)(xk − x∗)|
≤ |δF (xk, yk)−1||δF (xk, x∗) − δF (xk, yk)||xk − x∗|
= o(|xk − x∗|).(4.2)

This completes the proof of superlinear convergence of{xk}. If F is
strongly semismooth atx∗, we may prove similarly that{xk} converges to
x∗ Q-quadratically in a neighborhood ofx∗. ut

5. Composite semismooth equations

In the previous section we have discussed a modified secant method for
one-dimensional semismooth equations. It appears difficult to extend it to
generaln-dimensional semismooth equations. However, most semismooth
equations arising from concrete problems such as nonlinear complemen-
tarity problems and variational inequalities have a special structure which
allows a generalization of the modified secant method considered above. In
what follows we will show that such a generalization is possible when the
operatorF : <n → <n is of the form

F (x) = Φ(G(x))(5.1)

or

F (x) = H(Ψ(x)),(5.2)

where in (5.1)Φ : <m → <n is nonsmooth but of special structure and
G : <n → <m is continuously differentiable, while in (5.2)H : <p →
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<n is continuously differentiable andΨ : <n → <p is nonsmooth but of
special structure. For example, given a continuously differentiable mapping
E : <n → <n, the nonlinear complementarity problem NCP(E) is to find
x ∈ <n such that

x ≥ 0, E(x) ≥ 0, xTE(x) = 0.

Then NCP(E) is equivalent to finding a solution of the following (nons-
mooth) equations:

F (x) = min(x,E(x)) = 0(5.3)

or

F (x) = (ψ(x1, E1(x)), ..., ψ(xn, En(x))) = 0,(5.4)

where the operatormin denotes the component-wise minimum of two vec-
tors andψ : <2 → < is the Fischer-Burmeister function [6]:

ψ(a, b) =
√
a2 + b2 − (a+ b), a, b ∈ <.

Both (5.3) and (5.4) are of the form (5.1). Solving NCP(E) is also equivalent
to finding a solution of the nonsmooth equation

F (z) = E(z+) + z − z+ = 0,(5.5)

in the sense that ifx solves NCP(E) thenz := x−E(x) is a solution of (5.5),
and, conversely, ifz is a solution of (5.5) thenx := z+ solves NCP(E). The
functionF in (5.5) is clearly of the form (5.2). For more problems which
can be written under the form (5.1) or (5.2), see [15] and [23].

Let us first give an analogue to Algorithm 4.2 for solving (2.1) withF
of the form (5.1). Letε > 0 be a given constant. Then for anyx such that
F (x) 6= 0 we define the matrix

V (x) = (V (x)ij),(5.6)

with

V (x)ij =
Gi(x+ ε‖F (x)‖ej) −Gi(x)

ε‖F (x)‖ ,

i = 1, ...,m, j = 1, ..., n,(5.7)

whereej is thejth unit vector of<n.

With the above notation we define the following iterative procedure for
solving equations of the form (5.1).

Algorithm 5.1 (A secant method forΦ(G(x)) = 0)
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Step 1. Givenx0 ∈ <n. ComputeV0 := V (x0) whereV (x0) is
defined as in (5.6) and (5.7) and setk := 0.
Step 2. Compute anUk ∈ ∂BΦ(y)|y=G(xk) and setWk = UkVk.
Step 3. Set

xk+1 = xk −W−1
k F (xk).(5.8)

Step 4.k := k + 1. ComputeVk := V (xk). Go to Step 2.

Before giving the convergence analysis of the above secant method, let
us explain, by means of an example, how it works for operatorsF of the
form (5.4). In this casem = 2n and we have

G(x) =
(

x
E(x)

)
, V (x) =

(
I

T (x)

)
,

whereI ∈ <n×n is the identity matrix and

T (x)ij =
Ei(x+ ε‖F (x)‖ej) − Ei(x)

ε‖F (x)‖ , i = 1, ..., n, j = 1, ..., n.

Also
U(x) = (R(x), S(x)),

whereR(x), S(x) are diagonal matrices. Ifx2
i + Ei(x)2 6= 0 then

Rii(x) =
xi√

x2
i + Ei(x)2

− 1, Sii(x) =
Ei(x)√

x2
i + Ei(x)2

− 1.

If x2
i + Ei(x)2 = 0 then we define

Rii(x) = αi − 1, Sii(x) = βi − 1

for anyαi, βi ∈ < such thatα2
i + β2

i = 1.
Note that we only need the value ofE(x) and we do not make any use

of the derivative ofE(x).

Lemma 5.2 Suppose thatx∗ is a solution of (2.1) andF is of the form (5.1)
withΦ locally Lipschitz aroundG(x∗) andG continuously differentiable.

If all matricesW ∈ ∂BΦ(y∗)|y∗=G(x∗)G
′(x∗) are nonsingular, then

there exist a neighborhoodN(x∗) of x∗ and a constantC such that all
matricesW ∈ ∂Φ(y)|y=G(x)V (x), x ∈ N(x∗) are nonsingular and

‖W−1‖ ≤ C.

Proof.The proof follows easily by noting that∂BΦ(·) is upper semi-contin-
uous, the set∂BΦ(y)|y=G(x) is compact, andV (x) → G′(x∗) asx → x∗.
ut
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Theorem 5.3 Suppose thatx∗ is a solution of (2.1) andF is of the form
(5.1) withΦ semismooth atG(x∗) andG continuously differentiable.

If all matricesW ∈ ∂BΦ(y∗)|y∗=G(x∗)G
′(x∗) are nonsingular, then the

iterative procedure (5.8) is well defined in a neighborhood ofx∗ and the
sequence generated by it converges tox∗ Q-superlinearly. Furthermore, if
Φ is strongly semismooth atG(x∗) andG′ is Lipschitz continuous atx∗,
then the convergence isQ-quadratic.

Proof. According to Lemma 5.2, formula (5.8) is well defined fork := 0.
From Lemmas 2.1 and 5.2 we get

‖xk+1 − x∗‖ = ‖xk −W−1
k F (xk)‖

≤ ‖W−1
k ‖‖F (xk) − F (x∗) −Wk(xk − x∗)‖

≤ ‖W−1
k ‖(‖Φ(G(xk))−Φ(G(x∗))−Uk(G(xk)−G(x∗))‖
+‖Uk(G(xk) −G(x∗) − Vk(xk − x∗))‖)

= o(‖G(xk) −G(x∗)‖) + o(‖xk − x∗‖)
= o(‖xk − x∗‖,(5.9)

which completes the proof ofQ-superlinear convergence. In a similar man-
ner we getQ-quadratic convergence under the strong semismoothness as-
sumptions. ut.

In order to construct a secant method for solving (2.1) whenF is of the
form (5.2), we consider the following matrix for any given constantε > 0
and anyx such thatF (x) 6= 0:

U(x) = (U(x)ij),(5.10)

with

U(x)ij =
Hi(Ψ(x) + ε‖F (x)‖ej) −Hi(Ψ(x))

ε‖F (x)‖ ,(5.11)

i = 1, ..., n, j = 1, ..., p,

whereej is thejth unit vector of<p.

Algorithm 5.4 (A secant method forH(Ψ(x)) = 0)

Step 1. Givenx0 ∈ <n. ComputeU0 := U(x0) as defined in (5.10)
and (5.11).k := 0.
Step 2. Compute aVk ∈ ∂BΨ(xk) and SetWk = UkVk.
Step 3. Set

xk+1 = xk −W−1
k F (xk).(5.12)

Step 4.k := k + 1. ComputeUk := U(xk). Go to Step 2.
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Similarly to Lemma 5.2 and Theorem 5.3, we have the following con-
vergence results for the above secant method.

Lemma 5.5 Suppose thatx∗ is a solution of (2.1) andF is of the form (5.2)
with Ψ locally Lipschitz aroundx∗ andH continuously differentiable.

If all matricesW ∈ H ′(Ψ(x∗))∂BΨ(x∗) are nonsingular, then there
exist a neighborhoodN(x∗) of x∗ and a constantC such that all matrices
W ∈ U(x)∂BΨ(x), x ∈ N(x∗) are nonsingular and

‖W−1‖ ≤ C.

The proof of the above lemma is straightforward and therefore is omitted.

Theorem 5.6 Suppose thatx∗ is a solution of (2.1) andF is of the form
(5.2) withΨ semismooth atx∗ andH continuously differentiable.

If all matricesW ∈ H ′(Ψ(x∗))∂BΨ(x∗) are nonsingular, then the it-
erative procedure (5.12) is well defined in a neighborhood ofx∗ and the
sequence generated by it converges tox∗ Q-superlinearly. Furthermore, if
Ψ is strongly semismooth atx∗ andH ′ is Lipschitz continuous atΨ(x∗),
then the convergence isQ-quadratic.

Proof.According to Lemma 5.5, iteration (5.12) is well defined fork = 0.
From Lemmas 2.1 and 5.5 we deduce that

‖xk+1 − x∗‖ = ‖xk − x∗ −W−1
k F (xk)‖

≤ ‖W−1
k ‖‖F (xk) − F (x∗) −Wk(xk − x∗)‖

≤ ‖W−1
k ‖(‖H(Ψ(xk))−H(Ψ(x∗))−Uk(Ψ(xk)−Ψ(x∗))‖
+‖Uk(Ψ(xk) − Ψ(x∗) − Vk(xk − x∗))‖)

= o(‖Ψ(xk) − Ψ(x∗)‖) + o(‖xk − x∗‖)
= o(‖xk − x∗‖,(5.13)

which completes the proof ofQ-superlinear convergence. By a similar anal-
ysis, we can prove theQ-quadratic convergence whenΨ is strongly semis-
mooth. ut

6. Final remarks

In this paper we discuss several secant methods for semismooth equa-
tions. For one-dimensional equations, we prove that the classical secant
method convergesR-superlinearly under the standard assumptions used in
the study of the generalized Newton method. A modification of the clas-
sical secant method requiring two function evaluations per step converges
Q-superlinearly. Forn-dimensional semismooth equations, we give secant
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methods for two classes of composite semismooth equations. At present,
we cannot establish superlinear convergence for secant methods for solving
general semismooth equations. Fortunately, in practice, most semismooth
equations have the structure studied in this paper.

We note that for special composite semismooth equations, quasi-Newton
methods have been discussed in [21,26,8]. By considering the discussion
given in Sect. 5, we may generalize the quasi-Newton methods discussed in
the above cited papers to composite semismooth equations of the form (5.1)
or (5.2). For general nonsmooth equations, differentiability at the solution
has to be assumed in order to ensure superlinear convergence of quasi-
Newton methods as shown in [9,10], [20].
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