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Abstract The tensor complementarity problem is a special instance in the class of nonlinear complementarity

problems, which has many applications in multi-person noncooperative games, hypergraph clustering problems

and traffic equilibrium problems. Two most important research issues are how to identify the solvability and how

to solve such a problem via analyzing the structure of the involved tensor. In this paper, based on the concept

of monotone mappings, we introduce a new class of structured tensors and the corresponding monotone tensor

complementarity problem. We show that the solution set of the monotone tensor complementarity problem is

nonempty and compact under the feasibility assumption. Moreover, a necessary and sufficient condition for

ensuring the feasibility is given via analyzing the structure of the involved tensor. Based on the Huber function,

we propose a regularized smoothing Newton method to solve the monotone tensor complementarity problem

and establish its global convergence. Under some mild assumptions, we show that the proposed algorithm is

superlinearly convergent. Preliminary numerical results indicate that the proposed algorithm is very promising.
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1 Introduction

The finite-dimensional complementarity problem has been studied extensively due to its plenty of practical

applications [11,16,17]. When the involved function is nonlinear, it is called a nonlinear complementarity

problem (NCP). It is well known that various special types of functions play important roles in the studies

of NCPs. In recent years, various tensors with special structures have been studied widely [33, 35]. In

2015, as an application of structured tensors, a class of NCPs with the involved function being defined by

a tensor, which is called the tensor complementarity problem (TCP), was used in [40], and it was studied

initially by Song and Qi [41] and Che et al. [3]. Since then, the TCP has attracted much attention

and obtained rapid development from theory to solution methods and applications. The state-of-the-art

studies for the TCP and related models have been summarized in the recent survey papers [21,22,34]. Very
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recently, some generalizations of the TCP, such as the stochastic TCP [4, 10, 29], the tensor variational

inequality [45], the polynomial complementarity problem [13] and the weakly homogeneous variational

inequality [14,27], have been studied.

TCPs have many applications in multi-person noncooperative games [7, 20], hypergraph clustering

problems and traffic equilibrium problems [34]. Therefore, it is necessary to establish the theory and

solution methods for the TCP via analyzing the special structure of the involved tensor. Since the TCP

is a subclass of the NCP, the theory and solution methods for NCPs are applicable to TCPs, if the

required conditions are satisfied. However, since the function involved in the TCP is a special class of

polynomials defined by a tensor, one may expect to obtain stronger theoretical results and more effective

methods by making use of the structure of the involved tensor. In the theoretical studies of the NCP,

the monotonicity properties play important roles [11,16,17]. It is well known that the NCP has no more

than one solution when the involved function is strictly monotone on R
n
+; the NCP is possibly unsolvable

even if it is feasible when the involved function is monotone on R
n
+. A natural question is how about the

solvability of the TCP under the same condition. This is a significant research issue to be considered in

this paper.

How to design efficient solution methods for such TCPs, particularly for large-scale ones, is also very

important. It is well known that the smoothing Newton-type algorithm is a class of effective methods

for solving NCPs (see [5, 6, 8, 12, 18, 23, 30, 36] and [37, 43, 47, 49]). Although such solution methods in

the literature have been used to solve the TCP [7, 20], the global convergence has not been studied in

details yet. In this paper, we present a smoothing Newton-type algorithm to solve the TCP. Based on the

Huber function [24], which is widely used in many fields such as statistic optimization and compression

sensing [2, 46], we reformulate the TCP as a system of smoothing equations. We apply a Newton-type

method to solve the system of smoothing equations at each iteration by ensuring the smoothing parameter

to tend to zero so that a solution to the TCP can be found. We show that the solution set of the monotone

TCP is nonempty and compact if it is feasible. Moreover, the global and superlinear convergence of the

proposed algorithm is also established.

The basic contribution of this paper is as follows:

• Based on the concept of monotone mappings, we introduce the strictly positive semidefinite tensor

on R
n
+ and the corresponding monotone TCP.

• We show that the solution set of the monotone TCP is nonempty and compact under the feasibility

assumption. This result is stronger than that of the NCP. A necessary and sufficient condition for ensuring

the feasibility is given based on the structure of the involved tensor.

• We construct a novel Newton-type algorithm for solving such TCPs via the Huber function and the

normal equation.

The rest of this paper is organized as follows. In Section 2, we recall some basic symbols, definitions and

conclusions. In Section 3, we introduce a new class of structured tensors and investigate the solvability

of the corresponding TCP. In Section 4, we present a smoothing Newton method to solve such a TCP

and establish the global convergence in Section 5. Numerical results are reported in Section 6 and some

conclusions are given in Section 7.

2 Preliminaries

In this section, we recall some basic concepts and results, which are useful for our subsequent analysis.

Throughout this paper, for any given positive integer n, we use [n] to denote the set {1, . . . , n}.
A = (ai1···im) with ai1···im ∈ R for any ij ∈ [n] and j ∈ [m] is called an m-th-order n-dimensional real

tensor, and we denote the set of all them-th-order n-dimensional real tensors by R
[m,n]. We denote scalars,

vectors and tensors by lowercase letters, bold lowercase letters and calligraphic letters, respectively, for

example, a, a and A correspondingly. For any A ∈ R
[m,n] and x = (x1, . . . , xn)

T ∈ R
n, ‖x‖ denotes the

2-norm, x+ = max{x,0} ∈ R
n, and Axm−1 ∈ R

n is a column vector defined by

(Axm−1)i =

n∑
i2,...,im=1

aii2···imxi2 · · ·xim , ∀ i ∈ [n].
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For x,y ∈ R
n, let x � (>)y mean xi � (>) yi for any i ∈ [n]. In addition, 0 is the vector of all zeros,

e is the vector of all ones, Rn
++ = {x ∈ R

n | x > 0} and R
n
+ = {x ∈ R

n | x � 0}. We also define

R++ = {x ∈ R | x > 0}.
Given a function F : Rn

+ → R
n, then the NCP (denoted by NCP(F )) is to find a point x ∈ R

n such

that

x � 0, F (x) � 0, xTF (x) = 0.

When F (x) = Axm−1 + q with given A ∈ R
[m,n] and q ∈ R

n, NCP(F ) reduces to the TCP (denoted by

TCP(A, q)), which consists in finding a point x ∈ R
n such that

x � 0, Axm−1 + q � 0, xT(Axm−1 + q) = 0. (2.1)

The TCP(A, q) (2.1) arises in many real applications from multi-person noncooperative games,

hypergraph clustering problems and traffic equilibrium problems [22].

In the theoretical studies of the NCP, some special types of functions play important roles [11,16,17].

The following two classes of functions will be used in this paper.

Definition 2.1. A mapping F : Ω ⊆ R
n → R

n is said to be

(a) monotone on Ω, if for all x,y ∈ Ω, (x− y)T(F (x)− F (y)) � 0;

(b) strictly monotone on Ω, if for all x,y ∈ Ω with x �= y, (x− y)T(F (x)− F (y)) > 0.

If F is a continuously differentiable function defined on an open convex set, we have the following

connection between the above monotonicity properties and the positive semidefiniteness of the Jacobian

matrices JF of F [11, Proposition 2.3.2].

Proposition 2.2. Let F : Ω ⊆ R
n → R

n be continuously differentiable on an open convex set Ω. The

following statements are valid:

(a) F is monotone on Ω if and only if JF (x) is positive semidefinite for all x ∈ Ω, i.e.,

∀x ∈ Ω, dTJF (x)d � 0, ∀d ∈ R
n.

(b) F is strictly monotone on Ω if JF (x) is positive definite for all x ∈ Ω, i.e.,

∀x ∈ Ω, dTJF (x)d > 0, ∀d ∈ R
n, d �= 0.

Obviously, every strictly monotone function is a monotone function. With the above definition, we

have the following proposition for NCP(F ) (see, e.g., [17, Proposition 3.2] and [11,16]).

Proposition 2.3. If F is strictly monotone on R
n
+, then NCP(F ) has no more than one solution. If

F is monotone on R
n
+, then NCP(F ) is possibly unsolvable even if it is feasible, i.e., there exists an x̂ � 0

such that F (x̂) � 0.

Recently, many classes of structured tensors are introduced, and the related properties are studied

[1,15,33,35,42,45,48]. Among them, there is a class of structured tensors connected with the monotonicity

properties [45, Definition 4.1]. In this paper, we need the following concepts of the structured tensors

(see, e.g., [31, 32,45]).

Definition 2.4. Let A ∈ R
[m,n]. Then A is said to be

(a) a positive semidefinite tensor if xTAxm−1 � 0 for all x ∈ R
n; a positive definite tensor if

xTAxm−1 > 0 for all x ∈ R
n with x �= 0;

(b) a copositive tensor if xTAxm−1 � 0 for all x ∈ R
n
+; a strictly copositive tensor if xTAxm−1 > 0

for all x ∈ R
n
+ with x �= 0;

(c) a strictly positive definite tensor on Ω if Axm−1 is strictly monotone on Ω, where Ω ⊆ R
n and

Ω �= ∅.
Obviously, when Ω = R

n
+, every strictly positive definite tensor must be a strictly copositive tensor;

when Ω = R
n, every strictly positive definite tensor must be a positive definite tensor if m is even.

However, if m > 2, a positive definite tensor is not necessarily a strictly positive definite tensor [45].

By virtue of [45, Theorem 4.3], we immediately obtain the following theorem.
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Theorem 2.5. Let A ∈ R
[m,n] be a strictly positive definite tensor on R

n
+. Then the TCP(A, q) (2.1)

has a unique solution for any q ∈ R
n.

The exceptional family of elements is a powerful tool to investigate the solvability of NCP(F ) [11, 16,

25,26]. In this paper, we use the following definition [25].

Definition 2.6. A set of points {xk} ⊂ R
n
+ is an exceptional family of elements for the continuous

function F : Rn
+ → R

n, if ‖xk‖ → ∞ as k → +∞, and for each k > 0, there exists a scalar μk > 0 such

that {
Fi(x

k) = −μkx
k
i , if xk

i > 0,

Fi(x
k) � 0, if xk

i = 0.

About the relationship between the exceptional family of elements and the solution to NCP(F ), we

will use the following lemma whose proof can be found in [25].

Lemma 2.7. For any continuous function F : Rn
+ → R

n, there exists either a solution to NCP(F ) or

an exceptional family of elements for F .

3 Monotone TCPs

In this section, we introduce a new class of structured tensors based on the concept of the monotone

mapping given in Definition 2.1 and study the solvability of the corresponding TCP.

Definition 3.1. Let Ω ⊆ R
n and Ω �= ∅. A tensor A ∈ R

[m,n] is said to be strictly positive

semidefinite on Ω if Axm−1 is monotone on Ω. We say that the TCP(A, q) (2.1) is a monotone TCP

if the involved tensor A is strictly positive semidefinite on R
n
+.

A basic question is whether or not there exists a strictly positive semidefinite tensor on some subset

of Rn. The following example gives a positive answer to this question.

Example 3.2. Let Ω = R
2
+, and A = (aijk) ∈ R

[3,2] be defined as a112 = 2, a211 = −1 and the other

elements be equal to zero. Then A is a strictly positive semidefinite tensor on Ω.

For any x = (x1, x2)
T ∈ R

2
+, we define

G(x) := Ax2 =

(
2x1x2

−x2
1

)
.

By direct computation, we obtain that the Jacobian matrix of G(x) is

JG(x) =

(
2x2 2x1

−2x1 0

)
.

It is easy to see that the matrix JG(x) is positive semidefinite on R
2
+. By Proposition 2.2(a) and

Definition 3.1, we obtain that A is a strictly positive semidefinite tensor on R
2
+.

Remark 3.3. Every strictly positive definite tensor on Ω must be a strictly positive semidefinite tensor

on Ω. In addition, when Ω = R
n
+, every strictly positive semidefinite tensor must be a copositive tensor;

when Ω = R
n, every strictly positive semidefinite tensor must be a positive semidefinite tensor if m is

even.

However, if m > 2, a positive semidefinite tensor is not necessarily a strictly positive semidefinite

tensor, which can be seen in the following example.

Example 3.4. Let A = (aijkl) ∈ R
[4,2] be defined as a1111 = a2222 = a2112 = 1, a1122 = −1 and the

others be equal to zero. Then A is a positive definite tensor but it is not a strictly positive semidefinite

tensor on R
2.
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First, we show that A is a positive definite tensor. For any x = (x1, x2)
T ∈ R

2, we define

G(x) := Ax3 =

(
x3
1 − x1x

2
2

x2
1x2 + x3

2

)
. (3.1)

It follows that for any x ∈ R
2 with x �= 0,

xTAx3 = x1(x
3
1 − x1x

2
2) + x2(x

2
1x2 + x3

2) = x4
1 + x4

2 > 0.

Hence, A is a positive definite tensor from Definition 2.4(a).

Second, we show that A is not a strictly positive semidefinite tensor on R
2. To this end, we compute

the Jacobian matrix of G(x) defined by (3.1), i.e.,

JG(x) =

(
3x2

1 − x2
2 −2x1x2

2x1x2 3x2
2

)
.

Taking x̂ = (0, 1)T ∈ R
2, we have

JG(x̂) =

(
−1 0

0 3

)
.

It is easy to see that JG(x̂) is not a positive semidefinite matrix. By Proposition 2.2(a) and Definition 3.1,

A is not a strictly positive semidefinite tensor on R
2.

We now investigate the solvability of the monotone TCP(A, q) (2.1) for any given q ∈ R
n. It is easy

to see that the following result holds.

Theorem 3.5. Let A ∈ R
[m,n] be a strictly positive semidefinite tensor on R

n
+. Then the

TCP(A, q) (2.1) has at least one solution if q � 0, and 0 is a unique solution if q > 0.

We can confirm that a monotone TCP(A, q) is not necessarily solvable for any q ∈ R
n. Consider the

following TCP(A, q), where A is given in Example 3.2 and q = (q1, q2)
T ∈ R

2, which consists in finding

x = (x1, x2)
T ∈ R

2 such that{
x1 � 0,

x2 � 0,

{
2x1x2 + q1 � 0,

−x2
1 + q2 � 0,

{
x1(2x1x2 + q1) = 0,

x2(−x2
1 + q2) = 0.

(3.2)

From Theorem 3.5, the TCP (3.2) has at least one solution when q � 0. For example, taking q1 = 0 and

q2 = 1, we obtain that all x = (w, 0)T with w ∈ (0, 1] are solutions. It is easy to see that the solutions to

the TCP (3.2) are distributed into four cases as follows:

• When q1 � 0 and q2 � 0, it has at least one solution.

• When q1 ∈ R and q2 < 0, it has no solution.

• When q1 < 0 and q2 = 0, it has no solution.

• When q1 < 0 and q2 > 0, it has a unique solution x∗ = (
√
q2,

−q1
2
√
q2
)T.

Based on the above observations, we may ask a natural question: under what conditions is the monotone

TCP(A, q) solvable for any q ∈ R
n? In what follows, we present a sufficient condition to guarantee that

the monotone TCP(A, q) is solvable for any q ∈ R
n. For this aim, we need the following lemmas.

Lemma 3.6. Let A ∈ R
[m,n]. Then there exists a vector u ∈ R

n
+ such that Aum−1 > 0 if and only if

for any q ∈ R
n, the TCP(A, q) is feasible, i.e., there exists a v � 0 such that Avm−1 + q � 0.

Proof. On the one hand, assume that the TCP(A, q) is feasible for any q ∈ R
n. Then taking q < 0,

we know that there must exist a vector u � 0 such that Aum−1 + q � 0 ⇒ Aum−1 � −q > 0, which

implies that there exists a u ∈ R
n
+ such that Aum−1 > 0.

On the other hand, assume that there exists a u ∈ R
n
+ such that Aum−1 > 0. Then we have u �= 0

and for any given q ∈ R
n we can find the desired vector v. In fact, if qi < 0 for some i ∈ [n], then we

take

t = max
i∈[n]

{ −qi
(Aum−1)i

∣∣∣∣ qi < 0

}
+ 1, v = t

1
m−1u.
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Clearly, v � 0, v �= 0 and Avm−1 + q > 0.

Lemma 3.7. Let F (x) = Axm−1 + q for any given A ∈ R
[m,n] and q ∈ R

n. If there is a vector

u ∈ R
n
+ such that Aum−1 > 0 and the tensor A is strictly positive semidefinite on R

n
+, then for any

sequence {xk} ⊂ R
n
+ with ‖xk‖ → ∞ as k → +∞, there exist k0 and y ∈ R

n
+ with ‖y‖ < ‖xk0‖ such

that (xk0 − y)TF (xk0) > 0.

Proof. Since u � 0 and Aum−1 > 0, by Lemma 3.6, there exists a nonzero vector v � 0 such that

F (v) > 0 and vTF (v) > 0. Assume that there exists a sequence {xk} ⊂ R
n
+ with ‖xk‖ → ∞ as k → ∞

such that

(xk − y)TF (xk) � 0, ∀y ∈ R
n
+, ‖y‖ < ‖xk‖, ∀ k > 0. (3.3)

Since ‖xk‖ → ∞ as k → ∞, we have ‖v‖ < ‖xk‖ holds for sufficiently large k. It follows from (3.3) that

(xk − v)TF (xk) � 0 for sufficiently large k. Since A is strictly positive semidefinite on R
n
+, we have

(xk − v)T(F (xk)− F (v)) � 0.

Hence, we obtain that for sufficiently large k,

0 � (xk − v)TF (xk) � (xk − v)TF (v) ⇒ 0 � (xk)TF (v) � vTF (v), (3.4)

which implies that the sequence {xk} is bounded. This is a contradiction with ‖xk‖ → ∞ as k → ∞.

Hence, the desired result holds.

Let SOL(A, q) denote the solution set of the TCP(A, q) (2.1). Based on the above lemmas, one can

show that SOL(A, q) is bounded for the monotone TCP(A, q).

Theorem 3.8. Let A ∈ R
[m,n] be a strictly positive semidefinite tensor on R

n
+. If there exists a u ∈ R

n
+

such that Aum−1 > 0, then the solution set SOL(A, q) is nonempty and compact for any q ∈ R
n.

Proof. We first show that SOL(A, q) �= ∅. Suppose that the monotone TCP(A, q) (2.1) has no solution.

Then by Lemma 2.7, there exists an exceptional family of elements {xk} ⊂ R
n
+ for F (x) = Axm−1 + q.

Thus, we have ‖xk‖ → ∞ as k → ∞, and for each k > 0, there exists a scalar μk > 0 such that

yk = F (xk) + μkx
k � 0, (xk)Tyk = 0 and

Fi(x
k) =

{
yki − μkx

k
i , if xk

i > 0,

yki , if xk
i = 0.

Hence, for any z ∈ R
n
+ and each k > 0, we have

(xk − z)TF (xk) =
∑
xk
i >0

(xk
i − zi)(y

k
i − μkx

k
i ) +

∑
xk
i =0

(xk
i − zi)y

k
i

= −zTyk − μk

∑
xk
i >0

(xk
i − zi)x

k
i � μk

∑
xk
i >0

xk
i (zi − xk

i )

= μk(x
k)T(z − xk) � μk‖xk‖(‖z‖ − ‖xk‖). (3.5)

On the other hand, by Lemma 3.7, there exist z0 ∈ R
n
+ and xk0 with ‖z0‖ < ‖xk0‖ such that

(xk0 − z0)TF (xk0) > 0. Thus, it follows from (3.5) that

0 < (xk0 − z0)TF (xk0) � μk0‖xk0‖(‖z0‖ − ‖xk0‖) < 0,

which leads to a contradiction. Therefore, the TCP(A, q) has at least one solution, i.e., SOL(A, q) �= ∅.
We now show that the solution set SOL(A, q) is compact. Let {xk} ⊂ SOL(A, q) be a sequence with

xk → x∗ as k → ∞. Then it follows that

xk � 0, A(xk)m−1 + q � 0, (xk)T(A(xk)m−1 + q) = 0.
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Thus, letting k → ∞, we obtain

x∗ � 0, A(x∗)m−1 + q � 0, (x∗)T(A(x∗)m−1 + q) = 0,

i.e., x∗ ∈ SOL(A, q). Hence, the solution set SOL(A, q) is closed.

Suppose that the solution set SOL(A, q) is unbounded. Then there exists a sequence {xk} ⊂ SOL(A, q)

such that ‖xk‖ → ∞ as k → ∞. By Lemma 3.7, there exist z0 ∈ R
n
+ and xk0 with ‖z0‖ < ‖xk0‖ such

that (xk0 − z0)TF (xk0) > 0. Consequently, we obtain

0 < (xk0 − z0)TF (xk0) = −(z0)TF (xk0) � 0,

which leads to a contradiction. So the solution set SOL(A, q) is bounded. Consequently, the solution set

SOL(A, q) is nonempty and compact for any q ∈ R
n.

Remark 3.9. In the theory of NCPs, when the involved function F is monotone on R
n
+, one cannot

ensure that the corresponding NCP(F ) is solvable even if it is feasible; when the involved function F is

strictly monotone on R
n
+, one can only obtain that the corresponding NCP(F ) has no more than one

solution (see Proposition 2.3). For the TCP(A, q), the special case of NCP(F ), when the involved tensor

A is strictly positive semidefinite on R
n
+ and hence the corresponding function F (x) = Axm−1 + q is

monotone on R
n
+, we can obtain that the corresponding TCP(A, q) is solvable if it is feasible for any

q ∈ R
n, and the solution set is compact from Lemma 3.6 and Theorem 3.8. Furthermore, if the involved

tensor A is strictly positive definite on R
n
+ and hence the corresponding function F (x) = Axm−1 + q is

strictly monotone on R
n
+, we can obtain that the corresponding TCP(A, q) has a unique solution from

Theorem 2.5.

4 A Newton-type algorithm for TCPs

In this section, based on the well-known Huber function, we propose a smoothing Newton method to

solve the monotone TCP.

For the sake of convenience, we define F (x) = Axm−1 + q. Then the TCP(A, q) (2.1) is equivalent to

the following normal equation:

G(x) := F (x+) + x− x+ = 0 (4.1)

in the sense that if x∗ ∈ R
n is a solution to (4.1) then x∗

+ is a solution to (2.1), and conversely if x∗ is a

solution to (2.1), then x∗ − F (x∗) is a solution to (4.1) [37, 39, 44].

We now propose a smoothing Newton method for solving the normal equation (4.1). The non-

smoothness of x+ in (4.1) prevents a straightforward application of the classical Newton method to (4.1).

Thus, we first focus on approximating the nonsmooth x+ by a smooth function. We recall the following

Huber function [24]:

hγ(t) =

⎧⎪⎨
⎪⎩

t2

2γ
, if |t| � γ,

|t| − γ

2
, if |t| > γ,

where γ > 0 is a given constant and t ∈ R. The smaller the parameter γ of the Huber function is,

the better the function approximates |t|. This function is quadratic for |t| � γ and linear for |t| > γ.

In addition, it is convex and first-order differentiable. Moreover, it has the nice sparsity property [2].

These features allow it to be widely used in many fields such as machine learning, statistic optimization

and compressed sensing recently [2, 46]. Let μ > 0 be a given constant. After considering these good

properties of the so-called Huber function and a+ = |a|+a
2 with a+ = max{a, 0} for any a ∈ R, we propose



654 Zhang L P et al. Sci China Math March 2023 Vol. 66 No. 3

the following Huber-type smoothing function of a+:

φ(μ, a) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a2

4μ
+

a

2
, if |a| � μ,

a− μ

4
, if a > μ,

−μ

4
, if a < −μ.

(4.2)

It is easy to see that φ(μ, ·) is also convex and continuously differentiable with

φ′(μ, a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a

2μ
+

1

2
, if |a| � μ,

1, if a > μ,

0, if a < −μ.

(4.3)

Moreover, φ(μ, a) has the following property:

|φ(μ, a)− a+| � μ

4
, (4.4)

which implies that the smaller the parameter μ of the function φ(μ, a) is, the better the function

approximates a+.

Based on the smooth function φ(μ, a) defined as (4.2), we define a smoothing function of G(x) as

G(μ,x) = F (Φ(μ,x)) + x− Φ(μ,x), (4.5)

where Φ(μ,x) ∈ R
n is given by

Φ(μ,x) =

⎛
⎜⎜⎝
φ(μ, x1)

...

φ(μ, xn)

⎞
⎟⎟⎠ .

Clearly, G(·, ·) is continuous on R
n+1 and is continuously differentiable on R++ × R

n. Then by (4.4), to

solve the TCP (2.1) is equivalent to solve

H(μ,x) :=

(
μ

G(μ,x) + μx

)
= 0, (4.6)

where G(μ,x) is defined by (4.5). Since H is continuously differentiable on R++ × R
n and may be

nonsmooth on 0× R
n, we can see (4.6) as a smoothing-nonsmooth reformulation of the TCP (2.1).

Let H : R++ × R
n → R

n+1 be defined by (4.6). We discuss a method to find a solution to H(z) = 0,

where z = (μ,x) ∈ R++ × R
n. Since the Jacobian matrix of H(z) plays an important role for the

discussion, we now take a look at its structure. By straightforward computation, we obtain the following

result based on (4.3).

Theorem 4.1. Let H(z) be defined by (4.6). Then H(z) is continuously differentiable on R++ × R
n

with its Jacobian matrix

JH(z) =

(
1 0T

JF (Φ(μ,x))v(z) + x JF (Φ(μ,x))D(z) + (μ+ 1)I −D(z)

)
, (4.7)

where JF (x) ∈ R
n×n is the Jacobian matrix of F (x), I is an n × n identity matrix, D(z) ∈ R

n×n is a

diagonal matrix with the i-th diagonal element φ′(μ, xi) defined by (4.3) for i ∈ [n], and v(z) ∈ R
n is a

vector with the i-th component

v(z)i =

⎧⎪⎪⎨
⎪⎪⎩
− x2

i

4μ2
, if |xi| � μ,

−1

4
, if |xi| > μ,

i ∈ [n].
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The following theorem shows that the Jacobian matrix JH(z) of H(z) is nonsingular if the tensor A
is strictly positive semidefinite on R

n
+.

Theorem 4.2. Let the Jacobian matrix JH(z) of H(z) be given by (4.7). If the tensor A is strictly

positive semidefinite on R
n
+, then JH(z) is nonsingular on R++ × R

n.

Proof. Since A is strictly positive semidefinite on R
n
+, by Definition 3.1, F (x) is monotone on R

n
+ for

any q ∈ R
n. From Proposition 2.2, the Jacobian matrix JF (x) is positive semidefinite on R

n
+. Hence,

the matrix JF (Φ(μ,x)) is positive semidefinite for any x ∈ R
n. It follows from (4.3) and μ > 0 that for

i ∈ [n],

0 � D(z)ii � 1, 0 < μ � (μ+ 1)−D(z)ii � μ+ 1,

which implies that D(z) is a positive semidefinite diagonal matrix and (μ + 1)I − D(z) is a positive

definite matrix. Consequently, the matrix JF (Φ(μ,x))D(z) + (μ + 1)I − D(z) is nonsingular for any

x ∈ R
n. Thus, the desired result holds.

In what follows, we present a Newton-type algorithm to solve H(z) = 0. Let γ ∈ (0, 1). For any

z = (μ,x) ∈ R++ × R
n, define

β(z) = γ‖H(z)‖min{1, ‖H(z)‖}. (4.8)

Then we have the following theorem.

Theorem 4.3. Choose a scalar μ̄ > 0 such that γμ̄ < 1. Let ū = (μ̄,0) ∈ R++ ×R
n. Then H(z) = 0

if and only if H(z) = β(z)ū.

Proof. Assume that H(z) = 0. We have β(z) = 0 from (4.8), and hence β(z)ū = 0. Consequently,

H(z) = β(z)ū. On the other hand, assume that H(z) = β(z)ū. Then we have

‖H(z)‖(1− γμ̄min{1, ‖H(z)‖}) = 0.

Note that γμ̄min{1, ‖H(z)‖} � γμ̄ < 1. Hence, H(z) = 0.

In order to solve the TCP(A, q), based on (4.8) and Theorem 4.3, we present a Newton-type iteration

method to solve H(z) = 0 following the algorithmic scheme given in [37,44].

Note that Algorithm 1 solves only one linear system of the equation (4.9) and performs only one Armijo-

type line search (4.10). By Theorem 4.2, the equation (4.9) is solvable. The direction dk computed in (4.9)

is an approximated generalized Newton direction of H at zk because β(zk)ū is introduced on the right-

hand side of (4.9). Such an introduction can ensure that all μk’s satisfy μk > 0 and μk � β(zk)μ0 (see

Theorem 4.4). This plays an important role in proving the global convergence of Algorithm 1.

Algorithm 1 A Newton-type algorithm for the monotone TCP

Choose δ ∈ (0, 1), σ ∈ (0, 1
2
) and ε > 0. Let μ0 ∈ R++, x0 ∈ R

n be an arbitrary point and z0 = (μ0,x0). Choose

γ ∈ (0, 1) such that γ‖H(z0)‖ < 1 and γμ0 < 1. Let ū = (μ0,0) ∈ R++ × R
n. Set k := 0.

while ‖H(zk)‖ > ε do

Compute dk = (dk
μ,d

k
x,d

k
y) by solving

H(zk) + JH(zk)d = β(zk)ū. (4.9)

Let mk be the smallest nonnegative integer m satisfying

‖H(zk + δmdk)‖ � (1− σ(1− γμ0)θδ
m)‖H(zk)‖. (4.10)

Let αk = δmk and update zk+1 = zk + αkd
k. Set k := k + 1.

end while

The following theorem shows that Algorithm 1 is well defined.

Theorem 4.4. Algorithm 1 is well defined for solving the TCP(A, q) (2.1) if the tensor A is strictly

positive semidefinite on R
n
+. If Algorithm 1 generates an infinite sequence {zk = (μk,x

k)}, then μk ∈ R++

and μk � β(zk)μ0 for all k.
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Proof. If μk > 0, then the linear system of the equation (4.9) is solvable from Theorem 4.2 at the k-th

iteration. From (4.9), we obtain

dk
μ = −μk + β(zk)μ0,

which together with μk > 0 and (4.8) implies that for α ∈ (0, 1),

μk + αdk
μ = (1− α)μk + αβ(zk)μ0 > 0.

Thus, by Theorem 4.1, H is continuously differentiable at zk + αdk. For any α ∈ (0, 1), define

r(α) = H(zk + αdk)−H(zk)− αJH(zk)dk. (4.11)

Then ‖r(α)‖ = o(α) when α > 0 is sufficiently small. Consequently, combining (4.9), (4.8) and (4.11),

we obtain that for sufficiently small α > 0,

‖H(zk + αdk)‖ � ‖r(α)‖+ (1− α)‖H(zk)‖+ αβ(zk)μ0

� (1− α)‖H(zk)‖+ αγμ0‖H(zk)‖+ o(α)

= (1− α(1− γμ0))‖H(zk)‖+ o(α),

which implies that there exists an α̂ ∈ (0, 1) such that

‖H(zk + αdk)‖ � (1− σ(1− γμ0)α)‖H(zk)‖, ∀α ∈ (0, α̂].

This shows that the Armijo-type line search (4.10) is available at the k-th iteration.

On the other hand, by (4.9) and (4.10), we have αk ∈ (0, 1) and

μk+1 = μk + αkd
k
μ = (1− αk)μk + αkβ(z

k)μ0 > 0.

Hence, it follows from μ0 > 0 that Algorithm 1 is well defined. Moreover, if it generates an infinite

sequence {zk = (μk,x
k)}, then we have μk > 0 for all k.

We now prove that μk � β(zk)μ0 for all k by induction on k. Clearly, β(z0) � γ‖H(z0)‖ < 1 from

(4.8). Thus, we have μ0 � β(z0)μ0. Assume that μk � β(zk)μ0. Then it follows from (4.9) that

μk+1 − β(zk+1)μ0 = (1− αk)μk + αkβ(z
k)μ0 − β(zk+1)μ0

� (β(zk)− β(zk+1))μ0. (4.12)

From (4.8), we have β(zk+1) � γ‖H(zk+1)‖, β(zk+1) � γ‖H(zk+1)‖2 and

β(zk) =

{
γ‖H(zk)‖2, if ‖H(zk)‖ < 1,

γ‖H(zk)‖, otherwise.

It follows from (4.10) that ‖H(zk+1)‖ � ‖H(zk)‖. Hence, by (4.12) we obtain μk+1 � β(zk+1)μ0. So we

complete the proof.

From the proof of Theorem 4.4, it is not difficult to obtain that the sequence {‖H(zk)‖} is monotonically

nonincreasing and hence it is convergent. The following theorem proves that the sequence {μk} is also

monotonically nonincreasing.

Theorem 4.5. Suppose that A ∈ R
[m,n] is strictly positive semidefinite on R

n
+ and {zk = (μk,x

k,yk)}
is an infinite sequence generated by Algorithm 1. Then for any k � 0,

0 < μk+1 � μk � μ0. (4.13)

Proof. First, μ0 > 0. By Theorem 4.4, Algorithm 1 is well defined. Moreover, μk > 0 and μk � β(zk)μ0

for all k � 0. Hence, it follows from (4.9) and (4.10) that

μk+1 = μk + αkd
k
μ = (1− αk)μk + αkβ(z

k)μ0 � (1− αk)μk + αkμk = μk.

Therefore, by the induction on k, (4.13) holds.
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5 Global and superlinear convergence analysis

In this section, we analyze the global convergence for Algorithm 1. For this purpose, we first establish the

following lemmas based on Theorem 4.1 and [19, Lemma 2.4 and Theorem 3.1]. For any (μ,x) ∈ R++×R
n,

define

Q(μ,x) = G(μ,x) + μx. (5.1)

Then it follows from the proof of Theorem 4.1 that the Jacobian matrix of Q(μ,x) is positive definite

and hence Q(μ,x) : R++ × R
n → R

n is a strictly monotone mapping from Proposition 2.2. So we easily

obtain the following results from Lemma 2.4 and Theorem 3.1 in [19], respectively. Because the proofs

are very similar, we omit the proofs of Lemmas 5.1 and 5.2 here.

Lemma 5.1. Suppose that A ∈ R
[m,n] is strictly positive semidefinite on R

n
+ and μ̂1 and μ̂2 are two

given positive numbers such that μ̂1 � μ̂2. Then for any sequence {(μk,x
k)} with μk ∈ [μ̂1, μ̂2] and

‖xk‖ → ∞, we have

lim
k→∞

‖Q(μk,x
k)‖ = ∞.

Lemma 5.2. Suppose that {μk} and {ηk} are two infinite sequences such that for each k � 0, μk > 0

and ηk � 0 satisfying limk→∞ μk = 0 and limk→∞ ηk = 0. For each k � 0, let xk ∈ R
n satisfy

‖Q(μk,x
k)‖ � ηk. If A ∈ R

[m,n] is strictly positive semidefinite on R
n
+ and the solution set SOL(A, q)

of the TCP(A, q) (2.1) is nonempty and bounded, then {xk} remains bounded.

The following theorem proves that each accumulation point of {zk} generated by Algorithm 1 is a

solution to H(z) = 0.

Theorem 5.3. Let A ∈ R
[m,n] in the TCP(A, q) (2.1) be strictly positive semidefinite on R

n
+ and

{zk = (μk,x
k)} be an infinite sequence generated by Algorithm 1. Then we have

lim
k→∞

‖H(zk)‖ = 0, lim
k→∞

μk = 0. (5.2)

Moreover, any accumulation point of {zk} is a solution to H(z) = 0.

Proof. By Theorem 4.4, the sequence {zk = (μk,x
k)} satisfies μk > 0 and μk � β(zk)μ0 for all k � 0.

By (4.10), we have 0 � ‖H(zk+1)‖ � ‖H(zk)‖ for all k � 0. By Theorem 4.5, 0 < μk+1 � μk � μ0 for

all k � 0. Hence, the sequences {‖H(zk)‖}, {μk} and {β(zk)} are all monotonically nonincreasing and

hence they are all convergent. Therefore, there exist h̃ � 0, μ̃ � 0 and β̃ � 0 such that ‖H(zk)‖ → h̃,

μk → μ̃ and β(zk) → β̃ as k → ∞. Moreover, letting k → ∞ in (4.8) and μk � ‖H(zk)‖, we obtain

β̃ = γh̃min{1, h̃}, 0 � μ̃ � h̃.

If h̃ = 0, then we obtain the desired result. Suppose that h̃ > 0. Then, β̃ > 0. Since μk � β(zk)μ0 for

all k � 0, we have

β̃μ0 � μk � μ0, ∀ k � 0.

Hence, by Lemma 5.1, the infinite sequence {xk} must be bounded due to

lim
k→∞

‖Q(μk,x
k)‖ = lim

k→∞

√
‖H(zk)‖2 − μ2

k =

√
h̃2 − μ̃2.

Therefore, the infinite sequence {zk} must be bounded. Then there exists at least one accumulation

point z∗ = (μ∗,x∗) of {zk} such that β̃μ0 � μ∗ � μ0. By taking a subsequence if necessary, we may

assume that {zk} converges to z∗. It is easy to see that

h̃ = ‖H(z∗)‖, β̃ = β(z∗), μ∗ = μ̃.

Hence, we have

‖H(z∗)‖ > 0, 0 < β(z∗) � γ‖H(z∗)‖, 0 < β(z∗)μ0 � μ∗ � μ0. (5.3)
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Thus, by (4.10), we obtain

‖H(zk+1)‖ � (1− σ(1− γμ0)αk)‖H(zk)‖,

which, together with σ ∈ (0, 1) and γμ0 < 1, implies that

lim
k→∞

αk = 0.

It follows from the Armijo-type line search (4.10) that

‖H(zk + αk/δd
k)‖ > (1− σ(1− γμ0)αk/δ)‖H(zk)‖,

which, together with letting k → ∞, yields

H(z∗)TJH(z∗)d∗ � −σ(1− γμ0)‖H(z∗)‖2, (5.4)

where JH(z∗) is well defined from Theorem 4.2, and hence d∗ is the limit point of {dk}. Letting k → ∞
in (4.9), we obtain

JH(z∗)d∗ = −H(z∗) + β(z∗)ū,

which implies

H(z∗)TJH(z∗)d∗ = −‖H(z∗)‖2 + β(z∗)H(z∗)Tū

� −‖H(z∗)‖2 + β(z∗)μ0‖H(z∗)‖,

where the inequality holds from the Cauchy-Schwartz inequality and ‖ū‖ = μ0. Invoking (5.4) and (5.3),

we obtain

(1− σ(1− γμ0))‖H(z∗)‖2 � β(z∗)μ0‖H(z∗)‖ � γμ0‖H(z∗)‖2,
which, together with ‖H(z∗)‖ > 0, yields (1 − σ(1 − γμ0)) � γμ0, i.e., (1 − δ)(1 − γμ0) � 0. However,

since δ ∈ (0, 1) and γμ0 < 1, we have (1− δ)(1− γμ0) > 0, which leads to a contradiction. Consequently,

we must have h̃ = 0 and hence (5.2) must hold. Moreover, if there exists an accumulation point ẑ of

{zk}, then by the continuity, ‖H(ẑ)‖ = 0, i.e., H(ẑ) = 0. So we complete the proof.

Theorem 5.3 shows that any accumulation point of the infinite sequence {zk} generated by Algorithm 1,

if it exists, is a solution to H(z) = 0. Moreover, let z∗ = (μ∗,x∗) be an accumulation point of {zk}. Then
x∗
+ ∈ SOL(A, q) from Theorem 5.3. An important question here is whether such an accumulation point

exists or not. We answer this question by investigating under what conditions the infinite sequence {zk}
generated by Algorithm 1 is bounded. We prove that if the solution set SOL(A, q) of the TCP(A, q) (2.1)

is nonempty and bounded, then such a sequence {zk} must be bounded.

Theorem 5.4. Suppose that A ∈ R
[m,n] in the TCP(A, q) (2.1) is strictly positive semidefinite on R

n
+

and the solution set SOL(A, q) is nonempty and bounded. Then the infinite sequence {zk = (μk,x
k)}

generated by Algorithm 1 is bounded and any accumulation point of {zk} is a solution to H(z) = 0.

Proof. From Theorem 5.3, limk→∞ ‖H(zk)‖ = 0 and limk→∞ μk = 0. Then

lim
k→∞

‖Q(μk,x
k)‖ = lim

k→∞

√
‖H(zk)‖2 − μ2

k = 0.

By Theorem 4.4, μk > 0 for all k � 0. Hence, it follows from Lemma 5.2 that {xk} remains bounded.

Consequently, {zk} is bounded. So from Theorem 5.3, any accumulation point of {zk} is a solution to

H(z) = 0.

From Theorems 3.8 and 5.4, we immediately obtain the following result.

Corollary 5.5. Suppose that A ∈ R
[m,n] in the TCP(A, q) (2.1) is strictly positive semidefinite on R

n
+

and there exists a u � 0 satisfying Aum−1 > 0. Then the infinite sequence {zk = (μk,x
k)} generated by

Algorithm 1 is bounded and any accumulation point of {zk} is a solution to H(z) = 0.
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In order to discuss the rate of convergence of Algorithm 1, we need the concept of semismoothness,

which was originally introduced by Mifflin [28] for functions and extended by Qi and Sun [38] for vector-

valued functions. Convex functions, smooth functions and piecewise linear functions are examples of

semismooth functions. The composition of semismooth functions is still a semismooth function [28]. A

vector-valued function is semismooth if and only if all its component functions are [38].

A locally Lipschitzian function Ψ : Rl → R
m has a generalized Jacobian ∂Ψ(x) as defined in [9]. If it

is semismooth at x, then Ψ′(x;h), the directional derivative of Ψ at x in the direction h, exists for any

h ∈ R
l. The following lemma given in [38] shows the relationship between them.

Lemma 5.6. Suppose that Ψ : Rl → R
m is a locally Lipschitzian function and is semismooth at x.

Then for any V ∈ ∂Ψ(x+ h) and h → 0,

‖V h−Ψ′(x;h)‖ = o(‖h‖), ‖Ψ(x+ h)−Ψ(x)−Ψ′(x;h)‖ = o(‖h‖).
We also need the following result given in [44, Theorem 2.2].

Lemma 5.7. For any x ∈ R
n, all S ∈ ∂x+ are symmetric, positive semidefinite and ‖S‖ � 1.

Let Q be defined by (5.1). Since F is locally Lipschitz continuous and x+ is semismooth, by Lemma 5.7,

Q(0,x) has a generalized Jacobian ∂Q(0,x) in the sense of Clarke [9], and V ∈ ∂Q(0,x) can be written

as

V = JF (x+)S + I − S, S ∈ ∂x+. (5.5)

The following theorem shows that Algorithm 1 has superlinear convergence under mild conditions.

Theorem 5.8. Suppose that the assumption in Theorem 5.4 is satisfied and z∗ = (0,x∗) is an

accumulation point of the infinite sequence {zk = (μk,x
k)} generated by Algorithm 1. If all V ∈ ∂Q(z∗)

are nonsingular, then the whole sequence {zk} converges to z∗ superlinearly, i.e.,

‖zk+1 − z∗‖ = o(‖zk − z∗‖), μk+1 = o(μk).

Proof. It is not difficult to see that Φ is continuously differentiable at any z = (μ,x) ∈ R++ × R
n.

Since the function a+ is semismooth on R, the function Q is semismooth. By Lemma 5.6 and following

the proof of [43, Theorem 5.1], we can complete our proof.

Remark 5.9. In Theorem 5.8, we assume that all V ∈ ∂Q(z∗) are nonsingular in order to obtain a

high-order convergent result. It follows from (5.5) that V = I − S[I − JF (x∗
+)] with S ∈ ∂x∗

+ given in

Lemma 5.7. By [44, Theorem 4.3], this assumption is satisfied if JF (x∗
+) is positive definite. There are

many structured tensors such as the M -tensor [48] such that F (x) = Axm−1 + q satisfies the condition.

6 Numerical results

In this section, we present some numerical experiments for Algorithm 1 to solve the TCP(A, q) (2.1). All

the codes were written by using MATLAB R2017b. The numerical experiments were done on a computer

with an Intel(R) Core(TM) i7-7700 CPU (3.60 GHz) and RAM of 16.0 GB.

In our experiments, we set the parameters ε = 10−12, δ = 0.75, σ = 0.25, γ = 0.99 and μ0 = 0.01 in

Algorithm 1. The termination criterion of Algorithm 1 is that the stop condition ‖H(zk)‖ � ε is satisfied

in 100 iterations. We choose x0 = e as the starting point in all the tested problems. We give A in the

following tested numerical examples. Different vectors q ∈ R
n are used in our experiments for the first 5

tested problems. The 6-th tested problem is an application of the TCP in multi-person noncooperative

games, which is to illustrate the application of the TCP.

All the numerical results of the first 5 tested problems are reported in the following tables, where q

denotes the vector q used in the tested problems, x-SOL denotes the solution to the corresponding

TCP(A, q), Iter denotes the number of iterations, which is also equal to the number of Jacobian

evaluations for the function H, NH denotes the number of function evaluations for the function H,

NormH denotes the value of ‖H(z)‖ at the final iterate, and Time (s) denotes the elapsed CPU time

in seconds.
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Example 6.1. Consider the TCP(A, q), where A ∈ R
[4,2] is defined by

a1111 = 1, a1222 = −1

3
, a1122 = 1, a2222 = 1, a2111 = −1

3
, a2211 = 1,

and ai1i2i3i4 = 0 otherwise.

For x = (x1, x2)
T ∈ R

2, define P (x) = Ax3 and let JP (x) denote its Jacobian matrix. Then we have

P (x) =

(
x3
1 − 1

3x
3
2 + x1x

2
2

x3
2 − 1

3x
3
1 + x2

1x2

)
, JP (x) =

(
3x2

1 + x2
2 −x2

2 + 2x1x2

−x2
1 + 2x1x2 3x2

2 + x2
1

)
.

For any d = (d1, d2)
T ∈ R

2 and d �= 0, by straightforward computation, we obtain

dTJP (x)d = 2(x1d1 + x2d2)
2 + (x2

1 + x2
2)(d

2
1 + d22 − d1d2) > 0

holds for any x ∈ R
2\{0}. Hence, by Proposition 2.2 and Definition 2.4(c), A is strictly positive definite

on R
2. So by Theorem 2.5, the TCP(A, q) in Example 6.1 has a unique solution for any q ∈ R

2.

Example 6.2. Consider the TCP(A, q), where A ∈ R
[3,2] is given in Example 3.2 as a112 = 2,

a211 = −1 and zero otherwise.

Such an A is strictly positive semidefinite on R
2
+ and the solvability of the corresponding TCP(A, q)

was given in (3.2). Using Algorithm 1 to solve it, we can obtain the same results.

Example 6.3. Consider the TCP(A, q), where A ∈ R
[4,4] is defined by

a1111 = a1122 = a2222 = a2211 = a3333 = a4444 = 1,

and ai1i2i3i4 = 0 otherwise.

For x ∈ R
4
+, define P (x) = Ax3 and let JP (x) denote its Jacobian matrix. Then we have

P (x) =

⎛
⎜⎜⎜⎜⎝
x3
1 + x1x

2
2

x3
2 + x2

1x2

x3
3

x3
4

⎞
⎟⎟⎟⎟⎠ , JP (x) =

⎛
⎜⎜⎜⎜⎝
3x2

1 + x2
2 2x1x2 0 0

2x1x2 3x2
2 + x2

1 0 0

0 0 3x2
3 0

0 0 0 3x2
4

⎞
⎟⎟⎟⎟⎠ .

Obviously, JP (x) is symmetric and every of its principal minors is nonnegative. Hence, JP (x) is positive

semidefinite for all x ∈ R
4
+. So by Proposition 2.2 and Definition 3.1, A is strictly positive semidefinite

on x ∈ R
4
+. Clearly, Ae3 = P (e) > 0. By Theorem 3.8, the TCP(A, q) in Example 6.3 is solvable for any

q ∈ R
4.

Example 6.4. Consider the TCP(A, q), where A ∈ R
[6,6] is defined by

a111111 = 1, a222222 = 4, a112222 = 3, a221111 = 1, a111122 = 2, a222211 = 6,

a333333 = 3, a444444 = 1, a333344 = 4, a444433 = 2, a334444 = 1, a443333 = 2,

a555555 = a666666 = 1,

and ai1i2i3i4i5i6 = 0 otherwise.

For x ∈ R
6
+, define P (x) = Ax5 and let JP (x) denote its Jacobian matrix. Then we have

P (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x5
1 + 3x1x

4
2 + 2x3

1x
2
2

4x5
2 + x4

1x2 + 6x2
1x

3
2

3x5
3 + 4x3

3x
2
4 + x3x

4
4

x5
4 + 2x2

3x
3
4 + 2x4

3x4

x5
5

x5
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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By straightforward computation, we obtain that JP (x) is symmetric and every of its principal minors

is nonnegative. Hence, JP (x) is positive semidefinite for all x ∈ R
4
+. So by Proposition 2.2 and

Definition 3.1, A is strictly positive semidefinite on x ∈ R
4
+. Clearly,

Ae5 > 0.

By Theorem 3.8, the TCP(A, q) in Example 6.4 is solvable for any q ∈ R
6.

Example 6.5. Consider the TCP(A, q), where A ∈ R
[m,n] is randomly generated with the rand

function in MATLAB (m = 3, n is a given integer), and entries of q ∈ R
n are randomly selected from

the interval [−1, 1]. In order to make sure A is a strictly positive semidefinite tensor, we revise the i-th

diagonal entries of A to the summation of all the non-diagonal entries in the i-th row (i = 1, 2, . . . , 20).

Then we use the proposed algorithm to solve the TCP(A, q) and the numerical results are reported in

Table 5.

The numerical results reported in Tables 1–5 show that our algorithm works well for all the tested

problems. Our algorithm can stop in a relatively small number of iterations with a very small residual

and the cost of CPU time is very minimal. Surprisingly, the algorithm proposed in this paper can find

a nonzero solution, if it exists, for q � 0; it can also report the case of no solution (see Example 6.2).

We also use Algorithm 1 to solve Examples 6.1–6.4 with the randomly generated q, and the performance

is very similar to the given q. We omit the report. Furthermore, we run it on the randomly generated

Example 6.5 and the numerical results in Table 5 show that Algorithm 1 has good performance on

large-scale problems.

Table 1 Numerical results of the TCP in Example 6.1

q x-SOL Iter NH NormH Time (s)

[−10, 0] [2.0976, 0.6397] 8 9 1.7764E−15 2.8366E−02

[0,−5] [0.5077, 1.6648] 8 9 8.8818E−16 2.9254E−02

[−7,−1] [1.8240, 0.7709] 8 9 9.1551E−16 2.7534E−02

[2,−9] [0.2226, 2.0724] 8 9 1.8310E−15 2.6477E−02

[−8, 3] [2, 0] 7 10 2.7756E−16 2.9343E−02

Table 2 Numerical results of the TCP in Example 6.2

q x-SOL Iter NH NormH Time (s)

[0, 9] [0, 0] 11 17 2.7893E−17 2.9882E−02

[5, 3] [0, 0] 10 12 5.2995E−31 2.4598E−02

[−12, 9] [3, 2] 9 11 1.0596E−23 2.3291E−02

[2,−3] —It has no solution— 0.3424

[−8,−5] —It has no solution— 0.3513

Table 3 Numerical results of the TCP in Example 6.3

q x-SOL Iter NH NormH Time (s)

[0, 5, 8, 9] [3.773E−04, 0.0000, 0.0000, 0.0000] 20 20 5.3727E−11 5.9401E−02

[0,−5, 8,−0.5] [0, 1.7100, 0, 0.7937] 9 10 8.9509E−16 3.0340E−02

[−7,−1, 0.01, 0] [1.9001, 0.2714, 0, 0.0001] 24 25 4.7314E−14 6.8719E−02

[12,−1,−28, 0] [0, 1.0000, 3.0366, 0] 10 14 7.1055E−15 3.4389E−02

[−8, 15, 0,−23] [2.0000, 0, 0, 2.8439] 9 11 3.9464E−17 2.9046E−02
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Table 4 Numerical results of the TCP in Example 6.4

q x-SOL Iter NH NormH Time (s)

[−10,−100,−1000,−2, 5,−9] [0.26, 1.89, 3.20, 0.01, 0, 1.55] 10 19 1.1721E−13 9.0945E−02

[−8, 15, 0,−23, 0, 0] [1.52, 0, 0, 1.87, 0, 0] 10 14 1.0806E−14 8.5456E−02

[−7,−1, 0.01, 0,−8,−10] [1.47, 0.20, 0, 0, 1.52, 1.58] 29 38 9.8348E−14 2.7442E−01

[12,−1,−28, 0, 0, 0] [0, 0.76, 1.56, 0, 0, 0] 9 11 2.3001E−14 8.3025E−02

Table 5 Numerical results of the TCP in Example 6.5

n Iter NH NormH Time (s) xT(Axm−1 + q)

8 10 13 1.2518E−13 2.4997E−02 −4.6640E−14

12 13 17 3.9740E−16 3.2583E−02 −5.8251E−17

16 14 26 2.1744E−14 3.7189E−02 −5.4285E−15

20 14 25 2.8631E−14 5.5825E−02 −6.4891E−15

Example 6.6 (Multi-person noncooperative game). Consider the 3-person noncooperative game,

where there are three players, player 1 has 2 pure strategies, player 2 has 3 pure strategies and player 3

has 2 pure strategies. Three payoff tensors A(1),A(2),A(3) ∈ R
2×3×2 are given by

A(1)(:, :, 1) =

(
0.9395 0.4731 0.3431

0.6007 0.5832 0.3720

)
, A(1)(:, :, 2) =

(
0.7080 0.9845 0.8328

0.5683 0.0159 0.8938

)
,

A(2)(:, :, 1) =

(
0.6276 0.5103 0.0484

0.8019 0.6605 0.0797

)
, A(2)(:, :, 2) =

(
0.9473 0.7309 0.4521

0.5772 0.2621 0.0573

)
,

A(3)(:, :, 1) =

(
0.5823 0.6985 0.3337

0.0169 0.2989 0.4609

)
, A(3)(:, :, 2) =

(
0.3019 0.8219 0.0009

0.3335 0.8720 0.8289

)
.

We give an illustration to explain the elements of the above tensors. For example, 0.3720 in A(1)(:, :, 1)

denotes the payoff of player 1 when player 1 plays his 2nd pure strategy, player 2 plays his 3rd strategy,

and player 3 plays his 1st strategy.

Using A(1), A(2) and A(3), we generate A ∈ R
[3,7] and q = −e ∈ R

7 via [7, Equation (5)]. Thus, the

corresponding TCP model of Example 6.6 is obtained. We use Algorithm 1 to solve this TCP and obtain

a solution

y∗ = (0.6236, 0.0000, 3.8388, 0.0000, 0.0000, 4.3058, 0.0000)T

and the corresponding vector

Ay2
∗ + q = (0.0000, 5.6000, 0.0000, 0.3150, 1.5553, 0.0000, 0.6713)T

with 13 iterative steps in 0.1320 seconds. Via [7, Theorem 1], we obtain that a Nash equilibrium point

of the concerned game is x∗ = (x
(1)
∗ ,x

(2)
∗ ,x

(3)
∗ )T with

x
(1)
∗ = (1.0000, 0.0000)T, x

(2)
∗ = (1.0000, 0.0000, 0.0000)T, x

(3)
∗ = (1.0000, 0.0000)T.

Obviously, this is a Nash equilibrium of the pure strategy. In the special game given by Example 6.6,

player 2 has a dominant strategy. From his payoff tensor A(2), we can see that no matter what strategy

player 1 and player 3 play, player 2 is dominant in this game if he plays his 1st strategy. Thus, it follows

from the theory of the Nash equilibrium that x
(2)
∗ = (1, 0, 0)T. It is dominant for player 1 to play his

1st strategy no matter what strategy player 3 plays. Furthermore, player 3 will play his 1st strategy

to maximize his profits. In fact, we can guess the Nash equilibrium for this game with the dominant

strategy. Therefore, the numerical results are true.
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7 Conclusions

In this paper, we first introduce the concept of a strictly positive semidefinite tensor on R
n
+, and we

consider the solvability of the TCP(A, q) when the involved tensor A is strictly positive semidefinite on

R
n
+. We prove that the solution set of such a TCP(A, q) is nonempty and compact for any q ∈ R

n if it

is feasible. This result is novel for the special instance of monotone NCPs.

We then construct a Newton-type algorithm based on the Huber function for solving such a TCP(A, q)

by using a smoothing technique. The convergence results discussed in this paper are very favorable. The

numerical results show that our algorithm works well for the tested problems. With regard to our nice

theoretical results of our algorithm, the computational results reported are very encouraging. Since the

involved tensor A in the TCP(A, q) is strictly positive semidefinite on R
n
+ and it is not so on the whole

space R
n, the existing smoothing Newton algorithms in the literature for TCPs cannot be directly used

to solve such a TCP(A, q). The novelty of our algorithm is to adopt the Huber function and the normal

equation.
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