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Abstract For the problems of low-rank matrix completion, the efficiency of the
widely-used nuclear norm technique may be challenged under many circumstances,
especially when certain basis coefficients are fixed, for example, the low-rank correla-
tion matrix completion in various fields such as the financial market and the low-rank
density matrix completion from the quantum state tomography. To seek a solution of
high recovery quality beyond the reach of the nuclear norm, in this paper, we propose
a rank-corrected procedure using a nuclear semi-norm to generate a new estimator.
For this new estimator, we establish a non-asymptotic recovery error bound. More
importantly, we quantify the reduction of the recovery error bound for this rank-
corrected procedure. Compared with the one obtained for the nuclear norm penalized
least squares estimator, this reduction can be substantial (around 50%). We also pro-
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vide necessary and sufficient conditions for rank consistency in the sense of Bach (J
Mach Learn Res 9:1019–1048, 2008). Very interestingly, these conditions are highly
related to the concept of constraint nondegeneracy inmatrix optimization.As a byprod-
uct, our results provide a theoretical foundation for the majorized penalty method of
Gao and Sun (A majorized penalty approach for calibrating rank constrained correla-
tion matrix problems. http://www.math.nus.edu.sg/~matsundf/MajorPen_May5.pdf,
2010) andGao (2010) for structured low-rankmatrix optimization problems.Extensive
numerical experiments demonstrate that our proposed rank-corrected procedure can
simultaneously achieve a high recovery accuracy and capture the low-rank structure.

Keywords Matrix completion · Fixed basis coefficients · Low-rank ·
Convex optimization · Rank consistency · Constraint nondegeneracy

Mathematics Subject Classification 90C90

1 Introduction

The low-rank matrix completion is to recover an unknown low-rank matrix from the
under-sampled observations with or without noises. This problem is of considerable
interest in many application areas, from machine learning to quantum state tomog-
raphy. A basic idea to address a low-rank matrix completion problem is to minimize
the rank of a matrix subject to certain constraints from observations. Since the direct
minimization of rank function is generally NP-hard, a widely-used convex relaxation
approach is to replace the rank function with the nuclear norm—the convex envelope
of the rank function over a unit ball of the spectral norm [19].

The nuclear norm technique has been observed to provide a low-rank solution
in practice for a long time (see, e.g., [19,54,55]). The first remarkable theoretical
characterization for the minimum rank solution via the nuclear norm minimization
was given by Recht et al. [64], with the help of the concept of restricted isometric
property (RIP). Recognizing that thematrix completion problemdoes not obey theRIP,
Candès and Recht [8] introduced the concept of incoherence property and proved that
most low-rank matrices can be exactly recovered from a surprisingly small number of
noiseless observations of randomly sampled entries via the nuclear normminimization.
The bound of the number of sampled entries was later improved to be near-optimal
by Candès and Tao [9] through a counting argument. Such a bound was also obtained
by Keshavan et al. [37] for their proposed OptSpace algorithm. Later, Gross [30]
sharpened the boundby employing anovel technique fromquantum information theory
developed in [31], in which noiseless observations were extended from entries to
coefficients relative to an arbitrary basis. This technique was also adapted by Recht
[63], leading to a short and intelligible analysis. Besides the above results for the
noiseless case, matrix completion with noise was first addressed by Candès and Plan
[7].More recently, nuclear normpenalized estimators formatrix completionwith noise
have been well studied by Koltchinskii et al. [44], Negahban andWainwright [58], and
Klopp [40] under different settings. Besides the nuclear norm, estimators with other
penalties for matrix completion have also been considered in terms of recoverability
in the literature, e.g., [25,39,43,68,70].
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The nuclear norm technique has been demonstrated to be a successful approach
to encourage a low-rank solution for matrix completion. However, its efficiency may
be challenged in some circumstances. For example, Salakhutdinov and Srebro [69]
showed that when certain rows and/or columns are sampled with high probability,
the nuclear norm minimization may fail in the sense that the number of observations
required for recovery is much more than the setting of most matrix completion prob-
lems. It means that the efficiency of the nuclear norm techniques could be highly
weakened under a general sampling scheme. Negahban and Wainwright [58] also
pointed out the impact of such heavy sampling schemes on the recovery error bound.
As a remedy for this, a weighted nuclear norm (trace norm), based on row- and
column-marginals of the sampling distribution, was suggested in [24,58,69] if the
prior information on sampling distribution is available. Moreover, the conditions char-
acterized by Bach [3] for rank consistency of the nuclear norm penalized least squares
estimator may not be satisfied, especially when certain constraints are involved.

A concrete example of interest is to recover a density matrix of a quantum system
from Pauli measurements in quantum state tomography (see, e.g., [22,31,74]). A
density matrix is a Hermitian positive semidefinite matrix of trace one. Clearly, if
the constraints of positive semidefiniteness and trace one are simultaneously imposed
on the nuclear norm minimization, the nuclear norm completely fails in promoting a
low-rank solution. Thus, one of the two constraints has to be abandoned in the nuclear
norm minimization and then be restored in the post-processing stage. In fact, this idea
has beenmuch explored in [22,31] and the numerical results there indicated its relative
efficiency though it still has much room for improvement.

All the above examples motivate us to ask whether it is possible to go beyond the
nuclear norm approach for practical use to seek for better performance in low-rank
matrix completion. In this paper, we provide a positive answer to this question with
both theoretical and empirical supports. We first establish a unified low-rank matrix
completionmodel,which allows for the imposition of fixedbasis coefficients so that the
correlation and the density matrix completion are included as special cases. It means
that in our setting, for any given basis of the matrix space, a few basis coefficients
of the true matrix are assumed to be fixed due to a certain structure or some prior
information, and the rest are allowed to be observed with noises under a general
sampling scheme. To pursue a low-rank solution with a high recovery accuracy, we
propose a rank-correction step to generate a new estimator. The rank-correction step
solves a penalized least squares problem with its penalization being the nuclear norm
minus a linear rank-correction term constructed on a reasonable initial estimator. A
satisfactory choice of the initial estimator could be the nuclear norm penalized least
squares estimator or one of its analogies. The resulting convex matrix optimization
problem can be solved by the efficient algorithms recently developed in [21,34–36]
even for large-scale cases.

The idea of using a two-stage or even multi-stage procedure is not brand new for
dealing with sparse recovery in the statistical and machine learning literature. The l1-
norm penalized least squares method, also known as the Lasso [71], is very attractive
and popular for variable selection in statistics, thanks to the invention of the fast
and efficient LARS algorithm [12]. On the other hand, the l1-norm penalty has long
been known by statisticians to yield biased estimators and cannot achieve the best
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estimation performance [14,18]. The issue of bias can be overcome by nonconvex
penalization methods, see, e.g., [13,47,77]. A multi-stage procedure naturally occurs
if the nonconvex problem obtained is solved by an iterative algorithm [45,81]. In
particular, once a good initial estimator is used, a two-stage estimator is enough to
achieve the desired asymptotic efficiency, e.g., the adaptive Lasso proposed by Zou
[80]. There are also a number of important works along this line on variable selection,
including [15,33,47,52,53,78,79], to name only a few. For a broad overview, the
interested readers are referred to the recent survey papers [16,17]. It is natural to
extend the ideas from the vector case to the matrix case. Fazel et al. [20] first proposed
the reweighted trace minimization for minimizing the rank of a positive semidefinite
matrix. In [3], Bachmade an important step in extending the adaptive Lasso of Zou [80]
to the matrix case for rank consistency. However, it is not clear how to apply Bach’s
idea to ourmatrix completionmodelwith fixed basis coefficients since the required rate
of convergence of the initial estimator for achieving asymptotic properties is no longer
valid, as far as we can see. More critically, there are numerical difficulties in efficiently
solving the resulting optimization problems. Numerical difficulties also occur in the
reweighted nuclear norm approach proposed byMohan and Fazel [56] as an extension
of [20] for rectangular matrices. Iterative reweighted least squares minimization is an
alternative extension of [20] independently proposed by Mohan and Fazel [57] and
Fornasier et al. [23], taking advantage of the property that the rank of a matrix is
equal to the rank of the product of this matrix and its transpose. However, the resulting
smoothness of inner-iteration subproblems is weak in encouraging a low-rank solution
so much more iterations are needed in general and thus the computational cost is high
especially when hard constraints such as fixed basis coefficients are involved.

The rank-correction step to be proposed in this paper is for overcoming the above
difficulties. This approach is inspired by the majorized penalty method proposed by
Gao and Sun [27] for solving structured matrix optimization problems with a low-
rank constraint. For our proposed rank-correction step, we establish a non-asymptotic
recovery error bound in Frobenius norm, following a similar argument adopted by
Klopp in [40]. We also discuss the impact of adding the rank-correction term on
recovery error. More importantly, we provide an affirmative guarantee that under mild
condition the rank-correction step highly improves the recoverability, compared with
the nuclear norm penalized least squares estimator. As the estimator is expected to be
of low-rank, we also study the asymptotic property—rank consistency in the sense of
Bach [3], under the setting that the matrix size is assumed to be fixed. This setting
may not be ideal for analyzing asymptotic properties for matrix completion, but it
does allow us to take the crucial first step to gain insights into the limitation of the
nuclear norm penalization. Among others, the concept of constraint nondegeneracy
for conic optimization problem plays a key role in our analysis. Interestingly, our
results of recovery error bound and rank consistency suggest a consistent criterion for
constructing a suitable rank-correction function. In particular, for the correlation and
the density matrix completion problems, we prove that rank consistency automatically
holds for a broad selection of rank-correction functions. For most cases, a single rank-
correction step is sufficient for a substantial improvement, unless the sample ratio is
rather low so that the rank-correction step may be iteratively used for two or three
times to achieve the limit of improvement. Owing to this property, the advantage of
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our proposedmethod is more apparent in practical computations especially when fixed
basis coefficients are involved. Finally, we remark that our results can also be used
to provide a theoretical foundation in the statistical setting for the majorized penalty
method of Gao and Sun [27] and Gao [26] for structured low-rank matrix optimization
problems.

This paper is organized as follows. In Sect. 2, we introduce the observation model
of matrix completion with fixed basis coefficients and formulate the rank-correction
step. In Sect. 3, we establish a non-asymptotic recovery error bound for the estimator
generated from the rank-correction step and provide a quantification of the improve-
ment in recoverability. Section 4 provides necessary and sufficient conditions for rank
consistency. Section 5 is devoted to the construction of the rank-correction function.
In Sect. 6, we report numerical results to validate the efficiency of our proposed rank-
corrected procedure. We conclude this paper in Sect. 7. All relevant material and all
proofs of theorems are left in the appendices.

Notation Here we provide a brief summary of the notation used in this paper.

• LetRn1×n2 andCn1×n2 denote the space of all n1 × n2 real and complex matrices,
respectively. Let Sn(Sn+, Sn++) denote the set of all n×n real symmetric (positive
semidefinite, positive definite) matrices and Hn(Hn+, Hn++) denote the set of all
n × n Hermitian (positive semidefinite, positive definite) matrices.

• Let Vn1×n2 represent Rn1×n2 , Cn1×n2 , Sn or Hn . We define n := min(n1, n2) for
the previous two cases and stipulate n1 = n2 = n for the latter two cases. Let
V
n1×n2 be endowed with the trace inner product 〈·, ·〉 and its induced norm ‖ · ‖F ,

i.e., 〈X,Y 〉 := Re
(
Tr(XTY )

)
for X,Y ∈ V

n1×n2 , where “Tr′′ stands for the trace
of a matrix and “Re′′ means the real part of a complex number.

• For the real case, i.e., Vn1×n2 = R
n1×n2 or Vn1×n2 = Sn , let Sn (Sn+, Sn++)

represent Sn (Sn+, Sn++); and for the complex case, i.e., Vn1×n2 = C
n1×n2 or

V
n1×n2 = Hn , let Sn (Sn+, Sn++) represent Hn (Hn+, Hn++).

• For the real case,On×k denotes the set of all n× k real matrices with orthonormal
columns, and for the complex case, On×k denotes the set of all n × k complex
matrices with orthonormal columns. When k = n, we writeOn×k asOn for short.

• The notation T denotes the transpose for the real case and the conjugate transpose
for the complex case. The notation ∗ means the adjoint of a linear operator.

• For any index set π , let |π | denote the cardinality of π , i.e., the number of elements
in π . For any x ∈ R

n , let |x | denote the vector in R
n+ whose i-th component is

|xi |, let x+ denote the vector in R
n+ whose i-th component is max(xi , 0) and let

x− denote the vector in Rn+ whose i-th component is min(−xi , 0).
• For any given vector x , Diag(x) denotes a rectangular diagonal matrix of suitable
size with the i-th diagonal entry being xi .

• For any x ∈ R
n , let ‖x‖2 and ‖x‖∞ denote the Euclidean norm and the maximum

norm, respectively. For any X ∈ V
n1×n2 , let ‖X‖ and ‖X‖∗ denote the spectral

norm and the nuclear norm, respectively.

• The notations
a.s.→,

p→ and
d→mean almost sure convergence, convergence in prob-

ability and convergence in distribution, respectively. We write xm = Op(1) if xm
is bounded in probability.
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• For any set K , let δK (x) denote the indicator function of K , i.e., δK (x) = 0 if
x ∈ K , and δK (x) = +∞ otherwise. Let In denote the n × n identity matrix.

2 Problem formulation

In this section, we formulate the model of the matrix completion problem with fixed
basis coefficients, and then propose an adaptive nuclear semi-norm penalized least
squares estimator for solving this class of problems.

2.1 The observation model

Let {�1, . . . , �d} be a given orthonormal basis of the given real inner product space
V
n1×n2 . Then, any matrix X ∈ V

n1×n2 can be uniquely expressed in the form of
X = ∑d

k=1〈�k, X〉�k , where 〈�k, X〉 is called the basis coefficient of X relative
to �k . Throughout this paper, let X ∈ V

n1×n2 be the unknown low-rank matrix to
be recovered and let rank(X) = r . In some practical applications, for example, the
correlation and density matrix completion, a few basis coefficients of the unknown
matrix X are fixed (or assumed to be fixed) due to a certain structure or reliable prior
information. We let α ⊆ {1, 2, . . . , d} denote the set of the indices relative to which
the basis coefficients are fixed, and β denote the complement of α in {1, 2, . . . , d},
i.e., α ∩ β = ∅ and α ∪ β = {1, . . . , d}. We define d1 := |α| and d2 := |β|.

When a few basis coefficients are fixed, one only needs to observe the rest for
recovering the unknown matrix X . Assume that we are given a collection of m noisy
observations of the basis coefficients relative to {�k : k ∈ β} in the following form

yi = 〈�ωi , X
〉+ νξi , i = 1, . . . ,m, (1)

whereωi are the indices randomly sampled from the index set β, ξi are the independent
and identically distributed (i.i.d.) noises with E(ξi ) = 0 and E(ξ2i ) = 1, and ν >

0 controls the magnitude of noise. Unless otherwise stated, we assume a general
weighted sampling (with replacement) scheme with the sampling distributions of ωi

as follows.

Assumption 1 The indices ω1, . . . , ωm are i.i.d. copies of a random variable ω that
has a probability distribution 
 over {1, . . . , d} defined by

Pr(ω = k) =
{
0 if k ∈ α,

pk > 0 if k ∈ β.

Note that each �k, k ∈ β is assumed to be sampled with a positive probability in
this sampling scheme. In particular, when the sampling probability of all k ∈ β are
equal, i.e., pk = 1/d2 ∀ k ∈ β, we say that the observations are sampled uniformly at
random.

For notational simplicity, let � be the multiset of all the sampled indices from the
index set β, i.e., � = {ω1, . . . , ωm}. With a slight abuse on notation, we define the
sampling operator R�: Vn1×n2 → R

m associated with � by
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R�(X) := (〈�ω1 , X〉, . . . , 〈�ωm , X〉)T, X ∈ V
n1×n2 .

Then, the observation model (1) can be expressed in the following vector form

y = R�(X) + νξ, (2)

where y = (y1, . . . , ym)T ∈ R
m and ξ =(ξ1, . . . , ξm)

T ∈ R
m denote the observation

vector and the noise vector, respectively.
Next, we present some examples of low-rank matrix completion problems in the

above settings.

(1) Correlation matrix completionA correlation matrix is an n×n real symmetric or
Hermitian positive semidefinite matrix with all diagonal entries being ones. Let
ei be the vector with the i-th entry being one and the others being zeros. Then,
〈ei eTi , X〉 = Xii = 1 ∀ 1 ≤ i ≤ n. The recovery of a correlation matrix is based
on the observations of entries. For the real case, Vn1×n2 = Sn , d = n(n + 1)/2,
d1 = n,

�α = {ei eTi | 1 ≤ i ≤ n
}

and �β =
{

1√
2
(ei e

T

j + e j e
T

i )

∣∣∣ 1 ≤ i < j ≤ n

}
;

and for the complex case, Vn1×n2 = Hn , d = n2, d1 = n,

�α ={ei eTi | 1 ≤ i ≤ n
}
and

�β =
{

1√
2
(ei e

T

j + e j e
T

i ),

√−1√
2

(ei e
T

j − e j e
T

i )

∣∣∣ i < j

}

.

Here,
√−1 represents the imaginary unit. Of course, one may fix some off-

diagonal entries in specific applications.
(2) Density matrix completion A density matrix of dimension n = 2l for some pos-

itive integer l is an n × n Hermitian positive semidefinite matrix with trace one.
In quantum state tomography, one aims to recover a density matrix from Pauli
measurements (observations of the coefficients relative to the Pauli basis) [22,31],
given by

�α =
{

1√
n
In

}
and �β =

{
1√
n
(σs1 ⊗ · · · ⊗ σsl )

∣
∣∣ (s1, . . . , sl ) ∈ {0, 1, 2, 3}l

}∖
�α,

where “⊗” means the Kronecker product of two matrices and

σ0 =
(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −√−1√−1 0

)
, σ3 =

(
1 0
0 −1

)

are the Pauli matrices. In this setting, Vn1×n2 = Hn , Tr(X) = 〈In, X〉 = 1,
d = n2, and d1 = 1.
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(3) Rectangular matrix completion Assume that a few entries of a rectangular matrix
are known and let I be the index set of these entries. One aims to recover this
rectangular matrix from the observations of the rest entries. For the real case,
V
n1×n2 = R

n1×n2 , d = n1n2, d1 = |I|,

�α = {ei eTj | (i, j) ∈ I
}

and �β = {ei eTj | (i, j) /∈ I
};

and for the complex case, Vn1×n2 = C
n1×n2 , d = 2n1n2, d1 = 2|I|,

�α = {ei eTj ,
√−1ei e

T

j | (i, j) ∈ I
}

and �β = {ei eTj ,
√−1ei e

T

j | (i, j) /∈ I
}
.

Now we introduce some linear operators that are frequently used in the subsequent
sections. For any given index set π ⊆ {1, . . . , d}, say α or β, we define the linear
operators Rπ : Vn1×n2 → R

|π |, Pπ : Vn1×n2 → V
n1×n2 and Qπ : Vn1×n2 → V

n1×n2

respectively, by

Rπ (X) := (〈�k , X〉)Tk∈π , Pπ (X) :=
∑

k∈π
〈�k , X〉�k and Qπ (X) :=

∑

k∈π
pk〈�k , X〉�k .

For convenience of discussions, in the rest of this paper, for any given X ∈ V
n1×n2 ,

we denote by σ(X) = (σ1(X), . . . , σn(X)
)T the singular value vector of X arranged

in the nonincreasing order and define

O
n1,n2(X) := {(U, V ) ∈ O

n1 × O
n2 | X = UDiag

(
σ(X)

)
VT
}
.

In particular, when V
n1×n2 = S

n , we denote by λ(X) = (
λ1(X), . . . , λn(X)

)T the
eigenvalue vector of X with |λ1(X)| ≥ · · · ≥ |λn(X)| and define

O
n(X) := {P ∈ O

n | X = PDiag(λ(X))PT
}
.

For any X ∈ V
n1×n2 and any (U, V ) ∈ O

n1,n2(X), we write U = [U1 U2] and
V = [V1 V2] with U1 ∈ O

n1×r , U2 ∈ O
n1×(n1−r), V1 ∈ O

n2×r and V2 ∈ O
n2×(n2−r).

In particular, for any X ∈ S
n+ and any P ∈ O

n(X), we write P = [P1 P2] with
P1 ∈ O

n×r and P2 ∈ O
n×(n−r).

2.2 The rank-correction step

In many situations, the nuclear norm penalization performs well for matrix recovery,
but its efficiencymay be challenged if the observations are sampled at random obeying
a general distribution such as the one considered in [69]. The setting of fixed basis
coefficients in ourmatrix completionmodel can also be regarded to beunder an extreme
sampling scheme. In particular, for the correlation and density matrix completion, the
nuclear norm completely loses its efficiency since it reduces to a constant in these two
cases. In order to overcome the shortcomings of the nuclear norm penalization, we
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propose a rank-correction step to generate an estimator in pursuit of a better recovery
performance.

Recall that X is the unknown true matrix of rank r . Given an initial estimator X̃m

of X , say, the nuclear norm penalized least squares estimator or one of its analogies,
our proposed rank-correction step is to solve the convex optimization problem

X̂m ∈ argmin
X∈Vn1×n2

1

2m
‖y − R�(X)‖22 + ρm

(‖X‖∗ − 〈F(X̃m), X〉)

s.t. Rα(X) = Rα(X), ‖Rβ(X)‖∞ ≤ b, X ∈ C,
(3)

where ρm > 0 is the penalty parameter (depending on the number of observations),
b is an upper bound of the magnitudes of basis coefficients of X , C ⊆ V

n1×n2 is a
closed convex set that contains X , and F : Vn1×n2 → V

n1×n2 is a spectral operator
associated with a symmetric function f : Rn → R

n . One may refer to “Appendix
1” for more information on the concept of spectral operators. (Indeed, based on the
subsequent analysis for better recovery performance, the choice f : Rn → [0, 1]n is
much preferred, for which the penalization ‖X‖∗ − 〈F(X̃m), X〉 is indeed a nuclear
semi-norm. But this choice criterion is not compulsory). The bound restriction is very
mild since such a bound is often available in applications, for example, the correlation
and the density matrix completion. This boundedness setting can also be found in
previous works done by Negahban and Wainwright [58] and Klopp [40].

Hereafter, we call F the rank-correction function and 〈F(X̃m), X〉 the rank-
correction term. Note that, when F ≡ 0, the rank-correction step (3) reduces to
the nuclear norm penalized least squares estimator, which equally penalizes singular
values to promote a low-rank solution for matrix completion. Certainly, for this pur-
pose, penalizing more on small singular values or even directly penalizing the rank
function could serve better, but only theoretically rather than practically, due to the
lack of convexity. Also note that an initial estimation, if deviates not too much from
the true matrix, could contain some information of the singular values and/or the rank
of the true matrix to a certain extent. Therefore, provided such an initial estimator
is available, it is achievable to construct a rank-correction term with a suitable F to
substantially offset the penalization of large singular values from the nuclear norm
penalty. Consequently, we can expect the rank-correction step (3) to have a better
low-rank promoting ability and outperform the nuclear norm penalized least squares
estimator.

The key issue is then how to construct a favored rank-correction function F . In the
next two sections, we provide theoretical supports to our proposed rank-correction
step, from which some important guidelines on the construction of F can be captured.
In particular, if one chooses the nuclear norm penalized least squares estimator to
be the initial estimator X̃m , and also suitably chooses the spectral operator F so that
‖X‖∗ − 〈F(X̃m), X〉 is a semi-norm, called nuclear semi-norm, then the estimator
X̂m generated from this two-stage procedure is called the adaptive nuclear semi-norm
penalized least squares estimator associated with F .
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2.3 Relation with the majorized penalty approach

The rank-correction step above is inspired by themajorized penalty approach proposed
by Gao and Sun [27] for solving the rank constrained matrix optimization problem:

min
X∈C

{
h(X) : rank(X) ≤ r

}
, (4)

where r ≥ 1, h : Vn1×n2 → R is a given continuous function and C ∈ V
n1×n2 is

a closed convex set. Note that for any X ∈ V
n1×n2 , the constraint rank(X) ≤ r is

equivalent to

0 = σr+1(X) + · · · + σn(X) = ‖X‖∗ − ‖X‖(r),
where ‖X‖(r) := σ1(X) + · · · + σr (X) denotes the Ky Fan r -norm. The central idea
of the majorized penalty approach is to solve the following penalized version of (4):

min
X∈C

h(X) + ρ
(‖X‖∗ − ‖X‖(r)

)
,

where ρ > 0 is the penalty parameter. With the current iterate Xk , the majorized
penalty approach yields the next iterate Xk+1 by solving the convex optimization
problem

min
X∈C

ĥk(X) + ρ
(‖X‖∗ − 〈Gk, X〉), (5)

where Gk is a subgradient of the convex function ‖X‖(r) at Xk , and ĥk is a con-
vex majorization function of h at Xk . By comparing with (3), one may notice that
our proposed rank-correction step is close to a single step of the majorized penalty
approach.

Note that the rank constrained least squares problem is of great consideration in
matrix completion especially when the rank information is known. However, different
from the noiseless case, for matrix completion with noise, the solution to the rank
constrained least squares problem (assuming the uniqueness) is in general not the
true matrix though quite close to it. Indeed, there may exist many candidate matrices
surrounding the true matrix and having its rank. The rank constrained least squares
solution is only one of them. It deviates the least from the noisy observations rather than
the true matrix. Naturally, it is conceivable that some candidate matrices may deviate a
bit more from the noisy observations but less from the true matrix. So, for the purpose
of matrix completion, there is no need to aim precisely at the rank constrained least
squares solution and find this solution accurately. An approach roughly towards it
such as our proposed rank-correction step (3) is good enough to bring similar good
recovery performance.

3 Error bounds

In this section, we aim to derive a recovery error bound in Frobenius norm for the
estimator generated from the rank-correction step (3) and discuss the impact of the
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rank-correction term on the resulting bound. The analysis mainly follows Klopp’s
arguments in [40], which is also in line with those used by Negahban and Wainwright
[58].

We start the analysis by defining a quantity, which plays a key role in the subsequent
analysis, as

am := 1√
r
‖F(X̃m) −U1V

T

1 ‖F . (6)

A basic relation between the true matrix X and its estimate X̂m can be obtained by
using the optimality of X̂m to the problem (3) as follows.

Theorem 1 For any κ > 1, if ρm ≥ κν

∥∥∥ 1
mR∗

�(ξ)

∥∥∥, then the following inequality

holds:
1

2m

∥
∥R�(X̂m − X)

∥
∥2
2 ≤

(√
2

κ
+ am

)
ρm

√
r‖X̂m− X‖F . (7)

We emphasize that κ is not restricted to be a constant in Theorem 1 but could be
set to depend on the size of matrix. This realization is important as can be seen in
the sequel. According to Theorem 1, the choice of the penalty parameter ρm depends
on the observation noises ξi and the sampling operator R�. Therefore, we make the
following assumption on the noises ξi as follows:

Assumption 2 The i.i.d. noise variables ξi are sub-exponential, i.e., there exist posi-
tive constants c1, c2 and c3 such that for all t > 0, Pr(|ξi | ≥ t) ≤ c1 exp(−c2tc3).

Moreover, based on Assumption 1, we further define quantitiesμ1 andμ2 that control
the sampling probability for observations as

μ1 ≥ 1

d2
·max
k∈β

{
1

pk

}
and μ2 ≥ √d2 ·max

{∥∥
∥∥
∑

k∈β
pk�k�

T

k

∥∥
∥∥,
∥∥
∥∥
∑

k∈β
pk�

T

k �k

∥∥
∥∥

}
.

(8)
It is easy to obtain that μ1 ≥ 1 and μ2 ≥ 1, according to the facts

∑
k∈β pk = 1 and

Tr
(∑

k∈β pk�k�
T

k

) = Tr
(∑

k∈β pk�T

k �k
) = 1, respectively. In general, the values

of μ1 and μ2 depend on the sampling distribution. The more extreme the sampling
distribution is, the larger these two values have to be. Assume that there exist some
positive constants γ1 and γ2 such that γ1/d2 ≤ pk ≤ γ2/d2, ∀ k ∈ β. Then we
can easily set μ1 := 1/γ1. The setting of μ2 is not universal for different cases. For
example, consider the cases described in Sect. 2. For correlation matrix completion,
we can set μ2 := γ2/

√
2 for the real case and μ2 := γ2 for the complex case. For

density matrix completion, we can set μ2 := 1 for any sampling distribution. For
rectangular matrix completion, we can set μ2 := γ2 for the real case and μ2 := √

2γ2
for the complex case. Note that γ1 = γ2 = 1 for uniform sampling.

Theorem 1 reveals the key to deriving a recovery error bound in Frobenius norm,
that is, to establish the relation between 1

m ‖R�(X̂m − X)‖22 and ‖X̂m − X‖2F . This can
be achieved by looking into some RIP-like property of the sampling operator R�, as
done previously in [40,44,49,58]. Following this idea, we obtain an explicit recovery
error bound as follows:
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Theorem 2 Under Assumptions 1 and 2, there exist some positive absolute constants
c0, c1, c2, c3 and some positive constants C0,C1 (only depending on the ψ1 Orlicz
norm of ξk) such that when m ≥ c3

√
d2 log3(n1 + n2)/μ2, for any κ > 1, if ρm is

chosen as

ρm = C1κν

√
μ2 log(n1 + n2)√

d2m
, (9)

then with probability at least 1 − c1(n1 + n2)−c2 ,

‖X̂m−X‖2F
d2

≤C0

(
c0

2(√2+κam
)2
ν2+

( κ

κ−1

)2(√
2+am

)2
b2
)
μ2
1μ2

√
d2r log(n1+n2)

m
.

(10)

Theorem 2 shows that for any rank-correction function F , controlling the recovery
error only needs the samples size m to be of roughly the degree of freedom of a rank
r matrix up to a logarithmic factor in the matrix size. Besides the information on the
order of magnitude, Theorem 2 also provides us more details on the constant part in
the recovery error bound, which also plays an important role in practice. The impact
of different choices of rank-correction functions on recovery error is fully embodied
with the value of am . Note that the smaller am is, the smaller the error bound (10) is
for a fixed κ , and thus the smaller value this error bound can achieve for the best κ (as
well as the best ρm). Therefore, we aim to establish an explicit relationship between
am and F in the next theorem.

Theorem 3 For any given X̃m ∈ V
n1×n2 such that ‖X̃m − X‖F/σr (X) < 1/2, we

have

am ≤ − 1√
2r

log

(
1 − √

2
‖X̃m − X‖F

σr (X)

)
+ εF (X̃m),

where εF (X̃m) := 1√
r
‖F(X̃m) − Ũm,1ṼT

m,1‖F .

It is immediate from Theorem 3 that

‖X̃m − X‖F
σr (X)

<
1√
2

(
1 − e−√

2r(1−εF (X̃m ))
)

�⇒ am < 1. (11)

Recall that the nuclear norm penalized least squares estimator corresponds to the rank-
correction step with F ≡ 0 so that am = 1. Therefore, Theorem 3 guarantees that if
the initial estimator X̃m does not deviate too much from X , the rank-correction step
outperforms the nuclear normpenalized least squares estimator in the sense of recovery
error, provided that F(X̃m) is close to Ũm,1ṼT

m,1. For example, consider the case when

the rank of the true matrix is known. One may simply choose F(X) = U1VT

1 to
take advantage of the rank information. In this case, the requirement in (11) ensuring

am < 1 simply reduces to ‖X̃m−X‖F
σr (X)

< 0.535 < 1√
2
(1 − e−√

2r ). Moreover, further
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suppose that X̃m is the nuclear normpenalized least squares estimator. Then, according
to Theorems 2 and 3, one only needs samples with size

m = O

(√
d2r

2 log1+2τ (n1 + n2) · d2
σ 2
r (X)

)
�⇒ am = O(log−τ (n1 + n2)),

where τ > 0. As can be seen, the larger the matrix size n is, the easier am becomes
less than 1 or even close to 0. If the rank of the true matrix is unknown, one could
construct the rank-correction function F on account of the tradeoff between optimality
and robustness, to be discussed in Sect. 5. An experimental example of the relationship
between am and F can be found in Table 1.

Next, we demonstrate the power of the rank-correction term with more details. It
is interesting to notice that the value of κ (as well as ρm) has a substantial impact on
the recovery error bound (10). The part related to the magnitude of noise ν increases
as κ increases, while the part related to the upper bound b of entries slightly decreases
to its limit as κ increases. Therefore, our first target is to find the smallest error bound
in terms of (10) among all possible κ > 1. It is possible to work on the error bound
(10) directly for its minimum in κ but the subsequent analysis is much more tedious.
For simplicity of illustration, instead, we perform our analysis on a slightly relaxed
version instead as

‖X̂m − X‖2F
d2

≤ C0 η
2
m μ2

1 μ2

√
d2r log(n1 + n2)

mn
,

where

ηm := c0
(√

2 + κam
)
ν +

(
κ

κ − 1

)(√
2 + am

)
b.

Direct calculation shows that over κ > 1, ηm attains its minimum

ηm = (√2 + am
)
(c0ν + b) + 2

√
am
(√

2 + am
)
c0νb at κ = 1 +

√(
1 +

√
2

am

)
b

c0ν
.

It is worthwhile to note that κ = O
(
1/

√
am
)
when am � 1, meaning that the optimal

choice of κ is inversely proportional to
√
am rather than a simple constant. (This

observation is important for achieving the rank consistency in Sect. 4.) In other words,
for achieving the best possible recovery error, the penalty parameter ρm chosen for
the rank-correction step (3) with am < 1 should be larger than that for the nuclear
norm penalized least squares estimator. In addition, consider two extreme cases with
am = 1 and am = 0 respectively:

ηm =
{
η0 := √

2(c0ν + b) if am = 0,

η1 := (√2 + 1
)
(c0ν + b) + 2

√(√
2 + 1

)
c0νb if am = 1.
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By direct calculations, we obtain η0/η1 ∈ (0.356, 0.586), where the lower bound
is attained when c0ν = b and the upper bound is approached when c0ν/b → 0 or
c0ν/b → ∞. This finding motivates us to wonder whether the recovery error can be
reduced by around half in practice. This inference is further validated by numerical
experiments in Sect. 6.

4 Rank consistency

In this section we consider the asymptotic behavior of the estimator generated from
the rank-correction step (3) in term of its rank. We expect that the resulting X̂m has the
same rank as the true matrix X . Theorem 2 only reveals a flavored parameter ρm in
terms of the optimal order but rather its exact value. In practice, for a chosen parameter
ρm , there is hardly any clue to know the recovery performance of the resulting solution
since the true matrix is unknown. However, if the rank property holds as expected, the
observable rank information may be used to infer the recovery quality of the resulting
solution of a parameter and thus help in parameter searching. Numerical experiments
in Sect. 6 demonstrate the practicability of this idea.

For the purpose above, we study the rank consistency in the sense of Bach [3] under
the setting that the matrix size is fixed. An estimator Xm of the true matrix X is said
to be rank consistent if

lim
m→∞ Pr

(
rank(Xm) = rank(X)

) = 1.

Throughout this section, we make the following assumptions:

Assumption 3 The spectral operator F is continuous at X .

Assumption 4 The initial estimator X̃m satisfies X̃m
p→ X as m → ∞.

Epi-convergence in distribution gives us an elegant way in analyzing the asymptotic
behavior of optimal solutions of a sequence of constrained optimization problems.
Based on this technique, we obtain the following result.

Theorem 4 If ρm → 0, then X̂m
p→ X as m → ∞.

We first focus on the characterization of necessary and sufficient conditions for
rank consistency of X̂m . Unlike in the analysis of recovery error bound, additional
information represented by the set C could affect the path along which X̂m converges
to X and thus may break the rank consistency. In the sequel, we only discuss two most
common cases: the rectangular case C = V

n1×n2 (recovering a rectangular matrix or a
symmetric/Hermitian matrix) and the positive semidefinite case C = S

n+ (recovering
a symmetric/Hermitian positive semidefinite matrix).

For notational simplicity, we divide the index set β into three subsets as

β+ := {k ∈ β | 〈�k, X〉 = b}, β− := {k ∈ β | 〈�k, X〉 = −b}, β◦ := β\(β+ ∪ β−).

(12)
Then, we define a linear operator Q†

β : Vn1×n2 → V
n1×n2 as
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Q†
β(X) :=

∑

k∈β◦

1

pk
〈�k, X〉�k +

∑

k∈β+

1

pk
(〈�k, X〉)−�k +

∑

k∈β−

1

pk
(〈�k, X〉)+�k .

Here, we use the superscript “†” because of its inverse-like property in terms of

Qβ(Q†
β(Z)) = Q†

β(Qβ(Z)) = Pβ(Z) ∀ Z ∈ {Z ∈V
n1×n2 | Rβ+(Z) ≤ 0,Rβ−(Z) ≥ 0}.

By extending the arguments of Bach [3] for the nuclear normpenalized least squares
estimator from the unconstrained case to the constrained case, we obtain the following
results.

Theorem 5 For the rectangular case C = V
n1×n2 , consider the linear system

U
T

2Q
†
β(U 2�V

T

2 )V 2 = U
T

2Q
†
β

(
U 1V

T

1 − F(X)
)
V 2. (13)

If ρm → 0 and
√
mρm → ∞, then for the rank consistency of X̂m,

(i) a necessary condition: (13) has a solution �̂ ∈V
(n1−r)×(n2−r) with ‖�̂‖ ≤ 1;

(ii) a sufficient condition: (13) has a unique solution �̂ ∈ V
(n1−r)×(n2−r) with

‖�̂‖ < 1.

For the positive semidefinite case, the nuclear norm ‖X‖∗ in (3) simply reduces to
the trace 〈In, X〉. We assume that the Slater condition holds.

Assumption 5 For the positive semidefinite case C = S
n+, the Slater condition holds,

i.e., there exists some X0 ∈ S
n++ such that Rα(X0) = Rα(X) and ‖Rβ(X0)‖∞ < b.

Theorem 6 For the positive semidefinite case C = S
n+, consider the linear system

P
T

2Q
†
β(P2�P

T

2 )P2 = P
T

2Q
†
β

(
In − F(X)

)
P2. (14)

Under Assumption 5, if ρm → 0 and
√
mρm → ∞, then for the rank consistency of

X̂m,

(i) a necessary condition: (14) has a solution �̂ ∈ S
n−r+ ;

(ii) a sufficient condition: (14) has a unique solution �̂ ∈ S
n−r++ .

Next, we provide a theoretical guarantee on the uniqueness of the solution to the
linear systems (13) and (14) with the help of constraint nondegeneracy. The concept
of constraint nondegeneracy was pioneered by Robinson [65] and later extensively
developed by Bonnans and Shapiro [5]. We say that the constraint nondegeneracy
holds at X to (3) with C = V

n1×n2 if

Rα∪β+∪β−
(
T (X)

) = R
|α∪β+∪β−|, (15)
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where T (X) = {H ∈ V
n1×n2 | UT

2 HV 2 = 0
}
. Meanwhile, we say that the constraint

nondegeneracy holds at X to (3) with C = S
n+ if

Rα∪β+∪β−
(
lin(TSn+(X))

) = R
|α∪β+∪β−|, (16)

where lin(TSn+(X)) = {H ∈ S
n | PT

2 HP2 = 0
}
. One may refer to “Appendix 2” for

more details of constraint nondegeneracy.
To take a closer look at the linear systems (13) and (14), we define linear operators

B1 : Vn1×n2 → V
(n1−r)×(n2−r) andB2 : V(n1−r)×(n2−r) → V

(n1−r)×(n2−r) associated
with X , respectively, by

B1(Y ) := U
T

2Q
†
β(Y )V 2 and B2(Z) := U

T

2Q
†
β(U 2ZV

T
2 )V 2, (17)

where Y ∈ V
n1×n2 and Z ∈ V

(n1−r)×(n2−r). From the definition ofQ†
β , we know that

the operator B2 is self-adjoint and positive semidefinite. Then, for the rectangular case
C = V

n1×n2 , the linear system (13) can be rewritten as

B2(�) = B1(U 1V
T

1 − F(X)), � ∈ V
(n1−r)×(n1−r), (18)

and for the positive semidefinite case C = S
n+, the linear system (14) can be rewritten

as
B2(�) = B2(In−r ) + B1(P1P

T

1 − F(X)), � ∈ S
n−r , (19)

since both Ui and V i reduce to Pi for i = 1, 2 for X ∈ S
n+.

Clearly, the invertibility of B2 is equivalent to the uniqueness of the solution to
the linear systems (13) and (14). The following result provides a link between the
constraint nondegeneracy and the positive definiteness of B2.

Theorem 7 For either the rectangular case C = V
n1×n2 or the positive semidefinite

case C = S
n+, if the constraint nondegeneracy holds at X to the problem (3), then the

self-adjoint linear operator B2 defined by (17) is positive definite.

Combining Theorems 5, 6 and 7 together with (18) and (19), we immediately have
the following result of rank consistency.

Theorem 8 Suppose that ρm → 0 and
√
mρm → ∞. If

(i) for the rectangular case C = V
n1×n2 , the constraint nondegeneracy (15) holds at

X to the problem (3) and

∥∥B−1
2 B1(U 1V

T

1 − F(X))
)∥∥ < 1; (20)

(ii) for the positive semidefinite case C = S
n+, the constraint nondegeneracy (16)

holds at X to the problem (3) and

In−r + B−1
2 B1(P1P

T

1 − F(X)) ∈ S
n−r++ , (21)

then the estimator X̂m generated from the rank-correction step (3) is rank consistent.
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From Theorem 8, it is not difficult to see that when F(X) is sufficiently close to

U 1V
T

1 , the conditions (20) and (21) hold automatically and so does the rank consis-
tency. Thus, Theorem 8 provides us a guideline to construct a suitable rank-correction
function F to achieve the rank consistency. In particular, for the positive semidefinite
matrix completion, we further consider two important classes as follows.

Class I The covariancematrix completion with partial positive diagonal entries fixed.
Due to the positive semidefinite structure, the magnitudes of off-diagonal
entries are fully controlled by the magnitudes of diagonal entries. Therefore,
we remove all the bounded constraints corresponding to off-diagonal entries
from the rank-correction step (3) as they are redundant. Thus, the constraints
are reduced to

Xii = Xii ∀ i ∈ π, Xii ≤ b ∀ i ∈ πc, X ∈ S
n+,

where (π, πc) is a partition of the index set {1, . . . , n}. This class of problems
includes the correlation matrix completion as a special case, in which all
diagonal entries are fixed to be ones.

Class II The density matrix completion with its trace fixed to be one.
Due to the positive semidefinite structure, all the coefficients of Pauli basis are
controlled because of the trace one constraint. Therefore, we remove all the
bounded constraints from the rank-correction step (3) as they are redundant.
Thus, in this case the constraints are reduced to

1√
n
Tr(X) = 1√

n
, X ∈ S

n+.

Interestingly, for the matrix completion problems of Classes I and II, the constraint
nondegeneracy automatically holds at X . More importantly, if observations are sam-
pled uniformly at random, the rank consistency can be guaranteed for a broad class of
rank-correction functions F .

Theorem 9 For the matrix completion problems of Classes I and II under uniform
sampling, if ρm → 0,

√
mρm → ∞ and F is a spectral operator associated with a

symmetric function f : Rn → R
n such that for i = 1, . . . , n,

{
fi (x) > 0 if xi > 0,
fi (x) = 0 if xi = 0,

∀ x ∈ R
n+ and ∀ i = 1, . . . , n, (22)

then the estimator X̂m generated from the rank-correction step (3) is rank consistent.

5 Construction of the rank-correction function

In this section, we focus on the construction of a suitable rank-correction function F
based on the results in Sects. 3 and 4. For achieving a smaller recovery error, according

to Theorem 2, we desire a construction such that F(X̃m) is close toU1V
T

1 .Meanwhile,
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for achieving the rank consistency, according to Theorem 8, we desire a construction

such that F(X) is close toU 1V
T

1 . Therefore, these two guidelines consistently suggest
a natural idea, i.e., if possible, choosing

F(X) ≈ U1V
T

1 near X .

Next, we proceed with the construction of the rank-correction function F for the
rectangular case. For the positive semidefinite case, one only needs to replace the
singular value decomposition with the eigenvalue decomposition and conduct exactly
the same analysis.

5.1 The rank is known

If the rank of the true matrix X is known, it is clear that the best choice of F is

F(X) := U1V
T

1 , (23)

where (U, V ) ∈ O
n1,n2(X) and X ∈ V

n1×n2 . Note that F defined by (23) is not a
spectral operator over the whole space of Vn1×n2 , but in a neighborhood of X it is
indeed a spectral operator and is actually twice continuously differentiable (see, e.g.,
[11, Proposition 8]). With this rank-correction function, the rank-correction step is
essentially the same as a single step of the majorized penalty method developed in
[27].

5.2 The rank is unknown

If the rank of the true matrix X is unknown, we intend to construct a spectral operator
F to imitate the case when the rank is known. Here, we propose F to be a spectral
operator

F(X) := UDiag
(
f (σ (X))

)
VT (24)

associated with the symmetric function f : Rn → R
n defined by

fi (x) =
⎧
⎨

⎩
φ

(
xi

‖x‖∞

)
if x ∈ R

n\{0},
0 if x = 0,

(25)

where (U, V ) ∈ O
n1,n2(X), X ∈ V

n1×n2 , and the scalar function φ : R → R takes
the form

φ(t) := sgn(t)(1 + ετ )
|t |τ

|t |τ + ετ
, t ∈ R, (26)

for some τ > 0 and ε > 0.

Corollary 10 Let F be a spectral operator defined by (24), (25) and (26).
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(i) If ‖X̃m−X‖F
σr (X)

< 1√
2

(
1− e−√

2r
)
, then for any ε satisfying σr+1(X̃m )

σ1(X̃m )
< ε <

σr (X̃m )

σ1(X̃m )
,

there exists some τ 1 > 0 such that am < 1 for any F with τ ≥ τ 1.
(ii) Suppose that the constraint nondegeneracy holds at X to the problem (3). If

ρm → 0 and
√
mρm → ∞, then for any ε satisfying 0 < ε <

σr (X)

σ1(X)
, there exists

some τ 2 > 0 such that the rank consistency of X̂m holds for any F with τ ≥ τ 2.

The proof of Corollary 10 is straightforward so we omit it. Corollary 10 suggests

an ideal choice of ε for the recovery error reduction, i.e., ε ∈
(
σr+1(X̃m )

σ1(X̃m )
,
σr (X̃m )

σ1(X̃m )

)
,

provided that X̃m does not deviate too much from Xm , and also an ideal choice of

ε for rank consistency, i.e., ε ∈
(
0, σr (Xm )

σ1(Xm )

)
. Note that these two intervals may not

overlap each other, implying the theoretical possibility that the recovery error reduction
and the rank consistency may not be achieved simultaneously if the initial estimator
X̃m is not close to Xm .

The interval of ε for the recovery error reduction is disclosed if the true rank is
accessible. Therefore, this ideal interval is an important insight that can be used to
guide the choice of ε in practice since the initial X̃m should contain some information
of the true rank in general. Indeed, the value of ε can be regarded as a divide of
confidence on whether σi (X̃m) is believed to come from a nonzero singular values
of X with perturbation—positive confidence if σi (X̃m) > εσ1(X̃m) and negative
confidence if σi (X̃m) < εσ1(X̃m). Next we look for a suitable τ . It is observed from
Fig. 1 that the parameter τ > 0 mainly controls the shape of φ over t ∈ [0, 1]. The
function φ is concave if 0 < τ ≤ 1 and S-shaped with a single inflection point at
ε
(
τ−1
τ+1

)1/τ if τ > 1. It should be good to choose an S-shaped function φ. But one
also needs to take account of the steepness of φ, which increases when τ increases.
In particular for any ε satisfying 0 < ε < 1, φ approaches to the step function taking
the value 0 if 0 ≤ t < ε and the value 1 if ε < t ≤ 1 as τ → ∞. Since the rank
of X is unknown and the singular values of X̃m are unpredictable, choosing a large τ

could be risky. Therefore, one needs to choose τ with certain conservation, sacrificing
certain recovery quality in exchange for robustness strategically. Here, we provide a
recommendation of the choices ε ≈ 0.05 (or within 0.01 ∼ 0.1) and τ = 2 (or within
1 ∼ 3) for most cases, particularly when the initial estimator is generated from the
nuclear norm penalized least squares problem. These choices have performed very
stably for plenty of problems, as validated in Sect. 6.

We also remark that for the positive semidefinite case, the rank-correction function
defined by (24), (25) and (26) is related to the reweighted trace norm for the matrix
rank minimization proposed by Fazel et al. [20,56]. The reweighted trace norm in
[20,56] for the positive semidefinite case is 〈(Xk + ε In)−1, X〉, which arises from
the derivative of the surrogate function log det(X + ε In) of the rank at an iterate Xk ,
where ε is a small positive constant. Meanwhile, in our proposed rank-correction step,
if we choose τ = 1, then In − 1

1+ε
F(X̃m) = ε′(X̃m + ε′ In)−1 with ε′ = ε‖X̃m‖.

Superficially, similarity occurs; however, it is notable that ε′ depends on X̃m , which is
different from the constant ε in [20,56]. More broadly speaking, the rank-correction
function F defined by (24), (25) and (26) is not a gradient of any real-valued function.
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Fig. 1 Shapes of the function φ with different ε > 0 and τ > 0. a ε = 0.1 with different τ > 0. b τ = 2
with different ε > 0

This distinguishes our proposed rank-correction step from the reweighted trace norm
minimization in [20,56] even for the positive semidefinite case.

6 Numerical experiments

In this section, we validate the power of our proposed rank-correction step on the
recovery by applying it to different matrix completion problems. We adopted the
proximal alternating direction method of multipliers (proximal ADMM) to solve the
optimization problem (3). For more details of the proximal ADMM, the readers may
refer to Appendix B of [21]. For convenience, in the sequel, the NNPLS estimator
and the RCS estimator, respectively, stand for the estimators from the nuclear norm
penalized least squares problem (i.e., F ≡ 0) and the rank-correction step (3) with
F specified in Sect. 5. Given an estimator Xm of Xm , the relative error (relerr for
short) is defined by

relerr = ‖Xm − X‖F
max(10−8, ‖X‖F )

.

6.1 Influence of fixed basis coefficients on the recovery

In this subsection, we test the performance of the NNPLS estimator and the RCS
estimator for different patterns of fixed basis coefficients. We randomly generated a
correlation matrix by the following command:

M = randn(n,r)/sqrt(sqrt(n)); ML = weight*M(:,1:k);
M(:,1:k) = ML;

Xtemp = M*M’; D = diag(1./sqrt(diag(Xtemp)));
X_bar = D*Xtemp*D.
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We took the true matrix X = X_bar with dimension n = 500, rank r = 5, weight
= 5 and k = 1. Here, the parameter weight is used to control the relative mag-
nitude difference between the first k largest eigenvalues and the left r − k nonzero
eigenvalues. We randomly fixed partial diagonal and off-diagonal entries of X and
then uniformly sampled the rest entries with i.i.d. Gaussian noise. The noise level,
defined by ‖νξ‖2/‖y‖2 in (2) hereafter, was set to be 10% and the upper bound of the
non-fixed diagonal entries was set to be 1. We further assumed that the rank of the true
matrix was known so that for RCS estimator we chose the rank-correction function
(23).

In Fig. 2, we plot the curves of the relative recovery error and the rank of both the
NNPLS estimator (the subfigures on the left) and the RCS estimator (the subfigures on
the rigth) for different patterns of fixed entries. Note that both m and ρm in the rank-
correction step (3) depend on the problem of consideration. Thus, we report mρm as
a whole in the x-axis. (Note that for a specific problem, only ρm is adjustable.) In the
captions of subfigures, diagmeans the number of fixed diagonal entries, and off-diag
means the number of fixed off-diagonal entries. For each subfigure on the right side,
the initial X̃m for the RCS estimator is the point with the smallest recovery error from
the corresponding subfigure on the left side.

Figure 2 fully manifests the advantage of the RCS estimator over the NNPLS
estimator. It is shown that compared with the NNPLS estimator, the RCS estimator
substantially reduces the recovery error and significantly improves the rank consis-
tency. Moreover, the RCS estimator possesses a wide rage of the parameter ρm to
achieve a desired small recovery error and the rank of the true matrix simultaneously.
It indicates that whether the resulting solution of a parameter ρm achieves the true
rank can be used to infer the recovery quality. Even if the true rank is unknown in
advance, it is still possible to pick out a satisfied solution via monitoring the change of
rank in parameter searching. Such advantages are far beyond the reach of the NNPLS
estimator.

6.2 Performance of different rank-correction functions for recovery

In this subsection, we test the performance of different rank-correction functions for
recovering a correlation matrix. We randomly generated the true matrix X by the
command in Sect. 6.1 with n = 1000, r = 10, weight = 2 and k = 5. We fixed all
the diagonal entries of X and then sampled partial off-diagonal entries uniformly at
random with i.i.d. Gaussian noise. The noise level was set to be 10%. We chose the
(nuclear norm penalized) least squares estimator to be the initial estimator X̃m . In Fig.
3, we plot four curves corresponding to the rank-correction functions F defined by
(24), (25) and (26) with different ε and τ , and additional two curves corresponding to

the rank-correction functions F defined by (23) at X̃m (i.e., Ũ1ṼT

1 ) and X (i.e.,U1V
T

1 ),
respectively. The values of am and the best recovery error are listed in Table 1.

For all the rank-correction functions plotted in Fig. 3, when ρm increases, the
recovery error first decreases together with the rank and then increases after the rank

of the true matrix is attained. The only exception is U 1V
T

1 . This exactly validates our
discussion about the recovery error at the end of Sect. 3. It is worthwhile to point out
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Fig. 2 Influence of fixed basis coefficients on recovery (sample ratio = 6.4%). a Nuclear norm: diag = 0,
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Table 1 Influence of the rank-correction term on the recovery error

F Zero function ε = 0.1 ε = 0.1 ε = 0.1 ε = 0.05 Ũ1Ṽ
T
1 U1V

T

1

τ = 1 τ = 2 τ = 3 τ = 2

am 1 0.3126 0.1652 0.1402 0.1849 0.1355 0

Optimal relerr (%) 10.66 5.92 5.84 5.83 5.83 5.84 3.00
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Fig. 3 Influence of the rank-correction term on the recovery

that, according to our observations of many tests, in practice, if am is larger than 1 but
not too much, the recovery performance of the RCS estimator still has a high chance
to be much better than that of the NNPLS estimator.

6.3 Performance of different initial NNPLS estimators for recovery

In this subsection, we take the covariance matrix completion for example to test the
performance of the RCS estimator with different initial NNPLS estimators X̃m . We
generated the true matrix X by the command in Sect. 6.1 with n = 500, r = 5,
weight= 3 and k= 1 except that D = eye(n). The upper bound of the non-fixed
diagonal entries was set to be double of the largest absolute value among all the noisy
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Fig. 4 Performance of the RCS estimator with different initial NNPLS estimators

observations of entries together with the fixed entries. We assumed that the rank of
the true matrix was known so that we chose the rank-correction function (23).

For each ρm , we first produced the NNPLS estimator, and then use it as the initial
point to produce a sequence of RCS estimators with different penalty parameters. Next
we choose the RCS estimators that attains the correct rank with the smallest penalty
parameter. As can be seen from Fig. 2, this choice of the RCS estimator results in the
desired small recovery error. The test results are plotted in Fig. 4, where the dash curves
represent for the NNPLS estimator and the solid curves represent for the chosen RCS
estimator. We clearly observe from Fig. 4 that, no matter which NNPLS estimator is
given to be the initial estimator, the RCS estimator can always substantially improve
the recovery quality in terms of both the error and the rank.

6.4 Performance for different matrix completion problems

In this subsection, we test the performance of the RCS estimator for different matrix
completion problems. Figure 2 has revealed that a good choice of the parameter ρm
for the RCS estimator could be the smallest value that attains a stable rank. Therefore,
the bisection search method can be used to find such a parameter ρm . This is actually
what we benefit from rank consistency. In the following experiments, we apply this
strategy to find a suitable ρm for the RCS estimator.

A natural question then arises: Will multiple rank-correction steps further improve
the recovery quality? The answer can be found in Tables 2, 3 and 4 below, which
report the experimental results for covariance matrix completion, rectangular matrix
completion and density matrix completion, respectively. The reported NNPLS esti-
mator is the one with the smallest recovery error among all different ρm presuming
the true matrix is known. The initial estimator of the first RCS estimator is the NNPLS

estimator with a single preset ρm = 0.4 η‖y‖2√
m

√
log(n1+n2)

mn , where η is the noise level.
This choice of ρm follows (9) with C = 0.4, κ = 1, μ = 1 and ν taken its expected
value based on observations. The second (third) RCS estimator takes the first (second)
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Table 2 Performance for covariance matrix completion problems with n = 1000

r Diag/off-diag Sample ratio (%) Relerr (rank)

NNPLS 1st RCS 2st RCS 3rd RCS

5 1000/0 2.40 1.94e−1 (47) 8.84e−2 (5) 8.03e−2 (5) 7.85e−2 (5)

1000/0 7.99 6.08e−2 (50) 3.39e−2 (5) 3.38e−2 (5) 3.38e−2 (5)

500/500 2.39 2.28e−1 (56) 1.07e−1 (5) 8.99e−2 (5) 8.48e−2 (5)

500/500 7.98 1.16e−1 (56) 5.62e−2 (5) 5.42e−2 (5) 5.40e−2 (5)

10 1000/0 5.38 1.59e−1 (77) 7.42e−2 (10) 7.23e−2 (10) 7.22e−2 (10)

1000/0 8.96 9.15e−2 (81) 5.06e−2 (10) 5.05e−2 (10) 5.05e−2 (10)

500/500 5.38 1.65e−1 (82) 7.70e−2 (10) 7.29e−2 (10) 7.28e−2 (10)

500/500 8.96 9.54e−2 (85) 5.16e−2 (10) 5.11e−2 (10) 5.11e−2 (10)

RCS estimator to be the initial estimator. The rank-correction function F is defined
by (24), (25) and (26) with ε = 0.05 and τ = 2.

For the covariance matrix completion problems, we generated the true matrix X by
the command in Sect. 6.1 with n = 1000, weight = 2 and k = 1 except that D =
eye(n). The rank of X and the number of fixed diagonal and non-diagonal entries of
X are reported in the first and the second columns of Table 2, respectively.We sampled
partial off-diagonal entries uniformly at random with i.i.d. Gaussian noise at the noise
level 10%. The upper bound of the non-fixed diagonal entries was set to be double
of the largest absolution value among all the noisy observations of entries together
with the fixed entries. From Table 2, we see that when the sample ratio is reasonable, a
single rank-correction step is fully capable to yield a desired result. However, when the
sample ratio is very low, especially if some off-diagonal entries are fixed, one or two
further rank-correction steps could still bring some improvement in recovery quality.

For the density matrix completion problems, we generated the true density matrix
X by the following command:

M = randn(n,r)+i*randn(n,r); ML = weight*M(:,1:k);
M(:,1:k) = ML;

Xtemp = M*M’; X_bar = Xtemp/sum(diag((Xtemp))).

During the testing, we set n = 1024, weight = 2 and k = 1, and sampled
partial Pauli measurements except the trace of X uniformly at random with 10% i.i.d.
Gaussian noise. Besides this statistical noise, we further added the depolarizing noise,
which frequently appears in quantum systems. The strength of the depolarizing noise
was set to be 0.01. This case is labeled as the mixed noise in the last four rows of
Table 3. We remark here that the depolarizing noise differs from our assumption on
noise since it does not have randomness. One may refer to [22,31] for details of the
quantum depolarizing channel. In [22], Flammia et al. proposed a two-step method
for seeking a feasible solution of low-rank—(1) evaluating an NNPLS estimator by
dropping the trace one constraint; (2) normalizing the resulting solution to be of trace
one. We tested this method in our experiments, with the NNPLS estimator without
trace one constraint chosen to be the one with the smallest recovery error among all
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that attain the true rank, presuming that the true matrix is known. The two-step results
are reported as NNPLS1 and NNPLS2, respectively, in Table 3. Besides the relative
recovery error (relerr), we also report the (squared) fidelity, which is a measure of

the closeness of two quantum states defined by
∥
∥X̂1/2

m X
1/2∥∥2∗. From Table 3, we can

see that the RCS estimator is superior to the NNPLS2 estimator in terms of both the
fidelity and the relative error.

For the rectangular matrix completion problems, we generated the true matrix X
by the following command:

ML = randn(nr,r); MR = randn(nc,r);
MW = weight*ML (:,1:k);

ML(:,1:k) = MW; X_bar = ML*MR’.

Wesetweight= 2,k= 1 and took X =X_barwith different dimensions and ranks.
Both the uniform sampling scheme and the non-uniform sampling scheme were tested
for comparison. For the non-uniform sampling scheme, the probability to sample the
first 1/4 rows and the first 1/4 columns were 3 times as much as that of other rows and
columns respectively. In other words, the density of sampled entries in the top-left part
was 3 times as much as that in the bottom-left part and the top-right part respectively
and 9 times as much as that in the bottom-right part. We added 10% i.i.d. Gaussian
noise to the sampled entries. We also fixed partial entries of X uniformly from the rest
un-sampled entries. The upper bound of the non-fixed entries was set to be double of
the largest absolution value among all the noisy observations of entries together with
the fixed entries. What we observe from Table 4 for the rectangular matrix completion
is similar to that for the covariance matric completion. Moreover, we can see that
the non-uniform sampling scheme greatly weakens the recoverability of the NNPLS
estimator in terms of both the recovery error and the rank, especially when the sample
ratio is low. Meanwhile, the advantage of the RCS estimators in such cases becomes
more remarkable.

7 Conclusions

In this paper, we proposed a rank-corrected procedure for low-rank matrix completion
problems with fixed basis coefficients. This approach can substantially overcome the
limitation of the nuclear norm technique for recovering a low-rank matrix. We con-
firmed the improvement of the rank-correction step in both the reduction of recovery
error and the achievement of rank consistency (in the sense of Bach [3]). Due to the
presence of fixed basis coefficients, constraint nondegeneracy plays an important role
in our analysis. Extensive numerical experiments show that our approach can signifi-
cantly improve the recovery performance compared with the nuclear norm penalized
least square estimator. As a byproduct, our results also provide a theoretical foundation
for the majorized penalty method of Gao and Sun [27] and Gao [26] for structured
low-rank matrix optimization problems.

Our proposed rank-correction step also allows additional constraints according to
other possible prior information. In order to better fit the under-sampling setting of
matrix completion, in the future work, it would be of great interest to extend the
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asymptotic rank consistency results to the case where the matrix size is allowed to
grow. It would also be interesting to extend this approach to deal with other low-rank
matrix problems.

Acknowledgments The authors would like to thank Professor Wotao Yin for his valuable comments on
possibly choosing the optimal penalty parameter for recovery error bounds andDr. Kaifeng Jiang for helpful
discussions on efficiently solving the density matrix completion problem.

Appendix 1: Spectral operator

The concept of spectral operator is associatedwith a symmetric vector-valued function.
A function f : Rn → R

n is said to be symmetric if

f (x) = QT f (Qx) ∀ signed permutation matrix Q and x ∈ R
n,

where a signed permutation matrix is a real matrix that contains exactly one nonzero
entry 1 or −1 in each row and column and 0 elsewhere. From this definition, we see
that

fi (x) = 0 if xi = 0.

The spectral operator F : Vn1×n2 → V
n1×n2 associated with the function f is defined

by

F(X) := UDiag
(
f (σ (X))

)
VT, (27)

where (U, V ) ∈ O
n1,n2(X) and X ∈ V

n1×n2 . From [10, Theorems 3.1 & 3.6], the
symmetry of f guarantees the well-definiteness of the spectral operator F , and the
(continuous) differentiability of f implies the (continuous) differentiability of F .
When V

n1×n2 = S
n , we have that

F(X) = PDiag
(
f (|λ(X)|))(PDiag(s(X))

)T
,

where P ∈ O
n(X) and s(X) ∈ R

n with the i-th component si (X) = −1 if λi (X) < 0
and si (X) = 1 otherwise. In particular for the positive semidefinite case, both U and
V in (27) reduce to P . For more details on spectral operators, the readers may refer
to the PhD thesis [10].

Appendix 2: Constraint nondegeneracy

Consider the following constrained optimization problem

min
X∈Vn1×n2

{
�(X) + �(X) : A(X) − b ∈ K

}
, (28)
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where � : Vn1×n2 → R is a continuously differentiable function, � : Vn1×n2 → R

is a convex function, A : Vn1×n2 → R
l is a linear operator and K ⊆ R

l is a closed
convex set. Let X̂ be a given feasible point of (28) and ẑ := A(X̂) − b. When � is
differentiable at X̂ , we say that the constraint nondegeneracy holds at X̂ if

AV
n1×n2 + lin

(
TK (̂z)

) = R
l , (29)

where TK (̂z) denotes the tangent cone of K at ẑ and lin(TK (̂z)) denotes the largest
linearity space contained in TK (̂z), i.e., lin(TK (̂z)) = TK (̂z) ∩ (−TK (̂z)). When the
function � is nondifferentiable, we can rewrite the optimization problem (28) equiv-
alently as

min
X∈Vn1×n2 ,t∈R

{
�(X) + t : Ã(X, t) ∈ K × epi�

}
,

where epi� := {
(X, t) ∈ V

n1×n2 × R | �(X) ≤ t
}
denotes the epigraph of � and

Ã : Vn1×n2 × R → R
l × V

n1×n2 × R is a linear operator defined by

Ã(X, t) :=
⎛

⎝
A(X) − b

X
t

⎞

⎠ , (X, t) ∈ V
n1×n2 × R.

From (29) and [67, Theorem 6.41], the constraint nondegeneracy holds at (X̂ , t̂) with
t̂ = �(X̂) if

Ã
(
V
n1×n2

R

)
+
(

lin
(
TK (̂z)

)

lin
(
Tepi�(X̂ , t̂)

)
)

=
⎛

⎝
R
l

V
n1×n2

R

⎞

⎠ .

By the definition of Ã, it is not difficult to verify that this condition is equivalent to

[A 0](lin(Tepi�(X̂ , t̂))
)+ lin

(
TK (̂z)

) = R
l . (30)

One can see that the problem (3) with C = V
n1×n2 can be cast into (28) with

� = ‖ · ‖∗,A = [Rα Rβ ], K = {0}|α| × [−b, b]|β|, and meanwhile the problem (3)
with C = S

n+ can be cast into (28) with � = δSn+ ,A = Rα , K = {0}. In the previous

case, the condition (30) reduces to (15) according to the expression of Tepi�(X , t)
with t = ‖X‖∗ (e.g., see [34]). In the latter case, the condition (30) reduces to (16)
according to Arnold’s characterization of the tangent cone TSn+(X) = {

H ∈ S
n |

P
T

2 HP2 ∈ S
n−r+
}
in [2].
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Appendix 3: Proofs of Theorems

Proof of Theorem 1

Let �m := X̂m − X . Using the optimality of X̂m to the problem (3), we obtain that

1

2m
‖R�(�m)‖22 ≤

〈 ν
m
R∗

�(ξ),�m

〉
− ρm

(‖X̂m‖∗ − ‖X‖∗ − 〈F(X̃m),�m〉). (31)

Then, we introduce an orthogonal decomposition V
n1×n2 = T ⊕ T⊥ with

{
T := {X ∈ V

n1×n2 | X = X1 + X2 with col(X1) ⊆ col(X) and row(X2) ⊆ row(X)
}
,

T⊥ := {X ∈ V
n1×n2 | row(X) ⊥ row(X) and col(X) ⊥ col(X)

}
,

where row(X) and col(X) denote the row space and column space of X , respectively.
Let PT and PT⊥ be orthogonal projections onto T and T⊥, respectively, given by

PT (X) = U 1U
T

1 X + XV 1V
T

1 −U1U
T

1 XV 1V
T

1 and PT⊥(X) = U 2U
T

2 XV 2V
T

2
(32)

for any X ∈ V
n1×n2 and (U , V ) ∈ O

n1,n2(X). Then, it follows from the choice of ρm
that
〈 ν
m
R∗

�(ξ),�m

〉
≤
∥∥
∥
ν

m
R∗

�(ξ)

∥∥
∥‖�m‖∗ ≤ ρm

κ

(‖PT (�m)‖∗ + ‖PT⊥(�m)‖∗
)
. (33)

Moreover, from the directional derivative of the nuclear norm at X , (see [75, Theo-
rem 1]), we have

‖X̂m‖∗ − ‖X‖∗ − 〈F(X̃m),�m〉 ≥ 〈U 1V
T

1 ,�m〉 + ‖UT

2�mV 2‖∗ − 〈F(X̃m),�m〉
≥ ‖PT⊥(�m)‖∗ − ‖U 1V

T

1 − F(X̃m)‖F‖�m‖F
= ‖PT⊥(�m)‖∗ − am

√
r‖�m‖F . (34)

Then, by substituting (33) and (34) into (31), we have

1

2m
‖R�(�m)‖22 ≤ ρm

(
am

√
r‖�m‖F + 1

κ
‖PT (�m)‖∗ − κ − 1

κ
‖PT⊥(�m)‖∗

)
.

(35)
Note that rank(PT (�m)) ≤ 2r . Hence, ‖PT (�m)‖∗ ≤ √

2r‖PT (�m)‖F ≤√
2r‖�m‖F and then the desired result (7) follows.

Proof of Theorem 2

We first show that the sampling operator R� satisfies some RIP-like property for
matrices specified in a certain set with high probability. Similar results can also be
found in [40,44,49,58].
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For this purpose, define

ϑm := E

∥∥∥
1

m
R∗

�(ε)

∥∥∥ with ε = (ε1, . . . , εm)
T, (36)

where {ε1, . . . , εm} is an i.i.d. Rademacher sequence, i.e., an i.i.d. sequence of
Bernoulli random variables taking the values 1 and −1 with probability 1/2.

Lemma 11 Given any s > 0 and t > 0, define

K (s, t) :={� ∈ V
n1×n2

∣∣Rα(�) = 0, ‖Rβ(�)‖∞ = 1, ‖�‖∗ ≤ s‖�‖F ,
〈Qβ(�),�〉 ≥ t

}
.

Then, for any given γ > 1, τ1 ∈ (0, 1) and τ2 ∈ (0, τ1/γ ), with probability at least

1 − exp(−(τ1−γ τ2)
2mt2/2)

1−exp(−(γ 2−1)(τ1−γ τ2)2mt2/2)
,

1

m
‖R�(�)‖22 ≥ (1 − τ1)〈Qβ(�),�〉 − 16

τ2
s2μ1d2ϑ

2
m ∀� ∈ K (s, t). (37)

Proof The proof is similar to that of [40, Lemma 12]. For any s, t > 0, γ > 1,
τ1 ∈ (0, 1) and τ2 ∈ (0, τ1/γ ), we need to show that the event

E =
{
∃�∈K (s, t) such that

∣∣∣
1

m
‖R�(�)‖22 − 〈Qβ(�),�〉

∣∣∣

≥ τ1〈Qβ(�),�〉 + 16

τ2
s2μ1d2ϑ

2
m

}

occurs with probability less than exp(−(τ1−γ τ2)
2mt2/2)

1−exp(−(γ 2−1)(τ1−γ τ2)2mt2/2)
. We decompose K (s, t)

as

K (s, t) =
∞⋃

k=1

{
� ∈ K (s, t)

∣
∣ γ k−1t ≤ 〈Qβ(�),�〉 ≤ γ k t

}
.

For any a ≥ t , we further define K (s, t, a) := {� ∈ K (s, t) | 〈Qβ(�),�〉 ≤ a}.
Then we get E ⊆⋃∞

k=1 Ek with

Ek =
{
∃�∈K (s, t, γ k t) such that

∣∣∣
1

m
‖R�(�)‖22 − 〈Qβ(�),�〉

∣∣∣

≥ γ k−1τ1t + 16

τ2
s2μ1d2ϑ

2
m

}
.

Now we need to estimate the probability of each event Ek . Define

Za := sup
�∈K (s,t,a)

∣∣
∣
1

m
‖R�(�)‖22 − 〈Qβ(�),�〉

∣∣
∣.
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Notice that for any � ∈ V
n1×n2 ,

1

m
‖R�(�)‖22 = 1

m

m∑

i=1

〈�ωi ,�〉2 a.s.→ E(〈�ωi ,�〉2) = 〈Qβ(�),�〉.

Since ‖Rβ(�)‖∞ ≤ 1 for all� ∈ K (s, t), fromMassart’s Hoeffding type concentra-
tion inequality [51, Theorem 1.4] for suprema of empirical processes, we have

Pr
(
Za ≥ E(Za) + ε

) ≤ exp

(
−mε2

2

)
∀ ε > 0. (38)

Next, we use the standard Rademacher symmetrization in the theory of empirical
processes to further derive an upper bound ofE(Za). Let {ε1, . . . , εm} be aRademacher
sequence. Then, we have

E(Za) = E

(
sup

�∈K (s,t,a)

∣∣
∣
1

m

m∑

i=1

〈�ωi ,�〉2 − E
(〈�ωi ,�〉2)

∣∣
∣
)

≤ 2E

(
sup

�∈K (s,t,a)

∣∣
∣
1

m

m∑

i=1

εi 〈�ωi ,�〉2
∣∣
∣
)

≤ 8E

(
sup

�∈K (s,t,a)

∣∣
∣
1

m

m∑

i=1

εi 〈�ωi ,�〉
∣∣
∣
)

= 8E

(
sup

�∈K (s,t,a)

∣∣
∣
1

m

m∑

i=1

〈R∗
�(ε),�〉

∣∣
∣
)

≤ 8E
∥∥
∥
1

m
R∗

�(ε)

∥∥
∥
(

sup
�∈K (s,t,a)

‖�‖∗
)
,

(39)

where the first inequality follows from the symmetrization theorem (e.g., see [73,
Lemma 2.3.1] and [6, Theorem 14.3]) and the second inequality follows from the
contraction theorem (e.g., see [46, Theorem 4.12] and [6, Theorem 14.4]). Moreover,
from (8), we have

〈Qβ(�),�〉 ≥ (μ1d2)
−1‖�‖2F ∀� ∈ {�∈V

n1×n2 | Rα(�) = 0}. (40)

This leads to

‖�‖∗ ≤ s‖�‖F ≤ s
√
μ1d2〈Qβ(�),�〉 ≤ s

√
μ1d2a ∀� ∈ K (s, t, a). (41)

Combining (39) and (41) with the definition of ϑm in (36), we obtain that

E(Za) +
(τ1
γ

− τ2

)
a ≤ 8ϑms

√
μ1d2a +

(τ1
γ

− τ2

)
a ≤ 16

τ2
s2μ1d2ϑ

2
m + τ1

γ
a,

where the second inequality follows from the simple fact x1x2 ≤ (x21 + x22 )/2 for any
x1, x2 ≥ 0. Then, it follows from (38) that
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Pr

(
Za ≥ τ1

γ
a + 16

τ2
s2μ1d2ϑ

2
m

)
≤ Pr

(
Za ≥ E(Za) +

(τ1
γ

−τ2

)
a

)

≤ exp

(
−
(τ1
γ

−τ2

)2 ma2

2

)
.

This implies that Pr(Ek) ≤ exp
(
− 1

2 γ 2(k−1)(τ1 − γ τ2)
2mt2

)
. Then, since γ > 1, by

using γ k ≥ 1 + k(γ − 1) for any k ≥ 1, we have

Pr(E) ≤
∞∑

k=1

Pr(Ek) ≤
∞∑

k=1

exp
(
− 1

2
γ 2(k−1)(τ1 − γ τ2)

2mt2
)

≤ exp
(
− 1

2
(τ1 − γ τ2)

2mt2
) ∞∑

k=1

exp
(
− 1

2
(k − 1)(γ 2 − 1)(τ1 − γ τ2)

2mt2
)

≤ exp(−(τ1 − γ τ2)
2mt2/2)

1 − exp(−(γ 2 − 1)(τ1 − γ τ2)2mt2/2)
.

Thus, we complete the proof of Lemma 11.

Now we proceed with the proof of Theorem 2. Let�m := X̂m − X . Notice that the
equality (35) implies that

‖PT⊥(�m)‖∗ ≤ 1

κ − 1
‖PT (�m)‖∗ + κ

κ − 1
am

√
r‖�m‖F .

This, together with ‖PT (�m)‖∗ ≤ √
2r‖�m‖F , leads to

‖�m‖∗ ≤ ‖PT (�m)‖∗ + ‖PT⊥(�m)‖∗ ≤ κ

κ − 1

(√
2 + am

)√
r‖�m‖F . (42)

Let bm := ‖Rβ(�m)‖∞ ≤ 2b. For any fixed c > 0, γ > 1, τ1 ∈ (0, 1) and

τ2 ∈ (0, τ2/γ ), define tm :=
√

2c log(n1+n2)
(τ1−γ τ2)2m

so that direct calculation yields

exp(−(τ1 − γ τ2)
2mt2m/2)

1 − exp(−(γ 2 − 1)(τ1 − γ τ2)2mt2m/2)
= (n1 + n2)−c

1 − (n1 + n2)−(γ 2−1)c
≤ (n1 + n2)−c

1 − 2−(γ 2−1)c
.

Then we separate the discussion into two cases:

Case 1: 〈Qβ(�m),�m〉 ≤ b2mtm . It follows from (40) that ‖�m‖2F/d2 ≤ 4b2μ1tm .

Case 2: 〈Qβ(�m),�m〉 > b2mtm . It follows from (42) that �m/bm ∈ K (sm, tm) with
sm := κ

κ−1

(√
2+am

)√
r . Then for any given τ3 satisfying 0 < τ3 < 1, we obtain that

with probability at least 1 − (n1+n2)−c

1−2−(γ 2−1)c
,
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‖�m‖2F
d2

≤ μ1〈Qβ(�m),�m〉 ≤ μ1

1 − τ1

(
1

m
‖R�(�m)‖22 + 16

τ2
s2mμ1d2ϑ

2
mb

2
m

)

≤ 2

1 − τ1

(√
2

κ
+ am

)
μ1ρm

√
r‖�m‖F + 16

(1 − τ1)τ2
s2mμ

2
1d2ϑ

2
mb

2
m

≤ τ3
‖�m‖2F

d2
+ 2

(1 − τ1)2τ3

(√
2

κ
+ am

)2

μ2
1ρ

2
mrd2 + 16

(1 − τ1)τ2
s2mμ

2
1d2ϑ

2
mb

2
m,

where the first inequality follows from (40), the second inequality follows from
Lemma 11 and the third inequality follows from Theorem 1. Plugging in sm further
leads to

‖�m‖2F
d2

≤ μ2
1d2r

1 − τ3

(
2

(1−τ1)2τ3

(√
2

κ
+ am

)2

ρ2
m + 64

(1 − τ1)τ2

(
κ

κ−1

)2(√
2 + am

)2
ϑ2
mb

2

)

.

Combing the above two cases together, with γ , τ1, τ2 and τ3 chosen to be absolute
constants, we arrive at an intermediate result that there exist some positive absolute
constants c′

0, c
′
1, c

′
2 and C ′

0 such that for any κ > 1, if ρm is chosen as in Theorem 1,
then with probability at least 1 − c′

1(n1 + n2)−c′
2 ,

‖X̂m − X‖2F
d2

≤ C ′
0 max

{
μ2
1d2r

(

c′0
2
(√

2

κ
+ am

)2
ρ2m +

(
κ

κ − 1

)2(√
2 + am

)2
ϑ2
mb

2

)

,

b2μ1

√
log(n1 + n2)

m

}
. (43)

To further derive explicit estimations of ρm and ϑm , we introduce the noncom-
mutative Bernstein inequality taken from [42, Corollary 2.1], which provides a
probability control of the deviation of the sum of random matrices from its mean
in the operator norm. The noncommutative Bernstein inequality introduced here
is a recently-extended version, with the random matrices being controlled by the
Orlicz norms (see [42–44]) rather than the operator norm (see, e.g., [30,63,72]).
The Orlicz norms are used to characterize the tail behavior of random variables.
Given any s ≥ 1, the ψs Orlicz norm of a random variable z is defined by
‖z‖ψs := inf{t > 0

∣∣E exp(|z|s/t s) ≤ 2}.

Lemma 12 (Koltchinskii [42]) Let Z1, . . . , Zm ∈ V
n1×n2 be independent random

matrices with mean zero. Suppose thatmax
{∥∥‖Zi‖

∥∥
ψs

, 2E
1
2 (‖Zi‖2)

}
< �s for some

constant �s . Define

σZ := max

{∥∥∥∥
1

m

m∑

i=1

E(Zi Z
T

i )

∥∥∥∥

1/2

,

∥∥∥∥
1

m

m∑

i=1

E(ZT

i Zi )

∥∥∥∥

1/2
}

.
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Then, there exists a constant C such that for all t > 0, with probability at least
1− exp(−t),

∥
∥∥∥
1

m

m∑

i=1

Zi

∥
∥∥∥ ≤ C max

{

σZ

√
t + log(n1 + n2)

m
,�s

(
log

�s

σZ

)1/s t + log(n1+ n2)

m

}

.

With the help of Lemma 12, we obtain the following result, which is an extension
of [44, Lemma 2] and [40, Lemmas 5 and 6] from the standard basis to an arbitrary
orthonormal basis. A similar result can also be found in [58, Lemma 6].

Lemma 13 Under Assumption 2, there exists a positive constant C ′ (only depending
on the ψ1 Orlicz norm of ξk) such that for all t > 0, with probability at least 1 −
exp(−t),

∥∥∥∥
1

m
R∗

�(ξ)

∥∥∥∥ ≤ C ′ max

{√
μ2(t+ log(n1+ n2))√

d2m
,
log(d2)(t+ log(n1+ n2))

2m

}

.

(44)
In particular, when m ≥ √

d2 log3(n1 + n2)/μ2, we also have

E

∥
∥∥∥
1

m
R∗

�(ξ)

∥
∥∥∥ ≤ C ′

√
2eμ2 log(n1 + n2)√

d2m
, (45)

where e is the exponential constant.

Proof Recall that 1
mR∗

�(ξ) = 1
m

∑m
i=1 ξi�ωi . Let Zi := ξi�ωi . Since E(ξi ) = 0, the

independence of ξi and �ωi implies that E(Zi ) = 0. Since ‖�ωi ‖F = 1, we have
that ‖Zi‖ ≤ ‖Zi‖F = |ξi |‖�ωi ‖F = |ξi |. It follows that

∥∥‖Zi‖
∥∥
ψ1

≤ ‖ξi‖ψ1 and
thus finite. (It is known that a random variable is sub-exponential if and only its ψ1

Orlicz norm is finite [73]). Meanwhile, E
1
2 (‖Zi‖2) ≤ E

1
2 (‖Zi‖2F ) = E

1
2 (ξ2i ) = 1.

Then direct calculation yields

E
(
Zi Z

T

i

) = E
(
ξ2i �ωi�

T
ωi

) = E
(
�ωi�

T
ωi

) =
∑

k∈β
pk�k�

T

k .

The calculation for E
(
ZT

i Zi
)
is similar. We obtain from (8) that 1/

√
d2 ≤ σ 2

Z ≤
μ2/

√
d2. Then, applying this to Lemma 12 yields (44). The remaining proof of (45)

follows the same as the proof of Lemma 6 in [40]. For simplicity, we omit it.

A good estimation ofρm can be achieved by choosing t = c′
2 log(n1+n2) in Lemma

13 for an optimal order bound, where c′
2 is the same as that in (43). With this choice,

when m ≥ 4(1+ c′
2)

√
d2 log2(d2) log(n1 + n2)/μ2, the first term in the maximum of

(44) dominates the second one. Thus, with probability at least 1 − (n1 + n2)−c′
2 , one

can choose

ρm = κν · C ′
√

(1 + c′
2)μ2 log(n1 + n2)√

d2m
.
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Moreover, since Bernoulli random variables are sub-exponential, Lemma 13 also pro-
vides an upper bound of ϑm in (45). It is worthwhile to note that after plugging the
above estimations of ρm and ϑm , the second term in the maximum of (43) is negli-
gible compared with the first term. Therefore, the second term is further dropped for
simplicity and thus we complete the proof.

Proof of Theorem 3

For notational simplicity, we drop the subscript of X̃m in this proof. With (Ũ , Ṽ ) ∈
O

n1,n2(X̃), one immediately obtains from the definition of am in (6) that

am ≤ 1√
r

(‖F(X̃) − Ũ1Ṽ
T

1 ‖F + ‖Ũ1Ṽ
T

1 −U1V
T

1 ‖F
) ≤ εF (X̃) + 1√

r
‖Ũ1Ṽ

T

1 −U1V
T

1 ‖F .
(46)

The left proof is to find an upper bound of ‖Ũ1ṼT

1 − U1V
T

1 ‖F . Let δ := ‖X̃ − X‖F
and Nδ(X) := {X ∈ V

n1×n2 | ‖X − X‖F ≤ δ}.
Let F̂ : V

n1×n2 → V
n1×n2 be a spectral operator associated with a symmetric

function f̂ : Rn → R
n given by f̂i (x) = φ(xi ), i = 1, . . . , n, where φ : R → R is

an odd scalar function with φ(t) = −φ(−t) for t < 0, and φ(t) for t ≥ 0 is defined
as

φ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if t ≥ 2σr (X)/3 − δ/3,
t−(σr (X)/3+δ/3)
σr (X)/3−2σ/3

if σr (X)/3 + δ/3 < t < 2σr (X)/3 − δ/3,

0 if 0 ≤ t ≤ σr (X)/3 + δ/3.

Note that for any X ∈ Nδ(X),

|σi (X) − σi (X)| ≤ σ1(X − X) ≤ ‖X − X‖F ≤ δ, i = 1, . . . , n.

Since δ/σr (X) < 1/2, we further have σr (X) ≥ σr (X) − δ > δ ≥ σr+1(X). This
means

F̂(X) = U1V
T

1 ∀ X ∈ Nδ(X).

Moreover, F̂ is continuously differentiable overNδ(X). Hence,we can apply theMean
Value Theorem to obtain

Ũ1Ṽ
T

1 −U 1V
T

1 = F̂(X̃) − F̂(X) =
∫ 1

0
F̂ ′(X̃t )(X̃ − X) dt, (47)

where X̃t := X + t (X̃ − X). Clearly, X̃t ∈ Nδ(X) when t ∈ [0, 1].
Regarding (47), we need to look into the derivative of F̂ over Nδ(X). Let X ∈

Nδ(X) be arbitrary and (U, V ) ∈ O
n1,n2(X). Without loss of generality, we assume

n1 ≤ n2. Let χ1 := {1, . . . , r}, χ2 := {r + 1, . . . , n1} and χ3 := {n1 + 1, . . . , n2}.
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Then, according to [10, Theorem 3.6], we have that for any H ∈ V
n1×n2 ,

F̂ ′(X)(H) = U

[
E1(X) ◦ H̃1 + H̃T

1

2
+ E2(X) ◦ H̃1 − H̃T

1

2
ϒ(X) ◦ H̃2

]
VT, (48)

where [H̃1 H̃2] = H̃ := UHVT with H̃1 ∈ V
n1×n1 , H̃2 ∈ V

n1×(n2−n1), and E1(X) ∈
V
n1×n1 , E2(X) ∈ V

n1×n1 , ϒ(X) ∈ V
n1×(n2−n1) take the form

(
E1(X)

)
i j =

{
1

σi (X)−σ j (X)
if i ∈ χ1, j ∈ χ2 or i ∈ χ2, j ∈ χ1,

0 otherwise,

(
E2(X)

)
i j =

⎧
⎪⎨

⎪⎩

2
σi (X)+σ j (X)

if i ∈ χ1, j ∈ χ1,

1
σi (X)−σ j (X)

if i ∈ χ1, j ∈ χ2 or i ∈ χ2, j ∈ χ1,

0 otherwise,

(
ϒ(X)

)
i j =

{
1

σi (X)
if i ∈ χ1, j ∈ χ3,

0 otherwise.

Here, “◦” stands for the Hadamard product of matrices. Let � denote the matrix in
the bracket of (48). Moreover, let �χi ,χ j and H̃χi ,χ j denote the submatrices of � and
H̃ with row indices χi and column indices χ j , respectively. Then, a direct calculation
yields

‖�χ1,χ1‖2F ≤ ‖H̃χ1,χ1‖2F
σ 2
r (X)

, ‖�χ1,χ2‖2F + ‖�χ2,χ1‖2F ≤ ‖H̃χ1,χ2‖2F + ‖H̃χ2,χ1‖2F
(σr (X) − σr+1(X))2

,

‖�χ2,χ2‖2F = 0, ‖�χ1,χ3‖2F ≤ ‖H̃χ1,χ3‖2F
σ 2
r (X)

and ‖�χ2,χ3‖2F = 0.

Note that ‖F̂ ′(X)(H)‖F = ‖�‖F and ‖H̃‖F = ‖H‖F . By summing up the above
inequalities together, we obtain that for any X ∈ Nδ(X),

∥∥F̂ ′(X)(H)
∥∥
F ≤

√
‖Hχ1,χ1∪χ2∪χ3‖2F + ‖Hχ2,χ1‖2F

σr (X) − σr+1(X)
≤ ‖H‖F

σr (X) − σr+1(X)
. (49)

Now, we proceed with the proof by applying (49) to (47). This leads to

∥∥Ũ1Ṽ
T

1 −U 1V
T

1

∥∥
F ≤

∫ 1

0

∥∥F̂ ′(X̃t )(X̃ − X)
∥∥
F dt ≤

∫ 1

0

δ

σr (X̃t ) − σr+1(X̃t )
dt.

(50)
Moreover, using [4, Theorems IV.3.4& II.3.1], we have

(
σr (X̃t ) − σr (X)

)2 + σ 2
r+1(X̃t )

≤ ∥∥σ(X̃t ) − σ(X)
∥∥2
F ≤ ∥∥σ(X̃t − X)

∥∥2
F = ∥∥X̃t − X

∥∥2
F ≤ t2δ2.
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This implies that σr (X̃t )−σr (X) = δt cos θ and σr+1(X̃t ) = δt sin θ for some δt ≤ tδ
and θ ∈ [0, 2π). Thus,

σr (X̃t )− σr+1(X̃t ) = σr (X)+ δt cos θ − δt sin θ ≥ σr (X)− √
2δt ≥ σr (X)− √

2tδ.
(51)

Substituting (51) into (50), we obtain that

∥
∥Ũ1Ṽ

T

1 −U1V
T

1 ‖F ≤
∫ 1

0

δ

σr (X) − √
2tδ

dt = − 1√
2
log

(
1 −

√
2 δ

σr (X)

)
.

This, together with (46), completes the proof.

Proof of Theorem 4

We first prove the following properties of the sample operatorR� and its adjointR∗
�.

Lemma 14 (i) For any given X ∈ V
n1×n2 , the random matrix

1

m
R∗

�R�(X)
a.s.→

Qβ(X).

(ii) The random vector
1√
m
Rα∪βR∗

�(ξ)
d→ N

(
0,Diag(p)

)
, where p = (p1, . . . ,

pd)T.

Proof (i) It follows from the definitions of R� and its adjoint R∗
� that 1

mR∗
�R�

(X) = 1
m

∑m
i=1〈�ωi , X〉�ωi . This is an average value of m i.i.d. random matri-

ces 〈�ωi , X〉�ωi . Note that E
(〈�ωi , X〉�ωi

) = Qβ(X) ∀ i = 1, · · · ,m. Then
the result follows directly from the strong law of large numbers.

(ii) It directly follows from the definitions ofR∗
� andRα∪β that 1√

m
Rα∪βR∗

�(ξ) =
1√
m
Rα∪β

(∑m
i=1 ξi�ωi

) = 1√
m

∑m
i=1 ξiRα∪β(�ωi ). Since E(ξi ) = 0 and

E(ξ2i ) = 1, according to the independence of ξi and Rα∪β(�ωi ), we obtain
E
(
ξiRα∪β(�ωi )

) = 0 and cov
(
ξiRα∪β(�ωi )

) = Diag(p). Then, applying the
vector-valued central limit theorem yields the result.

To prove the convergence in distribution of minimizers, the following theorem of
Knight [41, Theorem 1] on epi-convergence in distribution is particularly useful in
this regard (see also [32, Proposition 9]).

Lemma 15 (Knight [41]) Let {�m} be a sequence of random lower-semicontinuous
functions that epi-converges in distribution to �. Assume that

(i) x̂m is an εm-minimizer of �m, i.e., �m (̂xm) ≤ inf �m(x) + εm, where εm
p→ 0;

(ii) x̂m = Op(1);
(iii) the function � has a unique minimizer x.

Then, x̂m
d→ x. In addition, if � is a deterministic function, then x̂m

p→ x.
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It is know from [29] that x̂m is guaranteed to be Op(1) when all �m are convex
functions and� has a uniqueminimizer. For more details on epi-convergence in distri-
bution, onemay refer toKing andWets [38],Geyer [28], Pflug [59,60] andKnight [41].
As Lemma 15 is only applicable to unconstrained optimization problems, constrained
optimization problems need to be equivalently converted to unconstrained ones using
the indicator function of feasible set. This leads to the issue of epi-convergence in
distribution of the sum of two sequences of random functions; see, e.g., Pflug [60,
Lemma 1].

Nowwe proceed with the proof of Theorem 4. Let�m denote the objective function
of (3) and F denote the feasible set. Then, the problem (3) can be concisely written as

min
X∈Vn1×n2

{
�m(X) + δF (X)

}
.

By Assumptions 3 and 4 and Lemma 14, we have that the convex function �m

converges pointwise in probability to the convex function �, where �(X) :=
1
2 〈X − X ,Qβ(X − X)〉 for any X ∈ V

n1×n2 . As a direct extension of Rockafellar
[66, Theorem 10.8], Andersen and Gill [1, Theorem II.1] proved that the pointwise
convergence in probability implies the convergence in probability (and thus in distrib-
ution) with respect to the topology of uniform convergence on compact subset. Then,
according to Pflug [60, Lemma 1], we further obtain that �m + δF epi-converges in
distribution to � + δF . Note that X is the unique minimizer of �(X) + δF (X) since
�(X) is strongly convex over the feasible set F . Thus, we complete the proof by
applying Lemma 15 on epi-convergence in distribution.

Proof of Theorem 5

Theorem 4 actually implies that X̂m has a higher rank than X with probability con-
verging to 1 if ρm → 0, due to the straightforward result:

Lemma 16 If Xm
p→ X, then limm→∞ Pr

(
rank(Xm) ≥ rank(X)

) = 1.

Proof It follows from the Lipschitz continuity of singular values that

σk(Xm)
p→ σk(X) ∀ 1 ≤ k ≤ n.

Thus, for any ε > 0, we have

P
(
rank(Xm) ≥ rank(X)

) ≥ P
(|σr (Xm) − σr (X)| ≤ εσr (X)

)→ 1 as m → ∞.

Now we take a look at the local property for the rank function for the perturbation.

Lemma 17 Let � ∈ V
n1×n2 satisfy U

T

2� V 2 �= 0. Then, for all ρ �= 0 sufficiently
small and � sufficiently close to �, rank(X + ρ�) > rank(X).
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Proof Letσ ′
i (X; ·) denote the directional derivative function of the i-th largest singular

value function σi (·) at X . Let r := rank(X). Note that σr+1(X) = 0. Then, according
to [48, Section 5.1] and [11, Proposition 6], for any� ∈ V

n1×n2 and ρ → 0, we have

σr+1(X + ρ�) − σ ′
r+1(X; ρ�) = O(‖ρ�‖2F ),

where σ ′
r+1(X; ρ�) = ‖UT

2 (ρ�)V 2‖. SinceUT

2� V 2 �= 0, from the sign-preserving
property of limits, for any ρ �= 0 sufficiently small and � sufficiently close to �, we
have

σr+1(X + ρ�)

|ρ| = ‖UT

2�V 2‖ + O(|ρ|‖�‖2F ) > 0.

This implies that rank(X + ρ�) > rank(X).

Define �̂m := ρ−1
m (X̂m − X). To guarantee the efficiency of the nuclear semi-norm

on encouraging a low-rank solution, the parameter ρm should not decay too fast. Then,
for a slow decay on ρm , we can establish the following result.

Lemma 18 If ρm → 0 and
√
mρm → ∞, then �̂m

p→ �̂, where �̂ is the unique
optimal solution to the following convex optimization problem

min
�∈Vn1×n2

1

2
〈Qβ(�),�〉 + 〈U 1V

T

1 − F(X),�〉 + ‖UT

2�V 2‖∗

s.t. Rα(�) = 0, Rβ+(�) ≤ 0, Rβ−(�) ≥ 0.
(52)

Proof Take a variable transformation� := ρ−1
m (X − X) in the optimization problem

(3). Then one can easily see that �̂m is the optimal solution to

min
�∈Vn1×n2

1

2m
‖R�(�)‖22 − ν

mρm
〈R∗

�(ξ),�〉 + 1

ρm

(‖X + ρm�‖∗ − ‖X‖∗
)− 〈F(X̃m),�〉

s.t. � ∈ Fm := ρ−1
m (K − X),

(53)
where K := {

X ∈ S
n | Rα(X) = Rα(X), ‖Rβ(X)‖∞ ≤ b

}
. Let �m and � denote

the objective functions of (53) and (52), respectively. By the definition of directional
derivative and [75, Theorem 1], we have

lim
ρm→0

1

ρm

(‖X + ρm�‖∗ − ‖X‖∗
) = 〈U 1V

T

1 ,�〉 + ‖UT

2�V 2‖∗.

Then, under Assumptions 3 and 4, according to Lemma 14, we obtain that �m con-
verges pointwise in probability to�. Together with the convexity of K, we know that
Fm converges in the sense of Painlevé-Kuratowski to the tangent cone TK(X) (see
[5,67]), taking the form

TK(X) = {� ∈ V
n1×n2 | Rα(�) = 0, Rβ+(�) ≤ 0, Rβ−(�) ≥ 0

}
. (54)
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Since epi-convergence of functions corresponds to set convergence of their epigraphs
[67], we obtain that δFm epi-converges to δTK(X). Then, by using the same argument as
in the proof of Theorem4,we obtain that�m+δFm epi-converges in distribution to�+
δTK(X). In addition, the optimal solution to (52) is unique due to the strong convexity
of � over the feasible set K. Then, applying Lemma 15 on the epi-convergence in
distribution leads to the desired result.

Note that X̂m = X + ρm�̂m . From Lemmas 16, 17 and 18, we can see that

U
T

2 �̂V 2 = 0 is a necessary condition for the rank consistency of X̂m . Then, we
look into an explicit characterization of this condition.

Lemma 19 Let �̂ be the optimal solution to the problem (52). Then U
T

2 �̂V 2 = 0 if
and only if the linear system (13) has a solution �̂ ∈ V

(n1−r)×(n2−r) with ‖�̂‖ ≤ 1.

Moreover, in this case, �̂ = Q†
β

(
U 2�̂ V

T

2 −U 1V
T

1 + F(X)
)
.

Proof Assume that U
T

2 �̂V 2 = 0. Since �̂ is the optimal solution to (52), from the
optimality condition, the subdifferential of ‖X‖∗ at 0, and [66, Theorem 23.7], we
obtain that there exist some �̂ ∈ V

(n1−r)×(n2−r) with ‖�̂‖ ≤ 1 and (̂η0, η̂1, η̂2) ∈
R

|α| × R
|β+| × R

|β−| such that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Qβ(�̂) +U 1V
T

1 − F(X) + R∗
α(̂η

0) + R∗
β+ (̂η1) + R∗

β− (̂η2) −U 2�̂ V
T

2 = 0,

Rα(�̂) = 0,

Rβ+(�̂) ≤ 0, η̂1 ≥ 0, 〈Rβ+(�̂), η̂1〉 = 0,

Rβ−(�̂) ≥ 0, η̂2 ≤ 0, 〈Rβ−(�̂), η̂2〉 = 0.
(55)

Note thatRβ+(�̂) ≤ 0 andRβ−(�̂) ≥ 0 implies thatQ†
βQβ(�̂) = Pβ(�̂).Moreover,

Q†
βR∗

α(̂η
0) = Q†

βR∗
β+ (̂η1) = Q†

βR∗
β− (̂η2) = 0. Then, we apply the operator Q†

β to
the first equation of (55) and then obtain

Pβ(�̂) + Q†
β(U1V

T

1 − F(X)) −U 2�̂ V
T

2 ) = 0. (56)

Further note thatRα(�̂) = 0 implies Pα(�̂) = 0. This leadsU
T

2Pβ(�̂)V 2 = 0 since

U
T

2 �̂V 2 = 0. Then, together with(56), we obtain that �̂ is a solution to (13).
Conversely, if the linear system (13) has a solution �̂with ‖�̂‖ ≤ 1, then it is easy to

check that the KKT conditions (55) are satisfied with �̂ = Q†
β(Ẑ) and η̂0 = Rα(Ẑ),

η̂1 = (Rβ+(Ẑ))+, η̂2 = (Rβ−(Ẑ))−, where Ẑ = U 2�̂ V
T

2 − U 1V
T

1 + F(X). Then,

U
T

2 �̂V 2 = 0 directly follows from (13).

With Lemma 19, the necessary part of Theorem 5 is immediate due to the necessity

of the conditionU
T

2 �̂V 2 = 0 for rank consistency. Nowwe proceedwith the sufficient
part.

Define β+
m , β

−
m , β

◦
m similar to (12) with X replaced by X̂m . From Theorem 4, we

have X̂m
p→ X asm → ∞. The convergence implies that β+

m ⊆ β+ and β−
m ⊆ β− for
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sufficiently large m. In this circumstance, the estimator X̂m is the optimal solution to
(3) with C = V

n1×n2 if and only if there exists a subgradient Ĝm of the nuclear norm
at X̂m and (̂η0m, η̂

1
m, η̂

2
m) ∈ R

|α| × R
|β+

m | × R
|β−

m | such that (X̂m, η̂
0
m, η̂

1
m, η̂

2
m) satisfies

the KKT conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

m
R∗

�

(
R�(X̂m)−y

)+ρm
(
Ĝm−F(X̃m)

)+R∗
α(̂η

0
m)+R∗

β+
m
(̂η1m)+R∗

β−
m
(̂η2m) = 0,

Rα(X̂m) = Rα(X),

Rβ◦
m
(X̂m) < b, Rβ+

m
(Xm) = b, Rβ−

m
(Xm) = −b, η1m ≥ 0, η2m ≤ 0.

(57)
Let (Ûm, V̂m) ∈ O

n1,n2(X̂m) with Ûm,1 ∈ O
n1×r , Ûm,2 ∈ O

n1×(n1−r), V̂m,1 ∈ O
n2×r

and V̂m,2 ∈ O
n2×(n2−r). From Theorem 4 and Lemma 16, we know that rank(X̂m) ≥ r

with probability tending to one. When rank(X̂m) ≥ r holds, from the characterization
of the subdifferential of the nuclear norm [75,76], we have that Ĝm = Ûm,1V̂T

m,1 +
Ûm,2�̂mV̂T

m,2 for some �̂m ∈ V
(n1−r)×(n2−r) satisfying ‖�̂m‖ ≤ 1. Now we want to

show ‖�̂m‖ < 1 so that rank(X̂m) = r . Since X̂m
p→ X , by [11, Proposition 8]

we have Ûm,1V̂T

m,1
p→ U 1V

T

1 . As �̂ is the unique optimal solution to (13), applying
Lemma 14 with the equation (2) leads to

1

mρm
R∗

�

(
R�(X̂m) − y

)+ Ûm,1V̂
T

m,1 − F(X̃m)
p→ Qβ(�̂) +U 1V

T

1 − F(X),

Then, by further applying the operator Q†
β to the above equation, together with (56)

in Lemma 19 and (57), we obtain that

U
T

2Q
†
β(Ûm,2�̂mV̂

T

m,2)V 2
p→ U

T

2Q
†
β(U 2�̂V

T

2 )V 2. (58)

Since X̂m
p→ X , according to [11, Proposition 7], there exist two sequences ofmatrices

Qm,U ∈ O
n1−r and Qm,V ∈ O

n2−r such that

Ûm,2Qm,U
p→ U 2 and V̂m,2Qm,V

p→ V 2. (59)

Moreover, the uniqueness of the solution to the linear system (13) is equivalent to
the non-singularity of its linear operator. By combining (58) and (59), we obtain that

QT

m,U �̂mQm,V
p→ �̂. Hence, we obtain that ‖�̂m‖ < 1 and thus rank(X̂m) = r with

probability tending to one since ‖�̂‖ < 1. Thus, we complete the proof of Theorem 5.

Proof of Theorem 6

The proof of Theorem 6 is similar to the proof of Theorem 5. Define �̂m := ρ−1
m (X̂m−

X).
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Lemma 20 If ρm → 0 and
√
mρm → ∞, then �̂m

p→ �̂, where �̂ is the unique
optimal solution to the following convex optimization problem

min
�∈Sn

1

2
〈Qβ(�),�〉 + 〈In − F(X),�〉

s.t. Rα(�) = 0, Rβ+(�) ≤ 0, Rβ−(�) ≥ 0, P
T

2�P2 ∈ S
n−r+ .

(60)

Proof It is easy to verify that �̂m is the optimal solution to

min
�∈Sn

1

2m
‖R�(�)‖22 − ν

mρm
〈R∗

�(ξ),�〉 + 〈In − F(X̃m),�〉
s.t. � ∈ Fm := ρ−1

m (K ∩ S
n+ − X),

(61)

where K := {
X ∈ S

n | Rα(X) = Rα(X), ‖Rβ(X)‖∞ ≤ b
}
. Then, Fm converges

in the sense of Painlevé-Kuratowski to the tangent cone TK∩Sn+(X) (see [5,67]). Note
that the Slater condition in Assumption 5 implies that K and Sn+ cannot be separated.
Then, from [67, Theorem 6.42], we have TK∩Sn+(X) = TK(X)∩ TSn+(X) with TK(X)

taking the form of (54) and TSn+(X) = {
� ∈ S

n | P
T

2�P2 ∈ S
n−r+
}
according to

Arnold [2]. Then, the proof can be completed by using the same argument as in the
proof of Lemma 18.

For the case C = S
n+, Lemmas 16, 17 and 20 imply that P

T

2 �̂P2 = 0 is a necessary
condition for the rank consistency of X̂m . Thenwe look into an explicit characterization
of this condition.

Lemma 21 Let �̂ be the optimal solution to the problem (60). Then P
T

2 �̂P2 = 0 if
and only if the linear system (14) has a solution �̂ ∈ S

n−r+ . Moreover, in this case,

�̂ = Q†
β

(
P2�̂ P

T

2 − In + F(X)
)
.

Proof Note that the Slater condition also holds for the problem (60). (One may check
the point X0 − X .) Hence, �̂ is the optimal solution to (60) if and only if there exists
(̂ζ 0, ζ̂ 1, ζ̂ 2, �̂) ∈ R

|α| × R
|β+| × R

|β−| × S
n−r such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qβ(�̂) + In − F(X) + R∗
α(̂ζ

0) + R∗
β+ (̂ζ 1) + R∗

β− (̂ζ 2) − P2�̂P
T

2 = 0,

Rα(�̂) = 0,

Rβ+(�̂) ≤ 0, ζ̂ 1 ≥ 0, 〈Rβ+(�̂), ζ̂ 1〉 = 0,

Rβ−(�̂) ≥ 0, ζ̂ 2 ≤ 0, 〈Rβ−(�̂), ζ̂ 2〉 = 0,

P
T

2 �̂P2 ∈ S
n−r+ , �̂ ∈ S

n−r+ , 〈PT

2 �̂P2, �̂〉 = 0.

(62)

Then, applying the operatorQ†
β to the first equation of (62) yields the desired expres-

sion of �̂ if P
T

2 �̂P2 = 0. It immediately follows that �̂ is a solution to (14).
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Conversely, if the linear system (14) has a solution �̂ ∈ S
n−r+ , it is easy to check

that (62) is satisfied with �̂ = Q†
β(Ẑ) and ζ̂ 0 = Rα(Ẑ), ζ̂ 1 = (Rβ+(Ẑ))+, ζ̂ 2 =

(Rβ−(Ẑ))−, where Ẑ = P2�̂ P
T

2 − In + F(X). Then, P
T

2 �̂P2 = 0 directly follows
from (14).

The necessary part of Theorem 6 is immediate from Lemma 21 due to the necessity

of the condition P
T

2 �̂P2 = 0 for rank consistency. Nowwe proceedwith the sufficient
part.

Define β+
m , β

−
m , β

◦
m by (12) with X replaced by X̂m . From Theorem 4, we have

X̂m
p→ X as m → ∞. The convergence implies that β+

m ⊆ β+ and β−
m ⊆ β−

for sufficiently large m. In this circumstance, the Slater condition implies that X̂m is
the optimal solution to (3) if and only if there exists multipliers (̂ζ 0m, ζ̂

1
m, ζ̂ 2m, Ŝm) ∈

R
|α|×R

|β+|×R
|β−|×S

n such that (X̂m, ζ̂
0
m, ζ̂ 1m, ζ̂

2
m, Ŝm) satisfies the KKT conditions:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

m
R∗

�

(R�(X̂m)−y
)+ρm

(
In−F(X̃m)

)+R∗
α(̂ζ

0
m)+R∗

β+ (̂ζ 1m)+R∗
β− (̂ζ 2m)− Ŝm = 0,

Rα(X̂m) = Rα(X),

Rβ◦
m
(X̂m) < b, R

β+
m
(Xm) = b, R

β−
m
(Xm) = −b, η1m ≥ 0, η2m ≤ 0,

X̂m ∈ S
n+, Ŝm ∈ S

n+, 〈X̂m , Ŝm〉 = 0.
(63)

The last equation in (63) implies that X̂m and Ŝm can have a simultaneous eigenvalue
decomposition. Let P̂m ∈ O

n(X̂m) with P̂m,1 ∈ O
n×r and P̂m,2 ∈ O

n×(n−r). From
Theorem 4 and Lemma 16, we know that rank(X̂m) ≥ r with probability tending to
one. When rank(X̂m) ≥ r holds, we can write Ŝm = P̂m,2�̂m P̂T

m,2 for some diagonal

matrix �̂m ∈ S
n−r+ . In addition, if �̂m ∈ S

n−r++ , then rank(X̂m) = r . Since X̂m
p→ X ,

according to [11, Proposition 1], there exist a sequence of matrices Qm ∈ O
n−r such

that P̂m,2Qm
p→ P2. Then, using the similar arguments to the proof of Theorem 5, we

obtain that QT
m�̂mQm

p→ �̂. Since �̂ ∈ S
n++, we have �̂m ∈ S

n++ with probability
tending to one. Thus, we complete the proof of Theorem 6.

Proof of Theorem 7

Wefirst prove for the rectangular case C = V
n1×n2 by contradiction. Assume that there

exists some V
(n1−r)×(n2−r) � � �= 0 such that B2(�) = U

T

2Q
†
β(U 2� V

T

2 )V 2 = 0.

Then 〈�,U
T

2Q
†
β(U 2� V

T

2 )V 2〉 = 〈U 2� V
T

2 ,Q
†
β(U 2� V

T

2 )〉 = 0. This immediately

leads to (Q†
β)

1/2(U 2� V
T

2 ) = 0 since Q†
β is a self-adjoint and positive semidef-

inite operator. It then follows that [Rβ◦ ; (Rβ+)−; (Rβ−)+](U 2� V
T

2 ) = 0, where
(Rπ )±(·) := (Rπ (·))± with π = β+ or β−. Then by using this equality, we have that
for any H ∈ T (X),

0 = 〈�,U
T

2 HV 2〉 = 〈U 2� V
T

2 , H〉 = 〈Rα∪β(U 2� V
T

2 ),Rα∪β(H)〉
= 〈[Rα; (Rβ+)+; (Rβ−)−](U2� V

T

2 ),Rα∪β+∪β−(H)〉.
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By using the arbitrariness of Rα∪β+∪β−(H) over R|α∪β+∪β−| implied by the con-

straint nondegeneracy (15), we further have [Rα; (Rβ+)+; (Rβ−)−](U 2� V
T

2 ) = 0.

Therefore, we obtain U 2� V
T

2 = 0 and thus � = 0, which leads to a contradic-
tion. Therefore, the linear operator B2 is positive definite. The proof for the positive
semidefinite case is similar.

Proof of Theorem 9

We first prove for the constraint nondegeneracy.

Lemma 22 For the matrix completion problems of Classes I and II, the constraint
nondegeneracy (16) holds at X.

Proof For the real covariance matrix case, the proof is given in [61, Lemma 3.3] and
[62, Proposition 2.1]. For the complex covariance matrix case, one can use the similar
arguments to prove the result.

We next consider the density matrix case. Suppose that X satisfies the density
constraint, i.e., Rα(X) = 1√

n
Tr(X) = 1√

n
. Note that for any t ∈ R, we have t X ∈

lin(THn+(X)). This, along with Tr(X) = 1, implies that

1√
n
Tr
(
lin(THn+(X))

) = Rα

(
lin(THn+(X))

) = R.

This means that the constraint nondegeneracy (16) holds.

From Theorem 7 and Lemma 22, for both Classes I an II, the linear system (14)
has a unique solution �̂. Moreover, for both Classes I and II, uniform sampling yields
Q†

β(Z) = Pβ(Z)/d2 for any Z ∈ S
n+. Thus, from (14), we have

�̂ − P
T

2Pα(P2�̂P
T

2 )P2 = P
T

2Pβ(P2�̂P
T

2 )P2 = P
T

2Pβ(In − F(X))P2. (64)

Then we first prove for Class I by contradiction. For any Z ∈ S
n+, Pα(Z) is the

diagonal matrix whose i-th diagonal entries is Xii for all i ∈ π and the other entries
are 0. Assume that �̂ /∈ S

n−r++ , i.e., λmin(�̂) ≤ 0, where λmin(·) denotes the smallest
eigenvalue. Then, we have

λmin(�̂) = λmin(P2�̂P
T

2 ) ≤ λmin
(
Pα(P2�̂P

T

2 )
) ≤ λmin

(
P
T

2Pα(P2�̂P
T

2 )P2
)
,

where the equality follows from the fact that �̂ and P2�̂P
T

2 have the same nonzero
eigenvalues, the first inequality follows from the fact that the vector of eigenvalues is
majorized by the vector of diagonal entries, (e.g., see [50, Theorem 9.B.1]), and the
second inequality follows from the Courant-Fischer minmax theorem, (e.g., see [50,
Theorem 20.A.1]). As a result, the left-hand side of (64) is not positive definite. Notice
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that P
T

2 F(X)P2 = 0. Thus, the right-hand side of (64) can be written as

P
T

2Pβ(In − F(X))P2 = P
T

2Pβ(In)P2 + P
T

2Pα(F(X))P2

= P
T

2

(
Pβ(In) + Pα(F(X))

)
P2.

Since rank(X) = r , with the choice (22) of F , we have that for any i ∈ π ,

Xii =
r∑

j=1

λ j (X)|Pi j |2 > 0 implies
(
F(X)

)
i i =

r∑

j=1

fi
(
λ j (X)

)|Pi j |2 > 0.

Moreover, Pβ(In) is the diagonal matrix with the last n − r diagonal entries being
ones and the other entries being zeros. Thus,Pβ(In)+Pα(F(X)) is a diagonal matrix
with all positive diagonal entries. It follows that the right-hand side of (64) is positive
definite. Thus, we obtain a contradiction. Therefore, we should have �̂ ∈ S

n−r++ . Then,
we can obtain the rank consistency according to Theorem 6.

Next, we prove for Class II. It is easy to see Pα(·) = 1
nTr(·)In . By further using

P
T

2 F(X)P2 = 0 and Pβ(In) = 0, we can rewrite (64) as

�̂ − 1

n
Tr(�̂)In−r = 1

n
Tr(F(X))In−r .

By taking the trace on both sides, we obtain that �̂ = 1
r Tr(F(X))In−r . Since X is a

density matrix of rank r , with the choice (22) of F , we have that

Tr(X) =
n∑

i=1

r∑

j=1

λ j (X)|Pi j |2 = 1 implies Tr
(
F(X)

) =
n∑

i=1

r∑

j=1

fi
(
λ j (X)

)|Pi j |2 > 0.

It follows that �̂ ∈ S
n−r++ and thus we obtain the rank consistency.
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