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Abstract. In this paper we provide implementable methods for solving nondifferentiable convex
optimization problems. A typical method minimizes an approximate Moreau—Yosida regularization
using a quasi-Newton technique with inexact function and gradient values which are generated by a
finite inner bundle algorithm. For a BFGS bundle-type method global and superlinear convergence
results for the outer iteration sequence are obtained.
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1. Introduction. Consider the following minimization problem:

1.1 min f(x),
(L) min f(2)
where f : R™ — R is a possibly nondifferentiable convex function.

Throughout this paper, we use || - || to denote the Euclidean vector norm on 1"
or its induced matrix norm on R"*"™. Let M be a symmetric positive definite n x n
matrix. For any = € R" let

el = 27 Me.

We let Fj; be the Moreau—Yosida [19, 27] regularization of f, associated with M,
defined by

(12) Fua) = win { 1)+ 3y =l .

It is well known that F; is a continuously differentiable convex function defined on
R™ even though f may be nondifferentiable. The derivative of Fj; at x is defined by

Gu(x) = VFEy(z) = M(x —p(z)) € 0f(p(x)),

where p(x) is the unique minimizer in (1.2) and 9f is the subdifferential mapping of
f [25]. Here, p(z) is called the proximal point of z. Furthermore, Gjs is globally
Lipschitz continuous with modulus ||M]|, the set of minimizers of (1.1) is exactly the
set of minimizers of

(1.3) min Fy (),
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and z* minimizes f if and only if Gp(z*) = 0 and p(z*) = z*. For additional
properties, see [26, 17, 23].

In this paper we use Moreau—Yosida regularization, bundle and quasi-Newton
ideas to develop a convergent minimization method for f. We do not assume that
the subproblem in (1.2) is solved exactly at each outer iteration nor do we assume
f is differentiable at a solution z*. For a particular BFGS bundle method applied
to an approximation of Fj; we obtain global and superlinear convergence (of outer
iterations) if VG (z*) is positive definite and the directional derivative of Gy is
radially Lipschitz continuous at x*. Related work on this subject appears in [1, 5, 6,
7, 12, 16, 18]. In particular, in [1] global and superlinear convergence results for a
BFGS proximal method are given by assuming that f is continuously differentiable
and p(z) is computed exactly. In the literature, for example [10], global convergence
of particular quasi-Newton methods with inexact gradient values has been discussed.
In this paper we approximate F); in addition to Gj; and these two approximations
are related.

The plan of this paper is as follows. In section 2 we discuss how a bundle method
can be used to satisfy our requirement for approximating p(x). We give the quasi-
Newton bundle-type algorithm in section 3 and discuss its global convergence in
section 4. In section 5 we discuss global and superlinear convergence of a BFGS
bundle-type method. Some concluding remarks are given in section 6.

2. The bundle concept. The bundle idea plays a central role in approximating
Fy(x) and VFy(z) as is developed in [16] and [18], for example. Let d = y — x in
(1.2) and minimize over d instead of y. This gives

Fuy(z) = ;géi}%ri {f(:c +d) + ;dTMd} :

Now we consider approximating f(x + d) by a polyhedral function
F i i T i
Flo+d) = max {£(u)+ (¢") (o +d—u)}.

where the data (u’, f(u'), ") with ¢° = g(u’) € 8f(u') constitute a bundle generated
sequentially starting from z and g(x) € df(x) and, possibly, a subset of the previous
set used to generate z. Since f is convex, we have

(2.1) fle+d) > f(z+d).
If we define a linearization error by letting
i i iyT i
e(z,u') = f(x) = f(u) = (¢') (z—u"),

then f(z + d) can be written as

(2.2) fla+d) = f() + max {(5") d—ez.u')}.
Let

Futa) = pig { Fo+@)+ Ja"pral

(2.3)

I
&
+

=

=

—N

s

»
—

iT i 1
{(g") d—e(z,u )}+2dTMd}.
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From (2.1) and the definition of Fys(x), we have

So Fy(z) is an underapproximation of the unknown value Fys(x). Let d(z) solve the
minimization problem in (2.3), and let

v(x) = max {(¢")" d(z) — e(z,u’)}.

i=1,..., J

Then
Faslw) = £(a) + o) + 3 (d(2)) " Md(a).

Let a(z) = x + d(z) be an approximation of p(x), and let

Pas(e) = fale) + 3 (d)" M),

Since p(z) is the unique minimizer in (1.2), we have
F(z) < Far(x)

and equality holds if and only if a(x) = p(x).
Thus, we have the following lemma.
LEMMA 2.1. R
(i) Fas(2) < Far(e) < Bus(a):
(ii) Far(z) = Far(x) if and only if a(x) = p(z).
This simple lemma plays an important role in the design of our algorithm.
Let

(2.4) e(x) = Fy(z) — Fa(x).

We base our rule for accepting a(x) as an approximation of p(z) on e(z) as follows:
Accept if

(2.5) e(z) < 8(z) min{(d(z))T Md(z), N},

where 6(z) and N are given positive numbers and 6(x) is fixed during the bundling
process. If (2.5) is not satisfied then we let /™1 = 2z + d(x) and ¢/t = g(u/*1),
append a new piece (ng)Td —e(z,u’*1) to (2.2), replace j by j + 1, and solve a
new subproblem in (2.3) for a new d(z) and a new e(x) to be tested in (2.5). If this
process, in which e(x) and d(z) vary, does not terminate we have the following result.

LEMMA 2.2. Suppose x does not minimize f. In this subalgorithm, if (2.5) is
never satisfied, then

e(x) — 0.

Proof. Following the proof of Proposition 3 in [11] (see also [15] and [8]), we can
prove that

Fr(z) — Far(z) and Fy(z) — Fa(x) as j — oo.

So the result of this lemma follows from (2.4). 0
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Let
Gu(z) = M(z — a(x)) = —Md(z).

The following result is a slight extension of Lemma 1 in [12]. For completeness, we
give the proof.
LEMMA 2.3.

(2.6) 1Gar(x) = Grr (@)l ae-1 = [[p(x) — a(@)llar < V/2e(2),

(2.7) G (@) = Gar(@)]| < /2e(2) [ M].
Proof. Define the function ¢ : R — R by

9() = £(2) + 31z — lir

Since f is convex and ||z — z||3, is a strongly convex quadratic function in z, we have
the inequality

(2.8)  P(u) > P(2) +wl (u—2)+ %Hu —z||3; for all u,z € R" and all w € d(2).

Since p(z) is the argmin in (1.2), 0 € 9Y(p(z)). Letting u = a(x), z = p(x), and
w =0 1n (2.8) gives

P(a(x)) > P(p(z)) + %Ila(w) —p(@)I3s:

ie.,

1
Fu(z) = Fur() + 5 lla(@) = p@)|3s-
Then, from Lemma 2.1 and (2.4), (2.6) holds. Finally, we have

1Ga () = Gar(2)|* = [ M (p(2) — a(@)||* < | M]l]lp(x) — a(z)]3s,

which when combined with (2.6) implies that (2.7) holds. 0

LEMMA 2.4. If x does not minimize f, then after a finite number of subproblem
steps we can find a subproblem solution d(x) such that (2.5) holds.

Proof. If not, then j — oo, so from Lemma 2.2,

g(x) — 0.

Then, from Lemma 2.3, |G (z) — Gar(z)| — 0. Since z is not an optimal solution,
G (z) # 0. So there exists a positive number &y such that ||Gpr(z)|| > 6o when j is
sufficiently large. Then, since

(2.9) (d(2))" Md(z) = (G (2))" M~ G ()
and (2.5) is not satisfied,

e(z) > 6(z) min {H‘E”N}

for all j sufficiently large. This is a contradiction, because £(z) — 0 when j — co. 0O
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Lemma 2.4 says that a bundle-type algorithm can be used to find a vector d(x)
such that (2.5) holds if z is not an optimal solution. This is essential for our algorithm.

A practical stopping test for the overall algorithm is to stop if the subalgorithm
generates a solution with

(2.10) [v(x)] < tol,

where tol is a small positive input parameter. See, for example, Theorem 1 in [18].

3. The algorithm. Since F); is a convex function and Gy is globally Lips-
chitz continuous, a natural idea is to use a quasi-Newton method, such as the BFGS
method, to solve (1.3). The severe practical difficulty with this approach is that we
cannot expect to calculate Fyy(z) and Gps(x) exactly. To approximate these values
appropriately the results of section 2 will be useful.

We use the notation ¢;, = (%), a* = a(2*), d* = d(«*) and so on.

QUASI—NEWTON BUNDLE-TYPE ALGORITHM.

Step O (initialization). Let o, p, and N be positive numbers such that o < 1/2
and p < 1. Let {é;} be a sequence of positive numbers such that Y ;2 6, < +oo.
Let 2z° € R™ be an initial solution estimate and By be an n x n symmetric positive
definite matrix. Set k := 0 and find d° and &y as described in section 2 such that

g0 < Somin{(d®)" Md°, N},
for example starting the bundle process with j = 1 and u' = 2.
Step 1 (compute a search direction). If |G(z*)|| = 0, stop with 2* optimal.
Else, compute

(3.1) s = —B G (a").

Step 2 (line search). Starting with m = 0, let i be the smallest nonnegative
integer m such that

(3.2) Fa(zF + pms®) < Fr(2F) + op™(s5) T G (),
where Fy;(z* + p™s*) is an underapproximation of Fj; at z* + p™s* and satisfies

Ern (b 4 pmsk) — Fyp(a® + pmsk)

(3.3)
< by min{(d(zF + p™s*))T Md(z* + p™sF), N}

Set 73, := p’* and x =2k 4 7 s”.

Step 3 (update the quasi-Newton matrix). Let Azk = oFtt — 2F and
AyF = G (P — G (2F). If (Az*)T Ay* > 0, update By to Byyq such that By
is symmetric and positive definite and satisfies quasi-Newton equation

k+1

By Azk = Ay*;

otherwise set Byy1 := M. Set k:=k + 1 and go to step 1.

At Step 1if |G (x¥)|| = 0 then, from the definition of G/ (), ||d(z*)| = 0 and
then, from (2.5), e(z¥) = 0, so (2.7) implies Gps(z%) = 0 and z* is optimal.

From the discussion given in section 2, if z* + p™s* does not minimize f, we can
find a vector d(z*+p™s*) satisfying (3.3) after a finite number of subproblem steps. So
Step 2 proceeds as follows: First compute d(z* 4 p™s*) to satisfy (3.3) and then check
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if (3.2) is satisfied. If this is not the case, increase m by 1 and repeat with the new
point z* 4 p™s*; otherwise set 7, = p** and z¥+! = 2% + 7,.5* and go to Step 3. If for
some candidate nonnegative integer m used in Step 2 z¥ 4+ p™s* is an optimal solution
and if tol in (2.10) is zero, then the corresponding bundle subalgorithm execution may
not terminate. Throughout the sequel we assume that this situation does not occur
by assuming that each subalgorithm execution terminates. The next theorem shows
that iy is well defined at each iteration of the algorithm.

THEOREM 3.1. If ¥ does not minimize f, then there exists a number 71, > 0 such
that

(3.4) Fy(af 4+ 7s%) < FM(xk) + o7(s5)T G (zF)

holds for all T € (0,7], where Far(x® 4 75%), the underapprozimation of Fy at
* + 7%, satisfies

(3.5)  En(a® +7s%) — Fap(a® + 75%) < 8ppy min{(d(z + 7)) Md(z 4 7%), N}.

Proof. Since z* does not minimize f, there exists a positive number 7, such that
for any 7 € (0, 7], ¥ 4+ 7s* also does not minimize f. Then by Lemma 2.4 for each
7 € (0,7%] we can find d(z* + 7s*) such that (3.5) holds. Next we prove this lemma
by considering the following two cases.

Case 3.1. FM(xk) = Fy(2). Then from Lemma 2.1, we have

Then,

G (a*) = M(a" — a(a®)) = M(a* — p(a*)) = G ("),

k

and, since z” is not a solution, (3.1) implies

(Sk)TGM (l‘k) < 0.

Since F) is continuously differentiable and o < 1, there exists a number 7 > 0(7; <
71) such that for all 7 € (0, 7] we have

Far(zF + 75%) < Far(2%) + o ()T G pr ().

This implies that (3.4) holds, because, by Lemma 2.1, Fiys (2% +75%) < Fyr (2 +75%).

Case 3.2. Fy(z*) > Fyr(z¥). Then when 7 is sufficiently small, the right-hand
side of (3.4) is greater than Fj(z*) + %(FM(xk) — Fy(2%)) and, as 7 — 0, the
left-hand side satisfies

Fr(a® + 78%) < Fag(a® 4+ 78%) — Fa(2®).

So there exists a positive number 7, such that (3.4) is satisfied in this case, too. 0

4. Global convergence. Throughout the rest of the paper we assume that the
algorithm does not terminate so that {z*} is an infinite sequence.
Since E:o:o O < 00, there exists a constant C such that

(4.1) e <C
k=0
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Let
D = {x € R"|Fup(z) < Fpr(a®) +2NC.
LEMMA 4.1. For all kK > 0 we have
(4.2) Far (2 < Far(2F) + N(8k + 6x1)
and

* e D.
Proof. By Lemma 2.1 and the algorithm rules, for k£ > 0

FM(I’kJrl) S FM(JSkJrl) +N§k+1

>

IN

w (2F) + op (s)T G oy (2F) + Npia

>

v (2F) — opt Gar(2F)T B Gy (2F) + Néjia
< Fpr(2%) 4+ Néjpq
< Fu(2®) + N(6k + k1)

Thus, for all £ > 0, (4.2) holds and

zF*l e D.

The proof is completed by noting that 2% € D. O

589

THEOREM 4.2. Suppose that f is bounded from below and there exist two posi-
tive numbers c1 and cy such that ||Bg|| < ¢1 and | By '|| < co for all k. Then any

accumulation point of {x*} minimizes f.

Proof. From Lemma 4.1 we know that Fys(z*) is bounded from above. On the
other hand, since f is assumed to be bounded from below, F}; is also bounded from
below. Suppose that liminfy_ Fa(2%) = Fj;. Then, by (4.1), (4.2), and a simple

€ — & argument, we have limy o, Fas(z%) = F};.

Since {6} — 0, from Lemma 2.1 and the algorithm rules we have {ex} — 0 and

lim Fy(zF) = lim Fy(2®) = F3,.

k—oo o k—oo

Thus,

lim Tk(Sk)TG'M(.’Kk) = 0,

k—o0

which, from the assumption on {By}, implies that

(4.3) Jim 7| Gar(2F) | = 0.

Let Z be an arbitrary accumulation point of {z*}, and let {x*},cx be a subsequence

converging to . By Lemma 2.3

. = By _
(4.4) k_)(l)g,%eKGM(x ) = Gu(Z).
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If lim infy o0 ke Tk > 0, then from (4.3) and (4.4) we have
Gy (z) =0.
On the other hand, if lim infy_o rerx 7 = 0, then by taking a subsequence, if
necessary, we can assume that 7, — 0 for k € K. From the line search stopping rule

we have

FM(xk-l-pik_lSk) > FM({Ek)+Upik_1(sk)TéM(xk),

where p*~! = 73,/p. So, by Lemma 2.1, we have
Far(ab + p71s%) > Fa(a) + op™ 71 (s5) T G (aF);
i.e.,
F k ir—1k _F k ~
(4.5) w(@? v 8) = Fu@) T (o),

pix—T1

By (4.4), {Ga(2*)}rex is bounded. This, together with the assumption on {B}},
implies that {s*}.cx is bounded. So, by taking a subsequence if necessary, we may
assume that

im s*=3s.
k—o0,keK

Since {p™* " 1}rex — 0, by taking a limit in (4.5) on the subsequence k € K, we obtain
(4.6) 571G (Z) > 057 G (7).
Also, from the assumption on {Bj} we have
S Gu(@) < - 57,
C2
which, combined with (4.6) and the fact that ¢ < 1, implies that
57'Gy(Z)=0 and 5=0.

Finally, this combined with the assumption on {Bj} implies

Gu(z)=0.

This completes the proof. ]

Based on the results established in [14] and [24], we could discuss local conver-
gence of the proposed quasi-Newton bundle-type methods as in [1] by assuming that
the initial point 29 is sufficiently close to a solution x* and the initial matrix By
is sufficiently close to VGr(z*). However, it should be noted that we only use an
approximation of the proximal point while in [1] the exact value is used. Here we
will not give such a discussion on the local convergence of the proposed methods. In
the next section, we will discuss a BFGS bundle-type method for which global and
superlinear convergence results are obtained.
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5. A BFGS bundle-type method. For given vectors Ax and Ay, the BFGS
quasi-Newton update of an n X n symmetric matrix B is the matrix
BAzAzTB n AyAyT
AzTBAzx AzT Ay

BFGS(B,Azx,Ay) =B —

(see [9] for instance). If B is positive definite and Az” Ay > 0, then the symmetric
matrix BT = BFGS(B, Ax, Ay) is also positive definite.

In our BFGS bundle-type method, we will assume that By = M and >, 6,1/3 <
oo. Let

Aﬂk = GM(IIC+1) - GM(:Ek)

At each iteration, if the following two conditions are satisfied, we will update By to
Byi1 = BFGS(By, Az*, Ay*); otherwise, we let By, 1 := M. Given c3 € (0,00) and
¢4 € (0,1), these two conditions are

(5.1) ||ACL‘kHM(\/ 25k —+ 25k+1) S Cg(Axk)TAyk
and
(5.2) 20| Ay* | ar (V2er, + /2e551) < minfes, 677 + 85 V| AyF|2.

In order to employ BFGS results from [3] we need the following results.
LEMMA 5.1. If conditions (5.1) and (5.2) are satisfied for some k > 0, then

(5.3) (Az")TAY" > (1/(1+¢3))(Az")T A" and AFF(]* = (1 — ca) [ Ay )%
Proof. From (2.6) in Lemma 2.3,
(Aah)TAY" = (AaH)TAG" + (Aa)T(Ay* — Ag)
> (AzF)TAGE — [|Az*|ar | Ay* — AG*|[ar-1
> (AZF)TAGF — [ Azl (|G ar () — Gar (@)l ar-1
HIG (@) = Gar (@) ar-1)

> (AzF)TAGFE — || Az* | ar (V268 + V/26511)
and

[AGF12 = |AyF|? + |AgE — AyF|? + 2(Ay%) T (AgF — AyF)
> || AyF)12 = 2| Ay* || ar | ATF — AyF | ar-2

> [AY*I? = 2 Ay¥llar (v2er + v/2ek41).

So, if conditions (5.1) and (5.2) are satisfied, then (5.3) holds. This competes the
proof. ]
We denote the cosine of the angle between BAxz* and Ax* by

(Az*)T By Ax®

O = —r i
Ok T Ak || ByAd]]
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and the corresponding Rayleigh quotient by
_ (AzF)T B Ak
= T (AGF)T Ak
Let
K = {0} U{j|(5.1) or (5.2) does not hold for k = j — 1} = {ko, k1, ..., ki, ... }.

This implies that B; = M for j € K and B; is a BFGS update of B;_; for j ¢ K.
Also, let [-] be the roundup operator such that [t] = 4, when i — 1 < t < ¢ for
ie{l,2,..}.

LEMMA 5.2. Let {By} be generated by the BFGS bundle-type algorithm. Suppose
that there exist numbers a; > 0 and ag > 0 such that

(5:4) (AZ)TAG" > aa|AaM* and (Az*)TAF" > az| A"

for all k > 0. Then for any w € (0,1) there exist constants (1, B2, B3 > 0 such that,
for any k satisfying k;—1 < k < k;—1, where k;_1,k; € K for some i > 1, the relations

cosf; > f3y,

B2 < qj < B3,
Az~ B

hold for at least [w(k — k;—1 + 1)] values of j satisfying k;—1 < j < k.
Proof. For any k satisfying k;—1 < k < k; — 1, (5.1) and (5.2) hold. Then, from
(5.3) and (5.4),

(Axk)TAyk > 6q||A9:kH2 and (Axk)TAyk > &2||Ayk\\2

B2 <

hold for all k satisfying k;—1 < k < k; — 1, where a3 = a1/(1 + ¢3) and ag =
as(1—cq)/(1+c3). Then the results of this lemma follow from the proof of Theorem
21in[3. O

LEMMA 5.3. For any nonnegative sequence {6k }k>0, if Y peq Ok < 00, then

o0
[T+ 6) < oo
k=0
Proof. This result follows easily from the properties of logarithms. ]
LEMMA 5.4. Relative to the line search there exist positive constants n1 and 1
such that either

(") G (ah))?

Fa(ah +ms®) - < Far(a®) —m 552

(5.5) Co /(1= o) (s")T(Gpr(zF) — (ﬁjs\iiﬁk))((Sk)TéM(xk))

(5.6) Frr(z® + 71.8%) < Fag(a%) 4+ 0o (85)T G r (2F).
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Proof. It (3.2) is satisfied by the integer m = 0, then (5.6) holds with 7, = o.
Suppose that i, > 0, which means that (3.2) fails to be satisfied for m := iy — 1; i.e.,

Far(a® + (m/p)s™) > Far(@®) + o (i /p) (s") " Ga (),
which together with Lemma 2.1 implies that
Far (@ + (12/p)s%) > Far(a%) + (1 /p)(s") Cias (a).
Then, using the mean value theorem, we obtain
(7/p) (") Gr (2 + 60(71/p)s*) > o (me/p) ()T Gar(2*),
where 6 € (0,1). Thus, from the Lipschitz continuity of Gy,
(mk/p)(o(s¥)T Gar(aF) — (s5)TGar(2¥))
< (1/p)(s*)"(Gar (2" + O(i/ p)s*) — G (a*))
< IMI[((re/p) 118",

which implies that

—((s")"Gu(a*) — o(s*)" G (a*))
M s*112

T > P

Substituting this into (3.2) gives

_po ((8H)TGur(a*) — o(sF)T G (2*) (1) Gar (%))
M Is*]12 ’

Frp (2 4 m8%) < Fag ()

which gives (5.5) with n; = pﬁ\%a)' 0

It was proved in [17] that f is strongly convex on R™ if and only if F), is strongly
convex on ™. From now on we assume that F) is strongly convex on D. Then there
exists an o > 0 such that

Far(2) > Fy () + Gar ()T (2 — ) + %Hz —z||* forall z,z € D,

(Grr(2) — G (@) (2 —z) > al|z —z||* forall z,z € D.

This implies that there is a unique minimizer of f in D and that D is bounded. Let
T be the unique solution. The next result gives R-linear convergence of {z*} to z.

THEOREM 5.5. Suppose that Fay is strongly convex on D and {By} is generated
by the BFGS bundle-type method and z* # z for all k > 0. Then {x*} converges to
the unique solution T; moreover,

(5.7) > et -] < oo
k=0

and there are constants r € [0,1) and C € (0,00) and a positive integer k such that
for all k > k we have

Far (") — Fag(2) < O 2R (B (aF) — Far(2)).
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Proof. First suppose that K has an infinite number of elements. Since Fj; is
strongly convex on D and Gy is globally Lipschitz continuous, from [21] or Theorem
X.4.2.2 of [13], (5.4) holds for oy = a and ay = 1/||M||. So, given w € (0,1), from
Lemma 5.2 there exist constants 3,8’ > 0 such that for any k satisfying k; 1 < k <
k; — 1, where k;_1, k; € K for some i > 1, the inequalities

(5.8) cosf; > 3
and

|B;jAZ| _
5.9) <8
( 1A]

hold for at least [w(k — k;—1 + 1)] values of j satisfying k;—1 < j < k. Since B; =
M if j € K, we can assume [ and (' are such that (5.8) and (5.9) hold for all
j € K. We define I to be the set of indices j for which (5.8) and (5.9) hold. Since
D is bounded, {||Gas(z*)||} is a bounded sequence. From (2.7), (3.3), and (2.9),

|G (2*) — G (2%)|] = o(||Gar(a®)]]), so there exists an integer k such that for all
k>k
- 1
(5.10) 2|Gur (@) = [1Gar ()] = S 1Gm ()]
and
KT (c kY _ & k KT & k 1— 2

Consider an iterate z7 with j € I and j > k. From Lemma 5.4, (5.8), (5.9), and
(5.11), we have that

(5.12) Fa(a?) = Fag(a? + m587) 2 | Gar (27)%,

where n = 3m1 62 if (5.5) holds or n = 123/8" if (5.6) holds. So, from (5.12) and
(5.10), for all j € I and j > k,

(5.13) Far(27) — Fag (a9 +7387) > gHGM(mj)||2.
By strong convexity of Fj; and Lemma 4.3 in [1], for all k£ > 0,

1 _ _ 2
(514) solle® = al? < Far(*) - Far(@) < = |G ().

Then, from Lemma 2.1, (5.13), and the right-side inequality in (5.14), for all j € I
and j >k,

(5.15)  Fap(271) = Far(7) —ej41 < (1 - %) (Far(27) — Far()) + <.

Since {6;} — 0, we can take k large enough such that for all k > k

-1 2
6N IMI oy
a 8

(5.16)
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By (3.3), (2.9), (5.10), the fact that G/ (%) = 0, the Lipschitz continuity of G with
modulus ||[M ||, and (5.14), for all £ > k we have

er < Okl|M MG (=)

< A6k [|M G ar (=)

(5.17) ~ )
< A8k | MMM 2 ]2* -z

-1 2
< S8 M)

WM 5 1) = P (@),
Then from (5.15)(5.17), for all j € I and j > k, we have

<186j+1M1|||M||2
«

ymwﬂm@>
(5.18)

Since Fyr(2*) > Fy(Z) for all k, (5.18) and (5.16) imply 1— --na > 0. For w € (0, 1),
let r = (1 — £na)” so that in (5.18)

1-— Ena:rl/w.

From (3.1), (3.2), the positivity of o and 7%, and the positive definiteness of By, we
have

Fr (2" < Fag () for all k.
Combining this with (5.17) and Lemma 2.1 yields for all j > k

(1 _ gGnlIM M
«

yMWM—mm>

&\ MM .
< (1 —|—8—]” H” H ) (Fp(2?) — Fw(a’s)).
For k > E, let
S|l M| M2

1_ 85k+1|\M*1\|\|M\|2 ’
For any k > k, there exists k;_1,k; € K such that k satisfies k;_; < k < k;. If
k; — k;_1 <2, then, since k;_1 € K C I,

Tl/w

1/w . _
1_8M<5§’"/ for all j > k

and

P/ << /2
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we have for k satisfying k;—1 < k < k;,

k
Fy (28 — Fy(z) < H Sr(Far(a™=1) — Far(2))
j=ki—1
k
(5.19) H (P2 ekt (B (@) — Fag(2)).
j=ki—

On the other hand, if k; — k;_1 > 2, then when k;_1 < k < k; — 1, from Lemma 5.2,
there are at least [w(k — k;—1 + 1)] elements in I N [k;—1,k]. So for all k satisfying
ki1 <k<k;— 1, we have

k
(5.20)  Fa(a®) - H St bt (Fyy (aF1) = Fag(2)).

Therefore,

Fag(ah) — Far(#) < 8,y (Far(e5) — Fu ()

ki—1
IT ottt = Faa))
j=ki—1
fey—1
(5.21) < H 6;(rl/Q)kJi_ki—l'f‘l(FM(xki—l) —FM(:i‘))
j=ki—1

So, from (5.19)—(5.21), for all k satisfying k;—1 < k < k; we have

k
(5.22)  Fp(zF*) — H (rt/ 2Rt (B (ahr) — Fag (7).
j=ki—

Without loss of generality, we can assume that k € K. Then, from (5.22), for any
k > k we have

k
FM(karl H 1/2 k— kJrl(FM(QSE) B FM(E’))
j=k

Since Y2 0 < 00, Yo 5 (6, —1) < 0o. So, from Lemma 5.3, there exists a constant
C' > 0 such that

x>
L=e
=2
IA
Qi

Then, for all k& > 2

(5.23) For (2811 — Fpp(z) < C(rV/2)F 1 (Fyy (aF) — Fog (7).
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Using (5.14), (5.23), and the fact that » < 1, we have

(2/a)/? i(FM(fE’“) — Fu(2)"?

St -] <
k=Fk k=k
90 (Fu(aF) — Fy(a) ] &
M\T") — I'p (T 1/4\k—k
< ) Z( )

< 00.

If there are only finitely many elements in K, then by following the above proof
we can prove the same results as in the case where there are infinitely many elements
in K. |

In the next lemma we discuss the boundedness of {|| B} and {||B;'||} which
was assumed for convergence in Theorem 4.2.

LEMMA 5.6. Suppose that Fyy is strongly convex on D and {By} is generated by
the BFGS bundle-type method. Furthermore, assume that {Ax*} and {Ag*} are such
that for all k >0

||Agk_H*Amk” < ¢
Az -k

for some symmetric positive definite matriz H, and for some sequence {€}.} with the
property that > oo €} < co. Then the sequences {||By||} and {||B; ||} are bounded.

Proof. First suppose K has an infinite number of elements. For k satisfying
ki—1 <k < k; — 1, where k;_1,k; € K for some ¢ > 1, (5.1) and (5.2) hold, and by
(5.3)

1
(1 + 63)

(AT AyF > (AzF)TAY" > 0.

From Lemma 2.3, (5.2), and (5.3), for all k satisfying k;—1 < k < k; — 1,

AyF — H,Azk AyF — Ay
1Ay kﬂfll SE;lely kyll
Az [Az]]
<o+ V2ek[|M] + /251 [|M]
[Az*]|
IMIIM M s, s [AGE
<egl +—Frme(0 o
—€k+ QM ( k + k+1)HAJ}kH
[ el S VERRSVE
e Vi AR Y
3 -1
Let &, = ¢}, + 7%(6,1/3 + 6,1431). Then for all k satisfying k;—1 < k < k; — 1,
we have
1Ay" — H. Az®| _

< .
Az =
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From the assumptions that Y ;- e} < oo and Yo 5,1/3 < o0, it follows that

o0
Zék < 0.
k=0

Then, from the proof of Theorem 3.2 in [3], it follows that for all k satisfying k;_1 <
k < k;, | Bx|| and || B; || are bounded with the bound depending on By, ,. Finally,
since By, =M for all i > 0, the entire sequences {||By||} and {||B;, ||} are bounded.
The proof is completed by noting that the case where K has a finite number of
elements follows in a similar manner from Theorem 3.2 in [3]. d

LEMMA 5.7. Suppose that Fyy is strongly convex on D and By, is generated by the
BFGS bundle-type method. If the sequences {||B|} and {||Bg ||} are bounded, then
conditions (5.1) and (5.2) are satisfied for all sufficiently large k, and

(5.24) =" = zll = O(Az™), [l=*** — zl| = O(||Az*]).

Proof. We first prove that 74 is bounded away from zero. From the proof of
Lemma 5.4, we have

. —((s")"Gu(a*) — o(s*)" Cu(a?))
T, > min< 1, p .
* { IR
But, since ||Gar(z*) — Gar(z®)|| = o(|Gar(z®)|]), Gar(z¥) = —Bys”, the sequences

{IIBx|l} and {||B'||} are bounded, and o < 1, it is not difficult to prove that there
exists an integer k and a positive constant 7 such that for any k > k

TR > T.

Thus, for all k, 7 is bounded away from zero.

Since AxF = 2kt — g2k = 7 6F = —TkBk_lGM(J)k), this bound on 73, and the
boundedness of {||Bx||} and {||B; ||} imply that

1Gar ()] = O] Aazk).
Then, by the strong convexity of Fjy,
G ar (@) > |G ()| = |Gr (27) = Gar(2")]| = alla® — 2| = of[|Az*|));

so, the first equality of (5.24) holds. Since z¥+1 = ¥ 47, 5*, the first equality of (5.24)

and the boundedness of {|| B, '||} imply that the second equality of (5.24) holds. From
Lemma 2.3, the first inequality in (5.17), and (5.24), we have

||Ayk - AngM*1 S \V4 25k; + \/2€k+1
< V28 MG ar ()| + /2852 [M ]| Gar (aFF1) |
= V2o MO G (29)]1) + /285 [ L[ O(| G (241

< (V20 [[M 1 + /2001 [M ) O(| Az*])).

(5.25)
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Therefore, by strong convexity and (5.25),
(Az)TAyE > (AdF)TAG" — [|Az¥||ar || Ay* — AG*[[ar—

(5.26) > al|Azk|? — of||AzF||?)
and

1Ay ] = IA7* | = |Ay* — Ag*|
(5.27) > af| Az — o[ Az¥])).

Then the third inequality in (5.17), (5.24), (5.26), (5.27), and the fact that {5,'*/6./*} —
0 imply that the update conditions (5.1) and (5.2) are satisfied for all sufficiently large
k. |

Remark 5.1. A principal contribution of this paper is the update or reset tests
(5.1) and (5.2) depending on & and 6;/3. From the proof of Lemma 5.7 it can be
seen that (5,1/3 + 6;131 in (5.2) could be replaced by &) + 6], where v < 1/2 if {6}
is chosen such that Y72, 6} < oo.

THEOREM 5.8. Suppose that all the assumptions in Lemma 5.6 hold. Then
{|IBx||} and {||B; ||} are bounded, K has finitely many elements, (5.7) holds, and

(B = HoAz¥|
(5.28) dm TR

Proof. The first three results follow from Lemmas 5.6 and 5.7, the definition of

K, and Theorem 5.5. So we can assume that there exists an integer k such that for

any k > k, conditions (5.1) and (5.2) are satisfied. As in the proof of Theorem 5.5,

we know that (5.4) holds with ay = « and as = 1/||M||. So, for any k > k, we have
(Az")TAY" > a1 | Az®|? and (Az®)TAy® > aqf|Ay* |2,

where &1 = a1 /(1 + ¢3) and @z = a2(l —c4)/(1 4 ¢3). As in the proof of Lemma 5.6,

by letting &, = ¢}, + %(6?3 + 6,%5’1), we obtain

Z Er < 00

k=0
and for all k > k

|Ay" — HoAzF|
% S €k

Az

Then (5.28) follows from the proof of Theorem 3.2 in [3]. |

In order to obtain superlinear convergence for the BFGS bundle-type method, we
need further assumptions on Gj;. From now on we will assume that G, is Fréchet
differentiable at Z, which, together with assuming that F); is strongly convex, implies
that VG (Z) is positive definite and, hence, invertible.

COROLLARY 5.9. Suppose that Fa; is strongly conver on D and Gy is Fréchet
differentiable at . If there exists a constant L > 0 such that

IAG" — VG (7)Az”|
Az

(5.29) < Lmax{||lz"*" — 2|, [|l=* — 2|},
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then the sequence {x*} generated by the BFGS bundle-type method satisfies

(5.30) lim [(Br — VG (Z)) Az _

0.

Moreover, the sequences {||By||} and {||B;,"||} are bounded.

Proof. By using Theorems 5.5 and 5.8, (5.29), and Lemma 5.6 with H, = VG (Z)
we obtain the results. a

Recall that a Lipschitz continuous function H : R — R is said to be directionally
differentiable of degree 2 at x if

H(z +d) — H(z) — H'(z;d) = O(||d||*),

where H'(z;d) is the directional derivative of H at = in the direction d [22]. If
{IIBx||} and {||B;"||} are bounded, then (5.29) is satisfied if G/ is differentiable and
directionally differentiable of degree 2 at z. In fact, in this case, from Proposition 2.2
in [24], there exists a constant L; such that

(5.31) |AG" — VGup(2)A®| < Ly max{||2*T! — 7|2, ||2* — z|}.
On the other hand, from (5.24), there exists a constant Ly such that
max{[la" " — 7|, |o* — 2]} < Lo Aa*],

which, together with (5.31), implies that (5.29) holds with L := L Ls.

If we do not wish to assume that {||Bx||} and {||B; ||} are bounded, we may use
Corollary 5.9 to obtain such boundedness by assuming that G’,(z;-) is radially Lips-
chitz continuous at Z; i.e., the directional derivative of G); exists on a neighborhood
of  and there exists a constant L > 0 such that

sup, 1Gy (w5 d) — Gy (7;d)|| < Lz — 2|
for all z in that neighborhood of Z. From Lemma 2.2 in Pang [20], this strong
condition implies that (5.29) is satisfied. Also, from results in [20] and [24], this
condition implies that G is strongly differentiable and directionally differentiable of
degree 2 at .
LEMMA 5.10. Suppose that all the assumptions in Corollary 5.9 hold. Then

(5.32) a* + s* — 2| = o([|2* — z])).
Proof. Since Az* is a positive multiple of s* = —B,;l(?M (z%), (5.30) implies that
I(Br = VGu (2)s*]| _

lim =0
koo IIs*]|
and
—Gu(ak) = VG (z)s" = of||s*])).
So,

VGu(7)s* = —Cu(a®) +o(||s*]))
= —Gu(a®) + o(||Gar(z®)][) + o(|[s*])

= O(ll=* = z[}) + o([[s* ),
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which together with the invertibility of VG (Z) implies that
(5.33) 5"l = O(la* - z|).
On the other hand,

(Br — VGu(Z))s* = —Gar(z*) — VG (Z)s*

= —Gu(*) +o([|Gu (")) = VG (7)s*
= —VGu ()" = 2) = VGu()s" + of||z* — Z))

(5.34) = —VGu(Z)(z* + s* — ) + o(||z* — z|).
From (5.34) and (5.33),

VG (Z)(a* + s* — 3)| [(Br = VG (2)s*] _|Is"l

= =o(1) + =
lk — z| sl [lk — z|
=o(1),
which together with the invertibility of VG (Z) implies (5.32). 0

LEMMA 5.11. Suppose that all the assumptions in Corollary 5.9 hold. Then
Far(zF + s%) < Far(2%) 4 o (s5) T G (2F)

for all sufficiently large k.
Proof. From the differentiability of Gp; and the fact that G (Z) = 0, we have

Fuy(x) = Fa(T) + %(x —2)IVGM(Z)(x —Z) + o(||z — Z|).

From Lemma 5.10, ||z + s* — z|| = o(||z* — Z]|), so
lz* = z[| = [Is" ]| + o(|ls")-
Therefore, from Lemma 5.10 and the boundedness of {B},
Far(z* + %) — Fap(a%) — o(s5)T Gpr(zF)

_ _%( b 5)TVG () (z* — F) + o(|jz* — 7|2) — o(s") T Cas (z)

1

= —i(sk)TVGM(f)Sk + 0(||sk||2) + a(sk)TBksk
kN\NT = k 1 k\T =\ .k k12
= o) (VO () - st + (7= 3 ) (T VGar(@)s® + of| )

_ (a _ ;) (s)TV G (2)s" + o(||s*]?),

which, together with the positive definiteness of VG /(Z) and the algorithm assump-
tion that o < 1/2, implies that for all sufficiently large k,
FM(ik + Sk) — FM(Ik) - U(Sk)TéM(Ik) < 0.

This completes the proof of this lemma. ]
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Now we have all the necessary material to give the superlinear convergence result.

THEOREM 5.12. Suppose that Fyy is strongly convex on D, G is Fréchet differen-
tiable at T, and there exists a constant L > 0 such that (5.29) holds. Then the sequence
{x*} generated by the BFGS bundle-type method converges to T Q-superlinearly.

Proof. From Lemmas 5.11 and 2.1 and line search criterion (3.2), for all sufficiently
large k, we have

= gb sk
Then the Q-superlinear convergence of {z*} follows from Lemma 5.10. 0

6. Conclusions. This paper presents a globally and superlinearly convergent
BFGS bundle-type method for the case where the Moreau—Yosida regularization func-
tion Fj; and its gradient Gj; are computed only approximately. It does not require
the original objective to be differentiable at the solution. To accomplish this we em-
ploy a bundle method to implement e, = Fas(2%) — Far(zF) = o(]|Gar(2%)||?), which is
an essential condition for superlinear convergence of an approximate Newton method
applied to this type of problem [12]. Because of this requirement the subproblems
may increase in difficulty as k increases. To try to alleviate this potential difficulty it
may be beneficial to consider space decomposition as in [18] and to vary M in such a
way that the subproblems are solved mainly in the subspace where the cutting-plane
aspect of bundling is efficient. Also, if the variation in M and space decomposition
are done properly, it may be possible to weaken the rate of convergence assumption
to assuming that some regularization of f is strongly convex on a proper subset of "
when f is not differentiable at the solution.

In [7], Chen and Fukushima provide a globally and linearly convergent proximal
quasi-Newton method and discuss local superlinear convergence conditions. Here we
focus our attention on giving superlinear convergence conditions for a BFGS bundle-
type method. It may be possible to generalize our results to an important subclass of
the Broyden class of quasi-Newton methods by using the results in [4, 2] corresponding
to some positive and negative values of the class parameter.
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