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Abstract. In this paper we provide implementable methods for solving nondifferentiable convex
optimization problems. A typical method minimizes an approximate Moreau–Yosida regularization
using a quasi-Newton technique with inexact function and gradient values which are generated by a
finite inner bundle algorithm. For a BFGS bundle-type method global and superlinear convergence
results for the outer iteration sequence are obtained.
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1. Introduction. Consider the following minimization problem:

min
x∈<n

f(x),(1.1)

where f : <n → < is a possibly nondifferentiable convex function.
Throughout this paper, we use ‖ · ‖ to denote the Euclidean vector norm on <n

or its induced matrix norm on <n×n. Let M be a symmetric positive definite n × n
matrix. For any x ∈ <n let

‖x‖2M = xTMx.

We let FM be the Moreau–Yosida [19, 27] regularization of f , associated with M ,
defined by

FM (x) = min
y∈<n

{
f(y) +

1
2
‖y − x‖2M

}
.(1.2)

It is well known that FM is a continuously differentiable convex function defined on
<n even though f may be nondifferentiable. The derivative of FM at x is defined by

GM (x) ≡ ∇FM (x) = M(x− p(x)) ∈ ∂f(p(x)),

where p(x) is the unique minimizer in (1.2) and ∂f is the subdifferential mapping of
f [25]. Here, p(x) is called the proximal point of x. Furthermore, GM is globally
Lipschitz continuous with modulus ‖M‖, the set of minimizers of (1.1) is exactly the
set of minimizers of

min
x∈<n

FM (x),(1.3)
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584 R. MIFFLIN, D. SUN, AND L. QI

and x∗ minimizes f if and only if GM (x∗) = 0 and p(x∗) = x∗. For additional
properties, see [26, 17, 23].

In this paper we use Moreau–Yosida regularization, bundle and quasi-Newton
ideas to develop a convergent minimization method for f . We do not assume that
the subproblem in (1.2) is solved exactly at each outer iteration nor do we assume
f is differentiable at a solution x∗. For a particular BFGS bundle method applied
to an approximation of FM we obtain global and superlinear convergence (of outer
iterations) if ∇GM (x∗) is positive definite and the directional derivative of GM is
radially Lipschitz continuous at x∗. Related work on this subject appears in [1, 5, 6,
7, 12, 16, 18]. In particular, in [1] global and superlinear convergence results for a
BFGS proximal method are given by assuming that f is continuously differentiable
and p(x) is computed exactly. In the literature, for example [10], global convergence
of particular quasi-Newton methods with inexact gradient values has been discussed.
In this paper we approximate FM in addition to GM and these two approximations
are related.

The plan of this paper is as follows. In section 2 we discuss how a bundle method
can be used to satisfy our requirement for approximating p(x). We give the quasi-
Newton bundle-type algorithm in section 3 and discuss its global convergence in
section 4. In section 5 we discuss global and superlinear convergence of a BFGS
bundle-type method. Some concluding remarks are given in section 6.

2. The bundle concept. The bundle idea plays a central role in approximating
FM (x) and ∇FM (x) as is developed in [16] and [18], for example. Let d = y − x in
(1.2) and minimize over d instead of y. This gives

FM (x) = min
d∈<n

{
f(x+ d) +

1
2
dTMd

}
.

Now we consider approximating f(x+ d) by a polyhedral function

f̌(x+ d) = max
i=1,...,j

{f(ui) + (gi)
T

(x+ d− ui)},

where the data (ui, f(ui), gi) with gi = g(ui) ∈ ∂f(ui) constitute a bundle generated
sequentially starting from x and g(x) ∈ ∂f(x) and, possibly, a subset of the previous
set used to generate x. Since f is convex, we have

f(x+ d) ≥ f̌(x+ d).(2.1)

If we define a linearization error by letting

e(x, ui) = f(x)− f(ui)− (gi)
T

(x− ui),

then f̌(x+ d) can be written as

f̌(x+ d) = f(x) + max
i=1,...,j

{(gi)T d− e(x, ui)}.(2.2)

Let

F̌M (x) = min
d∈<n

{
f̌(x+ d) +

1
2
dTMd

}

= f(x) + min
d∈<n

{
max
i=1,...,j

{(gi)T d− e(x, ui)}+
1
2
dTMd

}
.(2.3)
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QUASI-NEWTON BUNDLE-TYPE METHODS 585

From (2.1) and the definition of FM (x), we have

F̌M (x) ≤ FM (x).

So F̌M (x) is an underapproximation of the unknown value FM (x). Let d(x) solve the
minimization problem in (2.3), and let

v(x) = max
i=1,...,j

{(gi)T d(x)− e(x, ui)}.

Then

F̌M (x) = f(x) + v(x) +
1
2

(d(x))TMd(x).

Let a(x) = x+ d(x) be an approximation of p(x), and let

F̂M (x) = f(a(x)) +
1
2

(d(x))TMd(x).

Since p(x) is the unique minimizer in (1.2), we have

FM (x) ≤ F̂M (x)

and equality holds if and only if a(x) = p(x).
Thus, we have the following lemma.
LEMMA 2.1.
(i) F̌M (x) ≤ FM (x) ≤ F̂M (x).
(ii) FM (x) = F̂M (x) if and only if a(x) = p(x).

This simple lemma plays an important role in the design of our algorithm.
Let

ε(x) = F̂M (x)− F̌M (x).(2.4)

We base our rule for accepting a(x) as an approximation of p(x) on ε(x) as follows:
Accept if

ε(x) ≤ δ(x) min{(d(x))TMd(x), N},(2.5)

where δ(x) and N are given positive numbers and δ(x) is fixed during the bundling
process. If (2.5) is not satisfied then we let uj+1 = x + d(x) and gj+1 = g(uj+1),
append a new piece (gj+1)T d − e(x, uj+1) to (2.2), replace j by j + 1, and solve a
new subproblem in (2.3) for a new d(x) and a new ε(x) to be tested in (2.5). If this
process, in which ε(x) and d(x) vary, does not terminate we have the following result.

LEMMA 2.2. Suppose x does not minimize f . In this subalgorithm, if (2.5) is
never satisfied, then

ε(x)→ 0.

Proof. Following the proof of Proposition 3 in [11] (see also [15] and [8]), we can
prove that

F̌M (x)→ FM (x) and F̂M (x)→ FM (x) as j →∞.

So the result of this lemma follows from (2.4).
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586 R. MIFFLIN, D. SUN, AND L. QI

Let

G̃M (x) = M(x− a(x)) = −Md(x).

The following result is a slight extension of Lemma 1 in [12]. For completeness, we
give the proof.

LEMMA 2.3.

‖GM (x)− G̃M (x)‖M−1 = ‖p(x)− a(x)‖M ≤
√

2ε(x),(2.6)

‖GM (x)− G̃M (x)‖ ≤
√

2ε(x)‖M‖.(2.7)

Proof. Define the function ψ : <n → < by

ψ(z) = f(z) +
1
2
‖z − x‖2M .

Since f is convex and ‖z− x‖2M is a strongly convex quadratic function in z, we have
the inequality

ψ(u) ≥ ψ(z) +ωT (u− z) +
1
2
‖u− z‖2M for all u, z ∈ <n and all ω ∈ ∂ψ(z).(2.8)

Since p(x) is the argmin in (1.2), 0 ∈ ∂ψ(p(x)). Letting u = a(x), z = p(x), and
ω = 0 in (2.8) gives

ψ(a(x)) ≥ ψ(p(x)) +
1
2
‖a(x)− p(x)‖2M ;

i.e.,

F̂M (x) ≥ FM (x) +
1
2
‖a(x)− p(x)‖2M .

Then, from Lemma 2.1 and (2.4), (2.6) holds. Finally, we have

‖GM (x)− G̃M (x)‖2 = ‖M(p(x)− a(x))‖2 ≤ ‖M‖‖p(x)− a(x)‖2M ,

which when combined with (2.6) implies that (2.7) holds.
LEMMA 2.4. If x does not minimize f , then after a finite number of subproblem

steps we can find a subproblem solution d(x) such that (2.5) holds.
Proof. If not, then j →∞, so from Lemma 2.2,

ε(x)→ 0.

Then, from Lemma 2.3, ‖G̃M (x)−GM (x)‖ → 0. Since x is not an optimal solution,
GM (x) 6= 0. So there exists a positive number δ0 such that ‖G̃M (x)‖ ≥ δ0 when j is
sufficiently large. Then, since

(d(x))TMd(x) = (G̃M (x))TM−1G̃M (x)(2.9)

and (2.5) is not satisfied,

ε(x) > δ(x) min
{

δ2
0

‖M‖ , N
}

for all j sufficiently large. This is a contradiction, because ε(x)→ 0 when j →∞.
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QUASI-NEWTON BUNDLE-TYPE METHODS 587

Lemma 2.4 says that a bundle-type algorithm can be used to find a vector d(x)
such that (2.5) holds if x is not an optimal solution. This is essential for our algorithm.

A practical stopping test for the overall algorithm is to stop if the subalgorithm
generates a solution with

|v(x)| ≤ tol,(2.10)

where tol is a small positive input parameter. See, for example, Theorem 1 in [18].

3. The algorithm. Since FM is a convex function and GM is globally Lips-
chitz continuous, a natural idea is to use a quasi-Newton method, such as the BFGS
method, to solve (1.3). The severe practical difficulty with this approach is that we
cannot expect to calculate FM (x) and GM (x) exactly. To approximate these values
appropriately the results of section 2 will be useful.

We use the notation εk = ε(xk), ak = a(xk), dk = d(xk) and so on.
QUASI-NEWTON BUNDLE-TYPE ALGORITHM.
Step 0 (initialization). Let σ, ρ, and N be positive numbers such that σ < 1/2

and ρ < 1. Let {δk} be a sequence of positive numbers such that
∑∞
k=0 δk < +∞.

Let x0 ∈ <n be an initial solution estimate and B0 be an n × n symmetric positive
definite matrix. Set k := 0 and find d0 and ε0 as described in section 2 such that

ε0 ≤ δ0 min{(d0)TMd0, N},

for example starting the bundle process with j = 1 and u1 = x0.
Step 1 (compute a search direction). If ‖G̃(xk)‖ = 0, stop with xk optimal.

Else, compute

sk = −B−1
k G̃M (xk).(3.1)

Step 2 (line search). Starting with m = 0, let ik be the smallest nonnegative
integer m such that

F̌M (xk + ρmsk) ≤ F̂M (xk) + σρm(sk)T G̃M (xk),(3.2)

where F̌M (xk + ρmsk) is an underapproximation of FM at xk + ρmsk and satisfies

F̂M (xk + ρmsk)− F̌M (xk + ρmsk)

≤ δk+1 min{(d(xk + ρmsk))TMd(xk + ρmsk), N}.
(3.3)

Set τk := ρik and xk+1 := xk + τks
k.

Step 3 (update the quasi-Newton matrix). Let ∆xk = xk+1 − xk and
∆yk = G̃M (xk+1)− G̃M (xk). If (∆xk)T∆yk > 0, update Bk to Bk+1 such that Bk+1
is symmetric and positive definite and satisfies quasi-Newton equation

Bk+1∆xk = ∆yk;

otherwise set Bk+1 := M . Set k := k + 1 and go to step 1.
At Step 1 if ‖G̃M (xk)‖ = 0 then, from the definition of G̃M (x), ‖d(xk)‖ = 0 and

then, from (2.5), ε(xk) = 0, so (2.7) implies GM (xk) = 0 and xk is optimal.
From the discussion given in section 2, if xk + ρmsk does not minimize f , we can

find a vector d(xk+ρmsk) satisfying (3.3) after a finite number of subproblem steps. So
Step 2 proceeds as follows: First compute d(xk+ρmsk) to satisfy (3.3) and then check
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588 R. MIFFLIN, D. SUN, AND L. QI

if (3.2) is satisfied. If this is not the case, increase m by 1 and repeat with the new
point xk + ρmsk; otherwise set τk = ρik and xk+1 = xk + τks

k and go to Step 3. If for
some candidate nonnegative integer m used in Step 2 xk+ρmsk is an optimal solution
and if tol in (2.10) is zero, then the corresponding bundle subalgorithm execution may
not terminate. Throughout the sequel we assume that this situation does not occur
by assuming that each subalgorithm execution terminates. The next theorem shows
that ik is well defined at each iteration of the algorithm.

THEOREM 3.1. If xk does not minimize f , then there exists a number τ̄k > 0 such
that

F̌M (xk + τsk) ≤ F̂M (xk) + στ(sk)T G̃M (xk)(3.4)

holds for all τ ∈ (0, τ̄k], where F̌M (xk + τsk), the underapproximation of FM at
xk + τsk, satisfies

F̂M (xk + τsk)− F̌M (xk + τsk) ≤ δk+1 min{(d(x+ τsk))TMd(x+ τsk), N}.(3.5)

Proof. Since xk does not minimize f , there exists a positive number τ̃k such that
for any τ ∈ (0, τ̃k], xk + τsk also does not minimize f . Then by Lemma 2.4 for each
τ ∈ (0, τ̃k] we can find d(xk + τsk) such that (3.5) holds. Next we prove this lemma
by considering the following two cases.

Case 3.1. F̂M (xk) = FM (xk). Then from Lemma 2.1, we have

a(xk) = p(xk).

Then,

G̃M (xk) = M(xk − a(xk)) = M(xk − p(xk)) = GM (xk),

and, since xk is not a solution, (3.1) implies

(sk)TGM (xk) < 0.

Since FM is continuously differentiable and σ < 1, there exists a number τ̄k > 0(τ̄k ≤
τ̃k) such that for all τ ∈ (0, τ̄k] we have

FM (xk + τsk) ≤ FM (xk) + στ(sk)TGM (xk).

This implies that (3.4) holds, because, by Lemma 2.1, F̌M (xk+ τsk) ≤ FM (xk+ τsk).
Case 3.2. F̂M (xk) > FM (xk). Then when τ is sufficiently small, the right-hand

side of (3.4) is greater than FM (xk) + 1
2 (F̂M (xk) − FM (xk)) and, as τ → 0, the

left-hand side satisfies

F̌M (xk + τsk) ≤ FM (xk + τsk)→ FM (xk).

So there exists a positive number τ̄k such that (3.4) is satisfied in this case, too.

4. Global convergence. Throughout the rest of the paper we assume that the
algorithm does not terminate so that {xk} is an infinite sequence.

Since
∑∞
k=0 δk <∞, there exists a constant C such that

∞∑
k=0

δk ≤ C.(4.1)

D
ow

nl
oa

de
d 

07
/3

1/
16

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



QUASI-NEWTON BUNDLE-TYPE METHODS 589

Let

D = {x ∈ <n|FM (x) ≤ FM (x0) + 2NC}.

LEMMA 4.1. For all k ≥ 0 we have

FM (xk+1) ≤ FM (xk) +N(δk + δk+1)(4.2)

and

xk ∈ D.

Proof. By Lemma 2.1 and the algorithm rules, for k ≥ 0

FM (xk+1) ≤ F̌M (xk+1) +Nδk+1

≤ F̂M (xk) + σρik(sk)T G̃M (xk) +Nδk+1

= F̂M (xk)− σρikG̃M (xk)TB−1
k G̃M (xk) +Nδk+1

≤ F̂M (xk) +Nδk+1

≤ FM (xk) +N(δk + δk+1).

Thus, for all k ≥ 0, (4.2) holds and

xk+1 ∈ D.

The proof is completed by noting that x0 ∈ D.
THEOREM 4.2. Suppose that f is bounded from below and there exist two posi-

tive numbers c1 and c2 such that ‖Bk‖ ≤ c1 and ‖B−1
k ‖ ≤ c2 for all k. Then any

accumulation point of {xk} minimizes f .
Proof. From Lemma 4.1 we know that FM (xk) is bounded from above. On the

other hand, since f is assumed to be bounded from below, FM is also bounded from
below. Suppose that lim infk→∞ FM (xk) = F ∗M . Then, by (4.1), (4.2), and a simple
ε− δ argument, we have limk→∞ FM (xk) = F ∗M .

Since {δk} → 0, from Lemma 2.1 and the algorithm rules we have {εk} → 0 and

lim
k→∞

F̌M (xk) = lim
k→∞

F̂M (xk) = F ∗M .

Thus,

lim
k→∞

τk(sk)T G̃M (xk) = 0,

which, from the assumption on {Bk}, implies that

lim
k→∞

τk‖G̃M (xk)‖2 = 0.(4.3)

Let x̄ be an arbitrary accumulation point of {xk}, and let {xk}k∈K be a subsequence
converging to x̄. By Lemma 2.3

lim
k→∞,k∈K

G̃M (xk) = GM (x̄).(4.4)
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590 R. MIFFLIN, D. SUN, AND L. QI

If lim infk→∞,k∈K τk > 0, then from (4.3) and (4.4) we have

GM (x̄) = 0.

On the other hand, if lim infk→∞,k∈K τk = 0, then by taking a subsequence, if
necessary, we can assume that τk → 0 for k ∈ K. From the line search stopping rule
we have

F̌M (xk + ρik−1sk) > F̂M (xk) + σρik−1(sk)T G̃M (xk),

where ρik−1 = τk/ρ. So, by Lemma 2.1, we have

FM (xk + ρik−1sk) > FM (xk) + σρik−1(sk)T G̃M (xk);

i.e.,

FM (xk + ρik−1sk)− FM (xk)
ρik−1 > σ(sk)T G̃M (xk).(4.5)

By (4.4), {G̃M (xk)}k∈K is bounded. This, together with the assumption on {Bk},
implies that {sk}k∈K is bounded. So, by taking a subsequence if necessary, we may
assume that

lim
k→∞,k∈K

sk = s̄.

Since {ρik−1}k∈K → 0, by taking a limit in (4.5) on the subsequence k ∈ K, we obtain

s̄TGM (x̄) ≥ σs̄TGM (x̄).(4.6)

Also, from the assumption on {Bk} we have

s̄TGM (x̄) ≤ − 1
c2
‖s̄‖2,

which, combined with (4.6) and the fact that σ < 1, implies that

s̄TGM (x̄) = 0 and s̄ = 0.

Finally, this combined with the assumption on {Bk} implies

GM (x̄) = 0.

This completes the proof.
Based on the results established in [14] and [24], we could discuss local conver-

gence of the proposed quasi-Newton bundle-type methods as in [1] by assuming that
the initial point x0 is sufficiently close to a solution x∗ and the initial matrix B0
is sufficiently close to ∇GM (x∗). However, it should be noted that we only use an
approximation of the proximal point while in [1] the exact value is used. Here we
will not give such a discussion on the local convergence of the proposed methods. In
the next section, we will discuss a BFGS bundle-type method for which global and
superlinear convergence results are obtained.
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QUASI-NEWTON BUNDLE-TYPE METHODS 591

5. A BFGS bundle-type method. For given vectors ∆x and ∆y, the BFGS
quasi-Newton update of an n× n symmetric matrix B is the matrix

BFGS(B,∆x,∆y) := B − B∆x∆xTB
∆xTB∆x

+
∆y∆yT

∆xT∆y

(see [9] for instance). If B is positive definite and ∆xT∆y > 0, then the symmetric
matrix B+ = BFGS(B,∆x,∆y) is also positive definite.

In our BFGS bundle-type method, we will assume that B0 = M and
∑∞
k=0 δ

1/3
k <

∞. Let

∆ȳk = GM (xk+1)−GM (xk).

At each iteration, if the following two conditions are satisfied, we will update Bk to
Bk+1 = BFGS(Bk,∆xk,∆yk); otherwise, we let Bk+1 := M . Given c3 ∈ (0,∞) and
c4 ∈ (0, 1), these two conditions are

‖∆xk‖M (
√

2εk +
√

2εk+1) ≤ c3(∆xk)T∆yk(5.1)

and

2‖∆yk‖M (
√

2εk +
√

2εk+1) ≤ min{c4, δ1/3
k + δ

1/3
k+1}‖∆yk‖2.(5.2)

In order to employ BFGS results from [3] we need the following results.
LEMMA 5.1. If conditions (5.1) and (5.2) are satisfied for some k ≥ 0, then

(∆xk)T∆yk ≥ (1/(1 + c3))(∆xk)T∆ȳk and ‖∆ȳk‖2 ≥ (1− c4)‖∆yk‖2.(5.3)

Proof. From (2.6) in Lemma 2.3,

(∆xk)T∆yk = (∆xk)T∆ȳk + (∆xk)T (∆yk −∆ȳk)

≥ (∆xk)T∆ȳk − ‖∆xk‖M‖∆yk −∆ȳk‖M−1

≥ (∆xk)T∆ȳk − ‖∆xk‖M (‖G̃M (xk)−GM (xk)‖M−1

+‖G̃M (xk+1)−GM (xk+1)‖M−1)

≥ (∆xk)T∆ȳk − ‖∆xk‖M (
√

2εk +
√

2εk+1)

and

‖∆ȳk‖2 = ‖∆yk‖2 + ‖∆ȳk −∆yk‖2 + 2(∆yk)T (∆ȳk −∆yk)

≥ ‖∆yk‖2 − 2‖∆yk‖M‖∆ȳk −∆yk‖M−1

≥ ‖∆yk‖2 − 2‖∆yk‖M (
√

2εk +
√

2εk+1).

So, if conditions (5.1) and (5.2) are satisfied, then (5.3) holds. This competes the
proof.

We denote the cosine of the angle between Bk∆xk and ∆xk by

cos θk :=
(∆xk)TBk∆xk

‖∆xk‖‖Bk∆xk‖
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592 R. MIFFLIN, D. SUN, AND L. QI

and the corresponding Rayleigh quotient by

qk :=
(∆xk)TBk∆xk

(∆xk)T∆xk
.

Let

K := {0} ∪ {j|(5.1) or (5.2) does not hold for k = j − 1} ≡ {k0, k1, ..., ki, ...}.

This implies that Bj = M for j ∈ K and Bj is a BFGS update of Bj−1 for j /∈ K.
Also, let d·e be the roundup operator such that dte = i, when i − 1 < t ≤ i for
i ∈ {1, 2, ...}.

LEMMA 5.2. Let {Bk} be generated by the BFGS bundle-type algorithm. Suppose
that there exist numbers α1 > 0 and α2 > 0 such that

(∆xk)T∆ȳk ≥ α1‖∆xk‖2 and (∆xk)T∆ȳk ≥ α2‖∆ȳk‖2(5.4)

for all k ≥ 0. Then for any w ∈ (0, 1) there exist constants β1, β2, β3 > 0 such that,
for any k satisfying ki−1 ≤ k < ki−1, where ki−1, ki ∈ K for some i ≥ 1, the relations

cos θj ≥ β1,

β2 ≤ qj ≤ β3,

β2 ≤
‖Bj∆xj‖
‖∆xj‖ ≤

β3

β1

hold for at least dw(k − ki−1 + 1)e values of j satisfying ki−1 ≤ j ≤ k.
Proof. For any k satisfying ki−1 ≤ k < ki − 1, (5.1) and (5.2) hold. Then, from

(5.3) and (5.4),

(∆xk)T∆yk ≥ ᾱ1‖∆xk‖2 and (∆xk)T∆yk ≥ ᾱ2‖∆yk‖2

hold for all k satisfying ki−1 ≤ k < ki − 1, where ᾱ1 = α1/(1 + c3) and ᾱ2 =
α2(1− c4)/(1 + c3). Then the results of this lemma follow from the proof of Theorem
2.1 in [3].

LEMMA 5.3. For any nonnegative sequence {δk}k≥0, if
∑∞
k=0 δk <∞, then

∞∏
k=0

(1 + δk) <∞.

Proof. This result follows easily from the properties of logarithms.
LEMMA 5.4. Relative to the line search there exist positive constants η1 and η2

such that either

F̌M (xk + τks
k) ≤ F̂M (xk)− η1

((sk)T G̃M (xk))2

‖sk‖2

−η1/(1− σ)
(sk)T (GM (xk)− G̃M (xk))((sk)T G̃M (xk))

‖sk‖2(5.5)

or

F̌M (xk + τks
k) ≤ F̂M (xk) + η2(sk)T G̃M (xk).(5.6)
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QUASI-NEWTON BUNDLE-TYPE METHODS 593

Proof. If (3.2) is satisfied by the integer m = 0, then (5.6) holds with η2 ≡ σ.
Suppose that ik > 0, which means that (3.2) fails to be satisfied for m := ik − 1; i.e.,

F̌M (xk + (τk/ρ)sk) > F̂M (xk) + σ(τk/ρ)(sk)T G̃M (xk),

which together with Lemma 2.1 implies that

FM (xk + (τk/ρ)sk) > FM (xk) + σ(τk/ρ)(sk)T G̃M (xk).

Then, using the mean value theorem, we obtain

(τk/ρ)(sk)TGM (xk + θ(τk/ρ)sk) > σ(τk/ρ)(sk)T G̃M (xk),

where θ ∈ (0, 1). Thus, from the Lipschitz continuity of GM ,

(τk/ρ)(σ(sk)T G̃M (xk)− (sk)TGM (xk))

< (τk/ρ)(sk)T (GM (xk + θ(τk/ρ)sk)−GM (xk))

≤ ‖M‖((τk/ρ)‖sk‖)2,

which implies that

τk > ρ
−((sk)TGM (xk)− σ(sk)T G̃M (xk))

‖M‖‖sk‖2 .

Substituting this into (3.2) gives

F̌M (xk + τks
k) ≤ F̂M (xk)− ρσ

‖M‖
((sk)TGM (xk)− σ(sk)T G̃M (xk))((sk)T G̃M (xk))

‖sk‖2 ,

which gives (5.5) with η1 = ρσ(1−σ)
‖M‖ .

It was proved in [17] that f is strongly convex on <n if and only if FM is strongly
convex on <n. From now on we assume that FM is strongly convex on D. Then there
exists an α > 0 such that

FM (z) ≥ FM (x) +GM (x)T (z − x) +
α

2
‖z − x‖2 for all x, z ∈ D,

(GM (z)−GM (x))T (z − x) ≥ α‖z − x‖2 for all x, z ∈ D.

This implies that there is a unique minimizer of f in D and that D is bounded. Let
x̄ be the unique solution. The next result gives R-linear convergence of {xk} to x̄.

THEOREM 5.5. Suppose that FM is strongly convex on D and {Bk} is generated
by the BFGS bundle-type method and xk 6= x̄ for all k ≥ 0. Then {xk} converges to
the unique solution x̄; moreover,

∞∑
k=0

‖xk − x̄‖ <∞(5.7)

and there are constants r ∈ [0, 1) and C̄ ∈ (0,∞) and a positive integer k̄ such that
for all k ≥ k̄ we have

FM (xk+1)− FM (x̄) ≤ C̄(r1/2)k−k̄+1(FM (xk̄)− FM (x̄)).
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594 R. MIFFLIN, D. SUN, AND L. QI

Proof. First suppose that K has an infinite number of elements. Since FM is
strongly convex on D and GM is globally Lipschitz continuous, from [21] or Theorem
X.4.2.2 of [13], (5.4) holds for α1 = α and α2 = 1/‖M‖. So, given w ∈ (0, 1), from
Lemma 5.2 there exist constants β, β′ > 0 such that for any k satisfying ki−1 ≤ k <
ki − 1, where ki−1, ki ∈ K for some i ≥ 1, the inequalities

cos θj ≥ β(5.8)

and

‖Bj∆xj‖
‖∆xj‖ ≤ β

′(5.9)

hold for at least dw(k − ki−1 + 1)e values of j satisfying ki−1 ≤ j ≤ k. Since Bj =
M if j ∈ K, we can assume β and β′ are such that (5.8) and (5.9) hold for all
j ∈ K. We define I to be the set of indices j for which (5.8) and (5.9) hold. Since
D is bounded, {‖GM (xk)‖} is a bounded sequence. From (2.7), (3.3), and (2.9),
‖GM (xk) − G̃M (xk)‖ = o(‖G̃M (xk)‖), so there exists an integer k̄ such that for all
k ≥ k̄

2‖GM (xk)‖ ≥ ‖G̃M (xk)‖ ≥ 1
2
‖GM (xk)‖(5.10)

and

| − (sk)T (GM (xk)− G̃M (xk))((sk)T G̃M (xk))
‖sk‖2 | ≤ (1− σ)β2

2
‖G̃M (xk)‖2.(5.11)

Consider an iterate xj with j ∈ I and j ≥ k̄. From Lemma 5.4, (5.8), (5.9), and
(5.11), we have that

F̂M (xj)− F̌M (xj + τjs
j) ≥ η‖G̃M (xj)‖2,(5.12)

where η = 1
2η1β

2 if (5.5) holds or η = η2β/β
′ if (5.6) holds. So, from (5.12) and

(5.10), for all j ∈ I and j ≥ k̄,

F̂M (xj)− F̌M (xj + τjs
j) ≥ η

4
‖GM (xj)‖2.(5.13)

By strong convexity of FM and Lemma 4.3 in [1], for all k ≥ 0,

1
2
α‖xk − x̄‖2 ≤ FM (xk)− FM (x̄) ≤ 2

α
‖GM (xk)‖2.(5.14)

Then, from Lemma 2.1, (5.13), and the right-side inequality in (5.14), for all j ∈ I
and j ≥ k̄,

FM (xj+1)− FM (x̄)− εj+1 ≤
(

1− ηα

8

)
(FM (xj)− FM (x̄)) + εj .(5.15)

Since {δk} → 0, we can take k̄ large enough such that for all k ≥ k̄

16δk‖M−1‖‖M‖2
α

≤ min
{

1,
ηα

8

}
.(5.16)
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QUASI-NEWTON BUNDLE-TYPE METHODS 595

By (3.3), (2.9), (5.10), the fact that GM (x̄) = 0, the Lipschitz continuity of GM with
modulus ‖M‖, and (5.14), for all k ≥ k̄ we have

εk ≤ δk‖M−1‖‖G̃M (xk)‖2

≤ 4δk‖M−1‖‖GM (xk)‖2

≤ 4δk‖M−1‖‖M‖2‖xk − x̄‖2

≤ 8δk‖M−1‖‖M‖2
α

(FM (xk)− FM (x̄)).

(5.17)

Then from (5.15)–(5.17), for all j ∈ I and j ≥ k̄, we have(
1− 8

δj+1‖M−1‖‖M‖2
α

)
(FM (xj+1)− FM (x̄))

≤
(

1− 1
16
ηα

)
(FM (xj)− FM (x̄)).

(5.18)

Since FM (xk) > FM (x̄) for all k, (5.18) and (5.16) imply 1− 1
16ηα > 0. For w ∈ (0, 1),

let r = (1− 1
16ηα)w so that in (5.18)

1− 1
16
ηα = r1/w.

From (3.1), (3.2), the positivity of σ and τk, and the positive definiteness of Bk we
have

F̌M (xk+1) < F̂M (xk) for all k.

Combining this with (5.17) and Lemma 2.1 yields for all j ≥ k̄(
1− 8

δj+1‖M−1‖‖M‖2
α

)
(FM (xj+1)− FM (x̄))

≤
(

1 + 8
δj‖M−1‖‖M‖2

α

)
(FM (xj)− FM (x̄)).

For k ≥ k̄, let

δ′k =
1 + 8 δk‖M

−1‖‖M‖2
α

1− 8 δk+1‖M−1‖‖M‖2
α

.

For any k ≥ k̄, there exists ki−1, ki ∈ K such that k satisfies ki−1 ≤ k < ki. If
ki − ki−1 ≤ 2, then, since ki−1 ∈ K ⊆ I,

r1/w

1− 8 δj+1‖M−1‖‖M‖2
α

< δ′jr
1/w for all j ≥ k̄

and

r1/w < r < r1/2,
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596 R. MIFFLIN, D. SUN, AND L. QI

we have for k satisfying ki−1 ≤ k < ki,

FM (xk+1)− FM (x̄) ≤
k∏

j=ki−1

δ′jr(FM (xki−1)− FM (x̄))

≤
k∏

j=ki−1

δ′j(r
1/2)k−ki−1+1(FM (xki−1)− FM (x̄)).(5.19)

On the other hand, if ki − ki−1 > 2, then when ki−1 ≤ k < ki − 1, from Lemma 5.2,
there are at least dw(k − ki−1 + 1)e elements in I ∩ [ki−1, k]. So for all k satisfying
ki−1 ≤ k < ki − 1, we have

FM (xk+1)− FM (x̄) ≤
k∏

j=ki−1

δ′jr
k−ki−1+1(FM (xki−1)− FM (x̄)).(5.20)

Therefore,

FM (xki)− FM (x̄) ≤ δ′ki−1(FM (xki−1)− FM (x̄))

≤
ki−1∏
j=ki−1

δ′jr
ki−ki−1−1(FM (xki−1)− FM (x̄))

≤
ki−1∏
j=ki−1

δ′j(r
1/2)ki−ki−1+1(FM (xki−1)− FM (x̄)).(5.21)

So, from (5.19)–(5.21), for all k satisfying ki−1 ≤ k < ki we have

FM (xk+1)− FM (x̄) ≤
k∏

j=ki−1

δ′j(r
1/2)k−ki−1+1(FM (xki−1)− FM (x̄)).(5.22)

Without loss of generality, we can assume that k̄ ∈ K. Then, from (5.22), for any
k ≥ k̄ we have

FM (xk+1)− FM (x̄) ≤
k∏
j=k̄

δ′j(r
1/2)k−k̄+1(FM (xk̄)− FM (x̄)).

Since
∑∞
k=0 δk <∞,

∑∞
k=k̄(δ′k−1) <∞. So, from Lemma 5.3, there exists a constant

C̄ > 0 such that

∞∏
k=k̄

δ′k ≤ C̄.

Then, for all k ≥ k̄

FM (xk+1)− FM (x̄) ≤ C̄(r1/2)k−k̄+1(FM (xk̄)− FM (x̄)).(5.23)
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QUASI-NEWTON BUNDLE-TYPE METHODS 597

Using (5.14), (5.23), and the fact that r < 1, we have

∞∑
k=k̄

‖xk − x̄‖ ≤ (2/α)1/2
∞∑
k=k̄

(FM (xk)− FM (x̄))1/2

≤
[

2C̄(FM (xk̄)− FM (x̄))
α

]1/2 ∞∑
k=k̄

(r1/4)k−k̄

<∞.

If there are only finitely many elements in K, then by following the above proof
we can prove the same results as in the case where there are infinitely many elements
in K.

In the next lemma we discuss the boundedness of {‖Bk‖} and {‖B−1
k ‖} which

was assumed for convergence in Theorem 4.2.
LEMMA 5.6. Suppose that FM is strongly convex on D and {Bk} is generated by

the BFGS bundle-type method. Furthermore, assume that {∆xk} and {∆ȳk} are such
that for all k ≥ 0

‖∆ȳk −H∗∆xk‖
‖∆xk‖ ≤ ε′k

for some symmetric positive definite matrix H∗ and for some sequence {ε′k} with the
property that

∑∞
k=0 ε

′
k <∞. Then the sequences {‖Bk‖} and {‖B−1

k ‖} are bounded.
Proof. First suppose K has an infinite number of elements. For k satisfying

ki−1 ≤ k < ki − 1, where ki−1, ki ∈ K for some i ≥ 1, (5.1) and (5.2) hold, and by
(5.3)

(∆xk)T∆yk ≥ 1
(1 + c3)

(∆xk)T∆ȳk > 0.

From Lemma 2.3, (5.2), and (5.3), for all k satisfying ki−1 ≤ k < ki − 1,

‖∆yk −H∗∆xk‖
‖∆xk‖ ≤ ε′k +

‖∆yk −∆ȳk‖
‖∆xk‖

≤ ε′k +

√
2εk‖M‖+

√
2εk+1‖M‖

‖∆xk‖

≤ ε′k +

√
‖M‖‖M−1‖
2
√

1− c4
(δ1/3
k + δ

1/3
k+1)

‖∆ȳk‖
‖∆xk‖

≤ ε′k +

√
‖M‖3‖M−1‖
2
√

1− c4
(δ1/3
k + δ

1/3
k+1).

Let ε̄k = ε′k +
√
‖M‖3‖M−1‖

2
√

1−c4
(δ1/3
k + δ

1/3
k+1). Then for all k satisfying ki−1 ≤ k < ki − 1,

we have

‖∆yk −H∗∆xk‖
‖∆xk‖ ≤ ε̄k.
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598 R. MIFFLIN, D. SUN, AND L. QI

From the assumptions that
∑∞
k=0 ε

′
k <∞ and

∑∞
k=0 δ

1/3
k <∞, it follows that

∞∑
k=0

ε̄k <∞.

Then, from the proof of Theorem 3.2 in [3], it follows that for all k satisfying ki−1 ≤
k < ki, ‖Bk‖ and ‖B−1

k ‖ are bounded with the bound depending on Bki−1 . Finally,
since Bki =M for all i ≥ 0, the entire sequences {‖Bk‖} and {‖B−1

k ‖} are bounded.
The proof is completed by noting that the case where K has a finite number of
elements follows in a similar manner from Theorem 3.2 in [3].

LEMMA 5.7. Suppose that FM is strongly convex on D and Bk is generated by the
BFGS bundle-type method. If the sequences {‖Bk‖} and {‖B−1

k ‖} are bounded, then
conditions (5.1) and (5.2) are satisfied for all sufficiently large k, and

‖xk − x̄‖ = O(‖∆xk‖), ‖xk+1 − x̄‖ = O(‖∆xk‖).(5.24)

Proof. We first prove that τk is bounded away from zero. From the proof of
Lemma 5.4, we have

τk ≥ min

{
1, ρ
−((sk)TGM (xk)− σ(sk)T G̃M (xk))

‖M‖‖sk‖2

}
.

But, since ‖GM (xk) − G̃M (xk)‖ = o(‖G̃M (xk)‖), G̃M (xk) = −Bksk, the sequences
{‖Bk‖} and {‖B−1

k ‖} are bounded, and σ < 1, it is not difficult to prove that there
exists an integer k̄ and a positive constant τ̄ such that for any k ≥ k̄

τk ≥ τ̄ .

Thus, for all k, τk is bounded away from zero.
Since ∆xk = xk+1 − xk = τks

k = −τkB−1
k G̃M (xk), this bound on τk and the

boundedness of {‖Bk‖} and {‖B−1
k ‖} imply that

‖G̃M (xk)‖ = O(‖∆xk‖).

Then, by the strong convexity of FM ,

‖G̃M (xk)‖ ≥ ‖GM (xk)‖ − ‖GM (xk)− G̃M (xk)‖ ≥ α‖xk − x̄‖ − o(‖∆xk‖);

so, the first equality of (5.24) holds. Since xk+1 = xk+τksk, the first equality of (5.24)
and the boundedness of {‖B−1

k ‖} imply that the second equality of (5.24) holds. From
Lemma 2.3, the first inequality in (5.17), and (5.24), we have

‖∆yk −∆ȳk‖M−1 ≤
√

2εk +
√

2εk+1

≤
√

2δk‖M−1‖‖G̃M (xk)‖+
√

2δk+1‖M−1‖‖G̃M (xk+1)‖

=
√

2δk‖M−1‖O(‖GM (xk)‖) +
√

2δk+1‖M−1‖O(‖GM (xk+1)‖)

≤ (
√

2δk‖M−1‖+
√

2δk+1‖M−1‖)O(‖∆xk‖).
(5.25)
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Therefore, by strong convexity and (5.25),

(∆xk)T∆yk ≥ (∆xk)T∆ȳk − ‖∆xk‖M‖∆yk −∆ȳk‖M−1

≥ α‖∆xk‖2 − o(‖∆xk‖2)(5.26)

and

‖∆yk‖ ≥ ‖∆ȳk‖ − ‖∆yk −∆ȳk‖

≥ α‖∆xk‖ − o(‖∆xk‖).(5.27)

Then the third inequality in (5.17), (5.24), (5.26), (5.27), and the fact that {δ1/2
k /δ

1/3
k } →

0 imply that the update conditions (5.1) and (5.2) are satisfied for all sufficiently large
k.

Remark 5.1. A principal contribution of this paper is the update or reset tests
(5.1) and (5.2) depending on εk and δ

1/3
k . From the proof of Lemma 5.7 it can be

seen that δ1/3
k + δ

1/3
k+1 in (5.2) could be replaced by δγk + δγk+1, where γ < 1/2 if {δk}

is chosen such that
∑∞
k=0 δ

γ
k <∞.

THEOREM 5.8. Suppose that all the assumptions in Lemma 5.6 hold. Then
{‖Bk‖} and {‖B−1

k ‖} are bounded, K has finitely many elements, (5.7) holds, and

lim
k→∞

‖(Bk −H∗)∆xk‖
‖∆xk‖ = 0.(5.28)

Proof. The first three results follow from Lemmas 5.6 and 5.7, the definition of
K, and Theorem 5.5. So we can assume that there exists an integer k̄ such that for
any k ≥ k̄, conditions (5.1) and (5.2) are satisfied. As in the proof of Theorem 5.5,
we know that (5.4) holds with α1 = α and α2 = 1/‖M‖. So, for any k ≥ k̄, we have

(∆xk)T∆yk ≥ ᾱ1‖∆xk‖2 and (∆xk)T∆yk ≥ ᾱ2‖∆yk‖2,

where ᾱ1 = α1/(1 + c3) and ᾱ2 = α2(1− c4)/(1 + c3). As in the proof of Lemma 5.6,

by letting ε̄k = ε′k +
√
‖M‖3‖M−1‖

2
√

1−c4
(δ1/3
k + δ

1/3
k+1), we obtain

∞∑
k=0

ε̄k <∞

and for all k ≥ k̄

‖∆yk −H∗∆xk‖
‖∆xk‖ ≤ ε̄k.

Then (5.28) follows from the proof of Theorem 3.2 in [3].
In order to obtain superlinear convergence for the BFGS bundle-type method, we

need further assumptions on GM . From now on we will assume that GM is Fréchet
differentiable at x̄, which, together with assuming that FM is strongly convex, implies
that ∇GM (x̄) is positive definite and, hence, invertible.

COROLLARY 5.9. Suppose that FM is strongly convex on D and GM is Fréchet
differentiable at x̄. If there exists a constant L > 0 such that

‖∆ȳk −∇GM (x̄)∆xk‖
‖∆xk‖ ≤ Lmax{‖xk+1 − x̄‖, ‖xk − x̄‖},(5.29)
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600 R. MIFFLIN, D. SUN, AND L. QI

then the sequence {xk} generated by the BFGS bundle-type method satisfies

lim
k→∞

‖(Bk −∇GM (x̄))∆xk‖
‖∆xk‖ = 0.(5.30)

Moreover, the sequences {‖Bk‖} and {‖B−1
k ‖} are bounded.

Proof. By using Theorems 5.5 and 5.8, (5.29), and Lemma 5.6 withH∗ = ∇GM (x̄)
we obtain the results.

Recall that a Lipschitz continuous functionH : <n → <n is said to be directionally
differentiable of degree 2 at x if

H(x+ d)−H(x)−H ′(x; d) = O(‖d‖2),

where H ′(x; d) is the directional derivative of H at x in the direction d [22]. If
{‖Bk‖} and {‖B−1

k ‖} are bounded, then (5.29) is satisfied if GM is differentiable and
directionally differentiable of degree 2 at x̄. In fact, in this case, from Proposition 2.2
in [24], there exists a constant L1 such that

‖∆ȳk −∇GM (x̄)∆xk‖ ≤ L1 max{‖xk+1 − x̄‖2, ‖xk − x̄‖2}.(5.31)

On the other hand, from (5.24), there exists a constant L2 such that

max{‖xk+1 − x̄‖, ‖xk − x̄‖} ≤ L2‖∆xk‖,

which, together with (5.31), implies that (5.29) holds with L := L1L2.
If we do not wish to assume that {‖Bk‖} and {‖B−1

k ‖} are bounded, we may use
Corollary 5.9 to obtain such boundedness by assuming that G′M (x; ·) is radially Lips-
chitz continuous at x̄; i.e., the directional derivative of GM exists on a neighborhood
of x̄ and there exists a constant L > 0 such that

sup
‖d‖=1

‖G′M (x; d)−G′M (x̄; d)‖ ≤ L‖x− x̄‖

for all x in that neighborhood of x̄. From Lemma 2.2 in Pang [20], this strong
condition implies that (5.29) is satisfied. Also, from results in [20] and [24], this
condition implies that GM is strongly differentiable and directionally differentiable of
degree 2 at x̄.

LEMMA 5.10. Suppose that all the assumptions in Corollary 5.9 hold. Then

‖xk + sk − x̄‖ = o(‖xk − x̄‖).(5.32)

Proof. Since ∆xk is a positive multiple of sk = −B−1
k G̃M (xk), (5.30) implies that

lim
k→∞

‖(Bk −∇GM (x̄))sk‖
‖sk‖ = 0

and

−G̃M (xk)−∇GM (x̄)sk = o(‖sk‖).

So,

∇GM (x̄)sk = −G̃M (xk) + o(‖sk‖)

= −GM (xk) + o(‖GM (xk)‖) + o(‖sk‖)

= O(‖xk − x̄‖) + o(‖sk‖),
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QUASI-NEWTON BUNDLE-TYPE METHODS 601

which together with the invertibility of ∇GM (x̄) implies that

‖sk‖ = O(‖xk − x̄‖).(5.33)

On the other hand,

(Bk −∇GM (x̄))sk = −G̃M (xk)−∇GM (x̄)sk

= −GM (xk) + o(‖GM (xk)‖)−∇GM (x̄)sk

= −∇GM (x̄)(xk − x̄)−∇GM (x̄)sk + o(‖xk − x̄‖)

= −∇GM (x̄)(xk + sk − x̄) + o(‖xk − x̄‖).(5.34)

From (5.34) and (5.33),

‖∇GM (x̄)(xk + sk − x̄)‖
‖xk − x̄‖ = o(1) +

‖(Bk −∇GM (x̄))sk‖
‖sk‖

‖sk‖
‖xk − x̄‖

= o(1),

which together with the invertibility of ∇GM (x̄) implies (5.32).
LEMMA 5.11. Suppose that all the assumptions in Corollary 5.9 hold. Then

FM (xk + sk) ≤ FM (xk) + σ(sk)T G̃M (xk)

for all sufficiently large k.
Proof. From the differentiability of GM and the fact that GM (x̄) = 0, we have

FM (x) = FM (x̄) +
1
2

(x− x̄)T∇GM (x̄)(x− x̄) + o(‖x− x̄‖2).

From Lemma 5.10, ‖xk + sk − x̄‖ = o(‖xk − x̄‖), so

‖xk − x̄‖ = ‖sk‖+ o(‖sk‖).

Therefore, from Lemma 5.10 and the boundedness of {Bk},

FM (xk + sk)− FM (xk)− σ(sk)T G̃M (xk)

= −1
2

(xk − x̄)T∇GM (x̄)(xk − x̄) + o(‖xk − x̄‖2)− σ(sk)T G̃M (xk)

= −1
2

(sk)T∇GM (x̄)sk + o(‖sk‖2) + σ(sk)TBksk

= −σ(sk)T (∇GM (x̄)−Bk)sk +
(
σ − 1

2

)
(sk)T∇GM (x̄)sk + o(‖sk‖2)

=
(
σ − 1

2

)
(sk)T∇GM (x̄)sk + o(‖sk‖2),

which, together with the positive definiteness of ∇GM (x̄) and the algorithm assump-
tion that σ < 1/2, implies that for all sufficiently large k,

FM (xk + sk)− FM (xk)− σ(sk)T G̃M (xk) < 0.

This completes the proof of this lemma.
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602 R. MIFFLIN, D. SUN, AND L. QI

Now we have all the necessary material to give the superlinear convergence result.
THEOREM 5.12. Suppose that FM is strongly convex on D, GM is Fréchet differen-

tiable at x̄, and there exists a constant L > 0 such that (5.29) holds. Then the sequence
{xk} generated by the BFGS bundle-type method converges to x̄ Q-superlinearly.

Proof. From Lemmas 5.11 and 2.1 and line search criterion (3.2), for all sufficiently
large k, we have

xk+1 = xk + sk.

Then the Q-superlinear convergence of {xk} follows from Lemma 5.10.

6. Conclusions. This paper presents a globally and superlinearly convergent
BFGS bundle-type method for the case where the Moreau–Yosida regularization func-
tion FM and its gradient GM are computed only approximately. It does not require
the original objective to be differentiable at the solution. To accomplish this we em-
ploy a bundle method to implement εk = F̂M (xk)−F̌M (xk) = o(‖GM (xk)‖2), which is
an essential condition for superlinear convergence of an approximate Newton method
applied to this type of problem [12]. Because of this requirement the subproblems
may increase in difficulty as k increases. To try to alleviate this potential difficulty it
may be beneficial to consider space decomposition as in [18] and to vary M in such a
way that the subproblems are solved mainly in the subspace where the cutting-plane
aspect of bundling is efficient. Also, if the variation in M and space decomposition
are done properly, it may be possible to weaken the rate of convergence assumption
to assuming that some regularization of f is strongly convex on a proper subset of <n
when f is not differentiable at the solution.

In [7], Chen and Fukushima provide a globally and linearly convergent proximal
quasi-Newton method and discuss local superlinear convergence conditions. Here we
focus our attention on giving superlinear convergence conditions for a BFGS bundle-
type method. It may be possible to generalize our results to an important subclass of
the Broyden class of quasi-Newton methods by using the results in [4, 2] corresponding
to some positive and negative values of the class parameter.
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