An introduction to a class of matrix cone
programming

Chao Ding, Defeng Sun & Kim-Chuan
Toh

Mathematical Programming
A Publication of the Mathematical
Optimization Society

®
55N 0025 5610 Mathematical
Volume 144 o
Combined 12 Programming SERIES A
Math. Program. (2014) 144:141-179 A Publication of the Mathematical Optimization Society

DOI 10.1007/5s10107-012-0619-7

@ Springer



Your article is protected by copyright and

all rights are held exclusively by Springer-
Verlag Berlin Heidelberg and Mathematical
Optimization Society. This e-offprint is for
personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer



Math. Program., Ser. A (2014) 144:141-179
DOI 10.1007/s10107-012-0619-7

FULL LENGTH PAPER

An introduction to a class of matrix cone programming

Chao Ding - Defeng Sun - Kim-Chuan Toh

Received: 13 October 2010 / Accepted: 25 November 2012 / Published online: 30 December 2012
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2012

Abstract In this paper, we define a class of linear conic programming (which we call
matrix cone programming or MCP) involving the epigraphs of five commonly used
matrix norms and the well studied symmetric cone. MCP has recently been found to
have many important applications, for example, in nuclear norm relaxations of affine
rank minimization problems. In order to make the defined MCP tractable and meaning-
ful, we must first understand the structure of these epigraphs. So far, only the epigraph
of the Frobenius matrix norm, which can be regarded as a second order cone, has
been well studied. Here, we take an initial step to study several important properties,
including its closed form solution, calm Bouligand-differentiability and strong semi-
smoothness, of the metric projection operator over the epigraph of the /1, [, spectral
or operator, and nuclear matrix norm, respectively. These properties make it possible
to apply augmented Lagrangian methods, which have recently received a great deal of
interests due to their high efficiency in solving large scale semidefinite programming,
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142 C. Ding et al.

to this class of MCP problems. The work done in this paper is far from comprehensive.
Rather it is intended as a starting point to call for more insightful research on MCP so
that it can serve as a basic tool to solve more challenging convex matrix optimization
problems in years to come.

Keywords Matrix cones - Metric projectors - Conic optimization

Mathematics Subject Classification (2000) 65K05 - 90C25 - 90C30

1 Introduction

In this section we shall first define several convex matrix cones and then use these
cones to introduce a class of matrix cone programming problems that have important
applications in many applied areas.

Let R™*" be the linear space of all m x n real matrices equipped with the inner
product (X, Y) := Tr(XTY) for X and Y in R™*", where “Tr” denotes the trace, i.e.,
the sum of the diagonal entries of a squared matrix. Let f = || - || be any norm function
defined on R™*". The epigraph of f, denoted by epi f,

epi f:={(, X) e Rx R™" |t > f(X)}
is a closed convex cone in R x R™*"_ Such a cone will be called a matrix cone for

ease of reference. We use K to represent epi f or the cross product of several such
closed convex cones when we choose f from the following five norms:

@ f(¢) = |l - llr, the Frobenius norm, i.e., for each X € R™ " || X|f =
172
(s o)
(i) f() =1 " lloo, the lo norm, i.e., for each X € R™*", || X|loc = max{|x;;||1 <
i<m,1<j<n}
(iii) fC) =1 -1, thel; norm,ie., foreach X € R™*" | X|;=>", Z?lexiﬂ;
@iv) f(:) = || - |2, the spectral or the operator norm, i.e., for each X € R™*"  f(X)
denotes the largest singular value of X; and
) f() =1 "I, the nuclear norm, i.e., for each X € R™*"  f(X) denotes the sum

of the singular values of X.

That is, there exists an integer ¢ > 1 such that K = epi f1 x epi fo x --- X epi fy,
where for eachi > 1, f; is one of the norm functions chosen from (i)-(v) on a matrix
space R"*"  Denote the Euclidean space X by X' := X} x & x --- x A, where
for each i > 1, the natural inner product of A; := R x R™*" is given by

((t, X), (t,V)x, ==t +(X,Y) V(,X)and (7, Y) € R x R™™>",
Denote the natural inner product of X by (-, -) x. Note that for each i > 1, except for
the case when f;(-) = || - || r, the cone epi f; is not self-dual unless min{m;, n;} = 1.

So, in general the above defined closed convex cone K is not self-dual, i.e., K # * :=
{(WeX|(W,Z)y >0V Z € K}, the dual cone of L. When f(:) = || - ||F, epi f
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An introduction to a class of matrix cone programming 143

actually turns to be the second order cone (SOC) if we treat a matrix X € R”*" as
a vector in R™” by stacking up the columns of X, from the first to the n-th column,
on top of each other. The SOC is a well understood convex cone in the literature and
thus is not the focus of this paper. We include it here for the sake of convenience in
subsequent discussions.

Let H be a finite-dimensional real Euclidean space endowed with an inner product
(-, ) and its induced norm || - ||%. Let @ € H be the cross product of the origin
{0} and a symmetric cone in lower dimensional subspaces of . A cone is said to be
symmetric, if it is self-dual and homogenous. The cone K is homogeneous if for any
u,v € int)C, the topological interior part of C, there exists 7 € Aut(K) such that
Tu = v, where Aut(K) is the automorphism group of /C, i.e., the set of nonsingular
linear maps leaving K invariant. Note that the symmetric cone, which includes the
nonnegative orthant, the SOC, and the cone of symmetric and positive semi-definite
real matrices, has been completely classified [13]. Let A : R? — ) := H x X' be a
linear operator. Define the natural inner product of ) by

((u, w), (v,2)) :=(u,v)y + (w,z)xy V(u,w)and (v,z) € H x X.

Let A* : Y — RP? be the adjoint of A. Let ¢ be a given vector in R” and b an
element in ). The matrix cone programming (MCP) we consider in this paper takes
the following form

min {c"x | Ax e b+ Q x K}. (1
The corresponding Lagrange dual of the MCP can be written as
max {(b, y) | Ay =c, ye Q" xK*}, 2)

where Q* represents the dual cone of Q. In applications, many examples can be cast
in the form of (1) or (2). Below we list some of them.

Matrix norm approximation. Given matrices By, B1, ..., B, € R"*", the matrix
norm approximation problem is to find an affine combination of the matrices which
has the minimal spectral norm, i.e.,

p
min ||Bo+Zkak||z|yeR"]. 3)
k=1

Such problems have been studied in the iterative linear algebra literature, e.g.,
[15,48,49], where the affine combination is a degree-p polynomial function of a
given matrix.

It is easy to show that the problem (3) can be cast as a semidefinite programming
(SDP) problem whose matrix variable has order (m + n) x (m + n) [53]. However,
such an expansion in the order of the matrix variable implies that it can be very costly,
if possible at all, to solve (3) as an SDP problem when m or n is large. Thus it is highly
desirable for us to design algorithms that can solve (3) in the original matrix space
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144 C. Ding et al.

R™*" in particular for the case when m <« n (assume m < n). We believe that the
contributions made in this paper would constitute a key step towards achieving that
goal. More specifically, we strongly advocate approaches based on simply writing the
problem (3) in the form of (1):

P
min[t = ||Bo+Zkak||2}.
k=1
We note that if for some reasons, a sparse affine combination is desired, one can

add a penalty term A|| y||; with some A > O to the objective function in (3) meanwhile
touse || - ||% to replace || - ||2 to get

p
minl||Bo+Zkak||%+x||y||1 |yeIR<"]. )
k=1

Correspondingly, we can reformulate (4) in terms of the following two MCP forms:

min s + An
st (s+1)/2>/((s —1)/2)2 + 12,
p
t > 11Bo+ > _yiBilla,
k=1
n>lylh

and
min ¢t + An

P
st (t+1)/2= Il = 1/20n Bo+ > wBilla,
k=1
n= Iyl

where I, is the identity matrix of order m by m.

Matrix completion. Given a matrix M € R”*" with entries in the index set £2 given,
the matrix completion problem seeks to find a low-rank matrix X such that X;; ~ M;;
for all (i, j) € §2. The problem of efficient recovery of a given low-rank matrix has
been intensively studied recently. In [2,3,16,23,36,37], etc, the authors established
the remarkable fact that under suitable incoherence assumptions, an m X n matrix
of rank r can be recovered with high probability from a random uniform sample of
O ((m+n)rpolylog(m, n)) entries by solving the following nuclear norm minimization
problem:

min {|| X |« | X;j = M;; V (i, j) € 2}.

The theoretical breakthrough achieved by Candes et al. has led to the rapid expan-
sion of the nuclear norm minimization approach to model application problems for
which the theoretical assumptions may not hold, for example, for problems with noisy
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An introduction to a class of matrix cone programming 145

data or that the observed samples may not be completely random. Nevertheless, for
those application problems, the following model may be considered to accommodate
problems with noisy data:

min {|| P (X) — Po(M)||3 + AIX | | X € R™*"}, ®)

where Pg (X) denotes the vector obtained by extracting the elements of X correspond-
ing to the index set £2 in lexicographical order, and A is a positive parameter. In the
above model, the error term is measured in Frobenius norm. One can of course uses the
[1-norm or the spectral norm if those norms are more appropriate for the applications
under consideration. As for the case of the matrix norm approximation, one can easily
write (5) in the form of MCP.

Robust matrix completion/Robust PCA. Suppose that M € R™*" is a partially
given matrix for which the entries in the index set 2 are observed, but an unknown
sparse subset of the observed entries may be grossly corrupted. The problem here
seeks to find a low-rank matrix X and a sparse matrix Y such that M;; ~ X;; +Y;; for
all (i, j) € §2, where the sparse matrix Y attempts to identify the grossly corrupted
entries in M, and X attempts to complete the “cleaned” copy of M. This problem has
been considered in [4], and it is motivated by earlier results established in [5,55]. In
[4] the following convex optimization problem is solved to recover M:

min {[|X [l + A1V 1 | Pe(X) + Po(Y) = Po(M)}, 6)

where A is a positive parameter. In robust subspace segmentation [28], a problem
similar to (6) is considered, but the linear constraints are replaced by M = MX + Y,
and ||Y||; is replaced by >7_; Il y;ll2, where y; denotes the j-th column of Y.

In the event that the “cleaned” copy of M itself in (6) is also contaminated with
random noise, the following problem could be considered to recover M:

min {[| Pe(X) + Po(Y) — Po(M)|I7 + o (IX [« + A Y1) | X, ¥ € R™"}, ()

where p is a positive parameter. Again, the Frobenius norm that is used in the first
term can be replaced by other norms such as the /;-norm or the spectral norm if they
are more appropriate. In any case, both (6) and (7) can be written in the form of MCP.

Structured low rank matrix approximation. In many applications, one is often faced
with the problem of finding a low-rank matrix X € R”*" which approximates a given
target matrix M but at the same time it is required to have certain structures (such
as being a Hankel matrix) so as to conform to the physical design of the application
problem [9]. Suppose that the required structure is encoded in the constraints A(X) €
b+ Q. Then a simple generic formulation of such an approximation problem can take
the following form:

min {|X — M||r | AX) € b+ Q, rank(X) < r}. (8)

Obviously itis generally NP hard to find the global optimal solution for the above prob-
lem. However, given a good starting point, it is quite possible that a local optimization
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method such as variants of the alternating minimization method may be able to find
a local minimizer that is close to being globally optimal. One possible strategy to
generate a good starting point for a local optimization method to solve (8) would be
to solve the following penalized version of (8):

min{m,n}

min{ X =Mr+p D, o(X)|AX)eb+Qt, ©)
k=r+1

where oy (X) is the k-th largest singular value of X and p > 0 is a penalty parameter.
The above problem is not convex but we can attempt to solve it via a sequence of
convex relaxation problems as proposed in [14] as follows. Starting with X = 0 or
any feasible matrix X 0 such that A(X 0) € b + Q. At the k-th iteration, solve

min {A1X — X" |17 + 1X = MllF + p(IX |l — (He, X)) | AX) € b+ Q} (10)

to get X¥*1, where A is a positive parameter and Hj, is a sub-gradient of the convex
function > ;_, ox(-) at the point X*. Once again, one may easily write (10) in the
form of MCP.

From the examples given in this section, it becomes quite obvious that there is a great
demand for efficient and robust algorithms for solving matrix optimization problem
of the form (1) or (2), especially for problems that are large scale. The question
that one must answer first is if it is possible to design such algorithms at all. One
obvious, maybe the biggest, discouraging fact is that for large scale MCP problems,
polynomial time interior point methods (IPMs) are powerless due to the fact that the
computational cost of each iteration of an [IPM becomes prohibitively expensive. This
is particularly discouraging given the fact that SDP would not have become so widely
investigated and applied in optimization without the invention of polynomial time
IPMs. So the answer to the above question appears to be negative. However, during
the last few years, we have seen lots of interests in using augmented Lagrangian
methods to solve large scale SDP problems. For examples, see [30,34,54,57,58].
Depending on how the inner subproblems are solved, these methods can be classified
into two categories: first order alternating direction based methods [30,34,54] and
second order semismooth Newton based methods [57,58]. The efficiency of all these
methods depends on the fact that the metric projector over the cone of symmetric and
positive semi-definite matrices (in short, SDP cone) admits a closed form solution
[20,41,51]. Furthermore, the semismooth Newton based method [57,58] also exploits
a crucial property — the strong semismoothness of this metric projector established
in [45]. Keeping the progress for solving SDP in mind, we are tempted to apply
the augmented Lagrangian methods to solve MCP (1) and (2). Actually, when K is
vacuous, this has been done in the thesis [57] as the metric projector over the symmetric
cone has the same desirable properties as the metric projector over the SDP cone [47].
In this paper we shall take an initial step to study the metric projector over epi f,
denoted by ITep; £, with f = || - [loo, |- Il1, II- l2, and || - ||, respectively. In particular,
we shall show that
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An introduction to a class of matrix cone programming 147

— forany (¢, X) € R x R™*", Il ¢(t, X) admits a simple closed form solution;

— IMepi ¢ (-, -) is calmly B(ouligand)-differentiable at (f, X) € R x R™*" and the
directional derivative of ITep; 7 (-, -) at (¢, X) along any direction in R x R”*" has
an explicit formula; and

— e £ (-, -) is strongly semismooth at any point in R x R,

The above result, together with the fact that the metric projector over the SOC has
already been shown to have the above three properties [8], implies that the metric
projector over /C also has the above properties. Thus, these properties, together with
the analogous properties of the metric projector over Q, make it possible to apply the
aforementioned augmented Lagrangian methods to solve MCP (1) and (2).

The remaining parts of this paper are organized as follows. In Sect. 2, we give some
preliminary results, in particular on matrix functions. Section 3 is devoted to studying
the projectors over the epigraphs of the /1 and /o, norms. This also serves as a basis for
conducting our study on the projectors over the epigraphs of the spectral and nuclear
norms in Sect. 4. We make our conclusions in the final section.

Below are some common notations to be used:

— Forany Z € R"*", we denote by Z;; the (i, j)-th entry of Z.

— Forany Z € R"™*", we use z to represent the jthcolumnof Z, j =1,...,n.Let
J € {1,...,n}beanindex set. We use Z 7 to denote the sub-matrix of Z obtained
by removing all the columns of Z notin 7. So for each j, we have Z; = z;.

—LetZ C{1,...,m}and J C {1,...,n} be two index sets. For any Z € R"™*",
we use Z7 7 to denote the |Z| x | J| sub-matrix of Z obtained by removing all the
rows of Z not in 7 and all the columns of Z not in 7.

— We use “o” to denote the Hardamard product between matrices, i.e., for any
two matrices X and Y in R™*" the (i, j)-thentry of Z := X oY € R™*" is
Z,’j = Xl‘j Y,'j.

2 Preliminaries
Let Z be a finite dimensional real Euclidean space equipped with an inner product
(-, -) and its induced norm || - ||. Let C be a nonempty closed convex set in Z. For

any z € Z, let I1¢(z) denote the metric projection of z onto C, which is the unique
optimal solution to following convex optimization problem:

|1 2
min 2y =z [y eCp.
It is well known [56] that I1c(-) is globally Lipschitz continuous with modulus 1.

When C is a closed convex cone, by Moreau’s cone decomposition proposition [31],
we know that any z € Z can be uniquely decomposed into

7z =Ic+(z) — Mc(—2). (11)

Let O be an open set in Z and Z’ be another finite dimensional real Euclidean
space. Suppose that @ : O C Z — Z’ is a locally Lipschitz continuous function on
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148 C. Ding et al.

the open set O. Then, according to Rademacher’s theorem, @ is almost everywhere
differentiable (in the sense of Fréchet) in O. Let Dy be the set of points in O where @ is
differentiable. Let @’ (x) be the derivative of @ at x € Dg. Then the B-subdifferential
of @ at x € O is denoted by [35]:

9p®(x) ;:[ lim d)’(xk)]

Dpoxk—x
and Clarke’s generalized Jacobian of @ at x € O [10] takes the form:
0P (x) = conv{&BcD(x)},

where “conv” stands for the convex hull in the usual sense of convex analysis [38].

Definition 1 Let @ : O € Z — Z’ be alocally Lipschitz continuous function on the
open set O. The function @ is said to be G-semismooth at a point x € O if for any
y—=>xandV € 0@ (y),

C(y) = @) =V(y—x)=o(ly —x|D.

The function @ is said to be strongly G-semismooth at x if for any y — x and
Vedd(y),

D) —d(x)—V(y—x)=0(ly — x|*.

Furthermore, the function @ is said to be (strongly) semismooth at x € O if (i) the
directional derivative of @ at x along any directiond € Z, denoted by &' (x; d), exists;
and (i) @ is (strongly) G-semismooth.

The following result taken from [45, Theorem 3.7] provides a convenient tool for
proving the strong G-semismoothness of Lipschitz functions.

Lemmal Let @ : O C Z — Z' be a locally Lipschitz continuous function on
the open set O. Then @ is strongly G-semismooth at x € O if and only if for any
Dy >y — x,

B (y) — D(x) — ' (M(y —x) = O(ly — x| 1.

Next, we collect some useful preliminary results on Lowner’s eigenvalue and sin-
gular value operators for studying the projectors over the epigraphs of the spectral and
nuclear norms.

Let 8" be the space of all real n x n symmetric matrices and O” be the setof alln x n
orthogonal metrices. Let X € S" be given. We use 11(X) > A (X) > -+ > A, (X)
to denote the real eigenvalues of X (counting multiplicity) being arranged in non-
increasing order. Denote A(X) 1= (A1(X), 22(X), ..., 4 (X)T € R” and A(X) :=
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An introduction to a class of matrix cone programming 149

diag(A(X)), where for any x € R", dia_g(x) denotes the diagonal matrix whose i-th
diagonal entry is x;, i = 1,...,n. Let P € O" be such that

X =PAX)P . (12)

We denote the set of such matrices P in the eigenvalue decomposition (12) by O" (X).
Let ity > 1, > --- > 1, be the distinct eigenvalues of X. Define

ap =1 | MX)=m, 1<i<n), k=1,...,r (13)

For each i € {1,...,n}, we define /;(X) to be the number of eigenvalues that are
equal to A; (X) but are ranked before i (including i) and s;(X) to be the number of
eigenvalues that are equal to A;(X) but are ranked after i (excluding i), respectively,
i.e., we define /; (X) and s; (X) such that

MX) == Ao X)) > Aixo+1(X) = = 4(X) = - = A 00 (X))
> Aigs; 0+1(X) = -+ = A (X). (14)
In later discussions, when the dependence of /; and s;, i = 1, ..., n, on X can be seen

clearly from the context, we often drop X from these notations.

Next, we list some useful results about the symmetric matrices which are needed
in subsequent discussions. For any subset A of a finite dimensional Euclidean space
Z, let

dist(z, A) :=inf{l|lz —y| |y € A}, z€ Z.

The following result, which was stated in [46], was essentially proved in the derivation
of Lemma 4.12 in [45].

Proposition 1 Forany H € 8", let P € O" be an orthogonal matrix such that
PT(AX) + H)P = diag(A(A(X) + H)).

Then, for any H — 0, we have

Pakm:O(”H”)’ kvl=1’~'-7r5 k#ls (15)
Pya PLo = lay+ OUHID, k=1,....r (16)
dist(Pya, Oy =0 H|?), k=1,...,r. (17)

The following proposition about the directional differentiability of the eigenvalue
function A(-) is well known. For example, see [25, Theorem 7] or [50, Proposition 1.4].

Proposition 2 Let X € S" have the eigenvalue decomposition (12). Then, for any
S" > H — 0, we have

=T . — .
AMi(X+H) = Ai(X) = A; (P, HPg) = O(H|?, icar, k=1,....r, (18)
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150 C. Ding et al.

where for each i € {1,...,n}, l; is defined in (14). Hence, for any given direction
H € §", the eigenvalue function \i(-) is directionally differentiable at X with

WX H) =2, (Py HPy), i €ap, k=1,....r.

Suppose that X € S” has the eigenvalue decomposition (12). Let f : R — R be a
scalar function. The corresponding Lowner’s eigenvalue operator is defined by [29]

F(X) := P diag(f (L1 (X)), fFOa(X)), ..., fFOR(XN P

n
= > fX)pip; - (19)

i=1
Let D := diag(d), where d € R" is a given vector. Assume that the scalar func-
tion f(-) is differentiable at each d; with the derivatives f'(d;), i = 1,...,n. Let
FU(D) e 8" be the first divided difference matrix whose (i, j)-th entry is given by

0] Mifdi#d.’ o
(f (D))ijz d,'—dj l,J=1,...,n.
1 @) ifd; =dj,

The following result on the differentiability of Lowner’s eigenvalue operator F defined
in (19) is well known and can be largely derived from [11] or [24]. Under the assump-
tion that f is continuous differentiable at every eigenvalue of X, the derivative formula,
together with the differentiability of F can be found from Theorem V.3.3 and pp. 150
of [1]. These results are further refined by [6,7,26]. For the related directional differ-
entiability of F, one may refer to [42] for a nice derivation.

Proposition 3 Let X € S" be given and have the eigenvalue decomposition (12).
Then, the Lowner eigenvalue operator F (-) is (continuously) differentiable at X if and
only for each i € {1,...,n}, f(-) is (continuously) differentiable at A;(X). In this
case, the Fréchet derivative of F (-) at X is given by

F(X)H=P [f[”(A(X)) o (FTHF)] P’ VHes" (20)

The following second order differentiability of the Lowner eigenvalue operator F
can be derived as in [1, Exercise V.3.9].

Proposition 4 Let X € S" have the eigenvalue decomposition (12). If the scalar
function f(-) is twice continuously differentiable at each A;(X), i = 1,...,n, then
the Lowner eigenvalue operator F (-) is twice continuously differentiable at X.

From now on, without loss of generality, we assume that m < n. Let X € R™*"
be given. We use o1(X) > 02(X) > ... > 0,(X) to denote the singular values of
X (counting multiplicity) being arranged in non-increasing order. Denote o (X) :=
(01(X), 02(X), ..., 0n(X)T € R™ and X(X) := diag(c(X)). Let X € R™*" admit
the following singular value decomposition (SVD):

X=TU[ZX) 01V =U[2X) 01[V, V2] =T2x)V], Q1)
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An introduction to a class of matrix cone programming 151

where U € O™ and V = [V V3] € O" with V| € R™™ and V, € R"*®~™)_ The
set of such matrices (U, V) in the SVD (21) is denoted by O™"(X), i.e.,

O™ X)) :={(U,V) e O" x O" | X =U[Z(X) 0]VT}.
Define the three index sets a, b and ¢ by

a:={iloj(X)>0,1<i<m}, b:={i]0;(X)=0, 1<i<m}and
c:={m+1,...,n}L (22)

Let ity > 1w, > --- > 1, be the nonzero distinct singular values of X. Define

ar ={iloi(X)=my, 1 <i<m}, k=1,...,r. (23)
Foreachi € {1, ..., m}, we also define /; (X) to be the number of singular values that
are equal to o; (X) but are ranked before i (including i) and s; (X) to be the number of

singular values that are equal to o; (X) but are ranked after i (excluding i), respectively,
i.e., we define /; (X) and s; (X) such that

o1(X) =20 00X >0 x)+1(X) =---=0i(X) =+ = 0i5;,x)(X)
> Ui+si(X)+](X) > > op(X). 24)
In later discussions, when the dependence of /; and s;, i = 1,...,m, on X can be

seen clearly from the context, we often drop X from these notations.
The following property about the SVD can be checked readily, e.g., see the proof
of Theorem 3.7 in Lewis and Sendov [27].

Proposition 5 Let ¥ := X (X). Then, the two orthogonal matrices P € O™ and
W e O" satisfy P[X 0] = [X 0] W if and only if there exist Q € Ol Q' e O
and Q" € 0" such that

100 100
P_|:0Q’:| and W_[OQ”]’

where Q = diag(Q1, Q», ..., Q) is a block diagonal orthogonal matrix with the
k-th diagonal block given by Qy € O\%! k=1,... r.
Let B(-) : R™X" — S™*" be the linear operator defined by

0z

B(Z) := |:ZT 0} . ZeR"™M (25)

It is well-known [21, Theorem 7.3.7] that
XX) 0 0

BX)=P 0 0 0 P, (26)
0 0 —X(X)
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where the orthogonal matrix P € O™ is given by

1 [ga ﬁb 0 Ua Ubi| @7

P Yp O Ve Up
V2 VeV V2Vy =V, =V,

For notational convenience, we define two more linear operators S : R?*? — S? and
T : RPXP — RP*P by

S(Z) = %(z +2z7) and T(Z):= %(z — 7Ty VZ e RPXP, (28)

Then, by using (26), one can derive the following proposition directly from (18). For
more details, see [27, Section 5.1].

Proposition 6 Forany R"*" > H — 0, letY := X + H. We have
0i(Y) —0;(X) — o/ (X; H) = O(|H|"), i=1.....m, (29)

where

S(UaTkHVak)) ifica, k=1,....n

where for eachi € {1, ..., m}, l; is defined in (24).

The following proposition on the singular value decomposition of matrices plays
an important role of our subsequent study.

Proposition 7 For any R"*" 5 H — 0, let Y := [XY(X) O]+ H. Let U € O™ and
V e O" be two orthogonal matrices satisfying [¥(X) 0]+ H = U [X(Y) 0] VT,
Then, there exist Q € Ol Q" € Ol and Q" € O~ such that

0 0

U=[Q 0}+0wHMam V=[o o

0 0 } + O(lHD, (3D

where Q = diag(Q1, Q2, ..., Q) is a block diagonal orthogonal matrix with the
k-th diagonal block given by Q. € OVl k=1, ..., r. Furthermore, we have

S(Haa) = Ok (EWVaa, — XXaa) Of + OUHI?), k=1,....r (32)

and
[(Hpp Hpel = Q' [Z(V o — Z(X)pp 010" + O(IH|?). (33)
Proof We can derive (31) directly by employing the corresponding results in Propo-

sition 1 on symmetric matrices via (26) and Proposition 5. Furthermore, (32) and (33)
are the immediate consequences of Proposition 6 and (31). O
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Let g : Ry — R be a scalar function. The corresponding Lowner’s singular value
operator is defined by

G(X):=Tlg(Z(X) 0V = glor(X)i;d]. (34)

i=1

where g(X' (X)) := diag(g(o1(X)), ..., g(om(X))). For subsequent discussions, we
need to extend the values of g to R as follows

g() if t >0,

—g(—1) ift<O0. (35

gt) = [

It can be checked easily that g(0) = 0 is the sufficient and necessary condition for the
well definedness of G. So we always assume that g(0) = 0.

Next, consider the differentiability of G(-). Let F(-) : S™" — S 1" be Lowner’s
eigenvalue operator with respect to the scalar function g. Define ¥ : R"™X" — S+
by

Tezx)y o 0 .,
U(X):=FBX) =P 0 0 0 P .
0 0 g(=2(X))
Thus, from (35) and (27), we have
_ 0 GX)| _
W<X>—[G(X)T 0 }—B(G(X)). (36)

Therefore, if F (-) is (continuously) differentiable at B(X), G () is also (continuously)
differentiable at X with

V' (X)H = F'(B(X))B(H) =B(G'(X)H) YH e R"™", 37)

Let 7, := 0. Then, for each k € {I,...,r}, there exists §y > 0 such that
[ =l > 8 Vl=1,...,r+1andl # k.Foreachk € {1, ..., r},letpr(-) : R — R
be a continuous scalar function such that pi(t) = 1if t € [ — %k My + %"] and
pr@) = 01if |t — | > 37" Then, we know that p(0) = O for k = 1,...,r.
Therefore, the corresponding Lowner’s singular value operator Py (-) with respect to
pi(+) is well-defined, i.e., for any Y € R"*",

Pi(Y) = U [pe(Z(Y)) 01V7, (38)

where pi (X (Y)) = diag(pix(o1(Y)), ..., px(0,(Y))) and U € O™ and V € O" are
suchthat Y = U [X(Y) 0] VT. By the definition of (38), we know that there exists
an open neighborhood N of X such that for each k € {1, ..., r},
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Pe(¥) =D upp] VY eN. (39)

i€ay

In order to study the metric projections over K and *, we need to consider the
differential properties of Px(-), k = 1, ..., r. Since each p(-) is continuously differ-
entiable near 0 and £0,(X), i = 1, ..., m, we know from Proposition 3 that Py (-) is
also continuously differentiable in A/ (shrinking " if necessary). Let Y € N have the
following SVD: Y = U [X(Y) 0] VT with (U, V) € O™"(Y). By further shrinking
N if necessary, we may assume that for any k,/ € {1,...,r}, 0;(Y) > 0, 0;(Y) #
oj(Y) forany i € ax, j € a; (k # I). Define I(Y) and E¢(Y) € R™ and
i (Y) € Rm™*0=m) f =1 ... rby

1/(oi(Y) —0o;(Y)) ifiear, jea, k#1,1=1,...,r+1,
Ix(Y))ij =1 —1/(0i(Y)—0;(Y)) ifieaq, jea, k#1,1=1,...,r+1,
0 otherwise,
(40)

1/(i(Y)+0j(Y) ificay, jea, k#£L I=1,...,r+1,

(Ex(Y)ij =1 2/(0:(Y) +0;(Y)) ifi,j€a, 41
0 otherwise
and
1/(o; (Y if i , .
T (Y))j = [O/(" ) e =1 n—m. (42)

Then, we obtain from (20) and (37) that for each k € {1, ..., r} and any H € R™*",
Pr(Y)H = U[I(Y) 0 S(A) + Ex(Y) o T(A)]VIT + U (Y)o B)VZT, (43)

where A := UTHV| € R™", B := UTHV, € R"™ ="y — [V| V] and
the two linear operators S(-) and 7' (-) are defined by (28). Furthermore, for each
k e {1,...,r}, from the definition of pi(-), we know that py(-) is actually twice con-
tinuously differentiable near each A; (B(X)), i = 1, ..., m + n. Then, by Proposition
4, we know that the corresponding Lowner’s operator F (-) with respect to py is twice
continuously differentiable near B(X). On the other hand, foreachk =1, ..., r, from
(36), we know that

|: 0 Pu(2)

P2’ 0 }:F"(B(z))’ Z e R (44)

Then, we have the following proposition.

Proposition 8 Let Pi(-), k =1, ..., r be defined by (38). Then, there exists an open
neighborhood N of X such that for each k € {1, ..., r}, Pi(-) is twice continuously
differentiable in N
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Note that by using the analytic result established in [52] for symmetric functions,
one may show that foreach k € {1, ..., r}, Fi(-) is analytic at B(X). Then from (44),
one may derive the conclusion that foreachk € {1, ..., r}, Px(-)isanalyticat X.Since
in this paper we only need the twice continuous differentiability of P (-), k =1, ..., r
near X, we will not pursue this analytic property here.

3 Projections over the epigraphs of the /, and /; norms

Since the [, and /1 norms are entry-wise matrix norms, the epigraphs of the /o, and /4
matrix norms in R”*" can be treated as the epigraphs of the [, and [ vector norms
in R™", respectively, if we treat a matrix X € R”*" as a vector in R™". So we only
need to study the metric projection operators over the epigraphs of the [, and /1 vector
norms in R™". Without causing any confusion, we will use R”, rather than R™", in
our subsequent analysis.

In this section we will mainly focus on the metric projector over the epigraph of
the /o, norm. The related results of the metric projector over the epigraph of the /;
norm can be obtained by using (11) accordingly as the epigraph of the /o, norm and
the epigraph of the /; norm are dual to each other under the natural inner product of
R x R". The results obtained in this section are not only of their own interest, but also
are crucial for the study of projections over the epigraphs of the spectral and nuclear
matrix norms in the next section.

For any x € R”, let x* be the vector of components of x being arranged in the non-

increasing order xli > ... > x,f. Let sgn(x) be the sign vector of x, i.e., (sgn); (x) = 1
if x; > 0 and —1 otherwise. For a permutation 7w of {1, . .., n}, we use x; to denote the

vector in R” whose i-th component is given by x(;), where 7 (i) is the i -th component
ofm,i=1,...,n.
For any positive constant ¢ > 0, denote the closed polyhedral convex cone D, by

Df={(t,x) eRxR"|e"t> x;, i=1,...,n). (45)

Let I1p: (-) be the metric projector over Dy, under natural inner product in R x R".
That is, for any (z,x) € R x R", ITpe (t, x) is the unique optimal solution to the
following convex optimization problem

1
min [5((7 — 0%+ |y —xIIZ) le e >y, i= 1,...,n]. (46)

Then we have the following useful result for ITpe (-, -).

Proposition 9 Assume that ¢ > 0 and (t, x) € R x R" are given. Let w be a permu-

tation of {1, ..., n} such that x; = Xt e, )cl.L =Xz, 1 =1,...,n and 71 the
inverse of w. For convenience, write x& = +00 and xrf L] = —oo. Then, there exists
ainteger k € {0, 1, ..., n} such that

@ Springer



156 C. Ding et al.

k
X, < ijﬂt J(k+ &%) < x}. (47)
j=1

Let i be the smallest integer k € {0, 1, ..., n} such that (47) holds. Define y € R"
and T € R by

yl: i:1,...,n

; otherwise,

i {(z’jzlxj+et)/(;z+ez) ifl1<i<k,
2

and T 1= 8(2§=1 x} + 8t)/(/2 + &2), respectively. Then IIpe (1, x) = (T, Yp-1).

Proof The existence of an integer k € {0, 1, ..., n} can be proved in a similar way
to that of Lemma 2 below. The second part of the proposition can be obtained in a
similar but simpler way to that of Part (i) in Proposition 10. We omit the details here.

]

For any positive constant ¢ > 0, denote the closed polyhedral convex cone C;, by
Co={(t,x) eRxR"[e71 = |x]loo). (48)

Let IT¢: (-, -) be the metric projector over Cy, under the natural inner productin R x R".
That is, for any (f,x) € R x R", Hcg (z, x) is the unique optimal solution to the
following convex optimization problem

min l((r—z)2+|| —x|® et > 49
> y=x[D et =yllooy- (49)

In the following discussions, we frequently drop n from C when its size can be found
from the context. Also, we will simply use C to represent C'.

For any vector z € R", we use |z| to denote the vector in R whose i-th component
is|zil, i=1,...,n.Lete > 0and (¢, x) € R x R" be given. Let  be a permutation
of {1,...,n) such that |x|¥ = |x|,, i.e., |x|} = |xlzG), i = 1,...,n and 7! the
inverse of 7. Define s¢ := 0 and s := Zi'(:l |x|l.¢, k=1,...,n. Denote |x|é = 400

and |)c|¢

ni1 = —00. Then, we have the following simple observation.

Lemma 2 There exists an integer k € {0, 1, ..., n} such that
oL k4 g2 v 50
x|y = (ke +en)/(k+e7) < |x[}. (50)

Proof Obviously, if |x|f < ¢~ 14, then (50) holds for k = 0 as |x|é = +o0. For

|x|% > ¢!, we can easily check that (50) holds for some k € {1, ..., n} by using
the induction and the fact that |x|,fJrl > (s +et)/(k+ ¢2) if and only if (sgy1 + 1)/
(k+ 1) +6?) < [xlyy,- o
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Let k be the smallest integer k € {0, 1, ..., n} such that (50) in Lemma 2 holds.
Let

0% (1, x) := (sp + 1)/ (k + 2). (51)

Note that if k < n, then #°(z, x) > 0 and if k = n, then 6°(¢, x) can be a negative
number. It also holds that if 6¢(¢, x) < 0, then k = n. Moreover, if |x|f > g1y,
we know that k > 1 and (sgp + 8t)/(l€ +&%) < |x|]% < ... < |x|f, which implies
(sp+et)/(k +e?) < sp/k,ie.,

kt < esg. (52)
Define three index sets «, 8 and y in {1, ..., n} by

a =i ||x|>0°(tx), B:i=1{i|l|xi|=06°tx)} and
y o= {i | x| <6°(t, x)}. (53)

Define ¥ € R" and 7 € R, respectively by

‘ . .
= [)scgn(x,)max{e (t,x),0} ifiea, i—1.....n
l

otherwise,

and 7 := ¢ max{0°(z, x), 0}. Then it is easy to see that (7, ) € C®.
Proposition 10 Assume that ¢ > 0 and (t, x) € R x R" are given.

(1) The metric projection I (t, x) of (¢, x) onto C¥ can be computed as follows
Mes (1, x) = (1, X). (54)

(1) The continuous mapping I1¢e (-, -) is piecewise linear and for any (n, h) € RxR"
sufficiently close to (0, 0),

et +n,x +h) — e (1, x) = Hz:(n, h), (55)
where C¢ = Toe (t, %) N ((t, x) — (f, X)) is the critical cone of C¢ at (t, x)
and Te:(f, X) is the tangent cone of C¢ at (f,%). Denote § = /€2 + k and
h' .= sgn(x) o h. Let

g |87 e+ Xiehp) it = —e7Hxll,
' 0 otherwise.

The directional derivative of Ilce(-,-) at (t,x) along the direction (n,h) €
R x R" is given by

e (1, x); (n, ) = Mge(n, h) = (7, h), (56)
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where (i, h) € R x R satisfies

hi =sgn(xj)e™'5, ica and h;=h;, i€y (57)
and

I "Ry ifr > —g! ,
%(n g) it >—e"xlly

(8e7'7, (sgn(x) o h)g) = { (58)

HC\Bﬂ\ (', h%) otherwise.

Here for the case that B = (), we use the convention that Dlsﬂl = R and CIS,BI =
R;.
(iii) The mapping Ice (-, -) is differentiable at (t, x) if and only if t > ¢&||x]||s0, OF

ellxlloe >t > —e Vx|l and x|} < (sx +et)/(k +€2), ort < —e Vx|

k+1

Proof (i) It is easy to see that problem (49) can be written equivalently as
.1 _
mm{z((r 02+ lly = x| ?) [e7le = ||y||oo} (59)

in the sense that (t*, y*) € R x R” solves problem (59) (note that y* > 0 in this case)
if and only if (¢*, sgn(x) o y*) solves problem (49). By using Theorems 368 & 369 in
Hardy, Littlewood and Pélya [19], we can equivalently reformulate problem (59) as

1
min{z(a —0% + 1y —x"1}) et > ||y||oo} (60)

in the sense that (1*, y*) € R x R” solves problem (60) if and only if (¢*, y;,l) solves
problem (59). The Karush-Kuhn-Tucker (KKT) conditions for (60) take the form of

O=1—1 —8’1,u,
0y — x|V + pdllylloos (61)
0<(e 't —ylls) L >0,

where u € Ry is the corresponding Lagrange multiplier, and the subgradient 9||y||~
is given by (see, e.g., [38, pp. 215])

conv{=ey, ..., Lte,} if y =0,

8||)’||oo = [COHV{Sgn(yi)ei | i S I(y)} lfy # 07

where for i € {1,...,n}, ¢ is the i-th unit vector in R” and I(y) = {i | |yi] =

Voo i =1,...,n} i
Consider the case that e||x||oc > ¢ > —&~![|x||. Inthis case, k > 1. Define j € R”

and T € R, respectively, by

i=1,...,n and T := &0, x).

_ [98(t,x) ifl <i <k,
Yi =

|x |l.L otherwise,
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Letji:=e(T—1)=¢(e Z§=1 |x|j — kt)/(k + €%). Since

k k k
Z(|x|j¢-—5’j)=2|x|]¢<—lz Z|x|]¢<+8t /(k 4 £2)
J=1 j=1

j=1

7
=eled Ixlf—kt | /k+eD) =L
j=1

we know from (52) that

i
a>0 and D (x[¥ —3;) = ii. (62)
j=1

Define (%, y*, u*) € R x R" x R by

(t, |x|¥,0) if £ > ellx|loo,
v 1) =1 @ 5,4 ifelxlleo >t >—etxll,
0,0, —¢et) ift < —ex].

Then, by using the facts that |x|¥ > ¥ > 0 and (62) holds when &||x||oc > t >
—&Yx|l1, we can readily check that (¢*, y*, u*) € R x R" x R satisfies the KKT
conditions (61). Consequently, (¢*, y*) is the unique optimal solution to problem (60).

Note that @ = {z~'(i) | i = 1,..., k}. Thus, we obtain that (*, sgn(x) o y*_,) =
(t, %).

(ii) By noting that C® = {(t, x) € RxR" | &7t > ||x]loo} = {(t, x) e RxR" |1 >
exj, t > —exi, i = 1,...,n}is a polyhedral set, we immediately know that I1ce (-)

is a piecewise linear function. For a short proof, see [40, Chapter 2] or [44, Chapter
5]. Since C? is a polyhedral set, from the results in [18,33] we know that

e ((2, x); (9, b)) = Hg:(n, h).
Let £(2) := ||zlloo, z € R™. Then, by using Theorem 2.4.9 in [10], we know that
Tee(ef (2),2) = {(¢,d) e R xR" | ¢ = ef(z: d)). (63)
Then, for any d € R",

max{sgn(z;)d;, i € 1(z)} if z#0,

"(z;d) = . 4
Fed [||d||oo if 7 =0. ©4)
We next consider the following five cases:

Case1:t > &||x]||oo. In this case, (7, X) = (¢, x) and C¢ = Tee (f, X) = R x R, Thus,
Hée((t, x); (0, h)) = Mgz (n, h) = (n, h). On the other hand, in this case, we know
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thatk =0anda =¥, B =Pand y = {1, ..., n}. Therefore, § = ¢ and n =n.
Since D“Sﬂ‘ = Rif B = @, we know that (17, 1) = (n, k). This means that (56) holds.

Case 2: t = ¢||x||co. In this case, (7, X) = (¢, x) and Ct = Tce (¢, x). From (63) and
(64) we have

~ o ((¢,d) e Rx R"|e7 ¢ > sgn(xj)d;, i € I(x)} if x #0,

& — Thy —
€ =Tee(t. ) = ce if x = 0.
In this case, k = 0 and 6°(f,x) = |x[lco. We know thate = @, B = I(x) and
y = {1,...,n}\I(x). Therefore, since § = ¢ and n' = n, it can be checked easily
that (77, h) satisfies the conditions (57) and (58).
Case 3: ¢||x||oo >t > —&~||x]. In this case, (7, X) = (T, sgn(x) o y,-1) # (0,0)
and sgn_(i) = sgn(x). Then, from (50) and (54), we know that 10 = (7= Y0) i =
1,...,k} CI(x)and

(6, x) = (7, ¥t
={(¢, d) eRxR"|(t = D) + D (x; — %)d; =0}

iel®

k
= {¢.d) e RxR"| D (5; — IxDe™ O+ > (lxi| — |5 Dsgn(xi)d; = 0)

Jj=1 iell
— (. d) e Rx R[> (1] — [&i)(—e~"¢ + sgn(x)dy) = 0},
iel®

which, together with (63), (64), and the facts that I = ¢||X||o and |x;| > |X;| for each
i € IV, implies that

Ct={(,d) eRxR"|e~'¢ =sgn(x;))d; Vi e I®and e~ '¢
> sgn(x;)d; Vi € 1(X)\I°}.

In this case, we know that 8 = [ (x)\I_ 0. Then, after simple transformations, ITz: (n, h)
can be computed as in Proposition 9, from which we know that (7, h) satisfies 67
and (58).

Case 4: t = —e||x||; and (r,x) # (0,0). In this case, (7,%) = 0 and Ct =
Tes (7, )N (t,x)" =C N (t,x)*. Letsupp(x) :={i |x; #0, i = 1,...,n}. Then,
since (£, x)* = {(¢,d) e R x R" | e~ 1¢||lx|l; = (x, d)}, we have

Ce=C*N(t, 1) ={(¢,d) € R x R" [sgn(x;)d; = '¢ > ||d||oo, i €supp(x)}.

In this case, we know that k = |[supp(x)| and 6°(¢,x) = O. TherEfore, o =
supp(x), 8 = {l,...,n}\supp(x) and y = ¢. Since for ({,d) € C?, we have
d, = s_lg‘ for any i € «, after simple transformations, we know that Iz, h)

can be easily computed as in Part (i) of this proposition and (7, h) also satisfies (57)
and (58).
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Case 5: t < —e&!||x||;. In this case, (7,%) = 0 and C* = Tp:(7, %) N (1, x)+ =
{(0,0)}. Hence, IT.,((t,x); (n,h)) = (0,0). In this case, we know that « =
{1,...,n}, B = @ and y = @. Also, since n’ = 0 and Clsﬁl = R4, we know that
i7 = 0 and & = 0, which means that (56) holds.

(iii) This part follows from the proof of Part (ii) and the fact that I1¢: (-, -) is Lipschitz
continuous. O

4 Projections over the epigraphs of the spectral and nuclear norms

For any given positive number ¢ > 0, define the matrix cone K, , by

KE = {(t, X) € R x R™ | g7V > || X||1). (65)

m,n

For the case that ¢ = 1, we will simply use K, ,, to represent IC,ln’n. That is, Ky, 18
the epigraph of the spectral norm || - ||, on R”*" It is easy to show from the definitions
that the dual cone of /Cy, , is the epigraph of the nuclear norm || - ||« and Ky, , is @
proper hyperbolic cone (see e.g., [17, Definition 2.2]). For simplicity, we omit the
proof. Therefore, we will mainly focus on the metric projector over Iy, ,,. The related
properties of the metric projector over the epigraph of the nuclear norm can be readily
derived by using (11).

Proposition 11 The dual cone of the Ky, ,, is

Kopn =t X) € R R™ [t > || X]|}.

m,n

Moreover, ICy, , is a proper hyperbolic cone.

Let i (-, ) be the metric projector over K, , under the natural inner product
in R x R"™*". That s, forany (¢, X) € R x R™*", ITie (¢, X) is the unique optimal
solution to the following optimization problem

(1 _
mnz«r4f+W—XﬁMe%zHW4. (66)

The following results can be proved easily by employing von Neumann’s trace inequal-
ity

(¥.2) <oM'a(2)
for any two matrices Y and Z in R™*" [32]. For brevity, omit the details here.

Theorem 1 Assume that (t, X) € R x R™*" js given and X has the singular value
decomposition (21). Let C, be the closed convex cone defined in (48). Let (1, y) €
R x R” be given by

(t,y) = Hc (¢, 0 (X)),
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where Ilce (t, 0 (X)) can be computed explicitly as in Part (i) of Proposition 10. Then,
we have

Mi;, (6, X) = (., U [diag(3) 0] V"), (67)

For any positive constant ¢ > 0, another matrix cone which is related to K, , is
the epigraph M?, € R x S" of the convex function A (-), i.e.,

M= {1, X) eRx 8" | et = 10 (X)). (68)

Let ITpq: (-, -) be the metric projector over M; under the natural inner product in
R x 8. That is, for any (¢, X) € R x §”, HM,ﬁ (¢, X) is the unique optimal solution
to the following optimization problem

. l N2 w2 -1
mln[z((r D +HIY - X|Ig) | e rzkl(Y)]. (69)

Similarly, the following results can be proved easily by using Fan’s inequality
(¥.2) <a)'a(2)

for any two symmetric matrices Y and Z in " [12]. Also, for brevity, we omit the
details.

Proposition 12 Assume that (t, X) € R x §" is given and X has the eigenvalue
decomposition (12). Let D% be the closed convex cone defined in (45). Let (f,y) €
R x R” be given by

(t,y) = Hp:(t, (X)),

where I1pe (t, AM(X)) can be computed explicitly as in Proposition 9. Then,

Mpe (1, X) = (7, Pdiag(5)P ). (70)

Next, we will consider the (directional) differentiability of the metric projector over
Kn,nsie., I, (-, ). In the following discussions, we will drop m and n from IC,, ,
when its dependence on m and n can be seen clearly from the context.

Let (r, X) € R x R™*" be given and X have the singular value decomposition
@21),ie, X =U[X(X) 0] VT, where U € O™ and V € O". As mentioned before,
we use [t; > [y > --- > [, to denote all the nonzero distinct singular values of X
and denote i,4+1 = 0. For the sake of convenience, we also let o9(X) = +o00 and
om+1(X) = —oo. Let so = 0 and s; = ZLI 0;(X), k = 1,...,m. Let k be the
smallest integer k € {0, 1, ..., m} such that

or+1(X) < (sx +0)/(k + 1) < op(X). (71)
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Denote 0(¢, (X)) € R by
0(t, 0(X)) := (sp +1)/(k + 1). (72)
Let o, B and y be the three index sets in {1, ..., m} defined by

a:={i]oi(X)>0@ o(X)}, B:=1{i|oi(X)=0( 0(X))}and
y =1 loi(X) <0 0(X))} (73)

Let 8 := /1 + k. Let S(-) and T(-) be defined by (28). Define p : R x R™*" — R
as follows

_ —T  — .
p(n, H) = 8 l(n—"_Tr(S(UaHVa))) ift > _”X”*, (n, H) € R x R™*",
0 otherwise,

(74)

Let (7, Y) € R x R™*" be given. Suppose that U € O™ and V € O" are such that
Y =U[X(Y) 01VT.Foreachk € {1, ...,r}, let Pr(Y) be defined by (38). Define
go(r,0(Y)) € Rand g(7,0(Y)) € R" by

(go(r,0(Y)), g(z,0(Y))) := g, (z,0(Y)). (75)
Let
G(r,Y) := Uldiag(g(r,o(Y))) ovr. (76)

Then, from Theorem 1, we have

(go(t,0(Y)),G(7,Y)) = Ik(z,Y). )
Note that from Proposition 10, we know for each k € {1,...,r}, gi(¢,0(X)) =
gj(t,o(X)) for any i, j € ai, where the index sets ay, k = 1, ..., r are defined by

(23) with respect to the matrix X € R”*". Therefore, we may define
Vi = gi(t,0(X)) foran arbitraryi € ar, k=1,...,r.
Moreover, define

Gs(Y) := ZikPk(Y) and Gg(t,Y) =G(1,Y) — Gs(Y). (78)
k=1

Define 2; € R™*™ 2, € R™*™ and 23 € Rm*n—m) (depending on X) as follows
gi(t,0(X)) —gjt, 0(X))

(£21)ij = 0i(X) —o0j(X)
0 otherwise,

iToi (X0 £ X) e m)

(79)
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gi(t,0(X)) +g;(t,0(X))

if 0;(X) +0;(X) #0,

(£22)ij = 0;(X) +0;(X) i,jefl,...,m}
0 otherwise,
(80)
and
git,o(X)) ..
(23)i) = 01 (X) o) #£0. et m) jell....n—m).
0 lfaz(X) =07
(81)

Hence, from Part (i) of Proposition 10, we know that the matrices £21, 2> and £23
have the following forms

0 0 (‘Ql)ay
21 = 0 0 Egy |, §2= [Eggza ('Qé)abi| and
(20)ya  Eyp  (£21)yy ‘
25 = [(930)6‘6’] , (82)

where Eg, € RIFXI"Iand E, 5 € RI71*IA| are two matrices whose entries are all ones
and a, b, c are defined in 22) and ¢’ := {1, ...,n —m}.

Theorem 2 Assume that (t, X) € R x R™*" js given. Let X have the singular value
decomposition (21). Then, the metric projector over the matrix cone IC, I (-, ) is
directionally differentiable at (t, X) along any direction. For any (n, H) € R x R™*",

let A = UTHvl and B = UTH%. Then, for given (n, H) € R x R™ " the
directional derivative H,/C((t, X); (n, H)) can be computed as follows:

(@) ift > X2, then ITi-((t, X); (n, H)) = (n, H); o

(i) if 1 Xll2 =t > =X |+, then T ((t, X); (n, H)) = (7, H) with

7=58"y{®n H). (83)
[l 0 (R0ay o S(A)ay | _,
H=U 0 wi(n, H) S(A)py v,

(Ql)ya o S(A)ya S(A)yﬂ S(A)yy

—| (22)aa 0 T(A)aa (822)ap 0 T(A)ap | =T | (93)110’ o By | 5T

U [(Qz)ba oT(Aa  T(Ap } i+t [ By ] Va2,

(84)

where (wg(n, H), ¥y, H)) e R x 8Pl is given by
(Wo(n, H), wP(n, H)) := My, (oG, H), S(ﬁgHVﬁ)). (85)
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In particular, ift = || X|» > 0, we have thatk =0, 8§ =1, a =0, p(n, H) =1
and

wi(n, H) + T(A)gg Apy

_ = = A
7=y, H), H=U|: :|V1+UBV2;

Ayp Ayy
(i) ift = —||X|lx then IT-((t, X); (n, H)) = (7, H) with
7 =58"yi(n. H). (86)
ﬁ=ﬁ[5_lwg(g’ P H)]VIT +U|:11,25(7(7), H)}VZT, (87)

where y3(n, H) € R, W3, H) € RFXIBl and Wiy, H) € RIF*0—m) gre
given by

W . [Py W, ]) =My (o ). [UpHVs UgHV:|):

(88)

8
1Bl (n—lal)

(iv) ift < = X|lx then ITi-((t, X); (n, H)) = (0, 0).

Moreover, ITx (-, -) is calmly B-differentiable at (¢, X), i.e., forany (n, H) € RxR"™*"
with (n, H) — (0, 0), we have

Myt +n, X + H) — Hic(t, X) = (¢, X); (0, H) = Ol (n, H)[P). (89)

Proof By Theorem 1, we only need to consider the case that || X||> > ¢t > —|| X||.
Forany (7,Y) € RxR™ " (go(t,o0(Y)), g(r,0(Y))) is defined by (75), G(z, Y) is
defined by (76) and G5(Y) and G(t, Y) are defined by (78). Let (n, H) € R x R™*"
be given. We write (t,Y) := (t +n, X + H) € R x R™*", Suppose that U € O™
and V € O" are such that

Y=U[Z(Y) 0]VT. (90)

Since Gs(X) = G(t, X),wehave G(t,Y)—G({t, X) = Gs(Y)—Gs(X)+Gr(z,Y).
By Proposition 8, we know that there exists an open neighborhood A/ of X such that
for each k € {1,...,r}, Pr(-) is twice continuously differentiable in A/. Then, for
(n, H) sufficiently close to (0, 0), we know from (43) that

Gs(Y) = Gs(X) = S T (PuY) = Pu(X) = S WP H + O(IHIP)
k=1 k=1

= TU[821 0 SV + T[22 0 T(AIV) +T (230 B)Va + O(H|?), ©O1)

where A = U HV, € R"™" B = U' HV, € R"™"=m and Q| 2, € R
and £23 € R"™*=") are given by (79), (80) and (81), respectively. On the other hand,
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by the definition of (38), for H sufficiently close to 0, i.e., for Y sufficiently close
to X, we have Pr(Y) = Zieak u,-viT, k = 1,...,r. Therefore, we obtain that for
(t,Y) € R x N (shrinking V if necessary),

-
GR(T,Y) =D M+ Ay, 92)

k=1
where A = Zieak[gi(r,a(Y)) - Vk]u,-viT, k = 1,....,r and A,y =

>ien &i(T, o (M)uv] . B _
Firstly, consider the case that X = [X'(X) O]Jand U = I,,, V = I,. Then, from

(29) and (30), for (n, H) sufficiently close to (0, 0), we know that
oi(V)=0;(X)+a/(X; H)+ O(|H|>), i=1,....,m (93)

and

) M (S(Hya)) ifi€ar, k=1,...,r,
o/(X; H) = %94)

oy; ([Hpp Hpcl) if i €b.

Since I1¢ (-, ) is Lipschitz continuous on R x R, we obtain from (55) that

m

e, (z,0(Y) — e, (t,0(X)) = Mg (n, 0’ (X; H)) + O(|(n, H)[I*),  (95)

m

where CAm is the critical cone of C,, at (¢,0(X)). Let h := o/(X; H) € R™. Then,
from (94), we have

hay = MS(Huya)) € R k=1,...,r (96)
and
hy = o ([Hpy Hpcl) € R, 97)
Since (go(t, 0(X)), g(t, o (X))) = Mg, (1, o0 (X)), from (95), we obtain that
go(t.o(Y)) = go(t.o (X)) =70+ O(|(n. )| (98)
and
gi(r.o(Y) = gi(t.o(X) =h; + O(|(n, HH|*), i=1,....m, 99)
where

@.h) =g (1. h). (100)
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Hence, since for each i € {1,...,m}, uiviT is uniformly bounded, we obtain that

Ak = Yieq hiwiv] + 0 H)IP), k= 1,....rand Apyy = 3, hingo] +
O(||(n, H)||?). Furthermore, by (31), we know that for each k € {I,...,r}, there
exists Qx € Q%! such that

O(lHI O(IHID
Uy = | Qx+O(H|) | and V4 = | Qk+ O(H])
O(lHID O(lHID

Note that A(-) and o (-) are both Lipchitz continuous. Since H@m(~, -) is Lipschitz
continuous on R x R™, from (100), we have

1@, D)l = 1Tz, (0. )] = Ol (n. K. (101)
Therefore, foreach k € {1, ..., r}, we have
C o, )] RAUCN:]D o, H)I?)
A= | O, ©)I?)  Qudiag(hy)QF + 0, )I*) O, H)I?)
L odl(m, H)1?) o(l(n, %) odl(m, M%)
+0(l(n, B
0 OA 0
= |0 Qudiag(hy)0] 0|+ O, B)I?. (102)
K 0 0

On the other hand, from (32), we know that S(Hy,q,) = Qk (X (Y)ayay — iicd|ay]) QkT +
O(|H|?), k=1, ..., r. Therefore, we obtain from (93) and (96) that

S(Huya) = Oxdiag(o/(X; H) :i € ak)Q}ir +O(IH|?)
= Ordiag(hg)OF + O(IH|»), k=1,...,r (103)

Meanwhile, by (31), there exist W € Ol and Z = [Z) Za] € O" 14l with Z; €
R(—labx1bl angd 7, € RO—lahx(=m) guch that

[ odHD [ oqHN
U”—[W+ 0(||H||)} and [V Vc]—[z+0(||H||)]

Therefore, from (101), we obtain that

_To 0 )
Arsr = [0 Wdiag(hb)ZlT:| + 0. H)IP). (104)

On the other hand, from (33), we know that

[Hpp Hpcl = W(EX)pp — itr+1lp) Z] + O(IH|?).
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Therefore, since W and Z; are uniformly bounded, from (93) and (97), we have

(Hpy Hpcl = Wdiag(o/(X: H) :i € b)Z{ + O(|H|%)
= Wdiag(hp)Z] + O(IH|?). (105)

Hence, by (92), (102) and (104), we obtain that

Q1diag(ha) QT - 0 0
Gr(r,Y) = 5 L ) :
0 -+ Q,diag(hg,) 0, 0
0 e 0 Wdiag(hy) Z]
+0((n, H)II%). (106)

Letn' = (n+ X ;chi)/8 if t > —[|X|l.; n = 0 otherwise, where § = /1 + k. If
t > —|| X|«, then by the definition of k we can conclude that for anyi € o, 0;(X) >0
because in this case 6 (¢, o (X)) > 0. Thus, by (96), we know thatforr > —|| X |4, n’ =
8§~ + Tr(S(Huw))) = p(n, H), where p(n, H) is defined by (74). By noting that
@, ﬁ) = 175"1 (n, h) and o (X) > 0, we obtain from Part (ii) of Proposition 10 that

hi=7% Viea, hj=h; Yiey (107)
and
) — 1Bl
©6n, hp) = [ HC\SIS\ (n', hg) otherwise. (108)

Next, we consider the following two cases:

Case 1: || X2 =t > —||X|lx 1.e., |[6(X)|loo =t > —|lo(X)]1. We first conclude

from (72) that forany i € o U 8, 0;(X) > 0 because 6(¢, 0 (X)) > 0 in this case. We
will separate this case into two subcases.

Case 1.1: B # (. Then there exists an integer ¥ € {0, 1,...,r — 1} such thg\t o =
Ukzia, B = ars1 and y = Uj_s1p ax U b. From (108), we have (57, hg) =
HD‘% (', hg). By Proposition 12 and the fact that n" = p(n, H), we know

(57, Qpdiag(hp) Q) = M pys (p(n. H). Qpdiag(hp) OF).

Note that IT M, (-, -) is Lipschitz continuous on R x S 181 Then, from (103), we obtain
that

(67, Qpdiag(ip) Of) = Mg, (01, H). S(Hgp)) + O(l(x. H)IP).
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Therefore, by using the definitions of (83) and (85), we have
=i+ 0 B (109)

and Qﬁdiag(ﬁﬁ)Qg =i, H) + O(||(r, H)||*. This, together with (106), (107),

(103) and (105), implies

[ 71| 0 0 0 0 0 O
0 i, H) 0 0 0 0 O
0 0 S(Huy o par,,) O 0 0 O
Gr(z,Y) = et
0 0 0 0 S(Hgq) 0 O
L O 0 0 0 0 Hpp Hpc |
+0(|| (. H]?). (110)
Therefore, from (82), (91) and (110), we obtain that
G(t,Y)—G(t,X)=Gs(Y)—Gs(X)+ Ggr(z,Y)
ﬁlla\ 0 (Ql)ay o S(H)ay 0
= 0 wi(n, H) S(H)py, 0
(Ql)ya o S(H)yot S(H)yﬂ S(H)yy 0
(-QZ)aa o T(H)aa (QZ)ab o T(H)ab O] + [0 (-QS)ac’ o Haci|
(£22)pa © T (H)pa T (H)pp 0 0 Hpe
+O(l(n. H)|P). (111)

Case 1.2: B = (. Then there exists 7 € {1, ...,r — 1} such thata = Ui:l ag, B=190
and y = Jj—s,; ax U b. Since Dfﬁ‘ = R, we know from (108) that 7 = §~15/. Also,
since M“Sﬂ‘ = R, we have

n=8"im H) =80 =7. (112)
Then, from (106), (107), (103) and (105), we obtain that
N1y 0 0 0 0 0
0 S(HlelaHl) 0 0 0 0
Gr(r,Y)=| : : PR C o B,
0 0 0 S(Hyq) 0 0
0 0 0 0 Hpp Hp

This, together with (82) and (91), implies
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G(t,Y) =G, X) =Gs(Y) — Gs(X) + Gg(z,Y)
— [ ﬁl\al (Ql)ay o S(H)ay 0:|
(-Ql)yoc ° S(H)ya S(H)Vy 0
(822)aa o T(H)aa  (822)ap o T(H)qp O
($22)ba o T (H)pa T(H)pb 0

0 (93)510’ ] Hac 5
+[0 Hp, }+0(Il(n, H)||%). (113)

Case 2: 1t = —|| X4, 1.e., t = —|lo(X)]|1. In this case, 6(¢, 0 (X)) = 0. Therefore,
wehavea =a = {i | 0i(X) > 0}, p = b = {i | 0i(X) = 0} and y = ¢. Then,
from (108), we have (87, hg) = Hclsﬂl(n’, hg). From Theorem 1 and the fact that

n' = p(n, H), we know that

(67, Wdiag(hp) ZT) = Myes

181, (n—la) (p(n, H), Wdiag(hg)Z1).

By noting that H,qsm _— (-, -) is Lipschitz continuous on R x RIA*¢=leD) 'we obtain
from (105) that

(87, Wdiag(hg)ZT) = Myes

181, (n—lal) (p(n, H), [Hpp Hpe]) + O(l(z, H)|?).

Then, by using the definitions of (86) and (88), we obtain that
=1+ 0 B (114)

and Wdiag(hp)Z! = [¥)(n, H) ¥ (1, H)] + O(ll(z, H)||*), which, together with
(106), (107), (103) and (105), implies

Gr(.Y) = [n1|a 0 0

2
0 W H W H)i| + O(||(z, H]7).

From (54) and the fact that 6(¢, 0 (X)) = 0, we have g;(t,0(X)) = 0(t,0(X)) =
0,7 =1,...,m. Thus, by using (91) and the fact that in this case, £2; =0, £, =0
and £23 = 0 we obtain that

G(r,Y) -G, X)=Gs(Y) = Gs(X) + Gr(z, Y)

=[T6 s o] *0 wsem |+ oo R @19

Next, consider the general case for X € R™*". Rewrite (90) as [X(X) 0] +
UTHV = UTU[E(X—f—H) 01VTV. Denote U := UTU, Vo= VTV and
= U HV = [UTHvl UTHVZ] — [A B]. Let X := [Z(X) 0] and
Y:=[X2(X) 0]+ H=U[X(X + H) 0]VT. Then, we have G(z, Y) — G(t, X) =
U[G(z,Y) -G, )?)]VT.Since X(X)=X(X)and X = [X(X) 0], we know from
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(98), (109), (112), (111) and (113) that if | X || > ¢ > —|| X+, then for any (n, H) €
R x R™" with (n, H) — 0, go(z, 0/(¥)) — go(t, 0(X)) = 71+ O(|(n, H)||*) and

o ﬁlla\ 0 (Ql)oty o S(A)ay .
Gr,Y)-Gt,X)=U 0 wi(n, H) S(A)py v,
(Ql)ya o S(A)ya S(A)yﬂ S(A)yy

| (22)aa 0 T(A)ga (822)ap 0 T(A)ap | =T |, 7| (£23)ac’ © Baer | T
+U[<Qz)baoT(A>ba T (A }Vl +U[ Bye }VZ

+0(l(m, DI,
where (@[/3(7], H),¥%n, H)) € R x Sl is given by (85). Similarly, we know from

(98), (114) and (115) that if t = —|| X||4, then for any (n, H) € R x R™*" with
(n, H) — 0, go(r, 0 (Y)) — go(t, 0(X)) =1+ O(||(n, H)|*) and

_ 77| el 0 vilw 0 Vi
G<f,Y>—G<f’X)—U[ 0 wfm,H)}V‘ +U[W§<n7H>]V2
+0(I(n, DI,

where Y3 (n, H) € R, ¥} (n, H) € RIFX¥IFland w3 (n, H) € RIFX=m are given
by (88).

Finally, from (77) and the above analysis we have shown that [T (-, -) is direc-
tionally differentiable at (¢, X), the directional derivative of ITx:(-, -) at (¢, X) along
any direction (n, H) € R x R™*" is given by Parts (i)-(iv) in this theorem and for
(n, H) € R x R™*" with (n, H) — 0, (89) holds. O

We characterize the differentiability of the metric projector ITx (-, -) in the following
theorem. Since ITx (-, -) is globally Lipschitz continuous over R x R™*"*  we know that
the Gateaux differentiability and Fréchet differentiability of ITx (-, -) coincide [10].
On the other hand, it is east to show that ITx (-, -) is Gateaux differentiable at (¢, X) if
and only if (¢, X) satisfies one of the three conditions listed in the following theorem.
Furthermore, the corresponding derivative formula follows directly from Theorem 2.
Because of space limitations, we omit the detail proof here.

Theorem 3 Let p : R x R™*" — R be the linear operator defined by (74). The
metric projector I (-, -) is differentiable at (t, X) € R x R™*" if and only if (¢, X)
satisfies one of the following three conditions:

@) 1> X )

1) X2 >t > = X[« but op, 1 (X) < 0(t,0(X)), where k and 0(t, o (X)) are

defined by (71) and (72), respectively;

(i) ¢ < =1 Xl
In this case, for any (n, H) € R x R™*", HI/C(I, X)(n, H) = (i}, H), where under
condition (i), (7], H) = (n, H); under condition (ii),

7=58"p(n, H) (116)
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and
— = 8o, M) e  (20)ay 0 S(A)ay } =T
H=U [(Ql)ya oS(A)ya S, |V
77 (QZ)aa o T(A)aa (QZ)ah o T(A)ab T 77 (93)ac’ o Bac’ T
U [(Qz)ha oT(Aa  T(A } i+t [ By ] v
(117)

with A .= ﬁT HV,, B := ﬁT HVQT; and under condition (iii), (7, H) = (0,0).
Finally, we study the strong semismoothness of the metric projector ITx (-, -).

Theorem 4 The metric projector I (-, -) is strongly G-semismooth at (t, X) € R x
Rm Xﬂ'

Proof Denote the set of points in R x R™*" where ITx:(-, -) is differentiable by D,
By Lemma 1, in order to show that ITx: (-, -) is strongly G-semismooth at (z, X) €
R x R™*" we only need to show that for any (z, Y) € D, converging to (¢, X),

My (x, Y) — (1, X) — Mie(x, Y)(n, H) = O(lln, HI), (118)

where (n, H) := (t,Y) — (t,X) € R x R™", When t > || X|2 or t < —||X|l+,
according to Theorem 3, [T (-, -) is locally a linear function near (¢, X) and thus (118)
holds. From now on we always assume that (¢, X) satisfies || X||> > > —|| X||«.

Recall that for any (z,Y) € R x R™ " (go(t,0(Y)), g(tr,0(Y))) is defined by
(75), G(z, Y) is defined by (76) and Gs(Y) and Gg(t, Y) are defined by (78). Since
Gs(X) = G(t, X), we have

G(t,Y)— G, X)=Gs(Y) —Gs(X) +Gr(t,Y) V(r,Y) € R x R™*",
Suppose that U € O™ and V € O" (depending on Y) are such that ¥ =
Ul[XY) 0] vT, By Proposition 8, we know that there exists an open neighborhood
N of X in R™*" guch that for each k € {1, ..., r}, Px(-) is twice continuously dif-

ferentiable in V. By taking a smaller NV if necessary, we assume that for any ¥ € A/
andk,l e {l,...,r},

0;(Y)>0, o0;(Y)#o0;(Y) Viea, jeaandk #1. (119)
Then, from (43), we obtain that for any ¥ € N/,
Gs(Y) = Gs(X) = D k(Pu(Y) = Pre(X)) = D WP (Y)H + O(|H|1*)
k=1 k=1

=D WUl o SNV +UlE o T(ANV] + Ui 0 BIV)) + O(IHIP),
k=1

@ Springer



An introduction to a class of matrix cone programming 173

where A := UTHV, € R"™ ™ and B := UTHV, € R"<0=m): and for k €
(1,...,r}, Ix € R™™ 5 e R™™ and Ty € R™=™ are given in (40), (41)
and (42), respectively. Since 1 (-, -) is globally Lipschitz continuous on R x R™,

m

we know that for any (z, Y) € R x R™*" converging to (¢, X),
gi(t, o) =vr+0O((n, H)|) Yiea, k=1,...,r

Therefore, since U € O™ and V € O" are uniformly bounded, there exists an open
neighborhood N of (z, X) in R x R™*" such that for any (z, Y) € /V,

Gs(Y) — Gs(X) = Ul o S(AIV] +U[E o T(AIV] +U[T 0 BIVS
+0(I(n, )|, (120)

where I € R™*™ &' ¢ R™™ and T € R”* "~ are given, respectively, by

gi(r,o(Y))—g(r,a(Y))

£ .
(Iij = 51 (Y) —0;(Y) ificap, jearandl#k, e,
0 otherwise,
[ 9 Y j 9 Y .
B gi(r,o(Y)) +gj(r,0(Y)) itidh or jéb.
()i = oi(Y)+o0;(Y)
0 otherwise
and
gi(t,o(Y)) ...
—= ifieaq, k=1,...,r, .
Iij=1" o)y % =1, n—m.
0 ifi eb,

Let (r,Y) € D N N Note that by replacing (¢, X) with (z, Y), we can also
use (71) to define an index integer k for (z, Y). We denote this index integer by k' to
distinguish the index integer for (¢, X). If 8 # @, then since | X2 > t > —|| X]4,
from (71) and (72) we know that o (X) = 0(¢, 0 (X)) < o3(X). Therefore, since
for any k € B, o) (X) = oj,(X), we have 015+|/3|+1(X) < 0(t,0(X)) < op(X) for
any k € B.If B = 0§, we have Ul?+\/3\+1(X) < 0(t, 0(X)) < op(X). Therefore, in both
cases, by the continuity of the singular value function o (-), we may assume that the
integer k' liesin {k, k+1, ..., k+|B|}, i.e., there exists an integer j € {0, 1, ..., |8}
such that k¥’ = k + j. Define the corresponding index sets in {1, ..., m} for (z,Y)
by o' :={i | 0;(Y) > 0(r,a(Y)}, B’ :={i | 0:(Y) = O(z, oY)}, y' == {i |
0;(Y) < 0(r,o(Y)},d :={i | 0;(Y) > 0} and b’ := {i | 0;(Y) = 0}. Since
(t,Y) € D N JV, from Theorem 3 we know that 8’ = ¢J. Meanwhile, by (119), we
have

o Da, YYDy, adDa and b Cb. (121)
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Let 8’ :=+/1 4k’ and p’ € R be defined by
8 Y+ Te(SWTHV,)) ift>—||Y]
' HVe = ¥l 122
P [ 0 ¢ otherwise. (122)

Define 2] € R™™, Q) € R™ and £} € R™ =™ by (79), (80) and (81),
respectively with (¢, X) being replaced by (z, Y). Therefore, from Theorem 3 we
know that

8§ p'ly (2D gy 0 S(A)yry
’ _ o e’y o’y T
G (Ta Y)(T], H) =U I:(Qi)y’a’ ° S(A)y’a’ S(A)V/y/ Vl
(Q/)a/a/ oT(A)ya (-Q/)a/b/ oT(A)uy T (-Q/)a/ v 0 By T
+U | 3 2 vi+u| s v,
[(Qﬁ)b/a/ oT(Aya T(Apy ! By 2
(123)

where A := UTHVy, B := UTHV] and ¢ = {1,...,n — m}. Let R(y, H) :

G'(t,Y)(n,H) — (Gs(Y) — GS(X)) From the formula of IT¢, (t,0(Y)) in (54)
we know that g;(t,0(Y)) = g;(r,0(Y)) forall i, j € o' and gi(t,0(Y)) = 0;(Y)
for all i € y’. Therefore, by (120) and (123), we obtain from (121) that there exist

Ri(n, H) € RlaIxlaxl j =1 . . rand R,1(n, H) € RPIX®=lal such that

Ri(n,H) --- 0 0
R, H)y=U : N : : v+ o, BI%), (124)
0 -+ R.(n, H) 0
0 0 Ry+1(n, H)
where the formulas of R;(n, H), i = 1,...,r 4+ 1 are determined by the following

two cases:

Case 1: | X]2 = t > —|X]|ls. In this case, we know that 6(¢,0 (X)) > 0 and

there exists ¥ € {0, 1,...,r} such that « = UZ 10k, B = ar41 (or P) and y =
U~ ax U b, where r’ —r—|—21fﬁ # @and r' =7 + 1if B = (. Since there exists
an integer j € {0, 1, ..., (B[} such that k' =k + J» we can define two index sets

Bri:=1{k+1,... k —|—]} and B :={k+j+1,..., k+l|ars+1|}. Therefore, by noting
thata' = a U ,31, y' =B Uyand B =0if B = Q), we obtain from (120) and (123)
that

Re(n. H) =8 o'l k=1,....F,
8ol 0 0 £2)
Rf+1<n,H>=[ e [ i P o S (A iar),

Ri(n, H) = S(Aakak) k =
Ryy1(n, H) = [App Bpe'],
(125)

where E is a (|a7+1]| — j) by (la7+1] — j) matrix whose entries are all ones.
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Case 2: t = —| X||«. In this case, we know that (¢, 0 (X)) = 0. Therefore, we
have o« = Jj_,ax = a, B = band y = §. Also, since there exists an integer
J €1{0,1,...,|B|} such that k' = k + j, we can define two index sets 81 = {k +

. k+jYand B :=1{k+ j+1,...,k+ |b|}. Therefore, since ' = & U 1 and
y' = B Uy, we obtain from (120) and (123) that

Re(n, H) =80y, k=1,...,r1,

8 o'l (2))p,p, © S(A)g, 5, O
R VH) = 1 18182 BiB2
10 D [(9')52/31 o S(A)pypy S(A) s 0
L [(Qz)ﬁ.m o T(A)pip (2)pipy 0 T(A)pyp, (25)p,c © Bﬁlci|
(82321 © T(A) g,y T (A)p,p, Bg,cr

(126)

Consider the singular value decomposition of X, i.e., X = U [¥(X) 0] VT, where
Ue® andV € O". Then, we have [Z(X) 0]+ U HV =U U[E(Y) 0]VTV
LetH:=0U HV,U:=U UandV := V' V. Then, UTHV = UTU' HVV =
UTHV. From (31), we know that there exist Oy € Q%! k =1,... rand Q' €
Obl 0" e ©"lal such that

Aqa, = UL HVa = UF HVy = O] Hypa O + O HID), k=1,....r

and [Apy Byl = [UFHV, UFHV2| = Q' [Hyp Hpe] Q" + O(|H|?). Then,
from (32) and (33) in Proposition 7, we obtain that for each k € {1, ..., r},

S(Aqay) = OF S(Hapa) Ok + OUIHI?) = Z (Ve — £ Xaa, + OUH ),

[Aby Boel=Q'" [Hpp Hpe] Q"+ OUIHIP)=[Z (¥ )pp—E(X)pp 01+ O HI).
Let h := o'(Y; H). Since o (-) is strongly semismooth [46], we know that

S(Aaqa) = diag(hg) + O(IH|»), k=1,....r, (127)
[Apy Byl = [diag(hp) O] + O(IH?). (128)

Therefore, by noting that in each case ' = a U B and y' = B> U y and that
0 < (£2));,j < lforanyi € py and j € B>, we obtain from (124), (125), (126), (127)
and (128) that

—~ _ 8/_110/I|a’| 0 0 T 2
R =u[ 1 O 0V ot b, a

On the other hand, by the definition of (38), for Y sufficiently close to X, we have

Pr(Y) = Zieak uiviT, k = 1,...,r. Therefore, we obtain that for any (z,Y) €
Dpy NN (shrinking N if necessary),
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Gr(T,Y) =D D [gi(r,0(Y)) — git, o XN luiv] + D gi(x, o (V)uiv/ .

k=1 ieay ieb

Note that from Part (iii) of Proposition 10 and Theorem 3, we know that Iy (-, -) is
differentiable at (z, Y) if and only if IT¢, (-, -) is differentiable at (7, o (Y)). Since
the continuous mapping I1¢ (-, -) is piecewise linear, it is strongly G-semismooth at
(t, 0(X)). Meanwhile, we know that the singular value function o (- ) is strongly semi-
smooth at X. Therefore, we obtain that for any (r,Y) € Dy, N N (shrinking N if
necessary),

e, (z,0(Y) — Me, (t,0(X) = [T}, (r,0(Y)(n, 0 (Y) — (X)) + O(|(n, H)[))
=10} (r,0(Y)(n,0'(Y; H) + O (n, H)*|))

Let (¢po(n, h), ¢p(n, h)) := Hém (t,0(Y))(n, h). Then, we have

go(t, 0(Y) — go(t, o(X)) = go(n, h) + O(ll(n, H)II*) (130)

and gi(z,0(Y)) — gi(t,0(X)) = ¢i(n, ) + O(|(n, D)|I*), i = 1,...,m. Since
U e O"and V € O" are uniformly bounded, we know that

d1(n,h) - 0 0
Gr(t,Y)=U : : Vi +odia B,
0 o dm(n,h) 0
From Part (ii) of Proposition 10, we have

do(n, h) =8""p/, (131)

$i(n, h) = ¢o(n, h) forany 1 <i < k" and ¢;(n,h) = h; forany k' + 1 <i < m.
Thus, from (129), we obtain that

R(n, H) = Gr(z,Y) + O(|(n, H)|%). (132)
That is, for any for any (z, Y) € Dy, converging to (¢, X),

G(t,Y)=G(t, X)=G'(r,Y)(n, H) = Gs(Y)~Gs(X)~G'(r,Y)(n, H)+Gr(r,Y)
= —R(p, H) + Gr(zr,Y) = Ol (. )%,

which, together with (77), (131), (116) and (130), shows that (118) holds. O
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5 Conclusions

In this paper, we have identified a class of matrix cone programming involving the
epigraphs of the /1, [, Frobenius, spectral and nuclear norms that has many impor-
tant applications. In order to make this class of problems tractable via variants of the
augmented Lagrange method, we have made efforts to establish several key prop-
erties including the closed form solution, calm B-differentiability and strong semi-
smoothness of the metric projection operator over the epigraph of the /1, I, spectral,
and nuclear matrix norm, respectively. These results, together with the known anal-
ogous ones for symmetric cones, will constitute the backbone for using augmented
Lagrangian methods to solve large scale problems of practical significance. Our next
step is to develop numerical algorithms and software along this line. The work done
in this paper on matrix cone programming is by no means complete. There are many
unanswered questions. For example, besides the analytic solution and the first order
differentiability of the metric projector over the epigraphs of the spectral and nuclear
matrix norms, the research on the second order properties of these non-polyhedral
closed convex sets is certainly of paramount necessity for understanding second order
optimality conditions of matrix cone programming. Another direction is to consider
convex matrix cones beyond epigraphs of matrix norms such as the epigraph of the
convex function that is defined as the sum of the first several largest singular values
of a matrix (or the Ky Fan k-norm). It is our firm belief that a better understanding of
the inherent structures of these matrix cones rather than projecting them into higher
dimensional spaces will lead to more efficient optimization methods for solving matrix
cone programming.
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