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AN ASYMPTOTICALLY SUPERLINEARLY CONVERGENT
SEMISMOOTH NEWTON AUGMENTED LAGRANGIAN METHOD

FOR LINEAR PROGRAMMING\ast 

XUDONG LI\dagger , DEFENG SUN\ddagger , AND KIM-CHUAN TOH\S 

Abstract. Powerful interior-point methods (IPM) based commercial solvers, such as Gurobi and
Mosek, have been hugely successful in solving large-scale linear programming (LP) problems. The
high efficiency of these solvers depends critically on the sparsity of the problem data and advanced
matrix factorization techniques. For a large scale LP problem with data matrix A that is dense
(possibly structured) or whose corresponding normal matrix AAT has a dense Cholesky factor (even
with reordering), these solvers may require excessive computational cost and/or extremely heavy
memory usage in each interior-point iteration. Unfortunately, the natural remedy, i.e., the use of
iterative methods based IPM solvers, although it can avoid the explicit computation of the coefficient
matrix and its factorization, is often not practically viable due to the inherent extreme ill-conditioning
of the large scale normal equation arising in each interior-point iteration. While recent progress
has been made to alleviate the ill-conditioning issue via sophisticated preconditioning techniques,
the difficulty remains a challenging one. To provide a better alternative choice for solving large
scale LPs with dense data or requiring expensive factorization of its normal equation, we propose
a semismooth Newton based inexact proximal augmented Lagrangian (Snipal) method. Different
from classical IPMs, in each iteration of Snipal, iterative methods can efficiently be used to solve
simpler yet better conditioned semismooth Newton linear systems. Moreover, Snipal not only enjoys
a fast asymptotic superlinear convergence but is also proven to enjoy a finite termination property.
Numerical comparisons with Gurobi have demonstrated encouraging potential of Snipal for handling
large-scale LP problems where the constraint matrix A has a dense representation or AAT has a
dense factorization even with an appropriate reordering. For a few large LP instances arising from
correlation clustering, our algorithm can be up to 20--100 times faster than the barrier method
implemented in Gurobi for solving the problems to the accuracy of 10 - 8 in the relative KKT residual.
However, when tested on some large sparse LP problems available in the public domain, our algorithm
is not yet practically competitive against the barrier method in Gurobi, especially when the latter can
compute the Schur complement matrix and its sparse Cholesky factorization in each iteration cheaply.
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1. Introduction. It is well known that primal-dual interior-point methods (IPMs)
as implemented in highly optimized commercial solvers, such as Gurobi and Mosek,
are powerful methods for solving large scale linear programming (LP) problems with
conducive sparsity. However, the large scale normal (also called Schur complement)
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equation arising in each interior-point iteration is generally highly ill-conditioned when
the barrier parameter is small, and typically it is necessary to employ a direct method,
such as the sparse Cholesky factorization, to solve the equation stably and accurately.
Various attempts, for example, in [3, 10, 15, 24, 34], have been made in using an
iterative solver, such as the preconditioned conjugate-gradient (PCG) method, to solve
the normal equation when it is too expensive to compute the coefficient matrix or the
sparse Cholesky factorization because of excessive computing time or memory usage
due to fill-ins. For more details on the numerical performance of iterative methods
based IPMs for solving large scale LP, we refer readers to [15] and the references
therein. However, the extreme ill-conditioning of the normal equation (and also of the
augmented equation) makes it extremely costly for an iterative method to solve the
equation either because it takes an excessive number of steps to converge or because
constructing an effective preconditioner is prohibitively expensive. For a long time
since their inceptions, iterative methods based IPMs have not been proven convincingly
to be more efficient in general than the highly powerful solvers, such as Gurobi and
Mosek, on various large scale LP test instances. Fortunately, recently promising
progress has been made in the work of Schork and Gondzio [45], where the authors
proposed effective basis matrix preconditioners for iterative methods based IPMs,
which have been demonstrated to be competitive against the powerful commercial
solver Gurobi on some large scale LPs in MIPLIB [33]. However, we should note that
as the construction of the basis matrix preconditioners in [45] requires the explicit
storage of a subset of columns of the constraint matrix A, the approach may not be
applicable to the case when A is not explicitly given but defined via a linear map.
In contrast, the algorithm designed in this paper is still applicable under the latter
scenario. While this paper was in the final review, the preprint [4] appeared, where
the authors proposed a potentially cheaper preconditioning approach, compared to
those in [45], for regularized interior point methods for linear and convex quadratic
programming (QP). But the numerical performance of the new approach in [4] is not
compared against Gurobi.

For later discussion, here we give an example where A is defined by a linear map:
A \in \BbbR n2 \rightarrow \BbbR p2

such that Ax = vec(Bmat(x)DT ), where B,D \in \BbbR p\times n are given

matrices, mat(x) denotes the operation of converting a vector x \in \BbbR n2

into an n\times n
matrix, and vec(X) denotes the operation of converting a matrix X \in \BbbR p\times p into a
p2-dimensional vector. It is easy to see that the matrix representation of A is the
Kronecker product D \otimes B, and it could be extremely costly to store D \otimes B explicitly
when B,D are large dimensional dense matrices.

The goal of this paper is to design a semismooth Newton inexact proximal
augmented Lagrangian (Snipal) method for solving large scale LP problems, which
has the following key properties: (a) the Snipal method can achieve fast local linear
convergence; (b) the semismooth Newton equation arising in each iteration can fully
exploit the solution sparsity in addition to data sparsity; (c) the semismooth Newton
equation is typically much better conditioned than its counterparts in IPMs, even
when the iterates approach optimality. The latter two properties thus make it cost
effective for one to use an iterative method, such as the PCG method, to solve the
aforementioned linear system when it is large. It is these three key properties that
give the competitive advantage of our Snipal method over the highly developed IPMs
for solving certain classes of large scale LP problems which we will describe shortly.
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2412 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

Consider the following primal and dual LP problems:

(P) min
\Bigl\{ 
cTx+ \delta K(x) | Ax = b, x \in \BbbR n

\Bigr\} 
,

(D)max
\Bigl\{ 
 - \delta \ast K(A\ast y  - c) + bT y | y \in \BbbR m

\Bigr\} 
,

where A \in \BbbR m\times n, b \in \BbbR m, c \in \BbbR n are given data. The set K = \{ x \in \BbbR n | l \leq x \leq u\} 
is a simple polyhedral set, where l, u are given vectors. We allow the components of
l and u to be  - \infty and \infty , respectively. In particular, K can model the nonnegative
orthant \BbbR n

+. In the above, \delta K(\cdot ) denotes the indicator function over the set K such
that \delta K(x) = 0 if x \in K and \delta K(x) = \infty otherwise. The Fenchel conjugate of \delta K is
denoted by \delta \ast K . We note that while we focus on the indicator function \delta K(\cdot ) in (P), the
algorithm and theoretical results we have developed in this paper are also applicable
when \delta K is replaced by a closed convex polyhedral function p : \BbbR n \rightarrow ( - \infty ,\infty ]. We
make the following assumption on the problems (P) and (D).

Assumption 1. The solution set of (P) and (D) is nonempty and A has full row
rank (hence m \leq n).

Our Snipal method is designed for the dual LP but the primal variable is also
generated in each iteration. In order for the fast local convergence property to kick-
in early, we warm-start the Snipal method by an alternating direction method of
multipliers (ADMM), which is also applied to the dual LP. We should mention that
our goal is not to use Snipal as a general purpose solver for LP but to complement
the excellent general solvers (Gurobi and Mosek) when the latter are too expensive
or have difficulties in solving very large scale problems due to memory limitation. In
particular, we are interested in solving large scale LP problems having one of the
following characteristics.

1. The number of variables n in (P) is significantly larger than the number of
linear constraints m. We note that such a property is not restrictive since for
a primal problem with a huge number of inequality constraints Ax \leq b and
m\gg n, we can treat the dual problem (D) as the primal LP, and the required
property is satisfied.

2. The constraint matrix A is large and dense but it has an economical represen-
tation such as being the Kronecker product of two matrices, or A is sparse
but AAT has a dense factorization even with an appropriate reordering. For
such an LP problem, it may not be possible to solve it by using the standard
interior-point methods implemented in Gurobi or Mosek since A cannot be
stored explicitly. Instead, one would need to use a Krylov subspace iterative
method to solve the underlying large and dense linear system of equations
arising in each iteration of an IPM or Snipal.

In [50], Wright proposed an algorithm for solving the primal problem (P) for
the special case where K = \BbbR n

+. The proposed method is in fact the proximal
method of multipliers applied to (P) while keeping the nonnegative constraint in
the QP subproblem. More specifically, suppose that the iterate at the kth iteration
is (xk, yk) and the penalty parameter is \gamma k = \sigma  - 1

k . Then the QP subproblem is
given by min\{ 1

2 \langle (\sigma kA
\ast A + \sigma  - 1

k In)x, x\rangle + \langle x, c  - A\ast yk  - \sigma  - 1
k xk  - \sigma kA

\ast b\rangle | x \geq 0\} .
In [50], a successive over-relaxation (SOR) method is used to solve the QP sub-
problem. But it is unclear how this subproblem can be solved efficiently when n
is large. In contrast, in this paper, we propose a Snipal method that is applied
to the dual problem (D) and the associated subproblems are solved efficiently by
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a semismooth Newton method having at least local superlinear convegence or even
quadratic convergence.

In the pioneering work of De Leone and Mangasarian [30], an augmented La-
grangian method is applied to an equivalent reformulation of (D), and the QP sub-
problem of the form min\{  - bT y + \sigma 

2 \| A
\ast y + z  - c+ \sigma  - 1xk\| 2 | y \in \BbbR m, z \geq 0\} in each

iteration is solved by a projected SOR method. Interestingly, in a later paper [32],
based on the results obtained in [31], Mangasarian designed a generalized Newton
method to first solve a penalty problem of the form min\{  - \epsilon bT y + 1

2\| \Pi \BbbR n
+
(A\ast y  - c)\| 2\} 

and then use its solution to indirectly solve (P) for K = \BbbR n
+, under the condition

that the positive parameter \epsilon must be below a certain unknown threshold and a
strong uniqueness condition holds. Soon after, [19] observed that the restriction on
the parameter in [32] can be avoided by modifying the procedure in [32] via the
augmented Lagrangian method but the corresponding subproblem in each iteration
must be solved exactly. As the generalized Newton system is likely to be singular, in
both [32] and [19], the system is modified by adding a scalar multiple of the identity
matrix to the generalized Hessian. Such a perturbation, however, would destroy the
fast local convergence property of the generalized Newton method. We also note that
to obtain the minimum norm solution of the primal problem (P), [26] proposed a
generalized Newton method for solving min\{ 1

2\| \Pi \BbbR n
+
(A\ast y  - rc)\| 2  - \langle b, y\rangle \} with the

positive parameter r being sufficiently large. Although [26] contains no computational
results, the authors obtained the global convergence and finite termination properties
of the proposed method under the assumption that the Newton linear systems involved
are solved exactly and a certain regularity condition on the nonsingularity of general-
ized Jacobians holds. More recently, [52] designed an ALM for the primal problem
(P) for which a bound-constrained convex QP subproblem must be solved in each
iteration. In the paper, this subproblem is solved by a randomized coordinate descent
(RCD) method with an active set implementation. There are several drawbacks to
this approach. First, solving the QP subproblem can be time consuming since the
convergence of the RCD is generally quite slow. Second, the RCD approach is less
effective in fully exploiting any specific structure of the matrix A (for example, when A
is defined by the Kronecker product of two given matrices) to speed up the computation
of the QP subproblem. Finally, it also does not exploit the sparsity structure present
in the Hessian of the underlying QP subproblem to speed up the computation.

Here, we employ an inexact proximal augmented Lagrangian (PAL) method to
(D) to simultaneously solve (P) and (D). Our entire algorithmic design is dictated
by the focus on computational efficiency and generality. From this perspective, now
we elaborate on the key differences between our paper and [19]. First, without any
reformulation, our algorithm is directly applicable to problems with a more general set
K instead of just \BbbR n

+ as in [32] and [19]. Second, we use the inexact PAL framework,
which ensures that in each iteration, an unconstrained minimization subproblem
involving the variable y is strongly convex and hence the semismooth Newton method
we employ to solve this subproblem can attain local quadratic convergence. Third,
the flexibility of allowing the PAL subproblems to be solved inexactly can lead to
substantial computational savings, especially during the initial phase of the algorithm.
Fourth, for computational efficiency, we warm-start our inexact PAL method by using
a first-order method. Finally, as solving the semismooth Newton linear systems is
the most critical component of the entire algorithm, we have devoted a substantial
part of the paper to proposing novel numerical strategies to solve the linear systems
efficiently.
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Numerical comparisons of our Snipal with the barrier method in Gurobi have
demonstrated the encouraging potential of our method for handling large-scale LP
problems where the constraint matrix A has a dense representation or AAT has a
dense factorization even with an appropriate reordering. For a few large LP instances
arising from correlation clustering, our algorithm can be up to 20--100 times faster than
the barrier method implemented in Gurobi for solving the problems to the accuracy
of 10 - 8 in the relative KKT residual. However, when tested on some large sparse
LP problems available in the MIPLIB2010 [33], our algorithm is not yet practically
competitive against the barrier method in Gurobi, especially when the latter can
compute the Schur complement matrix and its sparse Cholesky factorization in each
iteration cheaply.

The remaining part of the paper is organized as follows. In the next section, we
introduce a preconditioned proximal point algorithm (PPA) and establish its global
and local (asymptotic) superlinear convergence. In section 3, we develop a Snipal
for solving the dual LP (D) and derive its connection to the preconditioned PPA.
Section 4 is devoted to developing numerical techniques for solving the linear system
of equations in the semismooth Newton method employed to solve the subproblem
in each proximal augmented Lagrangian iteration. We describe how to employ an
ADMM to warm-start the proximal augmented Lagrangian method in section 5. In
section 6, we evaluate the numerical performance of our algorithm (called Snipal)
against the barrier method in Gurobi on various classes of large scale LPs, including
some large sparse LPs available in the public domain. We conclude the paper in the
final section.

Notation. We use \scrX and \scrY to denote finite dimensional real Euclidean spaces
each endowed with an inner product \langle \cdot , \cdot \rangle and its induced norm \| \cdot \| . For any self-adjoint
positive semidefinite linear operator \scrM : \scrX \rightarrow \scrX , we define \langle x, x\prime \rangle \scrM := \langle x, \scrM x\prime \rangle 
and \| x\| \scrM :=

\sqrt{} 
\langle x, \scrM x\rangle for all x, x\prime \in \scrX . The largest eigenvalue of \scrM is denoted

by \lambda max(\scrM ). A similar notation is used when \scrM is replaced by a matrix M . Let
D be a given subset of \scrX . We write the weighted distance of x \in \scrX to D by
dist\scrM (x,D) := infx\prime \in D \| x  - x\prime \| \scrM . If \scrM is the identity operator, we just omit it
from the notation so that dist(\cdot , D) is the Euclidean distance function. If D is closed,
the Euclidean projector over D is defined by \Pi D(x) := argmin\{ \| x  - d\| | d \in D\} .
Let F : \scrX \rightrightarrows \scrY be a multivalued mapping. We define the graph of F to be the set
gphF := \{ (x, y) \in \scrX \times \scrY | y \in F (x)\} . The range of a multifunction is defined by
Range(F ) := \{ y | \exists x with y \in F (x)\} .

2. A preconditioned proximal point algorithm. In this section, we present
a preconditioned PPA and study its convergence properties. In particular, following
the classical framework developed in [41, 42], we prove the global convergence of the
preconditioned PPA. Under a mild error bound condition, global linear rate convergence
is also derived. In fact, by choosing the parameter ck in the algorithm to be sufficiently
large, the linear rate can be as fast as we please. We further show in section 3.1
that our main algorithm, Snipal, is in fact an application of the preconditioned PPA.
Hence, Snipal's convergence properties can be obtained as a direct application of the
general theory developed here.

Let \scrX and \scrY be finite dimensional Hilbert spaces and \scrT : \scrX \rightarrow \scrX be a maximal
monotone operator. Throughout this section, we assume that \Omega := \scrT  - 1(0) is nonempty.
We further note from [43, Excerise 12.8] that \Omega is a closed set. The preconditioned
PPA generates for any start point z0 \in \scrX a sequence \{ zk\} \subseteq \scrX by the following
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approximate rule:

(2.1) zk+1 \approx \scrP k(z
k), where \scrP k = (\scrM k + ck\scrT ) - 1\scrM k.

Here \{ ck\} and \{ \scrM k\} are some sequences of positive real numbers and self-adjoint
positive definite linear operators over \scrX . If \scrM k \equiv \scrI for all k \geq 0, the updating scheme
(2.1) recovers the classical PPA considered in [41]. Since \scrM k + ck\scrT is a strongly
monotone operator, we know from [43, Proposition 12.54] that \scrP k is single-valued and
is globally Lipschitz continuous. Here, we further assume that \{ ck\} bounded away
from zero and

(2.2) (1+\nu k)\scrM k \succeq \scrM k+1, \scrM k \succeq \lambda min\scrI \forall k \geq 0 and lim sup
k\rightarrow \infty 

\lambda max(\scrM k) = \lambda \infty 

with some nonnegative summarable sequence \{ \nu k\} and constants +\infty > \lambda \infty \geq \lambda min >
0. The same condition on \scrM k is also used in [36] and can be easily satisfied. For
example, it holds obviously if we set \lambda \infty \scrI \succeq \scrM k \succeq \lambda min\scrI and \scrM k \succeq \scrM k+1 for all
k \geq 0. Note that if \scrT is a linear operator, one may rewrite \scrP k as \scrP k = (\scrI +ck\scrM  - 1

k \scrT ) - 1.
We show in the next lemma that this expression in fact holds even for a general maximal
monotone operator \scrT . Therefore, we can regard the self-adjoint positive definite linear
operator \scrM k as a preconditioner for the maximal monotone operator \scrT . Based on
this observation, we name the algorithm described in (2.1) as the preconditioned PPA.

Lemma 2.1. Given a constant \alpha > 0, a self-adjoint positive definite linear operator
\scrM , and a maximal monotone operator \scrT on \scrX , it holds that Range(\scrI +\alpha \scrM  - 1\scrT ) = \scrX 
and (\scrI + \alpha \scrM  - 1\scrT ) - 1 is a single-valued mapping. In addition,

(\scrM + \alpha \scrT ) - 1\scrM = (\scrI + \alpha \scrM  - 1\scrT ) - 1.

Proof. By [2, Proposition 20.24], we know that \scrM  - 1\scrT is maximally monotone.
Hence, Range(\scrI + \alpha \scrM  - 1\scrT ) = \scrX and (\scrI + \alpha \scrM  - 1\scrT ) - 1 is a single-valued mapping
from \scrX to itself.

Now, for any given z \in \scrX , suppose that z1 = (\scrI + \alpha \scrM  - 1\scrT ) - 1(z). Then, it holds
that

\scrM z \in (\scrM + \alpha \scrT )z1.

Since (\scrM + \alpha \scrT ) - 1 is a single-valued operator [43, Proposition 12.54], we know that

z1 = (\scrM + \alpha \scrT ) - 1\scrM z,

i.e., (\scrI + \alpha \scrM  - 1\scrT ) - 1z = (\scrM + \alpha \scrT ) - 1\scrM z for all z \in \scrX . Thus we have proved the
desired equation.

In the literature, the updating scheme (2.1) is closely related to the so-called
variable metric PPAs; for examples, see [6, 8, 7, 9, 13, 36, 37]. Among these papers,
[6, 13, 37] focus only on the case of optimization, i.e., the maximal monotone operator
\scrT is the subdifferential mapping of a convex function. In addition, they emphasize
more on the combination of the PPA with the quasi Newton method. In [8] and the
subsequent papers [7, 9], the authors deal with a general maximal monotone operator
\scrT and study the following scheme in the exact setting:

(2.3) zk+1 = zk +\scrM k

\bigl( 
(\scrI + ck\scrT ) - 1  - \scrI 

\bigr) 
zk.

The global convergence of the scheme (2.3) requires a rather restrictive assumption on
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\scrM k [8, Hypothesis (H2)], although \scrM k is not required to be self-adjoint. In fact, the
authors essentially assumed that the deviation of \scrM k from the identity operator should
be small, and the verification of the assumption can be quite difficult. As far as we
are aware of, [36] may be the most related work to ours. In [36], the authors consider
a variable metric hybrid inexact proximal point method whose updating rule consists
of an inexact proximal step and a projection step. Moreover, some specially designed
stopping criteria for the inexact solution of the proximal subproblem are also used.
However, due to the extra projection step, the connection between their algorithm and
the proximal method of multipliers [42] is no longer available. Therefore, the results
derived in [36] cannot be directly used to analyze the convergence properties of Snipal
proposed in this paper, which is a variant of the proximal method of multipliers. We
should also mention that in [17], Eckstein discussed nonlinear PPAs using Bregman
functions, and the preconditioned PPA (1) may be viewed as a special instance if
\scrM k is fixed for all k. However, the algorithms and convergence results in [17] are not
applicable to our setting, where the linear operator \scrM k can change across iterations.
More recently, the updating scheme (2.1) was also studied in [47, 48], where the
authors presented various convergence results under the assumption that \scrP k(z

k) can
be evaluated exactly for all k \geq 0. As one can observe later, this exact evaluation
assumption is not suitable for our case. Since the scheme (2.1) under the classical
setting of [41, 42] fits our context best, we conduct a comprehensive analysis of its
convergence properties, which, to our best knowledge, are currently not available in
the literature.

For all k \geq 0, define the mapping \scrQ k := \scrI  - \scrP k. Clearly, if 0 \in \scrT (z), we have that
\scrP k(z) = z and \scrQ k(z) = 0 for all k \geq 0. Similar to [41, Proposition 1], we summarize
the properties of \scrP k and \scrQ k in the following proposition.

Proposition 2.2. It holds for all k \geq 0 that
(a) z = \scrP k(z) +\scrQ k(z) and c

 - 1
k \scrM k\scrQ k(z) \in \scrT (\scrP k(z)) for all z \in \scrX ;

(b) \langle \scrP k(z) - \scrP k(z
\prime ), \scrQ k(z) - \scrQ k(z

\prime )\rangle \scrM k
\geq 0 for all z, z\prime \in \scrX ;

(c) \| \scrP k(z) - \scrP k(z
\prime )\| 2\scrM k

+ \| \scrQ k(z) - \scrQ k(z
\prime )\| 2\scrM k

\leq \| z  - z\prime \| 2\scrM k
for all z, z\prime \in \scrX .

Proof. The proof can be obtained via simple calculations and is similar to the
proof of [41, Proposition 1]. We omit the details here.

We list the following two general criteria for the approximate calculation of \scrP k(z
k),

which are analogous to those proposed in [41]:

(A) \| zk+1  - \scrP k(z
k)\| \scrM k

\leq \epsilon k, 0 \leq \epsilon k,
\sum \infty 

k=0\epsilon k <\infty ,

(B) \| zk+1  - \scrP k(z
k)\| \scrM k

\leq \delta k\| zk+1  - zk\| \scrM k
, 0 \leq \delta k < 1,

\sum \infty 
k=0\delta k <\infty .

Theorem 2.3. Suppose that \Omega = \scrT  - 1(0) \not = \emptyset . Let \{ zk\} be any sequence generated
by the mPPA (2.1) under criterion (A). Then \{ zk\} is bounded and

(2.4) dist\scrM k+1
(zk+1,\Omega ) \leq (1 + \nu k)dist\scrM k

(zk,\Omega ) + (1 + \nu k)\epsilon k \forall k \geq 0.

In addition, \{ zk\} converges to a point z\infty such that 0 \in \scrT (z\infty ).

Proof. Let \=z \in \scrX be a point satisfying 0 \in \scrT (\=z). It is readily shown that
\=z = \scrP k(\=z). We have

(2.5) \| zk+1  - \=z\| \scrM k
 - \epsilon k \leq \| \scrP k(z

k) - \=z\| \scrM k
= \| \scrP k(z

k) - \scrP k(\=z)\| \scrM k
\leq \| zk  - \=z\| \scrM k

.
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Since (1 + \nu k)\scrM k \succeq \scrM k+1, we know that

(2.6) \| zk+1  - \=z\| \scrM k+1
\leq (1 + \nu k)\| zk+1  - \=z\| \scrM k

\leq (1 + \nu k)\| zk  - \=z\| \scrM k
+ (1 + \nu k)\epsilon k.

Let \Pi \Omega (z) denote the projection of z onto \Omega . By noting that 0 \in \scrT (\Pi \Omega (z
k)), we get

from the above inequality (by setting \=z = \Pi \Omega (z
k)) that

dist\scrM k+1
(zk+1,\Omega ) \leq \| zk+1  - \Pi \Omega (z

k)\| \scrM k+1

\leq (1 + \nu k)\| zk  - \Pi \Omega (z
k)\| \scrM k

+ (1 + \nu k)\epsilon k

= (1 + \nu k)dist\scrM k
(zk,\Omega ) + (1 + \nu k)\epsilon k.

Since
\infty \sum 
k=0

(1 + \nu k)\epsilon k \leq 
\infty \sum 
k=0

\epsilon k + (max
k\geq 0

\epsilon k)

\infty \sum 
k=0

\nu k < +\infty ,

we know from [35, Lemma 2.2.2], (2.5), and (2.6) that
(2.7)
lim
k\rightarrow \infty 

\| zk  - \=z\| \scrM k
= lim

k\rightarrow \infty 
\| zk+1 - \=z\| \scrM k

= \mu <\infty and lim
k\rightarrow \infty 

\| \scrP k(z
k) - \=z\| \scrM k

= \mu .

The boundedness of \{ zk\} thus follows directly from the fact that \scrM k \succeq \lambda min\scrI for all
k \geq 0. Therefore, \{ zk\} has at least one cluster point z\infty .

From Proposition 2.2, we know that for all k \geq 0

(2.8) 0 \leq \| \scrQ k(z
k)\| 2\scrM k

\leq \| zk  - \=z\| 2\scrM k
 - \| \scrP k(z

k) - \=z\| 2\scrM k
.

Therefore, limk\rightarrow \infty \| \scrQ k(z
k)\| 2\scrM k

= 0. It follows that

(2.9) lim
k\rightarrow \infty 

c - 1
k \scrM k\scrQ k(z

k) = lim
k\rightarrow \infty 

\scrQ k(z
k) = 0,

because the number ck is bounded away from zero and \scrM k \succeq \lambda min\scrI for all k \geq 0.
Since

\| \scrQ k(z
k)\| \scrM k

= \| (zk  - zk+1) + (zk+1  - \scrP k(z
k))\| \scrM k

\geq \| zk  - zk+1\| \scrM k
 - \epsilon k,

we further have limk\rightarrow \infty \| zk  - zk+1\| = 0.
Since z\infty is a cluster point of zk and

lim
k\rightarrow \infty 

\| \scrP k(z
k) - zk+1\| = lim

k\rightarrow \infty 
\| zk+1  - zk\| = 0,

z\infty is also a cluster point of \scrP k(z
k). From Proposition 2.2(a), we have that for any

w \in \scrT (z)
0 \leq \langle z  - \scrP k(z

k), w  - c - 1
k \scrM k\scrQ k(z

k)\rangle \forall k \geq 0,

which, together with (2.9), implies

0 \leq \langle z  - z\infty , w\rangle \forall z, w satisfying w \in \scrT (z).

From the maximality of \scrT , we know that 0 \in \scrT (z\infty ). Hence, we can replace \=z in (2.7)
by z\infty . Therefore,

lim
k\rightarrow \infty 

\| zk  - z\infty \| \scrM k
= 0.

That is limk\rightarrow \infty zk = z\infty .
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Next, we study the convergence rate of the preconditioned PPA. The following
error bound assumption associated with \scrT is critical to the study of the convergence
rate of the preconditioned PPA.

Assumption 2. For any r > 0, there exists \kappa > 0 such that

(2.10) dist(x, \scrT  - 1(0)) \leq \kappa dist(0, \scrT (x)) \forall x \in \scrX satisfying dist(x, \scrT  - 1(0)) \leq r.

In Rockafellar's classic work [41], the asymptotic Q-superlinear convergence of
PPA is established under the assumption that \scrT  - 1 is Lipschitz continuous at zero.
Note that the Lipschitz continuity assumption on \scrT  - 1 is rather restrictive, since it
implicitly implies that \scrT  - 1(0) is a singleton. In [29], Luque extended Rockafellar's
work by considering the following relaxed condition over \scrT : there exist \gamma > 0 and
\epsilon > 0 such that

(2.11) dist(x, \scrT  - 1(0)) \leq \gamma dist(0, \scrT (x)) \forall x \in \{ x \in \scrX | dist(0, \scrT (x)) < \epsilon \} .

We show in the following lemma that this condition in fact implies Assumption 2.
Thus, our Assumption 2 is quite mild and weaker than condition (2.11).

Lemma 2.4. Let F be a multifunction from \scrX to \scrY with F - 1(0) \not = \emptyset . If F satisfies
condition (2.11), then Assumption 2 holds for F , i.e., for any r > 0, there exists \kappa > 0
such that

dist(x, F - 1(0)) \leq \kappa dist(0, F (x)) \forall x \in \scrX satisfying dist(x, F - 1(0)) \leq r.

Proof. Since F satisfies condition (2.11), there exist \varepsilon > 0 and \kappa 0 \geq 0 such that if
x \in \scrX satisfies dist(0, F (x)) < \varepsilon , then

dist(x, F - 1(0)) \leq \kappa 0dist(0, F (x)).

For any r > 0 and x satisfying dist(x, F - 1(0)) \leq r, if dist(0, F (x)) < \epsilon , then
dist(x, F - 1(0)) \leq \kappa 0dist(0, F (x)); otherwise if dist(0, F (x)) \geq \epsilon , then

dist(0, F (x)) \geq \epsilon \geq \epsilon 

r
dist(x, F - 1(0)),

i.e., dist(x, F - 1(0)) \leq r
\epsilon dist(0, F (x)). Therefore, the desired inequality holds for

\kappa = max\{ \kappa 0, r\epsilon \} .
Remark 1. In fact, condition (2.11) is exactly the local upper Lipschitz continuity

of \scrT  - 1 at the origin, which was introduced by Robinson in [38]. Later, Robinson
established in [39] the celebrated result that every polyhedral multifunction is locally
upper Lipschitz continuous, i.e., satisfies condition (2.11). Thus from Lemma 2.4, we
know that any polyhedral multifunction F with F - 1(0) \not = \emptyset satisfies Assumption 2.
We note that Assumption 2 is also employed and studied in [53].

Since the nonnegative sequences \{ \nu k\} and \{ \epsilon k\} in condition (2.2) and the stopping
criterion (A), respectively, are summable, we know that 0 < \Pi \infty 

k=0(1 + \nu k) < +\infty and
we can choose r to be a positive number satisfying r >

\sum \infty 
k=0 \epsilon k(1 + \nu k). Assume that

\scrT satisfies Assumption 2; then associated with r, there exists a positive constant \kappa 
such that (2.10) holds. With these preparations, we prove in the following theorem the
asymptotic Q-superlinear (R-superlinear) convergence of the weighted (unweighted)
distance between the sequence generated by the preconditioned PPA and \Omega .
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Theorem 2.5. Suppose that \Omega \not = \emptyset and the initial point z0 satisfies

dist\scrM 0
(z0,\Omega ) \leq 

r  - 
\sum \infty 

k=0 \epsilon k(1 + \nu k)

\Pi \infty 
k=0(1 + \nu k)

.

Let \{ zk\} be the infinite sequence generated by the preconditioned PPA under criteria
(A) and (B) with \{ ck\} nondecreasing (ck \uparrow c\infty \leq \infty ). Then for all k \geq 0, it holds that

(2.12) dist\scrM k+1
(zk+1,\Omega ) \leq \mu kdist\scrM k

(zk,\Omega ),

where \mu k = (1 + \nu k)(1 - \delta k)
 - 1

\bigl( 
\delta k + (1 + \delta k)\kappa \lambda max(\scrM k)/

\sqrt{} 
c2k + \kappa 2\lambda 2max(\scrM k)

\bigr) 
and

(2.13) lim sup
k\rightarrow \infty 

\mu k = \mu \infty =
\kappa \lambda \infty \sqrt{} 

c2\infty + \kappa 2\lambda 2\infty 
< 1 (\mu \infty = 0 if c\infty = \infty )

with \lambda \infty given in (2.2). In addition, one has that for all k \geq 0,

(2.14) dist(zk+1,\Omega ) \leq \mu k\sqrt{} 
\lambda min(\scrM k+1)

dist\scrM k
(zk,\Omega ).

Proof. From (2.4) in Theorem 2.3, we know that for all k \geq 0, dist\scrM k
(zk,\Omega ) \leq 

\Pi \infty 
k=0(1 + \nu k)dist\scrM 0

(z0,\Omega ) +
\sum \infty 

k=0 \epsilon k(1 + \nu k) \leq r, and consequently,

dist\scrM k
(\scrP k(z

k),\Omega ) \leq \| \scrP k(z
k) - \Pi \Omega (z

k)\| \scrM k

= \| \scrP k(z
k) - \scrP k(\Pi \Omega (z

k))\| \scrM k
\leq dist\scrM k

(zk,\Omega ) \leq r \forall k \geq 0.

From Proposition 2.2(a), we have

c - 1
k \scrM k\scrQ k(z

k) \in \scrT (\scrP k(z
k)),

which, together with Assumption 2, implies that for all k \geq 0

dist(\scrP k(z
k),\Omega ) \leq \kappa c - 1

k \| \scrM k\scrQ k(z
k)\| .

It further implies that for all k \geq 0,

1\sqrt{} 
\lambda max(\scrM k)

dist\scrM k
(\scrP k(z

k),\Omega ) \leq dist(\scrP k(z
k),\Omega ) \leq 

\sqrt{} 
\lambda max(\scrM k)\kappa c

 - 1
k \| \scrQ k(z

k)\| \scrM k
.

Now taking \=z = \Pi \Omega (z
k), we deduce from (2.8) that for all k \geq 0,

(2.15)
\| \scrQ k(z

k)\| 2\scrM k
\leq \| zk  - \Pi \Omega (z

k)\| 2\scrM k
 - \| \scrP k(z

k) - \Pi \Omega (z
k)\| 2\scrM k

\leq dist2\scrM k
(zk,\Omega ) - dist2\scrM k

(\scrP k(z
k),\Omega ).

Therefore, it holds that

(2.16) dist\scrM k
(\scrP k(z

k),\Omega ) \leq \kappa \lambda max(\scrM k)\sqrt{} 
c2k + \kappa 2\lambda 2max(\scrM k)

dist\scrM k
(zk,\Omega ) \forall k \geq 0.

Under stopping criterion (B), we further have for all k \geq 0,

\| zk+1  - \Pi \Omega (\scrP k(z
k))\| \scrM k

\leq \| zk+1  - \scrP k(z
k)\| \scrM k

+ \| \scrP k(z
k) - \Pi \Omega (\scrP k(z

k))\| \scrM k

\leq \delta k\| zk+1  - zk\| \scrM k
+ \| \scrP k(z

k) - \Pi \Omega (\scrP k(z
k))\| \scrM k

\leq \delta k
\bigl( 
\| zk+1  - \Pi \Omega (\scrP k(z

k))\| \scrM k
+ \| zk  - \Pi \Omega (\scrP k(z

k))\| \scrM k

\bigr) 
+ \| \scrP k(z

k) - \Pi \Omega (\scrP k(z
k))\| \scrM k

.
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Thus,

(1 - \delta k)\| zk+1  - \Pi \Omega (\scrP k(z
k))\| \scrM k

\leq \delta k\| zk  - \Pi \Omega (\scrP k(z
k))\| \scrM k

+ \| \scrP k(z
k) - \Pi \Omega (\scrP k(z

k))\| \scrM k
.

Now

\delta k\| zk  - \Pi \Omega (\scrP k(z
k))\| \scrM k

\leq \delta k\| \scrP k(z
k) - \Pi \Omega (\scrP k(z

k))\| \scrM k
+ \delta k\| \scrQ k(z

k)\| \scrM k

\leq \delta k\| \scrP k(z
k) - \Pi \Omega (\scrP k(z

k))\| \scrM k
+ \delta kdist\scrM k

(zk,\Omega ),

where the last inequality follows from (2.15). By using the above inequality in the
previous one, we get

(1 - \delta k)\| zk+1  - \Pi \Omega (\scrP k(z
k))\| \scrM k

\leq \delta kdist\scrM k
(zk,\Omega ) + (1 + \delta k)dist\scrM k

(\scrP k(z
k),\Omega ).

Therefore, from the last inequality and (2.16), it holds that for all k \geq 0,

dist\scrM k+1
(zk+1,\Omega ) \leq (1 + \nu k)dist\scrM k

(zk+1,\Omega )

\leq (1 + \nu k)\| zk+1  - \Pi \Omega (\scrP k(z
k))\| \scrM k

\leq \mu kdist\scrM k
(zk,\Omega ),

where \mu k = (1 + \nu k)(1 - \delta k)
 - 1(\delta k + (1 + \delta k)\kappa \lambda max(\scrM k)/

\sqrt{} 
c2k + \kappa 2\lambda 2max(\scrM k)) . That

is, (2.12) holds for all k \geq 0. Since for all k \geq 0, \scrM k \succeq \lambda min\scrI , (2.13) and (2.14) can
be obtained through simple calculations.

Remark 2. In the theorem, the assumption on the initial point z0 is inspired by
the similar one assumed in [53, Lemma 4.1]. Suppose that \{ \delta k\} in criterion (B) is
nonincreasing and \nu k \equiv 0 for all k \geq 0. Since \{ ck\} is nondecreasing and \lambda max(\scrM k) is
nonincreasing, we know that \{ \mu k\} is nonincrasing. Therefore, if one chooses c0 large
enough such that \mu 0 < 1, then we have \mu k \leq \mu 0 < 1 for all k \geq 0. The inequality
(2.12) thus implies the global Q-linear convergence of \{ dist\scrM k

(zk,\Omega )\} . In addition,
(2.14) implies that for all k \geq 0,

dist(zk+1,\Omega ) \leq 
\bigl( 
dist\scrM 0(z

0,\Omega )/
\sqrt{} 
\lambda min

\bigr) 
\Pi k

i=0\mu i \leq (\mu 0)
k+1

\bigl( 
dist\scrM 0(z

0,\Omega )/
\sqrt{} 
\lambda min

\bigr) 
,

i.e., \{ dist(zk,\Omega )\} converges globally R-linearly.

3. A semismooth Newton proximal augmented Lagragian method. Note
that we can equivalently rewrite problem (D) in the following minimization form:

(D)  - min
\Bigl\{ 
g(y) := \delta \ast K(A\ast y  - c) - bT y

\Bigr\} 
.

Associated with this unconstrained formulation, we write the augmented Lagrangian
function following the framework developed in [43, Examples 11.46 and 11.57]. To do
so, we first identify (D) with the problem of minimizing g(y) = \widetilde g(y, 0) over \BbbR m for

\widetilde g(y, \xi ) =  - bT y + \delta \ast K(A\ast y  - c+ \xi ) \forall (y, \xi ) \in \BbbR m \times \BbbR n.

Obviously, \widetilde g is jointly convex in (y, \xi ). Now, we are able to write down the Lagrangian
function l : \BbbR m \times \BbbR n through partial dualization as follows:

l(y;x) := inf
\xi 
\{ \widetilde g(y, \xi ) - \langle x, \xi \rangle \} =  - bT y  - \langle x, c - A\ast y\rangle  - \delta K(x).
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Thus, the KKT conditions associated with (P) and (D) are given by

(3.1)  - b+Ax = 0, A\ast y  - c \in \partial \delta K(x), (x, y) \in \BbbR n \times \BbbR m.

Given \sigma > 0, the augmented Lagrangian function corresponding to (D) can be obtained
by

L\sigma (y;x) := sup
s\in \BbbR n

\Bigl\{ 
l(y; s) - 1

2\sigma 
\| s - x\| 2

\Bigr\} 
=  - bT y  - inf

s\in \BbbR n

\Bigl\{ 
\delta K(s) + \langle s, c - A\ast y\rangle + 1

2\sigma 
\| s - x\| 2

\Bigr\} 
=  - bT y - \langle \Pi K(x - \sigma (c - A\ast y)), c - A\ast y\rangle  - 1

2\sigma 
\| \Pi K(x - \sigma (c - A\ast y)) - x\| 2.

We propose to solve (D) via an inexact proximal augmented Lagrangian method. Our
algorithm is named the semismooth Newton inexact proximal augmented Lagrangian
(Snipal) method because we will design a semismooth Newton method to solve the
underlying augmented Lagrangian subproblems. Its template is given as follows.

Algorithm 3.1. Snipal: Semismooth Newton inexact proximal augmented La-
grangian.

Let \sigma 0, \sigma \infty > 0 be given parameters, \{ \tau k\} \infty k=0 be a given nonincreasing sequence such
that \tau k > 0 for all k \geq 0. Choose (x0, y0) \in \BbbR n \times \BbbR m. For k = 1, . . . , perform the
following steps in each iteration.
Step 1. Compute

(3.2) yk+1 \approx argminy\in \BbbR m

\Bigl\{ 
L\sigma k

(y;xk) +
\tau k
2\sigma k

\| y  - yk\| 2
\Bigr\} 

via the semismooth Newton method.
Step 2. Compute xk+1 = \Pi K

\bigl( 
xk  - \sigma k(c - A\ast yk+1)

\bigr) 
.

Step 3. Update \sigma k+1 \uparrow \sigma \infty \leq \infty .

Note that unlike the case in the classic proximal method of multipliers in [42]
with \tau k \equiv 1 for all k, we allow an adaptive choice of the parameter \tau k in the proximal
term \tau k

2\sigma k
\| y  - yk\| 2 in the inner subproblem (3.2) of the Snipal algorithm. Here, the

proximal term is added to guarantee the existence of the optimal solution to the inner
subproblem (3.2) and to ensure the positive definiteness of the coefficient matrix of
the underlying semismooth Newton linear system. Moreover, our numerical experience
with Snipal indicates that having the additional flexibility of choosing the parameter
\tau k can help to improve the practical performance of the algorithm. We emphasize
here that comparing to [42], our modifications focus more on the computational and
implementational aspects.

While the introduction of the parameters \{ \tau k\} brings us more flexibility and
some promising numerical advantages, it also makes the convergence analysis of the
algorithm more challenging. Fortunately, we are able to rigorously characterize the
connection between our Snipal Algorithm and the preconditioned PPA studied in
section 2. As one will see in the subsequent text, this connection allows us to conduct a
comprehensive convergence analysis for the Snipal Algorithm. From the convergence
analysis, we also note that \tau k

2\sigma k
\| y  - yk\| 2 can be replaced by a more general proximal

term, i.e., 1
2\sigma k

\| y  - yk\| 2Tk
with a symmetric positive definite matrix Tk.
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3.1. Global convergence properties of SNIPAL. In this section, we present
a comprehensive analysis for the convergence properties of Snipal. The global conver-
gence and global linear-rate convergence of Snipal are presented as an application of
the theory of the preconditioned PPA.

To establish the connection between Snipal and the preconditioned PPA, we first
introduce some notation. To this end, for k = 0, 1, . . . and any given (\=y, \=x) \in \BbbR m \times \BbbR n,
define the function

(3.3) Pk(\=y, \=x) := argminimax
y,x

\Bigl\{ 
l(y, x) +

\tau k
2\sigma k

\| y  - \=y\| 2  - 1

2\sigma k
\| x - \=x\| 2

\Bigr\} 
.

Corresponding to the closed proper convex-concave function l, we can define the
maximal monotone operator \scrT l [40, Corollary 37.5.2], by

\scrT l(y, x) := \{ (y\prime , x\prime ) | (y\prime , - x\prime ) \in \partial l(y, x)\} 

= \{ (y\prime , x\prime ) | y\prime =  - b+Ax, x\prime \in c - A\ast y + \partial \delta K(x)\} ,

whose corresponding inverse operator is given by

(3.4) \scrT  - 1
l (y\prime , x\prime ) := argminimax

y,x
\{ l(y, x) - \langle y\prime , y\rangle + \langle x\prime , x\rangle \} .

Since K is a polyhedral set, \partial \delta K is known to be a polyhedral multifunction (see, e.g.,
[27, p. 108]). As the sum of two polyhedral multifunctions is also polyhedral, \scrT l is also
polyhedral. Define, for k = 0, 1, . . . ,

(3.5) \Lambda k = Diag (\tau kIm, In) \succ 0.

The optimal solution of problem (3.3), i.e., Pk(\=y, \=x), can be obtained via the following
lemma.

Lemma 3.1. For all k \geq 0, it holds that

(3.6) Pk(\=y, \=x) = (\Lambda k + \sigma k\scrT l) - 1\Lambda k(\=y, \=x) \forall (\=y, \=x) \in \BbbR m \times \BbbR n.

If (y\ast , x\ast ) \in \scrT  - 1
l (0), then Pk(y

\ast , x\ast ) = (y\ast , x\ast ).

In Snipal, at the kth iteration, denote

(3.7) \psi k(y) := L\sigma k
(y;xk) +

\tau k
2\sigma k

\| y  - yk\| 2.

From the property of the proximal mapping, we know that \psi k is continuously differen-
tiable and

\nabla \psi k(y) =  - b+A\Pi K

\bigl( 
xk + \sigma k(A

\ast y  - c)
\bigr) 
+ \tau k\sigma 

 - 1
k (y  - yk).

As a generalization of Proposition 8 in [42], the following proposition about the weighted
distance between (yk+1, xk+1) generated by Snipal and Pk(y

k, xk) is important for
designing the stopping criteria for the subproblem (3.2) and establishing the connection
between Snipal and the preconditioned PPA.

Proposition 3.2. Let Pk, \Lambda k, and \psi k be defined in (3.3), (3.5), and (3.7), re-
spectively. Let (yk+1, xk+1) be generated by the Snipal algorithm at iteration k+ 1. It
holds that

(3.8) \| (yk+1, xk+1) - Pk(y
k, xk)\| \Lambda k

\leq \sigma k
min(

\surd 
\tau k, 1)

\| \nabla \psi k(y
k+1)\| .
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Proof. Since \nabla \psi k(y
k+1) = \nabla yL\sigma k

(yk+1, xk) + \tau k\sigma 
 - 1
k (yk+1  - yk), we have

\nabla \psi k(y
k+1) + \sigma  - 1

k \tau k(y
k  - yk+1) = \nabla yL\sigma k

(yk+1, xk),

which, by [42, Proposition 7], implies (\nabla \psi k(y
k+1)+\sigma  - 1

k \tau k(y
k - yk+1), \sigma  - 1

k (xk - xk+1)) \in 
\scrT l(yk+1, xk+1). Thus,

\sigma k(\nabla \psi k(y
k+1), 0) + \Lambda k

\bigl( 
(yk, xk) - (yk+1, xk+1)

\bigr) 
\in \sigma k\scrT l(yk+1, xk+1)

and \sigma k(\nabla \psi k(y
k+1), 0) + \Lambda k(y

k, xk) \in (\Lambda k + \sigma k\scrT l)(yk+1, xk+1), or equivalently,

(yk+1, xk+1) = (\Lambda k + \sigma k\scrT l) - 1\Lambda k

\bigl( 
\Lambda  - 1
k (\sigma k\nabla \psi k(y

k+1), 0) + (yk, xk)
\bigr) 
.

Then, by Lemma 3.1 and Proposition 2.2, we know that

\| (yk+1, xk+1) - Pk(y
k, xk)\| \Lambda k

= \| (\Lambda k + \sigma k\scrT l) - 1\Lambda k

\bigl( 
\Lambda  - 1
k (\sigma k\nabla \psi k(y

k+1), 0) + (yk, xk)
\bigr) 

 - (\Lambda k + \sigma k\scrT l) - 1\Lambda k

\bigl( 
(yk, xk)

\bigr) 
\| \Lambda k

\leq \| \Lambda  - 1
k

\bigl( 
\sigma k\nabla \psi k(y

k+1), 0
\bigr) 
\| \Lambda k

\leq \sigma k
min (

\surd 
\tau k, 1)

\| \nabla \psi k(y
k+1)\| .

This completes the proof for the proposition.

Based on Proposition 3.2, we propose the following stopping criteria for the
approximate computation of yk+1 in Step 1 of Snipal:

(A\prime ) \| \nabla \psi k(y
k+1)\| \leq 

min(
\surd 
\tau k, 1)

\sigma k
\epsilon k, 0 \leq \epsilon k,

\infty \sum 
k=0

\epsilon k <\infty ,

(B\prime ) \| \nabla \psi k(y
k+1)\| \leq 

\delta k min(
\surd 
\tau k, 1)

\sigma k
\| (yk+1, xk+1) - (yk, xk)\| \Lambda k

,

0 \leq \delta k < 1,

\infty \sum 
k=0

\delta k <\infty .

For the convergence of Snipal, we also need the following assumption on \tau k.

Assumption 3. The positive sequence \{ \tau k\} is nonincreasing and bounded away
from zero, i.e., \tau k \downarrow \tau \infty > 0 for some positive constant \tau \infty .

Under Assumption 3, we have that for all k \geq 0,

\Lambda k \succeq \Lambda k+1 and \Lambda k \succeq min(1, \tau \infty )Im+n.

We now present the global convergence result for Snipal in the following theorem.
Similar to the case in [42], it is in fact a direct application of Theorem 2.3.

Theorem 3.3 (global convergence of Snipal). Suppose that Assumptions 1 and
3 hold. Let \{ (yk, xk)\} be the sequence generated by the Snipal algorithm with the
stopping criterion (A\prime ). Then \{ (yk, xk)\} is bounded. In addition, \{ xk\} converges to an
optimal solution of (P) and \{ yk\} converges to an optimal solution of (D), respectively.
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Since \scrT l is a polyhedral multifunction, we know from Lemma 2.4 and Remark 1
that \scrT l satisfies Assumption 2. Let r be a positive number satisfying r >

\sum \infty 
i=0 \epsilon k with

\epsilon k being the summable sequence in (A'). Then, there exists \kappa > 0 associated with r
such that for any (y, x) \in \BbbR m \times \BbbR n satisfying dist((y, x), \scrT  - 1

l (0)) \leq r,

(3.9) dist((y, x), \scrT  - 1
l (0)) \leq \kappa dist(0, \scrT l(y, x)).

As an application of Theorem 2.5, we are now ready to show the asymptotic superlinear
convergence of Snipal in the following theorem.

Theorem 3.4 (asymptotic superlinear convergence of Snipal). Suppose that As-
sumptions 1 and 3 hold and the initial z0 := (y0, x0) satisfies dist\Lambda 0(z

0, \scrT  - 1
l (0)) \leq 

r  - 
\sum \infty 

i=0 \epsilon k. Let \kappa be the modulus given in (3.9) and \{ zk := (yk, xk)\} be the infinite
sequence generated by the preconditioned PPA under criteria (A\prime ) and (B\prime ). Then, for
all k \geq 0, it holds that

(3.10)

dist\Lambda k+1
(zk+1, \scrT  - 1

l (0)) \leq \mu kdist\Lambda k
(zk, \scrT  - 1

l (0)),

dist(zk+1, \scrT  - 1
l (0)) \leq \mu k\sqrt{} 

min(1, \tau k+1)
dist\Lambda k

(zk, \scrT  - 1
l (0)),

where \mu k = (1 - \delta k)
 - 1

\Bigl( 
\delta k + (1 + \delta k)\kappa \gamma k/

\sqrt{} 
\sigma 2
k + \kappa 2\gamma 2k

\Bigr) 
with \gamma k := max(\tau k, 1) and

lim
k\rightarrow \infty 

\mu k = \mu \infty =
\kappa \gamma \infty \sqrt{} 

\sigma 2
\infty + \kappa 2\gamma 2\infty 

< 1 (\mu \infty = 0 if \sigma \infty = \infty )

with \gamma \infty = max(\tau \infty , 1).

Remark 3. Suppose that \{ \delta k\} in criterion (B\prime ) is nonincreasing. We know from
Remark 2 that if one chooses \sigma 0 large enough such that \mu 0 < 1, then \mu k \leq \mu 0 < 1 for all
k \geq 0. Thus, from (3.10), we have the global linear convergence of \{ dist\Lambda k

(zk, \scrT  - 1
l (0))\} 

and \{ dist(zk, \scrT  - 1
l (0))\} .

3.2. Semismooth Newton method for subproblems (3.2). In this subsec-
tion, we discuss how the subproblem (3.2) in Snipal can be solved efficiently. As is
mentioned in the name of Snipal, we propose to solve (3.2) via an inexact semismooth
Newton method, which converges at least locally superlinearly. In fact, the local
convergence rate can even be quadratic.

For given (\~x, \~y) \in \BbbR n \times \BbbR m and \tau , \sigma > 0, define the function \psi : \BbbR m \rightarrow \BbbR as

\psi (y) := L\sigma (y; \~x) +
\tau 

2\sigma 
\| y  - \~y\| 2 \forall y \in \BbbR m,

and we aim to solve

(3.11) min
y\in \BbbR m

\psi (y).

Note that \psi is strongly convex and continuously differentiable over \BbbR m with

\nabla \psi (y) =  - b+A\Pi K

\bigl( 
\~x+ \sigma (A\ast y  - c)

\bigr) 
+ \tau \sigma  - 1(y  - \~y).

Hence, we know that for any given \alpha \geq infy \psi (y), the level set \scrL \alpha := \{ y \in \BbbR m | \psi (y) \leq 
\alpha \} is a nonempty closed and bounded convex set. In addition, problem (3.11) has a
unique optimal solution which we denote as \=y.
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As an unconstrained optimization problem, the optimality condition for (3.11) is
given by

(3.12) \nabla \psi (y) = 0, y \in \BbbR m,

and \=y is the unique solution to this nonsmooth equation. Since \Pi K is a Lipschitz
continuous piecewise affine function, we have that \nabla \psi is strongly semismooth. Hence,
we can solve the nonsmooth equation (3.12) via a semismooth Newton method. For
this purpose, we define the following operator:

\^\partial 2\psi (y) := \tau \sigma  - 1Im + \sigma A\partial \Pi K(\~x+ \sigma (A\ast y  - c))A\ast \forall y \in \BbbR m,

where \partial \Pi K(\~x+\sigma (A\ast y - c)) is the Clarke subdifferential [14] of the Lipschitz continuous
mapping \Pi K(\cdot ) at \~x+ \sigma (A\ast y  - c). Note that from [25, Example 2.5], we have that

\^\partial 2\psi (y)d = \partial 2\psi (y)d \forall d \in \BbbR m,

where \partial 2\psi (y) denotes the generalized Hessian of \psi at y. However, we caution the

reader that it is unclear whether \^\partial 2\psi (y) = \partial 2\psi (y). Given any y \in \BbbR m, define

(3.13) H := \tau \sigma  - 1Im + \sigma AUA\ast 

with U \in \partial \Pi K(\~x+ \sigma (A\ast y - c)). Then, we know that H \in \^\partial 2\psi (y) and H is symmetric
positive definite.

After these preparations, we are ready to present the following semismooth Newton
method for solving the nonsmooth equation (3.12) and we can expect a fast local
superlinear convergence.

Algorithm 3.2 . Ssn: A semismooth Newton method for solving (3.12)
(Ssn(\~x, \~y, \sigma , \tau )).

Given \tau > 0, \sigma > 0, choose parameters \=\eta \in (0, 1), \gamma \in (0, 1] and \mu \in (0, 1/2), \delta \in (0, 1)
and set y0 = \~y. Iterate the following steps for j = 0, 1, . . . .
Step 1. Choose Uj \in \partial \Pi K(\~x + \sigma (A\ast yj  - c)). Set Hj := \tau \sigma  - 1Im + \sigma AUjA

\ast . Solve
the linear system

(3.14) Hjd =  - \nabla \psi (yj)

exactly or by a Krylov iterative method to find dj such that \| Hjd
j+\nabla \psi (yj)\| \leq 

min(\=\eta , \| \nabla \psi (yj)\| 1+\gamma ).
Step 2. (Line search) Set \alpha j = \delta mj , where mj is the first nonnegative integer m for

which
\psi (yj + \delta mdj) \leq \psi (yj) + \mu \delta m\langle \nabla \psi (yj), dj\rangle .

Step 3. Set yj+1 = yj + \alpha jd
j .

The convergence results of the Ssn algorithm are stated in the following theorem.

Theorem 3.5. Let \{ yj\} be the infinite sequence generated by the Ssn algorithm.
It holds that \{ yj\} converges to the unique optimal solution \=y of (3.11) and \| yj+1 - \=y\| =
\scrO (\| yj  - \=y\| 1+\gamma ).

Proof. We know from [54, Proposition 3.3] that dj is always a descent direction.
Then, the strong convexity of \psi and [54, Theorem 3.4] imply that \{ yj\} converges
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to the unique optimal solution \=y of (3.11). By (3.13), we have that the symmetric

positive definite matrix Hj \in \^\partial 2\psi (yj) satisfies the property that Hj \succeq \tau \sigma  - 1Im for all
j. The desired results thus can be obtained by following the proof of [54, Theorem
3.5]. We omit the details here.

3.3. Finite termination property of SNIPAL. In our numerical experience
with SNIPAL, we observe that it nearly possesses a certain finite convergence property
for solving (P) and (D) when \sigma k and 1/\tau k are sufficiently large. We note that most
available theoretical results corresponding to the finite termination property of PPAs
require each subproblem involved to be solved exactly, e.g., see [41, 42] and [29]. Hence,
all these results cannot be directly adopted to support our numerical findings. In this
section, we aim to investigate the finite termination property of Snipal by showing
that it is possible to obtain a solution pair of (P) and (D) without requiring the exact
solutions of each and every subproblem involved in the algorithm.

Our analysis is based on an interesting property called the ``staircase property""
associated with subdifferential mappings of convex closed polyhedral functions. Let

f(x) := cTx+ \delta K(x) + \delta \{ x| Ax=b\} (x).

Clearly, f is a convex closed polyhedral function. From [18, section 6] and earlier work
in [16, 29], we know that its subdifferential mapping enjoys the following staircase
property, i.e., there exists \delta > 0 such that

(3.15) w \in \partial f(x), \| w\| \leq \delta \Rightarrow 0 \in \partial f(x).

Based on the staircase property of \partial f , we present the finite convergence property of
Snipal in the following theorem.

Theorem 3.6. Suppose that Assumptions 1 and 3 hold and let \{ (yl, xl)\} be the
infinite sequence generated by Snipal with the stopping criterion (A\prime ). For any given
k \geq 0, suppose that \=yk+1 is an exact solution to the following optimization problem:

\=yk+1 = argmin
y\in \BbbR m

L\sigma k
(y;xk).(3.16)

Then, the following results hold.
(a) The point \=xk+1 := \Pi K

\bigl( 
xk  - \sigma k(c  - A\ast \=yk+1)

\bigr) 
is the unique solution to the

following proximal problem:

min
\Bigl\{ 
cTx+

1

2\sigma k
\| x - xk\| 2 | Ax = b, x \in K

\Bigr\} 
.(3.17)

(b) There exists a positive scalar \=\sigma independent of k such that for all \sigma k \geq \=\sigma ,
\=xk+1 also solves the problem (P).

(c) If xk is a solution of (P), then \=yk+1 also solves (D).

Proof. (a) Observe that the dual of (3.16) is exactly (3.17), and the KKT condi-
tions associated with (3.16) and (3.17) are given as follows:

x = \Pi K

\bigl( 
xk  - \sigma k(c - A\ast y)

\bigr) 
, Ax - b = 0.(3.18)

Since \=yk+1 is a solution of the problem (3.16), it holds from the optimality condition
associated with (3.16) that A\Pi K(xk  - \sigma k(c - A\ast \=yk+1)) = b. Thus, (\=xk+1, \=yk+1) satisfy
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(3.18). Therefore, \=xk+1 solves (3.17). The uniqueness of \=xk+1 follows directly from
the strong convexity of (3.17).

(b) By Theorem 3.3, we know that xl \rightarrow x\ast as l \rightarrow \infty for some x\ast \in \partial f - 1(0).
Therefore, there exists a constant M > 0 (independent of k) such that

(3.19) \| xl  - x\ast \| \leq M \forall l \geq 0.

From the optimality of \=xk+1 and the definition of f , we have that

1

\sigma k
(xk  - \=xk+1) \in \partial f(\=xk+1).

It also holds from the nonexpansive property of the proximal mapping that \| \=xk+1  - 
x\ast \| \leq \| xk  - x\ast \| , which, together with (3.19), further implies that

\| \=xk+1  - xk\| \leq 2\| xk  - x\ast \| \leq 2M.

Therefore, there exists \=\sigma > 0 (independent of k) such that for all \sigma k \geq \=\sigma and k \geq 0,

1

\sigma k
\| \=xk+1  - xk\| \leq 2M

\=\sigma 
\leq \delta ,

where \delta > 0 is the constant given in (3.15). Thus, by using the staircase property
(3.15), we know that

0 \in \partial f(\=xk+1).

That is, \=xk+1 solves the problem (P).
(c) Next, consider the case when xk is a solution of (P). From the minimization

property of xk, it is clear that the unique solution of (3.17) must be \=xk+1 = xk.
Thus, xk = \Pi K

\bigl( 
xk  - \sigma k(c - A\ast \=yk+1)

\bigr) 
and Axk = b. Note that it can be equivalently

rewritten as
A\ast \=yk+1  - c \in \partial \delta K(xk), Axk = b,

i.e., (xk, \=yk+1) satisfy the KKT conditions for (P) and (D) in (3.1). Thus, \=yk+1 solves
(D).

Remark 4. We now remark on the significance of the above theorem. Essentially,
it says that when \sigma k is sufficiently large with \sigma k \geq \=\sigma , then \=xk+1 solves (P), and it
holds that \=yk+2 = argminL\sigma k+1

(y; \=xk+1) solves (D).
From the fact that the Ssn method used to solve (3.12) has the finite termination

property [21, 46], we know that yk+1 computed in Step 1 of Snipal is in fact the exact
solution of the subproblem min\psi k(y) when the corresponding linear system is solved
exactly. In addition, when \sigma k is sufficiently large and \tau k is small enough, we have that

0 = \nabla L\sigma k
(yk+1;xk) + \tau k\sigma 

 - 1
k (yk+1  - yk) \approx \nabla L\sigma k

(yk+1;xk),

and consequently, yk+1 can be regarded as a highly accurate solution to the problem
minL\sigma k

(y;xk). In this sense, Theorem 3.6 explains the finite termination phenomenon
in the practical performance of Snipal.

4. Solving the linear systems arising from the semismooth Newton
method. Note that the most expensive operation in the Ssn algorithm is the com-
putation of the search direction d \in \BbbR m through solving the linear system (3.14). To
ensure the efficiency of Ssn and consequently that of Snipal, in this section, we shall
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discuss efficient approaches for solving (3.14) in the Ssn Algorithm. Given c, \~x \in \BbbR n,
\~y \in \BbbR m, the parameters \tau , \sigma > 0, and the current iterate of Ssn \^y \in \BbbR m, let

g :=  - \nabla \psi (\^y) = Rp  - \tau \sigma  - 1(\^y  - \~y),

where Rp = b - A\Pi K(w(\^y)) with w(\^y) := \~x+ \sigma (A\ast \^y  - c). At each Ssn iteration, we
need to solve a linear system of the form

H\Delta y = g,(4.1)

where H = \tau \sigma  - 1Im + \sigma AUA\ast with U \in \partial \Pi K(w(\^y)). Define the index set \scrJ =
\{ i | li < [w(\^y)]i < ui, i = 1, . . . , n\} and p = | \scrJ | , i.e., the cardinality of \scrJ . In the
implementation, we always construct the generalized Jacobian matrix U \in \partial \Pi K(w(\^y))
as a diagonal matrix in the following manner:

U = Diag(u) with ui =

\Biggl\{ 
1 if i \in \scrJ ,
0 otherwise,

i = 1, . . . , n.

Without loss of generality, we can partition A \equiv [A\scrJ , A\scrN ] with A\scrJ \in \BbbR m\times p, A\scrN \in 
\BbbR m\times (n - p), and hence

H = \sigma A\scrJ A
\ast 
\scrJ + \tau \sigma  - 1Im = \sigma (A\scrJ A

\ast 
\scrJ + \rho Im),(4.2)

where \rho := \tau \sigma  - 2. To solve the linear system (4.1) efficiently, we need to consider
various scenarios. In the discussion below, we use \ttn \ttn \ttz \ttd \tte \ttn (M) to denote the density of
the nonzero elements of a given matrix M .

(a) First, we consider the case where p \geq m and the sparse Cholesky factorization
of A\scrJ A

\ast 
\scrJ can be computed at a moderate cost. In this case, the main cost of solving

the linear system is in forming the matrix A\scrJ A
\ast 
\scrJ at the cost of O(m2p \ttn \ttn \ttz \ttd \tte \ttn (A\scrJ ))

and computing the sparse Cholesky factorization of A\scrJ A
\ast 
\scrJ + \rho Im.

Observe that the index set \scrJ generally changes from one SSN iteration to the
next. However, when the SSN method is converging, the index set \scrJ may only change
slightly from the current iteration to the next. In this case, one can update the inverse
of H via a low-rank update by using the Sherman--Morrison--Woodbury formula [23,
p. 65].

When it is expensive to compute and factorize H, one would naturally use a
PCG method or the MINRES (minimim residual) method to solve (4.1). Note that
in our implementation, we used the diagonal preconditioner for simplicity. For more
elaborate numerical implementation in the future, one could explore more sophisticated
preconditioners such as incomplete Cholesky factorizations or those proposed in [10, 45].
Observe that the condition number of H is given by \kappa (H) = (\omega 2

max + \rho )/(\omega 2
min + \rho ) if

p \geq m, where \omega max, \omega min are the largest and smallest singular value of A\scrJ , respectively.
Note that when A is not explicitly given as a matrix, one can compute the matrix-
vector product Hv as follows: Hv = \sigma \rho v + \sigma A(e\scrJ \circ (A\ast v)), where e\scrJ \in \BbbR n is a 0-1
vector whose nonzero entries are located at the index set \scrJ , and ``\circ "" denotes the
elementwise product.

(b) Next we consider the case where p < m. In this case, it is more economical to
solve (4.1) by using the Sherman--Morrison--Woodbury formula to get

\Delta y = H - 1g = \tau  - 1\sigma 
\bigl( 
Im  - P\scrJ 

\bigr) 
g,(4.3)

where P\scrJ = A\scrJ G
 - 1A\ast 

\scrJ , G = \rho Ip +A\ast 
\scrJ A\scrJ \in \BbbR p\times p. Thus to compute \Delta y, one needs

only to solve a smaller p\times p linear system of equations Gv = A\ast 
\scrJ g. Observe that when
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\rho is close to zero, \Delta y is approximately the orthogonal projection of \tau  - 1\sigma g onto the
null space of A\ast 

\scrJ .
To solve (4.3), one can compute the sparse Cholesky factorization of the symmetric

positive definite matrix G \in \BbbR p\times p if the task can be done at a reasonable cost.
In this case, the main cost involved in (4.3) is in computing A\ast 

\scrJ A\scrJ at the cost
of O(p2m \ttn \ttn \ttz \ttd \tte \ttn (A\scrJ )) operations and the sparse Cholesky factorization of G =
\rho Ip +A\ast 

\scrJ A\scrJ .
When it is too expensive to compute and factorize G, one can use a Krylov iterative

method to solve the p\times p linear system of equations:

(4.4) Gv = (\rho Ip +A\ast 
\scrJ A\scrJ )v = A\ast 

\scrJ g.

To estimate the convergence rate of the Krylov iterative method, it is important for us
to analyze the conditioning of the above linear system, as is done in the next theorem.

Theorem 4.1. Let B \in \BbbR m\times p with p < m. Consider linear system Gv = B\ast g,
where G = B\ast B + \rho Ip and g \in \BbbR m. Then the effective condition number for solving
the system by the MINRES method with zero initial point is given by

\kappa =
\omega 2
max + \rho 

\omega 2
min + \rho 

,

where \omega max is the largest singular value and \omega min > 0 is the smallest positive singular
value of B, respectively.

Proof. Consider the following full SVD of B:

B = U\Sigma V T = [U1, U2]

\biggl[ 
\^\Sigma 0
0 0

\biggr] \biggl[ 
V T
1

V T
2

\biggr] 
,

where \^\Sigma is the diagonal matrix consisting of the positive singular values of B. Let \BbbP 0
k

be the set of polynomials pk with degree at most k and pk(0) = 1. Then for pk \in \BbbP 0
k,

we have that

pk(G)B
\ast g = V pk(\Sigma 

T\Sigma + \rho I)\Sigma TUT g = [V1, V2]

\biggl[ 
pk(\^\Sigma 

2 + \rho I)\^\Sigma 0
0 0

\biggr] \biggl[ 
UT
1 g

UT
2 g

\biggr] 
= V1pk(\^\Sigma 

2 + \rho I)\^\Sigma UT
1 g.

Since the kth iteration of the MINRES method computes an approximate solution xk
such that its residual \xi = \=pk(G)B

\ast g satisfies the condition that

\| \xi \| = \| \=pk(G)B\ast g\| = min
pk\in \BbbP 0

k

\| pk(G)B\ast g\| \leq \| \^\Sigma UT
1 g\| min

pk\in \BbbP 0
k

\| pk(z)\| [\omega 2
min+\rho , \omega 2

max+\rho ],

we see that the convergence rate of the MINRES method is determined by the
best approximation of the zero function by the polynomials in P 0

k over the inter-
val [\omega 2

min + \rho , \omega 2
max + \rho ]. More specifically, by [44, Theorem 6.4], we have that

minpk\in \BbbP 0
k
\| pk(z)\| [\omega 2

min+\rho , \omega 2
max+\rho ] \leq 2\kappa  - k. Hence the convergence rate of the

MINRES method is determined by \kappa .

After (4.4) is solved via the MINRES method, one can compute the residual
vector associated with system (4.3) without much difficulty. Indeed, let the computed
solution of (4.3) be given as follows:\widehat \Delta y = \tau  - 1\sigma (g  - A\scrJ v),

where Gv = A\ast 
\scrJ g  - \xi with \xi being the residual vector obtained from the MINRES
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iteration. Now the residual vector associated with (4.3) is given by

\eta := g  - \scrH \widehat \Delta y = g  - \tau  - 1\sigma \scrH g + \tau  - 1\sigma \scrH A\scrJ G
 - 1(A\ast 

\scrJ g  - \xi )

= g  - \tau  - 1\sigma \scrH (g  - P\scrJ g) - \tau  - 1\sigma \scrH A\scrJ G
 - 1\xi 

=  - \tau  - 1\sigma \scrH A\scrJ G
 - 1\xi =  - \rho  - 1A\scrJ \xi ,

where the last equation follows directly from the fact that \scrH A\scrJ = \sigma A\scrJ G. Based on
the computed \eta , one can check the termination condition for solving the linear system
in (3.14).

Now, we are ready to bound the condition numbers of the Newton linear systems in-
volved in Snipal. As can be observed from the above discussions, for both cases (a) and
(b), the effective condition number of the linear system involved is upper bounded by

\kappa \leq 1 +
\omega 2
max

\rho 
,

where \omega max is the largest singular value of A\scrJ and \rho = \tau \sigma  - 2. Since A\scrJ is a submatrix
of A, it holds that \omega max \leq \| A\| 2. Hence, for any linear system involved in the kth
iteration of Snipal, we can provide an upper bound for the condition number as follows:

(4.5) \kappa \leq 1 +
\| A\| 22\sigma 2

k

\tau k
.

From our assumptions on Snipal, we note that \sigma k \leq \sigma \infty and \tau k \geq \tau \infty > 0 for all
k \geq 0. Hence, for all the linear systems involved in Snipal, there exists a uniform
upper bound for the corresponding condition number:

\kappa \leq 1 +
\| A\| 22\sigma 2

\infty 
\tau \infty 

.

As long as \sigma \infty < +\infty , we have shown that all these linear systems have bounded
condition numbers. This differs significantly from the setting in interior-point based
algorithms where the condition numbers of the corresponding normal equations are
asymptotically unbounded as the barrier parameter tends to 0. The competitive advan-
tage of Snipal can be partially explained from the above observation. Meanwhile, in the
kth iteration of Sinpal, to get a smaller upper bound based on (4.5), one should choose
a small \sigma k but large \tau k. However, the convergence rate of Snipal developed in Theorem
2.5 requires the opposite choice, i.e., a large \sigma k and \tau k should be moderate. The preced-
ing discussion thus reveals the trade-off between the convergence rate of the ALM and
the condition numbers of the Newton linear systems. Clearly, in the implementation
of Snipal, the parameters \{ \sigma k\} and \{ \tau k\} should be chosen to balance the progress
of the outer and inner algorithms, i.e., the ALM and the semismooth Newton method.

5. Warm-start algorithm for SNIPAL. As is mentioned in the introduction,
to achieve high performance, it is desirable to use a simple first-order algorithm to
warm-start Snipal so that its local linear convergence behavior can be observed
earlier. For this purpose, we present an ADMM algorithm for solving (D). We note
that a similar strategy has also been employed for solving large scale semidefinite
programming and quadratic semidefinite programming problems [51, 28].

We begin by rewriting (D) into the following equivalent form:

(5.1) min
\bigl\{ 
\delta \ast K( - z) - bT y | z +A\ast y = c

\bigr\} 
.
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Given \sigma > 0, the augmented Lagrangian function associated with (5.1) can be written
as

L\sigma (z, y;x) = \delta \ast K( - z) - bT y + \langle x, z +A\ast y  - c\rangle + \sigma 

2
\| z +A\ast y  - c\| 2

for all (x, y, z) \in \BbbR n\times \BbbR m\times \BbbR n. The template of the classical ADMM for solving (5.1)
is given as follows.

Algorithm 5.1. ADMM. An ADMM method for solving (5.1).

Given (x0, y0) \in \BbbR n \times \BbbR m and \gamma > 0, perform the following steps for k = 1, . . . ,
Step 1. Compute

zk+1 = argminL\sigma (z, y
k;xk)(5.2)

=
1

\sigma 

\bigl( 
\Pi K(xk + \sigma (A\ast yk  - c)) - (xk + \sigma (A\ast yk  - c))

\bigr) 
.

Step 2. Compute
(5.3)

yk+1 = argminL\sigma (z
k+1, y;xk) = (AA\ast ) - 1

\Bigl( 
b/\sigma  - A(xk/\sigma + zk+1  - c)

\Bigr) 
.

Step 3. Compute xk+1 = xk + \gamma \sigma (zk+1 +A\ast yk+1  - c).

The convergence of the above classical ADMM for solving the two-block optimiza-
tion problem (5.1) with the steplength \gamma \in (0, (1 +

\surd 
5)/2) can be readily obtained

from the vast literature on ADMM. Here, we adopt a newly developed result from
[12] stating that the above ADMM is in fact an inexact proximal ALM. This new
interpretation allows us to choose the steplength \gamma in the larger interval (0, 2), which
usually leads a better numerical performance when \gamma is chosen to be 1.9 instead of
1.618. We summarize the convergence results in the following theorem. A detailed
proof can be found in [12].

Theorem 5.1. Suppose that Assumption 1 holds and \gamma \in (0, 2). Let \{ (xk, yk, zk)\} 
be the sequence generated by the ADMM algorithm. Then, \{ xk\} converges to an optimal
solution of (P) and \{ (yk, zk)\} converges to an optimal solution of (5.1), respectively.

Remark 5. In the above algorithm, one can also handle (5.3) by adding an appro-
priate proximal term or by using an iterative method (with appropriate preconditioning
techniques) to solve the corresponding linear system. The convergence of the resulting
proximal or inexact ADMM with steplength \gamma \in (0, 2) has also been discussed in [12].
For simplicity, we only discussed the exact version here.

6. Numerical experiments. In this section, we evaluate the performance of
Snipal against the powerful commercial solver Gurobi (version 8.0.1) on various LP
data sets. Our goal is to compare the performance of our algorithm against the barrier
method implemented in Gurobi in terms of its speed and ability to solve the tested
instances to the relatively high accuracy of 10 - 6 or 10 - 8 in the relative KKT residual.
That is, for a given computed solution (x, y, z), we stop the algorithm when

\eta = max
\Bigl\{ \| b - Ax\| 

1 + \| b\| 
,
\| AT y + z  - c\| 

1 + \| c\| 
,
\| x - \Pi K(x - z)\| 
1 + \| x\| + \| z\| 

\Bigr\} 
\leq \ttT \tto \ttl ,(6.1)

where \ttT \tto \ttl is a given accuracy tolerance. We should note that it is possible to solve
an LP by using the primal or dual simplex methods in Gurobi, and those methods
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could sometimes be more efficient than the barrier method in solving large scale LPs.
However, as our Snipal algorithm is akin to a barrier method, in that each of its
semismooth Newton iteration also requires the solution of a linear system having the
form of normal equations just as in the case of the barrier method, we thus restrict
the comparison of our algorithm only to the barrier method in Gurobi. To purely use
the barrier method in Gurobi, we also turn off its crossover capability from the barrier
method to simplex methods. We should note that sometimes the presolve phrase in
Gurobi is too time consuming and does not lead to any reduction in the problem size.
In that case, we turn off the presolve phase in Gurobi to get the actual performance of
its barrier method.

All the numerical experiments in this paper were run in MATLAB on a Dell laptop
with Intel Core i7-6820HQ CPU @2.70GHz and 16GB of RAM. As Gurobi is extremely
powerful in exploiting multithread computing, we set the number of threads allowed
for Gurobi to be two so that its overall CPU utilization rate is roughly the same as
that observed for running Snipal in MATLAB when setting the maximum number of
computational threads to be two.

In our experiments, unless otherwise stated, we adopt the following numerical
strategies for solving the Newton linear system (4.1) in each iteration. (a) If p \geq m/2,
solve (4.1) as follows. For the case when m \leq 30000 and the density of the nonzero
elements of H is less than 30\%, solve (4.1) via sparse Cholesky factorization; otherwise
solve (4.1) by the MINRES iterative solver with diagonal preconditioning. (b) If
p < m/2, solve (4.1) via the Sherman--Morrison--Woodbury update (4.3) as follows.
For the case when p \leq 30000 and the density of the nonzero elements of G is less
than 30\%, solve (4.4) via sparse Cholesky factorization; otherwise solve (4.4) by the
MINRES iterative solver with diagonal preconditioning.

6.1. Randomly generated sparse LP in [32]. Here we test large synthetic
LP problems generated as in [32]. In particular, the matrix A is generated as follows:

\ttr \ttn \ttg (`\ttd \tte \ttf \tta \ttu \ttl \ttt '); \ttA = \tts \ttp \ttr \tta \ttn \ttd (\ttm ,\ttn ,\ttd ); \ttA = \ttone \ttzero \ttzero *(\ttA -\ttzero .\ttfive *\tts \ttp \tto \ttn \tte \tts (\ttA ));

In this case, we turn off the presolve phase in Gurobi as this phase is too time
consuming for these randomly generated problems and it also does not lead to any
reduction in the problem sizes. As we can observe from Table 1, Snipal is able to
outperform Gurobi by a factor of about 1.5--2.3 in computational time in most cases.

Note that for the column ``iter (itssn)"" in Table 1, we report the number of
Snipal iterations and the total number of semismooth Newton linear systems solved
in Algorithm 2. For the columns ``time (RAM)"" and ``Gurobi time (RAM),"" we report
the wall-clock time and the memory consumed by Snipal and Gurobi, respectively.

6.2. Transportation problem. In this problem, s suppliers of a1, . . . , as units
of certain goods must be transported to meet the demands b1, . . . , bt of t customers.
Let the cost of transporting one unit of goods from supplier i to customer j be cij .
Then, the objective is to find a transportation plan denoted by xij to solve the following
LP:

min
\sum s

i=1

\sum t
j=1 cijxij

s.t.
\sum t

j=1 xij = ai, i \in [s],\sum s
i=1 xij = bj , j \in [t],

xij \geq 0 \forall i \in [s], j \in [t].
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Table 1
Numerical results for random sparse LPs with \ttT \tto \ttl = 10 - 8.

m n d
Snipal

iter (itssn)
Snipal

time (s) (RAM)
Gurobi

barrier iter
Gurobi

time (s) (RAM)
2e3 1e5 0.025 4 (18) 3.5 (0.8GB) 7 5.2 (1.0GB)

0.050 4 (18) 6.8 (0.8GB) 7 10.5 (1.3GB)
5e3 1e5 0.025 4 (15) 15.0 (1.5GB) 7 22.4 (1.7GB)

0.050 4 (15) 31.1 (1.8GB) 7 46.1 (2.6GB)
10e3 1e5 0.025 5 (24) 50.6 (3.2GB) 8 96.6 (3.2GB)

0.050 5 (24) 101.5 (5.3GB) 8 181.6 (6.0GB)
1e3 1e6 0.025 5 (30) 10.3 (2.0GB) 7 22.2 (4.1GB)

0.050 5 (29) 18.9 (3.2GB) 7 40.0 (6.0GB)
2e3 1e6 0.025 6 (32) 27.2 (3.2GB) 7 52.2 (6.1GB)

0.050 5 (28) 53.1 (5.2GB) 6 92.7 (9.6GB)
5e3 1e6 0.025 5 (26) 91.8 (4.5GB) 7 184.1 (10.0GB)
10e3 1e6 0.010 7 (40) 84.6 (4.3GB) 7 194.4 (8.5GB)

In the above problem, we assume that
\sum s

i=1 ai =
\sum t

j=1 bj . Note that this assumption
is needed for the LP to be feasible. We can write the transportation LP compactly as
follows:

min
\Bigl\{ 
\langle C, X\rangle | \scrA (X) = [a; b], X \geq 0

\Bigr\} 
,(6.2)

where

\scrA (X) =

\Biggl[ 
\^eT \otimes Is

It \otimes eT

\Biggr] 
vec(X),

e \in \BbbR s, and \^e \in \BbbR t are vectors of all ones, and vec(X) is the st-dimensional column
vector obtained from X by concatenating its columns sequentially.

In Table 2, we report the results for some randomly generated transportation
instances. For each pair of given s, t, we generate a random transportation instance as
follows:

\ttr \ttn \ttg (`\ttd \tte \ttf \tta \ttu \ttl \ttt '); \ttM =\tta \ttb \tts (\ttr \tta \ttn \ttd (\tts ,\ttt )); \tta =\tts \ttu \ttm (\ttM ,\tttwo ); \ttb =\tts \ttu \ttm (\ttM ,\ttone )';

\ttC =\ttc \tte \tti \ttl (\ttone \ttzero \ttzero *\ttr \tta \ttn \ttd (\tts ,\ttt ));

Note that we turn off the presolve phase in Gurobi as this phase is too time consuming
(about 20--30\% of the total time) and there is no benefit in cutting down the computation
time per iteration.

We can observe that for this class of problems, Snipal is able to outperform
the highly powerful barrier method in Gurobi by a factor of about 1--3 in terms of
computation times. Moreover, our solver Snipal consumed less peak memory than
Gurobi. For the largest instance where the primal LP has 12,000 linear constraints and
27 millions variables, our solver is at least five times faster than the barrier method in
Guorbi, and it only needs 5.4GB of RAM whereas Gurobi required 12.8GB.

6.3. Generalized transportation problem. The generalized transportation
problem was introduced by Fergusan and Dantzig [20] in their study of an aircraft
routing problem. Eisemann and Lourie [22] applied it to the machine loading problem.
In that problem, there are m types of machines that can produce n types of products
such that machine i would take hij hours at the cost of cij to produce one unit of
product j. It is assumed that machine i is available for at most ai hours, and the
demand for product j is bj . The problem is to determine xij , the amount of product
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Table 2
Numerical results for transportation LPs with \ttT \tto \ttl = 10 - 8.

s t
Snipal

iter (itssn)
Snipal

time (s) (RAM)
Gurobi

barrier iter
Gurobi

time (s) (RAM)
2000 3000 5 (17) 18.3 (1.8GB) 8 20.7 (4.8GB)
2000 4000 5 (18) 22.0 (2.1GB) 8 32.6 (6.5GB)
2000 6000 5 (18) 34.2 (3.4GB) 8 59.5 (8.9GB)
3000 4500 5 (17) 40.4 (3.5GB) 8 61.6 (9.2GB)
3000 6000 5 (18) 53.4 (4.0GB) 8 93.9 (10.3GB)
3000 9000 5 (20) 65.1 (5.4GB) 7 191.1 (12.8GB)

Table 3
Numerical results for generalized transportation LPs with \ttT \tto \ttl = 10 - 8.

s t
Snipal

iter (itssn)
Snipal

time (s) (RAM)
Gurobi

barrier iter
Gurobi

time (s) (RAM)
2000 3000 5 (19) 22.4 (1.6GB) 7 19.4 (2.9GB)
2000 4000 5 (18) 27.1 (2.5GB) 8 32.7 (5.5GB)
2000 6000 5 (18) 40.6 (3.6GB) 8 61.0 (8.0GB)
3000 4500 5 (18) 48.4 (3.4GB) 8 59.7 (6.0GB)
3000 6000 5 (18) 63.5 (4.0GB) 8 90.0 (12.9GB)
3000 9000 5 (19) 85.3 (5.8GB) 7 258.0 (13.1GB)

j to be produced on machine i during the planning period so that the total cost is
minimized, namely,

min
\sum s

i=1

\sum t
j=1 cijxij

s.t.
\sum t

j=1 hijxij = ai, i \in [s],\sum s
i=1 xij = bj , j \in [t],

xij \geq 0 \forall i \in [s], j \in [t].

In addition to assuming, similar to the transportation problem in the previous subsec-
tion, that

\sum s
i=1 ai =

\sum t
j=1 bj , we also apply the normalization

\sum s
i=1

\sum t
j=1 hij = st.

Table 3 presents the results for randomly generated generalized transportation LPs
where a, b, c are generated as in the last subsection. The weight matrix H = (hij) is
generated by setting \ttH = \ttr \tta \ttn \ttd (\tts ,\ttt ); \ttH = (\tts *\ttt /\tts \ttu \ttm (\tts \ttu \ttm (\ttH )))*\ttH . We can observe
that Snipal can be up to 3 times faster than the barrier method in Gurobi when the
problems are large.

6.4. Covering and packing LPs. Given a nonnegative matrix A \in \BbbR m\times n and
cost vector c \in \BbbR n

+, the covering and packing LPs [5, Section 10.1] are defined by

(Covering)min
\Bigl\{ 
\langle c, x\rangle | Ax \geq e, x \geq 0

\Bigr\} 
,

(Packing)min
\Bigl\{ 
\langle  - c, x\rangle | Ax \leq e, x \geq 0

\Bigr\} 
.

It is easy to see that by adding a slack variable, the above problems can be converted
into the standard form expressed in (P).

In our numerical experiments in Table 4, we generate A and c randomly as follows:

\ttr \ttn \ttg (`\ttd \tte \ttf \tta \ttu \ttl \ttt '); \ttc = \ttr \tta \ttn \ttd (\ttn ,\ttone ); \ttA = \tts \ttp \ttr \tta \ttn \ttd (\ttm ,\ttn ,\ttd \tte \ttn ); \ttA = \ttr \tto \ttu \ttn \ttd (\ttA );

Table 4 presents the numerical performance of Snipal versus Gurobi on some randomly
generated large scale covering and packing LPs. As we can observe, Snipal is
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Table 4
Numerical results for covering and packing LPs with \ttT \tto \ttl = 10 - 8.

Type m n den
Snipal

iter (itssn)
Snipal
time (s)

Gurobi
barrier iter

Gurobi
time (s)

C 1e3 5e5 0.2 22 (148) 49.8 14 62.1
C 2e3 5e5 0.1 25 (151) 103.3 16 90.6
C 2e3 1e6 0.05 24 (160) 90.4 17 102.0
C 3e3 5e6 0.02 24 (148) 190.5 22 560.5

P 1e3 5e5 0.2 28 (160) 49.3 12 53.3
P 2e3 5e5 0.1 29 (160) 97.0 12 68.2
P 2e3 1e6 0.05 30 (173) 75.1 15 91.4
P 3e3 5e6 0.02 26 (228) 259.8 20 500.2

competitive against the barrier method in Gurobi for solving these large scale LPs,
and the former can be up to 2.9 times faster than the barrier method in Gurobi.

6.5. LPs arising from correlation clustering. A correlation clustering prob-
lem [1] is defined over an undirected graph G = (V,E) with p nodes and edge weights
ce \in \BbbR (for each e \in E) that is interpreted as a confidence measure of the similarity
or dissimilarity of the edge's end nodes. In general, for e = (u, v) \in E, ce is given a
negative value if u, v are dissimilar and a positive value if u, v are similar. For the
goal of finding a clustering that minimizes the disagreements, the problem can be
formulated as an integer programming problem as follows. Suppose that we are given a
clustering \BbbS = \{ S1, . . . , SN\} , where each St \subset V , t = 1, . . . , N , denotes a cluster. For
each edge e = (u, v) \in E, set ye = 0 if u, v \in St for some t, and set ye = 1 otherwise.
Observe that 1  - ye is 1 if u, v are in the same cluster and 0 if u, v are in different
clusters. Now define the constants

me = | min\{ 0, ce\} | , pe = max\{ 0, ce\} .

Then the cost of disagreements for the clustering \BbbS is given by
\sum 

e\in E me(1  - ye) +\sum 
e\in E peye.
A version of the correlation clustering problem is to find a valid assignment (i.e.,

it satisfies the triangle inequalities) of ye for all e \in E to minimize the disagreements'
cost. We consider the relaxation of this integer program to get the following LP [11]:

min
\sum 

(i,j)\in E mij(1 - yij) +
\sum 

(i,j)\in E pijyij

s.t.  - yij \leq 0, yij \leq 1 \forall (i, j) \in E,

 - yij  - yjk + yik \leq 0 \forall 1 \leq i < j < k \leq n, such that (i, j), (j, k), (i, k) \in E.

In the above formulation, we assumed that the edge set E is a subset of \{ (i, j) | 1 \leq 
i < j \leq p\} . Let M be the number of all possible triangles in E. Define \scrT : \BbbR | E| \rightarrow \BbbR M

to be the linear map that maps y to all the M terms  - yij  - yjk + yik in the triangle
inequalities. We can express the above LP in the dual form as follows,

\langle m, 1\rangle  - max

\left\{   \langle m - p, y\rangle | 

\left[   - I
I
\scrT 

\right]  y \leq 

\left[  0
1
0

\right]  \right\}   ,

and the corresponding primal LP is given by

\langle m, 1\rangle  - min
\Bigl\{ 
\langle [0;1; 0], x\rangle | [ - I, I, \scrT \ast ]x = m - p, x \in \BbbR 2| E| +M

+

\Bigr\} 
.(6.3)
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Table 5
Numerical results for correlation clustering LPs with \ttT \tto \ttl = 10 - 8.

Data p | E| 2| E| + M
Snipal

iter (itssn | itminres)
Snipal
time (s)

Gurobi
barrier iter

Gurobi
time (s)

planted(5) 200 19900 1353200 5 (70 | 110.0) 38.1 37 690.9
planted(10) 200 19900 1353200 6 (91 | 146.5) 36.8 49 1146.6
planted(5) 300 44850 4544800 5 (86 | 109.2) 170.2 37 8350.7
planted(10) 300 44850 4544800 7 (127 | 186.3) 158.0 82 18615.8

stocks 200 19900 1353200 5 (57 | 147.7) 57.8 53 1009.2
stocks 300 44850 4544800 5 (75 | 191.1) 276.9 60 13797.0

Observe that the primal LP has | E| equality constraints and a large number of 2| E| +M
variables.

In Table 5, we evaluate the performance of our algorithm on correlation clustering
LPs on data that were used in [49]. Note that for this class of LPs, we solve the linear
system (4.1) by the MINRES iterative solver with diagonal preconditioning. One
can observe that for the LP problem (6.3), our solver Snipal is much more efficient
than the barrier method in Gurobi, and the former can be up to 117 times faster for
the largest problem. The main reason why Snipal is able to outperform the barrier
method in Gurobi lies in the fact that the former is able to make use of an iterative
solver to solve the moderately well conditioned linear system involving the matrix (4.2)
rather efficiently in each semismooth Newton iteration, whereas for the latter, it has
to rely on sparse Cholesky factorization to solve the associated normal equation and
for this class of problems, computing the sparse Cholesky factorization is expensive.
Under the column ``itminres"" in Table 5, we report the average number of MINRES
iterations needed to solve a single linear system of the form in (4.2). As one can
observe, the average number of MINRES iterations is small compared to the dimension
of the linear system for all the tested instances.

6.6. LPs from MIPLIB2010. In this subsection, we evaluate the potential
of Snipal as a tool for solving general LPs with the characteristic that the number
of linear constraints is much smaller than the dimension of the variables. For this
purpose, we consider the root-node LP relaxations of some mixed-integer programming
problems in the library MIPLIB2010 [33].

Table 6 reports the performance of Snipal against the barrier method in Gurobi for
solving the LPs from the two sources mentioned in the last paragraph to the accuracy
level of 10 - 6. Note that we first use Gurobi's presolve function to preprocess the
LPs. Then the preprocessed instances are used for comparison with Gurobi's presolve
capability turned off. As one can observe, the barrier method in Gurobi performed
much better than Snipal, with the former typically requiring less than 50 iterations
to solve the LPs while the latter typically needs hundreds of semismooth Newton
iterations except for a few problems such as \ttd \tta \ttt \ttt \tttwo \ttfive \ttsix , \ttn \tte \tto \tts -\ttx \ttx \ttx \ttx , etc. Overall, the
barrier method in Gurobi can be 10--50 times faster than Snipal on many of the tested
instances, with the exception of \ttn \tts \tttwo \ttone \ttthree \ttseven \tteight \ttfive \ttnine .

The large number of semismooth Newton iterations needed by Snipal to solve the
LPs can be attributed to the fact that for most of the LP instances tested here, the
local superlinear convergent property of the semismooth Newton method in solving
the subproblems of the SPALM generally does not kick-in before a large number of
initial iterations has been taken. From this limited set of tested LPs, we may conclude
that substantial numerical work must be done to improve the practical performance of
Snipal before it is competitive enough to solve general large scale sparse LPs.
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Table 6
Numerical results for some LPs from MIPLIB2010 with \ttT \tto \ttl = 10 - 6.

Problem m n it (itssn) Time Gurobi Gurobe
barrier iter time

app1-2 26850 107132 33 (878) 54.33 16 0.73

bab3 22449 411334 40 (789) 139.43 37 6.41

bley-xl1 746 7361 7 (114) 1.06 21 0.21

circ10-3 2700 46130 7 (17) 4.98 10 0.80

co-100 1293 22823 39 (634) 4.09 23 0.64

core2536-691 1895 12991 11 (325) 15.35 25 0.83

core4872-1529 3982 18965 16 (285) 34.37 22 1.52

datt256 9809 193639 3 (37) 31.24 5 1.69

dc1l 1071 34931 16 (209) 8.86 39 1.06

ds-big 1039 173026 27 (623) 74.91 25 5.37

eilA101.2 100 65832 14 (88) 7.71 21 0.96

ivu06-big 1177 2197774 19 (236) 87.28 27 34.97

ivu52 2116 135634 31 (559) 47.19 23 3.22

lectsched-1-obj 9246 34592 28 (331) 2.46 12 0.32

lectsched-1 6731 27042 7 (15) 0.26 5 0.15

lectsched-4-obj 2592 9716 22 (94) 0.76 7 0.06

leo2 539 11456 24 (106) 0.68 22 0.16

mspp16 4065 532749 26 (54) 68.67 14 59.88

n3div36 4450 25052 20 (75) 0.72 27 0.25

n3seq24 5950 125746 14 (71) 20.25 15 6.42

n15-3 29234 153400 22 (475) 63.86 30 4.30

neos13 1826 22930 30 (154) 9.83 22 0.23

neos-476283 9227 20643 22 (495) 174.60 14 10.58

neos-506428 40806 200653 4 (8) 7.86 16 0.96

neos-631710 3072 169825 4 (9) 13.90 5 0.54

neos-885524 60 21317 4 (8) 0.84 12 0.11

neos-932816 2568 8932 7 (17) 2.88 10 0.14

neos-941313 12919 129180 6 (17) 5.71 10 0.42

neos-1429212 8773 42620 37 (541) 118.34 28 6.91

netdiversion 99482 208447 33 (324) 173.07 15 5.38

ns1111636 12992 85327 4 (38) 7.85 16 0.79

ns1116954 11928 141529 2 (6) 125.54 11 23.86

ns1688926 16489 41170 26 (160) 150.80 88 12.68

ns1904248 38184 222489 3 (6) 6.00 6 0.96

ns2118727 7017 15853 30 (1079) 20.63 24 0.41

ns2124243 19663 53716 22 (122) 13.08 14 0.36

ns2137859 16357 49795 11 (22) 6.20 50 61.53

opm2-z12-s7 10328 145436 13 (43) 19.13 17 16.19

opm2-z12-s14 10323 145261 12 (36) 19.46 16 15.39

pb-simp-nonunif 11706 146052 2 (4) 2.08 10 0.68

rail507 449 23161 14 (240) 1.95 23 0.25

rocII-7-11 5534 25590 20 (73) 2.26 17 0.35

rocII-9-11 8176 37159 22 (106) 3.85 17 0.51

rvb-sub 217 33200 24 (157) 1.67 11 0.56

shipsched 5165 22806 16 (35) 0.73 10 0.24

sp97ar 1627 15686 26 (264) 2.63 26 0.33

sp98ic 806 11697 27 (155) 1.63 25 0.25

stp3d 95279 205516 71 (2892) 228.56 22 11.75

sts729 729 89910 2 (4) 0.72 3 0.26

t1717 551 16428 22 (141) 1.59 13 0.22

tanglegram1 32705 130562 2 (4) 0.90 5 0.30

van 7360 36736 4 (8) 7.39 15 3.63

vpphard 9621 22841 3 (6) 2.90 9 0.90

vpphard2 13085 28311 4 (6) 2.77 7 0.64

wnq-n100-mw99-14 594 10594 24 (119) 0.73 15 0.22
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7. Conclusion. In this paper, we proposed a method called Snipal targeted
at solving large scale LP problems where the dimension n of the decision variables
is much larger than the number m of equality constraints. Snipal is an inexact
proximal augmented Lagrangian method where the inner subproblems are solved
via an efficient semismooth Newton method. By connecting the inexact proximal
augmented Lagrangian method with the preconditioned proximal point algorithm, we
are able to show the global and local asymptotic superlinear convergence of Snipal.
Our analysis also reveals that Snipal can enjoy a certain finite termination property.
To achieve high performance, we further study various efficient approaches for solving
the large linear systems in the semismooth Newton method. Our findings indicate
that the linear systems involved in Snipal can have uniformly bounded condition
numbers with respect to the parameter sequences \{ \sigma k\} and \{ \tau k\} when they are chosen
such that sup\{ \sigma k\} < \infty and inf\{ \tau k\} > 0. This is in contrast to those involved in
an interior point algorithm which has unbounded condition numbers with respect
to the barrier parameter sequence that must be driven to zero. Building upon all
the aforementioned desirable properties, our Snipal algorithm has demonstrated a
clear computational advantage in solving some classes of large-scale LP problems in
the numerical experiments when tested against the barrier method in the powerful
commercial LP solver Gurobi. However, when tested on some large sparse LPs available
in the public domain, Snipal is not yet competitive against the barrier method in
Gurobi on most of the test instances. Thus much work remains to be done to improve
the practical efficiency of Snipal and we leave it as a future research project.

Appendix. Here we show that the dual of (3.2) with \tau = 0 is given by (3.17).
Consider the augmented Lagrangian function

inf
y
L\sigma k

(y;xk) = inf
y
max

x

\biggl\{ 
l(y;x) - 1

2\sigma 
\| x - xk\| 2

\biggr\} 
= max

x

\biggl\{ 
 - 1

2\sigma 
\| x - xk\| 2 + inf

y
l(y;x)

\biggr\} 
= max

x

\Bigl\{ 
 - \delta K(x) - \langle c, x\rangle  - 1

2\sigma 
\| x - xk\| 2 | Ax = b

\Bigr\} 
,

where l(y;x) =  - bT y - \langle x, c - A\ast y\rangle  - \delta K(x) for any (y, x) \in \BbbR m\times \BbbR n. The interchange
of infy and maxx follows from the growth properties in x of the ``minimaximand"" in
question [40, Theorem 37.3]. See also the proof of [42, Proposition 6].
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