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Abstract In this paper, we propose an inexact multi-block ADMM-type first-order
method for solving a class of high-dimensional convex composite conic optimiza-
tion problems to moderate accuracy. The design of this method combines an inexact
2-block majorized semi-proximal ADMM and the recent advances in the inexact sym-
metric Gauss—Seidel (sGS) technique for solving a multi-block convex composite
quadratic programming whose objective contains a nonsmooth term involving only
the first block-variable. One distinctive feature of our proposed method (the sGS-
imsPADMM) is that it only needs one cycle of an inexact sGS method, instead of an
unknown number of cycles, to solve each of the subproblems involved. With some
simple and implementable error tolerance criteria, the cost for solving the subproblems
can be greatly reduced, and many steps in the forward sweep of each sGS cycle can
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often be skipped, which further contributes to the efficiency of the proposed method.
Global convergence as well as the iteration complexity in the non-ergodic sense is
established. Preliminary numerical experiments on some high-dimensional linear and
convex quadratic SDP problems with a large number of linear equality and inequal-
ity constraints are also provided. The results show that for the vast majority of the
tested problems, the sGS-imsPADMM is 2-3 times faster than the directly extended
multi-block ADMM with the aggressive step-length of 1.618, which is currently the
benchmark among first-order methods for solving multi-block linear and quadratic
SDP problems though its convergence is not guaranteed.

Keywords Convex conic programming - Convex quadratic semidefinite program-
ming - Symmetric Gauss—Seidel - Alternating direction method of multipliers -
Majorization
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1 Introduction

The objective of this paper is to design an efficient first-order method for solving the
following high-dimensional convex composite quadratic conic programming problem
to moderate accuracy:

min {6(x) + 1 (x, Qx) + (¢, x) | Ax —b =0, x € K}, (1.1)

where 0 : X — (—o00, +00] is a closed proper convex function, @ : X — X isa
self-adjoint positive semidefinite linear operator, A : X — ) is a linear map, ¢ € X
and b € ) are given data, L C X’ is a closed convex cone, X" and ) are two real finite
dimensional Euclidean spaces each equipped with an inner product (-, -) and its induced
norm || - ||. Here, the phrase “high-dimension” means that the linear operators AA*
and/or Q are too large to be stored explicitly or to be factorized by the Cholesky decom-
position. By introducing a slack variable u € X', one can equivalently recast (1.1) as

min {6(u) + 5 (x, Qx) + (¢, x) | Ax —b =0, u —x =0, x € K}. (1.2)
Then, solving the dual of problem (1.2) is equivalent to solving

min{@*(—s)—i—%(w, Quw) —(b, &) |s+z—Quw+A*E =c, ze L, w GW},
(1.3)

where W C X is any subspace containing Range(Q), K* is the dual cone of K
defined by K* :={d € X | (d, x) = 0Vx € K}, 6* is the Fenchel conjugate of the
convex function 6. Particular examples of (1.1) include convex quadratic semidefi-
nite programming (QSDP), convex quadratic programming (QP), nuclear semi-norm
penalized least squares and robust PCA (principal component analysis) problems. One
may refer to [19,20] and references therein for a brief introduction on these examples.
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Letm and n be given nonnegative integers, Z, X;,1 <i <mand);,1 < j <n,be
finite dimensional real Euclidean spaces each endowed with an inner product (-, -) and
its induced norm || - ||. Define X := X x ... x X, and Y := ) x ... x ),. Problem
(1.3) falls within the following general convex composite programming model:

mil}ey {p1x) + fxn,oxm) 1) + 80t - yn) [ A'x + B¥y = ¢},

xeX,y

(1.4)

where p; : A1 — (—oo,00] and ¢q1 : V1 — (—00, 00] are two closed proper
convex functions, f : X — (—00,00) and g : JV — (—00, 00) are continuously
differentiable convex functions whose gradients are Lipschitz continuous. The linear
mappings A : X — Y and B : X — Z are defined such that their adjoints are
given by A*x = 37 Afx; for x = (x1,...,x,) € X, and B*y = Z’}lejyj
fory = (yi,....yn) € Y, where AT : &; — Z,i =1,....m andBj 2 Y —>
Z,j =1,...,n are the adjoints of the linear maps A; : Z — A; and Bj:Z— Y
respectively. For notational convenience, in the subsequent discussions we define the
functions p : X — (—oo,o0]land g : Y — (—00,00] by p(x) := pi(x1) and
q(y) = q1(y1). For problem (1.3), one can express it in the generic form (1.4) by
setting

pi(s) = 0%(=s), f(s,w) =% (w, Quw), ¢1(2) = Sk (2),
2z, 86)=—(y, &), A", w) =5 — Qw and B*(z,§) =z + A%¢.

There are various numerical methods available for solving problem (1.4). Among
them, perhaps the first choice is the augmented Lagrangian method (ALM) pioneered
by Hestenes [15], Powell [23] and Rockafellar [25], if one does not attempt to exploit
the composite structure in (1.4) to gain computational efficiency. Let ¢ > 0 be a given
penalty parameter. The augmented Lagrangian function of problem (1.4) is defined as
follows: for any (x, y,z) € X x Y x Z,

Lo(x,y;2) :=px)+ fx)+q()+g0) + (z, Ax + By —¢)
+%|IA*x + B*y — cl?.

Given an initial point z° € Z, the ALM consists of the following iterations:

(xk+1, yk+1) = argmin L, (x, y; zk),

=t 1o (A*xk+1 + Bryktt c) , (1.5)

where T € (0, 2) is the step-length. A key attractive property of the ALM and its
inexact variants, including the inexact proximal point algorithm (PPA) obeying sum-
mable error tolerance criteria proposed by Rockafellar [25,26] and the inexact PPAs
proposed by Solodov and Svaiter [27-29] using relative error criteria, is their fast local
linear convergence property when the penalty parameter exceeds a certain threshold.
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However, it is generally difficult and expensive to solve the inner subproblems in
these methods exactly or to high accuracy, especially in high-dimensional settings,
due to the coupled quadratic term interacting with two nonsmooth functions in the
augmented Lagrangian function. By exploiting the composite structure of (1.4), one
may use the block coordinate descent (BCD) method to solve the subproblems in (1.5)
inexactly. However, it can also be expensive to adopt such a strategy as the number
of BCD-type cycles needed to solve each subproblem to the required accuracy can be
large. In addition, it is also computationally not economical to use the ALM during the
early stage of solving problem (1.4) when the fast local linear convergence of ALM
has not kicked in.

A natural alternative to the ALM, for solving linearly constrained 2-block convex
optimization problems such as (1.4), is the alternating direction method of multipli-
ers (ADMM) [10-13], which solves x and y alternatively in a Gauss—Seidel fashion
(one may refer to [7] for a recent tutorial on the ADMM). Computationally, such a
strategy can be beneficial because solving x or y by fixing the other variable in (1.5)
is potentially easier than solving x and y simultaneously. Just as in the case for the
ALM and PPAs, one may also have to solve the ADMM subproblems approximately.
Indeed, for this purpose, Eckstein and Bertsekas [8] proposed the first inexact ver-
sion of the ADMM based on the PPA theory and Eckstein [6] introduced a proximal
ADMM (PADMM) to make the subproblems easier to solve. The inexact version of
Eckstein’s PADMM and its extensions can be found in [14,17,22], to name a few.
These ADMM-type methods are very competitive for solving certain 2-block separa-
ble problems and they have been used frequently to generate a good initial point to
warm-start the ALM. However, for many other cases such as the high-dimensional
multi-block convex composite conic programming problem (1.1) and its dual (1.3), it
can be very expensive to solve the ADMM subproblems (each is a composite prob-
lem with smooth and nonsmooth terms in two or more blocks of variables) to high
accuracy. Also, by using BCD-type methods to solve these subproblems, one may
still face the same drawback as in solving the ALM subproblems by requiring an
unknown number of BCD inner iteration cycles. One strategy which may be adopted
to alleviate the computational burden in solving the subproblems is to divide the vari-
ables in (1.4) into three or more blocks (depending on its composite structure), and
to solve the resulting problems by a multi-block ADMM-type method (by directly
extending the 2-block ADMM or PADMM to the multi-block setting). However, such
a directly extended method may be non-convergent as was shown in [1], even if the
functions f and g are separable with respect to these blocks of variables, despite
ample numerical results showing that it is often practically efficient and effective
[30]. Thus, different strategies are called for to deal with the numerical difficulty just
mentioned.

Our primary objective in this paper is to construct a multi-block ADMM-type
method for solving high-dimensional multi-block convex composite optimization
problems to medium accuracy with the essential flexibility that the inner subprob-
lems are allowed to be solved only approximately. We should emphasize that the
flexibility is essential because this gives us the freedom to solve large scale linear
systems of equations (which typically arise in high-dimensional problems) approxi-
mately by an iterative solver such as the conjugate gradient method. Without such
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a flexibility, one would be forced to modify the corresponding subproblem by
adding an appropriately chosen “large” semi-proximal term so as to get a closed-
form solution for the modified subproblem. But such a modification can sometimes
significantly slow down the outer iteration as we shall see later in our numerical exper-
iments.

In this paper, we achieve our goal by proposing an inexact symmetric Gauss—Seidel
(sGS) based majorized semi-proximal ADMM (we name it as SGS-imsPADMM for
easy reference) for solving (1.4), for which each of its subproblems only needs one
cycle of an inexact sGS iteration instead of an unknown number of cycles. Our method
is motivated by the works of [18] and [21] in that it is developed via a novel integration
of the majorization technique used in [18] with the inexact symmetric Gauss—Seidel
iteration technique proposed in [21] for solving a convex minimization problem whose
objective is the sum of a multi-block quadratic function and a non-smooth function
involving only the first block. However, non-trivially, we also design checkable inexact
minimization criteria for solving the SPADMM subproblems while still being able to
establish the convergence of the inexact method. Our convergence analysis relies on
the key observation that the results in [21] and [30] are obtained via establishing the
equivalence of their proposed algorithms to particular cases of the 2-block sSPADMM
in [9] with some specially constructed semi-proximal terms. Owing to the inexact
minimization criteria, the cost for solving the subproblems in our proposed algorithm
can greatly be reduced. For example, one can now solve a very large linear system
of equations via an iterative solver to an appropriate accuracy instead of a very high
accuracy as required by a method with no inexactness flexibility.

Moreover, by using the majorization technique, the two smooth functions f and g in
(1.4) are allowed to be non-quadratic. Thus, the proposed method is capable of dealing
with even more problems beyond the scope of convex quadratic conic programming.
The success of our proposed inexact sGS-based ADMM-type method would thus also
meet the pressing demand for an efficient algorithm to find a good initial point to
warm-start the augmented Lagrangian method so as to quickly enjoy its fast local
linear convergence.

To summarize, the main contribution of this paper is that by taking advantage
of the inexact sGS technique in [21], we develop a simple, implementable and effi-
cientinexact first-order algorithm, the sGS-imsPADMM, for solving high-dimensional
multi-block convex composite conic optimization problems to moderate accuracy. We
have also established the global convergence as well as the non-ergodic iteration com-
plexity of our proposed method. Preliminary numerical experiments on the class of
high-dimensional linear and convex quadratic SDP problems with a large number of
linear equality and inequality constraints are also provided. The results show that on
the average, the sGS-imsPADMM is 2—3 times faster than the directly extended multi-
block ADMM even with the aggressive step-length of 1.618, which is currently the
benchmark among first-order methods for solving multi-block linear and quadratic
SDPs though its convergence is not guaranteed.

The remaining parts of this paper are organized as follows. In Sect. 2, we present
some preliminary results from convex analysis. In Sect. 3, we propose an inexact
two-block majorized sSPADMM (imsPADMM), which lays the foundation for later
algorithmic developments. In Sect. 4, we give a quick review of the inexact sGS
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technique developed in [21] and propose our sGS-imsPADMM algorithm for the multi-
block composite optimization problem (1.4), which constitutes as the main result of
this paper. Moreover, we establish the relationship between the sGS-imsPADMM
and the imsPADMM to substantially simplify the convergence analysis. In Sect. 5,
we establish the global convergence of the imsPADMM. Hence, the convergence of
the sGS-imsPADMM is also derived. In Sect. 6, we study the non-ergodic iteration
complexity of the proposed algorithm. In Sect. 7, we present our numerical results, as
well as some efficient computational techniques designed in our implementation. We
conclude the paper in Sect. 8.

2 Preliminaries

Let ¢/ and V be two arbitrary finite dimensional real Euclidean spaces each endowed
with an inner product (-, -) and its induced norm || - ||. For any linearmap O : U — V/,
we use O* to denote its adjoint and ||O|| to denote its induced norm. For a self-adjoint
positive semidefinite linear operator H : U/ — U, there exists a unique self-adjoint
positive semidefinite linear operator, denoted as H%, such that H2H? = M. For any
u,v € U, define (u, v)y = (u, Hv) and |ju|y := /{u, Hu) = IIH%MII. Moreover,
for any set U C U, we define dist(u, U) := inf,/cy |lu — u'|| and denote the relative
interior of U by ri(U). For any u, u’, v, v’ € U, we have

(u, V)3 = 5 (lull3, + i3, =l —vl13,) = 5 (Ile + vli3, = lul3, = vlI3,) -
2.1

Let 6 : U — (—o0, +00] be an arbitrary closed proper convex function. We use

dom @ to denote its effective domain and 96 to denote its subdifferential mapping.
The proximal mapping of 6 associated with H > 0 is defined by

1
Prox‘;)_t(u) i= arg min,, g, {0(1}) + EHU — u||%_[}, Yuel.
It holds [16] that

||Pr0x%(v) - Proxg_t(v’) ||§{ <(v-v, Proxgi(v) — Prox%(v’))H. (2.2)

We say that the Slater constraint qualification (CQ) holds for problem (1.4) if it
holds that

{(x,y) | x €ri(dom p), y € ri(domgq), A*x + B*y = c} # 0.
When the Slater CQ holds, we know from [24, Corollaries 28.2.2 & 28.3.1] that (x, y)
is a solution to (1.4) if and only if there is a Lagrangian multiplier 7 € Z such that

(x, ¥, z) is a solution to the following Karush-Kuhn-Tucker (KKT) system

0edp(x)+Vfx)+ Az, 0€dq(y)+Vg(y)+Bz, A'x+By=c. (2.3)
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If (x,y,2) € X x Y x Z satisfies (2.3), from [24, Corollary 30.5.1] we know that
(x,y) is an optimal solution to problem (1.4) and 7 is an optimal solution to the
dual of this problem. To simplify the notation, we denote w := (x, y,z) and W :=
X x Y x Z. The solution set of the KKT system (2.3) for problem (1.4) is denoted by
W.

3 An inexact majorized SPADMM

Since the two convex functions f and g in problem (1.4) are assumed to be continu-
ously differentiable with Lipschitz continuous gradients, there exist two self-adjoint
positive semidefinite linear operators b5) X = Xand 2 : Y — Y such that for
x,x' e Xandy,y €,

f@) < fsx’y = f) + (V&) x —x) + Slx - x’u%f,

~ ) 3.1
g <80 Y) =g+ (Ve ),y = ¥) + %lly —y II%g. G-D

Leto > 0. The majorized augmented Lagrangian function of problem (1.4) is defined
by, forany (x’, y) € X x YV and (x,y,z) € X x Y x Z,

Lo(x,yi (z,x',¥)) 1= p(x) + Fx: x) +q(») + 85 ¥)
+(z, A*x + B*y —¢) + S| A*x + B*y — cl?.

LetS: X - X and 7 : Y — Y be two self-adjoint positive semidefinite linear
operators such that

M=Z;4+8+0AA* =0 and N =3, +T +0BB*~0. (3.2

Suppose that (wh = (x*, y*, 25} isa sequence in X x ) x Z. For convenience, we
define the two functions ¥ : X — (—o0, 00] and ¢ : Y — (—00, o] by

Yr(x) = p(x) + 5 (x, Mx) = (%, x), @ (y) :=q() + 5 (v, Ny) = (5, ),
where

—l)’g =V 5+ A — Mxk +0A (A*xk + B*yk — c) ,
—l’y‘ = Vg(y*) + BzXx =Ny + 0B (A*xk+1 + B*yk — c).

Now, we are ready to present our inexact majorized SPADMM for solving problem
(1.4) and some relevant results.
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Algorithm imsPADMM: An inexact majorized semi-proximal ADMM for solving
problem (1.4).

Lett € (0, (1+ \/5)/ 2) be the step-length and {&4 }x>0 be a summable sequence of
nonnegative numbers. Choose the linear operators S and 7 such that M > 0 and
N > 0in (3.2). Let w? := (x°, y°, z%) € dom p x dom g x Z be the initial point.
Fork =0, 1, ..., perform the following steps:

Step 1. Compute x**! and d* € 3y (x¥*1) such that ||M’%d)’§|| < g and

M ~ gk = argmin, _ y {Eg(x, v wh) 4+ Jx — k1% } (3.3)
=argmin, .y Vi (x).
Step 2. Compute y**! and d;‘ € dgr (y¥*1) such that IIN_%df,H < & and
Y~ A = argmin oy { L6 G5FL, yiwb) + Sy — y4 1%} 34

= argmin .y {@ (y) + (0 BA* G — x5 y) )

Step 3. Compute 75+ 1= 7% 4 1o (A*x*H! 4 BHyt! — o).

Proposition 3.1 Let {w*} be the sequence generated by the imsPADMM, and {x*},
(7%} be the sequence defined by (3.3) and (3.4). Then, for any k > 0, we have || x*+1 —

T < g and ||y — v < (1 + o||./\/'_%BA*M_% ek, where M and
N are defined in (3.2).

Proof Noting that 0 € dp(xf+1) + Mx**+!t — 1k — gk and M > 0, we can write
XK = Prox! (M1 (1% + db)). Also, we have X! = Prox/| , (M~'1¥). By using
(2.2) we can get

- - 1 _ _1
K+ xk+1”3\4 < <xk+1 — gk d,’f> = <_/\/l2(xk+1 — M 2d§>.

Thus, by using the Cauchy—Schwarz inequality, we can readily obtain that [|x*! —

_ 1 . .
g < IMT2d| < . Similarly, we can obtain that

ykH — )—]k+1”3\/ < <yk+1 _ kL d§ + o BA* (@ _xk+1)>
— <N%(yk+l _ yk+l)’ N_%d§>
—i—o(./\/% (k! — }—}k+1)7N7%BA*(Xk+1 — xkH).

. . 1 _ L
This, together with || _2d§|| < g and || x*H1 — xK+1) 0 < ex, implies that

_ _1 _1 _1 _
IyFF = 55y < IV 7288 + o [IN T2 BA* M2 |[[|RF T — Xk
1 1
<eg +0|INT2BA* M 2| &,

and this completes the proof. O

@ Springer



An efficient inexact symmetric Gauss—Seidel based. . . 245

4 An imsPADMM with symmetric Gauss—Seidel iteration

We first present some results on the one cycle inexact symmetric Gauss—Seidel (sGS)
iteration technique introduced in [21]. Lets > 2be a giveninteger andf := Uy X - - - X
U with each U; being a finite dimensional real Euclidean space. For any u € U we
write u = (uy, ..., us). Let H : Y — U be a given self-adjoint positive semidefinite
linear operator with the following block decomposition:

Hir Hiz -+ His\ [ui 0 Hiz -+ His
HTz Hy -+ Has 175 . . .
Hu:=1| . S . S He=
: . .. : : H( L
Ts H§? e Hss Ug YO s

.1

where H;; are self-adjoint positive definite linear operators, H;; : U; — U;, 1 <

i < j < s are linear maps. We also define Hyu := (Hiju1, ..., Hssus). Note that
H = Hq + Hy + H] and Hy is positive definite. To simplify later discussions, for
any u € U, we denote u<; 1= {uy, ..., u;i}, us; = {u;,...,us},i =1,...,5. We

also define the self-adjoint positive semidefinite linear operator sGS(H) : U/ — U by
sGS(H) 1= H,H; M. (4.2)

Let 0 : Uy — (—o0,00] be a given closed proper convex function and b € U
be a given vector. Consider the quadratic function & : &/ — (—o0, co) defined by
h(u) = %(u,Hu) — (b,u), Yu € U. Let &,Si € Ui, i = 1,...,s be given error
tolerance vectors with §; = §;. Define

d(3,8) =8+ H,H;' (6 —8). (4.3)

Suppose that u~ € U is a given vector. We want to compute
: 1 _ ~
ut = argming, g, 16 (ur) + h(u) + Sl —u I3asg — (A, 8), u)p. (44)

We have the following result, established by Li et al. [21] to generalize and reformulate
their Schur complement based decomposition method in [20] to the inexact setting,
for providing an equivalent implementable procedure for computing u™. This result
is essential for our subsequent algorithmic developments.

Proposition 4.1 (sGS decomposition) Assume that H;;,i = 1,...,s are positive
definite. Then

Hi=H +sGS(H) = (Ha + HH;" (Ha +HE) > 0.
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246 L. Chen et al.

Furthermore, fori =s,s — 1, ..., 2, define u; by
i = argmin,, {0@y) +h@Z,_y. ui, d=i01) — (6. u;)}. (4.5)

Then the optimal solution u™ defined by (4.4) can be obtained exactly via

ul+ := argmin,,, {9(u1)+h(u1,i722)—(Sl,ul)}, “6)
u; = argmin, {0(u}) +h(uJ_<r,._1, wi izis1) — (Sui)}, =25
Moreover, the vector d(8, §) defined in (4.3) satisfies
~ 1 o~ 1 ~ 1 ~
IH2d @, 8)|l < [H,* 6 — )| + IH; (Ha + Hu)~'5]I. 4.7)

We should note that the above sGS decomposition theorem is valid only when the
(possibly nonsmooth) function 6(-) is dependent solely on the first block variable u1,
and it is not applicable if there is an additional nonsmooth convex function involving
another block of variable. In the above proposition, one should interpret u; in (4.5)
and ul+ in (4.6) as approximate solutions to the minimization problems without the
terms involving §; and §;. Once these approximate solutions have been computed,
they would generate the error vectors 8; and §;. With these known error vectors, we
know that u; and uj' are actually the exact solutions to the minimization problems in
(4.5) and (4.6). It is important for us to emphasize that when solving the subproblems
in the forward GS sweep in (4.6) for i = 2,...,s, we may try to estimate ul+ by
using ;, and in this case the corresponding error vector §; would be given by §; =
Ei + le;llH;fi(u;r — u;). In order to avoid solving the i-th problem in (4.6), one
may accept such an approximate solution ul+ = u; if the corresponding error vector
satisfies an admissible condition such as ||§;|| < c||6;] for some constant ¢ > 1, say
c=10.

We now show how to apply the sGS iteration technique in Proposition 4.1 to the
imsPADMM proposed in Sect. 3. We should note that in the imsPADMM, the main
issue is how to choose S and 7, and how to compute x*+1 and ka. For later discus-
sions, we use the following decompositions

(ff)ll (ff)lz (ff)lm (fg)n (fg)lz (fg)ln
X Epn o (Zp)om (Xl (T - (Zoum
and
Eh E5n o (EPum D7 03 - (E)m

for ¥ r and b5) ¢» Tespectively, which are consistent with the decompositions of X and

V.
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An efficient inexact symmetric Gauss—Seidel based. . . 247

First, We choose two self-adjoint positive semidefinite linear operators S X —
Xyand7; : Vi — V) forthe purpose making the minimization subproblems involving
p1 and q easier to solve. We need S and Tl to sat1sfy the conditions that M, :=
S|+ (Ef)u + o A1 A} > 0 as well as Ny =T + (Eg)u + o BB} > 0. With
appropriately chosen S) and 7;, we can assume that the well-defined optimization
problems

ming, {pCe) + 3l = x{1%; } and miny, {gGn) + 3l = ¥1% )

can be solved to arbitrary accuracy for any given x{ € Xj and y| € V.

Next fori = 2,...,m, we choose a linear operator S > 0 such that M” =
Si + (Z‘f)” + o A; A > 0 and s1m11ar1y, for j = 2,...,n, we choose a linear
operatorT > 0 such that./\fU = ’T + (2 )jj +oB;B; >~ O

Now, we define the linear operators

M= ff + o AA* + Diag(S1, ..., Sn).
N = %, + 0BB* + Diag(7}, ..., T,). (4.8)

Moreover, define /Wu and /\7u analogously as H,, in (4.1) for Mand N , respectively,
and

Mvd = Diag(Mv11, e Mvmm), J(d/'d = Diag(/vu, .. ,/vm,).

Then, M= /Wd + /T/TU + ./T/TZ and N := J\7d + ./\7u + J\FV/L:k Moreover, we define the
following linear operators:

S = Diag(Sy, ..., Sn) + sGS(M), M = f,»+o,4A*+§
T :=Diag(T1,...,T;) + sGSN) and N := +JBB*+’T

where sGS(/(/lv) and sGS(./V ) are defined as in (4.2). Define the two constants

K = 2m ||Md2||+\/_||Md(Md+M) 1,
K =2n— 1IN, 2||+f||N2(Nd+N> 1.

4.9)

Based on the above discussions, we are ready to present the sGS-imsPADMM algo-
rithm for solving problem (1.4).
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Algorithm sGS-imsPADMM: An inexact sGS based majorized semi-proximal
ADMM for solving problem (1.4).

Lett € (0, (14++/3) /2) be the step-length and {€ }¢>0 be a summable sequence of
nonnegative numbers. Let (x°, y°, z%) € dom p x dom g x Z be the initial point.
Fork =0, 1, ..., perform the following steps:

Step 1a. (Backward GS sweep) Compute fori =m,...,2,

~k+1 . -~ k ~k+1 k.. .k 1 k2
xl. NargmlnxeX{E (x<l XL XS YW )+§||x,~—xl. ||§i},

~k+1 ~k+1 ~k+1 . o ~
8K € 04, Lo (x5, _ | XL FEEL VR wh) + § @ — xb) with 18| < F.

Step 1b. (Forward GS sweep) Compute fori =1,...,m

k+1 . & k41 ~ . 1
X; + NargmmxeX{,C (xJ 1,xi,x>i+1,yk wk)+§||x,-—xf||2§i},

k+1 k+1 k+1 . ~
8¢ € 8y, Lo G X R N wh) + S (KT — Ky with ||| < &

Step 2a. (Backward GS sweep) Compute for j =n, ..., 2,

~k+1 . ~ 1k ~k+1 .k 1 k2
vy A argming ey {Lo TN VE Sy s w4 5l — v IR b

a 1 1 T ~k+1 . ~ ~
PE €0y, Lo ekt yh . T FEEL by + TG — 3B with 175 < &

Step 2b. (Forward GS sweep) Compute for j =1,...,n

k+1 . = k+1
yi T A argming oy {£o L VERL vy SETR ) + 5l = IR )

k ~ k+1 k+1 ~k+1 k+1 ~
b€ 9y, Lo (R YLyt SRR wh) + T3 = yf) with ||yj I < %k

Step 3. Compute K1 1= 7K 4 ro (A*xkH! 4 Bryktl —¢).

Foranyk>0 and 8¢ = (8%, ..., 8k), 6k = (8%, ..., 85), 7F = (K, ..., ) and
= (y1 ,...,yn) such that 37f+1 = 3'1‘“ and y ~k+l = )/lkJrl we define

df =6k + MMy (8 =3 and d = y* + NN R = 75, 4.10)
Then, for the sGS-imsPADMM we have the following result.

Proposition 4.2 Suppose that Md > 0and Ny > 0 for M and N defined in (4.8).
Let « and «' be defined as in (4.9). Then, the sequences (wh = K, yk, 25}, (65},
{(Sk}, {yk} and {)7]‘} generated by the sGS-imsPADMM are well-defined and it holds
that

M= M+sGS(M) =0, N =N +sGSWN) = 0. 4.11)
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Moreover, for any k > 0, d)]g and d]y‘ defined by (4.10) satisfy

dl € 0 (B (e, v o Skt = x42)), i
dl € 9y (Zh (e, yirh) 4 4kt -y L)

IM 2d8) < k& IN"2db| < k5 (4.13)

Proof By Proposition 4.1 we can readily get (4.11). Furthermore, by Proposition 4.1
we can also obtain (4.12) from (4.10). By using (4.7) we can get

o~

—_ 1 ~ —~1 — N
1M 2db|| < M, 2 118 — 5’:|| + M (Mld + M)
< 2V/m = TIM 2 || + /ml|M; (Mg + M) =)k

From here and (4.9), the required inequality for ||./\//T _%df |l in (4.13) follows. We can
prove the second inequality in (4.13) similarly. O

Remark 4.1 (a) If in the imsPADMM, we choose S := §, T = 7A', then we have
M=M>»0and N = N > 0. Moreover, we can define the sequence {&i}
by e := max{k, «'}g; Vk > 0, so that the sequence {g} is summable if {;} is
summable. Note that the sequence {wk} generated by the sGS-imsPADMM always
satisfies ||./\/l’%d)’§ || < erand ||N’%d§? || < ex. Thus, {w*} can be viewed as a sequence
generated by the imsPADMM with specially constructed semi-proximal terms. To
sum up, the sGS-imsPADMM is an explicitly implementable method to handle high-
dimensional convex composite conic optimization problems, while the imsPADMM
has a compact formulation which can facilitate the convergence analysis of the sGS-
imsPADMM.

(b) As was discussed in the paragraph ensuing Proposition 4.1, when implementing
the sGS-imsPADMM algorithm, we can use the EIH] computed in the backward GS
sweep (Step 1a) to estimate xf“ in the forward sweep (Step 1b) fori =2,...,m.In
this case, the corresponding error vector is given by 8{‘ = SZ‘ + 23;11 M; j (xf+1 -

xj?), and we may accept the approximate solution xf“ = 55{‘“ without solving an

additional subproblem if ||8f | < &. A similar strategy also applies to the subproblems
in Step 2b for j =2, ..., n.

5 Convergence analysis

First, we prepare some definitions and notations that will be used throughout this
and the next sections. Since {€;} is nonnegative and summable, we can define £ :=
Z,fio g and & = Z,fio 8]%. Let {wk = (xk, yk, zk)} be the sequence generated by
the imsPADMM and {(x¥, y¥)} be defined by (3.3) and (3.4). We define the mapping
R:XxY— ZbyR(x,y) = A*x+B*y —c¢,VY(x, y) € X x ), and the following
variables, for k > 0,
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X y:

k ._ zk k Ak ._ sk k Ak ._ sk _ _k
Ay =X =Xt A=y vy, A zr =z,
Faan P e S5 R S8 N AR

with the convention that x° = x° and ¥ = y°. For any & > 1, by Clarke’s Mean
Value Theorem [3, Proposition 2.6.5] there are two self-adjoint linear operators 0 <
PJIC‘ < Xpand0 =< P;‘, =< X, such that

VA =V =Piayt ve(hh = Vet =Pialtl s

We define three constants o, @, B by & := (1 + t/min{l + 7, 1 + 1:_1})/2,

o~

o := 1 — amin{z, ‘L'_l}, B:=min{l, 1 — 7+ ™o — (1 - o)t 5.2)

Since T € (0, (1 + «/g)/Z), itholds that0) < @ < 1,0 <@ < 1 and B > 0. Now, we
define for any w € VW and k > 0,

pew) = llz =P+l —xMIG g+ Iy =y I% L7

5.3
oI RGx YOI + @0l 2+ allAE 11 (>3)

2 +7°
d(w) = Lz =P+ Ix =35 o+ ly =%
k "~ To Ef+$ 2 +7

+ o | RCx, I + Qo741 + af| 3% — y*~ 1||2 T

Moreover, since f and g are continuously differentiable, there exist two self-adjoint
positive semidefinite linear operators X' 5 < ) rand X, < Z‘ such that

[ F@ 2 fE)+ (VD x =) + 3l —x13, Vxx e,
(5.4)

g0 = 80N+ (Ve y =y +5lly = VI3, Yy.y €.
Additionally, we define the following two linear operators

F = lZ‘f +S+ %AA*, g .= %Z‘g + 7 +min{r, 1 + 7 — t%}ac BB*.
(5.5)

The following lemma will be used later.

Lemma 5.1 Let {ai}r>0 be a nonnegative sequence satisfying ax+1 < ai + € for all
k > 0, where {ex }k>0 is a nonnegative and summable sequence of real numbers. Then
the quasi-Fejér monotone sequence {ay} converges to a unique limit point.

Now we start to analyze the convergence of the imsPADMM.

Lemma 5.2 Let {wX} be the sequence generated by the imsPADMM for solving prob-
lem (1.4). For any k > 1, we have

k412 k+1 ky; 2 k—1 k k
(1= D 2 4 o IRGS, 3912 4+ 20 (dh ™1 — af, ak)

@ Springer



An efficient inexact symmetric Gauss—Seidel based. . . 251

S ik k+1 k
> ao (|12 = 1P 1% + Bo P 4+ 1AL L

- s + 1452 (5.6)

a(Z' +7) oc(Z‘ +7)4min{zr,1+1—12}ac BB*"

Proof First note that or¥t! = ZKt1 — 28k 4 (1 — 1)ork. By using the fact that

RxHAH yky = pkt1 4 B*Al;, we have

(1 = Do P12 + o R, Y912
= Q2 — D)o [P ? + o | B*AL|1? 4 2(o kT, BF A%)
= Q2 —0)ollr" 1 + o AblIgg. +2(1 — D)o (rF, B*AK)
+2(FH -7, Brak).

(5.7)

Since f > Pk > 0, by using (2.1) with H := fg +7 — P§ >0and u = A’;_l,

V= AI)‘,, we have

[ Ak=1 Ak Ak | Ak
2<A + 4 >): +7— Pg = ~l4 ”): +7T Pk 14y ”): +7 Pk (5.8)
k 1 '
2 —14k% 1A%
From Step 2 of the imsPADMM we know that for any k > 0,
dy = V() = BZH + (T + 1A € 9 (5" ). (5.9)
By using (5.9) twice and the maximal monotonicity of d¢g, we have for k > 1,
[ — a1 4+ Vg (1) = Vg(rh) - BEH — 7, —ak)
5 k k—1 k
+((Eg+T) (44— a41), —ak) =0,
which, together with (5.1) and (5.8), implies that
FhHl _ Sk k k _ gk—1 Ak
(41—, Brak) - (d —ds!, ak)
A Ak_l Ak A Ak 1 (5 10)
> 12405 — (2 serop 2 21N~ HIATIG
On the other hand, by using the Cauchy—Schwarz inequality we have
| B AP + IR = 20, BrAY)
> —[|B*AN|1* — [Ir*)2 (5.11)

Now, by applying (5.10) and (5.11) in (5.7), we can get

(1= Dol 7 + o IREH, YOI + 2<d§*1 —df, A’;}
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—1 k+12 k2 k2 k—1p2
= max(1 =, 1 =7~ Jo (A2 = 1r07) + 1Ak L — 14K

+min{zr, 14+ 1 — 130 (||B*A’;||2 + 1k ||2) ) (5.12)
By using the Cauchy—Schwarz inequality we know that

||R(x’<:1,2y’<>||2 = |k|r’; - A*Ak’; |2|2 = 7512 j gA*lAﬁnz —k2<2r’<, A*kA§>
> [|FK)12 4 A A2 = 217K = AR AR = S AR A2 — ek,

so that for any @ € (0, 1], we have

(I —a) (1= Do [rF 2 + o [RGFT, y6)|12)
> (1—a) (1 = Do |rkH 2 —o|rk|? + S A AK)12) 1 (5.13)
= (@ — Dro |2 + 1 = 0)o (IrF2 = 1rk)12) + 952201 a% )12 .

Finally by adding (5.13) to the inequality generated by multiplying o to both sides of
(5.12), we can get (5.6). This completes the proof. O

Next, we shall derive an inequality which is essential for establishing both the global
convergence and the iteration complexity of the imsPADMM.

Proposition 5.1 Suppose that the solution set W to the KKT system (2.3) of problem
(1.4) is nonempty. Let_{wk} be the sequence generated by the imsPADMM. Then, for
anyw = (x,y,2) e Wandk > 1,

2a<d§ —d’yffl, A’;) —2(d§, k1 —i)—2<d§, St _y>

B _ (5.14)
HIAK N5 + IAKIG + Bo 12 < gr (D) — i1 ().

Proof Forany given (x, y, z) € W, wedefinex, :=x—X,y, == y—yandz, := z—2.
Note that

FHoREH V) =T 4o BT -y,
Then, from Step 1 of the imsPADMM, we know that
df =V 5 = A(FH 0B AY) + (5 +8) Ak e op(). (5.15)
Now the convexity of p implies that

P+ (dh = VF(h) = A (H 0B AL) + (B + Ak, 24H1) = pekth),
(5.16)

On the other hand, by using (3.1) and (5.4), we have

F@ = fO5) + (VD). xf) = 3 IxE115,.
FOO = FERHD = (VFOD, A7) = =51431%,
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Thus, summing up the above two inequalities together gives
O = FERY 4 (VFah), xbH) = SIxbI3, - J1A5% . 57)
By summing (5.16) and (5.17) together, we get

P + f(B) = petH) — fOH) — (B4 4 o Brak, AnxkH

(5.18)
(S + A%, 1)+ {dr, 1) = 3T, — 14515 )-
Applying a similar derivation, we also get that for any y € ),
9() +8(M) =" — g(FF — [, Byt 5.19)

(B + DAk, ) (a3 = LA, — 1451 ).
By using (2.3), (5.4) and the convexity of the functions f, g, p and g, we have

PG + FAY = p() = f() + Az 1) = 51 (5.20)
gt + (M = q() — 8() + (Bz, yiH) = 5 1vETHIE,- '

Finally, by summing (5.18), (5.19), (5.20) together, we get

<dk k+1) <dk k+1>_<’51;+1 rk+1)_G<B*Ak A*xk+1>
{ab i )g o (A oE)H(1akIE + 14413
2g+

1 k2 2 k+1)12 k+1(2
3 (0%, + 1551, + 1%, + IEE, )
1 2 1 2 '
71ALIS, + 314515,

(5.21)

A%

v

Next, we estimate the left-hand side of (5.21). By using (2.1), we have

<B*Al;, A*xéc+l — (B*yéc _ B*y§+l’ rk+l _ B*yéc+l)
_ (B* k _ B* k+l’ rk-‘rl) _ % (”B*yifHZ _ IIB*yf _ B*y§+l||2 _ ||B*y§+1”2)
3 (IB*YETI 2 4 [RGMHE, Y12 = 1B yk 112 — 17441 12) .

(5.22)
Also, from (2.1) we know that
—~ _ 1 k+1 k
(W Ab g s = 3 (A% s = IKEFIS L ) — 21461 s
k+1 Ak 1 k+1 k (523)
OFL Ab g o7 = 1 (D61 — IR +T) LIakI% -
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Moreover, by using the definition of {Zk} and (2.1) we know that

<rk+1 "'k—H) ( k+1 Z]e<+o.rk+l — %(Zk_H —Zk,Z§>+U”rk+1”2
= 5= (I15H1)? — ||z’<+1 — 2 = 1Z2K1%) + o llr 2 (5.24)

1 2—
g (K12 = 125117) + E522 k2,

Thus, by using (5.22), (5.23) and (5.24) in (5.21), we obtain that

(k1) (db, ) g (12807 = I 2) + S (B8NP — 1By 11P)

3 (1% s+ 0E1% ) — (|| AL+ DEIE ) 529)

1—
> Ljak + 314k g ||R(xk+1, yo? + L= ”" l#5+1)2,

”‘2 +S ”12+T

Note that for any y € ), R(x, y) = B*y,. Therefore, by applying (5.6) to the right
hand side of (5.25) and using (5.3) together with (5.5), we know that (5.14) holds for
k > 1 and this completes the proof. O

Now, we are ready to present the convergence theorem of the imsPADMM.

Theorem 5.1 Suppose that the solution set W to the KKT system (2.3) of problem
(1.4) is nonempty and {w*} is generated by the imsPADMM. Assume that

S +8+0AA* =0 and E,+T +oBB* = 0. (5.26)

Then, the linear operators F and G defined in (5.5) are positive definite. Moreover,
the sequence {w*} converges to a point in W.

Proof Denote p := min(z, | +7 —72) € (0, 1]. Since o > 0, from the definitions of
F and G, we know that

F=4 “>(2f+s+oAA*) gf %s
G =5 (5, +T +0BB) + 25, + = p“aBB*>O.

Now we start to prove the convergence of the sequence {w*}. We first show that this
sequence is bounded. Let w := (X, ¥, 7) be an arbitrary vector in Y. For any given
(x,v,z) € W, wedefine x, :=x —x,y,:=y—yand z, :== z — 2. Since G > 0, it
holds that

1AYH I + 20 (df — i, )

= A5 + g7 dy — dyHIIG — o lldy — dy G- (5.27)
By substituting x¥*! and %! for x**1 and y**! in (5.14), we obtain that
w W) + o dk ! 2,
Pk () — Prp1 (D) + &7 g1 (5.28)

> [T —x ||f+/30||rk+1||2+ I35 = y* +ag~lay G
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Define the sequences {£€X} and {§¥}in Z x X x Y x Z x Y fork > 1 by

= (VTozk (S +8) 2k N2 yk Vaork, Ja(S,+T)2 (akh), (5.29)
E":z( 102k, (S +8) 1Tk NIFE VaoTh, Ja(Sg+T)2 (! — 7). '
Obviously we have [|£|* = ¢ (i) and [|& 1> = ¢ (i), which, together with (5.28)

implies that ||EK+1)2 < |1£5)12 4+ «?||1G 2 d’; 2. As a result, it holds that ||EFt1|| <
&k + oc||g_%d§_l ||l. Therefore, we have that

1 =
HEF ) < 168 + G 2a5 | + 1M — g4, (5.30)
Next, we estimate [|EKT! — £51| in (5.30). Since @ + © € [, 2], it holds that

1 ||Ak+] ”2 + aa||rk+] k+1 ”2 (T + a)a||rk+] k+1 ”2
< 2(T||A*Ak+l +B*Ak+1”2 < 4”Ak+1”2A_A* +4)A +1||UBB*’

which, together with Proposition 3.1, implies that

= 1 1112
[[EFF s“ [

< [lAkH! ||Ef+s + IAVIRANATS | 4IATIE g+ 41ATZ e
< 5(|AS IR+ 1ASTTIR) < o%eg,
(5.31)
where o is a constant defined by
1 1
0= \/5(1 + (1 + o INT2BAM™2)?). (5.32)

On the other hand, from Proposition 3.1, we know ||Q_%d'y‘|| < ||Q_%N% llex. By
using this fact together with (5.30) and (5.31), we have

IEHT < IEXT + oex + IG 2N T ekt < IE T + (0 + IG2N2)E, (5.33)

which implies that the sequence {£¥} is bounded. Then, by (5.31) we know that the
sequence {£X} is also bounded. From the definition of £¥ we know that the sequences
(y1, {z*}, {r*} and {(ff + Sﬁxk} are bounded. Thus, by the definition of ¥, we
know that the sequence {Ax¥} is also bounded, which together with the definition of
M and the fact that M > 0, implies that {x¥} is bounded.
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By (5.28), (5.31) and (5.33) we have that

o
> (W‘+1 — XM 1% + Bo [[FETH2 4 | =y +ag—1d§—lné)
k=1

= 3 (A1) = st (D) + s (D) = i () + @252 )
k=1 (5.34)

< ¢1(D) + 3 [EHT — ERHL(IERFT |+ IE) 4 1GTIN T |2E
k=1

< G1(@) + G INPE + omax([IE) + JE)E < oo,

where we have used the fact that ¢y (1) — ¢ (w) < [|EX — &K (||€% || + IE¥||). Thus,
by (5.34) we know that {||T*T! — x*[ 5} — 0, {|7** = y* + oG~ 'di M) — O,
and {||F*T1)|2} — 0 as k — oo. Since we have F > O and G > 0 by (5.26),
(k1 — xky - 0, {7¥+! — y¥} — 0 and {F¥} — 0 as k — oo. Also, since M > 0
and A/ > 0, by Proposition 3.1 we know that {x* — x*} — 0 and {(y* — y¥} = O as
k — oo. As aresult, it holds that {AK} — 0, {A’;} — 0, and {r¥} - 0ask — oo.
Note that the sequence {(x*t1, yk*1 zK¥1)} is bounded. Thus, it has a convergent
subsequence {(xkit!, ykitl Zki+t1y} which converges to a point, say (x>, y*°, z).
We define two nonlinear mappings F : W — X and G : W — Z by

F(w) := dp(x) + V() + Az, G(w) :=dq(y) + Vg() + Bz, Yw € W.
(5.35)

From (5.15), (5.9) and (5.1) we know that in the imsPADMM, for any k > 1, it holds
that

df —P)’C‘“A’; + (ff +S)A’; 4+ (1 — Do Ark+! — GAB*A’; c F(wk“)(,s o
df — PYTIAL 4+ (Zg + T AL + (= Do Brit! € G, '

Thus by taking limits along {k;} as i — oo in (5.36), we know that
0€dp(x®)+Vf(x®)+ Az®°, and 0e€ dg(y™>®) + Vg(y*®) + Bz,

which together with the fact that limy_, o, 7¥ = 0 implies that (x>, y*®, z®) € W.
Hence, (x*°, y*°) is a solution to the problem (1.4) and z*° is a solution to the dual of
problem (1.4).

By (5.33) and Lemma 5.1, we know that the sequence {||& kv is convergent. We
can let w = (x>, y*, z°°) in all the previous discussions. Hence, lim;_, o, £ = 0.
Thus, from the definition of {£¥} we know that limj_, o z¥ = 2™, limg_ o0 Y¥ = y>®
and limy_, 00 (Z ¢ + S)x* = (Zf + 8)x*. Obviously, since limy_ oo ¥ = 0, it holds
that { A*x¥} — A*x> as k — oo. Finally, we get limj_, oo x* = x by the definition
of M and the fact that M > 0. This completes the proof. O

@ Springer



An efficient inexact symmetric Gauss—Seidel based. . . 257

6 Non-ergodic iteration complexity

In this section we establish an iteration complexity result in the non-ergodic sense for
the imsPADMM. The definitions and notations in Sect. 5 also apply to this section.
We define the function D : W — [0, c0) by

D(w) := dist?(0, F(w)) + dist?(0, G(w)) + [|R(x, V|I>, Yw = (x, y,2) € W,

where F' and G are defined in (5.35). We say that w € )V is an e-approximation
solution of problem (1.4) if D(w) < €. Our iteration complexity result is established
based on the KKT optimality condition in the sense that we can find a point w € W
such that D(w) < o(1/k) after k steps. The following lemma will be needed later.

Lemma 6.1 If {a;} is a nonnegative sequence satisfying > ;> a; = a, then we have

in {a;) < a/k and lim {k - min {a;}} = 0.
min {a;} < a/k and lim { 1212k{“’}}

Now we establish a non-ergodic iteration complexity for the imsPADMM.

Theorem 6.1 Suppose that all the assumptions of Theorem 1 hold and the convergent
sequence {wk} generated by the imsPADMM converges to the limit w = (%, ¥, 7).
Then, there exists a constant « > 0 such that

min {D(w’“)} <w/k, and hm {k mm {D(w’“)}} =0. 6.1)

1<i<k

Proof Forany (x,y,z) € X x Y x Z,definex, :=x—X,y,:=y—yandz, = z7—7Z.
Moreover, we define the sequence {{x }x>1 by

k
Z( dl l+l +2<dl l+1>+a2”d;,_d)l/_l”é,1).

We first show that {;} is a bounded sequence. Let {£X} be the sequence defined in

(5.29). Define 0 := ||€!| + (.Q + IIQ_% %II)S, where g is defined by (5.32). From
(5.29) and (5.33), we know that for any i > 1,

™%, s e IR +Hao e < e < 2% (6.2)

where « is defined in (5.2). We then obtain that

i = 2@)Ir P 20 R (63)

2o <20 r 2 202 g < 2
By using (6.2) and (6.3) together, we get
xR < 1%

%45 tE@OIHIP+ 21y, < 20%/@ (64
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We can see from (6.2) that ||y, I+1)| ;v < 0. This, together with (6.4) and the fact that
0 < @ < 1, implies

(dy, <) + (dy, yiTH] < (V2/@ + Doer. (6.5)
Note that ||g_%df,|| < ||g—%/\/% llex and 0 < o < 1. Thus, we have

1 . . 1 1
PIGT(d, — dyHIP < 201G NP (] + &7 ). (6.6)

Therefore, by combining (6.5) and (6.6), we can get

o0 . .
g ( dz l+l> <di' t+l>| + 062||dt d;_l ||2g71) 67
<¢ =

2(V/2/a + 1)0€ + AGTIN |2,

where £ and £’ are defined in the beginning of Sect. 5. By using (5.14), (5.27) and
(6.7), we have that

o
kg 1A% % + Bollr 112 + A% — oG~ 1 (dy — dy DI
o
< > Ik A 42 (ah v 4Pl - a G ) 68)
k=1

g (P (D) — Pr1(W)) < p1(w) + ¢,

where g: is defined in (6.7). Also, since 0 < a < 1, we have that

1A%+« dy — dy Mg = I1A%IE — 20 A8 11dy — dy ).

By (6.2) we know that ||y, || ;- <. Hence, [|A%]| < 2IN~2 |[3. From the fact that

1 1
Id5 |l < N2 [lex, we can get ||(dy — dy )|l < [IN2||(ex + &x—1). Thus from (6.8)
and the above discussions, we have that

o0
kgl(nAﬁniA + Bo I 12+ 14515
o0
= max {1, IMF L ING I} X (14405 + oI+ + 1145112
k=1

< g = max {1, [MF 1, ING I} (610) + & + 41N IIV2 JoE)
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Next, we estimate the value of D(w**1). From the fact that M > P)]C‘ and (5.36), we
obtain that

dist?(0, F (w**1))
< |df+ (Zy +S = PEH AL + (xr — Do A+ — o AB* AR
< |ld¥ + (M = P AR + o A(rrkt — rh) |12
< 3IMI(IM 242 + | A3 + o2 M AR erkt! — 4 )12).

Also, from the fact that N > Pf, and (5.36), we have

dist?(0, G (wk+1))
< lld5 + (g + T — P Ak 4 (¢ — Do Bret! |2
< |ldf + N = PETH AL 4+ o B(rrkt! — rk 4 A% A% )2
1 1
< 3||N||(||./\/'_7d§||2 + ||A’;||%\/ + 202||N_78||2||‘[rk+1 _ rk||2)
1
+602 [ BA*M 2|2 A5 1%,

Define w; := %(H/VI*%AII2 +A72B]?) and

w3 1= max {|M]| + 202 |BA* M3 |2, [N, 4a }.

It is now easy to verify from the above discussions that

o0
D) < = 3(IMI| + INIDE + 211l || + 3wows.
k=1

Therefore, by the above inequality and Lemma 6.1, we know that (6.1) holds with
o > 0 being defined above. This completes the proof. O

Remark 6.1 (a) We note that the sequence {D(w)} is not necessarily monotonically
decreasing, especially due to the inexact setting of the imsPADMM. Thus it is not sur-
prising that the iteration complexity result is established with the “minj <; <, operation
in Theorem 6.1.

(b) For a majorized ADMM with coupled objective, the non-ergodic complexity
analysis was first proposed by Cui et al. [4]. For the classic ADMM with separa-
ble objective functions, Davis and Yin [5] provided non-ergodic iteration complexity
results in terms of the primal feasibility and the objective functions. One may refer to
[4, Remark 4.3] for a discussion on this topic.

7 Numerical experiments

In this section, we report the numerical performance of the sGS-imsPADMM for the
following rather general convex QSDP (including SDP) problems

min {3 (X, QX)+(C, X) | AgX =bg, ;X >b;, X e SLNN} (1.1)
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where S’ is the cone of n x n symmetric positive semidefinite matrices in the space
of n x n symmetric matrices S”, Q : 8" — §" is a self-adjoint positive semidefinite
linear operator, Ag : 8" — R"E and A; : §" — N™ are linear maps, C € §”,
bg € W"E and b; € N™ are given data, N is a nonempty simple closed convex set,
eg, N={XeS8"|L <X <U}with L,U € 8" being given matrices. The dual
of problem (7.1) is given by

—min 83,(=2) + 5 (W, QW) — (be, y&) — (b1, y1)

SLZ— QW+ S+ Apyp + Aiy = C, Sest, y=0, wew, 2

where WV is any subspace in S” containing Range(Q). Typically W is chosen to be
either §” or Range(Q). Here we fix W = S". In order to handle the equality and

inequality constraints in (7.2) simultaneously, we add a slack variable v to get the
following equivalent problem:

1
max (= 83(=2) = 811 (v) — 5 (W, QW) = 851(8) + (bE. ye) + (br. 1)
st.Z—OW+S+Apye +Ajyr=C, Dw—y)) =0, WeW,

(7.3)
where D € R™ X" is a positive definite diagonal matrix introduced for the purpose
of scaling the variables. The convex QSDP problem (7.1) is solved via its dual (7.3)
and we use X € &" and u € R/ to denote the Lagrange multipliers corresponding to
the two groups of equality constraints in (7.3), respectively. Note that if Q is vacuous,
then (7.1) reduces to the following general linear SDP:

min{(C, X) | AgX =bg, A;X > by, XGSiﬁ./\/'}. (7.4)
Its dual can be written as in (7.3) as follows:

min (§3/(=2) + Syt (v)) + 851 (S) = (be, yE) — (b1, Y1)

(7.5)
st. Z+S+Apye+Ajyr =C, Dv—y) =0,
or equivalently,
min (8} (—Z) + Smril (n) + 8s1(8) = (bE, ye) — (b1, y1) (7.6)

st. Z+ S+ Apye + Ajyr =C.

Denote the normal cone of A at X by Nar(X). The KKT system of problem (7.1) is
given by

AyE+ Ay +S+Z— QW —C =0, AgX — bg =0,
0eNNV(X)+Z, QX —QW =0, X eS8, S8, (X,8)=0, (1.7)
A X —b; >0, yy =20, (Ajx —b,y;) =0.

@ Springer



An efficient inexact symmetric Gauss—Seidel based. . . 261

Based on the optimality condition (7.7), we measure the accuracy of a computed
solution (X, Z, W, S, yg, yr) for QSDP (7.1) and its dual (7.2) via

Ngsdp = Max{np, nx, Nz, np, Nw, Ns, N} (7.8)
where

A YERAL Y +S+Z- QW —C| _ IX=Ix X)) _ IX-InX-2)|

np = THICT X =X 12 = Xz
X—Mgn (X

_ IAEX—bg| _lox—owi o _ X~ 1(X,S)]
P = T men 0 W T Q] .15 = max { THIXT° TFIXTHIST )

_ I min©,y)l [ min©A; X=b)l (A X—bs,y1)]
ni = max { [ (T ’1+||A1x—b1n+||y1||}'

In addition, we also measure the objective value and the duality gap:

Objprimal = %(X, QX) + (C, X),
Objgyq = _Sj*\[(_z) - % (W, QW) + (b, yE) + (b1, Y1), (7.9)

. Objprimal _Objdual
123 *= TH[Obj iyt H1Obj g |

The accuracy of a computed solution (X, Z, S, yg, y;) for the SDP (7.4) is measured
by a relative residual 7qp similar to the one defined in (7.8) but with Q vacuous.

Before we report our numerical results, we first present some numerical techniques
needed for the efficient implementations of our algorithm.

7.1 On solving subproblems involving large linear systems of equations

In the course of applying ADMM-type methods to solve (7.3), we often have to solve
a large linear system of equations. For example, for the subproblem corresponding to
the block y;, the following subproblem with/without semi-proximal term has to be
solved:

min { — (by, y1) + AL =Dyr — rlI> + Slyr — vy 1%}, (7.10)

where 7 is a self-adjoint positive semidefinite linear operator on "7, and r and y;”
are given data. Note that solving (7.10) is equivalent to solving

(0 (ALA; + DY+ T)yr =7 :=b; + o (A1, =D)r + Ty; . (7.11)

It is generally very difficult to compute the solution of (7.11) exactly for large scale
problems if 7 is the zero operator, i.e., not adding a proximal term. We now provide an
approach for choosing the proximal term 7', which is based on a technique' proposed

1 This technique is originally designed for choosing the preconditioner for the preconditioned conjugate
gradient method when solving large-scale linear systems, but it can be directly applied to choosing the
semi-proximal terms when solving subproblems in ALM-type or ADMM-type methods. One may refer to
[31, Sect. 4.1] for the details.
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by Sun et al. [31], so that the problem can be efficiently solved exactly while ensuring
that 7 is not too “large”. Let

V= .A/.A? + Dz.

Suppose that V' admits the eigenvalue decomposition V = >/ A;P; P, with 1 >

. > Ap > 0. We can choose 7 by using the first / largest elgenvalues and the
corresponding eigenvectors of V. By following the procedure provided in [31] we
have

T =0 Z Ar41 — )»,')Pipi*. (7.12)
i=l+1

Thus 7 is self-adjoint positive semidefinite. Moreover, it is more likely that such a 7
is “smaller” than the natural choice of setting it to be o (A1Z — V). Indeed we have
observed in our numerical experiments that the latter choice always leads to more
iterations compared to the choice in (7.12).

Tosolve (7.11), we need to compute (6 V+7) —! which can be obtained analytically
as 0V +T7)"! = (k1) 'T+ 30, (02) ™" = (0har1) )PP}, Thus, we only
need to calculate the first few largest eigenvalues and the corresponding eigenvectors
of V and this can be done efficiently via variants of the Lanczos method. Finally, we
add that when the problem (7.10) is allowed to be solved inexactly, we can set 7 = 0
in (7.10) and solve the linear system o) = ¥ by a preconditioned conjugate gradient
(PCG) method. In this setting, (6} + 7)~! with 7 defined in (7.12) can serve as an
effective preconditioner.

Note that we can apply similar techniques to solve large linear systems of equations
arising from solving the subproblems corresponding to W in (7.3).

7.2 Numerical results for quadratic/linear SDP problems

In our numerical experiments, we construct QSDP test instances based on the doubly
nonnegative SDP problems arising from relaxation of binary integer quadratic (BIQ)
programming with a large number of inequality constraints that was introduced by
Sun et al. [30] for getting tighter bounds. The problems that we actually solve have
the following form:

min 5 (X, QX) + 3 (0. X) + (¢
stdlag(X)—x_O X = (Xx € +,X€N::{X€S":X20},

T
X
X,j>() xXj— Y,]>O,7,]—x,—x12—l Vi<i<j<n-—1.

x)

o

—_—

For convenience, we call them as QSDP-BIQ problems. When Q is vacuous, we call
the corresponding linear SDP problems as SDP-BIQ problems. The test data for Q
and c are taken from the Biq Mac Library maintained by Wiegele.?

2 http://bigmac.uni-klu.ac.at/bigmaclib.html.
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We tested one group of SDP-BIQ problems and three groups of QSDP-BIQ prob-
lems with each group consisting of 80 instances with n ranging from 151 to 501. We
compare the performance of the sGS-imsPADMM to the directly extended multi-block
sPADMM with the aggressive step-length of 1.618 on solving these SDP/QSDP-BIQ
problems. We should mention that, although its convergence is not guaranteed, such a
directly extended SPADMM is currently more or less the benchmark among first-order
methods targeting to solve multi-block linear and quadratic SDPs to modest accuracy.
Note that for QSDP/SDP problems, the majorization step is not necessary, so we shall
henceforth call the sGS-imsPADMM as sGS-isPADMM. We have implemented our
sGS-isPADMM and the directly extended SPADMM in MATLAB. All the 320 prob-
lems are tested on a HP Elitedesk with one Intel Core 17-4770S Processor (4 Cores,
8 Threads, 8M Cache, 3.1-3.9 GHz) and 8 GB RAM. We solve the QSDP (7.1) and
the SDP (7.4) via their duals (7.3) and (7.5), respectively, where we set D := oZ with
a = /][ A7][/2. We adopt a similar strategy used in [20,30] to adjust the step-length T
3 The sequence {&x }x>0 that we used in imspADMM is chosen such that g < 1/ K12,
The maximum iteration number is set at 200,000.

We compare sGS-isSPADMM applied to (7.3) with a 5-block directly extended
sPADMM (called sSPADMMS5d) with step-length of 1.618 applied on (7.2), and com-
pare sGS-isSPADMM applied to (7.5) with a 4-block directly extended sSPADMM
(called SPADMM4d) provided by [30] with step-length* of 1.618 on (7.6). For the
comparison between sSPADMM4d and some other ADMM-type methods in solving
linear SDP problems, one may refer to [30] for the details. For the sGS-isPADMM
applied to (7.3), the subproblems corresponding to the blocks (Z, v) and S can be
solved analytically by computing the projections onto N x ﬂi:"_’ and 8, respectively.
For the subproblems corresponding to yg, we solve the linear system of equations
involving the coefficient matrix A g A7}, viaits Cholesky factorization since this compu-
tation can be done without incurring excessive cost and memory. For the subproblems
corresponding to y; and W, we need to solve very large scale linear systems of equa-
tions and they are solved via a preconditioned conjugate gradient (PCG) method with
preconditioners that are described in the previous subsection. In the implementation of
the sGS-isSPADMM, we have used the strategy described in Remark 4.1 (b) to decide
whether the quadratic subproblems in each of the forward GS sweeps should be solved.
In our numerical experiments, we have found that very often, the quadratic subprob-
lems in the forward sweep actually need not be solved as the solutions computed in the
prior backward sweep already are good approximate solutions to those subproblems.
Such a strategy, which is the consequence of the flexibility allowed by the inexact
minimization criteria in sGS-isSPADMM, can offer significant computational savings
especially when the subproblems have to be solved by a Krylov iterative solver such

31t e [%, 00) but it holds that 3°22 [|AX |2 + [[FFF1% < oo, the imsPADMM (or the sGS-
imsPADMM) is also convergent. By making minor modifications to the proofs in Sect. 5 and using the fact
that Z/?io Hd;‘, || < oo, we can get this convergence result with ease. We omit the detailed proof to reduce
the length of this paper and one may refer to [2, Theorem 1] for such a result and its detailed proof for the
sPADMM setting. During our numerical implementation we always use 7 € [1.618, 1.95].

4 We did not test the SPADMM4d with T = 1 as it has been verified in [30] that it almost always takes
20-50 % more time than the one with t = 1.618.
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Fig. 1 Performance profiles of sGS-isPADMM and sPADMMA4d on solving SDP-BIQ problems

as the PCG method. We note that in the event when a quadratic subproblem in the
forward or backward sweep has to be solved by a PCG method, the solution computed
in the prior sweep or cycle should be used to serve as a good initial starting point for
the PCG method.

For the sSPADMMS5d applied to (7.2), the subproblems involving the blocks Z, S
and yg can be solved just as in the case of the sGS-isSPADMM. For the subproblems
corresponding to the nonsmooth block y;, since these subproblems must be solved
exactly, a proximal term whose Hessian is AmaxZ — 0 Ap A7 (With Apax being the
largest eigenvalue of 0.4 A7) has to be added to ensure that an exact solution can be
computed efficiently. Besides, we can also apply a directly extended 5-block sSPADMM
(we call it SPADMMS5d-2 for convenience) on (7.3). In this case, we can use the
proximal term described in (7.12) in the previous subsection, where [ is typically
chosen to be less than 10. We always choose a similar proximal term when solving the
subproblems corresponding to W for both the sSPADMMS5d and the SPADMMS5d-2.
Since the performance of the SPADMMS5d-2 applied to (7.3) is very similar to that of
the sSPADMMS5d applied to (7.2), we only report our numerical results for the latter.

We now report our numerical results. Figure 1 shows the numerical performance
of the sGS-isPADMM and sPADMM4d in solving SDP-BIQ problems to the accu-
racy of 107 % in Ngsdp- One can observe that sGS-isPADMM is 3-5 times faster than
the SPADMM4d, on approximately 80 % problems in terms of computational time.
Figure 2 shows the numerical performance of the sGS-isPADMM and sPADMMS5d
in solving QSDP-BIQ problems (group 1) to the accuracy of 107 in Ngsdp- For
this group of tested instances, Q is chosen as the symmetrized Kronecker opera-
tor Q(X) = %(AXB + BXA), as was used in [34], with A, B being randomly
generated symmetric positive semidefinite matrices such that rank(A) = 10 and
rank(B) ~ n/10. Clearly Q is self-adjoint and positive semidefinite on S” but highly
rank deficient [33, Appendix]. As is showed in Fig. 2, the sGS-isPADMM is at least
2 times faster than the SPADMMS5d, on solving the vast majority the tested problems
in terms of computational time. Figure 3 demonstrates the numerical performance of
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1 1
[2]
[]
g £
2 o8 2 08
o]
g o
Q
;ch 0.6 g 0.6
5 -
(]
9\; 0.4 2 0.4
8 =
- 02 e 02
-
——sPADMM5d ——sPADMMS5d
0 0
2 4 6 8 10 1 2 3 4 5 6
at most x times of the best at most x times of the best

Fig. 2 Performance profiles of sGS-isPADMM and sSPADMMS5d on solving QSDP-BIQ problems (group
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Fig. 3 Performance profiles of sGS-isPADMM and sSPADMMS5d on solving QSDP-BIQ problems (group

the sGS-isPADMM and sPADMM5d in solving QSDP-BIQ problems (group 2) to the
accuracy of 10~%in Ngsdp- Here, Q is chosen as the symmetrized Kronecker operator
QX) = % (AX B+ BXA) with A, B being matrices truncated from two different large
correlation matrices (Russell 1000 and Russell 2000) fetched from Yahoo
Finance by MATLAB. As can be seen from Fig. 3, sGS-isSPADMM is 2 to 3 times faster
than the SPADMMS5d for about 80 % of the problems in terms of computational time.
Figure 4 shows the numerical performance of the sGS-isPADMM and sPADMMS5d
in solving QSDP-BIQ problems (group 3) to the accuracy of 107 in Ngsdp- Here,
Q is chosen as the Lyapunov operator Q(X) = %(AX + X A) with A being a ran-
domly generated symmetric positive semidefinite matrix such that rank(A) =~ n/10.
We should note that for these instances, the quadratic subproblems corresponding to

@ Springer



266 L. Chen et al.

Performance profile: iterations Performance profile: time
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Fig. 4 Performance profiles of sGS-isPADMM and sSPADMMS5d on solving QSDP-BIQ problems (group
3)

W in both the sGS-isSPADMM and ADMMS5d can admit closed-form solutions by
using the eigenvalue decomposition of A and adapting the technique in [32, Sect. 5]
to compute them. In our numerical test, we compute the closed-form solutions for
these subproblems. As can be seen from Fig. 4, the sGS-isPADMM is 2—4 times faster
than the SPADMMS5d for more than 90 % tested instances in terms of computational
time. Table 1 gives the detailed computational results for selected tested instances with
n = 501. The full table for all the 320 problems is available at the authors’ website”.

To summarize, we have seen that our sGS-isSPADMM is typically 2-3 times faster
than the directly extended multi-block sSPADMM even with the aggressive step-length
of 1.618. We achieve this by exploiting the flexibility allowed by our proposed method
for only requiring approximate solutions to the subproblems in each iteration. In
contrast, the directly extended sSPADMM must solve the subproblems exactly, and
hence is forced to add appropriate proximal terms which may slow down the conver-
gence. Indeed, we observed that its convergence is often much slower than that of the
sGS-isPADMM. The merit that is brought about by solving the original subproblems
inexactly without adding proximal terms is thus evidently clear.

8 Conclusions

In this paper, by combining an inexact 2-block majorized sSPADMM and the recent
advances in the inexact symmetric Gauss—Seidel (sGS) technique for solving a
multi-block convex composite quadratic programming whose objective contains a
nonsmooth term involving only the first block-variable, we have proposed an inexact
multi-block ADMM-type method (called the sGS-imsPADMM) for solving general
high-dimensional convex composite conic optimization problems to moderate accu-
racy. One of the most attractive features of our proposed method is that it only needs

3 http://www.math.nus.edu.sg/~mattohkc/publist.html.
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one cycle of the inexact sGS method, instead of an unknown number of cycles, to solve
each of the subproblems involved. Our preliminary numerical results for solving 320
high-dimensional linear and convex quadratic SDP problems with bound constraints,
as well as with a large number of linear equality and inequality constraints have shown
that for the vast majority of the tested problems, the proposed the sGS-imsPADMM
is 2-3 times faster than the directly extended multi-block PADMM (with no con-
vergence guarantee) even with the aggressive step-length of 1.618. This is a striking
surprise given the fact that although the latter’s convergence is not guaranteed, it is
currently the benchmark among first-order methods targeting to solve multi-block lin-
ear and quadratic SDPs to modest accuracy. Our results clearly demonstrate that one
does not need to sacrifice speed in exchange for convergence guarantee in developing
ADMM-type first order methods, at least for solving high-dimensional linear and con-
vex quadratic SDP problems to moderate accuracy. As mentioned in the Introduction,
our goal of designing the sGS-imsPADMM is to obtain a good initial point to warm-
start the augmented Lagrangian method so as to quickly benefit from its fast local
linear convergence. So the next important step is to see how the sGS-imsPADMM can
be exploited to produce efficient solvers for solving high-dimensional convex compos-
ite conic optimization problems to high accuracy. We leave this as our future research
topic.
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