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 A B S T R A C T

In this paper, we investigate the properties of the control process (𝑧) in a class of backward stochastic 
differential equation (BSDE) with Markovian terminal data driven by a forward stochastic differential equation 
(SDE). We focus on determining the sign of (𝑧), and find that it is determined via certain information about the 
BSDE driver and the terminal data. Notably, we explore the co-monotonicity property of (𝑧) when the terminal 
value of the BSDE within the forward–backward SDE (FBSDE) system is non-monotonic. Three applications are 
also showed in the paper. First, we provide a sufficient condition ensuring that the nonlinear 𝑔-expectation is 
additive. Second, we obtain the explicit solution for a class of nonlinear BSDEs. Third, we offer a closed form 
representation for the standard aggregator utility under ambiguity, as discussed in Chen and Epstein (2002).
1. Introduction

Pardoux and Peng (1990) [1] have shown that under some proper 
conditions on the non-linear driver 𝑔 and the terminal data 𝜉, there 
exists a unique pair of adapted and square integrable solutions (𝑦, 𝑧)
to the following backward stochastic differential equations (BSDEs for 
short) 

𝑦𝑡 = 𝜉 + ∫

𝑇

𝑡
𝑔(𝑠, 𝑦𝑠, 𝑧𝑠)𝑑𝑠 − ∫

𝑇

𝑡
𝑧𝑠𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ]. (1.1)

Since their seminal work, the theory of BSDEs has been studied by 
many researchers and many remarkable results about the solution pair 
(𝑦, 𝑧) have been obtained. Over the past two decades, BSDEs have 
found applications in various fields, including mathematical finance, 
stochastic control, and partial differential equations (PDEs), see for 
instance El Karoui, Peng and Quenez [2], El Karoui and Quenez [3], 
Chen and Epstein [4], Pardoux and Zhang [5], Darling [6], Ma, Protter 
and Yong [7] and etc. However, the precise information about the 
solution pair (𝑦, 𝑧) remains to be fully explored. Indeed, there are few 
results on the solution (𝑧), which plays an important role in applications 
to quantitative finance. In fact, in BSDE models of financial derivatives, 
(𝑧) is interpreted as the volatility. Therefore, accurately determining 
the properties of (𝑧), such as whether it is positive, is of significant 
importance.

In the paper by Chen, Kulperger and Wei [8], the authors estab-
lished a co-monotonicity theorem for the control process (𝑧). Specifi-
cally, they examined BSDEs with terminal data 𝜉 = 𝛷(𝑋𝑇 ), where 𝛷 is a 
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monotone function on R, and (𝑋𝑠)𝑠∈[𝑡,𝑇 ] is the solution to the following 
forward stochastic differential equation (SDE): 
⎧

⎪

⎨

⎪

⎩

𝑑𝑋𝑠 = 𝑏(𝑠,𝑋𝑠)𝑑𝑠 + 𝜎(𝑠,𝑋𝑠)𝑑𝑊𝑠,

𝑋𝑡 = 𝑥, 𝑥 ∈ R, 𝑠 ∈ [𝑡, 𝑇 ].
(1.2)

They showed that if (𝑦1, 𝑧1), (𝑦2, 𝑧2) are solutions of the BSDE (1.1) 
corresponding to the terminal values 𝜉1 = 𝛷1(𝑋1

𝑇 ) and 𝜉2 = 𝛷2(𝑋2
𝑇 )

respectively, then 𝑧1 ⋅ 𝑧2 ≥ 0 if 𝛷1 and 𝛷2 are both increasing or both 
decreasing on R. Subsequently, G. Dos Reis and R.J.N. Dos Reis [9] 
studied solutions of Forward–Backward SDEs (FBSDE) with drivers that 
grow quadratically in the control component (𝑧). They found that when 
the terminal values of BSDEs are co-monotonic, the control process (𝑧) 
are also co-monotonic, provided the terminal 𝛷 is monotone. Recently, 
R. Likibi Pellat and O. Menoukeu Pamen [10] explored solutions to cou-
pled quadratic FBSDEs under weaker conditions on the drift coefficient 
of the forward component. They derived a co-monotonicity theorem for 
the control variable, extending the works [8,9].

However, all the previous works mentioned above have focused 
on monotone terminal values. By applying comparison theorem for 
FBSDEs, they obtained the desired results. When the terminal is not 
monotone, comparison theorem does not work any more. More re-
cently, Chen, Liu, Qian and Xu [11] determined the sign of (𝑧) and 
obtained the explicit solutions for certain nonlinear BSDEs with non-
monotone terminal values 𝜉. Specifically, they considered the case 
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where 𝜉 = 𝛷(𝑊𝑇 ), with 𝛷(𝑥) being symmetric about a point 𝑐 and 
monotonic on {𝑥 > 𝑐}, such as 𝛷(𝑥) = 𝑥2 with 𝑐 = 0. By analyzing 
the corresponding PDEs, they demonstrated that sgn(𝑧𝑡) = sgn(𝑊𝑡 − 𝑐)
under certain regularity conditions on 𝛷.

The objective of this paper is to investigate the sign of (𝑧) for a more 
general terminal 𝜉 = 𝛷(𝑋𝑇 ), where (𝑋𝑡)𝑡∈[0,𝑇 ] is given by (1.2). The 
SDE (1.2) and the BSDE (1.1) together form a decoupled FBSDE system. 
For general results on the well-posedness of FBSDEs, see [12–15] et al. 
In this paper, we aim to extend the co-monotonic theorem for BSDEs 
in [8] to the case where 𝛷1 and 𝛷2 may not be monotone. Since 
the comparison theorem for BSDEs is no longer applicable in these 
scenarios, we address this challenge by carefully analyzing the corre-
sponding PDEs derived via the Feynman–Kac formula. By constructing 
a martingale and employing stopping techniques, we determine the sign 
of the solutions to the corresponding PDEs. Specifically, we deal with 
the case where the terminal value 𝜉 = 𝛷(𝑋𝑇 ), with 𝛷 being a ‘piece-
wise symmetric’ function having more than one symmetric points, such 
as 𝛷(𝑥) = sin 𝑥. We show that the sign of 𝑧 in BSDE (1.1) depends on 𝛷′

but is independent of 𝑔 under some suitable conditions. This allows us 
to analyze the co-monotonicity of (𝑧) within a more general framework. 
Suppose (𝑦1, 𝑧1), (𝑦2, 𝑧2) are solutions of BSDE (1.1) corresponding to 
terminal values 𝜉1 = 𝛷1(𝑋1

𝑇 ) and 𝜉2 = 𝛷2(𝑋2
𝑇 ) respectively, where 𝛷1

and 𝛷2 are general co-monotonic functions as defined in Definition  4.1. 
Assume 𝑋𝑖

𝑡 (𝑖 = 1, 2) are the unique solution of the following SDEs,
{

𝑑𝑋𝑖
𝑠 = 𝑏𝑖(𝑠,𝑋𝑖

𝑠)𝑑𝑠 + 𝜎𝑖(𝑠,𝑋𝑖
𝑠)𝑑𝑊𝑠,

𝑋𝑖
0 = 𝑥𝑖, 𝑥𝑖 ∈ R.

Then, under some technical conditions on 𝛷𝑖, 𝑏𝑖 and 𝜎𝑖 (𝑖 = 1, 2), we 
show that

𝑧1𝑡 ⋅ 𝑧
2
𝑡 ≥ 0, a.e. 𝑡 ∈ [0, 𝑇 ].

We also discuss three applications of our main results in the last 
part of the paper. First, we discuss the so-called 𝑔-expectation of 𝜉
(denoted by E𝑔[𝜉] in literature), defined as 𝑦0, where 𝑦𝑡 is the solution 
of BSDE (1.1) with driver 𝑔. Unlike ordinary probability expectation, 
the 𝑔-expectation is typically non-additive due to the nonlinearity of 
𝑔. This concept has significant applications in quantitative finance and 
has been studied by various researchers, including El Karoui, Peng 
and Quenez [2], Briand, Coquet, Hu, Memin and Peng [16], Chen and 
Epstein [4], Coquet, Hu, Memin and Peng [17] and Rosazza Gianin [18] 
and the literature therein. In this paper, we show that 𝑔-expectation 
E𝑔 is additive for some nonlinear 𝑔. Specifically, if the terminal values 
𝜉1 and 𝜉2 are co-monotonic in our sense (see Definition  4.1), and 𝑔
satisfies a technical condition, then E𝑔[𝜉] becomes additive. Second, by 
using the result on the sign of 𝑧, we give the explicit solution of the 
nonlinear BSDE when the terminal value 𝜉 = 𝛷(𝑋𝑇 ) and the generator 
𝑔(𝑠, 𝑦, 𝑧) = 𝑘|𝑧|. The third application pertains to the standard additive 
utility, as discussed in works such as Duffie and Epstein [19]. Chen 
and Epstein [4] considered this utility under ambiguity and derived a 
closed-form expression. We use our results on the sign of (𝑧) to obtain 
a more explicit representation of the standard aggregator utility for 
specific multiple priors.

The paper is organized as follows. In Section 2, we collect some 
results of BSDEs. In Section 3, we show the relationship between the 
sign of 𝑧 and the terminal value 𝜉, In Section 4, we give the definition 
of general co-monotonic considered in this paper, and show the co-
monotonic theorem. The applications of the main results, sufficient 
conditions for the additivity of 𝑔-expectation, the explicit solution of a 
nonlinear BSDE with a Markovian terminal condition and the explicit 
form of the standard aggregator utility under ambiguity, are given in 
Section 5.
2 
2. Preliminary notions

In this section, we briefly recall some basic notions and results 
about BSDEs and establish notations as well, the reader may refer to 
Pardoux and Peng [1] for more information. Let 𝐿2(0, 𝑇 ;R) be the set 
of Lebesgue function 𝜑 ∶ [0, 𝑇 ] → R such that ∫ 𝑇

0 |𝜑(𝑡)|2𝑑𝑡 < ∞, and 
𝐿2(𝛺,𝑡, 𝑃 ) denote the space of 𝑡-measurable and square integrable 
random variables on (𝛺, , 𝑃 ) for each 𝑡 ≥ 0. Denote

2(0, 𝑇 ;R) ∶=
{

(𝑦𝑡)𝑡∈[0,𝑇 ] ∶ continuous (𝑡)-adapted process with 

𝐸
[

sup
𝑡∈[0,𝑇 ]

|𝑦𝑡|
2
]

< ∞
}

.

and

2(0, 𝑇 ;R) ∶=
{

(𝑧𝑡)𝑡∈[0,𝑇 ] ∶ real valued (𝑡)-adapted process with 

𝐸
[

∫

𝑇

0
|𝑧𝑡|

2𝑑𝑡
]

< ∞
}

.

The following assumptions will be enforced throughout the paper.

(A1) There exists a constant 𝐶 such that
|𝑏(𝑡, 𝑥) − 𝑏(𝑡, 𝑥′)|, |𝜎(𝑡, 𝑥) − 𝜎(𝑡, 𝑥′)| ≤ 𝐶|𝑥 − 𝑥′|

for 𝑥, 𝑥′ ∈ R, and moreover
|𝑏(⋅, 0)| + |𝜎(⋅, 0)| ∈ 𝐿2(0, 𝑇 ;R), ∀𝑇 > 0.

(A2) There exists a constant 𝐶 such that
|𝑔(𝑡, 𝑦, 𝑧) − 𝑔(𝑡, 𝑦, 𝑧′)| ≤ 𝐶(|𝑦 − 𝑦′| + |𝑧 − 𝑧′|)

for 𝑦, 𝑦′ ∈ R and 𝑧, 𝑧′ ∈ R.
(A3) ∫ 𝑇

0 |𝑔(𝑠, 𝑦, 𝑧)|2𝑑𝑠 < ∞ for any (𝑦, 𝑧) ∈ R × R.

Under the conditions (A2), (A3), if moreover 𝜉 ∈ 𝐿2(𝛺,𝑇 , 𝑃 ), Pardoux 
and Peng [1] showed that BSDEs (2.1) admits a unique solution, 
i.e., there is a pair of adapted processes (𝑦, 𝑧) ∈ 2(0, 𝑇 ;R)×2(0, 𝑇 ;R)
such that 

𝑦𝑡 = 𝜉 + ∫

𝑇

𝑡
𝑔(𝑠, 𝑦𝑠, 𝑧𝑠)𝑑𝑠 − ∫

𝑇

𝑡
𝑧𝑠𝑑𝑊𝑠. (2.1)

In this paper, we mainly consider the case when 𝜉 = 𝛷(𝑋𝑇 ), where 
(𝑋𝑠)𝑠∈[𝑡,𝑇 ] is the solution of the following SDE 
{

𝑑𝑋𝑠 = 𝑏(𝑠,𝑋𝑠)𝑑𝑠 + 𝜎(𝑠,𝑋𝑠)𝑑𝑊𝑠,
𝑋𝑡 = 𝑥, 𝑠 ∈ [𝑡, 𝑇 ].

(2.2)

and 𝛷(𝑥) is a continuous function defined on R such that 𝛷(𝑋𝑇 ) ∈
𝐿2(𝛺,𝑇 , 𝑃 ). That is, we consider the following BSDE: 

𝑦𝑡 = 𝛷(𝑋𝑇 ) + ∫

𝑇

𝑡
𝑔(𝑠, 𝑦𝑠, 𝑧𝑠)𝑑𝑠 − ∫

𝑇

𝑡
𝑧𝑠𝑑𝑊𝑠. (2.3)

We know that under condition (A1), SDE (2.2) admits a unique strong 
solution in 𝐿𝑝(𝛺,𝑇 , 𝑃 ) (𝑝 ≥ 1); and BSDE (2.3) admits a unique 
solution under condition (A2) and (A3).

Let 𝐶𝑚,𝑛(R × R) denote the set of functions 𝜙(𝑥, 𝑦) ∶ R × R → R
such that the 𝑚th order partial derivative with respect to 𝑥 and the 
𝑛th order partial derivative with respect 𝑦 exist and are continuous, 
and 𝐶𝑚,𝑛

𝑏 (R × R) denotes the space of those functions with bounded 
partial derivatives. Suppose 𝑏(𝑡, ⋅), 𝜎(𝑡, ⋅) and 𝛷(⋅) ∈ 𝐶3(R), 𝑔(𝑡, ⋅, ⋅) ∈
𝐶1,3,3([0, 𝑇 ] × R × R). Let 𝑢(𝑡, 𝑥) be the unique solution of the following 
quasi-linear partial differential equations (PDEs) for a fixed 𝑇 > 0: 
{

𝜕𝑡𝑢(𝑡, 𝑥) + 𝑢(𝑡, 𝑥) + 𝑔
(

𝑡, 𝑢(𝑡, 𝑥), 𝜎(𝑡, 𝑥)𝜕𝑥𝑢(𝑡, 𝑥)
)

= 0,
𝑢(𝑇 , 𝑥) = 𝛷(𝑥), (𝑡, 𝑥) ∈ (0, 𝑇 ] × R,

(2.4)

where

𝑢(𝑡, 𝑥) ∶= 1
2
𝜎2(𝑡, 𝑥)𝜕𝑥𝑥𝑢(𝑡, 𝑥) + 𝑏(𝑡, 𝑥)𝜕𝑥𝑢(𝑡, 𝑥).

Define 𝑦𝑡 = 𝑢(𝑡, 𝑋𝑡) and 𝑧𝑡 = 𝜎(𝑡, 𝑋𝑡) ⋅ 𝜕𝑥𝑢(𝑡, 𝑋𝑡). Then by Feynman–Kac’s 
formula, we know that (𝑦𝑡, 𝑧𝑡)𝑡∈[𝑡,𝑇 ] solves BSDE (2.3), see [2] for more 
details.
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3. The sign of 𝒁

In this section, we study the sign of 𝑧 of the following decoupled 
FBSDE system: 

𝑦𝑡 = 𝛷(𝑋𝑇 ) + ∫

𝑇

𝑡
𝑔(𝑠, 𝑦𝑠, 𝑧𝑠)𝑑𝑠 − ∫

𝑇

𝑡
𝑧𝑠𝑑𝑊𝑠, (3.1)

where (𝑋𝑠)𝑠∈[𝑡,𝑇 ] is the solution of SDE (2.2). We will show that the 
sign of 𝑧 has a connection with the terminal value 𝜉 = 𝛷(𝑋𝑇 ) and is 
independent of 𝑔 under some conditions.

Denote 𝑤(𝑡, 𝑥) ∶= 𝜕𝑥𝑢(𝑡, 𝑥). Now we give the first main result. 

Theorem 3.1.  Suppose that (𝐴1)−(𝐴3) hold, and
(i) 𝛷(𝑚) (𝑚 = 0, 1, 2, 3) possess at most polynomial growth, 𝑔(𝑡, 𝑦, 𝑧) ∈

𝐶1,3,3
𝑏 (R+ × R × R);

(ii) D ∶= {𝑑𝑗 , 𝑗 = 0,±1,±2,…} is a nodal set of 𝑤(𝑡, 𝑥). This is, 
𝑤(𝑡, 𝑥)|𝑥∈D = 0 for every 𝑡 ∈ [0, 𝑇 ].

Then the following conclusions hold:
(i) If 𝛷(𝑥) is monotone on [𝑑𝑗 , 𝑑𝑗+1], then 𝑧𝑡 ⋅ 𝜎(𝑡, 𝑋𝑡)𝛷′(𝑋𝑡) ≥ 0.

(ii) If 𝛷(𝑥) is strictly monotone on [𝑑𝑗 , 𝑑𝑗+1], then sgn(𝑧𝑡) = sgn(𝜎(𝑡, 𝑋𝑡)
𝛷′(𝑋𝑡)).

Remark 3.2.  It should be noted that when 𝑧 is high-dimensional, by 
defining 𝑧 ⊙ 𝑥 ∶= (𝑧1𝑥1, 𝑧2𝑥2,… , 𝑧𝑑𝑥𝑑 ), where 𝑧 ⊙ 𝑥 ≥ 0 means 𝑧𝑖𝑥𝑖 ≥ 0
and 𝑧 ⊙ 𝑥 > 0 means 𝑧𝑖𝑥𝑖 > 0, the results in this paper still hold. 
So without loss of generality, we only consider the case where 𝑧 is 
one-dimensional.

We now introduce some assumptions regarding the functions 𝛷, 𝑏
and 𝜎 under which assumption (ii) in Theorem  3.1 is satisfied. Assume 
that 𝛷 is a ‘piecewise symmetric’ function. Specifically, there exists an 
increasing sequence
⋯ 𝑑−𝑛 < ⋯ < 𝑑−2 < 𝑑−1 < 𝑑0 < 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑛 < ⋯

such that 𝛷(𝑥) in the BSDE (3.1), and 𝑏(𝑡, 𝑥) and 𝜎(𝑡, 𝑥) in the SDE (2.2), 
satisfy the following condition for 𝑡 ∈ [0, 𝑇 ]:

(H) 𝛷(𝑑𝑗−𝑥) = 𝛷(𝑑𝑗+𝑥), 𝑏(𝑡, 𝑑𝑗−𝑥) = −𝑏(𝑡, 𝑑𝑗+𝑥), 𝜎(𝑡, 𝑑𝑗−𝑥) = 𝜎(𝑡, 𝑑𝑗+𝑥)
for 𝑥 ∈ R, 𝑗 = 0,±1,±2,…

Then we have the following result:

Theorem 3.3.  Under assumptions (𝐻) and (𝐴1)−(𝐴3), if moreover, 
𝛷(𝑥) ∈ 𝐶3(R) and 𝛷(𝑚) (𝑚 = 0, 1, 2, 3) possess at most polynomial growth; 
𝑔(𝑡, 𝑦, 𝑧) = 𝑔(𝑡, 𝑦,−𝑧) and 𝑔(𝑡, 𝑦, 𝑧) ∈ 𝐶1,3,3

𝑏 (R+ × R × R). Then
(i) 𝑧𝑡 ⋅ 𝜎(𝑡, 𝑋𝑡)𝛷′(𝑋𝑡) ≥ 0 if 𝛷(𝑥) is monotone on [𝑑𝑗 , 𝑑𝑗+1].
(ii) sgn(𝑧𝑡) = sgn(𝜎(𝑡, 𝑋𝑡)𝛷′(𝑋𝑡)) if 𝛷(𝑥) is strictly monotone on [𝑑𝑗 , 𝑑𝑗+1].

Proof.  Under assumption (𝐻) and 𝑔(𝑡, 𝑦, 𝑧) = 𝑔(𝑡, 𝑦,−𝑧), we can verify 
that 𝑢(𝑡, 𝑑𝑗 − 𝑥) and 𝑢(𝑡, 𝑥 + 𝑑𝑗 ) both are the solutions of PDE (2.4). By 
the theory of PDEs, Eq. (2.4) has a unique solution under the regularity 
conditions on 𝛷, 𝑏, 𝜎 and 𝑔. Then we have 𝑢(𝑡, 𝑑𝑗 − 𝑥) = 𝑢(𝑡, 𝑑𝑗 + 𝑥)
for 𝑥 ∈ R, which means 𝑢(𝑡, 𝑥) is an even function about 𝑥 = 𝑑𝑗 (𝑗 =
0,±1,±2,…). Since 𝑤(𝑡, 𝑥) = 𝜕𝑥𝑢(𝑡, 𝑥), we have 𝑤(𝑡, 𝑑𝑗 ) = 𝜕𝑥𝑢(𝑡, 𝑥)|𝑥=𝑑𝑗 =
0, for all 𝑡 ∈ [0, 𝑇 ]. Then the results follow from Theorem  3.1. □

Example 3.4.  When the terminal value 𝜉 of BSDEs (3.1) is 𝜉 =
𝛷(𝑊𝑇 ) = cos(𝑊𝑇 ). We know 𝛷(𝑥) = cos 𝑥 is symmetric with respect 
to 𝑥 = 𝑑𝑘 = 𝑘𝜋, 𝑘 ∈ N. Then if 𝑔 of BSDE (3.1) satisfies the condi-
tions of Theorem  3.3, the solution 𝑧 of BSDE (3.1) satisfies sgn(𝑧𝑡) =
sgn(− sin(𝑊𝑡)), 𝑎.𝑒. 𝑡 ∈ [0, 𝑇 ].

The following lemma is important when proving Theorem  3.1. 
3 
Lemma 3.5.  Under the assumptions of Theorem  3.1, the solution of PDE 
(2.4) can be represented as

𝜕𝑥𝑢(𝑡, 𝑥) = 𝐸
[

𝑁𝑇𝛷
′(𝑋𝑇 )𝑒∫

𝑇
𝑡 𝐷(𝑟,𝑋𝑟)𝑑𝑟1{𝑇<𝜏𝑗}

]

,

where 𝑗 is chosen such that 𝑋𝑡 = 𝑥 ∈ [𝑑𝑗 , 𝑑𝑗+1], 𝐷(𝑠,𝑋𝑠) and 𝐺(𝑠,𝑋𝑠) are 
given by (3.2) and (3.3) respectively,
𝜏𝑗 = inf

{

𝑠 ≥ 𝑡, 𝑋𝑠 = 𝑑𝑗 or 𝑑𝑗+1
}

(𝑗 = 0,±1,±2,…),  and

𝑁𝑠 = exp
{

∫

𝑠

𝑡
𝐺(𝑟,𝑋𝑟)𝑑𝑊𝑟 − ∫

𝑠

𝑡

1
2
𝐺(𝑟,𝑋𝑟)2𝑑𝑟

}

.

Proof.  Since 𝑔(𝑡, 𝑦, 𝑧) ∈ 𝐶1,3,3
𝑏 (R+ × R × R), 𝛷(⋅) ∈ 𝐶3(R), 𝑏(⋅), 𝜎(⋅) ∈

𝐶1,3(R) and 𝛷(𝑖) (where 𝑖 = 0, 1, 2, 3) possess at most polynomial growth, 
the unique solution 𝑢(𝑡, 𝑥) to PDE (2.4) belongs to 𝐶1,3([0, 𝑇 ]×R), see for 
example Friedman [20]. In particular we have 𝜕𝑥𝑢(𝑡, 𝑥) ∈ 𝐶1,2([0, 𝑇 ]×R).

Let us first consider the case when 𝛷(𝑖) (where 𝑖 = 0, 1, 2, 3) are 
bounded. For this case, the second order derivative of 𝑢(𝑡, 𝑥), that is, 
𝜕𝑥𝑤(𝑡, 𝑥) is bounded in [0, 𝑇 ] × R. For 0 ≤ 𝑠 ≤ 𝑡, set
𝑎𝑠 = 𝜕𝑦𝑔

(

𝑠, 𝑢(𝑠,𝑋𝑠), 𝜎(𝑠,𝑋𝑠)𝑤(𝑠,𝑋𝑠)
)

,
𝑏𝑠 = 𝜕𝑧𝑔

(

𝑠, 𝑢(𝑠,𝑋𝑠), 𝜎(𝑠,𝑋𝑠)𝑤(𝑠,𝑋𝑠)
)

.

Then, taking derivative of PDE (2.4) with respect to 𝑥 and using Itô’s 
formula,

𝑑𝑤(𝑠,𝑋𝑠) =
(

𝜕𝑠𝑤(𝑠,𝑋𝑠) +
1
2
𝜎2(𝑠,𝑋𝑠) ⋅ 𝜕2𝑥𝑥𝑤(𝑠,𝑋𝑠) + 𝜕𝑥𝑤(𝑠,𝑋𝑠) ⋅ 𝑏(𝑠,𝑋𝑠)

)

𝑑𝑠

+ 𝜕𝑥𝑤(𝑠,𝑋𝑠) ⋅ 𝜎(𝑠,𝑋𝑠)𝑑𝑊𝑠

=
{

−
[

𝜕𝑥𝑏(𝑠,𝑋𝑠) + 𝑎𝑠 + 𝑏𝑠 ⋅ 𝜕𝑥𝜎(𝑠,𝑋𝑠)
]

⋅𝑤(𝑠,𝑋𝑠)

− [𝜎(𝑠,𝑋𝑠)𝜕𝑥𝜎(𝑠,𝑋𝑠) + 𝑏(𝑠,𝑋𝑠) + 𝑏𝑠 ⋅ 𝜕𝑥𝜎(𝑠,𝑋𝑠)] ⋅ 𝜕𝑥𝑤(𝑠,𝑋𝑠)
}

× 𝑑𝑠

+ 𝜕𝑥𝑤(𝑠,𝑋𝑠) ⋅ 𝜎(𝑠,𝑋𝑠)𝑑𝑊𝑠.

Let 𝑀𝑠 = 𝑞𝑠𝑁𝑠𝑤(𝑠,𝑋𝑠), where
{

𝑑𝑞𝑠 = 𝐷(𝑠,𝑋𝑠)𝑞𝑠𝑑𝑠, 𝑞𝑡 = 1,

𝑑𝑁𝑠 = 𝑁𝑠𝐺(𝑠,𝑋𝑠)𝑑𝑊𝑠, 𝑁𝑡 = 1,
𝑠 ∈ [𝑡, 𝑇 ].

with

𝐷(𝑠, 𝑥) ∶=𝜕𝑥𝑏(𝑠, 𝑥) + 𝜕𝑦𝑔(𝑡, 𝑢(𝑡, 𝑥), 𝜎(𝑠, 𝑥)𝜕𝑥𝑢(𝑡, 𝑥))

+ 𝜕𝑧𝑔(𝑡, 𝑢(𝑡, 𝑥), 𝜎(𝑠, 𝑥)𝜕𝑥𝑢(𝑡, 𝑥))𝜕𝑥𝜎(𝑠, 𝑥), (3.2)

𝐺(𝑡, 𝑥) ∶= 𝜕𝑥𝜎(𝑠, 𝑥) + 𝜕𝑧𝑔(𝑡, 𝑢(𝑡, 𝑥), 𝜎(𝑡, 𝑥)𝜕𝑥𝑢(𝑡, 𝑥)). (3.3)

Therefore,

𝑑𝑀𝑠 = 𝑞(𝑠)𝑑
[

𝑁𝑠𝑤(𝑠,𝑋𝑠)
]

+𝑁𝑠𝑤(𝑠,𝑋𝑠)𝐷(𝑠,𝑋𝑠)𝑞(𝑠)𝑑𝑠

= 𝑞(𝑠)𝑁𝑠𝑑𝑤(𝑠,𝑋𝑠) + 𝑞(𝑠)𝑤(𝑠,𝑋𝑠)𝑁𝑠𝐺(𝑠,𝑋𝑠)𝑑𝑊𝑠

+ 𝑞(𝑠)𝑁𝑠𝐺(𝑠,𝑋𝑠)𝜎(𝑠,𝑋𝑠)𝜕𝑥𝑤(𝑠,𝑋𝑠)𝑑𝑠

+ 𝑞(𝑠)𝑁𝑠𝑤(𝑠,𝑋𝑠)𝐷(𝑠,𝑋𝑠)𝑑𝑠.

Substituting 𝑑𝑤(𝑠,𝑋𝑠) into 𝑑𝑀𝑠, by the definition of 𝐷(𝑠, 𝑥) and 𝐺(𝑠, 𝑥), 
we obtain that
𝑑𝑀𝑠 = [𝑞(𝑠)𝑁𝑠𝜕𝑥𝑤(𝑠,𝑋𝑠) ⋅ 𝜎(𝑠,𝑋𝑠) + 𝑞(𝑠)𝑁𝑠𝑤(𝑠,𝑋𝑠)𝐺(𝑠,𝑋𝑠)]𝑑𝑊𝑠.

We now claim that 𝑀 is a square integral martingale. In the following 
illustration, 𝐶 will denote a constant whose values vary from line to 
line, which dependent on 𝑡 and independent of 𝑠 ≤ 𝑡. Since 𝜎(𝑡, ⋅), 𝑏(𝑡, ⋅) ∈
𝐶1
𝑏 (R) and 𝑔(𝑡, 𝑦, 𝑧) ∈ 𝐶1,3,3

𝑏 (R+ × R × R), it holds that
|𝑞(𝑠)𝑁𝑠𝜕𝑥𝑤(𝑠,𝑋𝑠) ⋅ 𝜎(𝑠,𝑋𝑠) + 𝑞(𝑠)𝑁𝑠𝑤(𝑠,𝑋𝑠)𝐺(𝑠,𝑋𝑠)| ≤ 𝐶|𝑁𝑠|,

and

𝐸[|𝑁𝑠|
2] = 𝐸

[

exp
{

2
𝑠
𝐺(𝑟,𝑋𝑟)𝑑𝑊𝑟 −

𝑠
|𝐺(𝑟,𝑋𝑟)|

2𝑑𝑟

}]
∫𝑡 ∫𝑡
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≤ 𝐶𝐸
[

exp
{

2∫

𝑠

𝑡
𝐺(𝑟,𝑋𝑟)𝑑𝑊𝑟 − 2∫

𝑠

𝑡
|𝐺(𝑟,𝑋𝑟)|

2𝑑𝑟

}]

= 𝐶 < +∞.

Then,

𝐸|𝑀𝑠|
2 = 𝐸

{

𝑀𝑡 + ∫

𝑠

𝑡
[𝑞(𝑟)𝑁𝑟𝜕𝑥𝑤(𝑟,𝑋𝑟) ⋅ 𝜎(𝑟,𝑋𝑟) + 𝑞(𝑟)𝑁𝑟𝑤(𝑟,𝑋𝑟)

× 𝐺(𝑟,𝑋𝑟)]𝑑𝑊𝑟

}2

≤ 2𝐸
{

∫

𝑠

𝑡
[𝑞(𝑟)𝑁𝑟𝜕𝑥𝑤(𝑟,𝑋𝑟) ⋅ 𝜎(𝑟,𝑋𝑟) + 𝑞(𝑟)𝑁𝑟𝑤(𝑟,𝑋𝑟)

× 𝐺(𝑟,𝑋𝑟)]2𝑑𝑟
}

+ 2𝐸[𝑀2
𝑡 ]

≤ 𝐶

Thus, 𝑀𝑠 is a square integrable martingale up to time 𝑡. Since
𝜏𝑗 = inf

{

𝑠 ≥ 𝑡, 𝑋𝑠 = 𝑑𝑗 or 𝑑𝑗+1
}

is a stopping time, finite almost surely (see (1.2) in [21]), by stop-
ping theorem for martingales, we have 𝐸 (

𝑀𝑡
)

= 𝐸
(

𝑀𝑇∧𝜏𝑗

)

. Due to 
𝑤(𝑠, 𝑑𝑗 ) = 0 for all 𝑠 ∈ [𝑡, 𝑇 ] (𝑗 = 0,±1,±2,…), then

𝑤(𝑡, 𝑥) = 𝐸
[

𝑞(𝑇 ∧ 𝜏𝑗 )𝑁𝑇∧𝜏𝑗𝑤(𝑇 ∧ 𝜏𝑗 , 𝑋𝑇∧𝜏𝑗 )
]

= 𝐸
[

𝑁𝑇𝛷
′(𝑋𝑇 )𝑒∫

𝑇
𝑡 𝐷(𝑟,𝑋𝑟)𝑑𝑟1{𝑇<𝜏𝑗

}

]

+ 𝐸
[

𝑞(𝜏𝑗 )𝑁𝜏𝑗𝑤(𝜏𝑗 , 𝑋𝜏𝑗 )1
{

𝜏𝑗≤𝑇
}

]

= 𝐸
[

𝑁𝑇𝛷
′(𝑋𝑇 )𝑒∫

𝑇
𝑡 𝐷(𝑟,𝑋𝑟)𝑑𝑟1{𝑇<𝜏𝑗}

]

.

For the case that 𝛷(𝑖) (𝑖 = 0, 1, 2, 3) possess polynomial growth, we can 
obtain the representation by the simple approximation procedure. The 
proof is complete. □

Now we give the proof of Theorem  3.1.

Proof of Theorem  3.1.  By the illustration in Section 2, let 𝑦𝑡 =
𝑢(𝑡, 𝑋𝑡), 𝑧𝑡 = 𝜎(𝑋𝑡) ⋅ 𝜕𝑥𝑢(𝑡, 𝑋𝑡), where 𝑢(𝑡, 𝑥) is the unique solution of 
PDEs (2.4). Then (𝑦𝑡, 𝑧𝑡) solve BSDEs (2.3), see [2] for more details.

Set 𝑤(𝑡, 𝑥) ∶= 𝜕𝑥𝑢(𝑡, 𝑥), by Lemma  3.5,

𝑤(𝑡, 𝑥) = 𝐸
[

𝑁𝑇𝛷
′(𝑋𝑇 )𝑒∫

𝑇
𝑡 𝐷(𝑟,𝑋𝑟)𝑑𝑟1{𝑡<𝜏𝑗}

]

.

Due to the definition of 𝜏𝑗 , we know 𝑋𝑇 ∈ [𝑑𝑗 , 𝑑𝑗+1] on {𝑇 < 𝜏𝑗} when 
𝑥 ∈ [𝑑𝑗 , 𝑑𝑗+1]. Since 𝛷(𝑥) is monotone on [𝑑𝑗 , 𝑑𝑗+1], we have 𝛷′(𝑋𝑇 ) ≥ 0
(or ≤0) on {𝑇 < 𝜏𝑗} if 𝛷(𝑥) is increasing (or decreasing) on [𝑑𝑗 , 𝑑𝑗+1]. 
Thus, 𝑤(𝑡, 𝑥) = 𝐸

[

𝑁𝑇𝛷′(𝑋𝑇 )𝑒∫
𝑇
𝑡 𝐷(𝑟,𝑋𝑟)𝑑𝑟1{𝑇<𝜏𝑗}

]

≥ 0 (or ≤0). From this 
we have 𝑤(𝑡, 𝑥)𝛷′(𝑥) ≥ 0 for all (𝑡, 𝑥) ∈ (0, 𝑇 ] × R, which means
𝑤(𝑡, 𝑋𝑡) ⋅𝛷′(𝑋𝑡) ≥ 0, 𝑎.𝑒. 𝑡 ∈ [0, 𝑇 ].

Therefore, 𝑧𝑡 ⋅ 𝜎(𝑡, 𝑋𝑡)𝛷′(𝑋𝑡) = 𝜎2(𝑡, 𝑋𝑡)𝑤(𝑡, 𝑋𝑡) ⋅𝛷′(𝑋𝑡) ≥ 0.
Furthermore, if 𝛷(𝑥) is strictly monotone on [𝑑𝑗 , 𝑑𝑗+1], then

sgn(𝛷′(𝑥)) = sgn
(

𝛷′(𝑋𝑥
𝑇 )
) on {𝑇 < 𝜏𝑗}. Since 𝑤(𝑡, 𝑥) = 𝐸

[

𝑁𝑇𝛷′(𝑋𝑥
𝑇 )𝑒

∫ 𝑇
𝑡 𝐷(𝑟,𝑋𝑟)𝑑𝑟1{𝑇<𝜏𝑗}

]

, it is not difficult to verify that sgn
(𝑤(𝑡, 𝑥)) = sgn(𝛷′(𝑥)) for all (𝑡, 𝑥) ∈ (0, 𝑇 ] × R, which means, sgn
(𝑤(𝑡, 𝑋𝑡)) = sgn(𝛷′(𝑋𝑡)), 𝑎.𝑒. 𝑡 ∈ [0, 𝑇 ]. Therefore, sgn(𝑧𝑡) = sgn
(𝜎(𝑡, 𝑋𝑡)𝑤(𝑡, 𝑋𝑡)) = sgn(𝜎(𝑡, 𝑋𝑡))sgn(𝛷′(𝑋𝑡)). The proof is complete. □

4. Co-monotonicity of 𝒛

In this section, we shall establish a more general co-monotonicity 
theorem for 𝑧 based on the study in the last section. Let us first 
generalize the definition of the co-monotonicity, which was initially 
introduced in [8].
4 
Definition 4.1 (Generally Co-monotonic). Two functions 𝛷,𝛹 ∶ R → R
are said to be co-monotonic on set 𝐴 if 𝛷 is increasing (resp. decreasing) 
on 𝐴, then 𝛹 is also increasing (resp. decreasing) on 𝐴. If there exist 
subsets 𝐴1, 𝐴2,… such that 𝛷 and 𝛹 are co-monotonic on each subset 
𝐴𝑖 for 𝑖 ≥ 1, then 𝛷 and 𝛹 are said to be generally co-monotonic on 
the set 𝐴 = 𝐴1 ∪ 𝐴2 ∪⋯.

Furthermore, 𝛷,𝛹 ∶ R → R are said to be strictly co-monotonic on 
a set 𝐴 if 𝛷 is strictly increasing (resp. strictly decreasing) on 𝐴, then 
𝛹 is strictly increasing (resp. strictly decreasing) on 𝐴. They are said to 
be strictly generally co-monotonic on the set 𝐴 = 𝐴1 ∪ 𝐴2 ∪⋯, if 𝛷,𝛹
are strictly co-monotonic on each subset 𝐴𝑖 for 𝑖 ≥ 1.

Now we are in a position to show the co-monotonic theorem. For 
𝑖 = 1, 2, let 𝜎𝑖(𝑠, 𝑥) and 𝑏𝑖(𝑠, 𝑥) satisfy assumption (𝐴1) and (𝑋𝑖

𝑠)𝑠∈[𝑡,𝑇 ]
(𝑖 = 1, 2) be the solutions of the following SDEs, respectively, 
{

𝑑𝑋𝑖
𝑠 = 𝑏𝑖(𝑠,𝑋𝑖

𝑠)𝑑𝑠 + 𝜎𝑖(𝑠,𝑋𝑖
𝑠)𝑑𝑊𝑠

𝑋𝑖
𝑡 = 𝑥𝑖, 𝑥𝑖 ∈ R, 𝑖 = 1, 2

(4.1)

For any 𝛷𝑖(𝑋𝑖
𝑇 ) ∈ 𝐿2(𝛺,𝑇 , 𝑃 ) (𝑖 = 1, 2), let (𝑦𝑖, 𝑧𝑖) be solutions of the 

following BSDEs, 

𝑦𝑖𝑡 = 𝛷𝑖(𝑋𝑖
𝑇 ) + ∫

𝑇

𝑡
𝑔𝑖(𝑠, 𝑦𝑖𝑠, 𝑧

𝑖
𝑠)𝑑𝑠 − ∫

𝑇

𝑡
𝑧𝑖𝑠𝑑𝑊𝑠. (4.2)

Let 𝑢𝑖(𝑡, 𝑥)(𝑖 = 1, 2) denote the solutions to the PDE (2.4) with respect to 
(𝛷𝑖, 𝑏𝑖, 𝜎𝑖, 𝑔𝑖), (𝑖 = 1, 2). Define 𝑤𝑖(𝑡, 𝑥) ∶= 𝜕𝑥𝑢𝑖(𝑡, 𝑥) for 𝑖 = 1, 2. We then 
present the co-monotonicity theorem as follows: 

Theorem 4.2.  Suppose that 𝛷𝑖, 𝑏𝑖, 𝜎𝑖 and 𝑔𝑖 (𝑖 = 1, 2) satisfy the 
assumptions in Theorem  3.1. Let (𝑦1, 𝑧1) and (𝑦2, 𝑧2) be the solutions of 
BSDE (4.2) corresponding to the terminal values 𝜉1 = 𝛷1(𝑋1

𝑇 ) and 𝜉2 =
𝛷2(𝑋2

𝑇 ), respectively. Furthermore, assume that 𝑤1(𝑠, 𝑥) and 𝑤2(𝑠, 𝑥) have 
the same nodal set, meaning 𝑤1(𝑠, 𝑑𝑗 ) = 𝑤2(𝑠, 𝑑𝑗 ) ≡ 0 for 𝑑𝑗 ∈ D.

(i) If 𝛷′
1(𝑋

1
𝑠 ) ⋅ 𝛷

′
2(𝑋

2
𝑠 ) > 0 and 𝜎1(𝑠,𝑋1

𝑠 ) ⋅ 𝜎2(𝑠,𝑋
2
𝑠 ) ≥ 0 a.e. 𝑡 ∈ [0, 𝑇 ], 

then

𝑧1𝑠 ⋅ 𝑧
2
𝑠 ≥ 0, 𝑎.𝑒. 𝑠 ∈ [𝑡, 𝑇 ].

(ii) Furthermore, if 𝛷′
1(𝑋

1
𝑠 ) ⋅𝛷

′
2(𝑋

2
𝑠 ) > 0 and 𝜎1(𝑠,𝑋1

𝑠 ) ⋅𝜎2(𝑠,𝑋
2
𝑠 ) > 0 a.e. 

𝑠 ∈ [𝑡, 𝑇 ], then

sgn(𝑧1𝑡 ) = sgn(𝑧
2
𝑡 ) 𝑎.𝑒. 𝑡 ∈ [0, 𝑇 ].

Proof.  Let 𝑦𝑖𝑠 = 𝑢𝑖(𝑠,𝑋𝑖
𝑠), 𝑧𝑖𝑠 = 𝜎(𝑠,𝑋𝑖

𝑠) ⋅ 𝜕𝑥𝑢
𝑖(𝑠,𝑋𝑖

𝑠), where 𝑢𝑖(𝑡, 𝑥) are 
the solutions of PDE (2.4) with respect to (𝛷𝑖, 𝑏𝑖, 𝜎𝑖, 𝑔𝑖), (𝑖 = 1, 2). By 
Feynman–Kac formula, see [2,22], we know (𝑦𝑖𝑠, 𝑧𝑖𝑠) are the solutions of 
BSDE (4.2). Set 𝑤𝑖(𝑠,𝑋𝑖

𝑠) ∶= 𝜕𝑥𝑢𝑖(𝑠,𝑋𝑖
𝑠).

(i) Since 𝑧𝑖𝑠 = 𝜎𝑖(𝑠,𝑋𝑖
𝑠) ⋅𝜕𝑥𝑢

𝑖(𝑠,𝑋𝑖
𝑠) (𝑖 = 1, 2), and 𝛷′

1(𝑋
1
𝑠 ) ⋅𝛷

′
2(𝑋

2
𝑠 ) > 0,

𝑧1𝑠 ⋅ 𝑧
2
𝑠 = 𝜎1(𝑋1

𝑠 )𝑤
1(𝑠,𝑋1

𝑠 ) ⋅ 𝜎2(𝑠,𝑋
2
𝑠 )𝑤

2(𝑠,𝑋2
𝑠 )

=
𝜎1(𝑋1

𝑠 )𝑤
1(𝑠,𝑋1

𝑠 )𝛷
′
1(𝑋

1
𝑠 ) ⋅ 𝜎2(𝑠,𝑋

2
𝑠 )𝑤

2(𝑠,𝑋2
𝑠 )𝛷

′
2(𝑋

2
𝑠 )

𝛷′
1(𝑋

1
𝑠 )𝛷

′
2(𝑋

2
𝑠 )

Moreover, by the proof of Theorem  3.1, we have 𝑤𝑖(𝑠,𝑋𝑖
𝑠) ⋅𝛷

′
𝑖(𝑋

𝑖
𝑠) ≥ 0. 

Then, 𝑧1𝑠 ⋅ 𝑧2𝑠 ≥ 0, 𝑎.𝑒. 𝑠 ∈ [𝑡, 𝑇 ].
(ii) Since 𝛷′

1(𝑋
1
𝑠 ) ⋅ 𝛷

′
2(𝑋

2
𝑠 ) > 0, a.e. 𝑠 ∈ [𝑡, 𝑇 ], then 𝛷𝑖(𝑥) satisfy 

the assumption of Theorem  3.1. By the proof of Theorem  3.1, we have 
sgn(𝑤𝑖(𝑠,𝑋𝑖

𝑠)) = sgn(𝛷
′
𝑖(𝑋

𝑖
𝑠)), then

sgn(𝑧𝑖𝑠) = sgn(𝑤
𝑖(𝑠,𝑋𝑖

𝑠))sgn(𝜎𝑖(𝑠,𝑋
𝑖
𝑠)) = sgn(𝛷

′
𝑖(𝑋

𝑖
𝑠))sgn(𝜎𝑖(𝑠,𝑋

𝑖
𝑠)).

Moreover, by the assumptions 𝛷′
1(𝑋

1
𝑠 )⋅𝛷

′
2(𝑋

2
𝑠 ) > 0 and 𝜎1(𝑋1

𝑠 )⋅𝜎2(𝑋
2
𝑠 ) >

0, then sgn(𝛷′
1(𝑋

1
𝑠 )) = sgn(𝛷′

2(𝑋
2
𝑠 )) and sgn(𝜎1(𝑋1

𝑠 )) = sgn(𝜎2(𝑋2
𝑠 )). 

Thus, sgn(𝑧1𝑠 ) = sgn(𝑧2𝑠 ) 𝑎.𝑒. 𝑠 ∈ [𝑡, 𝑇 ]. The proof is complete. □

When considering the same underlying process 𝑋𝑡, we have the 
following result. 
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Theorem 4.3.  Under the assumptions of Theorem  4.2, suppose that (𝑦1, 𝑧1)
and (𝑦2, 𝑧2) are the solutions of BSDE (4.2) corresponding to terminal values 
𝜉1 = 𝛷1(𝑋𝑇 ) and 𝜉2 = 𝛷2(𝑋𝑇 ), respectively.
(i) If 𝛷1 and 𝛷2 are strictly generally co-monotonic on R, then 𝑧1𝑠 ⋅ 𝑧2𝑠 ≥

0, 𝑎.𝑒. 𝑠 ∈ [𝑡, 𝑇 ].

(ii) Furthermore, if 𝜎(𝑋𝑠) ≠ 0 a.e., then

sgn(𝑧1𝑠 ) = sgn(𝑧
2
𝑠 ), 𝑎.𝑒. 𝑠 ∈ [𝑡, 𝑇 ].

Proof.  Since 𝛷1 and 𝛷2 are strictly general co-monotonic, from the 
proof of Theorem  4.2, we have

𝑧1𝑠 ⋅ 𝑧
2
𝑠 = 𝜎(𝑠,𝑋𝑠)𝑤1(𝑠,𝑋𝑠) ⋅ 𝜎(𝑋𝑠)𝑤2(𝑠,𝑋𝑠)

=
𝜎2(𝑋𝑠)𝑤1(𝑠,𝑋𝑠)𝛷′

1(𝑋𝑠) ⋅𝑤2(𝑠,𝑋𝑠)𝛷′
2(𝑋𝑠)

𝛷′
1(𝑋𝑠)𝛷′

2(𝑋𝑠)

By Theorem  4.2, 𝑤𝑖(𝑠,𝑋𝑠)𝛷′
𝑖(𝑋𝑠) ≥ 0. Moreover, 𝜎2(𝑋𝑠) ≥ 0. Therefore, 

𝑧1𝑠 ⋅ 𝑧
2
𝑠 ≥ 0, 𝑎.𝑒. 𝑠 ∈ [𝑡, 𝑇 ]. Furthermore, 𝜎2(𝑠,𝑋𝑠) > 0 a.e. if 𝜎(𝑠,𝑋𝑠) ≠ 0

almost surely. Then 𝑧1𝑠 ⋅ 𝑧2𝑠 > 0, 𝑎.𝑒. 𝑠 ∈ [𝑡, 𝑇 ], which means sgn(𝑧1𝑠 ) =
sgn(𝑧2𝑠 ), 𝑎.𝑒. 𝑠 ∈ [𝑡, 𝑇 ]. This completes the proof. □

5. Applications

5.1. Additivity of 𝑔-expectations

Under the assumptions (𝐴2)−(𝐴3) and the following condition (𝐴4), 
Peng [23] introduced the notion of g-expectation.

(A4) 𝑔(𝑡, 𝑦, 0) = 0 for each (𝑡, 𝑦) ∈ [0, 𝑇 ] × R.

Definition 5.1 (𝑔-expectation). Suppose 𝑔 satisfies (𝐴2)−(𝐴4). For any 
𝜉 ∈ 𝐿2(𝛺, , 𝑃 ), let (𝑦𝜉 , 𝑧𝜉 ) be the solution of BSDE (2.1) with terminal 
value 𝜉. Considering the mapping 𝐸𝑔[⋅] ∶ 𝐿2(𝛺, , 𝑃 ) → R denoted by

E𝑔[𝜉] = 𝑦𝜉0.

We call E𝑔[𝜉] the 𝑔-expectation of 𝜉.

Usually, E𝑔[𝜉] with respect to BSDE (2.1) is nonlinear on
𝐿2(𝛺, , 𝑃 ). However, for some special cases, E𝑔[⋅] is still additive even 
though 𝑔 is nonlinear. In this subsection, we will give a sufficient 
condition for the additivity of E𝑔[𝜉]. In order to do this, first we 
introduce a definition on the generator 𝑔, which will be used in the 
main results of this subsection later. 

Definition 5.2.  A function 𝑔(𝑡, 𝑦, 𝑧) ∶ [0, 𝑇 ] × R × R → R is called 
positively additive, if it holds that,

𝑔(𝑡, 𝑦1 + 𝑦2, 𝑧1 + 𝑧2) = 𝑔(𝑡, 𝑦1, 𝑧1) + 𝑔(𝑡, 𝑦2, 𝑧2)

for any (𝑦1, 𝑧1) and (𝑦2, 𝑧2) whenever 𝑦1𝑦2 ≥ 0, 𝑧1𝑧2 ≥ 0, ∀𝑡 ∈ [0, 𝑇 ].

Proposition 5.3.  Suppose that 𝛷1(𝑋1
𝑇 ) and 𝛷2(𝑋2

𝑇 ) are the random 
variables defined in Section 3 and 𝑔 is a positively additive function. 
Moreover, 𝛷𝑖(𝑋𝑖

𝑇 ) (𝑖 = 1, 2) and 𝑔 satisfy the assumptions of Theorem  3.1 
and (𝐴4).
(i) Suppose that 𝛷1(𝑋1

𝑇 ) ≥ 0 and 𝛷2(𝑋2
𝑇 ) ≥ 0 (or 𝛷1(𝑋1

𝑇 ) ≤ 0 and 
𝛷2(𝑋2

𝑇 ) ≤ 0). If 𝜎1(𝑋1
𝑡 ) ⋅ 𝜎2(𝑋

2
𝑡 ) ≥ 0 and 𝛷′

1(𝑋
1
𝑡 ) ⋅ 𝛷

′
2(𝑋

2
𝑡 ) > 0, 

a.e. 𝑡 ∈ [0, 𝑇 ], then

E𝑔[𝛷1(𝑋1
𝑇 ) +𝛷2(𝑋2

𝑇 )] = E𝑔[𝛷1(𝑋1
𝑇 )] + E𝑔[𝛷2(𝑋2

𝑇 )].

(ii) If 𝑔 does not depend on 𝑦, the assumptions 𝛷1(𝑋1
𝑇 ) ≥ 0 and 𝛷2(𝑋2

𝑇 ) ≥
0 (or 𝛷 (𝑋1 ) ≤ 0 and 𝛷 (𝑋2 ) ≤ 0) in (𝑖) can be dropped.
1 𝑇 2 𝑇

5 
Proof.  Due to Theorem  4.2, we know if 𝜎1(𝑋1
𝑡 ) ⋅ 𝜎2(𝑋

2
𝑡 ) ≥ 0 and 

𝛷′
1(𝑋

1
𝑡 ) ⋅ 𝛷

′
2(𝑋

2
𝑡 ) > 0, then 𝑧1𝑡 ⋅ 𝑧2𝑡 ≥ 0 a.e. 𝑡 ∈ [0, 𝑇 ]. Moreover, by the 

comparison theorem of BSDEs, see [23] for details, we have that 𝑦1𝑡 ≥ 0
and 𝑦2𝑡 ≥ 0 if 𝛷1(𝑋1

𝑇 ) ≥ 0 and 𝛷2(𝑋2
𝑇 ) ≥ 0. Hence 𝑦1𝑡 ⋅ 𝑦2𝑡 ≥ 0, 𝑡 ∈ [0, 𝑇 ]. 

Since 𝑔 is a positively additive function, then
𝑔(𝑡, 𝑦1𝑡 + 𝑦2𝑡 , 𝑧

1
𝑡 + 𝑧2𝑡 ) = 𝑔(𝑡, 𝑦1𝑡 , 𝑧

1
𝑡 ) + 𝑔(𝑡, 𝑦2𝑡 , 𝑧

2
𝑡 ).

Thus, (𝑦1𝑡 + 𝑦2𝑡 , 𝑧
1
𝑡 + 𝑧2𝑡 )0≤𝑡≤𝑇  is the solution of BSDE

𝑦𝑡 = 𝛷1(𝑋1
𝑇 ) +𝛷2(𝑋2

𝑇 ) + ∫

𝑇

𝑡
𝑔(𝑠, 𝑦𝑠, 𝑧𝑠)𝑑𝑠 − ∫

𝑇

𝑡
𝑧𝑠𝑑𝑊𝑠.

Therefore, E𝑔[𝛷1(𝑋1
𝑇 ) +𝛷2(𝑋2

𝑇 )] = 𝑦10 + 𝑦20 = E𝑔[𝛷1(𝑋1
𝑇 )] + 𝐸𝑔[𝛷2(𝑋2

𝑇 )].
If 𝑔 does not depend on 𝑦, then it holds that

𝑔(𝑡, 𝑧1𝑡 + 𝑧2𝑡 ) = 𝑔(𝑡, 𝑧1𝑡 ) + 𝑔(𝑡, 𝑧2𝑡 )

when 𝑧1𝑡 ⋅ 𝑧2𝑡 ≥ 0 a.e. 𝑡 ∈ [0, 𝑇 ]. Thus, E𝑔[𝛷1(𝑋1
𝑇 ) + 𝛷2(𝑋2

𝑇 )] =
E𝑔[𝛷1(𝑋1

𝑇 )] + E𝑔[𝛷2(𝑋2
𝑇 )].

The proof is complete. □

When we consider the same process 𝑋𝑡 = 𝑋1
𝑡 = 𝑋2

𝑡 , it is obviously 
that 𝜎1(𝑋1

𝑡 )⋅𝜎2(𝑋
2
𝑡 ) = 𝜎2(𝑋𝑡) ≥ 0. Thus, we have the following corollary. 

Corollary 5.4.  Suppose that 𝛷1(𝑋𝑇 ) and 𝛷2(𝑋𝑇 ) are the random variables 
defines in Section 3 and 𝑔 is a positively additive function. Moreover, 
𝛷𝑖(𝑋𝑇 ) (𝑖 = 1, 2) and 𝑔 satisfy the assumptions of Theorem  3.1 and (𝐴4).
(i) Suppose that 𝛷1 and 𝛷2 are strictly generally co-monotonic on R with 

𝛷1(𝑋𝑇 ) ≥ 0 and 𝛷2(𝑋𝑇 ) ≥ 0 (or 𝛷1(𝑋𝑇 ) ≤ 0 and 𝛷2(𝑋𝑇 ) ≤ 0), 
then

E𝑔[𝛷1(𝑋𝑇 ) +𝛷2(𝑋𝑇 )] = E𝑔[𝛷1(𝑋𝑇 )] + E𝑔[𝛷2(𝑋𝑇 )].

(ii) If 𝑔 does not depend on 𝑦, then the assumptions 𝛷1(𝑋𝑇 ) ≥ 0 and 
𝛷2(𝑋𝑇 ) ≥ 0 (or 𝛷1(𝑋𝑇 ) ≤ 0 and 𝛷2(𝑋𝑇 ) ≤ 0) in (𝑖) can be dropped.

5.2. Explicit solutions of nonlinear BSDEs

In this subsection, we will use the sign of 𝑧 in Theorem  3.1 to obtain 
the explicit solutions of one kind of nonlinear BSDEs. Consider the 
following nonlinear BSDE, 

𝑦𝑡 = 𝛷(𝑋𝑇 ) + ∫

𝑇

𝑡
𝑘|𝑍𝑠|𝑑𝑠 − ∫

𝑇

𝑡
𝑧𝑠𝑑𝑊𝑠, (5.1)

where 𝛷(𝑋𝑇 ) is defined in Section 3. We should mention that Chen 
et al. [11] obtained the explicit solution of the above BSDE when the 
terminal is 𝛷(𝑊𝑇 ). For Eq.  (5.1), we have the following result. 

Proposition 5.5.  Assume that 𝛷(⋅), 𝑏(⋅), 𝜎(⋅) satisfy the assumptions in 
Theorem  3.1. Then the explicit solution of BSDE (5.1) is given by
𝑦𝑡 = 𝐸𝑄[𝛷(𝑋𝑇 )|𝑡] =∶ 𝑢(𝑡, 𝑋𝑡),

𝑧𝑡 = 𝜎(𝑡, 𝑋𝑡)𝜕𝑥𝑢(𝑡, 𝑋𝑡),

where 𝑑𝑄𝑑𝑃 |𝑇
= exp

{

∫ 𝑇
0 𝑘 ⋅ sgn(𝜎(𝑠,𝑋𝑠)) ⋅ sgn(𝛷′(𝑋𝑠))𝑑𝑊𝑠 −

1
2𝑘

2𝑇
}

.

Proof.  Let 𝑦𝜀𝑡 = 𝑢𝜖(𝑡, 𝑋𝑡), 𝑧𝜖𝑡 = 𝜎(𝑋𝑡) ⋅𝜕𝑥𝑢𝜖(𝑡, 𝑋𝑡), where 𝑢𝜖(𝑡, 𝑥), 𝑡 ∈ [0, 𝑇 ]
is the solution of PDE (2.4) with 𝑔𝜖(𝑠, 𝑦, 𝑧) = 𝑘

√

𝑧2 + 𝜖, 𝑢𝜖(𝑇 , 𝑥) = 𝛷(𝑥). 
It is easy to check that 𝑔 satisfy the assumptions of Theorem  3.1. 
By Itô’s formula, we know (𝑦𝜖𝑡 , 𝑧𝜖𝑡 ) is the solution of BSDE (3.1) with 
𝑔𝜖(𝑠, 𝑦, 𝑧) = 𝑘

√

𝑧2 + 𝜖, 𝜉 = 𝛷(𝑋𝑇 ). Then due to Theorem  3.1, we have
sgn(𝑧𝜖𝑡 ) = sgn(𝜎(𝑡, 𝑋𝑡) ⋅ 𝜕𝑥𝑢𝜖(𝑡, 𝑋𝑡)) = sgn(𝜎(𝑡, 𝑋𝑡)) ⋅ sgn(𝜕𝑥𝑢𝜖(𝑡, 𝑋𝑡)),

𝑎.𝑒. 𝑡 ∈ [0, 𝑇 ].

By the proof of Theorem  3.1, sgn(𝜕𝑥𝑢𝜖(𝑡, 𝑋𝑡)) = sgn(𝛷′(𝑋𝑡)) 𝑎.𝑒. 𝑡 ∈
[0, 𝑇 ]. Thus, sgn(𝑧𝜖) = sgn(𝜎(𝑡, 𝑋 )) ⋅ sgn(𝛷′(𝑋 )), which means the sign 
𝑡 𝑡 𝑡
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of 𝑧𝜖𝑡  is independent of 𝜖. Therefore, let 𝜖 → 0, by [11, Theorem 3.3] 
or [24, Theorem 4.2.1], we have
sgn(𝑧𝑡) = sgn(𝜎(𝑡, 𝑋𝑡)) ⋅ sgn(𝛷′(𝑋𝑡)) 𝑎.𝑒. 𝑡 ∈ [0, 𝑇 ].

Now using Girsanov’s theorem, we can get

𝑦𝑡 = 𝐸𝑃

[

𝛷(𝑋𝑇 ) ⋅ exp
{

∫

𝑇

0
𝑘 ⋅ sgn(𝜎(𝑠,𝑋𝑠)) ⋅ sgn(𝛷′(𝑋𝑠))𝑑𝑊𝑠 −

1
2
𝑘2𝑇

}

|

|

|

|

𝑡

]

.

Then by the relationship between 𝑦𝑡 and 𝑧𝑡, see [11, Theorem 4] for 
details, we get the representation of 𝑧𝑡. □

5.3. Standard aggregator utility under ambiguity

In this subsection, we will use Theorem  3.1 to obtain a closed form 
expression of standard aggregator utility for specific recursive multiple 
priors. For any given consumption process 𝑐, Duffie and Epstein [19] 
define the stochastic differential utility (SDU) as follows:

𝑌 𝑃
𝑡 = 𝐸

[

∫

𝑇

𝑡
𝑓 (𝑐𝑠, 𝑌 𝑃

𝑠 )𝑑𝑠|𝑡

]

,

where the function 𝑓 is called an aggregator. The special case 𝑓 (𝑐, 𝑦) =
𝑈 (𝑐) − 𝛽𝑦 delivers the standard aggregator utility

𝑌 𝑃
𝑡 = 𝐸

[

∫

𝑇

𝑡
𝑒−𝛽(𝑠−𝑡)𝑈 (𝑐𝑠)𝑑𝑠|𝑡

]

.

Chen and Epstein [4] show that the above utility takes the following 
form for recursive multiple-priors 𝛩,

𝑌𝑡 = min
𝑄∈𝛩

𝐸𝑄

[

∫

𝜏

𝑡
𝑒−𝛽(𝑠−𝑡)𝑈 (𝑐𝑠)𝑑𝑠 + 𝑒−𝛽(𝜏−𝑡)𝑌𝜏 |𝑡

]

, 0 ≤ 𝑡 < 𝜏 < 𝑇 .

We shall show that the above utility under ambiguity has more explicit 
representation when 𝛩 is given by 

𝛩 =
{

𝑄 ∶ 𝑑𝑄
𝑑𝑃

= exp
{

1
2 ∫

𝑇

0
|𝜃𝑠|

2𝑑𝑠 − ∫

𝑇

0
𝜃𝑠𝑑𝑊𝑠

}

, sup
𝑡∈[0,𝑇 ]

|𝜃𝑡| ≤ 𝑘
}

.

(5.2)

By [4, Theorem 2.2], 𝑌𝑡 satisfies the following nonlinear BSDE when 
𝑌𝑇 = 𝛷(𝑋𝑇 ) and 𝛩 is given by (5.2): 

𝑑𝑌𝑡 =
(

−𝑈 (𝑐𝑡) + 𝛽𝑌𝑡 + 𝑘|𝑍𝑡|
)

𝑑𝑡 +𝑍𝑡𝑑𝑊𝑡, 𝑌𝑇 = 𝛷(𝑋𝑇 ). (5.3)

In the following, we assume the consumption process 𝑐𝑡 is a real 
valued continuous function on [0, 𝑇 ]. We have the following result. 

Proposition 5.6.  Suppose that 𝛷(⋅), 𝑏(⋅), 𝜎(⋅) satisfy the assumptions in 
Theorem  3.1. Then the standard aggregator utility 𝑌𝑡 with terminal 𝑌𝑇 =
𝛷(𝑋𝑇 ) has the following closed form representation: 

𝑌𝑡 = 𝐸𝑄

[

𝑒−𝛽(𝑇−𝑡)𝛷(𝑋𝑇 ) + ∫

𝑇

𝑡
𝑈 (𝑐𝑠)𝑒−𝛽(𝑠−𝑡)𝑑𝑠

|

|

|

|

𝑡

]

, 𝑡 ∈ [0, 𝑇 ], (5.4)

where 𝑑𝑄𝑑𝑃 |𝑇
= exp

{

− ∫ 𝑇
0 𝑘 ⋅ sgn(𝜎(𝑋𝑠)) ⋅ sgn(𝛷′(𝑋𝑠))𝑑𝑊𝑠 −

1
2𝑘

2𝑇
}

.

Proof.  By the illustration in this subsection, 𝑌𝑡 is the solution of 
BSDE (5.3). Let 𝑢𝜖(𝑡, 𝑥), 𝑡 ∈ [0, 𝑇 ] be the solution of PDE (2.4) with 
𝑔𝜖(𝑠, 𝑦, 𝑧) = 𝑈 (𝑐𝑠) − 𝛽𝑦 − 𝑘

√

𝑧2 + 𝜖, 𝑢𝜖(𝑇 , 𝑥) = 𝛷(𝑥). It is obvious 𝑔𝜖

satisfies the assumptions of Theorem  3.1. By Itô’s formula, we know 
𝑌 𝜀
𝑡 = 𝑢𝜖(𝑡, 𝑋𝑡) and 𝑍𝜖

𝑡 = 𝜎(𝑡, 𝑋𝑡) ⋅ 𝜕𝑥𝑢𝜖(𝑡, 𝑋𝑡) are solutions of BSDE (3.1) 
with 𝑔𝜖(𝑠, 𝑦, 𝑧) = 𝑈 (𝑐𝑠)−𝛽𝑦−𝑘

√

𝑧2 + 𝜖 and 𝜉 = 𝛷(𝑋𝑇 ). Using the similar 
method as Proposition  5.5, it holds 
sgn(𝑍𝑡) = sgn(𝜎(𝑡, 𝑋𝑡)) ⋅ sgn(𝛷′(𝑋𝑡)) 𝑎.𝑒. 𝑡 ∈ [0, 𝑇 ]. (5.5)

Let 𝑌𝑡 = 𝑒−𝛽𝑡𝑌𝑡 and 𝑍̃𝑡 = 𝑒−𝛽𝑡𝑍𝑡. Applying the Itô formula to 𝑌𝑡, we 
know that 𝑌𝑡 solves the following BSDE: 

𝑑𝑌 =
(

−𝑒−𝛽𝑡𝑈 (𝑐 ) + 𝑘|𝑍̃ |

)

𝑑𝑡 + 𝑍̃ 𝑑𝑊 , 𝑌 = 𝑒−𝛽𝑇𝛷(𝑋 ). (5.6)
𝑡 𝑡 𝑡 𝑡 𝑡 𝑇 𝑇

6 
By (5.5), we have sgn(𝑍̃𝑡) = sgn(𝜎(𝑡, 𝑋𝑡)) ⋅ sgn(𝛷′(𝑋𝑡)). Thus, BSDE (5.6) 
is actually a linear equation. Applying Girsanov’s theorem, 𝑌𝑡 is given 
by

𝑌𝑡 = 𝐸𝑄

[

𝑒−𝛽𝑇𝛷(𝑋𝑇 ) + ∫

𝑇

𝑡
𝑈 (𝑐𝑠)𝑒−𝛽𝑠𝑑𝑠

|

|

|

|

𝑡

]

.

Therefore, we obtain 𝑌𝑡 as (5.4). □
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