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Abstract We introduce a partial proximal point algorithm for solving nuclear norm
regularized matrix least squares problems with equality and inequality constraints.
The inner subproblems, reformulated as a system of semismooth equations, are solved
by an inexact smoothing Newton method, which is proved to be quadratically con-
vergent under a constraint non-degeneracy condition, together with the strong semi-
smoothness property of the singular value thresholding operator. Numerical experi-
ments on a variety of problems including those arising from low-rank approximations
of transition matrices show that our algorithm is efficient and robust.

Mathematics Subject Classification 90C06 · 90C22 · 90C25 · 65F10

1 Introduction

Let �p×q be the space of all p × q matrices equipped with the standard trace inner
product 〈X, Y 〉 = Tr(X T Y ) and its induced Frobenius norm ‖ · ‖. Without loss of
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generality, we assume p ≤ q throughout this paper. For a given X ∈ �p×q , its nuclear
norm ‖X‖∗ is defined as the sum of all its singular values and its operator norm ‖X‖2
is the largest singular value. Let Sn be the space of all n × n symmetric matrices
and Sn+ be the cone of symmetric positive semidefinite matrices. We use the notation
X 	 0 to denote that X is a symmetric positive semidefinite matrix.

In this paper, we are interested in solving the following nuclear norm regularized
matrix least squares problem with linear equality and inequality constraints:

min
X∈�p×q

{
1

2
‖A(X)− b‖2 + ρ‖X‖∗ + 〈C, X〉 : B(X) ∈ d +Q

}
, (1)

where A : �p×q → �m and B : �p×q → �s are linear maps, C ∈ �p×q , b ∈
�m, d ∈ �s , ρ is a given positive parameter, and Q = {0}s1 × �s2+ is a polyhedral
convex cone with s = s1 + s2. In many applications, we need to find a low rank
approximation of a given target matrix while preserving certain structures. The nuclear
norm function has been widely used as a regularizer which favors a low rank solution
of (1). Chu et al. [12] addressed some theoretical and numerical issues concerning
structured low rank approximation problems. In many data analysis problems, the
collected empirical data, possibly contaminated by noise, usually do not have the
specified structure or the desired low rank. So it is important to find the nearest low
rank approximation of the given matrix while maintaining the underlying structure
of the original system. In practice, the data to be analyzed is very often nonnegative
such as those corresponding to concentrations or intensity values, and it would be
preferable to take into account such structural constraints.

Our nuclear norm regularized matrix least squares problem (1) arises from the
recent intensive studies of the following affine rank minimization problem:

min
{
rank(X) : A(X) = b, X ∈ �p×q} . (2)

The problem (2) has many applications in diverse fields, see, e.g., [1,2,10,47]. How-
ever, this affine rank minimization problem is generally an NP-hard nonconvex opti-
mization problem. A tractable heuristic introduced in [20,21] is to minimize the nuclear
norm over the same constraints as in (2):

min
{‖X‖∗ : A(X) = b, X ∈ �p×q} . (3)

The nuclear norm function is the greatest convex function majorized by the rank
function over the unit ball of matrices with operator norm at most one, and it has been
widely used as a surrogate for promoting the low rank structure. A frequently used
alternative to (3) for accommodating problems with noisy data is the following matrix
least squares problem with nuclear norm regularization (see [38,55]):

min

{
1

2
‖A(X)− b‖2 + ρ‖X‖∗ : X ∈ �p×q

}
. (4)

It is known that (3) can be equivalently reformulated as a semidefinite programming
(SDP) problem (see [47]), which has one (p + q) × (p + q) semidefinite constraint
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and m linear equality constraints. One can use standard interior-point method based
semidefinite programming solvers such as SeDuMi [52] and SDPT3 [54] to solve this
SDP problem. However, these solvers are not suitable for problems with large p + q
or m since in each iteration of these solvers, a large and dense Schur complement
equation must be solved even when the data is sparse.

To overcome the difficulties faced by interior-point methods, several algorithms
have been proposed to solve (3) or (4) directly. In [9], a singular value thresholding
(SVT) algorithm is proposed for solving the following Tikhonov regularized version
of (3):

min

{
τ‖X‖∗ + 1

2
‖X‖2 : A(X) = b, X ∈ �p×q

}
, (5)

where τ is a given positive regularization parameter. The SVT algorithm is a gradient
method applied to the dual problem of (5). In [38], a fixed point continuation (FPC)
algorithm is proposed for solving (4), together with a Bregman iterative algorithm for
solving (3). Their numerical results on randomly generated matrix completion prob-
lems demonstrated that the FPC algorithm is much more efficient than the semidefinite
programming solver SDPT3 when low accuracy solutions are sought. Toh and Yun
[55] proposed an accelerated proximal gradient algorithm (APG), which terminates in
O(1/

√
ε) iterations for achieving ε-optimality, to solve the unconstrained matrix least

squares problem (4). Their numerical results show that the APG algorithm is highly
efficient and robust in solving large-scale random matrix completion problems. Liu
et al. [35] considered the following nuclear norm minimization problem with linear
and second order cone constraints:

min
{‖X‖∗ : A(X) ∈ b +K, X ∈ �p×q} , (6)

where K = {0}m1 ×Km2 , and Km2 stands for the m2-dimensional second order cone.
They developed three inexact proximal point algorithms (PPA) in primal, dual and
primal-dual forms with comprehensive convergence analysis, built upon the classic
results of the general PPA established by Rockafellar [49]. Their numerical results
demonstrated the efficiency and robustness of these PPAs in solving randomly gener-
ated and real matrix completion problems. Moreover, they showed that the SVT algo-
rithm [9] is just one outer iteration of the exact primal PPA, and the Bregman iterative
method [38] is a special case of the exact dual PPA. However, all the above mentioned
models and related algorithms cannot address the following goal: given an observed
data matrix (possibly contaminated by noise), find the nearest low rank approximation
of the target matrix while maintaining certain prescribed structures. In particular, the
APG method considered in [55] cannot be applied directly to solve the problem (1).

A strong motivation for proposing the model (1) arises from finding the nearest low
rank approximation of transition matrices. For a given data matrix P which describes
the full distribution of a random walk through the entire data set, the problem of finding
the low rank approximation of P can be stated as follows:

min

{
1

2
‖X − P‖2 + ρ‖X‖∗ : Xe = e, X ≥ 0, X ∈ �n×n

}
, (7)
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where e ∈ �n is the vector of all ones and X ≥ 0 denotes the condition that all entries of
X are nonnegative. Lin [34] proposed the Latent Markov Analysis (LMA) approach for
finding the reduced rank approximations of transition matrices. The LMA is applied to
clustering such that the inferred cluster relationships can be described probabilistically
by the reduced-rank transition matrix. Chennubhotla [11] exploited the spectral prop-
erties of the Markov transition matrix to obtain low rank approximation of the original
transition matrix in order to develop a fast eigen-solver for spectral clustering. Further-
more, in many applications, since only partial information of the original transition
matrix is available, it is also important to estimate the missing entries of P . For exam-
ple, transition probabilities between different credit ratings play a crucial role in credit
portfolio management. If our primary interest is in a specific group, then the number
of observed rating transitions might be very small. Due to the lack of rating data, it is
important to estimate the rating transition matrix in the presence of missing data [4].

In this paper, we study a partial proximal point algorithm (PPA) proposed by Ha [30]
for solving (1), in which only some of the variables appear in the quadratic proximal
term. The partial PPA was further analyzed by Bertsekas and Tseng [6], in which
the close relation between the partial PPA and some parallel algorithms in convex
programming was revealed. Given a sequence of parameters σk such that

0 < σk ↑ σ∞ ≤ +∞, (8)

and an initial point X0 ∈ �p×q , a sequence {(uk, Xk)} ⊆ �m × �p×q is generated
by the partial PPA for solving (1) via the following scheme:

(uk+1, Xk+1)≈ arg min

{
fρ(u, X)+ 1

2σk
‖X−Xk‖2 : A(X)+u=b, B(X) ∈ d+Q

}
,

(9)

where fρ(u, X) := 1

2
‖u‖2 + ρ‖X‖∗ + 〈C, X〉. Since the nuclear norm ‖ · ‖∗ is a

nonsmooth function, an important issue we must address is how to solve (9) efficiently.
The strong convexity of the objective function suggests to us to apply an indirect
method for solving (9) based on the duality theory for convex programming. We
note that the proposed partial PPA requires solving an inner subproblem with linear
inequality constraints at each iteration. To handle the inequality constraints, Gao and
Sun [24] recently designed a quadratically convergent inexact smoothing Newton
method to solve semidefinite least squares problems with equality and inequality
constraints but with simple quadratic objective functions of the form 1

2‖X − G‖2.
Their numerical results demonstrated the high efficiency of the inexact smoothing
Newton method. This strongly motivated us to use an inexact smoothing Newton
method to solve our inner subproblems for achieving fast convergence. For the inner
subproblem, due to the presence of inequality constraints, we reformulate the problem
as a system of semismooth equations. By defining a smoothing function of the soft
thresholding operator, we introduce an inexact smoothing Newton method to solve
the semismooth system. The quadratic convergence of the inexact smoothing Newton
method is proved under a constraint nondegeneracy condition, together with the strong
semismoothness property of the soft thresholding operator.
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The remaining parts of this paper are organized as follows. In Sect. 2, we present
some preliminaries about semismooth functions. We show that the soft threshold-
ing operator is strongly semismooth everywhere, and define a smoothing function
of the soft thresholding operator. In Sect. 3, we design a partial PPA for solving the
nuclear norm regularized matrix least squares problem (1), and establish its global and
local convergence. Section 4 follows with the design of an inexact smoothing Newton
method for solving the inner subproblems. The quadratic convergence of the method is
established under a constraint nondegeneracy condition, which we also characterized.
We report the numerical implementation and performance of our algorithm in Sect. 5
and give the conclusion in Sect. 6.

2 Preliminaries

In this section, we give a brief introduction on some basic concepts such as semi-
smooth functions, the B-subdifferential and Clarke’s generalized Jacobian of Lipschitz
functions. We shall show that the soft thresholding operator is strongly semismooth
everywhere. These concepts and properties will be critical for us to develop an inexact
smoothing Newton method for solving the inner subproblems in our partial PPA.

Let F : �m −→ �l be a locally Lipschitz function. By Rademacher’s theorem, F
is Fréchet differentiable almost everywhere. Let DF denote the set of points in �m

where F is differentiable. The B-subdifferential of F at x ∈ �m is defined by

∂B F(x) := {V : V = lim
k→∞ F ′(xk), xk −→ x, xk ∈ DF },

where F ′(x) denotes the Jacobian of F at x ∈ DF . Then Clarke’s [14] generalized
Jacobian of F at x ∈ �m is defined as the convex hull of ∂B F(x), i.e.,

∂ F(x) = conv{∂B F(x)}.

From [46, Lemma 2.2 ], we know that if F is directionally differentiable in a neigh-
borhood of x ∈ �m , then for any h ∈ �m , there exists V ∈ ∂ F(x) such that
F ′(x; h) = Vh. The following concept of semismoothness was first introduced by
Mifflin [40] for functionals and was extended by Qi and Sun [46] to vector-valued
functions.

Definition 2.1 We say that a locally Lipschitz function F : �m −→ �l is semismooth
at x if

1. F is directionally differentiable at x ; and
2. for any h ∈ �m and V ∈ ∂ F(x+h) with h → 0, F(x+h)−F(x)−V h = o(‖h‖).

Furthermore, F is said to be strongly semismooth at x if F is semismooth at x and for
any h ∈ �m and V ∈ ∂ F(x + h) with h → 0, F(x + h)− F(x)− V h = O(‖h‖2).

Let K be a closed convex cone in a finite dimensional real Euclidean space X
equipped with a scalar inner product 〈·, ·〉 and its induced norm ‖·‖. Let �K : X → X
denote the metric projector over K , i.e., for any y ∈ X , �K (y) is the unique optimal
solution to the following convex optimization problem:
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min

{
1

2
〈x − y, x − y〉 : x ∈ K

}
.

It is well known [60] that the metric projector �K (·) is Lipschitz continuous with
modulus 1 and ‖�K (·)‖2 is continuously differentiable. Hence, �K (·) is almost every-
where Fréchet differentiable in X and for every y ∈ X , ∂�K (y) is well defined. For
any X ∈ Sn , let X+ = �Sn+(X) be the metric projection of X onto Sn+ under the
standard trace inner product. Assume that X has the following spectral decomposition

X = P�PT ,

where � is the diagonal matrix of eigenvalues and P is a corresponding orthogonal
matrix of eigenvectors. Then

X+ = P�+PT ,

where �+ is a diagonal matrix whose diagonal entries are the nonnegative parts of
the respective diagonal entries of �. The strong semismoothness of �Sn+(·) has been
proved by Sun and Sun in [53].

Next, we shall show that the soft thresholding operator [9,35] is strongly semi-
smooth everywhere. Let Y ∈ �p×q admit the following singular value decomposition
(SVD):

Y = U [	 0]V T , (10)

where U ∈ �p×p and V ∈ �q×q are orthogonal matrices, 	 = Diag(σ1, . . . , σp) is
the diagonal matrix of singular values of Y , with σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. Define
s : � → � by

s(t) := (t − ρ)+ − (−t − ρ)+. (11)

For each threshold ρ > 0, the soft thresholding operator Dρ is defined as follows:

Dρ(Y ) = U [	ρ 0]V T , (12)

where 	ρ = Diag(s(σ1), . . . , s(σp)). Decompose V ∈ �q×q as V = [V1 V2] ,
where V1 ∈ Rq×p and V2 ∈ �q×(q−p). Let the orthogonal matrix Q ∈ �(p+q)×(p+q)

be defined by

Q : = 1√
2

[
U U 0
V1 −V1

√
2V2

]
, (13)

and 
 : �p×q → S p+q be defined by


(Y ) : =
[

0 Y
Y T 0

]
, Y ∈ �p×q . (14)

By [28, Section 8.6], we know that 
(Y ) has the following spectral decomposition:


(Y ) = Q

⎡
⎣	 0 0

0 −	 0
0 0 0

⎤
⎦ QT , (15)
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i.e., the eigenvalues of 
(Y ) are ±σi , i = 1, . . . , p, and 0 of multiplicity q − p.

For any W = PDiag(λ1, . . . , λp+q)PT ∈ S p+q , define Ŝ : S p+q → S p+q by

Ŝ(W ) := PDiag(s(λ1), . . . , s(λp+q))PT = (W − ρ I )+ − (−W − ρ I )+ .

Then, by the strong semismoothness property of (·)+ : S p+q → S p+q , we have that
Ŝ(·) is strongly semismooth everywhere in S p+q . By direct calculations, we have

S(Y ) := Ŝ(
(Y )) = Q

⎡
⎣	ρ 0 0

0 −	ρ 0
0 0 0

⎤
⎦ QT =

[
0 Dρ(Y )

Dρ(Y )T 0

]
. (16)

Thus we have the following theorem.

Theorem 2.1 The function Dρ(·) is strongly semismooth everywhere in �p×q .

Proof Let Y ∈ �p×q admit the SVD as in (10). Notice that Ŝ(·) is strongly semismooth
in S p+q . This, together with (16), proves that Dρ(·) is strongly semismooth at Y . Since
Y is arbitrarily chosen, we have that Dρ(·) is strongly semismooth everywhere in�p×q .

��
For the convenience of later discussion, we define the following three index sets:

α := {1, . . . , p}, γ := {p + 1, . . . , 2p}, β := {2p + 1, . . . , p + q}. (17)

For each ρ > 0, the index set α is further decomposed into the following subindex
sets:

α1 :={i |σi (Y ) > ρ, i ∈ α}, α2 :={i |σi (Y )=ρ, i ∈ α}, α3 :={i |σi (Y ) < ρ, i ∈ α}.
(18)

In the following, we show that all the elements of the generalized Jacobian ∂ Dρ(·) are
self-adjoint and positive semidefinite. First we prove the following lemma.

Lemma 2.1 Let Y ∈ �p×q admit the SVD as in (10). Then the unique minimizer of
the following problem

min
{
‖X − Y‖2 : X ∈ Bρ := {Z ∈ �p×q : ‖Z‖2 ≤ ρ}

}
(19)

is X∗ = �Bρ (Y ) = U [min(	, ρ) 0]V T , where min(	, ρ) = Diag(min(σ1, ρ), . . . ,

min(σp, ρ)).

Proof Obviously problem (19) has an unique optimal solution which is equal to
�Bρ (Y ). For any feasible Z with the SVD as in (10), we have σi (Z) ≤ ρ, i =
1, . . . , p. Since ‖ · ‖ is unitarily invariant, by [7, Exercise IV.3.5], we have that

‖Y − Z‖2 ≥
∑
i∈α1

(σi (Y )− σi (Z))2 +
∑

i∈α2∪α3

(σi (Y )− σi (Z))2 ≥
∑
i∈α1

(σi (Y )− ρ)2.
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Since‖Y−X∗‖2 =∑
i∈α1

(σi (Y )−ρ)2, we have‖Y−Z‖2 ≥ ‖Y−X∗‖2 for any Z ∈
Bρ. Thus X∗ = U [min(	, ρ) 0]V T is the unique optimal solution. ��

Note that the above lemma has also been proved in [44] with a different proof. From
the above lemma, we have that Dρ(Y ) = Y −�Bρ (Y ), which implies that �Bρ (·) is
also strongly semismooth everywhere in �p×q .

Now, we shall show that even though the soft thresholding operator Dρ(·) is not dif-
ferentiable everywhere, ‖Dρ(·)‖2 is continuously differentiable. First we summarize
some well-known properties of the Moreau–Yosida [42,59] regularization. Assume
that Y is a finite-dimensional real Euclidean space. Let f : Y → (−∞,+∞] be a
proper lower semicontinuous convex function. For a given σ > 0, the Moreau–Yosida
regularization of f is defined by

Fσ (y) = min

{
f (x)+ 1

2σ
‖x − y‖2 : x ∈ Y

}
. (20)

It is well known that Fσ is a continuously differentiable convex function on Y and

∇Fσ (y) = 1

σ
(y − x(y)),

where x(y) denotes the unique optimal solution of (20). It is well known that x(·) is
globally Lipschitz continuous with modulus 1 and ∇Fσ is globally Lipschitz contin-
uous with modulus 1/σ .

Proposition 2.1 Let �(Y ) = 1

2
‖Dρ(Y )‖2, where Y ∈ �p×q . Then �(Y ) is continu-

ously differentiable and

∇�(Y ) = Dρ(Y ). (21)

Proof It is already known that the following minimization problem

F(Y ) = min

{
ρ‖X‖∗ + 1

2
‖X − Y‖2 : X ∈ �p×q

}
,

has the unique optimal solution X = Dρ(Y ) (see, [9,38]). From the properties of the
Moreau–Yosida regularization, we know that Dρ(·) is globally Lipschitz continuous
with modulus 1 and F(Y ) is continuously differentiable with

∇F(Y ) = Y − Dρ(Y ). (22)

Since Dρ(Y ) is the unique optimal solution, we have that

F(Y ) = ρ‖Dρ(Y )‖∗ + 1

2
‖Dρ(Y )− Y‖2 = 1

2
‖Y‖2 − 1

2
‖Dρ(Y )‖2. (23)

This, together with (22), implies that �(·) is continuously differentiable with
∇�(Y ) = Dρ(Y ). ��
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Next, we shall discuss the smoothing counterpart of the soft thresholding operator
Dρ(·). Let χ(ε, t) : �×� → � be the following Huber smoothing function for (t)+:

χ(ε, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t if t ≥ |ε|
2 ,

1

2|ε|
(

t + |ε|
2

)2

if − |ε|
2 < t <

|ε|
2 ,

0 if t ≤ −|ε|2 ,

(ε, t) ∈ � × �. (24)

Then the smoothing function for s(·) in (11) is defined as follows:

s(ε, t) = χ(ε, t − ρ)− χ(ε,−t − ρ), (ε, t) ∈ � × �. (25)

Note that s(ε, ·) is an odd function with respect to t ∈ �. Let Y ∈ �p×q admit the
SVD as in (10). For any ε ∈ �, the smoothing function for S(Y ) in (16) is defined as
follows:

S(ε, Y ) := Q

⎡
⎣	ρ 0 0

0 −	ρ 0
0 0 0

⎤
⎦ QT , (26)

where 	ρ = Diag(s(ε, σ1), . . . , s(ε, σp)). By direct calculations, we have

S(ε, Y ) =
[

0 Dρ(ε, Y )

(Dρ(ε, Y ))T 0

]
= 


(
Dρ(ε, Y )

)
,

where
Dρ(ε, Y ) = U

[
	ρ 0

]
V T (27)

is a smoothing function for Dρ(Y ). Note that when ε = 0, S(0, Y ) = S(Y ) and
Dρ(0, Y ) = Dρ(Y ). For any λ = (λ1, . . . , λp+q)T ∈ �p+q , let λi = σi for i ∈ α,
λi = −σi−p for i ∈ γ , and λi = 0 for i ∈ β. When ε �= 0 or σi �= ρ, i = 1, . . . , p,
we use �(ε, λ) ∈ S p+q to denote the following first divided difference symmetric
matrix for s(ε, ·) at λ

�(ε, λ) =

⎡
⎢⎢⎢⎣

�αα �αγ �αβ

�T
αγ �γγ �γβ

�T
αβ �T

γβ �ββ

⎤
⎥⎥⎥⎦ , (28)

whose (i, j)-th entry is given by

[�(ε, λ)]i j =

⎧⎪⎨
⎪⎩

s(ε, λi )− s(ε, λ j )

λi − λ j
∈ [0, 1] if λi �= λ j

(s)′λi
(ε, λi ) ∈ [0, 1] if λi = λ j

, i, j = 1, . . . p + q.
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Since s(ε, ·) is an odd function, we have the following results:

�αα = �γγ , �αγ = (�αγ )T , �γβ = �αβ,

and (�(ε, λ))i j ∈ [0, 1] for all i, j = 1, . . . , p + q.

Proposition 2.2 Let Y admit the SVD in (10). If ε �= 0 or σi �= ρ, i = 1, . . . , p, then
D(·, ·) is continuously differentiable around (ε, Y ), and for any (τ, H) ∈ �×�p×q ,
it holds that

(Dρ)′(ε, Y )(τ, H) = U
(
�αα ◦ Hs

1+�αγ ◦ Ha
1 +τ D(ε,	)

)
V T

1

+U (�αβ ◦ H2)V T
2 , (29)

where H1 = U T H V1, H2 = U T H V2, with Hs
1 = (H1+H T

1 )/2, Ha
1 = (H1−H T

1 )/2,
and

D(ε,	) = Diag((s)′ε(ε, σ1), . . . , (s)
′
ε(ε, σp)). (30)

Furthermore, by [37], Dρ(·, ·) is globally Lipschitz continuous and strongly semi-
smooth at any (0, Y ) ∈ � × �p×q .

Proof By the well known result of Löwner [36], we know that for any H ∈ �p×q ,

(S)′Y (ε, Y )H = Q[�(ε, λ) ◦ (QT 
(H)Q)]QT , (31)

where “◦” denotes the Hadamard product. Since

QT 
(H)Q = 1

2

⎡
⎢⎢⎣

H1 + H T
1 H T

1 − H1
√

2H2

H1 − H T
1 −(H1 + H T

1 )
√

2H2√
2H T

2

√
2H T

2 0

⎤
⎥⎥⎦ , (32)

by simple algebraic calculations, we have that

(S)′Y (ε, Y )H = Q[�(ε, λ) ◦ (QT 
(H)Q)]QT =
[

0 A12

AT
12 0

]
,

where A12 = U
(
�αα ◦ Hs

1 +�αγ ◦ Ha
1

)
V T

1 + U (�αβ ◦ H2)V T
2 . When ε �= 0 or

σi �= ρ, i = 1, . . . , p, the partial derivative of S(·, ·) with respect to ε can be computed
by

(S)′ε(ε, Y ) = Q

⎡
⎣ D(ε,	) 0 0

0 −D(ε,	) 0
0 0 0

⎤
⎦ QT =

[
0 U D(ε,	)V T

1

V1 D(ε,	)U T 0

]
.

(33)
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Since for any (τ, H) ∈ � × �p×q ,

(S)′(ε, Y )(τ, H) =
[

0 (Dρ)′(ε, Y )(τ, H)

((Dρ)′(ε, Y )(τ, H))T 0

]
,

we have the required result in (29). Thus, Dρ(·, ·) is continuously differentiable around
(ε, Y ) ∈ � × �p×q if ε �= 0 or σi �= ρ, i = 1, . . . , p. ��

Next, we will give a characterization of the generalized Jacobian ∂ Dρ(0, Y ) for
(0, Y ) ∈ �×�p×q . LetD be the set of points in�×�p×q at which Dρ is differentiable.
Suppose that N is any set of Lebesgue measure zero in �×�p×q . Then

∂ Dρ(0, Y ) = conv

{
lim

(εk ,Y k )→(0,Y )
(Dρ)′(εk, Y k) : (εk, Y k) ∈ D, (εk, Y k) /∈ N

}
.

(34)
Note that ∂ Dρ(0, Y ) does not depend on the choice of the null set N [57, Theorem 4].

Before characterizing ∂ Dρ(0, Y ) in the next proposition, we need to introduce
a “submap” of Dρ as follows. Define (Dρ)|α2| : � × �|α2|×|α2| → �|α2|×|α2| by
replacing the dimension p and q in the definition of Dρ : � × �p×q → �p×q

with |α2|, respectively, where the index set α2 is defined as in (18). As in the case
for Dρ(·, ·), the mapping (Dρ)|α2|(·, ·) is also Lipschitz continuous. Thus Clarke’s
generalized Jacobian ∂(Dρ)|α2|(0, Z) for (0, Z) ∈ �×�|α2|×|α2| is well defined. We
let I|α2| be the identity matrix of size |α2|.
Proposition 2.3 Let Y ∈ �p×q admit the SVD as in (10). Then, for any V ∈
∂ Dρ(0, Y ), there exists V|α2| ∈ ∂(Dρ)|α2|(0, ρ I|α2|) such that

V(τ, H) = U

⎡
⎢⎢⎣

(Hs
1 )α1α1 (Hs

1 )α1α2 �α1α3 ◦ (Hs
1 )α1α3

(Hs
1 )T

α1α2
V|α2|(τ, (Hs

1 )α2α2) 0

�T
α1α3

◦ (Hs
1 )T

α1α3
0 0

⎤
⎥⎥⎦ V T

1

+ U
[
(�αγ ◦ Ha

1 )V T
1 + (�αβ ◦ H2)V T

2

]
(35)

for all (τ, H) ∈ � × �p×q , where �α1α3 , �αγ and �αβ are defined as follows,

(�α1α3)i j := σi − ρ

σi − σ j
, for i ∈ α1, j ∈ α3, (36)

�αγ :=

⎡
⎢⎢⎣

ωα1α1 ωα1α2 ωα1α3

ωT
α1α2

0 0

ωT
α1α3

0 0

⎤
⎥⎥⎦ ,

ωi j := (σi − ρ)+ + (σ j − ρ)+
σi + σ j

, for i ∈ α1, j ∈ α, (37)

�αβ :=
[

μα1β̄

0

]
, β̄ := β − 2p = {1, . . . , q − p},
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μi j := σi − ρ

σi
, for i ∈ α1, j ∈ β̄, (38)

H1 = U T H V1, H2 = U T H V2, and Hs
1 = (H1 + H T

1 )/2, Ha
1 = (H1 − H T

1 )/2.

Proof Please refer to [33, Proposition 2.9]. ��

3 A partial proximal point algorithm for matrix least squares problems

In this section, we will describe how to design a partial proximal point algorithm (PPA)
to solve the problem (1).

Let Z be a finite dimensional real Euclidean space with an inner product 〈·, ·〉 and
its induced norm ‖ · ‖. Let T : Z → Z be a maximal monotone operator. We define
its domain and image, respectively, as follows: Dom (T ) := {z ∈ Z | T (z) �= ∅} and
Im (T ) := ⋃

z∈Z T (z). Let Z = X × Y , where X and Y are two finite dimensional
real Euclidean spaces each equipped with a scalar product 〈·, ·〉 and its induced norm
‖ · ‖. Suppose now that z ∈ Z is partitioned into two components z = (x, y), where
x ∈ X and y ∈ Y . Ha [30] proposed a partial PPA to solve the inclusion problem
in two variables 0 ∈ T (x, y), in which only one of the variables is involved in the
proposed iterative procedure. Below we give a brief review of the partial PPA proposed
by Ha [30]. Let � : X × Y → X × Y be the orthogonal projection of X × Y onto
{0} × Y , i.e., �(x, y) = (0, y). To solve the inclusion problem 0 ∈ T (x, y), from
a given initial point (x0, y0) ∈ X × Y , the exact partial PPA generates a sequence
{(xk, yk)} by the following scheme:

(xk+1, yk+1) ∈ Pσk (xk, yk), (39)

where Pσk := (� + σkT )−1� and the sequence {σk} satisfies (8). In general, the
mapping Pσk is neither single-valued nor nonexpansive. However, by [30, Proposition
2], we know that the second component of Pσk (xk, yk) is uniquely determined and
nonexpansive. For practical purpose, the following general approximation criteria were
introduced in [30]:

‖(xk+1, yk+1)− (uk+1, vk+1)‖ ≤ εk, εk > 0,

∞∑
k=0

εk <∞, (40a)

‖(xk+1, yk+1)− (uk+1, vk+1)‖ ≤ δk‖(xk+1, yk+1)− (xk, yk)‖, (40b)

‖yk+1 − vk+1‖ ≤ δk‖yk+1 − yk‖, δk > 0,

∞∑
k=0

δk <∞,

(40c)

where (uk+1, vk+1) ∈ Pσk (xk, yk). In [30], Ha showed that under mild assumptions,
any cluster point of the sequence {(xk , yk)} generated by the partial PPA under criterion
(40a) is a solution to 0 ∈ T (x, y). Moreover, the sequence {yk} converges weakly to
ȳ, which is the second component of a solution to 0 ∈ T (x, y). If, in addition, (40b)
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and (40c) are also satisfied and T −1 is Lipschitz continuous at the origin, then the
sequence {(xk, yk)} converges locally at least at a linear rate which tends to zero as
σk → +∞. For more discussions of the convergence analysis of the partial PPA, see
[30, Theorem 1 and 2].

Next, we shall show how to use the partial PPA to solve (1). It is easy to see that
(1) can be rewritten as follows:

min
u∈�m ,X∈�p×q

{
fρ(u, X) := 1

2
‖u‖2 + ρ‖X‖∗ + 〈C, X〉 : A(X)+ u = b,

B(X) ∈ d +Q
}

. (41)

Note that the objective function fρ(u, X) is strongly convex in u for all X ∈ �p×q .
For the convergence analysis, we assume that the following Slater condition holds:

{ {Bi }s1
i=1 are linearly independent and ∃ X0 ∈ �p×q

such that Bi (X0) = di , i = 1, . . . , s1 and Bi (X0) > di , i = s1 + 1, . . . , s.
(42)

Let l(u, X; ζ, ξ) : �m × �p×q × �m × �s → � be the ordinary Lagrangian
function for (41) in the extended form:

l(u, X; ζ, ξ) :=
{

fρ(u, X)+ 〈ζ, b −A(X)− u〉 + 〈ξ, d − B(X)〉 if ξ ∈ Q∗,
−∞ if ξ /∈ Q∗,

(43)
where Q∗ = �s1 ×�s2+ is the dual cone of Q. The essential objective function in (41)
is

f (u, X) := sup
ζ∈�m , ξ∈�s

l(u, X; ζ, ξ) =
{

fρ(u, X) if (u, X) ∈ FP ,

+∞ if (u, X) /∈ FP ,
(44)

where FP = {(u, X) ∈ �m ×�p×q | A(X)+ u = b,B(X) ∈ d +Q} is the feasible
set of (41). The dual problem of (41) is given by:

max
{
gρ(ζ, ξ) :A∗(ζ )+B∗(ξ)+Z=C, ‖Z‖2 ≤ ρ, ζ ∈�m, ξ ∈ Q∗, Z ∈ �p×q},

(45)

where gρ(ζ, ξ) := − 1
2‖ζ‖2 + 〈b, ζ 〉 + 〈d, ξ 〉. As in Rockafellar [50], we define the

following two maximal monotone operators

⎧⎪⎨
⎪⎩

T f (u, X) = {(v, Y ) ∈ �m ×�p×q : (v, Y ) ∈ ∂ f (u, X)},
Tl(u, X; ζ, ξ) = {(v, Y, y, z) ∈ �m ×�p×q ×�m ×�s : (v, Y,−y,−z)

∈ ∂l(u, X; ζ, ξ)},
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where u ∈ �m, X ∈ �p×q , ζ ∈ �m, and ξ ∈ �s . Note that since f (u, X) is strongly
convex in u with modulus 1 for all X ∈ �p×q , T f is strongly monotone with modulus
1 with respect to the variable u [49, Proposition 6], i.e.,

〈(u, X)− (u′, X ′), (v, Y )− (v′, Y ′)〉 ≥ ‖u − u′‖2 (46)

for all (v, Y ) ∈ T f (u, X) and (v′, Y ′) ∈ T f (u′, X ′). From the definition of T f , we
know that for any (v, Y ) ∈ �m ×�p×q ,

T −1
f (v, Y ) = arg min

u∈�m ,X∈�p×q
{ f (u, X)− 〈v, u〉 − 〈Y, X〉} .

Similarly, for any (v, Y, y, z) ∈ �m ×�p×q ×�m ×�s ,

T −1
l (v, Y, y, z) = arg min

u∈�m

X∈�p×q

max
ζ∈�m

ξ∈�s

{l(u, X; ζ, ξ)−〈v, u〉−〈Y, X〉+〈y, ζ 〉+〈z, ξ 〉} .

Since f (u, X) is strongly convex in u for all X ∈ �p×q , we apply the partial PPA
proposed by Ha [30] to the maximal monotone operator T f , in which only the variable
X appears in the quadratic proximal term. Given a starting point (u0, X0) ∈ �m ×
�p×q , the inexact partial PPA generates a sequence {(uk, Xk)} by approximately
solving the following problem

min
u∈�m ,X∈�p×q

{
f (u, X)+ 1

2σk
‖X − Xk‖

}
. (47)

We can easily see that any minimizer (u, X) of problem (47) satisfies

(0, Xk) ∈ (0, X)+ σkT f (u, X). (48)

Let � : �m ×�p×q → �m ×�p×q be the orthogonal projector of �m ×�p×q onto
{0} × �p×q , i.e., �(u, X) = (0, X). Then (48) can be equivalently written as

(u, X) ∈ (�+ σkT f )
−1�(uk, Xk).

It follows that the set of minimizers of (47) can be expressed as (� + σkT f )
−1�

(uk, Xk).
Next, for any parameter σ > 0, we show some properties of the mappings Qσ :=

(�+ σT f )
−1 and Pσ := Qσ � = (�+ σT f )

−1�. The proofs essentially follow the
ideas in [32, Proposition 2 and 3] together with [16, Theorem 2.7], and we shall omit
them.

Proposition 3.1 For any given parameter σ > 0, let Qσ = (� + σT f )
−1, and

Pσ = Qσ � = (� + σT f )
−1�. Suppose that Dom (T f ) �= ∅. Then we have the

following properties:
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(i) The mapping Qσ and Pσ are single-valued in �m ×�p×q .
(ii) Let β = min{1, σ }. For any (u, X), (u′, X ′) ∈ �m ×�p×q ,

‖Qσ (u, X)− Qσ (u′, X ′)‖ ≤ 1

β
‖(u, X)− (u′, X ′)‖,

‖Pσ (u, X)− Pσ (u′, X ′)‖ ≤ 1

β
‖X − X ′‖.

Since the operator Pσk is single-valued, the approximate rule of the partial PPA for
solving problem (41) can be expressed as

(uk+1, Xk+1) ≈ Pσk (u
k, Xk) := (�+ σkT f )

−1�(uk, Xk), (49)

where Pσk (u
k, Xk) is defined by

Pσk (u
k, Xk) = argminu∈�m ,X∈�p×q

{
f (u, X)+ 1

2σk
‖X − Xk‖2

}
. (50)

Now we calculate the partial quadratic regularization of f in (50), which plays a
key role in the study of the partial PPA for solving (41). For a given parameter σ > 0,
the partial quadratic regularization of f in (44) associated with σ is given by

Fσ (X) = min
u∈�m ,Y∈�p×q

{
f (u, Y )+ 1

2σ
‖Y − X‖2

}
. (51)

From (44), we have

Fσ (X) = min
u∈�m

Y∈�p×q

sup
ζ∈�m

ξ∈�s

l(u, Y ; ζ, ξ)+ 1

2σ
‖Y − X‖2

= sup
ζ∈�m

ξ∈�s

min
u∈�m

Y∈�p×q

l(u, Y ; ζ, ξ)+ 1

2σ
‖Y − X‖2

= sup
ζ∈�m

ξ∈Q∗

min
u∈�m

Y∈�p×q

{
fρ(u, Y )+ 〈ζ, b −A(Y )− u〉 + 〈ξ, d − B(Y )〉

+ 1

2σ
‖Y − X‖2

}
, (52)

where the interchange of minu,Y and supζ,ξ follows from the growth properties in
(u, Y ) [48, Theorem 37.3] and the third equality follows from (43). Thus we have

Fσ (X) = sup
ζ∈�m , ξ∈Q∗

�σ (ζ, ξ ; X),
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where

�σ (ζ, ξ ; X) := min
u∈�m ,Y∈�p×q

{
fρ(u, Y )+ 〈ζ, b −A(Y )− u〉

+ 〈ξ, d − B(Y )〉 + 1

2σ
‖Y − X‖2

}

−1

2
‖ζ‖2 + 〈b, ζ 〉 + 〈d, ξ 〉

+ min
Y∈�p×q

{
ρ‖Y‖∗ + 1

2σ
‖Y −W (ζ, ξ ; X)‖2

}

+ 1

2σ

(
‖X‖2 − ‖W (ζ, ξ ; X)‖2

)

= −1

2
‖ζ‖2 + 〈b, ζ 〉 + 〈d, ξ 〉 + 1

2σ
‖X‖2

− 1

2σ
‖Dρσ (W (ζ, ξ ; X))‖2. (53)

In the above,

W (ζ, ξ ; X) = X − σ(C −A∗ζ − B∗ξ) (54)

and the last equality follows from (23). By the saddle point theorem [48, Theorem
28.3] and (52), we have that for any (ζ(X), ξ(X)) such that

(ζ(X), ξ(X)) ∈ argsupζ∈�m , ξ∈Q∗�σ (ζ, ξ ; X),

(ζ(X), Dρσ (W (ζ(X), ξ(X); X))) is the unique solution to (51).
Now we formally present the partial PPA for solving (41).

Algorithm 1. Given a tolerance ε > 0, (u0, X0) ∈ �m × �p×q , σ0 > 0. Set
k = 0. Iterate:

Step 1. Compute an approximate maximizer

�m ×Q∗ � (ζ k+1, ξ k+1) ≈ arg sup
ζ∈�m , ξ∈�s

{θσk (ζ, ξ)

:= �σk (ζ, ξ ; Xk)− δ(ξ |Q∗)}, (55)

where �σk (ζ, ξ ; Xk) is defined in (53) and δ(·|Q∗) is the indicator
function over Q∗.

Step 2. Compute W k+1 := W (ζ k+1, ξ k+1; Xk). Set

uk+1 = ζ k+1, Xk+1=Dρσk (W k+1), Zk+1= 1

σk
(Dρσk (W k+1)−W k+1).

Step 3. If ‖(Xk − Xk+1)/σk‖ ≤ ε; stop; else; update σk ; end.
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Suppose that (ζ̄ (Xk), ξ̄ (Xk)) is an optimal solution of the inner subproblem (55) for
each Xk . Let Pσk be defined as in (50). In order to terminate (55) in the above PPA,
we introduce the following stopping criteria:

sup θk(ζ, ξ)− θk(ζ
k+1, ξ k+1) ≤ ε2

k

4σk
, (56a)

‖ζ k+1 − ζ̄ (Xk)‖2 ≤ 1

2
ε2

k , εk > 0,

∞∑
k=0

εk <∞, (56b)

sup θk(ζ, ξ)− θk(ζ
k+1, ξ k+1) ≤ δ2

k

2σk
‖Xk+1 − Xk‖2, (56c)

‖ζ k+1 − ζ̄ (Xk)‖2 ≤ δ2
k‖ζ k+1 − ζ k‖2, δk > 0,

∞∑
k=0

δk <∞, (56d)

dist(0, ∂θk(ζ
k+1, ξ k+1)) ≤ δ

′
k

σk
‖Xk+1 − Xk‖, 0 ≤ δ

′
k → 0. (56e)

Note that Fσk (Xk) = sup θk(ζ, ξ) and θk(ζ
k+1, ξ k+1) = �σk (ζ

k+1, ξ k+1; Xk). The
following result reveals the relation between the estimation (56) and (40), which
enables us to apply the convergence results of the partial PPA in [30, Theorem 1
& 2] to our partial PPA. The proof essentially follows the idea in [50, Proposition 6].

Proposition 3.2 Suppose that (ζ̄ (Xk), ξ̄ (Xk)) is an optimal solution of (55). Let

(ūk+1, X
k+1

) = (ζ̄ (Xk), Dρσk (W (ζ̄ (Xk), ξ̄ (Xk); Xk))) and Xk+1 = Dρσk (W (ζ k+1,

ξ k+1; Xk)). Then one has

1

2σk
‖Xk+1 − X

k+1‖2 ≤ sup θk(ζ, ξ)− θk(ζ
k+1, ξ k+1). (57)

Proof Since �σ (ζ, ξ ; X) is convex in X and ∇X�σk (ζ
k+1, ξ k+1; Xk) = (Xk −

Xk+1)/σk, the following inequality holds for any Y ∈ �p×q :

�σk (ζ
k+1, ξ k+1; Xk)+ 〈σ−1

k (Xk − Xk+1), Y − Xk〉
≤ �σk (ζ

k+1, ξ k+1; Y ) ≤ sup
{
�σk (ζ, ξ ; Y ) | ζ ∈ �m, ξ ∈ Q∗

} = Fσk (Y )

= min
u∈�m

X∈�p×q

{
f (u, X)+ 1

2σk
‖X − Y‖2

}
≤ f

(
ūk+1, X

k+1
)
+ 1

2σk
‖X

k+1 − Y‖2.

(58)

We also know that

sup θk(ζ, ξ) = Fσk (Xk) = min
u∈�m ,X∈�p×q

{
f (u, X)+ 1

2σk
‖X − Xk‖2

}

= f
(

ūk+1, X
k+1

)
+ 1

2σk
‖X

k+1 − Xk‖2, (59)
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which together with (58) and the fact that θk(ζ
k+1, ξ k+1) = �σk (ζ

k+1, ξ k+1; Xk),
implies that

sup θk(ζ, ξ)− θk(ζ
k+1, ξ k+1)

≥ 1

2σk

[
‖X

k+1 − Xk‖2 − ‖X
k+1 − Y‖2 − 2〈Xk+1 − Xk, Y − Xk〉

]

= 1

2σk

[
−‖(X

k+1 + Xk − Xk+1)− Y‖2 + ‖X
k+1 − Xk+1‖2

]
. (60)

Since this inequality holds for all Y ∈ �p×q , by taking the maximum of (60) in Y , we
have

sup θk(ζ, ξ)− θk(ζ
k+1, ξ k+1) ≥ 1

2σk
‖X

k+1 − Xk+1‖2,

which proves our assertion. ��

3.1 Convergence analysis of the partial PPA

In this subsection, we show the global convergence and local convergence of the partial
PPA for solving (41), mainly based upon the convergence results of Ha [30, Theorem
1 & 2], which require the condition (62) in the following proposition. The purpose of
this proposition is to give a sufficient condition for (62) to hold.

Proposition 3.3 Consider the function f (u, X) defined in (44). Suppose that for some
λ > 0, the following parameterized problem perturbed by (v, Y ) ∈ �m ×�p×q

min
u∈�m ,X∈�p×q

{ f (u, X)− 〈u, v〉 − 〈X, Y 〉} (61)

has an optimal solution whenever max{‖v‖, ‖Y‖} ≤ λ. Then we have

0 ∈ int Im (T f ). (62)

Proof Since for each (v, Y ) ∈ �m × �p×q such that max{‖v‖, ‖Y‖} ≤ λ, the para-
meterized problem (61) has an optimal solution (ū, X), we have that

0 ∈ ∂ f (ū, X)− (v, Y ),

which implies that (v, Y ) ∈ ∂ f (ū, X) ⊆ Im (T f ). Therefore, we have 0 ∈ int Im (T f ).
��

Remark 3.1 In many applications, we have C = 0 in the objective function fρ(u, X)

(see the examples in Sect. 5). In this case, the function fρ(u, X) perturbed by (v, Y ) ∈
�m ×�p×q with ‖Y‖2 < ρ, is coercive. This is because we have
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fρ(u, X)− 〈u, v〉 − 〈X, Y 〉 =
(

1

2
‖u‖2 − 〈u, v〉

)
+ (ρ‖X‖∗ − 〈X, Y 〉)

≥ 1

2
‖u − v‖2 − 1

2
‖v‖2 + (ρ − ‖Y‖2)‖X‖∗.

Therefore, if C = 0, the parameterized problem (61) has an optimal solution for any
(v, Y ) ∈ �m ×�p×q such that max{‖v‖, ‖Y‖} ≤ λ for some 0 < λ < ρ.

Theorem 3.1 (Global convergence) Suppose that the condition in Proposition 3.3 is
satisfied. Let the partial PPA be executed with the stopping criterion (56a) and (56b).
Then the generated sequence {(uk, Xk)} is bounded and converges to an optimal solu-
tion (ū, X) of (41), and {(ζ k, ξ k)} is asymptotically minimizing for the dual problem
(45) with

‖C −A∗(ζ k+1)− B∗(ξ k+1)− Zk+1‖ = 1

σk
‖Xk+1 − Xk‖ → 0, (63)

asym sup(D)− gρ(ζ k, ξ k) ≤ 1

2σk

[
1

2
ε2

k + ‖Xk‖2 − ‖Xk+1‖2
]

,

(64)

where asym sup(D) is the asymptotic supremum of (45). If the problem (41) satisfies
the Slater condition (42), then the sequence {(ζ k, ξ k)} is also bounded, and all of its
accumulation points are optimal solutions for the problem (45).

Proof Under the given assumption, we have from Proposition 3.3 that 0 ∈ int Im (T f ).
Moreover, we know from Proposition 3.2 that (56a) and (56b) implies the general
stopping criterion (40a) for T f . It follows from [30, Theorem 1] that the sequence
{(uk, Xk)} is bounded and any of its weak cluster point is an optimal solution to (41)
and Xk → X . Since fρ(u, X) is strongly convex with respect to u, the u-component
of the optimal solution is uniquely determined, which implies that {uk} → ū. Thus
the sequence {(uk, Xk)} converges to an optimal solution (ū, X) of (41). The rest of
the proof follows the arguments as in [49, Theorem 4] and we omit it here. ��
Theorem 3.2 (Local convergence) Suppose that the hypotheses in Proposition 3.3
are satisfied. Let the partial PPA be executed with the stopping criterion (56a), (56b),
(56c) and (56d). If T −1

f is Lipschitz continuous at the origin with modulus a f , then

{(uk, Xk)} converges to the unique optimal solution (ū, X) of (41), and

‖Xk+1 − X‖ ≤ ηk‖Xk − X‖ for all k sufficiently large, (65)

where

ηk =
[
a f (a

2
f + σ 2

k )−1/2 + δk

]
(1− δk)

−1 → η∞ = a f (a
2
f + σ 2∞)−1/2 < 1.

Moreover, the conclusions of Theorem 3.1 about {(ζ k, ξ k)} are valid.
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If in addition to (56c), (56d) and the condition on T −1
f , one has (56e) and T −1

l is

Lipschitz continuous at the origin with modulus al (≥ a f ), then (ζ k, ξ k) → (ζ̄ , ξ̄ ),
where (ζ̄ , ξ̄ ) is the unique optimal solution for (45), and one has

‖(ζ k+1, ξ k+1)− (ζ̄ , ξ̄ )‖ ≤ η′k‖Xk+1 − Xk‖, for all k sufficiently large, (66)

where η′k = al(1+ δ′k)/σk → η′∞ = al/σ∞.

Proof Since it follows from Proposition 3.2 that (56c) and (56d) implies the general
stopping criterion (40b) and (40c), we can easily obtain the first part of the theorem
from Theorem 3.1 and the general results in [30, Theorem 2]. The second part of the
theorem can similarly be obtained by following the argument in [50, Theorem 5]. We
omit it here. ��

4 An inexact smoothing Newton method for solving inner subproblems

In this section, we design an inexact smoothing Newton method for solving the inner
subproblem (55), which is the most expensive step in each iteration of the partial PPA.
Here we assume that there are inequality constraints in (41). If there are only equality
constraints, then (55) is an unconstrained problem, and a semismooth Newton-CG
method similar to the one proposed in [61] can be designed to solve (55); we refer the
reader to [33] for the details.

For later convenience, we let

Â =
(A

B

)
, b̂ = (b; d) ∈ �m+s, K = �m×Q∗ ⊆ �m×�s, and y = (ζ ; ξ) ∈ K.

(67)
In our partial PPA, for some fixed X ∈ �p×q and σ > 0, we need to solve the following
form of the inner subproblem:

min
y∈K

{
ϕ(y) := 1

2
〈y, T y〉 + 1

2σ
‖Dρσ (W (y; X))‖2 − 〈b̂, y〉 − 1

2σ
‖X‖2

}
, (68)

where T = [Im, 0; 0, 0] ∈ �(m+s)×(m+s), W (y; X) = X − σ(C − Â∗y) and Â∗ =
(A∗, B∗) is the adjoint of Â. Note that −ϕ(·) is the objective function of the inner
subproblem (55). The function ϕ(·) in (68) is continuously differentiable with

∇ϕ(y) = T y + ÂDρσ (W (y; X))− b̂, y ∈ �m+s .

Since ϕ(·) is a convex function, ȳ = (ζ̄ ; ξ̄ ) ∈ K solves problem (68) if and only if it
satisfies the following variational inequality

〈y − ȳ,∇ϕ(ȳ)〉 ≥ 0 ∀y ∈ K. (69)
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Define F : �m+s → �m+s by

F(y) := y −�K(y − ∇ϕ(y)), y ∈ �m+s . (70)

Then one can easily prove that ȳ ∈ K solves (69) if and only if F(ȳ) = 0 [17]. Thus,
solving the inner problem (68) is equivalent to solving the following equation

F(y) = 0, y ∈ �m+s . (71)

Since both�K(·) and Dρσ (·) are globally Lipschitz continuous, F is globally Lipschitz
continuous. For the purpose of introducing an inexact smoothing Newton method, we
need to define a smoothing function for F(·).

The smoothing function for the soft thresholding operator Dρσ (·) has been defined
by (27) where the threshold value is equal to ρσ . Next, we need to define the smoothing
function for �K(·). For simplicity, we shall use the Huber smoothing function χ

defined in (24). Let π : � × �m+s → �m+s be defined by

πi (ε, z) =
{

zi if 1 ≤ i ≤ m + s1

χ(ε, zi ) if m + s1 + 1 ≤ i ≤ m + s
, (ε, z) ∈ � × �m+s . (72)

The function π is obviously continuously differentiable around any (ε, z) ∈ �×�m+s

as long as ε �= 0 and is strongly semismooth everywhere.
Now, we are ready to define a smoothing function for F(·). Let

ϒ(ε, y) := y−π(ε, y− (T y+ ÂDρσ (ε, W (y; X))− b̂)), (ε, y) ∈ �×�m+s .

(73)
From the definitions of ϒ,π, and Dρσ , we have that F(y) = ϒ(0, y) for any y ∈
�m+s .

Proposition 4.1 The mapping ϒ be defined by (73) has the following properties:

(i) ϒ is globally Lipschitz continuous on �×�m+s .
(ii) ϒ is continuously differentiable around (ε, y) when ε �= 0. For any fixed ε ∈ �,

ϒ(ε, ·) is a P0-function, i.e., for any (y, z) ∈ �m+s ×�m+s with y �= z,

max
yi �=zi

(yi − zi )(ϒi (ε, y)− ϒi (ε, z)) ≥ 0, (74)

and thus for any fixed ε �= 0, ϒ ′
y(ε, y) is a P0-matrix (i.e., all its principal minors

are nonnegative).
(iii) ϒ is strongly semismooth at (0, y). In particular, for any ε ↓ 0 and�m+s � h →

0 we have

ϒ(ε, y + h)−ϒ(0, y)−ϒ ′(ε, y + h)(ε, h) = O(‖(ε, h)‖2).
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(iv) For any h ∈ �m+s ,

∂ϒ(0, y)(0, h) ⊆ h − ∂π(0, y −∇ϕ(y))(0, h

− (T h + σ Â∂ Dρσ (0, W (y; X))(0, Â∗h))).

Proof Please refer [33, Proposition 3.9]. ��
Now we are ready to introduce the inexact smoothing Newton method, which was

developed by Gao and Sun in [24], for solving the nonsmooth equation of the form
(71). Let κ ∈ (0,∞) be a constant. Define G : � × �m+s → �m+s by

G(ε, y) := ϒ(ε, y)+ κ|ε|y, (ε, y) ∈ � × �m+s, (75)

where ϒ : � × �m+s → �m+s is defined by (73). Note that G ′y(ε, y) is a P-matrix
(i.e., all its principal minors are positive) for any (ε �= 0, y) ∈ � × �m+s , and hence
it is nonsingular, while by part (i i) of Proposition 4.1, ϒ ′

y(ε, y) is only a P0-matrix
which may be singular. Define E : � × �m+s → �×�m+s by

E(ε, y) :=
[

ε

G(ε, y)

]
=

[
ε

ϒ(ε, y)+ κ|ε|y
]

, (ε, y) ∈ � × �m+s .

For any (ε �= 0, y) ∈ �m+s , E ′(ε, y) is a P-matrix, and hence it is nonsingular.
Then solving the nonsmooth equation F(y) = 0 is equivalent to solving the following
smoothed equation

E(ε, y) = 0. (76)

The inexact smoothing Newton method that is used to solve the above equation is
described in Fig. 1.

Let

N := {
(ε, y) ∈ � × �m+s | ε ≥ ς(ε, y)ε̂

}
,

where ς(ε, y) = r min{1, ‖E(ε, y)‖2} and ε̂ > 0 is given. From [24, Theorem 4.1 and
Theorem 3.6], we have the following convergence results for the inexact smoothing
Newton method. For more details on the inexact smoothing Newton method, see [24].

Theorem 4.1 Algorithm 2 is well defined and generates an infinite sequence
{(εk, yk)} ∈ N with the properties that any accumulation point (ε̄, ȳ) of {(εk, yk)} is
a solution of E(ε, y) = 0 and lim k→∞‖E(εk, yk)‖2 = 0. Additionally, if the Slater
condition (42) holds, then {(εk, yk)} is bounded.

Theorem 4.2 Let (ε̄, ȳ) be an accumulation point of the infinite sequence {(εk, yk)}
generated by Algorithm 2. Suppose that E is strongly semismooth at (ε̄, ȳ) and that
all V ∈ ∂ E(ε̄, ȳ) are nonsingular. Then the sequence {(εk, yk)} converges to (ε̄, ȳ)

quadratically, i.e., for k sufficiently large
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Fig. 1 Algorithm 2 (An inexact smoothing Newton method)

‖(εk+1 − ε̄, yk+1 − ȳ)‖ = O
(
‖(εk − ε̄, yk − ȳ)‖2

)
.

Suppose that the Slater condition (42) holds. Let (ε̄, ȳ) be an accumulation point
of the sequence {(εk, yk)} generated by Algorithm 2. Then, we know that ε̄ = 0
and F(ȳ) = 0, which means that ȳ = (ζ̄ ; ξ̄ ) ∈ K is an optimal solution to the
inner subproblem (68). Let X := Dρσ (W (ȳ; X)). Then (ζ̄ , X) is the unique optimal
solution to the problem (51).

For the quadratic convergence of Algorithm 2, we need the concept of constraint
nondegeneracy. For a given closed set K ⊆ X , we let TK (x) be the tangent cone of
K at x ∈ K as in convex analysis [48]. The largest linear space contained in TK (x) is
denoted by lin(TK (x)), which is equal to (−TK (x)) ∩ TK (x). Define g : �p×q → �
by g(X) = ‖X‖∗. Let K p,q be the epigraph of g, i.e.,

K p,q := epi(g) = {(X, t) ∈ �p×q ×� | g(X) ≤ t},

which is a closed convex cone. Let B̂ := (B, 0). Then (1) can be rewritten in the
following form:

min

{
1

2
‖A(X)− b‖2 + ρ t + 〈C, X〉 : B̂(X, t) ∈ d +Q, (X, t) ∈ K p,q

}
. (79)
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It is easy to see that X is an optimal solution for (1) if and only if (X , t̄) is an optimal
solution to (79) with t̄ = ‖X‖∗. Let I be the identity map from�p×q×� to�p×q×�.
Then the constraint nondegeneracy condition is said to hold at (X , t̄) if

(
B̂
I

)
(�p×q ×�)+

(
lin

(
TQ(B̂(X , t̄)− d)

)
lin(TK p,q (X , t̄))

)
=

(
�s

�p×q ×�

)
. (80)

Note that lin(TQ(B̂(X , t̄)− d)) = lin(TQ(B(X)− d)). Let E(X) be the index set of
active constraints at X :

E(X) := {i | 〈Bi , X〉 = di , i = s1 + 1, . . . , s},

and l := |E(X)|. Without loss of generality, we assume that

E(X) := {s1 + 1, . . . , s1 + l}.

Define B̃ : �p×q → �s1+l by

B̃(X) := [〈B1, X〉, . . . , 〈Bs1+l , X〉]T
, X ∈ �p×q .

Let B = (B̃, 0). Since lin(TQ(B(X)− d)) can be computed directly as follows

lin(TQ(B(X)− d)) = {h ∈ �s | hi = 0, i ∈ {1, . . . , s1} ∪ E(X)},

(80) can be reduced to

(
B
I

)
(�p×q ×�)+

( {0}s1+l

lin(TK p,q (X , t̄))

)
=

(
�s1+l

�p×q ×�

)
,

which is equivalent to

B
(
lin(TK p,q (X , t̄))

) = �s1+l . (81)

Next, we shall characterize the linear space lin(TK p,q (X , g(X))). Let W (ȳ; X) admit
the SVD as in (10). Decompose the index set α = {1, . . . , p} into the following three
subsets:

α1 := {i | σi (W ) > ρσ, i ∈ α},
α2 := {i | σi (W ) = ρσ, i ∈ α},
α3 := {i | σi (W ) < ρσ, i ∈ α}.
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Then U = [Uα1 Uα2 Uα3 ], V = [Vα1 Vα2 Vα3 V2], and X = Dρσ (W (ȳ; X)) is of rank
|α1|. For any H ∈ �p×q , by the results of Watson [58, Theorem 1], we have

g′(X; H) =

⎧⎪⎨
⎪⎩
‖H‖∗ if |α1| = 0,

〈U V T
1 , H〉 if |α1| = p,

〈Uα1 V T
α1

, H〉 + ‖[Uα2 Uα3 ]T H [Vα2 Vα3 V2]‖∗ if 0 < |α1| < p.

From [14, Proposition 2.3.6 and Theorem 2.4.9], we have

TK p,q (X , g(X)) = epi(g′(X; ·)),

from which we can readily get

TK p,q (X , g(X)) = {(H, t) ∈ �p×q ×� | 〈Uα1 V T
α1

, H〉
+‖[Uα2 Uα3 ]T H [Vα2 Vα3 V2]‖∗ ≤ t}.

Thus its linearity space is as follows:

lin(TK p,q (X , g(X))) = {(H, t) ∈ �p×q ×� | [Uα2 Uα3 ]T H [Vα2 Vα3 V2]
= 0, t = 〈Uα1 V T

α1
, H〉}.

Let

T (X) := {H ∈ �p×q | [Uα2 Uα3 ]T H [Vα2 Vα3 V2] = 0},

which is a subspace of �p×q . The orthogonal complement of T (X) is given by

T (X)⊥ = {H ∈ �p×q | U T
α1

H = 0, H Vα1 = 0}.

Since B = (B̃, 0), the constraint nondegeneracy condition (81) can be further reduced
to

B̃(T (X)) = �s1+l . (82)

Lemma 4.1 Let W (ȳ; X) = X − σ(C − Â∗ ȳ) admit the SVD as in (10). Then the
constraint nondegeneracy condition (82) holds at X = Dρσ (W (ȳ; X)) if and only if
for any h ∈ �s1+l ,

U T
α1

(B̃∗h) = 0 and (B̃∗h)Vα1 = 0  ⇒ h = 0. (83)

Proof Please refer to [33, Lemma 3.12]. ��
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Lemma 4.2 Let Ã = (A; B̃) and Ã∗ = (A∗, B̃∗) be the adjoint of Ã. Let Dρσ :
� × �p×q → �p×q be defined by (27). Assume that the constraint nondegeneracy
condition (82) holds at X. Then for any V ∈ ∂ Dρσ (0, W (ȳ; X)), we have

〈h, T̃ h + σ ÃV(0, Ã∗h)〉 > 0 ∀ 0 �= h ∈ �m+s1+l , (84)

where T̃ = [Im, 0; 0, 0] is a matrix of size m + s1 + l.

Proof Please refer to [33, Lemma 3.13]. ��
Proposition 4.2 Let ϒ : � × �m+s → �m+s be defined by (73). Assume that the
constraint nondegeneracy condition (82) holds at X. Then for any W ∈ ∂ϒ(0, ȳ), W
is a P-matrix, i.e.,

max
i

hi (W(0, h))i > 0 ∀ 0 �= h ∈ �m+s . (85)

Proof Let W ∈ ∂ϒ(0, ȳ). Suppose that there exists 0 �= h ∈ �m+s such that (85)
does not hold, i.e.,

max
i

hi (W(0, h))i ≤ 0. (86)

Then from part (iv) of Proposition 4.1, we know that there exist D ∈ ∂π(0, z̄) and
V ∈ ∂ Dρσ (0, W (ȳ; X)) such that

W(0, h) = h −D
(
0, h − (T h + σ ÂV(0, Â∗h))

)
= h −D(0, h)+D(0, T h + σ ÂV(0, Â∗h)),

where z̄ = ȳ − (T ȳ + ÂDρσ (0, W (ȳ; X))− b̂). By simple calculations, we can find
a nonnegative vector d ∈ �m+s satisfying

di =

⎧⎪⎨
⎪⎩

1 if 1 ≤ i ≤ m + s1,

∈ [0, 1] if m + s1 + 1 ≤ i ≤ m + s1 + l,

0 if m + s1 + l + 1 ≤ i ≤ m + s,

such that for any y ∈ �m+s ,

(D(0, y))i = di yi , i = 1, . . . , m + s.

Thus we have hi (W(0, h))i = hi
[
hi − di hi + di

(
T h + σ ÂV(0, Â∗h)

)
i

]
, i =

1, . . . , m + s. This, together with (86), implies that

⎧⎪⎨
⎪⎩

hi (T h + σ ÂV(0, Â∗h))i ≤ 0 if 1 ≤ i ≤ m + s1,

hi (T h + σ ÂV(0, Â∗h))i ≤ 0 or hi = 0 if m + s1 + 1 ≤ i ≤ m + s1 + l,

hi = 0 if m + s1 + l + 1 ≤ i ≤ m + s.
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Hence, 〈h, T h + σ ÂV(0, Â∗h〉 = 〈h̃, T̃ h̃ + σ ÃV(0, Ã∗h̃〉 ≤ 0, where 0 �= h̃ ∈
�m+s1+l is defined by h̃i = hi , i = 1, . . . , m + s1+ l. However, the above inequality
contradicts (84) in Lemma 4.2. Hence, we have that (85) holds. ��
Theorem 4.3 Let (ε̄, ȳ) be an accumulation point of the infinite sequence {(εk, yk)}
generated by Algorithm 2. Assume that the constraint nondegeneracy condition (82)
holds at X. Then the sequence {(εk, yk)} converges to (ε̄, ȳ) quadratically, i.e., for k
sufficiently large

‖(εk+1 − ε̄, yk+1 − ȳ)‖ = O
(
‖(εk − ε̄, yk − ȳ)‖2

)
.

Proof To prove the quadratic convergence of {(εk, yk)}, by Theorem 4.2, it is enough
to show that E is strongly semismooth at (ε̄, ȳ) and all V ∈ ∂ E(ε̄, ȳ) are nonsingular.
The strong semismoothness of E at (ε̄, ȳ) follows from part (i i i) of Proposition 4.1
and the fact that the modulus function | · | is strongly semismooth everywhere on �.

Next, we show the nonsingularity of all elements in ∂ E(ε̄, ȳ). For any V ∈ ∂ E(ε̄, ȳ),
from Proposition 4.2 and the definition of E , we have that for any 0 �= h ∈ �m+s+1,
maxi hi (Vd)i > 0, which implies that V is a P-matrix, and thus nonsingular [15,
Theorem 3.3.4]. ��

4.1 Efficient implementation of the inexact smoothing Newton method

When applying Algorithm 2 to solve the inner subproblem (68), the most expensive
step is in solving the linear system (77). In our numerical implementation, we first
obtain �εk = −εk + ςk ε̂, and then apply the BiCGStab iterative solver of Van der
Vost [56] to the following linear system

G ′y(εk, yk)�yk = −G(εk, yk)− G ′ε(εk, yk)�εk (87)

to obtain a �yk satisfying condition (78). For convenience, we suppress the superscript
k in our subsequent analysis. By noting that G(ε, y) and ϒ(ε, y) are defined by (75)
and (73), respectively, we have that

G ′y(ε, y)�y = (1+ κε)�y + π ′z(ε, z)
(
T �y + σ Â(Dρσ )′W (ε, W )(H)−�y

)
,

(88)

where H = Â∗�y, z := y − (T y + ÂDρσ (ε, W )− b̂) and W := X − σ(C − Â∗y).
Let W have the SVD as in (10). Then, by (29), we have

(Dρσ )′W (ε, W )(H) = U (�αα ◦ Hs
1 +�αγ ◦ Ha

1 )V T
1 +U (�αβ ◦ H2)V T

2 , (89)

where �αα,�αγ and �αβ are given by (28), H1 = U T H V1, and H2 = U T H V2.
When implementing the BiCGStab iterative method, one needs to repeatedly compute
the matrix-vector multiplication G ′y(ε, y)�y. From (89), it seems that a full SVD of
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W is required. But as we shall explain next, it is not necessary to compute V2 explicitly.
Observe that �i, j = di for all i ∈ α, j ∈ β for some d ∈ �p. Thus

U (�αβ ◦ H2)V T
2 = Udiag(d)U T H V2V T

2 = Udiag(d)U T (H − (H V1)V T
1 ), (90)

which shows that the computation in (89) can be done without explicitly using V2.
To achieve fast convergence for the BiCGStab method, we introduce an easy-to-

compute diagonal preconditioner for the linear system (87). Since both π ′z(ε, z) and
T are diagonal matrices, we know from (88) that it is enough to find a good diagonal
approximation of Â(Dρσ )′W (ε, W )Â∗. Let

M := ÂSÂ
T
,

where Â and S denote the matrix representation of the linear map Â and (Dρσ )′W (ε, W )

with respect to the standard bases in �p×q and �m+s , respectively. Let the standard
basis in �p×q be {Ei j ∈ �p×q : 1 ≤ i ≤ p, 1 ≤ j ≤ q}, where for each Ei j , its
(i, j)-th entry is one and all the others are zero. Then the diagonal element of S with
respect to the standard basis Ei j is given by

S(i, j),(i, j) = ((U ◦U )�̃(V ◦ V )T )i j + 1

2
〈Hi j

1 ◦ (Hi j
1 )T ,�αα −�αγ 〉,

where �̃ := [ 1
2 (�αα +�αγ ),�αβ

]
and Hi j

1 = U T Ei j V1. Based on the above
expression, the total cost of computing all the diagonal elements of S is equal to
2(p + q)pq + 3p3q flops, which is too expensive if p2 # p + q. Fortunately, the
first term

d(i j) = ((U ◦U )�̃(V ◦ V )T )i j

is usually a very good approximation of S(i, j),(i, j), and the cost of computing all the
elements d(i j), for 1 ≤ i ≤ p, 1 ≤ j ≤ q, is 2(p + q)pq flops. Thus we propose the
following diagonal preconditioner for the coefficient matrix G ′y(ε, y):

MG := (1+ κε)I + π ′z(ε, z)
(

T + σdiag(Âdiag(d)Â
T
)− I

)
.

5 Numerical experiments

In this section, we report some numerical results to demonstrate the efficiency of our
smoothing-Newton partial PPA. We implemented our algorithm in MATLAB 2011a
(version 7.12), and the numerical experiments are run in MATLAB under Windows
7 operating system on an Intel Xeon (quad-core) 2.80GHz CPU with 24GB memory.

In our numerical implementation, we apply the well-known alternating direction
method of multipliers (ADMM) proposed by Gabay and Mercier [23], Glowinski and
Marrocco [26], and Glowinski [27], for generating a good starting point for our PPA.
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To use the ADMM, we introduce two auxiliary variables Y and v, and consider the
following equivalent form of (1):

min
X∈�p×q ,Y∈�p×q ,v∈Q

{
1

2
‖A(X)− b‖2 + ρ‖Y‖∗ + 〈C, X〉 : Y = X, B(X)− v=d

}
.

(91)

Consider the following augmented Lagrangian function for the problem (91):

Lβ(X, Y, v; Z , λ) = 1

2
‖A(X)− b‖2 + ρ‖Y‖∗ + 〈C, X〉 + 〈Z , X − Y 〉
+ 〈λ, d − B(X)+ v〉
+β

2
‖X − Y‖2 + β

2
‖d − B(X)+ v‖2,

where Z ∈ �p×q and λ ∈ �s are the Lagrangian multipliers for the linear equality con-
straints and β > 0 is a penalty parameter. Given a starting point (X0, Y 0, v0, Z0, λ0),
the ADMM generates new iterates according to the following procedure:

Xk+1 := argminX∈�p×q Lβ(X, Y k, vk; Zk, λk),

(Y k+1, vk+1) := argminY∈�p×q , v∈QLβ(Xk+1, Y, v; Zk, λk),

=
(

Dρ/β(Xk+1 + β−1 Zk), �Q(B(Xk+1)− d − β−1λk)
)

,

Zk+1 := Zk + γβ(Xk+1 − Y k+1), λk+1 := λk+γβ(d−B(Xk+1)+vk+1),

where γ ∈ (0, (1 + √5)/2) is a given constant. Note that the theoretical conver-
gence for the above procedure is guaranteed; see [27]. However, during our numerical
implementation, we observe that the performance of the ADMM is very sensitive to
the choice of the penalty parameter β. In order to achieve faster convergence, it is
essential to adaptively adjust β so as to balance the progress of the primal and dual
infeasibilities defined in (92). Let βk, Rk

P , Rk
D be the value of β, and the primal and

dual infeasibilities at the k iteration of the ADMM. In our implementation, we adjust
β according to the following rule:

βk+1 =
{

1.25βk if Rk
P > 10Rk

D and rem(k, Nk) = 0

1
1.25βk if Rk

P < 0.1Rk
D and rem(k, Nk) = 0

where Nk = 3 if k ≤ 30; Nk = 6 if 30 < k ≤ 60; Nk = 12 if 60 < k ≤ 120;
Nk = 25 if 120 < k ≤ 250; Nk = 50 if 250 < k. Observe that when the parameter β

is modified, we are actually restarting a new cycle of ADMM using the iterate from
the last cycle as the starting point for the new cycle.

In order to measure the infeasibilities of the primal problem (41), we define two
linear operators Be : �p×q → �s1 and Be : �p×q → �s2 , respectively, as follows:
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{
(Be(X))i := 〈Bi , X〉, for i = 1, . . . , s1,

(Be(X))i := 〈Bi , X〉, for i = s1 + 1, . . . , s.

Let d = (ds1; ds2) where ds1 ∈ �s1 and ds2 ∈ �s2 . We measure the infeasibilities and
optimality for the primal problem (41) and the dual problem (45) as follows:

RP = ‖[b − u −A(X); ds1 − Be(X); max(0, ds2 − Be(X))]‖
1+ ‖b̂‖ ,

RD = ‖C −A∗ζ − B∗ξ − Z‖
1+ ‖[A∗,B∗]‖ , relgap = fρ(u, X)− gρ(ζ, ξ)

1+ | fρ(u, X)| + |gρ(ζ, ξ)| ,
(92)

where y = (ζ ; ξ), Z = (Dρσ (W ) − W )/σ with W = X − σ(C − A∗ζ − B∗ξ),
and fρ(u, X) and gρ(ζ, ξ) are the objective functions of (41) and (45), respectively.
The infeasibility of the condition ‖Z‖2 ≤ ρ is not checked since it is satisfied up to
machine precision throughout the algorithm. In our numerical experiments, we stop
the partial PPA when

max{RP , RD} ≤ 10−6 and |relgap| ≤ 10−5.

We choose the initial iterate X0 = 0, y0 = 0, and σ0 = 1. The parameter ρ in (1) is
set to be ρ = 10−3‖A∗b‖2 if the data is not contaminated by noise; otherwise, the
parameter ρ is set to be ρ = 5× 10−3‖A∗b‖2.

In our numerical experiments, we run the ADMM for at most 30 iterations to gen-
erate a good starting point for our proposed PPA. In addition, the ADMM is switched
to PPA as soon as max{RP , RD} is less than 10−3.

5.1 Example 1

We consider the nearest matrix approximation problem which was discussed by Golub,
Hoffman and Stewart in [29], where the classic Eckart–Young [18]–Mirsky[41] theo-
rem was extended to obtain the nearest lower-rank approximation while certain spec-
ified columns of the matrix are fixed. The Eckart–Young–Mirsky theorem has the
drawback that the approximation generally differs from the original matrix in all its
entries. Thus it is not suitable for applications where some columns of the original
matrix must be fixed. For example, in statistics the regression matrix for the multiple
regression model with a constant term has a column of all ones, and this column should
not be perturbed.

For each triplet (p, q, r), where r is the predetermined rank, we generate a random
matrix M ∈ �p×q of rank r by setting M = M1 MT

2 where both M1 ∈ �p×r and
M2 ∈ �q×r have i.i.d. standard uniform entries in (0, 1). As observed entries in
practice are rarely exact, we corrupt the entries of M by Gaussian noises to simulate
the situation where the observed data may be noisy as follows. First we generate
a random matrix N ∈ �p×q with i.i.d Gaussian entries. Then we assume that the
observed data is given by M̃ = M+ τ N‖M‖/‖N‖, where τ is the noise factor. In our
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numerical experiments, we set τ = 0.1. We assume that the first column of M should
be fixed, and consider the following minimization problem:

min
X∈�p×q

{
1

2
‖X − M̃‖2 + ρ‖X‖∗ : Xe1 = Me1, X ≥ 0

}
, (93)

where e1 is the first column of the q×q identity matrix. Here we impose the extra con-
straint X ≥ 0 since the original matrix M is nonnegative. Note that the approximation
derived in [29] generally is not nonnegative.

For each (p, q, r) and τ , we generate 5 random instances. In Table 1, we report the
total number of constraints (m + s) in (41), the average number of outer iterations,
the average total number of inner iterations, the average number of BiCGStab steps
taken to solve (87), the average infeasibilities, the average relative gap, the average
relative mean square error MSE := ‖X −M‖/‖M‖ (where M is the original matrix),
the mean value of the rank (#sv) of X , and the average CPU time taken (in the for-
mat hours:minutes:seconds). Note that the CPU time includes the cost of running the
ADMM to generate a good starting point, and the time spent in the ADMM initializa-
tion is given in the parenthesis. We may observe from the table that the partial PPA
is very efficient for solving (93). For the problem where p is moderate but q is large,
e.g., p = 100 and q = 20, 000, we only compute the economical form of the SVD
and use the formula in (90) to avoid the explicit computation of V2. It takes less than
a minute to solve the last instance to achieve the tolerance of 10−6 while the MSE is
reasonably small.

In the numerical experiments, we observe that when the generated matrix M is of
small rank, e.g., r = 10, the singular values of the computed solution X are separated
into two clusters with the first cluster having much larger mean value than that of
the second cluster (see, e.g., Fig. 2). We may view the number of singular values in
the first cluster as a good estimate of the rank of the true solution, while the smaller
positive singular values in the second cluster may be attributed to the presence of noise
in the given data. When the matrix M is of high rank, e.g., r = 50, the singular values
of X are usually not well separated into two clusters (see, e.g., Fig. 2), excluding the
largest singular value. In Table 1, when the singular values of X are well separated
into two clusters, we also report the number of singular values in the first cluster in
parenthesis next to #sv. In the table, “NA” means that the singular values of X are not
well separated into two clusters.

In order to give the reader an idea on the relative performance of our proposed
PPA (without using ADMM to generate a good starting point) and ADMM, we also
perform the same experiments for some of the instances in Table 1 for the PPA (without
ADMM initialization) and ADMM. We can see that the performance of the PPA with
ADMM initialization is more efficient than the one without ADMM initialization. And
both are more efficient than the ADMM.

5.2 Example 2

In [34], Lin proposed the Latent Markov Analysis (LMA) approach for finding the
reduced rank approximations of transition matrices. The LMA is applied to cluster-
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Fig. 2 Distribution of singular values of X and M

ing based on pairwise similarities such that the inferred cluster relationships can be
described probabilistically by the reduced-rank transition matrix. Benczúr et al. [5]
considered the problem of finding the low rank approximation of the transition matrix
for computing the personalized PageRank, which describes the backlink-based page
quality around user-selected pages.

In this example, we evaluate the performance of our partial PPA for finding the
nearest transition matrix of lower rank. Consider the set of n web pages as a directed
graph whose nodes are the web pages and whose edges are all the links between
pages. Let deg(i) be the outdegree of the page i , i.e., the number of pages which
can be reached by a direct link from page i . Note that all the self-referential links
are excluded. Let P ∈ �n×n be the matrix which describes the transition probability
between pages i and j , where Pi j = 1/deg(i) if deg(i) > 0 and there is a link form
i to j . For some page i having no outlink (dangling pages), we assume Pi j = 1/n
for j = 1, . . . , n, i.e., the user will make a random choice with uniform distribution
1/n. Since the matrix P for the web graph generally is reducible, P may have several
eigenvalues on the unit circle, which could cause convergence problems to the power
method for computing the PageRank [43]. The standard way of ensuring irreducibility
is that we replace P by the matrix

Pc = cP + (1− c)evT ,

where c ∈ (0, 1), e ∈ �n is a vector of all ones, and v ∈ �n is a vector such that v ≥ 0
and eT v = 1. We generate a random matrix N ∈ �n×n with i.i.d Gaussian entries.
Then we assume that the observed data is given by P̃c = Pc + τ N‖Pc‖/‖N‖, where
τ is the noise factor. In our numerical experiments, we set τ = 0.1, c = 0.85 which is
a typical value used by Google, and vi = 1/n ∀ i . The minimization problem which
we solve is as follows:

min
X∈�n×n

{
1

2
‖X − P̃c‖2 + ρ‖X‖∗ : Xe = e, X ≥ 0

}
. (94)
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We use the data Harvard500.mat generated by Cleve Moler’s MATLAB program
surfer.m1 to evaluate the performance of our algorithm. We also use surfer.m
to generate three adjacency graphs of a portion of web pages starting at the root
page “http://www.nus.edu.sg”. We also apply our algorithm to the data sets2 collected
by Tsaparas on querying the Google search engine about four topics: automobile
industries,computational complexity,computationalgeometry,
and randomized algorithms. Table 2 reports the average numerical results of
PPA for solving (94) over 5 runs, where r denotes the rank of Pc. We can observe
from the table that the partial PPA (with ADMM initialization) is quite efficient for
solving (94) when applied to the real web graph data sets. But the ADMM is surpris-
ingly even more efficient for the two tested instances, automobile industries,
computational geometry.

5.3 Example 3

We consider the problem of finding a low rank doubly stochastic matrix with a pre-
scribed entry. A matrix M ∈ �n×n is called doubly stochastic if it is nonnegative and
all its row and column sums are equal to one. This problem arises from numerical
simulation of large circuit networks. In order to reduce the complexity of simulating
the whole system, Padé approximation via a Krylov subspace method, such as the
Lanczos algorithm, is used to generate a low order approximation to the linear system
matrix describing the large network [3]. The tridiagonal matrix M ∈ �n×n produced
by the Lanczos algorithm is generally not doubly stochastic. But if the original matrix
is doubly stochastic, then we need to find a low rank approximation of M , which is
doubly stochastic and matches the maximal moments. In our numerical experiments,
we will not restrict the matrix M to be tridiagonal.

For each pair (n, r), we generate a positive matrix M ∈ �n×n with rank r by the
same method as in Example 1. Then we use the Sinkhorn–Knopp algorithm [51] to
find two positive definite diagonal matrices D1, D2 ∈ �n×n such that M = D1 M D2
is a doubly stochastic matrix of rank r . We sample a subset E of m entries of M
uniformly at random, and generate a random matrix NE ∈ �p×q with sparsity pattern
E and i.i.d standard Gaussian random entries. Then we assume that the observed data
is given by M̃E = ME + τ NE‖ME‖/‖NE‖, where τ is the noise factor. The problem
for matching the first moment of M can be stated as follows:

min
X∈�n×n

{
1

2
‖XE − M̃E‖2 + ρ‖X‖∗ : Xe = e, X T e = e, X11 = M11, X ≥ 0

}
.

(95)

In [13], the following relatively simpler version of (95) was studied:

min
X∈�n×n

{
1

2
‖X − M̃‖2 : Xe = e, X T e = e, X11 = M11, X ≥ 0

}
, (96)

1 Available at http://www.mathworks.com/moler/ncmfilelist.html.
2 Available at: http://www.cs.toronto.edu/~tsap/experiments/datasets/index.html.
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i.e., without the nuclear norm regularization term and all the entries of M̃ are assumed
to be available. Because of the simplicity, the problem (96) was solved in [13] via its
dual by a semismooth Newton-CG method analogous to that in [45].

In our numerical experiments, we set τ = 0, 0.1, and the number of sampled entries
to be m = 10dr , where dr = r(2n − r) is the degree of freedom in an n × n matrix
of rank r . In Table 3, we report the average numerical results for solving (95) on
randomly generated matrices over 5 runs, where m is the average number of sampled
entries, and m + s is the average number of total constraints in (41). We can observe
from the table that the partial PPA can solve (95) very efficiently for all the instances.
Note that the partial PPA with ADMM initialization is at least twice more efficient
than the one without ADMM initialization. The former is also more efficient than the
ADMM, except for the instance with (n/τ = 1,000/0.1, r = 10).

We may also consider the following generalized version of (95), where we want to
find a low rank doubly stochastic matrix with k prescribed entries of M :

min
X∈�n×n

{
1

2
‖XE − M̃E‖2 + ρ‖X‖∗ | Xe = e, X T e = e, Xit , jt

= Mit , jt , 1 ≤ t ≤ k, X ≥ 0

}
, (97)

where (i1, j1), . . . , (ik, jk) are distinct pairs. In our numerical experiments, we set
k = $10−3n2%, which is the number of prescribed entries selected uniformly at random.
Table 4 presents the average numerical results for solving (97) on randomly generated
matrices over 5 runs. We can observe that for this problem, partial PPA with ADMM
initialization is much more efficient than the ADMM.

5.4 Example 4

We consider the problem of finding a low rank nonnegative approximation which
preserves the left and right principal eigenvectors of a square positive matrix. This
problem was considered by Ho and van Dooren in [31]. Let M ∈ �n×n be a positive
matrix. By the Perron–Frobenius theorem, M has a simple positive eigenvalue λ with
the largest magnitude. Moreover, there exist two positive eigenvectors v,w ∈ �n

such that Mv = λv and MT w = λw. As suggested by Bonacich [8], the principal
eigenvector can be used to measure network centrality, where the i-th component of
the eigenvector gives the centrality of the i-th node in the network. For example, the
Google’s PageRank [43] is a variant of the eigenvector centrality for ranking web pages.

For each pair (n, r), we generate a positive matrix M ∈ �n×n of rank r by the
same method as in Example 1. We sample a subset E of m entries of M that are
possibly corrupted by Gaussian noise as in Example 3, and the resulting partially
observed matrix is denoted by M̃E . Given the largest positive eigenvalue λ and the
corresponding left and right eigenvectors v and w of M , the problem of finding a low
rank approximation of M while preserving the left and right eigenvectors can be stated
as follows:

123



A partial proximal point algorithm for nuclear norm 319

Ta
bl

e
4

Sa
m

e
as

Ta
bl

e
3

bu
tf

or
th

e
pr

ob
le

m
(9

7)

n/
τ

r
m
|m
+

s
it.
|its

ub
|bi

cg
R

p
|R

D
|re

lg
ap

M
SE

#s
v

T
im

e

Pa
rt

ia
lP

PA
w

ith
A

D
M

M
in

iti
al

iz
at

io
n

50
0/

0.
0

10
99

,1
48
|3

50
,1

48
4.

0|
13

.4
|8

.3
1.

1-
7|

3.
1-

7|
-1

.2
-6

3.
0-

3
10

18
(4

)

50
0/

0.
0

50
25

0,
00

0
|5

01
,0

00
2.

0|
5.

0|
3.

4
9.

4-
8|

4.
3-

8|
1.

1-
7

7.
0-

3
50

06
(3

)

50
0/

0.
0

10
0

25
0,

00
0
|5

01
,0

00
2.

0|
4.

2|
2.

1
2.

8-
7|

2.
4-

8|
-8

.7
-8

9.
9-

3
10

0
06

(4
)

50
0/

0.
1

10
99

,1
48
|3

50
,1

49
7.

0|
16

.0
|4

.2
4.

1-
8|

9.
7-

8|
2.

6-
6

5.
4-

2
17

2
16

(4
)

50
0/

0.
1

50
25

0,
00

0
|5

01
,0

00
2.

0|
4.

2|
3.

2
3.

3-
7|

5.
5-

8|
2.

8-
8

4.
0-

2
17

7
07

(4
)

50
0/

0.
1

10
0

25
0,

00
0
|5

01
,0

00
1.

0|
2.

2|
3.

1
4.

6-
7|

7.
8-

8|
4.

8-
6

3.
7-

2
17

7
06

(4
)

1,
50

0/
0.

0
10

29
9,

19
4
|2

,5
52

,1
96

6.
0|

16
.0
|6

.7
5.

0-
7|

1.
0-

7|
-3

.9
-6

5.
6-

3
33

3:
41

(3
0)

1,
50

0/
0.

0
50

1,
47

4,
48

1
|3

,7
27

,4
81

4.
0|

6.
2|

4.
6

2.
2-

7|
3.

1-
8|

-3
.1

-6
7.

4-
3

50
2:

00
(5

8)

1,
50

0/
0.

0
10

0
2,

25
0,

00
0
|4

,5
03

,0
00

2.
0|

4.
2|

3.
4

3.
3-

7|
1.

9-
8|

-4
.5

-7
9.

9-
3

10
0

1:
25

(4
9)

1,
50

0/
0.

1
10

29
9,

19
4
|2

,5
52

,1
95

8.
0|

17
.6
|4

.5
5.

4-
8|

2.
0-

8|
2.

4-
6

5.
3-

2
27

6
3:

43
(4

2)

1,
50

0/
0.

1
50

1,
47

4,
48

1
|3

,7
27

,4
81

5.
0|

9.
6|

3.
8

2.
3-

7|
3.

6-
8|

2.
5-

6
3.

4-
2

19
9

2:
31

(5
8)

1,
50

0/
0.

1
10

0
2,

25
0,

00
0
|4

,5
03

,0
00

3.
0|

10
.0
|7

.4
1.

4-
7|

2.
4-

7|
-4

.2
-6

3.
1-

2
11

7
3:

15
(5

8)

1,
00

0/
0.

0
10

19
9,

03
4
|1

,2
01

,0
34

8.
0|

18
.0
|5

.5
7.

7-
7|

1.
9-

8|
3.

3-
6

3.
1-

3
10

1:
32

(1
8)

1,
00

0/
0.

0
50

97
4,

91
5
|1

,9
76

,9
15

2.
0|

5.
0|

4.
4

1.
0-

7|
3.

4-
8|

6.
3-

7
6.

9-
3

50
38

(2
0)

1,
00

0/
0.

0
10

0
1,

00
0,

00
0
|2

,0
02

,0
00

2.
0|

4.
0|

3.
0

2.
4-

7|
1.

4-
8|

-2
.3

-7
9.

9-
3

10
0

30
(1

7)

1,
00

0/
0.

1
10

19
9,

03
4
|1

,2
01

,0
35

8.
0|

18
.8
|4

.7
8.

9-
8|

2.
7-

8|
2.

2-
6

5.
3-

2
23

1
1:

32
(1

8)

1,
00

0/
0.

1
50

97
4,

91
5
|1

,9
76

,9
15

4.
4|

8.
2|

4.
0

4.
5-

7|
6.

6-
8|

3.
1-

6
3.

3-
2

15
1

56
(2

4)

1,
00

0/
0.

1
10

0
1,

00
0,

00
0
|2

,0
02

,0
01

1.
0|

3.
8|

4.
2

2.
6-

7|
5.

8-
7|

-8
.0

-7
3.

1-
2

15
3

35
(2

0)

123



320 K. Jiang et al.

Ta
bl

e
4

co
nt

in
ue

d

n/
τ

r
m
|m
+

s
it.
|its

ub
|bi

cg
R

p
|R

D
|re

lg
ap

M
SE

#s
v

T
im

e

Pa
rt

ia
lP

PA
w

ith
ou

tA
D

M
M

in
iti

al
iz

at
io

n

1,
00

0/
0.

0
10

19
9,

03
4
|1

,2
01

,0
34

10
.0
|3

4.
2|

7.
4

2.
8-

7|
1.

6-
8|

-2
.4

-6
3.

5-
3

10
3:

42

1,
00

0/
0.

0
50

97
4,

91
5
|1

,9
76

,9
15

6.
0|

22
.4
|4

.4
4.

5-
7|

4.
5-

8|
-3

.6
-6

7.
1-

3
50

1:
47

1,
00

0/
0.

0
10

0
1,

00
0,

00
0
|2

,0
02

,0
00

5.
0|

17
.0
|3

.7
4.

2-
7|

7.
1-

8|
-3

.4
-6

1.
0-

2
10

0
1:

16

1,
00

0/
0.

1
10

19
9,

03
4
|1

,2
01

,0
35

9.
2|

32
.2
|5

.7
2.

2-
7|

3.
5-

8|
-3

.2
-6

5.
4-

2
23

1
3:

19

1,
00

0/
0.

1
50

97
4,

91
5
|1

,9
76

,9
15

5.
0|

20
.8
|4

.1
3.

8-
7|

7.
3-

8|
-3

.3
-6

3.
3-

2
15

1
1:

37

1,
00

0/
0.

1
10

0
1,

00
0,

00
0
|2

,0
02

,0
00

3.
4|

18
.4
|4

.6
1.

6-
7|

2.
2-

7|
-2

.9
-6

3.
1-

2
15

4
1:

34

A
D

M
M

1,
00

0/
0.

0
10

19
9,

03
4
|1

,2
01

,0
34

44
8.

2
8.

9-
7|

5.
4-

7|
-2

.8
-6

5.
3-

3
10

14
:0

4

1,
00

0/
0.

0
50

97
4,

91
5
|1

,9
76

,9
15

10
3.

6
8.

9-
7|

2.
4-

7|
-5

.2
-7

7.
0-

3
50

2:
52

1,
00

0/
0.

0
10

0
1,

00
0,

00
0
|2

,0
02

,0
00

40
.0

9.
0-

7|
4.

2-
7|

-2
.5

-7
9.

9-
3

10
0

45

1,
00

0/
0.

1
10

19
9,

03
4
|1

,2
01

,0
35

35
.0

7.
3-

7|
7.

8-
7|

-8
.2

-7
5.

5-
2

23
4

59

1,
00

0/
0.

1
50

97
4,

91
5
|1

,9
76

,9
16

20
8.

6
8.

8-
7|

7.
0-

8 |
-6

.4
-7

3.
3-

2
15

0
5:

38

1,
00

0/
0.

1
10

0
1,

00
0,

00
0
|2

,0
02

,0
01

55
.0

8.
4-

7|
5.

1-
7|

-8
.7

-7
3.

1-
2

14
9

1:
08

In
th

e
ta

bl
e,

m
=

10
d

r
an

d
d

r
=

r(
2n
−

r)

123



A partial proximal point algorithm for nuclear norm 321

Ta
bl

e
5

N
um

er
ic

al
pe

rf
or

m
an

ce
of

th
e

pa
rt

ia
lP

PA
on

(9
8)

n/
τ

r
m
|m
+

s
it.
|its

ub
|bi

cg
R

p
|R

D
|re

lg
ap

M
SE

#s
v

T
im

e

Pa
rt

ia
lP

PA
w

ith
A

D
M

M
in

iti
al

iz
at

io
n

50
0/

0.
0

10
99

,1
57
|3

50
,1

57
2.

8|
5.

8|
2.

2
2.

1-
7|

2.
8-

7|
-2

.9
-6

3.
2-

3
10

08
(6

)

50
0/

0.
0

50
25

0,
00

0
|5

01
,0

00
2.

0|
4.

0|
2.

3
8.

0-
7|

1.
3-

8|
1.

4-
6

7.
0-

3
50

05
(3

)

50
0/

0.
0

10
0

25
0,

00
0
|5

01
,0

00
2.

0|
4.

4|
2.

3
7.

8-
7|

8.
3-

8|
4.

3-
7

9.
9-

3
10

0
06

(3
)

1,
50

0/
0.

0
10

29
9,

18
7
|2

,5
52

,1
87

5.
0|

10
.0
|2

.4
1.

2-
7|

2.
8-

8|
-3

.1
-6

3.
8-

3
10

3:
44

(1
53

)

1,
50

0/
0.

0
50

1,
47

4,
47

1
|3

,7
27

,4
71

2.
0|

5.
0|

2.
4

2.
6-

7|
2.

3-
8|

-1
.3

-6
7.

4-
3

50
1:

48
(6

9)

1,
50

0/
0.

0
10

0
2,

25
0,

00
0
|4

,5
03

,0
00

2.
0|

4.
0|

2.
3

8.
8-

7|
8.

8-
9|

6.
4-

7
9.

9-
3

10
0

1:
16

(5
2)

50
0/

0.
1

10
99

,1
57
|3

50
,1

57
2.

0|
4.

0|
2.

5
1.

1-
7|

2.
4-

7|
9.

5-
7

5.
4-

2
17

0
08

(6
)

50
0/

0.
1

50
25

0,
00

0
|5

01
,0

00
2.

0|
5.

0|
2.

0
6.

7-
7|

4.
5-

8|
-1

.2
-6

3.
9-

2
17

7
07

(3
)

50
0/

0.
1

10
0

25
0,

00
0
|5

01
,0

00
2.

0|
6.

0|
2.

0
2.

7-
8|

4.
7-

8|
-8

.5
-7

3.
6-

2
17

6
07

(3
)

1,
50

0/
0.

1
10

29
9,

18
7
|2

,5
52

,1
87

2.
0|

4.
0|

1.
8

6.
9-

7|
8.

7-
8|

1.
9-

6
5.

2-
2

27
2

1:
48

(7
8)

1,
50

0/
0.

1
50

1,
47

4,
47

1
|3

,7
27

,4
71

2.
0|

5.
0|

2.
0

4.
8-

8|
1.

3-
8|

-3
.5

-8
3.

3-
2

19
2

1:
40

(6
7)

1,
50

0/
0.

1
10

0
2,

25
0,

00
0
|4

,5
03

,0
00

2.
0|

5.
2|

1.
9

6.
7-

7|
7.

0-
9|

2.
8-

7
3.

1-
2

67
1:

17
(4

3)

1,
00

0/
0.

0
10

19
9,

02
9
|1

,2
01

,0
29

5.
0|

10
.0
|2

.2
1.

5-
7|

3.
3-

8|
-2

.6
-6

3.
6-

3
10

1:
08

(4
5)

1,
00

0/
0.

0
50

97
4,

91
2
|1

,9
76

,9
12

2.
0|

4.
8|

2.
3

8.
1-

7|
6.

7-
9|

7.
1-

7
7.

0-
3

50
33

(2
0)

1,
00

0/
0.

0
10

0
1,

00
0,

00
0
|2

,0
02

,0
00

2.
0|

4.
0|

2.
3

9.
0-

7|
1.

5-
8|

5.
3-

7
9.

9-
3

10
0

28
(1

6)

1,
00

0/
0.

1
10

19
9,

02
9
|1

,2
01

,0
29

2.
0|

4.
0|

2.
3

2.
2-

7|
1.

4-
7|

7.
2-

7
5.

3-
2

22
8

39
(2

8)

1,
00

0/
0.

1
50

97
4,

91
2
|1

,9
76

,9
12

2.
0|

4.
0|

2.
5

1.
7-

7|
3.

4-
8|

2.
7-

7
3.

3-
2

14
5

31
(1

8)

1,
00

0/
0.

1
10

0
1,

00
0,

00
0
|2

,0
02

,0
00

2.
0|

5.
0|

1.
8

8.
5-

7|
1.

3-
8|

3.
1-

7
3.

0-
2

14
2

29
(1

6)

123



322 K. Jiang et al.

Ta
bl

e
5

co
nt

in
ue

d

n/
τ

r
m
|m
+

s
it.
|its

ub
|bi

cg
R

p
|R

D
|re

lg
ap

M
SE

#s
v

T
im

e

Pa
rt

ia
lP

PA
w

ith
ou

tA
D

M
M

in
iti

al
iz

at
io

n

1,
00

0/
0.

0
10

19
9,

02
9
|1

,2
01

,0
29

10
.0
|3

5.
6|

3.
3

6.
4-

8|
1.

7-
8|

-1
.5

-6
3.

5-
3

10
2:

09

1,
00

0/
0.

0
50

97
4,

91
2
|1

,9
76

,9
12

6.
0|

19
.4
|2

.4
4.

3-
9|

6.
4-

8|
-3

.6
-6

7.
1-

3
50

1:
07

1,
00

0/
0.

0
10

0
1,

00
0,

00
0
|2

,0
02

,0
00

5.
0|

16
.6
|2

.3
3.

5-
8|

1.
0-

7|
-3

.5
-6

1.
0-

2
10

0
50

1,
00

0/
0.

1
10

19
9,

02
9
|1

,2
01

,0
29

11
.0
|3

8.
2|

3.
2

8.
5-

8|
3.

9-
8|

-1
.9

-6
5.

3-
2

22
9

2:
27

1,
00

0/
0.

1
50

97
4,

91
2
|1

,9
76

,9
12

5.
0|

18
.0
|2

.6
6.

1-
8|

1.
1-

7|
-3

.6
-6

3.
3-

2
14

5
1:

16

1,
00

0/
0.

1
10

0
1,

00
0,

00
0
|2

,0
02

,0
00

4.
0|

14
.4
|2

.4
5.

2-
8|

1.
5-

7|
-2

.5
-6

3.
0-

2
14

2
56

A
D

M
M

1,
00

0/
0.

0
10

19
9,

02
9
|1

,2
01

,0
29

14
3.

0
7.

2-
7|

3.
1-

10
|1

.2
-8

3.
4-

3
10

3:
06

1,
00

0/
0.

0
50

97
4,

91
2
|1

,9
76

,9
12

46
.0

8.
2-

7|
3.

0-
9|

6.
0-

8
7.

0-
3

50
58

1,
00

0/
0.

0
10

0
1,

00
0,

00
0
|2

,0
02

,0
00

41
.6

8.
8-

7|
2.

9-
10
|7

.1
-8

9.
9-

3
10

0
44

1,
00

0/
0.

1
10

19
9,

02
9
|1

,2
01

,0
29

86
.8

7.
0-

7|
9.

2-
9|

-2
.5

-7
5.

3-
2

22
8

1:
52

1,
00

0/
0.

1
50

97
4,

91
2
|1

,9
76

,9
12

32
.0

6.
4-

7|
3.

4-
8 |

-8
.9

-7
3.

3-
2

14
5

42

1,
00

0/
0.

1
10

0
1,

00
0,

00
0
|2

,0
02

,0
00

29
.0

6.
9-

7|
7.

6-
9|

-2
.0

-6
3.

0-
2

14
2

39

In
th

e
ta

bl
e,

m
=

10
d

r
an

d
d

r
=

r(
2n
−

r)

123



A partial proximal point algorithm for nuclear norm 323

min
X∈�n×n

{
1

2
‖XE − M̃E‖2 + ρ‖X‖∗ : Xv = λv, X T w = λw, X ≥ 0

}
. (98)

Table 5 reports the average numerical results of the partial PPA for solving (98) over
5 runs. Again, we observe that our partial PPA (with ADMM initialization) is very
efficient in solving the problem (98).

6 Conclusion

In this paper, we introduced a partial PPA for solving nuclear norm regularized matrix
least squares problems with equality and inequality constraints, and presented global
and local convergence results based on the classical results for a general partial PPA.
The inner subproblems, reformulated as a system of semismooth equations, were
solved by an inexact smoothing Newton method, which is proved to be quadratically
convergent under a constraint nondegeneracy condition, which we also characterized.
Extensive numerical experiments conducted on a variety of large scale nuclear norm
regularized matrix least squares problems demonstrated that our proposed algorithm
is very efficient and robust.

We view our current work as providing an important tool for solving the very
difficult problem of structured approximation with a prescribed rank. Although it
is popular to regularize a structured approximation problem by the nuclear norm to
promote a low rank solution, it cannot always deliver a solution with a prescribed rank.
Thus it would be desirable to design an algorithm (along the line discussed in [25]) to
find the best approximation with a prescribed rank efficiently while preserving certain
desired structures.
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