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LOW-RANK QUATERNION TENSOR COMPLETION FOR

COLOR VIDEO INPAINTING VIA A NOVEL FACTORIZATION

STRATEGY

ZHENZHI QIN, ZHENYU MING, DEFENG SUN, AND LIPING ZHANG

Abstract. Recently, a quaternion tensor product named Qt-product was pro-
posed, and then the singular value decomposition and the rank of a third-order
quaternion tensor were given. From a more applicable perspective, we extend
the Qt-product and propose a novel multiplication principle for third-order
quaternion tensor named gQt-product. With the gQt-product, we introduce
a brand-new singular value decomposition for third-order quaternion tensors
named gQt-SVD and then define gQt-rank and multi-gQt-rank. We prove
that the optimal low-rank approximation of a third-order quaternion tensor
exists and some numerical experiments demonstrate the low-rankness of color
videos. So, we apply the low-rank quaternion tensor completion to color video
inpainting problems and present alternating least-square algorithms to solve
the proposed low gQt-rank and multi-gQt-rank quaternion tensor completion
models. The convergence analyses of the proposed algorithms are established
and some numerical experiments on various color video datasets show the high
recovery accuracy and computational efficiency of our methods.

1. Introduction

The purpose of this paper is to recover color videos via tensor completion. So
far, tensors have been widely applied to signal processing [32], computer vision [36],
graph analysis [42–44] and data mining [30], to name a few. Tensor decomposition is
a fundamental tool to cope with large-scale data which is arranged in tensor-based
forms, since the scale of tensor data can be notably reduced while most inherent
information are still preserved by using decomposition techniques. Four commonly
used tensor decomposition methods are CANDECOMP/PARAFAC (CP) decom-
position [6, 14], Tucker decomposition [35], tensor singular value decomposition
(t-SVD) [20] and Triple decomposition [26], and the corresponding ranks are called
CP rank [6,14], Tucker rank [35], tubal rank [22] and Triple rank [26], respectively.

For a positive integer n, [n]
.
= {1, 2, . . . , n}. Suppose that A ∈ R

n1×n2×···×np is a
p-th order tensor, where n1, . . . , np ∈ N+. The CP decomposition is to decompose
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A as a sum of some outer products of p vectors:

(1) A =

r∑
i=1

a
(i)
1 ◦ a(i)2 ◦ · · · ◦ a(i)p ,

where the symbol “◦” denotes the outer product and a
(i)
j ∈ Rnj , i ∈ [r], j ∈ [p].

The smallest r required in CP decomposition (1) is defined as the CP rank of
A. It is learned from [15] that, in general, determining the CP rank of a given
tensor whose order is no less than three is an NP-hard problem. In contrast to
CP decomposition, Tucker decomposition is more computationally efficient. Hence
a number of low-rank tensor completion and recovery models are based on Tucker
rank [5, 28, 37]. Precisely, Tucker rank is a vector of the matrix ranks

rankTC(A) =
(
rank(A(1)), rank(A(2)), . . . , rank(A(p))

)
,

where A(i) ∈ Rni×(Πp
k=1nk/ni) is mode-i matricization of tensor (i ∈ [p]). CP decom-

position and Tucker decomposition are applicable to tensors with arbitrary orders.
In 2011, Kilmer and Martin proposed a novel decomposition strategy specifically
for third-order tensors [20]. Whereafter, the relevant tubal rank was introduced
and studied in [22] and testified to have excellent performance for image and video
inpainting problems [44].

Third-order tensors are the most widely used higher-order tensors in applications
[1, 22, 39, 42–44]. For instance, a grey scale video can be viewed as a third-order
tensor indexed by two spatial variables and one temporal variable. Unless otherwise
specialized, tensors in this paper are of third-order. Low-rank tensor completion
is one of the most important problems in tensor processing and analysis. It aims
at filling in the missing entries of a partially observed low-rank tensor. Many
practical datasets are highly structured in the sense that they can be approximately
represented through a low-rank decomposition [21, 38]. As a consequence, the key
idea of the recovery process is to find the low-rank approximation of the original
tensor via the observed data, i.e.,

(2) min
C

rank(C), s.t. PΩ(C) = PΩ(M),

where rank(·) is a certain tensor rank and Ω is the index set locating the observed
data, PΩ(·) is a linear operator that extracts the entries in Ω and fills the entries
not in Ω with zeros, and M is the raw tensor.

As previously mentioned, addressing model (2) with CP rank is an NP-hard
problem. An alternative way is to employ Tucker rank instead of CP rank:

min
C

p∑
i=1

rank(C(i)), s.t. PΩ(C) = PΩ(M),(3)

and the nuclear-norm based convex relaxation of model (3) is considered as

min
C

p∑
i=1

‖C(i)‖∗, s.t. PΩ(C) = PΩ(M).(4)

However, Romera-Paredes et al. [29] proved that (4) is not a tight convex relaxation
of (3), and SVD is needed to solve (4), which will lead to high computational cost
when coping with large-scale issues. To overcome the computational difficulty, a
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matrix factorization method was designed by Xu et al. [38], which preserves the
low-rank structure of the unfolded matrices, i.e.,

min
Xi,Y i,C

p∑
i=1

αi‖XiY i − C(i)‖2F , s.t. PΩ(C) = PΩ(M),(5)

where αi is a positive weight parameter satisfying
∑p

i=1 αi = 1. A similar third-
order tensor recovery method based on Triple decomposition is proposed in [26]. As
pointed in [20, 22], directly unfolding a tensor will destroy the multi-way structure
of the original data, resulting in vital information loss and degraded recovery perfor-
mance. Besides, solving (5) requires to deal with p matrices and each matrix owns
the same scale components as the original tensor. Thus the computational cost
is relatively expensive. Instead, tubal rank has been adopted in (2) and testified
to have not only promising recovery performance but also efficient computational
process. Semerci et al. [31] developed a new tensor nuclear norm (TNN) based
on t-SVD, and subsequently Zhang et al. [43] applied TNN to tensor completion
problems. Zhou et al. [44] proposed the following model based on tubal rank and
tensor product (t-product) to replace model (2):

(6) min
A,B,C

1

2
‖A ∗ B − C‖2F , s.t. PΩ(C) = PΩ(M),

where “*” denotes the t-product [20]. From [20, 22], one can deal with t-product
via fast Fourier transform (FFT) and block diagonalization of third-order tensors,
which can significantly reduce the computational cost.

Motivation. We now briefly describe the motivation of this paper here. All the
above methods explore the approximate low-rank property of higher-order tensors.
However, they are not good enough for the classic color video inpainting prob-
lems. In specific, the traditional t-SVD and Triple decomposition are specially
designed for third-order tensors, while a color video can be naturally described as
a fourth-order tensor, with four dimensions representing the length, width, frame
numbers and RGB-channels of the considered color video, respectively. Moreover,
the computational complexity of CP decomposition is NP-hard, and the unfolding
operation in Tucker decomposition will destroy the original multi-way structure of
the data. Therefore, it is desirable to design a new type of tensor factorization
strategy which can tackle the above issues in terms of the capability, the recov-
ery performance and the computational cost. Notice that the red, green and blue
channel pixel values can be intuitively encoded on the three imaginary parts of a
quaternion. The use of quaternion matrices for color image representation has been
fully studied in the literature [10,17,18,25,34]. In 2022, we proposed a quaternion
tensor product (Qt-product) and then introduced the singular value decomposition
(Qt-SVD) and the rank of a third-order quaternion tensor (Qt-rank) by employing
the discrete Fourier transformation (DFT) technique. They also proved the exis-
tence of the best low-rank approximation of a third-order quaternion tensor from
the theoretical point and the low-rank of color videos from numerical experiments
[27]. But this is not applied to solve color video inpainting problems, and the DFT
used in [27] is very special. From a more applicable perspective, in this paper, we
generalize the Qt-product and propose a novel multiplication principle for third-
order quaternion tensor, and then establish low-rank quaternion tensor completion
models to recover color videos.
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Contribution. By introducing an extensive quaternion discrete Fourier transfor-
mation (QDFT) based on a pure quaternion basis, we propose a novel multipli-
cation principle for third-order quaternion tensor named gQt-product, and then a
new SVD is given. With such SVD, we establish two low-rank quaternion tensor
completion models to recover the incomplete color video data, and present an alter-
nating least-squared (ALS) algorithm to solve the color video inpainting problems.
The numerical experiments show that our methods outperform other state-of-the-
arts in the recovery accuracy and computational efficiency. The main contributions
are summarized as follows.

• A generalized QDFT based on a pure quaternion basis is introduced and
a novel quaternion tensor product named gQt-product is proposed. With
the gQt-product, we define identity quaternion tensor, unitary quaternion
tensor, conjugate transpose and inverse of quaternion tensor. We prove
that the collection of all invertible n×n× l quaternion tensors forms a ring
under standard tensor addition and the gQt-product.

• A new gQt-product based SVD for quaternion tensors named gQt-SVD is
given, and then the gQt-rank and the nuclear norm of third-order quater-
nion tensor are defined. We prove that the optimal low-rank approximation
of third-order quaternion tensor exists and some numerical experiments
demonstrate the low-rankness of color videos. Note that gQt-rank is only
defined on one mode of third-order quaternion tensor without low-rank
structure in the other two modes, so we also introduce multi-gQt-rank.

• To cope with color video inpainting problem, we construct low-rank quater-
nion tensor completion models (2) based on gQt-rank and multi-gQt-rank,
and further propose their evolved forms (31) and (63) via the gQt-product.
We present an ALS algorithm to solve (31) and (63), and also show that
the sequence generated by the ALS algorithm globally converges to a sta-
tionary point of the problem by using the Kurdyka–�Lojasiewicz property
exhibited in the resulting problem. Extensive numerical experiments on
various color video datasets show the high recovery accuracy and compu-
tational efficiency of our methods. Especially, the criterion of the recovery
performance illustrates our gQt-SVD-based method is superior to the com-
monly used t-SVD-based one.

The rest of this paper is organized as follows. In Section 2, we list some existing
results for quaternion matrices and quaternion tensors. and discuss the Fourier
transform of quaternion tensors. In Section 3, we introduce a generalized QDFT
based on a pure quaternion basis, and then gQt-product, gQt-SVD, gQt-rank and
multi-gQt-rank are defined. In Section 4, we establish related low-rank quaternion
tensor completion models to recover the incomplete color video data, and present
the ALS algorithm to solve the resulting problem. Moreover, its convergence rate
analysis is also established. In Section 5, some numerical results are reported to
confirm the advantages of gQt-SVD-based methods. The conclusions are drawn in
Section 6.

2. Preliminary

2.1. Quaternions.
Let R and C denote the real field and the complex field, respectively. The

quaternion field, denoted as H, is a four-dimensional vector space over real number
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field R with an ordered basis, denoted by 1, i, j and k. Here i, j and k are three
imaginary units with the following multiplication laws:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Let x = a + bi + cj + dk ∈ H, where a, b, c, d ∈ R, then the conjugate of x is
defined by

x∗ .
= a− bi− cj− dk,

the norm of x is

|x| = |x∗| =
√
xx∗ =

√
x∗x =

√
a2 + b2 + c2 + d2.

and if x �= 0, then x−1 = x∗

|x|2 .

2.2. Quaternion matrix and quaternion tensor.
We give some notations here. Scalars, vectors, matrices and third-order tensors

are denoted as lowercase letters (a, b, . . .), bold-case lowercase letters (a,b, . . .),
capital letters (A,B, . . .) and Euler script letters (A,B, . . .), respectively. We use
0,O and O to denote zero vector, zero matrix and zero tensor with appropriate
dimensions. We use symbols e to represent the vector whose elements are all 1, and
I and I to denote the identity matrix, and the identity tensor, respectively. The
identity tensor I will be defined in Section 3.

Then a quaternion matrix A = (Aij) ∈ Hn1×n2 can be denoted as

A = Ae +Aii+Ajj+Akk,

where Ae, Ai, Aj, Ak ∈ Rn1×n2 . The transpose of A is AT = (Aji). The conjugate
transpose of A is

A∗ = (A∗
ji) = AT

e −AT
i i−AT

j j−AT
kk.

The Frobenius norm of A is

‖A‖F .
=

√√√√ n1∑
i=1

n2∑
j=1

|Aij |2.

With a simple calculation, it can be seen that

(7) ‖A‖2F = tr(AA∗) = tr(A∗A),

where tr(·) is the trace of a matrix.
Let A ∈ H

n×n. A is a unitary matrix if and only if AA∗ = A∗A = In, where
In ∈ Rn×n is an identity matrix. A is invertible if AB = BA = In for some
B ∈ Hn×n. Lemma 2.1 gives some properties of invertible quaternion matrix which
can be found in [41, Theorem 4.1].

Lemma 2.1. Let A ∈ H
n1×n2 and B ∈ H

n2×n3 , then

(i) (AB)∗ = B∗A∗,
(ii) (AB)−1 = B−1A−1 if A and B are invertible,
(iii) (A∗)−1 = (A−1)∗ if A is invertible.

Theorem 2.1 for the SVD of quaternion matrix (QSVD) was given in [41].

Theorem 2.1. Any quaternion matrix A ∈ Hn1×n2 has the following QSVD form

A = U

[
Σr O
O O

]
V ∗,
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where U ∈ Hn1×n1 and V ∈ Hn2×n2 are unitary, and Σr = diag{σ1, . . . , σr} is a
real nonnegative diagonal matrix, with σ1 ≥ · · · ≥ σr as the singular values of A.

By Theorem 2.1, the nuclear norm of A is defined as ‖A‖∗ =
r∑

i=1

σi. The quater-

nion rank of A is the number of its singular values, denoted as rank(A). It follows
from [23, Lemma 9] that we can prove Lemma 2.2, which reveals the relationship
between the matrix factorization and the nuclear norm of a quaternion matrix.

Lemma 2.2. For a given quaternion matrix A ∈ Hn1×n2 ,

(8) ‖A‖∗ = min
A=XY ∗

‖X‖F ‖Y ‖F = min
A=XY ∗

1

2
(‖X‖2F + ‖Y ‖2F ).

Proof. We denote three parts in (8) as (i), (ii) and (iii) from left to right.
(ii)≤ (iii): This follows from the arithmetic mean and geometric mean inequality.
(iii)≤ (i): We decompose A into the form in Theorem 2.1, and then set

X̃ = U

[
Σr

1/2 O
O O

]
, Ỹ =

[
Σr

1/2 O
O O

]
V.

Hence, X̃, Ỹ are feasible matrices of (iii), and 1
2 (‖X̃‖2F + ‖Ỹ ‖2F ) = ‖A‖∗, which

implies (iii) ≤ (i).
(i)≤ (ii): For all X,Y with A = XY ∗, let ui, vi be the i-th column of U and V ,

respectively. Then

‖A‖∗ =
r∑

i=1

u∗
iAvi =

r∑
i=1

(X∗ui)
∗(Y ∗vi)

≤
r∑

i=1

‖X∗ui‖F ‖Y ∗vi‖F

≤ (
r∑

i=1

‖X∗ui‖2F )1/2(
r∑

i=1

‖Y ∗vi‖2F )1/2

≤ ‖X∗U‖F ‖Y ∗V ‖F = ‖X‖F ‖Y ‖F ,
where the first and second inequalities are from Cauchy-Schwarz inequality, which
can be verified on quaternion, and the third inequality holds because we complete
the rest part of U and V . �

A third-order quaternion tensor A ∈ Hn1×n2×n3 is expressed as

A = (Ai1i2i3), Ai1i2i3 ∈ H, 1 ≤ it ≤ nt, 1 ≤ t ≤ 3.

Also, it can be expressed as

(9) A = Ae +Aii+Ajj+Akk,

where Ae,Ai,Aj,Ak ∈ R
n1×n2×n3 . Matlab notation A(i, :, :),A(:, j, :) and A(:, :, k)

are used to denote its i-th horizontal, j-th lateral and k-th frontal slice, respectively.
Let A(k) = A(:, :, k) be the k-th (k ∈ [n3]) frontal slice and A∗ denote its conjugate
transpose (see Section 3). The Frobenius norm of A is the sum of all norms of its
entries, i.e.,

‖A‖F .
=

√√√√ n1∑
i=1

n2∑
j=1

n3∑
k=1

|Aijk|2.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LOW-RANK QUATERNION TENSOR COMPLETION 2415

The block circulant matrix circ(A) ∈ Hn1n3×n2n3 of A is defined as

circ(A)
.
=

⎡
⎢⎢⎢⎣
A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

⎤
⎥⎥⎥⎦ .

The operator “unfold” is defined as

unfold(A)
.
=

⎡
⎢⎢⎢⎣
A(1)

A(2)

...

A(n3)

⎤
⎥⎥⎥⎦ ∈ H

n1n3×n2 ,

and its inverse operator “fold” is defined by fold(unfold(A)) = A. The operator
“diag” of A is given as

diag(A)
.
=

⎡
⎢⎢⎢⎣
A(1)

A(2)

. . .

A(n3)

⎤
⎥⎥⎥⎦ .

In 2022, Qin et al. [27] noted that a quaternion x = a+bi+cj+dk can be written
as x = (a+ bi) + j(c− di) and then the quaternion tensor A can be written as the
form of A = A1,i + jAj,k with A1,i,Aj,k ∈ Cn1×n2×n3 . So, Qin et al. [27] defined
the following quaternion tensor product named Qt-product, and they also give SVD
of third-order quaternion tensor by using the Qt-product and the following DFT.

Definition 2.1 (Qt-product [27]). For A ∈ Hn1×r×n3 and B ∈ Hr×n2×n3 , define

A ∗H B .
= fold((circ(A1,i) + j circ(Aj,k) · (Pn3

⊗ Ir)) · unfold(B)) ∈ H
n1×n2×n3 ,

where the symbol “⊗” means the Kronecker product, the matrix Pn3
= (Pij) ∈

Rn3×n3 is a permutation matrix with P11 = Pij = 1 if i + j = n3 + 2, 2 ≤ i, j ≤
n3; Pij = 0, otherwise.

The DFT used in [27] is given as the form of the normalized DFT matrix Fn3
∈

Cn3×n3 with

(10) Fn3
(i, j) =

1√
n3

ω(i−1)(j−1), ω = exp(−2πi/n3) and i, j ∈ [n3].

The DFT (10) plays an important role in the Qt-SVD of third-order quaternion
tensor given in [27]. As a generalization of the traditional Fourier transform, the
quaternion Fourier transform was first defined by Ell [9] to process quaternion
signal. Motivated by the idea of quaternion Fourier transform in [9] and from a more
applicable perspective, in this paper, based on a unit pure quaternion μ = ai+bj+ck
with μ2 = −1, we present a generalization of DFT (10), which is called quaternion
DFT (QDFT). QDFT serves as the foundational basis for the tensor multiplication
principle presented in Section 3.
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3. QDFT, gQt-Product and gQt-SVD

One major contribution of this paper is to introduce a novel multiplication prin-
ciple for third-order quaternion tensor, named gQt-product, via our new defined
QDFT. The gQt-product is also the cornerstone of the quaternion tensor decom-
position. In this section, we will introduce gQT-product and some relevant prop-
erties. Theorem 3.1 is one of the main results, which shows the relationship be-
tween gQt-product of quaternion tensors and matrix product of their QDFT ma-
trices. Furthermore, we propose a new SVD of quaternion tensor via gQt-product,
named gQt-SVD. With gQt-SVD, we can find the low-rank optimal approximation
of quaternion tensor.

3.1. QDFT: a new DFT of third-order quaternion tensor.
In this subsection, we first introduce QDFT. Because the quaternion multiplica-

tion is not commutative, QDFT of vectors can be defined by the sum of components
multiplied by the exponential kernel of the transform from the right or from the
left.

Let Fμ,n3
∈ Hn3×n3 be the normalized QDFT matrix with the (i, j)-th element

as

(11) Fμ,n3
(i, j) =

1√
n3

ω(i−1)(j−1), i, j ∈ [n3],

where the kernel ω is defined as

ω = exp(−μ2π/n3) = cos(2π/n3)− μ sin(2π/n3).

Obviously, it follows that

(12) ωp = exp(−μ2πp/n3) = cos(2πp/n3)− μ sin(2πp/n3), p ∈ Z.

Clearly, when μ = i, QDFT matrix defined as (11) is equal to DFT matrix given
in (10). So, QDFT is more applicable than DFT.

It is easy to see that the result of QDFT of A ∈ Hn1×n2×n3 is still a quaternion
tensor Â ∈ H

n1×n2×n3 with

Â(i, j, :) =
√
n3Fμ,n3

A(i, j, :), i ∈ [n1], j ∈ [n2].

Moreover,

(13) ‖Â‖2F = n3‖A‖2F .
We also denote the QDFT of A as fft(A), and its inverse operator “ifft” is defined
by ifft(fft(A)) = A. It is known that any real circulant matrix can be diagonalized
by the normalized DFT matrix [12]. For QDFT, by simple calculation, we also
obtain the same result for any real tensor A ∈ Rn1×n2×n3 :

(14) (Fμ,n3
⊗ In1

) · circ(A) · (F ∗
μ,n3

⊗ In2
) = diag(Â).

Denote Pn = (Pij) ∈ Rn×n as a permutation matrix with P11 = Pij = 1 if
i + j = n + 2, 2 ≤ i, j ≤ n; Pij = 0, otherwise. We now give some special kernels
of QDFT matrices, which will be used to introduce gQt-product. For a unit pure
quaternion μ = ai+ bj+ ck with μ2 = −1, set

(15) μi = ai− bj− ck, μj = −ai+ bj− ck, μk = −ai− bj+ ck.

Lemma 3.1 gives the relationship between QDFT matrices in the form of (11) with
different quaternion basis.
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Lemma 3.1. For two unit pure quaternion numbers μ1 and μ2 with μ2
1 = μ2

2 = −1,
it holds that

F ∗
μ1,nFμ2,n =

1

2
(1− μ1μ2)In +

1

2
(1 + μ1μ2)Pn,

Fμ1,nFμ2,n =
1

2
(1 + μ1μ2)In +

1

2
(1− μ1μ2)Pn.

Proof. It follows from (11) and (12) that

(16) Fμt,n = Cn − μtSn, F ∗
μt,n = Cn + μtSn, t = 1, 2,

where Cn = (Cij) ∈ Rn×n and Sn = (Sij) ∈ Rn×n satisfy

Cij =
1√
n
cos(2π(i− 1)(j − 1)/n), Sij =

1√
n
sin(2π(i− 1)(j − 1)/n).

By (10) and (11), the traditional DFT matrix Fn can be written as Fi,n. By simple
computation, we have

F ∗
i,nFi,n = In, Fi,nFi,n = Pn.

Combining (16), it is easy to get

C2
n + S2

n = In, C2
n − S2

n = P, CnSn = SnCn = O.

Hence,

F ∗
μ1,nFμ2,n = (Cn + μ1Sn)(Cn − μ2Sn) = C2

n − μ1μ2S
2
n

=
1

2
(1− μ1μ2)In +

1

2
(1 + μ1μ2)Pn.

Following the same way, we can prove that Fμ1,nFμ2,n = 1
2 (1 + μ1μ2)In + 1

2 (1 −
μ1μ2)Pn. �

3.2. gQt-product: a new product between third-order quaternion ten-
sors.

In this subsection, based on QDFT (11) and the form of quaternion tensor A as
(9), we introduce the concept of gQt-product and define identity quaternion tensor
and inverse quaternion tensor. Moreover, the relation of gQt-product of quaternion
tensors and matrix product of their QDFT matrices is given.

Definition 3.1 (gQt-product). For any given unit pure quaternion μ = ai+bj+ck
with μ2 = −1, let μi, μj, μk be given as (15) and matrices Ti, Tj, Tk be defined as

Ti = F ∗
μi,n3

Fμ,n3
, Tj = F ∗

μj,n3
Fμ,n3

, Tk = F ∗
μk,n3

Fμ,n3
.

Define gQt-product of A ∈ H
n1×r×n3 and B ∈ H

r×n2×n3 as

A∗μB .
= fold

(
(circ(Ae)

+ icirc(Ai) · (Ti ⊗ Ir)

+ jcirc(Aj) · (Tj ⊗ Ir)

+ kcirc(Ak) · (Tk ⊗ Ir)) · unfold(B)
)
.

Clearly, A∗μB ∈ Hn1×n2×n3 .

We have the following remarks for Definition 3.1.
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Remark 3.1. When μ = i, gQt-product “∗μ” becomes Qt-product “∗H” listed in
Definition 2.1. Moreover, if we restrict the product to real tensors, gQt-product
is just t-product defined in [20]. In this view, gQt-product is a generalization of
t-product in a wider field.

Remark 3.2. For any unit pure quaternion μ = ai+ bj+ ck with a2 + b2 + c2 = 1,
by Lemma 3.1, we can get

F ∗
μi,n3

Fμ,n3
=

(
a2 − a(bk− cj)

)
In3

+
(
1− a2 + a(bk− cj)

)
Pn3

,

F ∗
μj,n3

Fμ,n3
=

(
b2 − b(ci− ak)

)
In3

+
(
1− b2 + b(ci− ak)

)
Pn3

,

F ∗
μk,n3

Fμ,n3
=

(
c2 − c(aj− bi)

)
In3

+
(
1− c2 + c(aj− bi)

)
Pn3

.

Hence, it is easy to see that Ti, Tj, Tk is the combination of identity matrix In3
and

permutation matrix Pn3
, with the sum of the coefficients being one. In this vision,

the operator from circ(A) to circ(Ae) + icirc(Ai) · (Ti ⊗ Ir) + jcirc(Aj) · (Tj ⊗ Ir) +
kcirc(Ak)·(Tk⊗Ir) will not change the magnitude, so there is no loss of information
in gQt-product.

We now present the relation of gQt-product of quaternion tensors and matrix
product of their QDFT matrices in Theorem 3.1. For any given A ∈ H

n1×n2×n3 ,
setting its QDFT tensor as Â = fft(A), then we have

(17) unfold(Â) =
√
n3(Fμ,n3

⊗ In1
) · unfold(A).

Theorem 3.1. Let A ∈ Hn1×r×n3 , B ∈ Hr×n2×n3 and C ∈ Hn1×n2×n3 , Â, B̂, Ĉ be
their QDFT tensors. Then,

diag(Ĉ) = diag(Â) · diag(B̂) ⇔ C = A∗μB.

Proof. Clearly, iFμ,n3
= Fμi,n3

i. Thus, it follows from (17) and (14) that

diag
(
fft(Aii)

)
= diag

(
fold

(√
n3(Fμ,n3

⊗ In1
) · unfold(Aii)

))
= diag

(
fold

(√
n3(Fμ,n3

⊗ In1
) · unfold(Ai)

))
i

= diag
(
fft(Ai)

)
i

= (Fμ,n3
⊗ In1

) · circ(Ai) · (F ∗
μ,n3

⊗ In2
)i

= (Fμ,n3
⊗ In1

) · i circ(Ai) · (F ∗
μi,n3

⊗ In2
),(18)

where the second equality holds due to the homogeneity of operators “fold”,
“unfold” and “diag”. Similarly, we also have

diag
(
fft(Ajj)

)
= (Fμ,n3

⊗ In1
) · j circ(Aj) · (F ∗

μj,n3
⊗ In2

),(19)

diag
(
fft(Akk)

)
= (Fμ,n3

⊗ In1
) · k circ(Ak) · (F ∗

μk,n3
⊗ In2

).(20)

So, by (18), (19) and (20), it holds that

diag(Â) = diag
(
fft(Ae)

)
+ diag

(
fft(Aii)

)
+ diag

(
fft(Ajj)

)
+ diag

(
fft(Akk)

)
= (Fμ,n3

⊗ In1
) ·

(
circ(Ae) · (F ∗

μ,n3
⊗ In2

) + i circ(Ai) · (F ∗
μi,n3

⊗ In2
)

+ j circ(Aj) · (F ∗
μj,n3

⊗ In2
) + k circ(Ak) · (F ∗

μk,n3
⊗ In2

)
)
,(21)
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which implies

unfold
(
Ĉ
)
= unfold

(
fft(A∗μB)

)
=

√
n3(Fμ,n3

⊗ In1
) · unfold(A∗μB)

=
√
n3(Fμ,n3

⊗ In1
) ·

(
(circ(Ae) + i circ(Ai) · (F ∗

μi,n3
Fμ,n3

⊗ Ir)

+ j circ(Aj) · (F ∗
μj,n3

Fμ,n3
⊗ Ir)

+ k circ(Ak) · (F ∗
μk,n3

Fμ,n3
⊗ Ir)

)
· unfold(B))

= diag(Â) · √n3(Fμ,n3
⊗ Ir) · unfold(B)

= diag(Â) · unfold(B̂).
Thus, the proof is completed. �

We next to discuss the group-theoretical property of gQt-product in Theorem
3.2. At first, we introduce the concepts of identity quaternion tensor and inverse
quaternion tensor.

Definition 3.2. The n× n× l identity quaternion tensor Innl is the tensor whose
first frontal slice is the identity matrix and others are all zeros.

Definition 3.3. An n× n× l quaternion tensor A is said to be invertible if there
exists a quaternion tensor B ∈ Hn×n×l such that

A∗μB = Innl = B∗μA.

The tensor B is called the inverse of A, denoted as A−1.

Theorem 3.2. The collection of all invertible n× n× l quaternion tensors forms
a group under the operation “∗μ” given in Definition 3.1.

Proof. It is easy to see that

diag(Înnl) = Inl ∈ R
nl×nl.

For all A ∈ Hn×n×l, it follows from Theorem 3.1 that

diag(Â) diag(Înnl)=diag(Înnl) diag(Â)=diag(Â) ⇔ A∗μInnl=Innl∗μA=A,

which implies that Innl is the identical-element in group.
Similarly, for all A,B, C ∈ Hn×n×l, it holds that(

diag(Â) diag(B̂)
)
diag(Ĉ) = diag(Â)

(
diag(B̂) diag(Ĉ)

)
⇒ (A∗μB)∗μC = A∗μ(B∗μC).

So, the operation “∗μ” is associative. Hence, the collection of all invertible n×n× l
quaternion tensors forms a group under the operation “∗μ”. �

We can easily check that the collection of all invertible n × n × l quaternion
tensors forms a ring under standard tensor addition and gQt-product.

3.3. gQt-SVD: gQt-product based SVD of third-order quaternion tensor.
Our goal in this subsection is to build SVD of third-order quaternion tensor based

on gQt-product. To begin with, we introduce the concepts of conjugate transpose
of third-order quaternion tensor and unitary quaternion tensor, which will be used
in the sequent.

For real third-order tensors, the definition of conjugate transpose was given in
[20, Definition 3.14], and we recall it in Definition 3.4.
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Definition 3.4. Let A ∈ Rn1×n2×n3 , then A∗ ∈ Rn2×n1×n3 , the conjugate trans-
pose of A, is obtained by transposing each of the frontal slices and then reversing
the order of transposed frontal slices 2 through n3.

Example 3.1. Let A ∈ Rn1×n2×4 and its frontal slices be given by the n1 × n2

matrices A(1), A(2), A(3), A(4). Then, the conjugate transpose of A is

A∗ = fold

⎛
⎜⎜⎝
⎡
⎢⎢⎣
(A(1))∗

(A(4))∗

(A(3))∗

(A(2))∗

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .

For any A ∈ R
n1×n2×n3 , it is seen that

(22) circ(A)∗ = circ(A∗).

For any given A ∈ Hn1×n2×n3 , by (9), it can be written as A = Ae + Aii +
Ajj+Akk where Ae,Ai,Aj and Ak are n1 ×n2 ×n3 real tensors. Hence, based on
Definition 3.4, we can define the conjugate transpose of the quaternion tensor A.

Definition 3.5. The conjugate transpose of a quaternion tensor A = Ae +Aii +
Ajj+Akk ∈ H

n1×n2×n3 is also denoted as A∗ ∈ H
n2×n1×n3 , which is defined by

unfold(A∗) = unfold(A∗
e)− (T ∗

i ⊗ In2
) unfold(A∗

i )i− (T ∗
j ⊗ In2

) unfold(A∗
j )j

− (T ∗
k ⊗ In2

) unfold(A∗
k)k,

where T ∗
i = F ∗

μ,n3
Fμi,n3

, T ∗
j = F ∗

μ,n3
Fμj,n3

, and T ∗
k = F ∗

μ,n3
Fμk,n3

.

Example 3.2. Let A ∈ H
n1×n2×4 and its frontal slices be given by the matrices

A(1), A(2), A(3), A(4) ∈ Hn1×n2 . Setting μ = i, by Lemma 3.1 we know

Ti = I4, Tj = Tk = P4.

Therefore, by Definition 3.5, the conjugate transpose of A could be represented by

unfold(A∗)

=unfold(A∗
e)− unfold(A∗

i )i− (P4 ⊗ In2
) unfold(A∗

j )j− (P4 ⊗ In2
) unfold(A∗

k)k

=

⎡
⎢⎢⎢⎣
(A

(1)
e )∗

(A
(4)
e )∗

(A
(3)
e )∗

(A
(2)
e )∗

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣
(A

(1)
i )∗

(A
(4)
i )∗

(A
(3)
i )∗

(A
(2)
i )∗

⎤
⎥⎥⎥⎦ i− (P4 ⊗ In2

)

⎡
⎢⎢⎢⎢⎣
(A

(1)
j )∗

(A
(4)
j )∗

(A
(3)
j )∗

(A
(2)
j )∗

⎤
⎥⎥⎥⎥⎦ j− (P4 ⊗ In2

)

⎡
⎢⎢⎢⎣
(A

(1)
k )∗

(A
(4)
k )∗

(A
(3)
k )∗

(A
(2)
k )∗

⎤
⎥⎥⎥⎦k

=

⎡
⎢⎢⎢⎢⎣
(A

(1)
e )∗ − (A

(1)
i )∗i− (A

(1)
j )∗j− (A

(1)
k )∗k

(A
(4)
e )∗ − (A

(4)
i )∗i− (A

(2)
j )∗j− (A

(2)
k )∗k

(A
(3)
e )∗ − (A

(3)
i )∗i− (A

(3)
j )∗j− (A

(3)
k )∗k

(A
(2)
e )∗ − (A

(2)
i )∗i− (A

(4)
j )∗j− (A

(4)
k )∗k

⎤
⎥⎥⎥⎥⎦ .

When Ai = Aj = Ak = 0, Example 3.2 reduces to Example 3.1.

We give some properties of the conjugate transpose of a quaternion tensor A.

Theorem 3.3. For A ∈ Hn1×n2×n3 , we have diag
(
fft(A∗)

)
= diag(Â)∗.
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Proof. By (22), (21) and Lemma 2.1, we have

diag(Â)∗ =
(
(Fμ,n3

⊗ In1
) ·

(
circ(Ae) · (F ∗

μ,n3
⊗ In2

) + i circ(Ai) · (F ∗
μi,n3

⊗ In2
)

+ j circ(Aj) · (F ∗
μj,n3

⊗ In2
) + k circ(Ak) · (F ∗

μk,n3
⊗ In2

)
))∗

= (Fμ,n3
⊗ In2

) · circ(A∗
e) · (F ∗

μ,n3
⊗ In1

)

− (F ∗
μi,n3

⊗ In2
) · circ(A∗

i )(F
∗
μi,n3

⊗ In1
)i

− (F ∗
μj,n3

⊗ In2
) · circ(A∗

j )(F
∗
μj,n3

⊗ In1
)j

− (F ∗
μk,n3

⊗ In2
) · circ(A∗

k)(F
∗
μk,n3

⊗ In1
)k.(23)

It follows from (14) and (17) that

(Fμi,n3
⊗ In2

) · circ(A∗
i ) · (F ∗

μi,n3
⊗ In2

)i

=diag
(
fold

(√
n3(Fμi,n3

⊗ In2
) · unfold(A∗

i )
))

i

=diag
(
fold

(√
n3(Fμ,n3

F ∗
μ,n3

Fμi,n3
⊗ In2

) · unfold(A∗
i )i

))
=diag

(
fft

(
fold

(
(F ∗

μ,n3
Fμi,n3

⊗ In2
) · unfold(A∗

i )i
)))

.

Similarly, we have

(Fμj,n3
⊗ In2

) · circ(A∗
j ) · (F ∗

μj,n3
⊗ In2

)j

=diag

(
fft

(
fold

(
(F ∗

μ,n3
Fμj,n3

⊗ In2
) · unfold(A∗

j )j
)))

and

(Fμk,n3
⊗ In2

) · circ(A∗
k) · (F ∗

μk,n3
⊗ In2

)k

=diag

(
fft

(
fold

(
(F ∗

μ,n3
Fμk,n3

⊗ In2
) · unfold(A∗

k)k
)))

,

which, together with (23), imply that

diag(Â)∗ = diag
(
fft(A∗)

)
.

Thus, the proof is completed. �

Corollary 3.1. For any two quaternion tensors A,B with adequate dimensions,
we have

(A∗μB)∗ = B∗∗μA∗.

Proof. Since QDFT is invertible, the equality (A∗μB)∗ = B∗∗μA∗ can be written
as

diag
(
fft

(
(A∗μB)∗

))
= diag

(
fft(B∗∗μA∗)

)
.

By Theorems 3.1 and 3.3, we have

(A∗μB)∗ = B∗∗μA∗ ⇔
(
diag(Â) diag(B̂)

)∗
= diag(B̂)∗ diag(Â)∗.

This, together with Lemma 2.1, completes the proof. �

We next to introduce the concepts of unitary quaternion tensor and partially
unitary quaternion tensor. Some properties of unitary quaternion tensor are given,
which are still true for partially unitary quaternion tensor.
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Definition 3.6. The n×n× l quaternion tensor U is unitary if U∗∗μU = U∗μU∗ =
Innl. In addition, U ∈ Hm×n×l is said to be partially unitary if U∗∗μU = Innl.

By Theorem 3.3, we immediately obtain the following result.

Corollary 3.2. A quaternion tensor U ∈ Hn×n×n3 is unitary if and only if diag(Û)
is a unitary matrix.

A nice feature of unitary quaternion tensor is to preserve the Frobenius norm.

Theorem 3.4. Let U be a unitary tensor and A ∈ Hn1×n2×n3 be a quaternion
tensor with adequate dimensions. Then,

‖U∗μA‖F = ‖A‖F .

Proof. Since normalized QDFT will not change the Frobenius norm, we have

‖U∗μA‖2F =
∑
p,q

‖(U∗μA)(p, q, :)‖2F(24)

=
1

n3

∑
p,q

‖fft(U∗μA)(p, q, :)‖2F =
1

n3
‖ diag

(
fft(U∗μA)

)
‖2F .

By Theorems 3.1 and 3.3, Corollary 3.1, and (7), we can obtain

‖U∗μA‖2F =
1

n3
tr

(
diag

(
fft(U∗μA))∗ · diag(fft(U∗μA)

))
=

1

n3
tr

(
diag

(
fft((U∗μA)∗)

)
· diag

(
fft(U∗μA)

))
=

1

n3
tr

((
diag(Â)

)∗(
diag(Û)

)∗
diag(Û) diag(Â)

)
=

1

n3
‖ diag(Â)‖2F = ‖A‖2F .

Thus, we complete the proof. �

We say a tensor is “f-diagonal” if each frontal slice is diagonal, and then the
following decomposition of quaternion tensor is proposed.

Theorem 3.5 (gQt-SVD). Any third-order quaternion tensor A ∈ Hn1×n2×n3 can
be factorized as

A = U∗μS∗μV∗,

where S ∈ Hn1×n2×n3 is an f-diagonal tensor, U ∈ Hn1×n1×n3 and V ∈ Hn2×n2×n3

are unitary. Moreover, ‖A‖F = ‖S‖F .

Proof. With the quaternion matrix SVD in Theorem 2.1, we have

diag(Â) = diag(Û) diag(Ŝ) diag(V̂)∗,
where diag(Û) and diag(V̂)∗ are unitary, and diag(Ŝ) is diagonal.

Let U ,S,V be the quaternion tensors corresponding to diag(Û), diag(Ŝ),
diag(V̂), respectively. That is,

U .
= fold

(
(F ∗

μ,n3
⊗ In1

)
1√
n3

diag(Û)(e⊗ In1
)
)
,

V .
= fold

(
(F ∗

μ,n3
⊗ In2

)
1√
n3

diag(V̂)(e⊗ In2
)
)
,
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S .
= fold

(
(F ∗

μ,n3
⊗ In1

)
1√
n3

diag(Ŝ)(e⊗ In2
)
)
,

where e is an n3-dimensional column vector whose all elements are 1. Clearly, U ,V
are unitary, and S is an f-diagonal tensor. It follows from Theorem 3.1 and Corollary
3.2 that A = U∗μS∗μV∗. By Theorem 3.4, we immediately obtain ‖A‖F = ‖S‖F .

�

By Theorem 3.5, any third-order quaternion tensor has gQt-SVD. So, in the
next subsection we will define its rank based on such decomposition, and show the
existence of low-rank optimal approximation.

3.4. gQt-rank, low-rank optimal approximation, and multi-gQt-rank.
For any third-order quaternion tensor A ∈ H

n1×n2×n3 and its gQt-SVD A =
U∗μS∗μV∗, we regard U(:, i, :) ∈ Hn1×1×n3 , V(:, i, :) ∈ Hn2×1×n3 , and S(i, i, :) ∈
H1×1×n3 as tensors. By QDFT (11), we have

fft(U(:, i, :)) = Û(:, i, :), fft(S(i, i, :)) = Ŝ(i, i, :), fft(V(:, i, :)) = V̂(:, i, :).

It follows from Theorem 2.1 that

diag(Â) =

min(n1,n2)∑
i=1

diag
(
fft(U(:, i, :))

)
diag

(
fft(S(i, i, :))

)
diag

(
fft(V(:, i, :))

)∗
.

With simple calculation, we can get

(25) A =

m∑
i=1

U(:, i, :)∗μS(i, i, :)∗μV(:, i, :)∗, m
.
= min(n1, n2).

Thus, A can be written as a finite sum of gQt-product of matrices. Naturally,
according to (25), we can define the “gQt-rank” for any third-order quaternion
tensor.

Definition 3.7 (gQt-rank). Let A ∈ Hn1×n2×n3 and its gQt-SVD be given as
A = U∗μS∗μV∗. The number of nonzero elements of {S(i, i, :)}mi=1 is called gQt-
rank of A, denote as rankgQt(A). That is,

rankgQt(A)
.
= #{i| S(i, i, :) �= 0} = #{i| Ŝ(i, i, :) �= 0}.

The i-th singular value of A is defined as

σi(A)
.
=

1

n3
‖Ŝ(i, i, :)‖1, i ∈ [m],

and the nuclear norm of A is defined as

‖A‖∗ .
=

m∑
i=1

σi(A).

Similar to Lemma 2.2, we have the following result for the nuclear norm ‖A‖∗.

Lemma 3.2. Let A ∈ H
n1×n2×n3 , then

‖A‖∗ =
1

n3

n3∑
i=1

‖Â(:, :, i)‖∗ = min
X ,Y

{
1

2
(‖X‖2F + ‖Y‖2F ) : A = X∗μY∗

}
.
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Proof. From Definition 3.7, we have

‖A‖∗ =
m∑
j=1

n3∑
i=1

|Ŝ(j, j, i)| = 1

n3

n3∑
i=1

‖Â(:, :, i)‖∗

= min
X̂ ,Ŷ

{ 1

2n3

n3∑
i=1

(‖X̂ (:, :, i)‖2F + ‖Ŷ(:, :, i)‖2F ) :

X̂ (:, :, i)(Ŷ(:, :, i))∗ = Â(:, :, i), i ∈ [n3]
}

= min
X ,Y

{
1

2
(‖X‖2F + ‖Y‖2F ) : A = X∗μY∗

}
.

�

By (25), Theorem 3.6 shows the existence of low-rank (rankgQt(A) = k < m)
optimal approximation.

Theorem 3.6. Let A ∈ Hn1×n2×n3 and its gQt-SVD be given as A = U∗μS∗μV∗.
For k < m, denote

(26) Ak =
k∑

i=1

U(:, i, :)∗μS(i, i, :)∗μV(:, i, :)∗.

Then,

Ak ∈ arg min
C∈Mk

‖A − C‖F ,

where Mk = {C| X ∈ H
n1×k×n3 ,Y ∈ H

k×n2×n3 , C = X∗μY}.

Proof. For all C ∈ Mk, it is easy to see that the rank of each block matrix of
diag(Ĉ) is not greater than k. Since there exists rank-k optimal approximation of
quaternion matrix, it follows that

‖A − C‖2F =
1

n3
‖ diag(Â)− diag(Ĉ)‖2F

=
1

n3

n3∑
q=1

‖Â(:, :, q)− Ĉ(:, :, q)‖2F

≥ 1

n3

n3∑
q=1

‖Â(:, :, q)−
k∑

p=1

Û(:, p, q)Ŝ(p, p, q)V̂(:, p, q)∗‖2F

=
1

n3

n3∑
q=1

‖Â(:, :, q)− Âk(:, :, q)‖2F = ‖A −Ak‖2F ,

where the first equality is from (24) and the last two equalities hold due to (26)
and Theorem 3.1. Thus, this completes the proof. �

We now investigate gQt-rank of third-order quaternion tensor generated by color
video, and show that the low gQt-rankness is actually an inherent property of
many color videos. We select a video data “News” in widely used YUV Video
Sequences.1 We take all 300 frames of size 288 × 352 as a color video data C̃, i.e.,
C̃ ∈ H288×352×300, where we encode the red, green, and blue channel pixel values

1http://trace.eas.asu.edu/yuv/

http://trace.eas.asu.edu/yuv/
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on the three imaginary parts of a quaternion. Figure 1 illustrates the low-rank
structure of C̃ from color videos.

(a) Sampled frames in video (b) Singular values of C̃

Figure 1. The sampled frames in video and singular values

Note that gQt-rank is only defined on one mode-3 of third-order quaternion
tensor, and the low-rank structure on the other two modes is missing. Motivated
by this and multi-tubal rank given [40], we next to introduce “multi-gQt-rank”
for third-order quaternion tensor A ∈ H

n1×n2×n3 by extending QDFT (11) from
mode-3 to the other two modes.

To begin with some notations, we denote

A
(i)
1 = A(i, :, :), A

(j)
2 = A(:, j, :), A

(k)
3 = A(:, :, k), i ∈ [n1], j ∈ [n2], k ∈ [n3].

Define QDFT of A along w-th mode (w = 1, 2, 3) as Â1, Â2 and Â3, which satisfy

Â1(:, j, k)=Fμ,n1
A(:, j, k), Â2(i, :, k)=Fμ,n2

A(i, :, k), Â3(i, j, :)=Fμ,n3
A(i, j, :),

for i ∈ [n1], j ∈ [n2], k ∈ [n3]. Here, Fμ,nw
is defined similarly to (11). For

simplicity, we define

Â
(i)
1

.
= Â1(i, :, :), Â

(j)
2

.
= Â2(:, j, :), Â

(k)
3

.
= Â3(:, :, k), i ∈ [n1], j ∈ [n2], k ∈ [n3].

We also define the following operators for w = 1, 2, 3,

diagw(A)
.
=

⎡
⎢⎢⎢⎢⎣
A

(1)
w

A
(2)
w

. . .

A
(nu)
w

⎤
⎥⎥⎥⎥⎦ , circw(A)

.
=

⎡
⎢⎢⎢⎢⎣
A

(1)
w A

(n3)
w · · · A

(2)
w

A
(2)
w A

(1)
w · · · A

(3)
w

...
...

. . .
...

A
(n3)
w A

(n3−1)
w · · · A

(1)
w

⎤
⎥⎥⎥⎥⎦ ,

and

unfoldw(A)
.
=

⎡
⎢⎢⎢⎢⎣
A

(1)
w

A
(2)
w

...

A
(nw)
w

⎤
⎥⎥⎥⎥⎦ ∈ H

npnw×nq , where p < q, {p, q, w} = {1, 2, 3}.
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The inverse operator “foldw” is defined by foldw(unfoldw(A)) = A. With μi, μj, μk

defined in (15), we set

Ti,w = F ∗
μi,nw

Fμ,nw
, Tj,w = F ∗

μj,nw
Fμ,nw

, Tk,w = F ∗
μk,nw

Fμ,nw
.

We now generalize gQt-product along three modes. For A ∈ Hn1×n2×r and B ∈
Hn1×r×n3 , define

A∗1μB
.
= fold

(
(circ1(Ae) + i circ1(Ai) · (Ti,1 ⊗ Ir) + j circ1(Aj) · (Tj,1 ⊗ Ir)

+ k circ1(Ak) · (Tk,1 ⊗ Ir)) · unfold1(B)
)
.

For A ∈ Hn1×n2×r and B ∈ Hr×n2×n3 , define

A∗2μB
.
= fold

(
(circ2(Ae) + i circ2(Ai) · (Ti,2 ⊗ Ir) + j circ2(Aj) · (Tj,2 ⊗ Ir)

+ k circ2(Ak) · (Tk,2 ⊗ Ir)) · unfold2(B)
)
.

For A ∈ H
n1×r×n3 and B ∈ H

r×n2×n3 , define

A∗3μB
.
= fold

(
(circ3(Ae) + i circ3(Ai) · (Ti,3 ⊗ Ir) + j circ3(Aj) · (Tj,3 ⊗ Ir)

+ k circ3(Ak) · (Tk,3 ⊗ Ir)) · unfold3(B)
)
.

We introduce the concept of “multi-gQt-rank” for third-order quaternion tensor
as follows.

Definition 3.8 (multi-gQt-rank). Let A ∈ Hn1×n2×n3 and rlw = rank(Â
(l)
w ) with

l ∈ [nw] and w ∈ [3]. The multi-gQt-rank of A is defined as

rankmgQt(A) = (r1(A), r2(A), r3(A)),

where rw(A) = max(r1w, r
2
w, . . . , r

nw
w ).

By Theorem 3.1 and Lemma 3.2, we can easily get the following results.

Theorem 3.7. Let A,B be quaternion tensors and C = A ∗wμ B be defined above

for w ∈ [3]. If their QDFT tensors along mode-w are Âw, B̂w, and Ĉw, respectively,
then, it holds

(i) ‖A‖2F = 1
nw

‖Âw‖2F .
(ii) diagw(Ĉw) = diagw(Âw) · diagw(B̂w).
(iii) rw(C) ≤ min(rw(A), rw(B)).

We now investigate multi-gQt-rank of third-order quaternion tensor generated
by color video, and show that the low-rankness is actually an inherent property of
many color videos. We select a video data “Coastguard” in YUV Video Sequences2

to group into the quaternion tensor C̃ ∈ H288×352×300. Figure 2 shows the low-rank
structures of tensor C̃ in mode 1, 2 and 3.

2http://trace.eas.asu.edu/yuv/

http://trace.eas.asu.edu/yuv/
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(a) Sampled frames in video (b) Singular values of C̃ in mode 1

(c) Singular values of C̃ in mode 2 (d) Singular values of C̃ in mode 3

Figure 2. The sampled frames in video and singular values

As mentioned in [8, 33, 44], when the color image or video data is regarded
as quaternion matrices or real tensors, they lie on a union of low-rank subspaces
approximately, which lead the low-rank structure of the real data. This is also
true for third-order quaternion tensors data. Figures 1 and 2 indicate that third-
order quaternion tensors generated by color videos in real life have an inherent
approximate low-rank property. Hence, in order to recover color videos with partial
data loss, we can design tensor completion model as (2) via gQt-rank and multi-
gQt-rank. This is the aim of next section.

4. Quaternion Tensor Completion for Color Video Inpainting

In this section, in order to recover color videos with partial data loss, we apply
the approximate low-rank property and spatial stability features of color video data
and establish low-rank quaternion tensor completion model (31) based on gQt-rank
and multi-gQt-rank and total variation (TV) regularization. We present an ALS
algorithm to solve the proposed model (31) and show that the generated sequence
converges to the stationary point of our model.

4.1. Low gQt-rank quaternion tensor completion model.
We first define the operator  to get the real part of a quaternion tensor, and

the operator � to get the imaginary part. The low gQt-rank quaternion tensor
completion is to find the minimal gQt-rank solution satisfying the consistency with
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the observed data. Let M be the raw tensor and Ω be the index set locating the
observed data. Then, like (2), the low gQt-rank quaternion tensor completion can
be modeled as

(27) min
C∈Hn1×n2×n3

rankgQt(C), s.t. PΩ(C −M) = 0, (C) = 0.

Problem (27) has at least one solution since the constraint set is not empty. It was
shown that (27) is NP-hard [15]. Therefore, in order to solve (27) efficiently, the
popular nuclear norm relaxation is considered

(28) min
C∈Hn1×n2×n3

‖C‖∗, s.t. PΩ(C −M) = 0, (C) = 0.

It demonstrates in [42] that, in the context of real numbers, if the original tensor
M satisfies the standard tensor incoherent condition ([42, Definition 3.1]) with
parameter μ0, the sample ratio ρ of index set Ω meets a certain lower bound

ρ ≥ c0
μ0r log(n3(n1 + n2))

min{n1, n2}
,

and rankgQt(M) ≤ r, then with overwhelming probability 1− c1((n1 + n2)n3)
−c2 ,

which means this probability will goes to 1 as the size of M grows, the solution
of (28), C, is unique and satisfies C = M, where c1, c2, c3 are constants. A similar
theorem for quaternion matrices is proven in [18]. Recently, [19] gives a similar
exact recovery conditions of quaternion tensors based on Tucker decomposition.
These indicate that under the stated conditions, (28) can achieve exact recovery
and is formally equivalent to (27).

From Figure 1 and Figure 2, we can see that the real color video quaternion
tensor C is only approximately low gQt-rank, and hence it is likely to fail to find
a low gQt-rank solution strictly. Thus, we introduce a variable X to represent a
strictly low-rank tensor and incorporate a penalty term on the difference between
C and X within the objective function as follows:

(29) min
C,X∈Hn1×n2×n3

1

2
‖X − C‖2F +

λ

2
‖X‖∗, s.t. PΩ(C −M) = 0, (C) = 0,

where λ is a parameter that determines the trade-off between the nuclear norm
‖ · ‖∗ and the penalty term. From [24, Theorem 17.1], we know the solution of (29)
will converge to the solution of (28) while λ tend to zero.

By Theorem 3.5, computing ‖C‖∗ is via gQt-SVD of C. However, its computa-
tional complexity will be O(n1n2n3(log(n3)+min(n1, n2))). In order to reduce the
computational cost, by Lemma 3.2, we could replace X by item A∗μB, and then
get the following quaternion tensor factorization model:

(30) min
C,A,B

1

2
‖A∗μB − C‖2F +

λ

2
(‖A‖2F + ‖B‖2F ), s.t. PΩ(C −M) = 0, (C) = 0.

Here A ∈ Hn1×r×n3 and B ∈ Hr×n2×n3 . It is easy to see that if the rank of the
solution in (29) is less than or equal to the second dimension r of A, then the
optimal solution of (29) is equivalent to the optimal solution of (30).

In practical applications, each frame of the video data has spatial stability fea-
ture. We use total variation (TV) to capture these spatial correlation features and
consider the square of total variation of data to keep objective function analytic,
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i.e.,

‖C ×1 Hn1
‖2F + ‖C ×2 Hn2

‖2F =

n1−1∑
k=1

‖C(k, :, :)− C(k + 1, :, :)‖2F

+

n2−1∑
k=1

‖C(:, k, :)− C(:, k + 1, :)‖2F ,

where H = Toeplitz(0,−1, 1) be an (n− 1)× n Toeplitz matrix, i.e.,

Hn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · · · · 0

0 1 −1
. . .

. . . 0

0 0 1
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . .

0 · · · · · · · · · 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

(n−1)×n.

Thus, we get our final low gQt-rank quaternion tensor completion model as follows:

min
C,A,B

f(C,A,B) .
=

1

2
‖A∗μB − C‖2F +

λ

2
(‖A‖2F + ‖B‖2F ) +

2∑
k=1

λk‖C ×k Hnk
‖2F ,

s.t. PΩ(C −M) = 0, (C) = 0,

(31)

where λ, λ1 and λ2 are the penalty parameters. We will propose an algorithm for
solving the model (31) in the next subsection.

Remark 4.1. Reviewing the model establishment process, we can see that when
there is no TV regularization (λ1 = λ2 = 0) and the gQt-rank of the solution in
(29) is less than or equal to the second dimension of A (such as let A ∈ Hn1×n1×n3),
the optimal solution of (31) is equivalent to that of (29). While λ tend to zero,
solution of (29) will go to the solution of (28), which is the unique solution and
could be considered as M with overwhelming probability from [42, Theorem 3.1].

In order to explain the above remark in details, we will give Theorem 4.1 to show
the unique solution of (28) under some mild conditions. The following definitions
and lemmas are required.

Definition 4.1. For a quaternion tensor C ∈ Hn1×n2×n3 with C = Cei + Cj,kj,
where Ce,i and Cj,k are complex tensors, its corresponding complex tensor Cσ ∈
C4n1×4n2×n3 is defined as

Cσ(:, :, 1) =

⎡
⎣ Ce,i(:, :, 1) Cj,k(:, :, 1)

−Cj,k(:, :, 1) Ce,i(:, :, 1)

⎤
⎦

Cσ(:, :, j) =

⎡
⎣ Ce,i(:, :, j) Cj,k(:, :, j)

−Cj,k(:, :, n3 + 2− j) Ce,i(:, :, n3 + 2− j)

⎤
⎦ , 2 ≤ j ≤ n3.

For a given matrix C ∈ H
n1×n2 with C = C1+C2j and C1, C2 ∈ C

n1×n2 , we define

Cσ =

[
C1 C2

−C2 C1

]
.
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Definition 4.2. For a complex tensor C ∈ Cn1×n2×n3 with C = Ce + Cii in which
Ce and Ci are real tensors, we define a real tensor Cτ ∈ R4n1×4n2×n3 by

Cτ (:, :, j) =

⎡
⎣ Ce(:, :, j) Ci(:, :, j)

−Ci(:, :, j) Ce(:, :, j)

⎤
⎦ .

For a given matrix C ∈ Cn1×n2 with C = C1 +C2i and C1, C2 ∈ Rn1×n2 , we define

Cτ =

[
C1 C2

−C2 C1

]
.

Lemma 4.1 holds immediately from [41].

Lemma 4.1. It holds

‖C‖∗ = 2‖Cσ‖∗, ∀C ∈ H
n1×n2

and

‖C‖∗ = 2‖Cτ‖∗, ∀C ∈ C
n1×n2 .

Lemma 4.2. For C ∈ Cn1×n2×n3 , we have

‖C‖TNN = 2‖Cτ‖TNN.

Proof. Define permutation matrix Q ∈ R
2n3×2n3 such that Q(2i−1, i) = 1, Q(2i, n3

+ i) = 1 and others are zeros. Then we have

QT ⊗ In1
circ(Cτ )Q⊗ In2

= circ(C)τ ,

where circ is the block circulant matrix. Set Fn3
be the DFT matrix. It follows

from [20, 22] that

‖C‖TNN =
1

n3

n3∑
j=1

‖Ĉ(:, :, j)‖∗ =
1

n3

n3∑
j=1

‖diag(Ĉ)‖∗ = ‖Fn3
⊗ In1

circ(C)F ∗
n3

⊗ In1
‖∗

=‖circ(C)‖∗.

Since nuclear norm is unitarily invariant norm, we have

‖C‖TNN = ‖circ(C)‖∗ = 2‖circ(C)τ‖∗ = 2‖circ(Cτ )‖∗ = 2‖Cτ‖TNN.

�

Lemma 4.3. If we choose μ = i as in Remark 3.1 then

‖C‖∗ = ‖Cσ‖TNN,

where ‖ · ‖TNN is defined as [42].

Proof. Let Ĉσ, Ĉ be the Fourier transpose of tensor Cσ and C. Set Fn3
be the DFT

matrix. Let Pn3
be a permutation matrix, where Pn3

(1, 1) = 1, Pn3
(j, n3+2− j) =
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1, 2 ≤ j ≤ n3 and others are zeros. Then, we obtain that

Ĉσ(:, :, j)
= Fn3

(j, :)⊗ I2n1
unfold(Cσ)

=

[
Fn3

(j, :)⊗ In1
unfold(Ce,i) Fn3

(j, :)⊗ In1
unfold(Cj,k)

−Fn3
(j, :)⊗ In1

Pn3
⊗ In1

unfold(Cj,k) Fn3
(j, :)⊗ In1

Pn3
⊗ In1

unfold(Ce,i)

]

=

[
fft(Ce,i)(:, :, j) fft(Cj,k)(:, :, j)

−Fn3
(j, :)⊗ In1

unfold(Cj,k) Fn3
(j, :)⊗ In1

unfold(Ce,i)

]

=

[
fft(Ce,i)(:, :, j) fft(Cj,k)(:, :, j)
−fft(Cj,k)(:, :, j) fft(Ce,i)(:, :, j)

]
= (fft(C)(:, :, j))σ ,

where the first and second equalities hold from the definitions of Fourier transpose
of tensors and Definition 4.1, the third equality holds due to Fn3

(j, :)Pn3
= Fn3

(j, :).
Therefore, we have

‖Cσ‖TNN =
1

n3

n3∑
j=1

‖Ĉσ(:, :, j)‖∗

=
1

n3

n3∑
j=1

‖(fft(C)(:, :, j))σ‖∗

=
2

n3

n3∑
j=1

‖fft(C)(:, :, j)‖∗

=2‖C‖∗.

�

We consider the index set Ω of a quaternion tensor, where the imaginary or real
part of the elements at positions within the index set is 1, and all other positions
are 0. Then, Theorem 4.1 can guarantee the unique solution of (28) under some
mild conditions as expressed in Remark 4.1.

Theorem 4.1. Suppose M is an n1 × n2 × n3 quaternion tensor, and the reduced
t-SVD of (Mσ)τ is given by (Mσ)τ = U ∗ S ∗ V∗ with rank r. Suppose (Mσ)τ
satisfies the standard tensor incoherent condition [42, Eq. (23)] with parameter
μ0 > 0. Then there exists constants c0, c1, c2 > 0 such that if

p > c0
μ0r log(4n3(n1 + n2))

4min{n1, n2}
,

then M is the unique solution to (28) with probability at least 1 − c1(4n3(n1 +
n2))

−c2 .

Proof. From Lemma 4.3, problem (28) is equivalent to

(32) min
C∈Hn1×n2×n3

‖(Cσ)τ‖TNN, s.t. (Ωσ)τ � (Cσ)τ = (Mσ)τ ,

where � means Hadamard product. Hence, the desired conclusion can be obtained
by applying [42, Theorem 3.1] to problem (32). �
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4.2. Solution method.
In this subsection, we present an ALS procedure to solve our proposed model

(31). At each iteration, two variables of A, B, C are fixed and the other one is
updated by solving the updated model (31).

At the t-th iteration of our method, Ct is updated by

(33) Ct = argmin
PΩ(C−M)=0,�(C)=0

1

2
‖At−1∗μBt−1 − C‖2F +

2∑
k=1

λk‖C ×k Hnk
‖2F ,

and At,Bt are updated by the regularized version of (31) as follows:

At = argmin
1

2
‖A∗μBt−1 − Ct‖2F +

λ

2
‖A‖2F +

β

2
‖A −At−1‖2F ,(34)

Bt = argmin
1

2
‖At∗μB − Ct‖2F +

λ

2
‖B‖2F +

β

2
‖B − Bt−1‖2F ,(35)

where β > 0 is the regularization parameter.
We next to solve the subproblems (33)–(35). First, we rewrite (33) as

(36) Ct = argmin
�(C)=0

1

2
‖At−1∗μBt−1−C‖2F +

2∑
k=1

λk‖C ×k Hnk
‖2F + δ{PΩ(C−M)=0}(C),

where δS(·) is the indicator function, i.e., δS(x) = 0, if x ∈ S; δS(x) = +∞, if
x /∈ S.

For simplicity, set C = Cii+Cjj+Ckk whose real part is zero. Thus, the objective

function in (31) can be written as f(Ci, Cj, Ck|Â, B̂) due to
√
n3‖A‖F = ‖Â‖F .

Denote

f1(Ci, Cj, Ck) =
1

2
‖�(At−1∗μBt−1)− C‖2F +

2∑
k=1

λk‖C ×k Hnk
‖2F ,

h1(Ci, Cj, Ck) = δ{PΩ(C−M)=0}(C).(37)

Then, (36) is equivalent to the following unconstrained optimization problem:

min
Ci,Cj,Ck

f1(Ci, Cj, Ck) + h1(Ci, Cj, Ck).(38)

Clearly, f1 is differentiable and h1 is a proper closed convex function. So, we
can solve (38) inexactly by the well-known proximal gradient method (PGM). We
employ the following PGM with Barzilar-Borwein [3] line research rule to solve (38).

Here, proxαkh1
(·) in Step 2 of Algorithm 1 is the proximal mapping of h1 with

parameter αk > 0, i.e.,

proxαkh1
(X ) = argmin

Y∈Rn1×n2×n3×3

{
αkh1(Y) +

1

2
‖Y − X‖2F

}
, ∀X ∈ R

n1×n2×n3×3.

It is known that the proximal mapping of indicator function is a projection, i.e.,

proxαkh1
(X ) = P{PΩ(Xii+Xjj+Xkk−M)=0}(X ), ∀X = [Xi,Xj,Xk] ∈ R

n1×n2×n3×3.

For solving (34) and (35), we consider their matrix versions because the updates of
At and Bt are just those of their QDFT tensors from the calculation perspective.
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Algorithm 1 BB-PGM for (38)

Input. The tensor data M,At−1∗μBt−1, the observed set Ω, initial step size α0, parameters
λ, λi, Hni , 1 ≤ i ≤ 2.
Step 0. Initialize z0 = [C0

i , C0
j , C0

k] which satisfies PΩ(C0
i i + C0

j j + C0
kk − M) = 0, z−1 = z0.

Iterate the following steps for k = 0, 1, 2, · · · while it does not satisfy stop criterion.
Step 1. If k ≥ 1, choose step size

αk =
‖zk − zk−1‖2F

〈zk − zk−1,∇f1(zk)−∇f1(zk−1)〉
,

or

αk =
〈zk − zk−1,∇f1(zk)−∇f1(zk−1)〉

‖∇f1(zk)−∇f1(zk−1)‖2F
.

Step 2. Update [Ck+1
i , Ck+1

j , Ck+1
k ] = proxαkh1

(
[Ck

i , Ck
j , Ck

k]− αk∇f1(Ck
i , Ck

j , Ck
k)

)
.

Output. Ck+1
i i+ Ck+1

j j+ Ck+1
k k.

Hence, by (13), we can rewrite (34) and (35) as the following corresponding matrix
versions:

Ât = argmin
Â

n3∑
l=1

(
1

2
‖Â(l)B̂t−1,(l) − Ĉt,(l)‖2F +

λ

2
‖Â(l)‖2F +

β

2
‖Â(l) − Ât−1,(l)‖2F

)
,

(39)

and

B̂t = argmin
B̂

n3∑
l=1

(
1

2
‖Ât,(l)B̂(l) − Ĉt,(l)‖2F +

λ

2
‖B̂(l)‖2F +

β

2
‖B̂(l) − B̂t−1,(l)‖2F

)
.

(40)

To solve the problems (39) and (40) with quaternion variables, we apply the
following results, which were given in [7] to introduce the gradient for a quaternion
matrix function and optimality condition for an equality-constrained quaternion
matrix optimization.

Definition 4.3 ([7] Definition 4.1). Let f : Hm×n → R and X = Xe + Xii +

Xjj+Xkk. f is said to be differentiable at X if ∂f
∂Xv

exists at Xv for v = e, i, j,k.
Moreover, its gradient is defined as

∇Hf(X) =
∂f

∂Xe
+

∂f

∂Xi
i+

∂f

∂Xj
j+

∂f

∂Xk
k.

f is said to be continuously differentiable atX if ∂f
∂Xv

exists in a neighborhood ofXv

and is continuous at Xv for v = e, i, j,k. Furthermore, f is said to be continuously
differentiable if f is continuously differentiable at any X ∈ Hm×n.

Theorem 4.2 ([7] Theorem 4.2). Suppose that f : Hm×n → R is continuously
differentiable, and X# ∈ Hm×n is an optimal solution of min{f(X)}. Then, it
holds

∇Hf(X
#) = O.
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By Theorem 4.2, we can find the closed-form solutions to (34) and (35). For

l ∈ [n3], Ât,(l) is updated as

Ât,(l) = argmin
Â

1

2
‖Â(l)B̂t−1,(l) − Ĉt,(l)‖2F +

λ

2
‖Â(l)‖2F +

β

2
‖Â(l) − Ât−1,(l)‖2F

=
(
Ĉt,(l)(B̂t−1,(l))∗ + βÂt−1,(l)

)(
B̂t−1,(l)(B̂t−1,(l))∗ + (λ+ β)I

)−1
,(41)

and B̂t,(l) is updated as

B̂t,(l) = argmin
B̂

1

2
‖Ât,(l)B̂(l) − Ĉt,(l)‖2F +

λ

2
‖B̂(l)‖2F +

β

2
‖B̂(l) − B̂t−1,(l)‖2F

=
(
(Ât,(l))∗Ât,(l) + (λ+ β)I

)−1(
(Ât,(l))∗Ĉt,(l) + βB̂t−1,(l)

)
.(42)

Denote Ωc as the complement of the set Ω. Based on above discussions, we
propose Algorithm 2 to solve our model (31).

Algorithm 2 gQt-Rank Tensor Completion (QRTC)

Input. The tensor data M ∈ Hn1×n2×n3 , the observed set Ω, the rank r ∈ Z
n3
+ , parameters

λ, λi, Hni , 1 ≤ i ≤ 3 and ε.

Step 0. Initialize Â0, B̂0 and C0 satisfying PΩ(C0−M) = 0, 
(C0) = 0 and the rank of Â0, B̂0

are less than r. Iterate the following steps for t = 1, 2, · · · while it does not satisfy stop criterion.

Step 1. Compute

(43) Ct = argmin
PΩ(C−M)=0,�(C)=0

1

2
‖At−1∗μBt−1 − C‖2F +

2∑

k=1

λk‖C ×k Hnk‖2F +
∑

α=i,j,k

〈δtα, Cα〉

via Algorithm 1. That is, given parameters of Algorithm 1, apply BB-PGM to find an approx-
imate solution Ct of (36) such that the error vector δt satisfies 
(δt) = 0, PΩ(δ

t) = 0 and the
accuracy condition

(44) ‖PΩc (δt)‖F ≤ 1

4
‖Ct − Ct−1‖F .

Step 2. Compute Ât by (41).

Step 3. Compute B̂t by (42).
Step 5. Check the stop criterion:

|f(Ck,Ak,Bk)− f(Ck−1,Ak−1,Bk−1)|/|f(Ck−1,Ak−1,Bk−1)| < ε.

Output. Ct.

4.3. Convergence analysis for QRTC.
We now analyze the convergence of QRTC. For convenience, we collect all vari-

ables as a real undetermined vector

z
.
=

(
Ci, Cj, Ck, Âe, Âi, Âj, Âk, B̂e, B̂i, B̂j, B̂k

)
∈ R

3n1n2n3+4‖r‖1(n1+n2).

And then (31) can be written as

min
z∈Λ

f(z),(45)

where

Λ = {z ∈ R
3n1n2n3+4‖r‖1(n1+n2)| PΩ(Cii+ Cjj+ Ckk−M) = 0}.
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Therefore, the projected gradient of f at z ∈ Λ is given as

ΠΛ(∇f(z)) =

⎛
⎜⎜⎜⎝

[
PΩc(∂f(z)∂Ci

);PΩc(∂f(z)∂Cj
);PΩc(∂f(z)∂Ck

)
]

[
∂f(z)

∂Âe
; ∂f(z)

∂Âi
; ∂f(z)

∂Âj
; ∂f(z)

∂Âk

]
[
∂f(z)

∂B̂e
; ∂f(z)

∂B̂i
; ∂f(z)

∂B̂j
; ∂f(z)

∂B̂k

]
⎞
⎟⎟⎟⎠ ,

where ΠΛ(·) denotes the projection onto the feasible set Λ.

Definition 4.4 (Stationary point). The point z∗ ∈ Λ is said to be a stationary
point of the low gQt-rank quaternion tensor completion model (31) if ΠΛ(∇f(z∗))
= 0.

The following theorems show that the sequence generated by Algorithm 2 is
bounded and any accumulation point converges to a stationary point of (31).

Theorem 4.3. Let {zt} be the sequence generated by QRTC. Then, there exists a
constant K1 such that

(46) f(zt)− f(zt+1) ≥ K1‖zt − zt+1‖22.

Moreover, the sequence {zt} is bounded.

Proof. Let h1 be defined as (37). It is easy to see that f(Ci, Cj, Ck| Â, B̂)+h1(Ci, Cj, Ck)
− 1

2‖PΩc((C))‖2F is a convex function. Since h1 is an indicator function on affine
space, we have

∂(f + h1)

∂Cα
(·) = PΩc

( ∂f

∂Cα
(·)

)
, α = i, j,k.

It follows from
(47)
h1(Ct+1

i , Ct+1
j , Ct+1

k ) = 0, h1(Ct
i , Ct

j , Ct
k) = 0, ‖Ct+1 − Ct‖F = ‖PΩc(Ct+1 − Ct)‖F ,

and the convexity of function f(Ci, Cj, Ck| Â, B̂) + h1(Ci, Cj, Ck) − 1
2‖PΩc((C))‖2F

that

f(Ct|Ât, B̂t)− f(Ct+1|Ât, B̂t)

(48)

=f(Ct
i , Ct

j , Ct
k|Ât, B̂t)− f(Ct+1

i , Ct+1
j , Ct+1

k |Ât, B̂t)

≥
∑

α=i,j,k

(〈
∂f + h1

∂Cα
(Ct+1

i , Ct+1
j , Ct+1

k |Ât, B̂t), Ct
α − Ct+1

α

〉
+

1

2
‖Ct

α − Ct+1
α ‖2F

)

=
∑

α=i,j,k

〈
PΩc

( ∂f

∂Cα
(Ct+1

i , Ct+1
j , Ct+1

k |Ât, B̂t)
)
, PΩc(Ct

α − Ct+1
α )

〉
+

1

2
‖Ct − Ct+1‖2F .

From (43),

(49) PΩc(δt+1
α ) = PΩc

( ∂f

∂Cα
(Ct+1

i , Ct+1
j , Ct+1

k | Ât, B̂t)
)
, α = i, j,k.
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With (48), we can obtain

f(Ct|Ât, B̂t)− f(Ct+1|Ât, B̂t)(50)

≥
∑

α=i,j,k

〈PΩc(δt+1
α ), PΩc(Ct

α − Ct+1
α )〉+ 1

2
‖Ct − Ct+1‖2F

≥− ‖PΩc(δt+1)‖F ‖PΩc(Ct − Ct+1)‖F +
1

2
‖Ct − Ct+1‖2F

≥1

4
‖Ct − Ct+1‖2F ,

where the last inequality holds due to (47) and (44). Thus,

f(Ât|Ct+1, B̂t)− f(Ât+1|Ct+1, B̂t)

=
1

n3

n3∑
l=1

(
1

2
‖Ât,(l)B̂t,(l) − Ĉt+1,(l)‖2F +

λ

2
‖Ât,(l)‖2F

− 1

2
‖Ât+1,(l)B̂t,(l) − Ĉt+1,(l)‖2F − λ

2
‖Ât+1,(l)‖2F )

=
1

n3

n3∑
l=1

(
1

2
‖(Ât,(l) − Ât+1,(l))B̂t,(l)‖2F +

λ

2
‖Ât,(l) − Ât+1,(l)‖2F


(
tr

(
(Ât+1,(l)B̂t,(l) − Ĉt+1,(l))(B̂t,(l))∗(Ât,(l) − Ât+1,(l))∗

)
+ λ tr

(
Ât+1,(l)(Ât,(l) − Ât+1,(l))∗

)))
.(51)

By Theorem 4.2 and (41), it holds for any l ∈ [n3],

(Ât+1,(l)B̂t,(l) − Ĉt+1,(l))(B̂t,(l))∗ + λÂt+1,(l) = β(Ât,(l) − Ât+1,(l)),

which, together with (51), implies

f(Ât|Ct+1, B̂t)− f(Ât+1|Ct+1, B̂t)

=
1

n3

n3∑
l=1

(1
2
‖(Ât,(l) − Ât+1,(l))B̂t,(l)‖2F + (

λ

2
+ β)‖Ât,(l) − Ât+1,(l)‖2F

)

≥ 1

n3

n3∑
l=1

(
λ

2
+ β)‖Ât,(l) − Ât+1,(l)‖2F

=
λ+ 2β

2n3
‖Ât − Ât+1‖2F .(52)

Similarly, we have

f(B̂t|Ct+1, Ât+1)− f(B̂t+1|Ct+1, Ât+1) ≥ λ+ 2β

2n3
‖B̂t − B̂t+1‖2F .(53)

Therefore, combining (50), (52) and (53), we get

f(Ct, Ât, B̂t)− f(Ct+1, Ât+1, B̂t+1) ≥ min
(1
4
,
λ+ 2β

2n3

)
‖zt − zt+1‖22.

Taking

K1 = min

(
1

4
,
λ

2
+

λ+ 2β

2n3

)
,
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we prove that (46) holds and hence the sequence {f(zt)} is monotonically decreas-
ing.

It follows from f ≥ 0 that
∞∑
t=1

(
f(zt)− f(zt+1)

)
< ∞,

∞∑
t=1

‖zt − zt+1‖22 < ∞, lim
t→∞

zt − zt+1 = 0.

Since

f(z1) ≥ f(zt) ≥ λ

2
(‖At‖2F + ‖Bt‖2F ),

{At}, {Bt} are bounded, and so {Ât}, {B̂t} are also bounded. Together with the
fact that

f(z1) ≥ f(zt) ≥ ‖At∗μBt − Ct‖2F ,
{Ct} is also bounded, and hence {zt} is bounded. �

Theorem 4.4. Let {zt} be the sequence generated by QRTC. Then, there exists a
constant K2 such that

(54) K2‖zt − zt+1‖2 ≥ ‖ΠΛ

(
∇f(zt)

)
‖F .

Moreover, any accumulation point of {zt} is a stationary point of (31).

Proof. By Theorem 4.3, {zt} is bounded. So, there exists a compact convex set Z
such that {zt} ⊂ Z. Since f is a quadratic polynomial in Z, its gradient is Lipschitz
in Z with the Lipschitz constant Lf , that is,

‖∇f(z)−∇f(z′)‖2 ≤ Lf‖z − z′‖2, ∀z, z′ ∈ Z.

By Theorem 4.2, (41) and (42), for any l ∈ [n3], we have

∇Hf(Ât+1,(l)|Ât+1,(−l), Ct+1, B̂t) =
β

n3
(Ât,(l) − Ât+1,(l)),

∇Hf(B̂t+1,(l)|B̂t+1,(−l), Ct+1, Ât+1) =
β

n3
(B̂t,(l) − B̂t+1,(l)),

where Ât+1,(−l) and B̂t+1,(−l) denote Ât+1 and B̂t+1 except Ât+1,(l) and B̂t+1,(l),
respectively. Set

∂f

∂Â
=

[
∂f

∂Âe

;
∂f

∂Âi

;
∂f

∂Âj

;
∂f

∂Âk

]
,

∂f

∂B̂
=

[
∂f

∂B̂e

;
∂f

∂B̂i

;
∂f

∂B̂j

;
∂f

∂B̂k

]
,

then,

‖ ∂f
∂Â

(zt)‖F ≤ ‖ ∂f
∂Â

(zt)− ∂f

∂Â
(Ct+1,At+1,Bt)‖F + ‖ ∂f

∂Â
(Ct+1,At+1,Bt)‖F

≤ Lf‖zt − zt+1‖2 +
n3∑
l=1

‖ ∂f

∂Â(l)
(Ct+1,At+1,Bt)‖F

= Lf‖zt − zt+1‖2 +
n3∑
l=1

‖∇Hf(Ât+1,(l)|Ât+1,(−l), Ct+1, B̂t)‖F

= Lf‖zt − zt+1‖2 +
n3∑
l=1

‖ β

n3
(Ât,(l) − Ât+1,(l))‖F

≤ (Lf +
β

n3
)‖zt − zt+1‖2.(55)
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Similarly, we have

(56) ‖ ∂f
∂B̂

(zt)‖F ≤ (Lf +
β

n3
)‖zt − zt+1‖2.

It follows from (49) that

∑
α=i,j,k

‖PΩc

∂f

∂Cα
(zt)‖F

≤
∑

α=i,j,k

(
‖
(
PΩc

∂f

∂Cα
(zt)− PΩc

∂f

∂Cα
(Ct+1, Ât, B̂t)

)
‖F + ‖PΩc

∂f

∂Cα
(Ct+1, Ât, B̂t)‖F

)

≤‖ΠΛ

(
∇f(zt)

)
−ΠΛ

(
∇f(Ct+1, Ât, B̂t)

)
‖F +

∑
α=i,j,k

‖PΩc(δt+1
α )‖F

≤Lf‖zt − zt+1‖2 +
1

4
‖Ct − Ct+1‖F

≤(Lf +
1

4
)‖zt − zt+1‖2.

(57)

Combining (55), (56) and (57), it is easy to see that (54) holds with K2 = Lf +

max( 14 ,
β
n3

).

Since {zt} is bounded, there exists a convergent subsequence of {zt}. Without
loss of generality, we assume that limk→∞ ztk = z∗. Then,

‖ΠΛ

(
∇f(z∗)

)
‖F ≤ ‖ΠΛ

(
∇f(z∗)−∇f(ztk)

)
‖F + ‖ΠΛ

(
∇f(ztk)

)
‖F

≤ Lf‖z∗ − ztk‖2 +K3‖ztk − ztk+1‖2,

which, together with taking limit k → ∞ in the right hand side, shows ΠΛ

(
∇f(z∗)

)
= 0, and hence z∗ is a stationary point of (31). �

Theorems 4.3 and 4.4 show that the sequence {zt} generated by QRTC is
bounded and its any accumulation point is a stationary point of (31). We next
use the Kurdyka-�Lojasiewicz (KL) property [2, 4, 13] to prove that {zt} is conver-
gent.

Definition 4.5 (KL property). Let Z ∈ Rn be an open set and f : Z → R be a
semi-algebraic function. For every critical point z∗ ∈ Z of f , there is a neighborhood
Z ′ ∈ Z of z∗, an exponent θ ∈ [0, 1) and a positive constant K3 such that

(58) |f(z)− f(z∗)|θ ≤ K3‖ΠΛ

(
∇f(z)

)
‖F , ∀z ∈ Z ′.

It is obvious that f(z)+δΛ(z) is a semi-algebraic function. Then, from Definition
4.5 and [4], the KL inequality (58) holds for the function f(z) + δΛ(z). Hence, for
the given θ,K3 in Definition 4.5 and K1,K2 are defined as Theorems 4.3 and 4.4,
we have the following convergence results.

Theorem 4.5. Let {zt} be the sequence generated by QRTC and z∗ be an accu-
mulation point of {zt}. Assume z0 ∈ B(z∗, τ )

.
= {z| ‖z − z∗‖F < τ} ⊂ Z ′ with

τ >
K2K3

K1(1− θ)
|f(z0)− f(z∗)|1−θ + ‖z0 − z∗‖2,
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then, zt ∈ B(z∗, τ ) for t = 0, 1, 2, . . .. Moreover,

(59)

∞∑
t=0

‖zt+1 − zt‖2 ≤ K2K3

K1(1− θ)
|f(z0)− f(z∗)|1−θ, lim

t→∞
zt = z∗.

Proof. We show {zt} ⊂ B(z∗, τ ) by induction. When t = 0, it holds obviously.
Assume that zt ∈ B(z∗, τ ) holds for all t ≤ t̂, then KL property is true for zt. Now
we display that zt ∈ B(z∗, τ ) is true when t = t̂+ 1. Let

φ(x)
.
=

K3

1− θ
|x− f(z∗)|1−θ, x > f(z∗).

Then φ(x) is concave and differentiable. Hence, we have

φ
(
f(zt)

)
− φ

(
f(zt+1)

)
≥ φ

′(
f(zt)

)(
f(zt)− f(zt+1)

)
=

K3

|f(zt)− f(z∗)|θ
(
f(zt)− f(zt+1)

)
.

By Definition 4.5, (46) and (54), we get

φ
(
f(zt)

)
− φ

(
f(zt+1)

)
≥ 1

‖ΠΛ

(
∇f(zt)

)
‖F

(
f(zt)− f(zt+1)

)
≥ K1

K2
‖zt − zt+1‖2.

Therefore,

t∑
p=0

‖zp − zp+1‖2 ≤ K2

K1

t∑
p=0

(
φ
(
f(zp)

)
− φ

(
f(zp+1)

))
≤ K2

K1
φ
(
f(z0)

)
,(60)

which implies

‖zt̂+1 − z∗‖2 ≤
t̂∑

p=0

‖zp+1 − zp‖2 + ‖z0 − z∗‖2 ≤ K2

K1
φ
(
f(z0)

)
+ ‖z0 − z∗‖2 ≤ τ.

Thus, {zt} ⊂ B(z∗, τ ).
Taking t → ∞ in (60), the first inequality in (59) is arrived. Without loss of

generality, we assume that limk→∞ ztk = z∗. Then, for all t > 0 and tk+1 ≥ t > tk,

‖zt − z∗‖2 ≤ ‖ztk − z∗‖2 +
t−1∑
p=tk

‖zp+1 − zp‖2,

which, together with the fact that {‖zt+1 − zt‖2} is Cauchy sequence, implies
limt→∞ zt = z∗. �

Theorem 4.6. Suppose that {zt} is the sequence generated by QRTC and z∗ be its
limit point. Then, the following statements hold.

(i) If θ ∈ (0, 12 ], there exist γ > 0 and ξ ∈ (0, 1) such that

‖zt − z∗‖2 ≤ γξt.

(ii) If θ ∈ ( 12 , 1), there exists γ > 0 such that

‖zt − z∗‖2 ≤ γt−
1−θ
2θ−1 .
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Proof. Since {zt} converges to z∗, there exists an index k0 such that zk0 ∈ B(z∗, τ ),
where τ is given in Theorem 4.5. Hence, we can regard zk0 as an initial point.
Without loss of generality, we set z0 ∈ B(z∗, τ ). Let

(61) Δt
.
=

∞∑
p=t

‖zp − zp+1‖2 ≥ ‖zt − z∗‖2.

It follows from (60) that

Δt≤
K2

K1
φ
(
f(zt)

)
=

K2K3

K1(1− θ)
|f(zt)−f(z∗)|1−θ=

K2K3

K1(1− θ)

(
|f(zt)− f(z∗)|θ

) 1−θ
θ .

Using KL inequality (58), it holds

Δt ≤
K2K3

K1(1− θ)

(
K3‖ΠΛ

(
∇f(zt)

)
‖F

) 1−θ
θ .

Set ξ1 = (K2K3)
1
θ

K1(1−θ) , then the above inequality, together with (46) and (54), implies

(62) Δt ≤
K2K3

K1(1− θ)

(
K2K3‖zt − zt+1‖2

) 1−θ
θ = ξ1(Δt −Δt+1)

1−θ
θ .

We now prove (i). If θ ∈ (0, 1
2 ], then

1−θ
θ ≥ 1. It holds for sufficiently large t,

Δt ≤ ξ1(Δt −Δt+1).

Hence,

Δt+1 ≤ ξ1 − 1

ξ1
,

which together with (61) implies that (i) holds with ξ = ξ1−1
ξ1

.

We next to prove (ii). If θ ∈ ( 12 , 1), let q(x) = x− θ
1−θ . Then, q(x) is monotonically

decreasing on x. It follows from (62) that

ξ
− θ

1−θ

1 ≤ q(Δt)(Δt −Δt+1) =

∫ Δt+1

Δt

q(Δt)dx

≤
∫ Δt+1

Δt

q(x)dx = − 1− θ

2θ − 1

(
Δ

− 2θ−1
1−θ

t −Δ
− 2θ−1

1−θ

t+1

)
.

Define ν
.
= − 2θ−1

1−θ . Then ν < 0 and hence

Δν
t+1 −Δν

t ≥ −νξ
− θ

1−θ

1 > 0.

Thus, there exists t̄ such that for all t ≥ 2t̄,

Δν
t ≥ Δν

t̄ − νξ
− θ

1−θ

1 (t− t̄) ≥ −ν

2
ξ
− θ

1−θ

1 t,

which implies

Δt ≤ γt
1
ν .

Let γ =

(
− ν

2 ξ
− θ

1−θ

1

) 1
ν

. Then, the above inequality shows that (ii) holds. �
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4.4. Low multi-gQt-rank tensor completion model.
In this subsection, we establish a novel low-rank tensor completion model based

on multi-gQt-rank and then present the tensor factorization based solution method.
Different from (31), we replace the loss function in mode-3, i.e., 1

2‖A∗μB − C‖2F ,
with a weighted sum of the loss functions in three modes, and consider the following
model

(63) min
C,Au,Bw,w∈[3]

g(C,A1,B1,A2,B2,A3,B3), s.t. PΩ(C −M) = 0, (C) = 0,

where

g(C,A1,B1,A2,B2,A3,B3) =

3∑
w=1

(
αw

2
‖Aw ∗wμ Bw − C‖2F +

λ

2
(‖Aw‖2F + ‖Bw‖2F )

)

+

2∑
k=1

λk‖C ×k Hnk
‖2F

and αw (w = 1, 2, 3) is the weighted coefficient.
Similar to Subsection 4.2, we solve (63) as the following steps. First, update Ct

by

arg min
Ci,Cj,Ck

3∑
w=1

αw

2
‖At−1

w ∗wμ Bt−1
w − C‖2F +

2∑
k=1

λk‖C×kHnk
‖2F +δ{PΩ(C−M)=0}(C)

= arg min
Ci,Cj,Ck

1

2

3∑
w=1

αw‖X t−1 − C‖2F +

2∑
k=1

λk‖C ×k Hnk
‖2F + δ{PΩ(C−M)=0}(C),

(64)

where X t−1 = 1
α1+α2+α3

∑3
w=1 αwAt−1

w ∗wμ Bt−1
w . Let

f2(Ci, Cj, Ck) =
3∑

w=1

αw

2
‖�(X t−1)− C‖2F +

2∑
k=1

λk‖C ×k Hnk
‖2F ,

h2(Ci, Cj, Ck) = δ{PΩ(C−M)=0}(C).

Similar to Algorithm 1, we can solve (64) by the following PGM.

Algorithm 3 PGM for (64)

Input. The tensor data M,X t−1, the observed set Ω, initial step size α0, parameters
λ, λi, Hni , 1 ≤ i ≤ 3.
Step 0. Initialize z0 = [C0

i , C0
j , C0

k] which satisfies PΩ(C0
i i + C0

j j + C0
kk − M) = 0, z−1 = z0.

Iterate the following steps for k = 0, 1, 2, · · · while it does not satisfy stop criterion.
Step 1. If k ≥ 1, choose step size

αk =
‖zk − zk−1‖2F

〈zk − zk−1,∇f2(zk)−∇f2(zk−1)〉
, or αk =

〈zk − zk−1,∇f2(zk)−∇f2(zk−1)〉
‖∇f2(zk)−∇f2(zk−1)‖2F

.

Step 2. Update [Ck+1
i , Ck+1

j , Ck+1
k ] = proxαkh2

(
[Ck

i , Ck
j , Ck

k]− αk∇f2(Ck
i , Ck

j , Ck
k)

)
.

Output. Ck+1
i i+ Ck+1

j j+ Ck+1
k k.
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It follows from Theorem 3.7 that (63) is rewritten as

min
Ĉ,Âw,B̂w,w∈[3]

3∑
w=1

nw∑
l=1

(
αw

2nw
‖Â(l)

w B̂(l)
w − Ĉ(l)

w ‖2F +
λ

2nw
(‖A(l)

w ‖2F + ‖B(l)
w ‖2F )

)

+
2∑

k=1

λk‖C ×k Hnk
‖2F .

To update Ât,(l)
w and B̂t,(l)

w , we consider the following problem

min
Ât,(l)

w ,B̂t,(l)
w

αw

2nw
‖Â(l)

w B̂(l)
w − Ĉ(l)

w ‖2F +
λ

2nw
(‖A(l)

w ‖2F + ‖B(l)
w ‖2F ).

For l ∈ [n3] and w ∈ [3], update Â(l)
w by

Ât,(l)
w = argmin

Âw

αw

2
‖Â(l)

w B̂t−1,(l)
w − Ĉt,(l)

w ‖2F +
λ

2
‖Â(l)

w ‖2F +
β

2
‖Â(l)

w − Ât−1,(l)
w ‖2F

=
(
αwĈt,(l)

w (B̂t−1,(l)
w )∗ + βÂt−1,(l)

w

)(
αwB̂t−1,(l)

w (B̂t−1,(l)
w )∗ + (λ+ β)I

)−1
,(65)

and the updating of B̂(l)
w is given by

B̂t,(l)
w = argmin

B̂w

αw

2
‖Ât,(l)

w B̂(l)
w − Ĉt,(l)

w ‖2F +
λ

2
‖B̂(l)

w ‖2F +
β

2
‖B̂(l)

w − B̂t−1,(l)
w ‖2F

=
(
αw(Ât,(l)

w )∗Ât,(l)
w + (λ+ β)I

)−1(
αw(Ât,(l)

w )∗Ĉt,(l)
w + βB̂t−1,(l)

w

)
.(66)

Consequently, we propose Algorithm 4 to solve (63). The convergence analysis of
Algorithm 4 is similar to that of Algorithm 2 and hence we omit it here.

Algorithm 4 Multi gQt-Rank Tensor Completion (MQRTC)

Input. The tensor data M ∈ Hn1×n2×n3 , the observed set Ω, the rank r ∈ Z
n3
+ , parameters

λ, λi, Hni , 1 ≤ i ≤ 2 and ε.

Step 0. Initialize Â0
w, B̂0

w with w ∈ [3] and C0 satisfying PΩ(C0 − M) = 0, 
(C0) = 0, and

the rank of Â0, B̂0 are less than r. Iterate the following steps for t = 1, 2, · · · while it does not
satisfy stop criterion.
Step 1. Compute

Ct = argmin
PΩ(C−M)=0,�(C)=0

3∑

w=1

αw

2
‖At−1

w ∗wμ Bt−1
w − C‖2F +

2∑

k=1

λk‖C ×k Hnk‖2F

+
∑

α=i,j,k

〈δtα, Cα〉

via Algorithm 3. That is, given parameters of Algorithm 3, apply PGM to find an approximate
solution Ct of (64) such that the error vector δt satisfies 
(δt) = 0, PΩ(δt) = 0 and the accuracy
condition

‖PΩc (δt)‖F ≤ 1

4
‖Ct − Ct−1‖F .

Step 2. Compute Ât
w by (65).

Step 3. Compute B̂t
w by (66).

Step 5. Check the stop criterion:

|g(Ck,Ak
1 ,Bk

1 ,Ak
2 ,Bk

2 ,Ak
3 ,Bk

3 )− g(Ck−1,Ak−1
1 ,Bk−1

1 ,Ak−1
2 ,Bk−1

2 ,Ak−1
3 ,Bk−1

3 )|
|g(Ck−1,Ak−1

1 ,Bk−1
1 ,Ak−1

2 ,Bk−1
2 ,Ak−1

3 ,Bk−1
3 )|

< ε.

Output. Ct.
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5. Numerical Experiments

In this section, we report some numerical results of our proposed algorithms
QRTC and MQRTC to show the validity. Moreover, we compare them with sev-
eral existing state-of-the-art methods, including TMac [38], TNN [43], TCTF [44],
LRQA-2 [8] and TNSS-QMC [16]. Note that TMac has two versions, i.e., TMac-dec
and TMac-inc, and the former uses the rank-decreasing scheme to adjust its rank
while the latter employs the rank-increasing scheme. The codes of TMac3, TNN4,
TCTF5 are open source, LRQA-2 and TSNN-QMC are provided by the authors of
[8] and [16], respectively.

A color video is a 4-way tensor defined by two indices for spatial variables,
one index for temporal variable and one index for color mode. All the videos
in our simulations are initially represented by 4-way tensors C ∈ R

n1×n2×n3×3,
where n1 × n2 stands for the pixel scale of each frame, and n3 is the number
of frames. C(:, :, :, 1), C(:, :, :, 2) and C(:, :, :, 3) correspond to red, green and blue
channels, respectively. The index set is Ω and the sampling ratio ρ is defined by

ρ =
numel(Ω)

n1 × n2 × n3
.

For TCTF, TNN and TMac3D, the three third-order real tensors for red, green and
blue channels are first recovered. Then, the three recovered tensors are combined to
form the integrated color video data. For TMac4D, we arrange the color video data
as a fourth-order tensor and directly recover the incomplete part PΩ(C). Totally
there are four TMac-type methods, i.e., TMac3D-dec, TMac3D-inc, TMac4D-dec
and TMac4D-inc. For LRQA-2 method, we recover each frame of video by LRQA-
2 and finally combine them into an integrated video tensor. For TNSS-QMC and
our two methods, each color video is reshaped as a pure quaternion tensor C ∈
Hn1×n2×n3 by using the following way:

C̃ = C(:, :, :, 1)i+ C(:, :, :, 2)j+ C(:, :, :, 3)k.

All the simulations are run in MATLAB 2020b under Windows 10 on a laptop with
1.30 GHz CPU and 16GB memory.

5.1. Quantitative assessment and parameter settings.
In order to evaluate the performance of QRTC and MQRTC, we employ four

quantitative quality indexes, including the relative square error (RSE), the peak
signal-to-noise ratio (PSNR), the structure similarity (SSIM) and the feature simi-
larity (FSIM), which are respectively defined as follows:

RSE = 10 log 10

(
‖C − Ĉ‖F
‖C‖F

)
,

where Ĉ and C are the recovered and truth data, respectively.

PSNR = 10 log 10

(
numel(Ĉ)Peakval2

‖Ĉ − C‖2F

)
,

3https://xu-yangyang.github.io/codes/TMac.zip
4http://www.ece.tufts.edu/~shuchin/tensor_completion_and_rpca.zip
5https://panzhous.github.io/assets/code/TCTF_code.rar

https://xu-yangyang.github.io/codes/TMac.zip
http://www.ece.tufts.edu/~shuchin/tensor_completion_and_rpca.zip
https://panzhous.github.io/assets/code/TCTF_code.rar
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where Peakval is taken from the range of the image datatype (e.g., for uint8 image,
it is 255)

SSIM =
(2μCμĈ + C1)(2σCĈ + C2)

(μ2
C + μ2

Ĉ + C1)(σ2
C + σ2

Ĉ + C2)
,

where μC , μĈ , σC , σĈ and σCĈ are the local means, standard deviations, and cross-

covariance for video C and Ĉ, C1 = (0.01L)2, C2 = (0.03L)2, L is the specified
dynamic range of the pixel values.

FSIM =

∑
x∈Δ SL(x)PCm(x)∑

x∈Δ PCm(x)
,

where Δ denotes the whole video spatial and temporal domain. The phase congru-
ency for position x of video C is denoted as PCC(x), then

PCm(x) = max{PCC(x), PCĈ(x)},

SL(x) is the gradient magnitude for position x.
Without special instructions, in the all experiments in Section 5, we set the

initialized rank r0 = [30, 30, 30] in TMac3D-dec, r0 = [30, 30, 30, 30] in TMac4D-
dec, r0 = [3, 3, 3] in TMac3D-inc and r0 = [3, 3, 3, 3] in TMac4D-inc, and set the
weights for both versions as suggested in [38]. For TCTF, we set the initialized rank
r0 = [30, . . . , 30] ∈ Rn3 the same as that in [44]. Following [8], we use LRQA with
Laplace function penalty, and set parameter γ = 20. For all the methods except
ours, the stopping criteria are built-in their codes. In our methods, the initial
rank r0 = [30, . . . , 30] ∈ Rn3 . And then we will give the same setting of weight
parameter α1, α2, α3, the penalty parameter λ and TV penalty parameter λ1, λ2 in
both QRTC and MQRTC. Noticing that two spatial dimension are symmetry, so
we can naturally set α1 = α2 and λ1 = λ2. We Set α3 as cardinality 1, and then as
a matter of experience, we set α1 = α2 = 10, λ1 = λ2 = 5 and λ = α1 + α2 + α3.
In experiments, the maximum iteration number is set to be 20 and the termination
precision ε is set to be 1e-3.

5.2. Performances of methods based on Qt-SVD and t-SVD.
Both t-SVD [20] and our novel factorization Qt-SVD depict the inherent low-rank

structure of a third-order real or quaternion tensor. Here we conduct experiments to
compare them in detail on real color video data. Other methods are not compared
here since they are not based on matrix factorization of a Fourier transform result.
In order to show that Qt-SVD explores the low-rank property better of color video,
we fairly compare TCTF and our method in the similar formulation. Notice that
the model of TCTF is given as (6), we set parameters λ = λ1 = λ2 = 0 in QRTC
(31) to get the similar formulation QRTC-1, i.e.

min
C,A,B

1

2
‖A∗μB − C‖2F , s.t. PΩ(C −M) = 0, (C) = 0.(67)

We test TCTF and QRTC-1 on fifteen real color videos data of YUV Video
Sequences. The frame size of each video is 288 × 352, and only the first 30 frames of
each video are extracted as experimental data due to the computational limitation.
The initialized rank of TCTF and QRTC-1 are set as r0 = [30, . . . , 30] ∈ Rn3 .
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(a) ρ = 0.1 (b) ρ = 0.3

(c) ρ = 0.5 (d) ρ = 0.7

Figure 3. Comparison of RSE result of TCTF and QRTC-1 for
color video recovery on 15 videos, sample ratio ρ = 0.1, 0.3, 0.5
and 0.7. From RSE, our Qt-SVD based QRTC outperforms over
t-SVD based TCTF. Moreover, the smaller of sample size, the
performance of QRTC-1 is better from (a).

As shown in Figure 3, we display the RSE values of the recovery of fifteen video
data with four sample ratios, ρ = 0.1, 0.3, 0.5 and 0.7, respectively. We can see that
the RSE values of our Qt-SVD based QRTC-1 are always less than of TCTF with
all sample ratios. This shows the better performance and robustness of methods
based on Qt-SVD. And when sample ratio ρ = 0.1, our method has a greater RSE,
which shows QRTC-1 has better performance.

Table 1 displays the PSNR values of recovery of fifteen videos data with four
sample ratios, ρ = 0.1, 0.3, 0.5 and 0.7, respectively. The bold values in Table 1
are the best values of two methods. It is shown in Table 1 that our method always
achieves the best. Especially with ρ = 0.1, the average PSNR values of our method
is two times better than of TCTF, this shows our method has a greater development
on exploring the low-rank structure of color video data. Table 2 shows the average
running time of two methods. We can see that the running time of QRTC-1 not
longer than an order of magnitude with TCTF, which is an acceptable cost in
practice.
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Table 1. Comparison of PSNR result of TCTF and QRTC-1 for
color video recovery on 15 videos, sample ratio ρ =
0.1, 0.3, 0.5, 0.7

Index
ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7

TCTF QRTC-1 TCTF QRTC-1 TCTF QRTC-1 TCTF QRTC-1

Akiyo 10.0340 26.3871 18.1500 30.6066 24.9302 32.8357 29.7239 35.4168
Bridge(Close) 6.6788 25.1930 24.1929 28.4788 29.7362 30.1917 32.0634 32.6023

Bus 11.6938 17.4861 20.8127 21.2821 21.9240 24.3991 23.4783 27.6053
Coastguard 9.2534 22.1785 24.2265 26.3815 24.7123 29.4515 26.9737 32.7388
Container 8.1161 23.4795 21.5396 28.0197 26.5626 30.3911 28.7022 32.9819
Flower 5.3197 17.5676 19.2486 20.4618 20.1102 23.1790 22.3841 26.3466

Hall Monitor 8.6508 24.1589 21.5368 27.8881 28.3716 29.7974 30.6626 32.2779
Mobile 7.5761 15.2794 18.1969 18.6211 18.7906 20.9175 19.8210 23.6180
News 11.1349 24.4833 17.8918 28.2573 23.3263 30.1733 26.6495 326758
Paris 10.1639 20.1727 19.3490 22.9161 23.0965 24.8344 25.1367 27.3943
Silent 9.3471 24.3320 17.2662 28.3484 28.1783 30.5686 30.4278 33.1890
Stefan 8.6749 17.5420 18.7819 20.2443 20.2135 22.8605 21.9987 25.8947

Tempete 12.3150 19.3154 20.1789 22.4004 23.9860 24.4744 24.7784 27.0957
Waterfall 11.9192 23.9763 23.9104 28.1241 26.6389 30.4502 28.7643 30.0320
Foreman 7.1351 20.6288 24.1126 25.3807 21.5267 28.3540 23.7150 31.3344
Average 9.2009 21.4787 20.6263 25.1607 24.1403 27.5252 26.3520 30.2802

Table 2. Average running time (seconds) of TCTF and QRTC-1
for color video recovery on 15 videos, sample ratio ρ =
0.1, 0.3, 0.5, 0.7

ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7
TCTF QRTC-1 TCTF QRTC-1 TCTF QRTC-1 TCTF QRTC-1

206 219 166 214 169 226 168 240

5.3. Video inpainting for different methods.
We first evaluate our method on the videoSegmentationData dataset, which can

be downloaded in [11]. We test all the above mentioned methods on color video
datasets “AN119T”, “BR128T”, “DO01-013”, “DO01-030” and “M07-058”. The
frame size of all videos is 288× 352. We set the sampling ratio ρ = 0.3 and uniformly
sample the videos to construct the observable index set Ω. All parameters are set
as mentioned above.

Figure 4 depicts the accumulated proportion of the largest k singular values
for recovered videos using various methods. In the annotation, “rel-error” refers
to the relative error of each method’s cumulative values compared to the original
video data. The results show that the Tmac-based approaches exhibit a steeper
accumulation, suggesting a greater tendency toward low-rank structures. However,
given that the original video has an approximately low-rank characteristic, the
cumulative curves for QRTC, MQRTC and the TNN method align more closely
with those of the original video. In addition, at the proportion corresponding to
the top 50 singular values, it can be observed that the curves for our methods largely
coincide with the original video’s curve. The relative error values also align with
the image results. These observations suggest that our methods are more effective
for video inpainting.
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(a) AN119T (b) BR128T

(c) DO01 13 (d) DO01 030

(e) M07 058

Figure 4. The accumulated proportion of the largest k singular
values of video recovery using different algorithms (ρ = 0.3) and
their relative error

Figure 5 shows the first frames of five examples of selected videos. From Figure
5, it is seen that in all videos our two methods have better recovery of derails on the
marginal area between the main target and the surrounding environment. Table 3
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summarizes the RSE, PSNR, SSIM, FSIM values and the running time of all the
algorithms on the five testing videos displayed in Figure 5. In Table 3, the bold
values and the values in brackets stand for the best and the second best values of
items RSE, PSNR, SSIM and FSIM, respectively. From the results, it is shown that
the overall performances of QRTC and MQRTC are vastly superior to the others:
the best of the above four quality assessments is consistently of QRTC or MQRTC,

Table 3. Quantitative quality indexes and running time (seconds)
of different algorithm on the five videos displayed in Figure 5 (ρ =
0.3)

Videos Indexes TCTF TNN TMac3D-dec TMac3D-inc TMac4D-dec TMac4D-inc LRQA-2 QRTC MQRTC

AN119T

RSE -10.1719 -11.3749 -10.5061 -10.9905 -10.6873 -11.1481 -10.3217 (-12.5983) -12.7885
PSNR 26.7931 29.1990 27.4615 28.4303 27.8239 28.7456 27.0927 (31.6458) 32.0263
SSIM 0.8681 0.8984 0.8739 0.8864 0.8814 0.8922 0.8748 0.9681 (0.9498)
FSIM 0.8687 0.8978 0.7984 0.8288 0.8170 0.8428 0.8689 (0.9175) 0.9249
time(s) 241 2182 49 141 103 185 2460 173 744

BR128T

RSE -8.2424 -9.7408 -7.5778 -8.4865 -7.7757 -8.6600 -8.3008 (-11.0355) -11.2164
PSNR 22.3657 25.3624 21.0364 22.8538 21.4322 23.2008 22.4825 (27.9519) 28.3137
SSIM 0.7691 0.8684 0.7612 0.8168 0.7836 0.8311 0.7840 0.9376 (0.9299)
FSIM 0.8444 0.8917 0.8063 0.8438 0.8193 0.8519 0.8445 0.9443 (0.9436)
time(s) 402 1813 60 180 174 256 3908 221 923

DO01-013

RSE -7.6358 -13.0349 -11.5504 -12.1381 -11.7081 -12.2760 -11.5340 (-13.8539) -14.4249
PSNR 22.1400 32.9382 29.9691 31.1446 30.2846 31.4203 29.9363 (34.5761) 35.7182
SSIM 0.8758 0.9752 0.9600 0.9667 0.9638 0.9696 0.9502 (0.9863) 0.9883
FSIM 0.8575 0.9405 0.8553 0.8804 0.8679 0.8888 0.8983 (0.9462) 0.9582
time(s) 310 3241 59 140 122 186 2262 169 700

DO01-030

RSE -6.9388 -12.0369 -10.6581 -11.3983 -10.6586 -11.3957 -10.1583 (-12.7410) -13.2912
PSNR 19.4925 29.6887 26.9312 28.4115 26.9322 28.4062 25.9315 (31.0969) 32.1972
SSIM 0.8509 0.9763 0.9535 0.9646 0.9535 0.9642 0.9431 (0.9837) 0.9862
FSIM 0.8436 0.9175 0.8551 0.8786 0.8568 0.8798 0.9527 (0.9370) 0.9481
time(s) 364 5770 59 161 152 231 3116 196 793

M07-058

RSE -11.8070 -13.9020 -13.8192 -14.5612 -13.9278 -14.6486 -12.7418 (-15.4564) -15.9781
PSNR 27.1223 31.3122 31.1466 32.6305 31.3638 32.8055 28.9919 (34.4211) 35.4644
SSIM 0.9572 0.9805 0.9787 0.9839 0.9806 0.9849 0.9691 (0.9910) 0.9925
FSIM 0.7969 0.8766 0.9155 0.9255 0.9155 0.9278 0.9033 0.9754 (0.9584)
time(s) 203 4206 47 131 80 170 1854 135 542

while MQRTC behaves better than QRTC in most of cases. The running time
of QRTC is longer than several methods of TMac, but not longer than an order
of magnitude. The running time of MQRTC is approximately fourfold as long as
that of QRTC, but no more than that of TNN. All these outcomes demonstrate
that in terms of color video inpainting problems, our methods have better recovery
accuracy than others and runs also very efficiently.

To verify the robustness of our methods to the sampling ratio ρ, we test the
video “Stefan” which is of YUV Video Sequences. The frame size of the video is
288 × 352. We set the sampling ratio ρ ranging from 0.1 to 0.5 and uniformly
sample the pixels to construct Ω. All the other parameters are set as mentioned.
The first frame of the selected video with different sampling ratios are shown in
Figure 6. Figure 6 indicates that the recovered videos of our methods are the
clearest under all sampling ratios. Table 4 summarizes the RSE, PSNR, SSIM,
FSIM values and the running time of all the algorithms on the selected video with
all sampling ratios which are displayed in Figure 6. In Table 4, the bold values and
the values in brackets are the best and the second best values of RSE, PSNR, SSIM
and FSIM, respectively. From the results, the best and the second best of PSNR,
RSE or SSIM are of either QRTC or MQRTC. For FSIM value, MQRTC and QRTC
perform better than others except the situation when ρ = 0.1. The running time
of QRTC is longer than several methods of TMac, but not longer than an order of
magnitude. The running time of MQRTC is approximately fourfold as long as that
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Figure 5. First frame of color video recovery using different al-
gorithms (ρ = 0.3)
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Figure 6. First frame of color video recovery while sample ratio
ρ from 0.1 to 0.5 using different methods
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of QRTC, but not exceeds that of TNN or LRQA-2. Thus, we can conclude that
our methods are rather robust to the sampling ratio and have considerably better
performance than others.

Table 4. Quantitative quality indexes and running time (seconds)
of different algorithm on the “Stefan” video from ρ = 0.1 to 0.5
which are displayed in Figure 6.

ρ Indexes TCTF TNN TMac3D-dec TMac3D-inc TMac4D-dec TMac4D-inc LRQA-2 QRTC MQRTC

ρ = 0.1

RSE -1.79 -6.4133 -6.7203 -6.8304 -6.7406 -6.8705 -5.0637 (-6.9780) -7.0966
PSNR 8.6417 17.8723 18.4864 18.7066 18.5270 18.7869 15.1732 (19.0018) 19.2389
SSIM 0.0818 0.6153 0.6620 0.6846 0.6687 0.6948 0.4232 0.7158 (0.7078)
FSIM 0.6093 0.7068 0.6791 (0.7163) 0.6847 0.7190 0.6926 0.6905 0.7046
time(s) 268 1201 141 183 328 331 3330 326 693

ρ = 0.2

RSE -4.3148 -7.2013 -7.0963 -7.3819 -7.1831 -7.4486 -6.2521 (-7.9459) -8.2292
PSNR 13.6755 19.4483 19.2385 19.8096 19.4120 19.9429 17.5500 (20.9377) 21.5042
SSIM 0.4807 0.7218 0.7091 0.7432 0.7240 0.7549 0.6079 (0.8156) 0.8256
FSIM 0.7386 0.7787 0.6968 0.7374 0.7102 0.7460 0.7617 (0.7875) 0.8060
time(s) 273 1241 70 138 131 185 3178 177 689

ρ = 0.3

RSE -6.7642 -7.9653 -7.3641 -7.7258 -7.5270 -7.8525 -7.2777 (-8.7676) -9.0605
PSNR 18.5741 20.9765 19.7741 20.4974 20.0998 20.7508 19.6011 (22.5809) 23.1668
SSIM 0.7206 0.7995 0.7416 0.7785 0.7643 0.7950 0.7327 (0.8752) 0.8815
FSIM 0.8162 0.8310 0.7166 0.7578 0.7394 0.7736 0.8162 (0.8482) 0.8633
time(s) 270 1319 48 123 117 170 2902 160 562

ρ = 0.4

RSE -7.9171 -8.7597 -7.5969 -8.0123 -7.8549 -8.2227 -8.2366 (-9.5559) -9.8308
PSNR 20.8800 22.5653 20.2396 21.0704 20.7556 21.4911 21.5189 (24.1576) 24.7074
SSIM 0.8125 0.8586 0.7677 0.8051 0.7977 0.8271 0.8206 (0.9149) 0.9174
FSIM 0.8388 0.8728 0.7363 0.7775 0.7659 0.7987 0.8628 (0.8915) 0.9025
time(s) 250 1448 42 115 104 160 2939 148 471

ρ = 0.5

RSE -7.4885 -9.6432 -7.8107 -8.2800 -8.1682 -8.5860 -9.2639 (-10.3641) -10.6105
PSNR 20.0227 24.3323 20.6671 21.6058 21.3821 22.2178 23.5737 (25.7741) 26.2668
SSIM 0.7902 0.9047 0.7891 0.8275 0.8257 0.8541 0.8805 0.94252 (0.94251)
FSIM 0.8193 0.9076 0.7528 0.7942 0.7898 0.8215 0.9022 (0.9237) 0.9309
time(s) 244 1746 39 120 85 146 2814 143 397

Figure 7 presents the accumulated proportion of the largest k singular values of
videos recovered with different methods under varying sampling rates. Consistent
with Figure 4, it is clear that the Tmac-based approaches tend to exhibit stronger
low-rank structures. When ρ = 0.1, the cumulative curves for QRTC and MQRTC
align most closely with the original video. At sampling rates of ρ = 0.2, the
TCTF method and our methods show a similar pattern, while at ρ = 0.3, ρ = 0.4
and ρ = 0.5, the TNN and our methods demonstrate closer alignment with the
original video. The relative error values also align with the image results. These
results suggest that our approach to video recovery offers enhanced performance,
particularly at lower sampling rates.

Next, we will compare our algorithms QRTC and MQRTC with TNSS-QMC
[16] in noisy case. To reduce computation time, we follow the same processing
approach as in the code provided by Jia et al. [16]. Initially, we use MATLAB’s
“imresize” function to compress all videos to be recovered to a size of 128×128 and
retain the first 30 frames. Subsequently, if the sampling rate is ρ = 0.1, we divide
the 128×128 video into four smaller videos of size 64×64 with the same number of
frames. If the sampling rate is greater than 0.1, the 128×128 video is divided into
64 smaller videos of size 16×16 with the same number of frames. Each of these
smaller videos is then recovered and later stitched together to form the complete
video. The parameters for TNSS-QMC are set to the default values provided in the
code from authors of [16].
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(a) ρ = 0.1 (b) ρ = 0.2

(c) ρ = 0.3 (d) ρ = 0.4

(e) ρ = 0.5

Figure 7. The accumulated proportion of the largest k singular
values of video recovery while sample ratio ρ from 0.1 to 0.5 using
different methods and their relative error

We test color video datasets “AN119T”, “BR128T”, “DO01-013”, “DO01-030”,
“M07-058” and “Stefan” in the presence of Gaussian noise. After resizing each
frame to a 128×128 scale, we add Gaussian noise with a mean of 0 and variance



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LOW-RANK QUATERNION TENSOR COMPLETION 2453

σ = 0.1‖M‖/
√
D to each data point, where M is the quaternion tensor correspond

to original color video and D represents the number of elements in tensor M. We
set the sampling ratio ρ = 0.3 for “AN119T”, “BR128T”, “DO01-013”, “DO01-030”
and “M07-058”, set ρ = 0.1 to 0.5 for “Stefan”, and uniformly sample the videos to
construct the observable index set Ω. All parameters are set as mentioned above.
Table 5 summarizes the RSE, PSNR, SSIM, FSIM values and the running time of
all the three algorithms on the five testing videos, and the bolded parts indicate
the best results among the different methods.

Table 5. Comparing the recovery performance of videos in noisy cases

(a) Quantitative quality indexes and run-
ning time (seconds) of different algorithm
on the five videos, ρ = 0.3 in noisy case.

(b) Quantitative quality indexes and run-
ning time (seconds) of different algorithm
on the “Stefan” video from ρ = 0.1 to 0.5
in noisy case.

Videos Indexes TNSS-QMC QRTC MQRTC

AN119T

RSE -7.6147 -9.8401 -9.7390
PSNR 21.7362 24.7320 24.5861
SSIM 0.7986 0.8660 0.8595
FSIM 0.8066 0.8723 0.8672
time(s) 7869 12 76

BR128T

RSE -5.3193 -7.3274 -7.2764
PSNR 16.3314 19.8237 19.7331
SSIM 0.6807 0.8230 0.8176
FSIM 0.7717 0.8570 0.8524
time(s) 8725 11 71

DO01-013

RSE -8.2460 -10.2340 -10.1313
PSNR 23.1631 25.5109 25.3695
SSIM 0.8391 0.8946 0.8902
FSIM 0.8264 0.8909 0.8859
time(s) 8844 14 65

DO01-030

RSE -7.2777 -9.2993 -9.1621
PSNR 20.1522 22.9634 22.7543
SSIM 0.8779 0.9374 0.9321
FSIM 0.7819 0.8624 0.8586
time(s) 8809 13 65

M07-058

RSE -8.5009 -10.7787 -10.7227
PSNR 20.4690 23.0057 22.9349
SSIM 0.8878 0.9430 0.9408
FSIM 0.6467 0.7064 0.7055
time(s) 9052 13 66

Videos Indexes TNSS-QMC QRTC MQRTC

ρ = 0.1

RSE -3.8907 -6.6373 -6.4207
PSNR 12.9666 18.4599 18.0267
SSIM 0.4005 0.6345 0.5726
FSIM 0.6420 0.6931 0.6830
time(s) 11074 15 54

ρ = 0.2

RSE -5.2964 -7.3942 -7.3500
PSNR 15.7781 19.9737 19.8853
SSIM 0.5412 0.7446 0.7333
FSIM 0.7078 0.7808 0.7792
time(s) 8104 11 53

ρ = 0.3

RSE -6.7823 -8.0253 -8.0135
PSNR 18.7499 21.2359 21.2122
SSIM 0.7231 0.8134 0.8110
FSIM 0.7857 0.8351 0.8348
time(s) 7992 8 49

ρ = 0.4

RSE -7.7906 -8.6610 -8.6549
PSNR 20.7664 22.5073 22.4950
SSIM 0.8193 0.8631 0.8625
FSIM 0.8368 0.8753 0.8752
time(s) 8320 8 48

ρ = 0.5

RSE -8.6107 -9.3228 -9.3195
PSNR 22.4067 23.8308 23.8244
SSIM 0.8740 0.9013 0.9011
FSIM 0.8744 0.9080 0.9079
time(s) 8502 7 47

From Table 5, we can see that in the presence of noise, QRTC consistently
achieves the best results in terms of the four metrics across almost all videos and
corresponding sampling rates, with MQRTC coming in second, with only a slight
difference from QRTC. TNSS-QMC requires a longer computation time, and for
the “Stefan” video with ρ = 0.1, the time required is significantly higher than for
other videos, because the tensor sub-blocks are larger when ρ = 0.1. TNSS-QMC
is an excellent method that leverages substantial local information, but this also
contributes to the longer computation time. It may produce better recovery results
without subdividing into smaller tensors, but our current PC computer do not allow
for this.

6. Conclusions

We introduce the concept of gQt-product for third-order quaternion tensor and
then define QDFT. Based on the newly-defined QDFT, we introduce gQt-SVD of
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third-order quaternion tensors. We define gQt-rank for third-order quaternion ten-
sor via its gQt-SVD and show the existence of low gQt-rank optimal approximation.
We also generalize these results from mode-3 (QRTC) to three modes (MQRTC) of
third-order quaternion tensor, and obtain multi-gQt-rank. Numerical experiments
indicate that third-order quaternion tensors generated by color videos in real life
have an inherent low-rank property.

Therefore, we establish low-rank quaternion tensor completion models based
on gQt-rank and multi-gQt-rank to recover color videos with partial data loss.
Using TV-regularization to capture the spatial stability feature, we obtain our novel
tensor recovery models for color video inpainting. We present two ALS algorithms
(Algorithms 2 and 4) to solve our models. Their convergence is established (see
Subsection 4.3). Extensive numerical experiments indicate that our approaches
QRTC and MQRTC outperform some existing state-of-the-arts methods on various
video datasets with different sample ratios, which also demonstrate the robustness
of our methods. Especially, MQRTC outperforms QRTC.
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