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The Purpose

Second Order Methods

with

First Order Costs
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Newton’s methods

Our approach — Newton’s methods (second order methods) with low
costs [can be very low]

Figure: Sir Isaac Newton (Niu Dun) (4 January 1643 - 31 March 1727)
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Solving a sparse + low rank linear equation problem: a basic idea

1 One core mathematical problem is to solve the following linear
equation

Bx = b,

where B ∈ <n×n and b ∈ <n
2 Assume that B is non-singular. One can use the Gaussian elimination

method [the ancient Chinese (Jiu Zhang Suan Shu) and Indians
discovered this method thousand years ago] to get

x = B−1b

with the cost of O(n3) flops – way too high for a big n.
3 If B is “sparse”, e.g., B = I + uvT , where u, v ∈ <n, one can reduce

the cost from O(n3) to O(n) via the Sherman-Morrison-Woodbury
formula

x = B−1b = (I + uvT )−1b = b− v (1 + vTu)−1︸ ︷︷ ︸
number

(uT b).

4 Solving structured linear equations can be cheap =⇒ Second order
methods with first order computational costs possible!!!
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The Setting

Let X ∈ <m×n be the input data and b be the response variables with a
noise vector ε = b−Xβ̈. Let λ > 0. One of the most commonly used
models to control the overfitting and/or variable selection is the Lasso
model

min
β∈<n

{
1

2
‖Xβ − b‖2 + λ‖β‖1

}
which relies on knowing the standard deviation of the noise. Here in the
convex case we are interested in the more general model

min
β∈<n

{
h(Xβ)︸ ︷︷ ︸
f(β)

+p(β)
}

where both h(·) and p(·) are proper and closed convex functions, which
can be nonsmooth or non-Lipschitzian. Here, h is not assumed to be
differentiable!!!
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Simple convex examples

One interesting example is the square-root Lasso (srLasso) model (Alex
Belloni et al. (2011))

min
β∈<n

{‖Xβ − b‖+ λ‖β‖1}

which is equivalent to the robust least regression (Huan Xu et al. 2010)

min
β∈<n

{
max

∆X∈U
‖b− (X + ∆X)β‖

}
with the uncertainty set

U := {(∆1, . . . ,∆n) | ‖∆i‖ ≤ λ, i = 1, . . . , n}

Another commonly used example is the constrained Lasso model

min
β∈<n

{‖β‖1 | ‖Xβ − b‖ ≤ τ}

Here h(·) is the indicator function

h(y) := δBτ (y) ∀ y ∈ <m

over the ball Bτ := {y ∈ <m | ||y|| ≤ τ} centered at 0 with radius τ > 0
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More Lasso-type problems

There are many more convex Lasso-type models:

(LASSO)

min
{1

2
‖Xβ − b‖2 + λ‖β‖1 | β ∈ <n

}
where λ > 0.

(Fused LASSO)

min
{1

2
‖Xβ − b‖2 + λ‖β‖1 + λ2‖Bβ‖1

}

B =


1 −1

1 −1
. . .

. . .

1 −1


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More Lasso-type problems (continued)

(Clustered LASSO)

min
{1

2
‖Xβ − b‖2 + λ‖β‖1 + λ2

n∑
i=1

n∑
j=i+1

|βi − βj |
}

Note that the above problem is not numerically solvable if n is large as the
objective function value computation itself would cost O(n2) flops.

Fortunately, [Lin-Liu-S.-Toh 2018] showed∑
1≤i<j≤n

|βi − βj | = 〈w, β↓〉,

where β↓ is the vector whose components are those of β sorted in a
non-increasing order, i.e. β↓1 ≥ β

↓
2 ≥ · · · ≥ β↓n [costs O(n log n)] and the

weight vector w ∈ <n is defined by

wk = n− 2k + 1, k = 1, · · · , n.
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More Lasso-type problems (continued)

(SLOPE, Ordered Lasso)

min
{1

2
‖Xβ − b‖2 +

n∑
i=1

λi|β|↓i
}

with parameters λ1 ≥ λ2 ≥ · · · ≥ λn and λ1 > 0.

We are interested in n (number of features) large and/or m (number of
samples) large. Note that the regularization term in SLOPE (ordered
Lasso) is not separable.
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More on the loss functions

In the loss function part, f can be the logistic regression function, defined
as below: given b ∈ <m and X ∈ <m×n,

f(β) =

m∑
i=1

log(1 + exp(−bi(Xβ)i)) (1)

Define h : <m → < as follows

h(z) =

m∑
i=1

log(1 + exp(−bizi)) ∀ z ∈ <m

The function f defined by (1) can be written as

f(β) = h(Xβ)
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More on the loss functions (continued)

In general, the loss function f : <pK → < can take as the multinomial
logistic regression function: given A := (A1, . . . , AN )T ∈ <N×p,

f(β) = −
N∑
i=1

(
K∑
k=1

yikA
T
i βk − log

K∑
k=1

exp(ATi βk)

)
(2)

Define h : <NK → < as follows:

h(z) := −
N∑
i=1

(
K∑
k=1

yikZik − log

K∑
k=1

exp(Zik)

)
, with Z := mat(z)

Then the function f defined by (2) can be written as

f(β) := h(Xβ), withX := I ⊗A ∈ <NK×pK
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The nonconvex case

A proper nonconvex regularization can achieve a sparse estimation with
fewer measurements, faster convergence and more robust against noises.

In this talk, we aim to develop an efficient and robust algorithm for solving
the following nonconvex problem (P):

min
β∈<n

{
g(β) := h(Xβ)︸ ︷︷ ︸

f(β)

+ p(β)− q(β)︸ ︷︷ ︸
r(β)

}
(3)

Here p : <n → (−∞,+∞] is a proper closed convex function and
q : <n → < is a finite-valued (smooth, not essential) convex function.
Moreover, we require the proximal functions of h and p to be (strongly)
semismooth.
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Nonconvex regularizers: SCAD

For λ > 0, the SCAD regularization is defined by r(β) = p(β)− q(β) with

p(β) = λ‖β‖1

q(β) =
∑n
i=1


0, if |βi| < λ

(|βi|−λ)2

2(as−1) , if λ ≤ |βi| ≤ asλ
λ|βi| − as+1

2 λ2, if |βi| > asλ

Note that q(·) is continuously differentiable. In our numerical experiments,
we take as = 3.7.
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Nonconvex regularizers: MCP

For two positive parameters am > 2 and λ, the MCP regularization can be
defined as r(β) = p(β)− q(β) with

p(β) = λ‖β‖1

q(β) =
∑n
i=1

{
β2
i

am
, if |βi| ≤ amλ,

2λ|βi| − amλ2, if |βi| > amλ

The function q(·) is continuously differentiable with its derivative given by

∂q(β)

∂βi
=

{
2βi
am
, if |βi| ≤ amλ,

2λ sign(βi), if |βi| > amλ

In our numerical experiments, we take am = 3.7.
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Nonconvex regularizers: Difference of Ky Fan norms

For any positive integer k, let ‖ · ‖(k) denote Ky Fan’s k-norm function,
i.e., for any β ∈ <n, ‖β‖(k) is the sum of the first k largest absolute values
of β.

By noting that the cardinality constraint

‖β‖0 ≤ k

can be written equivalently as

‖β‖(k) = ‖β‖1,

in the majorized penalty method (Gao & S., 2010) we define the
regularization term r(β) = p(β)− q(β) with

p(β) = ||β‖1 & q(β) = ‖β‖(k) ∀β ∈ <n

or
p(β) = ||β‖(k+1) & q(β) = ‖β‖(k) ∀β ∈ <n

Note that q(·) is continuously differentiable near any β with ‖β‖0 = k.
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mPPDNA

Next, we shall consider the promised majorized proximal point dual
Newton algorithm (mPPDNA) to solve the following problem [e.g., the
srLasso problem for example]

min
β∈<n

{
h(Xβ) + p(β)− q(β)

}

In Stage 1, replace q by its linear approximation at the origin [when
q(0) = 0 and 0 ∈ ∂q(0), which hold true for many interesting cases of
q, we just delete q from the original problem] and add “proper”
proximal terms to obtain an initial point for the second stage.

In Stage 2, a series of majorized proximal subproblems are solved to
obtain an approximate solution point.
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The subproblem

Given σ > 0, τ > 0, β̃ ∈ <n, ṽ ∈ <n, b̃ ∈ <m, in our main algorithm
(mPPDNA) we need to solve the following minimization subproblem

min
β∈<n

{
g(β;σ, τ, β̃, ṽ, b̃) := h(Xβ) + p(β)︸ ︷︷ ︸

convex

− (q(β̃) + 〈ṽ, β − β̃〉)︸ ︷︷ ︸
linear

+
σ

2
‖β − β̃‖2 +

τ

2
‖Xβ − b̃‖2

}
(4)

Here, ṽ ∈ ∂q(β̃). Obviously, g(·;σ, τ, β̃, ṽ, b̃) is a strongly convex function

albeit nonsmooth or non-Lipschitian.

The big question is how one can solve (4) in a fast and robust way!!!

For the convex case: q ≡ 0

If h is strongly convex on E , we can take τ = 0 though not necessary
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The dual of the subproblem

The dual of (4), after converting it into the minimization form and
ignoring the constant term, is

min
u∈<m

{
φ(u;σ, τ) :=

τ

2
‖b̃+ τ−1u‖2 − eτh(b̃+ τ−1u)

+
σ

2
‖β̃ + σ−1(ṽ −X∗u)‖2 − eσp(β̃ + σ−1(ṽ −X∗u))

}
.

Recall that for any t > 0, etf(·) is the Moreau envelope of a closed proper
convex function f , associated with t, given by

etf(x) := min
z∈<n

{
f(z) +

t

2
‖z − x‖2

}
, ∀ x ∈ <n. (5)

Here etf(·) is continuously differentiable with

∇etf(x) = t[x− Ptf(x)], ∀x ∈ <n,

where Ptf(x) is the unique optimal solution to problem (5). Ptf(·), called
the proximal mapping of f , is globally Lipschitz continuous with modulus
1.
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A semismooth Newton method for the subproblem

We shall apply the superlinearly (quadratically) convergent sparse
semismooth Newton method to find the solution ū of the nonsmooth
equations

∇φ(u;σ, τ) = Pτh(b̃+ τ−1u)−XPσp(β̃ + σ−1(ṽ −X∗u)) = 0.

Then the unique optimal solution β̄ to problem (4) is

β̄ = Pσp(β̃ + σ−1(ṽ −X∗ū)).

Proposition

Suppose that problem (4) is nondegenerate, which holds true if
f(·) ≡ h(X·) is continuously differentiable near β̄ (this is the no-overfitting
assumption for the squared root Lasso problem). Then all the elements in
Clarke’s generalized Jacobian ∂2φ(ū) are self-adjoint and positive definite.
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A globalized SSN algorithm for the subproblem (4)

Algorithm SSN (SSN(σ, τ)): Given µ ∈ (0, 1
2 ), η ∈ (0, 1), τ̄ ∈ (0, 1], ν1,

ν2 ∈ (0, 1), and δ ∈ (0, 1), choose u0 ∈ <m. Set j = 0 and iterate the
following steps.

1. Choose V j ∈ ∂Pτh(b̃+ τ−1uj) and U j ∈ ∂Pσp(β̃ + σ−1(ṽ −X∗uj)).
Let Hj = τ−1V j + σ−1XU jX∗ and find the exact solution ∆uj or
apply the PCG method to find an approximate solution ∆uj to

(Hj + εjI)∆u = −∇φ(uj ;σ, τ)

such that

‖Hj∆uj +∇φ(uj ;σ, τ)‖ ≤ ηj := min(η, ‖∇φ(uj ;σ, τ)‖1+τ̄ )

where εj := ν1 min
{
ν2, ‖∇φ(uj ;σ, τ)‖

}
2. Set αj = δlj , where lj is the first nonnegative integer l for which

φ(uj + δl∆uj ;σ, τ) ≤ φ(uj ;σ, τ) + µδl〈∇φ(uj ;σ, τ), (∆uj)〉

3. Set uj+1 = uj + αj∆u
j
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Nonsmooth Newton’s method for inner problems

Theorem

Assume that Pτh(·) and Pσp(·) are strongly semismooth. If problem (4) is
nondegenerate, in particular if f(·) ≡ h(X·) is continuously differentiable
near β̄, then {uj} converges to the unique optimal solution ū and

‖uj+1 − ū‖ = O(‖uj − ū‖1+τ̄ ).

Note that if τ̄ = 1, we get the quadratic convergence.
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mPPDNA

Algorithm. Let σ0, σ1 > 0, τ0, τ1 > 0 be given parameters

1. Compute

β1 ≈ argmin
β∈<n

{
g(β;σ0, τ0, 0, 0, b)

}
via solving its dual problem such that a prescribed stopping criterion
is satisfied. Let k = 1 and go to Step 2.1.

2.1 Choose vk ∈ ∂q(βk) and compute

βk+1 = argmin
β∈<n

{
g(β;σk, τk, βk, vk, Xβk) + 〈δk, β − βk〉

}
via solving its dual problem such that the vector δk satisfies a
prescribed accuracy condition.

2.2. If βk+1 satisfies a prescribed stopping condition, terminate; otherwise
update σk+1 = ρkσ

k, τk+1 = ρkτ
k with ρk ∈ (0, 1) and return to

Step 2.1 with k = k + 1.
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PPDNA: for the convex case of q(·) ≡ 0

Algorithm. Let σ0, σ1 > 0, τ0, τ1 > 0 be given parameters. β0 ∈ dom(p).

1. Compute

β1 ≈ argmin
β∈<n

{
f(β) + p(β) +

σ0

2
‖β − β0‖2 +

τ0

2
‖Xβ − b‖2

}
via solving its dual problem such that a prescribed stopping criterion
is satisfied. Let k = 1 and go to Step 2.1.

2.1 Compute

βk+1 ≈ argmin
β∈<n

{
f(β) + p(β) +

1

2

∥∥β − βk∥∥2

σkI+τkX∗X

}
via solving its dual problem satisfying a prescribed accuracy condition.

2.2. If βk+1 satisfies a prescribed stopping condition, terminate; otherwise
update σk+1 = ρkσ

k, τk+1 = ρkτ
k with ρk ∈ (0, 1) and return to

Step 2.1 with k = k + 1.
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PPDNA: Rates of Convergence

For simplicity, assume that we take for some constant c > 0 that

τk ≡ cσk ∀k.

Then the k-th subproblem of PPDNA can be written as

βk+1 ≈ argmin
β∈<n

{
gk(β) := f(β) + p(β) +

σk
2

∥∥β − βk∥∥2

M

}
,

where
M := I + cX∗X � 0.
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PPDNA: Stopping Criterion

The stopping criterion for inner subproblems

(A) gk(βk+1)− inf gk ≤ σkε2
k/2,

∑
εk <∞.

Theorem (Global convergence)

Suppose that the solution set to (P) is nonempty. Then, {βk} is bounded
and converges to an optimal solution β∗ of (P).
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PPDNA: Fast linear local convergence

Assumption (Error bound)

For a maximal monotone operator T (·) with T −1(0) 6= ∅, ∃ ε > 0 and
a > 0 s.t.

∀η ∈ B(0, ε) and ∀ξ ∈ T −1(η), distM (ξ, T −1(0)) ≤ a‖η‖M ,

where B(0, ε) = {y ∈ Y | ‖y‖ ≤ ε}. The constant a is called the error
bound modulus associated with T .

1 In many cases, T is a polyhedral multifunction [Robinson, 1981].
2 Tg (∂g) of LASSO, fused LASSO and elastic net regularized LS

problems (piecewise linear-quadratic programming problems [J. Sun,
PhD thesis, 1986] +1 ⇒ error bound).

3 Tg of `1 or elastic net regularized logistic regression [Luo and Tseng,
1992; Tseng and Yun, 2009].
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PPDNA: Fast linear local convergence

Stopping criterion for the local convergence analysis

(B) gk(βk+1)− inf gk

≤min{1, (σkδ2
k/2)}‖βk+1 − βk‖2M ,

∑
δk <∞.

Theorem

Assume that the solution set Ω to (P) is nonempty. Assume that error
bound condition holds for Tg with modulus lg. Then, {βk} is convergent
and, for all k sufficiently large,

distM (βk+1,Ω) ≤ θkdistM (βk,Ω),

where θk ≈
(
lg(l

2
g + σ−2

k )−1/2 + 2δk
)
→ θ∞ = (lgσ∞)/

√
1 + (lgσ∞)2 < 1

as k →∞.

Note that θ∞ << 1 when lgσ∞ is close to zero. Thus, PPDNA can be
treated as an approximate Newton’s method!!! (arbitrary linear
convergence rate, a name coined by M.J.D. Powell in 1969).
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Summary: outer iterations and inner iterations

So far we have

1 Outer iterations (PPA): asymptotically superlinear (arbitrary rate of
linear convergence)

2 Inner iterations (nonsmooth Newton): superlinear + cheap

Essentially, we have a ”fast2” algorithm.
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The mPPDNA for the nonconvex case: KL property

Let η > 0 and Φη be a set of all concave functions φ : [0, η)→ <+

such that φ(0) = 0, φ is continuous at 0 and continuously
differentiable on (0, η) and φ′(x) > 0, for ∀ x ∈ (0, η).

The function f is said to have the Kurdyka- Lojasiewicz (KL) property
at x̄ if there exists η > 0, a neighbourhood U of x̄ and a concave
function φ ∈ Φη such that

φ′(f(x)− f(x̄))dist(0, ∂f) ≥ 1, ∀x ∈ U and f(x̄) < f(x) < f(x̄) + η,

where dist(x,C) := miny∈C ‖y − x‖ is the distance from a point x to
a nonempty closed set C.

A function is said to have the KL property at x̄ with an exponent α if the
function φ in the definition of the KL property takes the form as
φ(x) = γx1−α with γ > 0 and α ∈ [0, 1).
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Convergence analysis

Theorem

Suppose that the function g(·) is bounded below and that q is
continuously differentiable near B∞, the set of all cluster points of the
sequence {βk} generated by mPPDNA. Then every cluster point in B∞, if
exists, is a d-stationary point of (3).

Theorem

Suppose that the function g(·) is bounded below and that q is
continuously differentiable near B∞, the set of all cluster points of the
sequence {βk} generated by mPPDNA. If either one of the following two
conditions holds,

(a) B∞ contains an isolated element;

(b) The sequence {βk} is bounded; for all β ∈ B∞, ∇q(·) is locally
Lipschitz continuous near β; and the function g has the KL property
at all β ∈ B∞;

then the whole sequence {βk} converges to a unique element of B∞.
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Convergence analysis

Theorem

Moreover, if the condition (b) is satisfied and {βk} converges to
β∞ ∈ B∞, the function g has the KL property at β∞ with an exponent
α ∈ [0, 1), then we have

(i) if α = 0, then the sequence {βk} converges in a finite number of
steps;

(ii) if α ∈ (0, 1
2 ], then the sequence {βk} converges R-linearly, that is, for

all k ≥ 1 there exist ν > 0 and η ∈ [0, 1) such that
‖βk − β∞‖ ≤ νηk;

(iii) if α ∈ ( 1
2 , 1), then the sequence {βk} converges R-sublinearly, that is,

for all k ≥ 1 there exists ν > 0 such that ‖βk − β∞‖ ≤ νk−
1−α
2α−1 .
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Numerical experiments

Our numerical experiments are implemented on a PC (Intel Core 2
Duo 2.6 GHz with 4 GB RAM).

The parameter λ is defined by λ = λcΛ, Λ = 1.1Φ−1(1− 0.05/(2n))
with Φ the cumulative normal distribution function.

The number of nonzero elements of a vector is defined by the minimal
k such that

k∑
i=1

|β̃i| ≥ 0.9999‖β‖1

where β̃ is obtained by sorting β such that |β̃1| ≥ |β̃2| ≥ . . . ≥ |β̃n|
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Stopping criteria for the convex square-root problems

The step 1 of the mPPNDA algorithm will be terminated if the relative
KKT residual1 satisfies

ηkkt :=

∥∥∥β − Pλp
(
β − X∗(Xβ−b)

‖Xβ−b‖

)∥∥∥
1 + ‖β‖+ ‖X∗(Xβ−b)‖

‖Xβ−b‖

< 10−6, (6)

or the number of iterations reaches the maximum 200 while the ADMMs
will be terminated if (6) is satisfied or the number of iterations reaches the
maximum 5000.

1Whenever possible, try to avoid using the “fast convergence criteria” such as the
relative distance of two consecutive iterates. Instead, try to design fast convergent
algorithms independent of the “fast convergence criteria”, which may only indicate that
the employed algorithm is slow for an earlier termination.
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Numerical results

Table: The performances of the Flare package and pADMM on
synthetic datasets for the srLasso problem.

probname λc pobj time
m; n Flare | pADMM Flare | pADMM
exmp1 1.0 3.8876+3 | 3.5799+3 11:26 | 12

8000;800 0.5 3.0501+3 | 1.9174+3 21:09 | 13
0.1 1.0487+3 | 5.8738+2 28:42 | 16

exmp2 1.0 2.2422+3 | 2.2419+3 14:09 | 19
8000;800 0.5 1.8050+3 | 1.2811+3 27:18 | 11

0.1 5.6150+2 | 4.6013+2 27:37 | 09
exmp3 1.0 2.4758+3 | 2.4569+3 10:05 | 07

8000;400 0.5 1.9819+3 | 1.9421+3 7:26 | 07
0.1 1.4888+3 | 1.4438+3 7:14 | 05

exmp4 1.0 1.1210+4 | 1.1205+4 29:11 | 20:16
8000;4000 0.5 1.0165+4 | 1.0165+4 1:43:48 | 21:48

0.1 7.6846+3 | 3.4069+3 3:11:27 | 5:12
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Numerical results

Table: The performances of the Flare package and pADMM on
UCI datasets for the srLasso problem.

probname λc pobj time
m; n Flare | pADMM Flare | pADMM

abalone.scale.expanded7 1.0 – | 2.3852+2 – | 25:57
4177;6435 0.5 – | 2.0312+2 – | 25:32

0.1 – | 1.5586+2 – | 26:29
mpg.scale.expanded7 1.0 2.3550+2 | 2.3544+2 1:00 | 04

392;3432 0.5 1.5856+2 | 1.5831+2 57 | 03
0.1 7.8656+1 | 7.8616+1 1:06 | 03

space.ga.scale.expanded9 1.0 1.3113+1 | 1.3113+1 12:59 | 5:19
3107;5005 0.5 2.2419+1 | 2.1607+1 9:01 | 2:00

0.1 1.2950+1 | 1.1999+1 6:13 | 3:00

The “–” in the Table means that the Flare package fails to solve the problem due to being out of
memory.
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Numerical results

Table: The performances of ADMMs and PPDNA on synthetic datasets for the
srLasso problem. In the table, “a”=PPDNA, “b”=pADMM, “c”=dADMM.

probname λc nnz
ηkkt ηG pobj time

testerror
m; n a | b | c a | b | c a | b | c a | b | c

exmp1
0.127 499 9.4-7 | 9.9-7 | 9.9-7 1.9-8 | 3.1-7 | 1.7-8 6.6996+2 | 6.6996+2 | 6.6996+2 30 | 3:49 | 2:44 9.4085+0

8000;800

exmp2
0.081 627 9.8-7 | 9.9-7 | 9.9-7 2.6-9 | 1.8-7 | 7.2-9 4.1824+2 | 4.1824+2 | 4.1824+2 32 | 1:49 | 2:26 9.4807+0

8000;800

exmp3
0.124 298 7.4-7 | 9.1-7 | 9.9-7 4.8-9 | 1.1-7 | 3.7-9 1.4476+3 | 1.4476+3 | 1.4476+3 08 | 17 | 1:05 2.3420+2

8000;400

exmp4
0.117 2845 7.7-7 | 9.9-7 | 9.5-7 8.6-10 | 5.2-7 | 5.3-7 3.6799+3 | 3.6799+3 | 3.6799+3 4:41 | 5:41 | 16:44 3.6759+2

8000;4000
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Numerical results

Table: The performances of ADMMs and PPDNA on synthetic datasets for the
srLasso problem. In the table, “a”=PPDNA, “b”=pADMM, “c”=dADMM.

probname λc nnz
ηkkt ηG pobj time

testerror
m; n a | b | c a | b | c a | b | c a | b | c

exmp1
0.127 499 9.4-7 | 9.9-7 | 9.9-7 1.9-8 | 3.1-7 | 1.7-8 6.6996+2 | 6.6996+2 | 6.6996+2 30 | 3:49 | 2:44 9.4085+0

8000;800

exmp2
0.081 627 9.8-7 | 9.9-7 | 9.9-7 2.6-9 | 1.8-7 | 7.2-9 4.1824+2 | 4.1824+2 | 4.1824+2 32 | 1:49 | 2:26 9.4807+0

8000;800

exmp3
0.124 298 7.4-7 | 9.1-7 | 9.9-7 4.8-9 | 1.1-7 | 3.7-9 1.4476+3 | 1.4476+3 | 1.4476+3 08 | 17 | 1:05 2.3420+2

8000;400

exmp4
0.117 2845 7.7-7 | 9.9-7 | 9.5-7 8.6-10 | 5.2-7 | 5.3-7 3.6799+3 | 3.6799+3 | 3.6799+3 4:41 | 5:41 | 16:44 3.6759+2

8000;4000
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Numerical results

Table: The performances of ADMMs and PPDNA on UCI datasets for the
srLasso problem. In the table, “a”=PPDNA, “b”=pADMM, “c”=dADMM.

probname λc nnz
ηkkt ηG pobj time

m; n a | b | c a | b | c a | b | c a | b | c
E2006.test

0.019 1 5.7-7 | 3.2-7 | 9.7-7 2.5-7 | 3.8-8 | 8.1-9 2.1998+1 | 2.1998+1 | 2.1998+1 05 | 07 | 05
3308;150358

log1p.E2006.test
0.260 201 7.9-7 | 1.2-4 | 1.2-3 2.8-6 | 3.0-3 | 3.9-5 2.1642+1 | 2.1713+1 | 2.1642+1 1:49 | 2:17:37 | 1:22:12

3308;1771946

pyrim.scale.expanded5
0.109 70 5.9-7 | 2.0-5 | 3.7-3 6.9-7 | 4.7-3 | 3.8-4 6.8301-1 | 6.9094-1 | 6.8308-1 18 | 20:31 | 12:10

74;201376

abalone.scale.expanded7
0.004 82 9.6-7 | 9.9-7 | 8.8-7 1.0-9 | 3.0-7 | 6.4-9 1.3495+2 | 1.3495+2 | 1.3495+2 07 | 1:32 | 7:57

4177;6435

bodyfat.scale.expanded7
0.012 51 7.4-7 | 1.1-6 | 9.9-7 2.2-8 | 6.3-5 | 3.5-9 8.5770-2 | 8.5834-2 | 8.5767-2 10 | 27:59 | 8:38

252;116280
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Stopping criteria for the nonconvex square-root problems

In our mPPDNA, the step 1 is used to generate an initial point for the
step 2 and is stopped if ηkkt < 10−4. The algorithms will be terminated if
the relative KKT residual satisfies

η̃kkt :=

∥∥∥β − P1(p− q)
(
β − X∗(Xβ−b)

‖Xβ−b‖

)∥∥∥
1 + ‖β‖+ ‖X∗(Xβ−b)‖

‖Xβ−b‖ ‖
< 10−6

Besides, the algorithms will also be stopped when they reach the pre-set
maximum number of iterations (200 for the second step of mPPDNA and
5000 for ADMM).
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Nonconvex regularizers: SCAD

For λ > 0, the SCAD regularization is defined by r(β) = p(β)− q(β) with

p(β) = λ‖β‖1

q(β) =
∑n
i=1


0, if |βi| < λ

(|βi|−λ)2

2(as−1) , if λ ≤ |βi| ≤ asλ
λ|βi| − as+1

2 λ2, if |xi| > asλ

In our numerical experiments, we take as = 3.7.
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Numerical results for the SCAD regularization

Table: The performances of ADMM and mPPDNA on synthetic datasets
for the SCAD regularization. In the table,“a”=mPPDNA, “b”=ADMM.

probname λc nnz
ηkkt pobj time

testerror
m; n a | b a | b a | b

exmp1
0.145 460 3.9-7 | 5.9-1 5.9368+2 | 5.9392+2 20 | 3:39 9.2406+0

8000;800

exmp2
0.087 616 5.9-7 | 1.0-1 4.0760+2 | 4.0777+2 28 | 3:33 9.3745+0

8000;800

exmp3
0.230 293 7.8-7 | 2.7-1 1.5486+3 | 1.5529+3 10 | 2:02 2.3629+2

8000;400

exmp4
0.153 2554 5.4-7 | 6.8-1 3.1837+3 | 3.1940+3 4:21 | 16:41 3.4480+2

8000;4000
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Numerical results for the SCAD regularization

Table: The performances of ADMM and mPPDNA on UCI datasets for
the SCAD regularization. In the table,“a”=mPPDNA, “b”=ADMM.

probname λc nnz
ηkkt pobj time

m; n a | b a | b a | b
E2006.test

0.071 1 2.2-8 | 9.0-7 2.2165+1 | 2.2165+1 08 | 12:51
3308;150358

log1p.E2006.test
0.257 207 2.1-7 | 5.9-3 2.1613+1 | 2.1366+2 3:50 | 2:36:14

3308;1771946

pyrim.scale.expanded5
0.109 70 1.4-7 | 4.3-3 6.8301-1 | 7.2608-1 13 | 21:26

74;201376

abalone.scale.expanded7
0.011 49 9.9-7 | 6.9-1 1.3292+2 | 1.3864+2 12 | 21:41

4177;6435

bodyfat.scale.expanded7
0.201 2 3.9-8 | 7.6-2 9.4125-1 | 9.5136-1 06 | 25:51

252;116280
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Nonconvex regularizers: MCP

For two positive parameters am > 2 and λ, the MCP regularization can be
defined as r(β) = p(β)− q(β) with

p(β) = λ‖β‖1

q(β) =
∑n
i=1

{
β2
i

am
, if |βi| ≤ amλ,

2λ|βi| − amλ2, if |βi| > amλ

The function q(·) is continuously differentiable with its derivative given by

∂q(β)

∂βi
=

{
2βi
am
, if |βi| ≤ amλ,

2λsign(βi), if |βi| > amλ

In our numerical experiments, we take am = 3.7.

43



Numerical results for the MCP regularization

Table: The performances of ADMM and mPPDNA on synthetic datasets
for the MCP regularization. In the table,“a”=mPPDNA, “b”=ADMM.

probname λc nnz
ηkkt pobj time

testerror
m; n a | b a | b a | b

exmp1
0.209 380 5.2-8 | 1.9-2 5.5695+2 | 5.6091+2 29 | 3:33 9.3483+0

8000;800

exmp2
0.151 535 2.7-7 | 1.3-1 4.5225+2 | 4.5414+2 38 | 3:30 9.4916+0

8000;800

exmp3
0.081 267 9.3-7 | 1.5-1 1.3590+3 | 1.3617+3 1:11 | 2:01 2.3613+2

8000;400

exmp4
0.293 1821 9.4-7 | 6.9-2 4.1362+3 | 4.2741+3 5:33 | 16:37 3.8471+2

8000;4000
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Numerical results for the MCP regularization

Table: The performances of ADMM and mPPDNA on UCI datasets for
the MCP regularization. In the table,“a”=mPPDNA, “b”=ADMM.

probname λc nnz
ηkkt pobj time

m; n a | b a | b a | b
E2006.test

0.090 1 2.4-8 | 9.3-7 2.2077+1 | 2.2077+1 07 | 07
3308;150358

log1p.E2006.test
0.261 187 8.2-7 | 2.2-3 2.1455+1 | 3.6500+1 4:09 | 2:20:46

3308;1771946

pyrim.scale.expanded5
0.221 43 9.9-7 | 7.0-3 1.1428+0 | 4.6112+0 18 | 19:36

74;201376

abalone.scale.expanded7
0.012 55 7.1-7 | 1.6-5 1.3271+2 | 1.2693+2 09 | 21:32

4177;6435

bodyfat.scale.expanded7
0.183 2 2.8-7 | 5.3-6 5.7347-1 | 5.8278-1 06 | 25:11

252;116280
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