Solving log-determinant optimization
problems by a Newton-CG primal proximal
point algorithm

Chengjing Wang * Defeng Sun "and Kim-Chuan Toh *
September 30, 2009; Revised, March 12, 2010

Abstract

We propose a Newton-CG primal proximal point algorithm for solving large
scale log-determinant optimization problems. Our algorithm employs the essential
ideas of the proximal point algorithm, the Newton method and the preconditioned
conjugate gradient solver. When applying the Newton method to solve the inner
sub-problem, we find that the log-determinant term plays the role of a smoothing
term as in the traditional smoothing Newton technique. Focusing on the prob-
lem of maximum likelihood sparse estimation of a Gaussian graphical model, we
demonstrate that our algorithm performs favorably comparing to the existing state-
of-the-art algorithms and is much more preferred when a high quality solution is
required for problems with many equality constraints.

Keywords: Log-determinant optimization problem, Sparse inverse covariance selec-
tion, Proximal point algorithm, Newton’s method

*Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore
119076 (matwc@nus.edu.sg).

"Department of Mathematics and NUS Risk Management Institute, Department of Mathematics Na-
tional University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076 (matsundf@nus.edu.sg).
The research of this author is partially supported by the Academic Research Fund Under Grant R-146-
000-104-112.

‘Department of Mathematics National University of Singapore, 10 Lower Kent Ridge Road, Singapore
119076 (mattohkc@nus.edu.sg); and Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576.

1 Introduction

In this paper, by defining log0 := —oc0, we consider the following standard primal and
dual log-determinant (log-det) problems:

(P) r%}n{(C’, X)—plogdet X : A(X) =05, X =0},
(D) max {bTy + plogdet Z + nu(1 —logp) : Z+ Aty =C, Z =0},
Y,
where C' € 8™, b € R™, u > 0 is a given parameter, A : 8" — R™ is a linear map and

AT R™ — 8" is the adjoint of A. We assume that A is surjective, and hence AAT is
nonsingular. Note that the linear maps A and AT can be expressed, respectively, as

T T m
AX) = [(An, XD o (A, XY AT () = Y e, 1)
k=1
where A, k = 1,---,m are given matrices in S™. As for the explanation of all other

main notations one may see Subsection 1.1.

It is clear that the log-det problem (P) is a convex optimization problem, i.e., the
objective function (C, X) — plogdet X is convex (on S7), and the feasible region is
convex. The log-det problems (P) and (D) can be considered as a generalization of linear
semidefinite programming (SDP) problems. One can see that in the limiting case where
i = 0, they reduce, respectively, to the standard primal and dual linear SDP problems.
Log-det problems arise in many practical applications such as computational geometry,
statistics, system identification, experiment design, and information and communication
theory. Thus the algorithms we develop here can potentially find wide applications. One
may refer to [5, 27, 24] for an extensive account of applications of the log-det problem.

For small and medium sized log-det problems, including linear SDP problems, it is
widely accepted that interior-point methods (IPMs) with direct solvers are generally very
efficient and robust; see for example [24, 25]. For log-det problems with m large and n
moderate (say no more than 2,000), the limitations faced by IPMs with direct solvers
become very severe due to the need of computing, storing, and factorizing the m x m
Schur matrices that are typically dense.

Recently, Zhao, Sun and Toh [32] proposed a Newton-CG augmented Lagrangian
(NAL) method for solving linear SDP problems. This method can be very efficient when
the problems are primal and dual nondegenerate. The NAL method is essentially a proxi-
mal point method applied to the primal problem where the inner sub-problems are solved
by an inexact semi-smooth Newton method using a preconditioned conjugate gradient
(PCG) solver. Recent studies conducted by Sun, Sun and Zhang [23] and Chan and Sun
[6] revealed that under the constraint nondegenerate conditions for (P) and (D) (i.e.,
the primal and dual nondegeneracy conditions in the IPMs literature, e.g., [1]), the NAL
method can locally be regarded as an approximate generalized Newton method applied

to a semismooth equation. The latter result may explain to a large extent why the NAL
method can be very efficient.

As the log-det problem (P) is an extension of the primal linear SDP, it is natural for
us to further use the NAL method developed for linear SDPs to solve log-det problems.
Following what has been done in linear SDPs, our approach is to apply a Newton-CG pri-
mal proximal point algorithm (PPA) to (P), and then to use an inexact Newton method
to solve the inner sub-problems by using a PCG solver to compute inexact Newton direc-
tions. We note that when solving the inner sub-problems in the NAL method for linear
SDPs [32], a semi-smooth Newton method has to be used since the objective functions
are differentiable but not twice continuously differentiable. But for log-det problems, the
objective functions in the inner sub-problems are twice continuously differentiable (actu-
ally, analytic) due to the fact that the term —plogdet X acts as a smoothing term. This
interesting phenomenon implies that the standard Newton method can be used to solve
the inner sub-problem. It also reveals a close connection between adding the log-barrier
term —plogdetX to a linear SDP and the technique of smoothing the KKT conditions
[6].

In [19, 20], Rockafellar established a general theory on the global convergence and
local linear rate of convergence of the sequence generated by the proximal point and
augmented Lagrangian methods for solving convex optimization problems including (P)
and (D). Borrowing Rockafellar’s results, we can establish global convergence and local
convergence rate for our Newton-CG PPA method for (P) and (D) without much difficulty.

In problem (P), we only deal with a matrix variable, but the PPA method we de-
velop in this paper can easily be extended to more general log-det problems to include
vector variables. Although this kind of extension seems trivial, however, the numerical
experiments in Section 6 includes these problems, thus we still list them as follows:

min{(C, X) — plogdet X + 'z —vlogz : A(X)+Bx =0, X = 0,2 >0}, (2)
max{b’y + plogdet Z +vlogz+r : Z+ Aly=C, 2+ By =c¢, Z>=0,2>0}, (3)

where v > 0 is a given parameter, ¢ € R! and B € R™! are given data, and k =
np(l —logp) + lv(1 —logv).

In the implementation of our Newton-CG PPA method, we focus on the maximum
likelihood sparse estimation of a Gaussian graphical model (GGM). This class of problems
includes two subclasses. The first subclass is that the conditional independence of a model
is completely known, and it can be formulated as follows:

min {(S, X) —logdetX : X;; =0, ¥ (i,j) € Q, X = 0}, (4)
where) is the set of pairs of nodes (i,7) in a graph that are connected by an edge,
and S € 8" is a given sample covariance matrix. Problem (4) is also known as a sparse
covariance selection problem. In [7], Dahl, Vandenberghe and Roychowdhury showed
that when the underlying dependency graph is nearly-chordal, an inexact Newton method

3

combined with an appropriate PCG solver can be quite efficient in solving (4) with n up
to 2,000 but on very sparse data (for instance, when n = 2,000, the number of upper
nonzeros is only about 4,000 ~ 6,000). But for general large scale problems of the form
(4), little research has been done in finding efficient algorithms to solve the problems. The
second subclass of the GGM is that the conditional independence of the model is partially
known, and it is formulated as follows:

m)}n{(S, X) —logdet X + Y pyl Xyl : Xy =0, V(i.5) € Q X = o}. (5)
(4,9) ¢4

In [8], d’Aspremont, Banerjee, and El Ghaoui, among the earliest, proposed to apply
Nesterov’s smooth approximation (NSA) scheme to solve (5) for the case where Q = ().
Subsequently, Lu [11, 12] suggested an adaptive Nesterov’s smooth (ANS) method to
solve (5). The ANS method is currently one of the most effective methods for solving
large scale problems (e.g., n > 1,000, m > 500, 000) of the form (5). In the ANS method,
the equality constraints in (5) are removed and included in the objective function via
the penalty approach. The main idea in the ANS method is basically to apply a variant
of Nesterov’s smooth method [17] to solve the penalized problem subject to the single
constraint X > 0. In fact, both the ANS and NSA methods have the same principle
idea, but the latter runs much slowly than the former. In contrast to IPMs, the greatest
merit of the ANS method is that it needs much lower storage and computational cost per
iteration. In [11], the ANS method has been demonstrated to be rather efficient in solving
randomly generated problems of form (5), while obtaining solutions with low/moderate
accuracy. However, as the ANS is a first-order method, it may require huge computing
cost to obtain high accuracy solutions. In addition, as the penalty approach is used in the
ANS method to solve (5), the number of iterations may increase drastically if the penalty
parameter is updated frequently. Another limitation of the ANS method introduced in
[11] is that it can only deal with the special equality constraints in (5). It appears to be
difficult to extend the ANS method to deal with more general equality constraints of the
form A(X) = 0.

After the first round of review, one referee brought [22] and [31] to our attention.
These two papers also dealt with (5), but without equality constraints. According to our
numerical experiments, for examples without equality constraints given in Section 6 (the
real data), only the alternating direction method (ADM) proposed by Yuan [31] seems
competitive with the PPA and the ANS [the ADM is slightly slower than the PPA, but
faster than the ANS]. It is worth further investigating if the ADM approach of Yuan [31]
can be used to solve the general model (5) efficiently.

Our numerical results show that for both problems (4) and (5), our Newton-CG PPA
method can be very efficient and robust in solving large scale problems generated as in
[8] and [11]. Indeed, we are able to solve sparse covariance selection problems with n up
to 2,000 and m up to 1.8 x 10° in about 26 minutes. For both problems, our method
consistently outperforms the ANS method by a substantial margin, especially when the
problems are large and the required accuracy tolerances are relatively high.

4

The remaining part of this paper is organized as follows. In Section 2, we give some
preliminaries including a brief introduction on concepts related to the proximal point
algorithm. In Section 3 and 4, we present the details of the PPA method and Newton-
CG algorithm. In Section 5, we give the convergence analysis of our PPA method. The
numerical performance of our algorithm is presented in Section 6. Finally, we give some
concluding remarks in Section 7.

1.1 Notations

In this paper, all vectors are assumed to be finite dimensional. The symbols R"™ denotes
the n-dimensional Euclidean space. The set of all m x n matrices with real entries is
denoted by R™*™. The space of all symmetric n x n matrices is denoted by 8", (-, ")
stands for the standard trace inner product in §”, and || - || denotes the Frobenius norm.
Moreover, ST (resp., S}) is the cone of n X n symmetric positive semidefinite (resp.,
definite) matrices. If X € S, we also write X = 0. Given matrices X and Y in R™*",
X oY denotes the Hadamard product of X and Y.

2 Preliminaries

For the sake of subsequent discussions, we first introduce some concepts related to the
proximal point method based on the classic papers by Rockafellar [19, 20].

Let H be a real Hilbert space with an inner product (-, -). A multifunction T : H = H
is said to be a monotone operator if

(z =2, w—w'") >0, whenever w € T(z), w' € T(Z). (6)
It is said to be mazimal monotone if, in addition, the graph
G(T)={(z,w) e Hx HlweT(z)}

is not properly contained in the graph of any other monotone operator 77 : H = H.
For example, if T" is the subdifferential 0f of a lower semicontinuous convex function
f:H — (—o00,+00], f # +00, then T is maximal monotone (see Minty [14] or Moreau
[15]), and the relation 0 € T'(z) means that f(z) = min f.

Rockafellar [19] studied a fundamental algorithm for solving

0eT(2), (7)

in the case of an arbitrary maximal monotone operator T'. The operator P = (I + \T)~!
is known to be single-valued from all of H into H, where A > 0 is a given parameter. It

is also nonexpansive:
1P(z) = P()|| < |z =],

and one has P(z) = z if and only if 0 € T'(z). The operator P is called the prozimal
mapping associate with AT, following the terminology of Moreau [15] for the case of
T =0f.

The PPA generates, for any starting point z°, a sequence {z*} in H by the approximate
rule:

s (1 N T) 7 (2R).

Here {\;} is a sequence of positive real numbers. In the case of T' = 0f, this procedure
reduces to

1
A %argmin{f(z)—i——Hz—zkHQ}. (8)
z 2L

Definition 2.1. (¢f. [19]) For a mazimal monotone operator T, we say that its inverse
T~ is Lipschitz continuous at the origin (with modulus a > 0) if there is a unique solution
z to z =T7Y0), and for some T > 0 we have

|z — 2| < allw]), where > € T~ (w) and ||w|| < 7.

We state the following lemma which will be needed later in the derivation of the PPA
method for solving (P).

Lemma 2.1. Let Y be an n X n symmetric matrix with eigenvalue decomposition Y =
PDPT with D = diag(d). We assume that dy > --+ > d, > 0 > dpyq-++ > d,. Let
v > 0 be given. For the two scalar functions ¢-(x) := (\/2? + 4y + x)/2 and ¢ (z) =
(22 4+ 4y —x)/2 for all x € R, we define their matriz counterparts:

Yi = 62 (Y) = Pding(¢} (d)P" and Y =65 (V) = Pdiag(é3(d)P. ()

Then
(a) The following decomposition holds: Y =Y, — Ya, where Y1,Ys = 0, and Y1Yy = 71.

(b) ¢ is continuously differentiable everywhere in 8" and its derivative (¢X)'(Y)[H] at
Y for any H € 8" is given by

(63)(Y)[H] = P(Qo (PTHP))PT,
where Q) € 8™ is defined by

o5 (di) + 97 (d;)

= ij=1,...,n.

Vi 4y +)& +47’
(c) (63) (Y)[V1 + Ya] = 93 (V).

Q

ij

Proof. (a) It is easy to verify that the decomposition holds. (b) The result follows from
[3, Ch. V.3.3] and the fact that

o7 () = oT(dy) _ ¢T(di) + ot (d;)
di — d; VETI 4\ J8 + 4

(c) We have (67)/ (V)Y +Ys] = P(9 o diag(¢ (d) + ¢ (d)) P" = Pdiag(é (d)P",
and the required result follows. Il

d; # d;.

3 The primal proximal point algorithm
Define the feasible sets of (P) and (D), respectively, by
Fp={XeS8" : AX)=bX>0}, Fp ={(y,Z) e R" xS" : Z+ ATy =C,Z = 0}.
Throughout this paper, we assume that the following conditions for (P) and (D) hold.
Assumption 3.1. Problem (P) satisfies the condition
31X, € S, such that A(X,) = b. (10)

Assumption 3.2. Problem (D) satisfies the condition

3 (yo, Zo) € R™ x ST, such that Z + ATy, = C. (11)

Under the above assumptions, problem (P) has a unique optimal solution, denoted
by X and problem (D) has a unique optimal solution, denoted by (7, Z). In addition,
the following Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for the
optimality of (P) and (D):

AX)—b = 0,
Z+ATy—C = 0, (12)
XZ = pl, X =0, Z>0.
The last condition in (12) can be easily seen to be equivalent to the following condition
P (X —AZ) =X with v := A (13)

for any given A > 0, where ¢ is defined by (9) in Lemma 2.1. Recall that in [32] for the
linear SDP case (where p = 0), the complementarity condition XZ = 0 with X, Z > 0,
is equivalent to I, (X — AZ) = X, for any A > 0, where I (+) is the metric projector
onto S}. One can see from (13) that when ;o > 0, the log-barrier term —plogdetX in (P)
contributed to a smoothing term in the projector I, .

7

Lemma 3.1. Given any Y € 8" and X\ > 0, we have

. 1 2 _i - 2 +
min { <[= Z||* = plogdet 2} = o~y (V)| = plogdet(@7(Y)), (14)

where v = A\.

Proof. Note that the minimization problem in (14) is an unconstrained problem and the
objective function is strictly convex and continuously differentiable. Thus any stationary
point would be the unique minimizer of the problem. The stationary point, if it exists, is
the solution of the following equation:

Y =Z—-~yZ" (15)

By Lemma 2.1(a), we see that Z, := ¢7 (V) satisfies (15). Thus the optimization problem
in (14) has a unique minimizer and the minimum objective function value is given by

1 .
Y = Z.|F° = plogdet Z. = o[|o7 (V)||* — plog det(¢7 (V).
This completes the proof. Il

Let I(X;y) : S x R™ — R be the ordinary Lagrangian function for (P) in extended
form:

z(x;y):{ (€, X) — plogdet X + (y, b— A(X)) if X €87, .

00 otherwise.

The essential objective function in (P) is given by

C, X)—plogdet X if X € Fp,
f(X):maxl(X;y)={<) = wlog "

yeER™

(17)

00 otherwise.

For later developments, we define the following maximal monotone operator associated
with (X, y):

TI(X,y) = {(Uwv)eS" xR (U,—v) €dl(X,y), (X,y)eS"xR"}.

Let F\ be the Moreau-Yosida regularization (see [15, 30]) of f in (17) associated with
A >0, ie.,

L 1 oy 1 9
FA(X) = min {f(Y) + [V - X[} = Ygggjf(ﬂ + oy IV = X% (18)
From (17), we have
1
F(X) = mi {ZY; —Y—X2}
X)) iy sup. V59) + o |
1
= sup min <[(Y; +—Y—X2}: sup O,(X,y), 19
swp min {UYVip)+ 3 IV = XIPE = swp €x(Xy), (19)

8

where

O:(X.y) = min {I(V5y) + v —xP)

= bTy+Ym1n {(C—ATy, Y) - ulogdetY+—HY XH}

++

1
- Wy - —HWA(X v)|” + y|X|y2 + min {ﬁuy = WA(X,)| ~ plogdetY }.

Yesy

Here Wy (X,y) :== X — A\(C — ATy). Note that the interchange of min and sup in (19)
follows from [18, Theorem 37.3]. By Lemma 3.1, the minimum objective value in the
above minimization problem is attained at Y, = ¢F (Wx(X,y)). Thus we have

1
ONX,y) =b"y + —|| " = o567 A(X,y)) P — plog det o7 (WA(X, y)) +np. - (20)
Note that for a given X, the function ©,(X,-) is analytic, cf. [26]. Its first and second

order derivatives with respect to y can be computed as in the following lemma.
Lemma 3.2. For anyy € R™ and X > 0, we have
ViOr(X y) = —AA(@]) (WA(X,y)) A" (22)

Proof. To simplify notation, we use W to denote W, (X, y) in this proof. To prove (21),
note that

VyOA(X,y) = b—A(e) (W)[o3 (W)] = MA(ey) (W)[(& (W) ~']
= b= A(6]) (W)[ey (W) + 65 (W)].

By Lemma 2.1(c), the required result follows. From (21), the result in (22) follows readily.
[

Let yx(X) be such that

yA(X) € arg sup O,(X,y).
yeER™

Then we know that ¢F(Wx(X,ya(X))) is the unique optimal solution to (18). Conse-
quently, we have that F)\(X) = O,(X,yA(X)) and

1

S(X = 0T (X)) = C = ATy = 56, (M) (23)

VF\(X) = 3

Given X" € 87, the exact PPA for solving (P), is given by

1
k41 _ —1/vky _ : b _yvk2
XK = (1 0T T X = ang i {700+ 5= X, (24)

where Ty = 0f. It can be shown [21, Theorem 2.26] that
XH = XP = N VEF, (XF) = ¢ (WA(XF y, (XF))), (25)

where v, = A\ pt.
The exact PPA outlined in (24) is impractical for computational purpose. Hence we
consider an inexact PPA for solving (P), which has the following template.

Algorithm 1: The Primal PPA. Given a tolerance ¢ > 0. Input X° € 87, and A\ > 0.
Set k := 0. Iterate:

Step 1. Find an approximate maximizer

Y"1 & arg sup {Hk(y) =0, (Xk7y)}7 (26)
yeER™

where O, (X", y) is defined as in (20).
Step 2. Compute

1
Xk+1 - Qb"—’f—k(W)\k(Xkayk-i—l))? Z]H_l - A_k¢;k(WAk(Xk’yk+l)) (27)

Step 3. If ||(X* — X 1) /\|| < € stop; else; Ay = 2)\; end.

Remark 3.1. Note that b— A(X"1) = b—A¢T (W, (XF*,91)) = V,0,, (XF,y**1) = 0.

Remark 3.2. Observe that the function ©5(X,y) is twice continuously differentiable (ac-
tually, analytic) in y. In contrast, its counterpart L,(y, X) for a linear SDP in [32] fails
to be twice continuously differentiable in y and only the Clarke’s generalized Jacobian of
VyLy(y,X) (i.e., OV,L,(y, X)) can be obtained. This difference can be attributed to the
term —plogdet X in problem (P). In other words, —ulogdet X works as a smoothing
term that turns Ly (y, X) (which is not twice continuously differentiable) into an analytic
function in y. This idea is different from the traditional smoothing technique of using
a smoothing function on the KKT conditions since the latter is not motivated by adding
a smoothing term to an objective function. Our derivation of ©(y, X) shows that the
smoothing technique of using a squared smoothing function ¢ () = (\/2? +4vy + x)/2
can indeed be derived by adding the log-barrier term to the objective function.

10

The advantage of viewing the smoothing technique from the perspective of adding a
log-barrier term 1is that the error between the minimum objective function values of the
perturbed problem and the original problem can be estimated. In the traditional smoothing
technique for the KKT conditions, there is no obvious mean to estimate the error in
the objective function value of the solution computed from the smoothed KKT conditions
from the true minimum objective function value. We believe the connection we discovered
here could be useful for the error analysis of the smoothing technique applied to the KKT
conditions.

For the sake of subsequent convergence analysis, we present the following proposition.

Proposition 3.1. Suppose that (P) satisfies (10). Let X € ST, be the unique optimal
solution to (P), i.e., X = Tf_l(O). Then Tf_1 is Lipschitz continuous at the origin.

Proof. From [20, Prop. 3], it suffices to show that the following quadratic growth condi-
tion holds at X for some positive constant «:

F(X) > f(X) +alX = X|* VX €N such that X € Fp (28)

where A is a neighborhood of X in S7,. From [4, Theorem 3.137], to prove (28), it
suffices to show the second order sufficient condition for (P) holds.
Now for X € 8%, we have
(AX, VEixI(X:9)(AX)) = p(XTTAXXTHLAX) > pd o (XN)AX]P, VAX € 8™,

max

where Ajpax(X) is the maximal eigenvalue of X, this is equivalent to
(AX, Vi l(X;y)(AX)) >0, VAX € 8"\ {0}. (29)
Certainly, (29) implies the second order sufficient condition for Problem (P). O
We can also prove in parallel that the maximal monotone operator 7; is Lipschitz
continuous at the origin.
4 The Newton-CG method for inner problems

In the algorithm framework proposed in Section 3, we have to compute y**! ~ argsup
{0c(y) : y € R™}. In this paper, we will introduce the Newton-CG method to achieve
this goal.

11

Algorithm 2: The Newton-CG Method.
Step 0. Given p € (0,1), 71,7 € (0,1), and é € (0,1), choose y° € R™.

Step 1. For j =0,1,2,...,
Step 1.1. Apply the PCG method to find an approximate solution d’ to

(V3,00(y") — e;1)d = =V 0, (), (30)

where € =T Iﬂin{TQ, ||Vy9k(yj)||}-

Step 1.2. Set oj = 0™, where m; is the first nonnegative integer m for which

Or(y’ + 6" d) > O,(y7) + pué™(V 0k (v7),).

Step 1.3. Set /™' =y + a;d’.

From (22) and the positive definiteness property of ¢’ (W (y; X)) (for some properties
of the projection operator one may refer to [13]), we have that —V} 6i(y’) is always
positive definite, then —V?> 6, (y’) + ;1 is positive definite as long as V6 (y’) # 0. So
we can always apply the PCG method to (30). Of course, the direction d’ generated from
(30) is always an ascent direction. With respect to the analysis of the global convergence
and local quadratic convergence rate of the above algorithm, we will not present the
details, and one may refer to Section 3.3 of [32] since it is very similar to the semismooth
Newton-CG algorithm used in that paper. The difference lies in that d’ obtained from
(30) in this paper is an approximate Newton direction; in contrast, ¢/ obtained from (61)
in [32] is a semismooth Newton direction.

5 Convergence analysis

Global convergence and the local convergence rate of our Newton-CG PPA method to
problems (P) and (D) can directly be derived from Rockafellar’s papers [19, 20] without
much difficulty. For the sake of completeness, we shall only state the results below.

Since we cannot solve the inner problems exactly, we will use the following stopping
criteria considered by Rockafellar [19, 20] for terminating Algorithm 2:

(A) supOr(y) — 0 (y*™) < /20, e >0, Zek < 00;
k=0

(B) supf(y) — Ou(y*) < 63 /20| XM = XHP, 6, 20, 6 < 003
k=0
(B) IVy0(y" I < 03/ Aell X*H = XF|I, 0 <8} — 0.

12

In view of Proposition 3.1, we can directly obtain from [19, 20] the following conver-
gence results.

Theorem 5.1. Let Algorithm 1 be executed with stopping criterion (A). If (D) satisfies
condition (11), then the generated sequence { X"} C St is bounded and {X*} converges to
X, where X is the unique optimal solution to (P), and {y*} is asymptotically mazimizing
for (D) with min(P)=sup(D).

If {X*} is bounded and (P) satisfies condition (10), then the sequence {y*} is also

bounded, and the accumulation point of the sequence {y*} is the unique optimal solution
to (D).

Theorem 5.2. Let Algorithm 1 be executed with stopping criteria (A) and (B). Assume
that (D) satisfies condition (11) and (P) satisfies condition (10). Then the generated
sequence {X*} C 8%, is bounded and {X*} converges to the unique solution X to (P)
with min(P)=sup(D), and

| X — X|| < 0| X* = X||, for all k sufficiently large,
where
Hk = [af(afc + 0'2)_1/2 + (5,@](1 - 5k)_1 — 900 = af(afc + 0_3())—1/2 < 1>Jk — O,

and ay is a Lipschitz constant of ijl at the origin. The conclusions of Theorem 5.1 about
{y*} are valid.

Moreover, if the stopping criterion (B') is also used, then in addition to the above
conclusions the sequence {y*} — 7, where 7 is the unique optimal solution to (D), and
one has

|yF T —g|| < 0,11 X — X*||, for all k sufficiently large,

where
92 = &1(1 —|—(5]/€)/O'k — 500 = al/aoo,

and a; is a Lipschitz constant of Tfl at the origin.

Remark 5.1. In Algorithm 1 we can also add the term ——Hy y*||? to Ox(y). Actu-
ally, in our MATLAB code, one can optionally add this term. This actually corresponds
to the PPA of multipliers considered in [20, Section 5]. Convergence analysis for this
improvement can be conducted in a parallel way as for Algorithm 1.

Note that in the stoppmg criteria (A) and (B), sup 0x(y) is an unknown value Since
ék(y) = Or(y) — m”y — y¥||? is a strongly concave function with modulus -, then one
has the estimation

sup Oy (y) — O (") < m”vyék(ka)H?,

13

thus criteria (A) and (B) can be practically modified as follows:

o0
IV I < e 20,3 6 < oo
k=0

IV, 0y)| < Skl XHH = XF), 0> 0, 6k < 0.

k=0

6 Numerical experiments

In this section, we present some numerical results to demonstrate the performance of our
PPA on (4) and (5), for Gaussian graphical models with both synthetic and real data.
We implemented the PPA in MATLAB. All runs are performed on an Intel Xeon 3.20GHz
PC with 4GB memory, running Linux and MATLAB (Version 7.6).

We measure the infeasibilities and optimality for the primal and dual problems (P)

and (D) as follows:

RD:HC—ATy—ZH P:||b—A(X)|| - [pobj — dobj]
L+l L+ ol 1+ [pobj| + |dobj|’

(31)

where pobj = (O, X) — ulogdetX and dobj = bTy+ plog detZ +nu(1—log). The above
measures are similar to those adopted in [32]. In our numerical experiments, we stop the
PPA when

HlaX{RD, RP} < TOl, (32)

where Tol is a pre-specified accuracy tolerance. Note that the third equation X7 = ul
in (12) holds up to machine precision because of the way we define Z in (27) in the PPA.
Unless otherwise specified, we set Tol = 107 as the default. We choose the initial iterate
X% =1, and)\ = 1.

We should note that in the PPA, computing the full eigenvalue decomposition of the
matrix W), (X*, y) to evaluate the function ©,, (X*,y) in (26) may constitute a major part
of the overall computation. Thus it is essential for us to use an eigenvalue decomposition
routine that is as efficient as possible. In our implementation, we use the LAPACK
routine dsyevd.f (based on a divide-and-conquer strategy) to compute the full eigenvalue
decomposition of a symmetric matrix. On our machine, it is about 7 to 10 times faster
than MATLAB’s eig routine when n is larger than 500. In the ANS method of [12, 11],
having an efficient eigenvalue decomposition routine is even more crucial. Thus in our
experiments, we also use the faster eigenvalue routine for the ANS method.

We focus our numerical experiments on the problems (4) and (5). The problem (5)
is not expressed in the standard form given in (2), but it can easily be expressed as such
by introducing additional constraints and variables. To be precise, the standard form

14

reformulation of (5) is given as follows:

min (C, X) — plogdet X + pzt™ + pTa™ —viogax™ — viogz™
s.t. XU:O V(Z,])GQ
X =0, zT,27 >0,

(33)

where we set v = 10716 (Originally, v = 0, however, for the convenience of the theory,
we set v = 10716 in practical computation), p,z7,x~ € R™, my = m —my, m = @,
my =]9 (|Q] denotes the number of the elements in the index set).

We should emphasize that our algorithm is sensitive to the scaling of the data, es-
pecially for problem (5). Thus in our implementation, we first scale the data by setting
Ay — A/ Ay, € — C/|ICI| and b b/}

In this paper, we mainly compare the performance of our PPA with the ANS method
in [11, 12], whose MATLAB codes are available at http://www.math.sfu.ca/~zhaosong/.
The reason for comparing only with the ANS method is because it is currently the most
advanced first order method developed for solving the covariance selection problems (4)
and (5). In the ANS method, the convergence criterion is controlled by two parameters
€0, €c, Which stand for the errors in the objective value and primal infeasibility, respectively.

As mentioned in [28, 29], we may evaluate the performance of an estimator ¥ of the
true covariance matrix 3 by a normalized Ls-loss function which is defined as follows:

LY = |=7'S = I||p/n.

Thus in our numerical experiments, we also report the above value when it is possible to
do so.

6.1 Some acceleration techniques
6.1.1 A diagonal preconditioner for (30)

To achieve faster convergence for the CG method to solve (30), one may apply a proper
preconditioner to the linear system. But a suitable balance between having an effective
preconditioner and additional computational cost must be determined. In our imple-
mentation, we devise an easy-to-compute diagonal preconditioner by using an idea first
developed in [9].

Let M denotes the coefficient matrix in the left-hand side of (30), which has the form:

M = —MNATAT — €],

where A and T denote the matrix representation of the linear map A and 7 with respect
to the standard bases in 8™ and R™, respectively. Here 7 : S™ — 8" is the linear operator
defined by 7(X) = P(Qo (PTXP))PT.

15

Recall that the standard basis in S” is given by {Ey; = ay(ee] +ejef) : 1 <0 <
j < n}, where ¢; is the ith unit vector in R", and a;; = 1/v/2 if i # j and a;; = 1/2
otherwise. Then the diagonal element of T with respect to the basis element E;; is given
by

PoP)'Q(Po P))y+ (v, Quiy if i £ j
Tij) i) = (P Eij P, Qo (PTE;;P)) = 3 " 5 N+) 7 (34)
, ((Po P)TQ(PO P)); otherwise

where v(¥) = P, o P; and P, P; are the ith and jth columns of P, respectively. From (34)
we can see that to compute all the diagonal entries of T, the computing cost of O(n?)
flops is needed. Fortunately, the first term

dgj) = (P o P)TQ(P o P))y (35)

in the right-hand side of (34) is typically a very good approximation of T;; ;. More
importantly, computing all the elements d;), for 1 < i < j < n, needs only O(n*) flops
since only the matrix product (P o P)TQ(P o P) is involved. We propose the following
diagonal preconditioner for M:

Mp = —\diag(Adiag(d)A”) — eI. (36)

6.1.2 An alternating Newton PPA

In this subsection, we introduce an alternating Newton PPA to accelerate the convergence
of the primal proximal point algorithm for solving the problem (P).
For the PPA, we know that the outer iteration is actually a gradient method, i.e.,

XF = XE— N\ VE, (XF) = ;fk(W,\k(Xk,yAk(Xk))). (37)

To improve the convergence rate of the outer iteration, we may use Newton’s method

instead. Since 1
VE(X) = X(X — o5 (WA(X, yA(X)))),

we have that

V2E\(X)[H] = [H — () (W)(H + MTY,(X H)], VHE S (38)

> =

Here we used W to denote Wy (X, yr(X)) to simplify the notation. Thus, the Newton
direction H* is the solution to the following linear system of equations:

V2R XM HY = =V E\(XF). (39)

Once H* has been computed, the new iteration is updated by (if the iteration X* is
sufficiently close to the optimal solution):

Xkt — XFofg*, (40)

16

In practical computation, we adopt the update based on Newton’s method in (40) (without
line search) when the relative primal infeasibility and dual feasibility are both less than
1072; otherwise, we use the update in (37). We call the PPA with its outer iteration
updated possibly by Newton’s update (40) the alternating Newton PPA and we abbreviate
it by ANPPA.

Next we discuss how the Newton system (39) can be solved by the CG method. To
apply the CG method, all we need is to be able to evaluate V2F)\(X¥)[H] given any
H € 8™. Now we discuss in detail how this can be done. Observe that since

0= V,0,(X,ya(X)) = b — A (Wr (X, yr(X)),
it follows that
0=—A(¢) (W)[H + ANATy (X; H)],

and

AA(@7) (W) AT (X5 H) = —A(67) (W)[H]. (41)

Thus from the linear system (41), we can compute y. (X; H) given any X and H. By
substituting it into (38), we can evaluate the expression, V2F\(X)[H] for any given X
and H.

To summarize, given X and H, we can evaluate V?F)(X)[H] by solving the linear
system (41) for 3/ (X; H). Observe that the linear system (41) has exactly the same form
as the linear system (30), thus whatever techniques we have developed to solve (30), we
can use them to solve (41). Note that we terminate the CG method for solving (39) when
the relative residual norm is less than 5 x 1072

6.2 Synthetic experiments I

All instances used in this section were randomly generated in a similar manner as described
in d’Aspremont et al. [8]. Indeed, we generate a random sparse positive definite matrix
¥t € 87, with a density of about 10% non-zero entries as follows. First we generate an
n X n random sparse matrix U with non-zero entries set to +1. Then set

A=U%U; d=diag(A); A= max(min(A—diag(d),1),—1);
B = A +diag(1+4d);
Y ! =B+ max(—1.2 +min(eig(B)),0.001) * I;

The sample covariance matrix S for (4) is generated in a similar manner as in [§8], [11] via
the following script:

E=2xrand(n) —1; E=0.5x%(E+E);
S =L +0.15 * (||Signalle/||Ell¢) + E;
S = S + max(—min(eig(8)),0.001) x I;

17

The set €2 is generated as in the MATLAB codes developed by Lu for the paper [11],
specifically,

Q={(G,4): ()

In this synthetic experiment, we apply the alternating Newton primal proximal point
algorithm (ANPPA) to the problem (4). The performance of the ANPPA is presented in
Table 1. For each instance in the table, we report the matrix dimension (n); the number
of linear constraints (m); the number of outer iterations (it), the total number of sub-
problems (itsub) solved by the ANPPA, and the average number of PCG steps (pcg) taken
to solve each linear system in (30); the primal (pobj) and dual (dobj) objective values;
the primal (Rp) and dual (Rp) infeasibilities, the relative gap (Rg), and LYS; the time
(in seconds) taken. We may observe from the table that the ANPPA can very efficiently
solve the problem (4) with synthetic data.

Table 1: Performance of the ANPPA on (4) with synthetic data (I).

problem m | n it/itsub/pcg pobj dobj Rp/Rp/Rg/Ly™ time
rand-500 112172 | 500 12| 23| 9.9 -1.85356498 2 -1.85356176 2 4.1-7| 2.9-7| 8.7-7| 1.8-2 43.1
rand-1000 441294 | 1000 11| 22| 10.0 -1.22155120 2 -1.22155034 2 8.0-8| 4.7-8| 3.5-7| 6.7-2 247.0
rand-1500 979620 | 1500 11| 22| 8.9 -4.32799516 2 -4.32799143 2 2.2-7| 1.4-7| 4.3-7| 6.8-2 698.0
rand-2000 1719589 | 2000 12| 23| 8.7 -1.34583154 3 -1.34583004 3 8.1-7| 3.5-7| 5.6-7| 4.3-2 1581.4

In Table 2, we compare the performance of our ANPPA and the ANS method on
the first three instances reported in Table 1. For the ANPPA, Tol in (32) is set to
107%,107 and 1078; for ANS, ¢, is set to 107%,1072 and 1073, and ¢, is set to 107%, so
that the gap (= |pobj — dobj|) can fall below 107!, 1072 and 1073, respectively. For
each instance in the table, we give the matrix dimension (n) and the number of linear
constraints (m); the gaps achieved, and the times taken (in seconds). From Table 2, we
can see that both methods are able to solve all instances within a reasonable amount of
time. However, the ANPPA consistently outperforms the ANS method by a factor which
ranges from 3 to 15.

Table 2: Comparison of the ANPPA and the ANS method on (4) with synthetic data (I).

problem mln tolerance iteration gap time
PPA (Tol) ANS (ep,ec) | PPA ANS | PPA ANS PPA ANS
rand-500 112172 | 500 3x 10~ (10~ 1,10~ %) 23 534 | 3.22-4 9.70-2 43.1 133.8
3x 1077 (1072,107%) 27 1255 | 1.18-6 9.94-3 55.2 285.9
3x10°8 (1073,107%) 27 2045 | 1.18-6 9.94-4 55.2 646.5
rand-1000 441294 | 1000 3x10°° (10 1,10 %) 22 826 | 8.52-5 9.66-2 | 247.0 1137.5
3x10~7 (1072,107%) 22 1916 | 8.52-5 9.94-3 | 247.0 2407.9
3x107% (1073,107%) 25 3924 | 2.39-6 9.94-4 | 304.8 4757.5
rand-1500 979620 | 1500 3x10-°% (10~ 1,10~ %) 22 778 | 3.73-4 9.94-2 | 698.0 3303.7
3x 1077 (1072,107%) 22 1741 | 3.73-4 9.94-3 | 698.0 6706.3
3x 1078 (1073,107%) 25 3452 | 1.17-5 9.94-4 | 857.0 12766.2

18

6.3 Synthetic experiments 1I

We note that the procedure used in [8] to generate the data matrix S for (4) is not in line
with the standard practice in statistics. But since the covariance selection problem is a
problem in statistics, we prefer to generate the data matrix S according to the standard
practice; see for example, [28, 29]. Thus in this sub-section, the true covariance matrices
> and the index sets () are generated exactly the same way as in the previous sub-section.
But the sample covariance matrices S are generated differently. For each test problem,
we sample 2n instances from the multivariate Gaussian distribution N(0,Y) to generate
a sample covariance matrix S.

In the first synthetic experiment, we apply the ANPPA to the problem (4). The
performance of the ANPPA is presented in Table 3. Again, the ANPPA can very efficiently
solve the problem (4) with S generated from 2n samples of the Gaussian distribution
N(0,%). Comparing with Table 1, it appears that the log-det problems in Table 3 are
harder to solve when n is large.

In Figure 1, we show that the ANPPA can also obtain very accurate solution for the
instance rand-500 reported in Table 3 without incurring substantial amount of additional
computing time. As can be seen from the figure, the time taken only grows almost linearly
when the required accuracy is geometrically reduced.

Table 3: Performance of the ANPPA on (4) with synthetic data (II).

problem m | n it/ itsub/pcg pobj dobj Rp/Rp/Rg/LY™® time
rand-500 112172 | 500 13| 27] 13.2 -3.13591727 2 -3.13591672 2 2.6-8| 3.8-8] 8.8-8] 1.7-2 61.4
rand-1000 441294 | 1000 13| 29| 18.9 -9.74364421 2 -9.74360450 2 3.1-7| 6.0-7| 2.0-6] 2.0-2 468.8
rand-1500 979620 | 1500 13| 29| 15.8 -1.91034252 3 -1.91033842 3 7.1-7| 3.5-7| 1.1-6| 1.8-2 1384.5
rand-2000 1719589 | 2000 15| 34| 15.9 -3.00395927 3 -3.00395919 3 1.7-8] 5.0-9| 1.4-8| 1.5-2 3696.2

In Table 4, we compare the performance of our ANPPA and the ANS method on
the first three instances reported in Table 3. For the ANPPA, Tol in (32) is set to
3x107%,3x 1077 and 3 x 1078; for ANS, ¢, is set to 107%,1072 and 1073, and ¢, is set to
107*, so that the gap (= |pobj — dobj|) can fall below 107, 1072 and 1073, respectively.
From Table 4, we can see that the ANPPA consistently outperforms the ANS method
by a substantial margin, which ranges from a factor of 8 to 44. It is interesting to note
that while the computing time of the ANPPA grows only modestly when the required
accuracy tolerance is reduced by a factor of 10, the computing time for the ANS method
grows by at least a factor of 2.

19

time (seconds)
w B [4) [2} ~ o]
o o o o o o

N
=]

[
S)

-2 -4

10 10

10°

accuracy

10°

-10

10

Figure 1: Accuracy versus time for the random instance rand-500 reported in Table 3.

Table 4: Comparison of the ANPPA and the ANS method on (4) with synthetic data (II).

problem m [n tolerance iteration time
PPA (Tol) ANS (eo,ec) | PPA ANS PPA ANS PPA ANS
rand-500 112172 | 500 3x10-°% (10~ 1,10~ %) 27 2358 | 5.53-5 9.79-2 61.4 518.3
3x 1077 (1072,107%) 27 5779 | 5.53-5 9.94-3 61.4 1233.2
3x 1078 (1073,107%) 30 12796 | 9.04-8 9.94-4 74.1 2712.3
rand-1000 441294 | 1000 3x10-9% (10~ 1,107 %) 29 3776 | 3.97-3 9.91-2 468.8 4499.8
3x10~7 (1072,107%) 33 10055 | 3.86-6 9.94-3 583.5 11715.4
3x 1078 (1073,107%) 33 22519 | 3.86-6 9.94-4 583.5 26173.1
rand-1500 979620 | 1500 3x10°% (107 1,107%) 29 3691 | 4.10-3 9.94-2 | 1384.5 13601.7
3x 1077 (1072,107%) 33 9027 | 1.05-4 9.94-3 | 1699.4 32440.2
3x107% (1073,107%) 33 18408 | 1.05-4 9.94-4 | 1699.4 65773.7

In the second synthetic experiment, we consider the problem (5). We set p;; = 1/n'?®
for all (i,7) ¢ €. We note that the parameters p;; are chosen empirically so as to give a
reasonably good value for [|£ — S|

In Tables 5 and 6, we report the results in a similar format as those appeared in

Table 3 and 4, respectively. Again, we may observe from the tables that the ANPPA
outperformed the ANS method by a substantial margin.
Table 5: Performance of the ANPPA on (5) with synthetic data (I).

problem m | n it/ itsub/pcg pobj dobj Rp/Rp/Rg/L5T time

rand-500 112172 | 500 15| 50| 12.5 -3.11255742 2 -3.11256007 2 1.9-8] 1.7-7] 4.2-7| 1.7-2 105.7

rand-1000 441294 | 1000 17| 60| 18.3 -9.70441465 2 -9.70441034 2 2.1-8| 1.4-7| 2.2-7| 2.0-2 942.2

rand-1500 979620 | 1500 18| 55| 16.3 -1.90500086 3 -1.90499588 3 8.4-8| 4.7-7| 1.3-6] 1.8-2 2498.9

rand-2000 1719589 | 2000 19| 53| 16.8 -2.99725089 3 -2.99724734 3 1.9-8] 4.4-7| 5.9-7| 1.5-2 5429.7

20

Table 6: Comparison of the ANPPA and the ANS method on (5) with synthetic data (II).

problem m | n tolerance iferation gap time
PPA (Tol) ANS (eo,€c) PPA ANS PPA ANS PPA ANS
rand-500 112172 | 500 3x10°° (10 1,10 %) 50 2327 | 2.65-4 9.90-2 105.7 510.3
3x10~7 (1072,107%) 50 5818 | 2.65-4 9.94-3 105.7 1236.9
3x 1078 (1073,107%) 55 12962 | 6.65-7 9.94-4 121.4 2747.0
rand-1000 441294 | 1000 3x10-°% (10~ 1,10~ %) 60 3741 | 4.31-4 9.88-2 942.2 4460.8
3x 1077 (1072,107%) 60 9931 | 4.31-4 9.94-3 942.2 11562.8
3x 1078 (1073,107%) 65 22620 | 1.88-5 9.94-4 | 1090.4 26278.6
rand-1500 979620 | 1500 3x10-% (10~ 11079 55 3745 | 4.98-3 9.90-2 | 2498.9 13830.3
3x 1077 (1072,107%) 59 9572 | 2.25-4 9.94-3 | 2855.2 34208.0
3x 1078 (1073,107%) 59 20895 | 2.25-4 9.94-4 | 2855.2 73997.1

6.4 Real data experiments

In this part, we compare the ANPPA and the ANS method on two gene expression data
sets. Since [2] had already considered these data sets, we can refer to [2] for the choice of
the parameters p;;.

6.4.1 Rosetta Inpharmatics Compendium

We applied our ANPPA and the ANS method to the Rosetta Inpharmatics Compendium
of gene expression profiles described by Hughes et al. [10]. The data set contains 253
samples with n = 6136 variables. We aim to estimate the sparse covariance matrix of
a Gaussian graphic model whose conditional independence is unknown. Naturally, we
formulate it as the problem (5), with = (). As for the parameters, we set p;; = 0.0313
as in [2].

As our ANPPA can only handle problems with matrix dimensions up to about 3000,
we only test on a subset of the data. We create 3 subsets by taking 500, 1000, and 1500
variables with the highest variances, respectively. Note that as the variances vary widely,
we normalized the sample covariance matrices to have unit variances on the diagonal.

In the experiments, we set Tol = 107¢ for the ANPPA, and (e,,€.) = (1072,107°) for
the ANS method.

The performances of the ANPPA and ANS methods for the Rosetta Inpharmatics
Compendium of gene expression profiles are presented in Table 7. From Table 7, we can
see that although both methods can solve the problem, the ANPPA is about 3.7 times
faster than the ANS method when n = 1500.

Table 7: Comparison of the ANPPA and ANS method on (5) with Q© = 0 for the Rosetta
Inpharmatics Compendiuma data.

problem mn tolerance iteration primal objective value time

PPA (Tol) ANS (e0) PPA ANS PPA ANS PPA ANS
Rosetta | 500 10~% 1073 40 636 -7.42642518 2 -7.42642052 2 57.0 127.6
Rosetta | 1000 10~% 1073 40 763 -1.66546366 3 -1.66546478 3 298.8 881.6
Rosetta | 1500 10~% 1073 42 972 -2.64937351 3 -2.64937721 3 914.4 3424.7

21

6.4.2 Iconix Microarray data

Next we analyze the performances of the ANPPA and ANS methods on a subset of a
10000 gene microarray data set obtained from 255 drug treated rat livers; see Natsoulis
et al. [16] for details. In our first test problem, we take 200 variables with the highest
variances from the large set to form the sample covariance matrix S. The other two test
problems are created by considering 500 and 1000 variables with the highest variances in
the large data set. As in the last data set, we normalized the sample covariance matrices
to have unit variances on the diagonal.

For the same reason as aforementioned, we set 2 = () in the problem (5). We set
Pij = 0.0853 as in [2]

The performance of the ANPPA and ANS methods for the Iconix microarray data is
presented in Table 8. From the table, we see that the ANPPA is about 5 times faster
than the ANS method when n = 1000.

Table 8: Comparison of the ANPPA and ANS method on (5) with Q@ = 0 for the Iconix
microarray data.

problem mn tolerance iteration primal objective value time
PPA (Tol) ANS (eo) PPA ANS PPA ANS PPA ANS
Iconix | 200 10-° 10-3 43 1805 | -6.13127781 0 -6.13036186 0 17.7 50.7
Iconix | 500 10~0 10=3 54 3809 5.31683802 1 5.31688551 1 222.9 795.2
Iconix | 1000 10~9 1073 65 6646 1.78893452 2 1.78892330 2 1585.2 7847.3

7 Concluding remarks

We designed a primal PPA to solve log-det optimization problems. Rigorous convergence
results for the PPA are obtained from the classical results for a generic proximal point al-
gorithm. We also considered to accelerate the outer iteration of PPA by Newton’s method
and designed an alternating Newton primal PPA. Extensive numerical experiments con-
ducted on log-det problems arising from sparse estimation of inverse covariance matrices
in Gaussian graphical models using synthetic data and real data demonstrated that our
ANPPA is very efficient.

In contrast to the case for the linear SDPs, the log-det term used in this paper plays
a key role of a smoothing term such that the standard smooth Newton method can be
used to solve the inner problem. The key discovery of this paper is the connection of the
log-det smoothing term with the technique of using the squared smoothing function. It
opens up a new door to deal with nonsmooth equations and understand the smoothing
technique more deeply.

22

Acknowledgements

We thank Onureena Banerjee for providing us with part of the test data and helpful
suggestions and Zhaosong Lu and Xiaoming Yuan for sharing with us their MATLAB codes
and fruitful discussions. We also thank the two anonymous referees and the associate
editor for their helpful comments and suggestions which improved the quality of this

paper.

References

1]

2]

[10]

F. Alizadeh, J. P. A. Haeberly, and O. L. Overton, Complementarity and nondegen-
eracy in semidefinite programming, Mathemtical Programming, 77 (1997), 111-128.

O. Banerjee, L. El Ghaoui, A. d’Aspremont, Model selection through sparse mazximum
likelihood estimation, Journal of Machine Learning Research, 9 (2008), 485-516.

R. Bhatia, Matriz Analysis, Springer-Verlag, New York, 1997.

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems,
Springer, New York, 2000.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matriz inequalities
in system and control theory, vol. 15 of Studies in Applied Mathematics, SIAM,
Philadelphia, PA, 1994.

7. X. Chan and D. F. Sun, Constraint nondegeneracy, strong reqularity and non-
sigularity in semidefinite programming, SIAM Journal on optimization, 19 (2008),
370-396.

J. Dahl, L. Vandenberghe, and V. Roychowdhury, Covariance selection for non-
chordal graphs via chordal embedding, Optimization Methods and Software, 23 (2008),
501-520.

A. d’Aspremont, O. Banerjee, and L. El Ghaoui, First-order methods for sparse
covariance selection, STAM Journal on Matrix Analysis and Applications, 30 (2008),
56-66.

Y. Gao and D. F. Sun, Calibrating least squares covariance matriz problems with
equality and inequality constraints, SIAM Journal on Matrix Analysis and Applica-
tions, 31 (2009), 1432-1457.

T. R. Hughes, M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D.
Armour, H. A. Bennett, E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M.
R. Meyer, D. Slade, P. Y. Lum, S. B. Stepaniants, D. D. Shoemaker, D. Gachotte,

23

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]
[22]

[23]

K. Chakraburtty, J. Simon, M. Bard, and S. H. Friend, Functional discovery via a
compendium of expression profiles, Cell, 102(1) 2000, 109C-126.

Z. Lu, Smooth optimization approach for sparse covariance selection, SIAM Journal
on Optimization, 19(4) (2009), 1807-1827.

7. Lu, Adaptive first-order methods for general sparse inverse covariance selection,
to appear in SIAM Journal on Matrix Analysis and Applications.

F. Meng, D. F. Sun, and G. Zhao, Semismoothness of solutions to generalized equa-
tions and the Moreau-Yosida reqularization, Mathemtical Programming, 104 (2005),
561-581.

G. J. Minty, On the monotonicity of the gradient of a convex function, Pacific Journal
of Mathematics, 14 (1964), 243-247.

J. J. Moreau, Prozimité et dualité dans un espace Hilbertien, Bulletin de la Société
Mathématique de France, 93 (1965), 273-299.

Georges Natsoulis, Cecelia I Pearson, Jeremy Gollub, Barrett P Eynon, Joe Ferng,
Ramesh Nair, Radha Idury, May D Lee, Mark R Fielden, Richard J Brennan, Alan
H Roter and Kurt Jarnagin, The liver pharmacological and xenobiotic gene response
repertoire, Molecular Systems Biology, 175(4) (2008), 1-12.

Yu. E. Nesterov, Smooth minimization of nonsmooth functions, Mathemtical Pro-
gramming, 103 (2005), 127-152.

R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

R. T. Rockafellar, Monotone operators and the proximal point algorithm, STAM Jour-
nal on Control and Optimization, 14 (1976), 877-898.

R. T. Rockafellar, Augmented Lagrangains and applications of the proximal point
algorithm in convex programming, Mathematics of Operation Research, 1 (1976),
97-116.

R. T. Rockfellar and R. J. B. Wets, Variational Analysis, Springer, Berlin, 1998.

K. Scheinberg and 1. Rish, SINCO - a greedy coordinate ascent method
for sparse inverse covariance selection problem, http://www.optimization-

online.org/DB_FILE/2009/07/2359.pdf.

D. F. Sun, J. Sun and L. W. Zhang, The rate of convergence of the augmented
Lagrangian method for nonlinear semidefinite programmaing, Mathematical Program-
ming, 114 (2008), 349-391.

24

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

K .C. Toh, Primal-dual path-following algorithms for determinant maximization prob-
lems with linear matriz inequalities, Computational Optimization and Applications,

14 (1999), 309-330.

R. H. Titincti, K. C. Toh, and M. J. Todd, Solving semidefinite-quadratic-linear
programs using SDP T3, Mathemtical Programming 95 (2003), 189-217.

N. -K. Tsing, M. K. H. Fan, and E. 1. Verriest, On analyticity of functions involving
eigenvalues, Linear Algebra and its Applications 207 (1994), 159-180.

L. Vandenberghe, S. Boyd, and S. -P. Wu, Determinant maximization with linear
matriz inequality equalities, SIAM Journal on Matrix Analysis and Applications, 19
(1998), 499-533.

W. B. Wu, M. Pourahmadi, Nonparameteric estimation of large covariance matrices
of longitudinal data, Biometrika, 90 (2003), 831-844.

F. Wong, C. K. Carter, and R. Kohn, Efficient estimation of covariance selection
models, Biometrika, 90 (2003), 809-830.

K. Yosida, Functional Analysis, Springer Verlag, Berlin, 1964.

X. M. Yuan, Alternating direction methods for sparse covariance selection,
www.optimization-online.org/DB_FILE/2009/09/2390.pdf.

X. Y. Zhao, D. F. Sun and K. C. Toh, A Newton-CG augmented Lagrangian method
for semidefinite programming, SIAM Journal on Optimization, 20 (2010), 1737-1765.

25

