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Abstract. Based on a semismooth equation reformulation using Fischer’s function, a trust region
algorithm is proposed for solving the generalized complementarity problem (GCP). The algorithm
uses a generalized Jacobian of the function involved in the semismooth equation and adopts the
squared natural residual of the semismooth equation as a merit function. The proposed algorithm
is applicable to the nonlinear complementarity problem because the latter problem is a special case
of the GCP. Global convergence and, under a nonsingularity assumption, local Q-superlinear (or
quadratic) convergence of the algorithm are established. Moreover, calculation of a generalized
Jacobian is discussed and numerical results are presented.
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1. Introduction. The GCP is to find a vector x ∈ <n such that

F (x) ≥ 0, G(x) ≥ 0, F (x)TG(x) = 0,(1.1)

where F,G : <n → <n are assumed to be continuously differentiable.
When G(x) ≡ x − E(x), where E : <n → <n, the GCP reduces to the so-

called implicit complementarity problem [8, 28, 27]. In particular, if G(x) ≡ x, the
GCP reduces to the nonlinear complementarity problem (NCP), which is a general
framework for optimality conditions of mathematical programs as well as variational
inequalities. Moreover, if F is an affine function, i.e., F (x) = Mx + q with a matrix
M ∈ <n×n and a vector q ∈ <n, then the NCP reduces to the linear complementarity
problem (LCP), which in turn contains linear and quadratic programming problems
as special cases.

There are many Newton-based methods for solving the NCP. We do not intend to
give a short survey of numerical methods for solving the NCP. The interested reader
is referred to two survey papers [18, 29] and to [1, 2, 15, 22, 30] for recent progress.
In order to enlarge the domain of convergence of Newton-based methods, line search
is usually used on certain merit functions derived from different reformulations of
the NCP. A trust region strategy is used in [26] for solving a bound-constrained
nonlinear least squares reformulation of the NCP. Global convergence of this trust
region method was established, and, under the strict complementarity condition and
other conditions, superlinear convergence was also given.
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GENERALIZED COMPLEMENTARITY PROBLEMS 141

In this paper, we shall propose a trust region method for solving an unconstrained
least squares reformulation of the GCP. It is surely applicable to the NCP since the
GCP is a generalization of the NCP. The main difference between the proposed trust
region method and the classical trust region methods lies in the updating rule for the
trust region radius at the beginning of each iteration. More precisely, at the beginning
of each iteration, the trust region radius is always set greater than a fixed (small)
positive constant rather than solely updated from the final trust region radius of the
last iteration as in the classical trust region methods. This type of updating rule for
the trust region radius has been used in recent literature [14, 17, 23] for optimization
problems and systems of nonsmooth equations. We will show that the proposed
special strategy of updating trust region radii enables us to recover local superlinear
convergence under some conditions in spite of the fact that the functions involved
in the system of equations are only semismooth. (For globally and superlinearly
convergent trust region methods for systems of smooth equations, see [25].)

The remainder of the paper is organized as follows. In the next section, the
GCP will be converted into a system of semismooth equations and an unconstrained
differentiable minimization problem. These two reformulations are equivalent to the
GCP in a certain sense. In section 3, a trust region method is proposed for solving the
GCP based on these two reformulations. In section 4, we discuss regularity conditions
which ensure that a stationary point of the reformulated unconstrained minimization
problem is a solution of the GCP. Section 5 is devoted to proving global convergence
of the algorithm. In section 6, local superlinear convergence of the algorithm will be
established under some nonsingularity condition. In section 7, we present a method
for calculating a generalized Jacobian, which is needed in the algorithm. Numerical
results are presented in section 8. We conclude our paper by giving some remarks in
the final section.

A few words about our notation. The inner product of vectors x, y ∈ <n is
denoted by xT y. Let ‖ · ‖, ‖ · ‖∞, and ‖ · ‖2 denote any fixed norm, the l∞ norm, and
the Euclidean norm, respectively, in a space of appropriate dimension. The Jacobian
of a vector function F at a point x is denoted by ∇F (x)T . If M = (Mij) is an n× n
matrix and α, β are two subsets of {1, . . . , n}, then Mαβ denotes the submatrix of M
consisting of elements Mij with i ∈ α and j ∈ β.

2. Reformulation and preliminaries. Throughout this paper, we assume that
F and G are continuously differentiable on <n.

Let φ : <2 → < be defined by

φ(a, b) :=
√
a2 + b2 − a− b.(2.1)

A basic property of this function is that

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

From this property, the GCP (1.1) can readily be recast as the system of nonsmooth
equations

H(x) =




H1(x)
...

Hn(x)


 :=




φ(F1(x), G1(x))
...

φ(Fn(x), Gn(x))


 = 0(2.2)

in the sense that x solves (1.1) if and only if x solves (2.2). The function φ was first
introduced by Fischer [11] (but attributed to Burmeister) and later used to study
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142 H. JIANG, F. FUKUSHIMA, L. QI, AND D. SUN

various methods for solving the NCP and related problems; see survey paper [12] for
details. Recently the function φ has been used to reformulate the GCP [20]. (See also
[35] for other reformulations of the GCP.)

Note that H is locally Lipschitz on <n and Fréchet differentiable on the set Ω,
where

Ω := {x ∈ <n |Fi(x)2 +Gi(x)2 > 0, i = 1, . . . , n}.
However, H is not necessarily differentiable at x /∈ Ω. Let ∂H(x) denote the Clarke’s
generalized Jacobian of H at x ∈ <n [3], which can be defined as the convex hull of
the set ∂BH(x) [32], where

∂BH(x) =

{
V ∈ <n×n |V = lim

xk→x
∇H(xk)T , H is differentiable at xk for all k

}
.

Similar to the discussions of [9, 19], we have for any x ∈ <n

∂H(x) ⊆ DF (x)∇F (x)T +DG(x)∇G(x)T ,(2.3)

where DF (x) and DG(x) are sets of n × n diagonal matrices such that, for each
pair (DF , DG) = (diag {DF

1 , . . . , D
F
n },diag {DG

1 , . . . , D
G
n }) ∈ DF (x) × DG(x), the

following conditions are satisfied:

(DF
i + 1)2 + (DG

i + 1)2 ≤ 1, i = 1, . . . , n.(2.4)

In particular, if Fi(x)2 +Gi(x)2 > 0 for all i = 1, . . . , n, then we have DF (x) = {DF }
and DG(x) = {DG} with

DF
i =

Fi(x)√
Fi(x)2 +Gi(x)2

− 1, DG
i =

Gi(x)√
Fi(x)2 +Gi(x)2

− 1, i = 1, . . . , n,(2.5)

and ∇H(x) exists and is given by

∇H(x)T = DF∇F (x)T +DG∇G(x)T .

Define a merit function Φ : <n → < as

Φ(x) :=
1

2

n∑
i=1

φ(Fi(x), Gi(x))2 =
1

2
‖H(x)‖22.

When the GCP has a solution, solving (1.1) is equivalent to finding a global minimum
point of the unconstrained minimization problem

min
x∈<n

Φ(x).(2.6)

A favorable property of Φ is that it is continuously differentiable on the whole space
<n, although H itself is not continuously differentiable in general [20]. It is easy to
verify that for any x ∈ <n and any V ∈ ∂H(x)

∇Φ(x) = V TH(x) = ∇F (x)DFH(x) +∇G(x)DGH(x),(2.7)

where DF and DG are diagonal matrices satisfying (2.4) such that V = DF∇F (x)T +
DG∇G(x)T . The unconstrained minimization reformulation (2.6) as well as the semis-
mooth equation reformulation (2.2) will be the basis of the proposed trust region
method for solving the GCP.
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GENERALIZED COMPLEMENTARITY PROBLEMS 143

We now introduce some definitions which will be useful in the subsequent analysis.
Let E : <n → <n be locally Lipschitz around x ∈ <n. E is said to be semismooth at
x if

lim
V∈∂E(x+th′)
h′→h,t↓0

V h′

exists for any h ∈ <n [33]. It has been proved [33] that E′(x;h), the directional
derivative of E at x along the direction h, exists for any h ∈ <n if E is semismooth at
x. Moreover, E is said to be strongly semismooth at x if E is semismooth at x and
for any V ∈ ∂E(x+ h), h→ 0,

V h− E′(x;h) = O(‖h‖2).
A matrix M ∈ <n×n is called a P -matrix if its principal minors are all positive,

a P0-matrix if its principal minors are all nonnegative, and an S0-matrix if

{x ∈ <n |x ≥ 0, x 6= 0,Mx ≥ 0} 6= ∅.
It is known [4] that every P -matrix is a P0-matrix and every P0-matrix is an

S0-matrix.

3. Algorithm. The proposed trust region algorithm for solving the GCP (1.1)
is now formally stated.

Algorithm.
Step 0. Let α1, α2, α3, α4, ρ1, ρ2, ∆min, and ∆1 be such that 0 < α1 < α2 < 1 <

α3 < α4, 0 < ρ1 < ρ2 < 1, ∆min > 0, and ∆1 > 0. Let x1 ∈ <n be a starting
point. Set k := 1.

Step 1. If ∇Φ(xk) = 0, stop. Otherwise, let ∆̂ := max{∆min,∆k} and choose Vk ∈
∂BH(xk).

Step 2. Let ŝ be a solution of the minimization problem

min∇Φ(xk)T s+
1

2
sTV T

k Vks(3.1)

s.t.‖s‖ ≤ ∆̂.

Step 3. Let

r̂ :=
Φ(xk + ŝ)− Φ(xk)

1
2‖H(xk) + Vkŝ‖22 − Φ(xk)

.

If r̂ ≥ ρ1, then let sk := ŝ, xk+1 := xk + sk, δk := ∆̂. For a fixed α ∈ [α3, α4],
let

∆k+1 :=

{
∆̂ if ρ1 ≤ r̂ < ρ2,

α∆̂ if r̂ ≥ ρ2.

Let k be replaced by k + 1, and return to Step 1. Otherwise, choose ∆ ∈
[α1∆̂, α2∆̂). Let ∆̂ := ∆, and repeat Step 2.

Remarks. (i) In Step 2 of the algorithm, the minimization problem (3.1) may
have several solutions. From the first equality in (2.7), it is easy to see that, for any
s ∈ <n,

1

2
‖H(xk) + Vks‖22 − Φ(xk) = ∇Φ(xk)T s+

1

2
sTV T

k Vks.(3.2)
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144 H. JIANG, F. FUKUSHIMA, L. QI, AND D. SUN

(ii) The main difference between the proposed trust region method and the clas-
sical trust region methods lies in the updating rule for the trust region radius at the
beginning of each iteration. More precisely, at the beginning of each iteration k, the
trust region radius is always set greater than the fixed positive constant ∆min rather
than solely updated from the final trust region radius of iteration k − 1 as in the
classical trust region methods. This type of updating rule for the trust region radius
is also used in recent literature [14, 17, 23]. As we shall see, this special strategy en-
ables us not only to establish global convergence but also to recover local superlinear
convergence of the algorithm under some conditions, despite that (2.2) is a system of
nonsmooth equations.

(iii) Note that δk does not play any role in the algorithm. But it will be useful in
proving convergence theorems in the subsequent sections.

Proposition 3.1. The algorithm cannot cycle between Step 2 and Step 3 in-
finitely, provided that xk is not a stationary point of Φ.

Proof. Suppose the algorithm does cycle for some k and xk is not a stationary
point of Φ; i.e., ∇Φ(xk) 6= 0. Then the continuous differentiability of Φ implies

Φ(xk + ŝ)− Φ(xk) = ∇Φ(xk)T ŝ+ o(‖ŝ‖)
≤ ∇Φ(xk)T ŝ+

1

2
ŝTV T

k Vkŝ+ o(‖ŝ‖)

=
1

2
‖H(xk) + Vkŝ‖22 − Φ(xk) + o(‖ŝ‖),(3.3)

where the last equality follows from (3.2). Let s∗ = − ∇Φ(xk)
‖∇Φ(xk)‖ . Clearly, τ∆̂s∗ is a

feasible solution of (3.1) for any τ ∈ [0, 1]. Since ŝ solves (3.1), it follows from (3.2)
that for 0 ≤ τ ≤ 1

1

2
‖H(xk) + Vkŝ‖22 − Φ(xk) ≤ τ∆̂∇Φ(xk)T s∗ +

1

2
τ2∆̂2(s∗)TV T

k Vks
∗

= −τ∆̂‖∇Φ(xk)‖+
1

2
τ2∆̂2(s∗)TV T

k Vks
∗.

By the assumption that the algorithm cycles between Steps 2 and 3, both ‖ŝ‖ and
∆̂ tend to zero, while r̂ < ρ1 is maintained. Consequently, there exist τ∗ > 0 and
∆∗ > 0 such that when ∆̂ ≤ ∆∗

1

2
‖H(xk) + Vkŝ‖22 − Φ(xk) ≤ −τ∗∆̂‖∇Φ(xk)‖.

This, together with the definition of r̂ and the relation (3.3), implies that

r̂ ≥ 1− o(‖ŝ‖)
τ∗∆̂‖∇Φ(xk)‖ ≥ 1− o(‖∆̂‖)

τ∗∆̂‖∇Φ(xk)‖ → 1 as ∆̂ → 0,

which indicates that we eventually have r̂ ≥ ρ1. This is a contradiction and the
desired result follows.

4. Regularity condition. Most unconstrained minimization methods normally
generate a sequence converging to a local minimizer or a stationary point rather than
a global minimizer. As discussed in section 2, if the GCP has a solution, then solving
the GCP is equivalent to finding a global minimizer of the unconstrained minimization
problem (2.6). It is therefore crucial to study under what conditions a stationary point
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GENERALIZED COMPLEMENTARITY PROBLEMS 145

of (2.6) becomes a solution of the GCP. To this end, let us introduce some index sets:
C(x),R(x),P(x), andN (x), which stand for complementarity indices, residual indices,
positive indices, and negative indices, respectively; i.e.,

C(x) := {i ∈ {1, . . . , n} | Fi(x) ≥ 0, Gi(x) ≥ 0, Fi(x)Gi(x) = 0},
R(x) := {i ∈ {1, . . . , n} | i /∈ C(x)},
P(x) := {i ∈ R(x) | Fi(x) > 0, Gi(x) > 0},
N (x) := R(x) \ P(x).

In the rest of the paper, we shall simply denote these sets as C,R,P, and N ; the
point x under consideration will always be clear from the context.

It is easy to verify the following result using (2.3), (2.4), and (2.5). The proof is
omitted.

Proposition 4.1. Let diagonal matrices DF and DG satisfy (2.4) such that
DF∇F (x)T + DG∇G(x)T ∈ ∂H(x). Then for each x ∈ <n, we have the following
relations:

(DFH(x))i > 0 ⇐⇒ (DGH(x))i > 0 ⇐⇒ i ∈ P,
(DFH(x))i = 0 ⇐⇒ (DGH(x))i = 0 ⇐⇒ i ∈ C,
(DFH(x))i < 0 ⇐⇒ (DGH(x))i < 0 ⇐⇒ i ∈ N .

Note that, since DF and DG are diagonal matrices, we have (DFH(x))i = DF
i Hi(x)

and (DGH(x))i = DG
i Hi(x) for each i = 1, . . . , n.

Definition 4.2. The GCP is said to be regular at a point x if for any two vectors
z1 6= 0, z2 6= 0 in <n satisfying

z1
C = 0, z1

P > 0, z1
N < 0,

z2
C = 0, z2

P > 0, z2
N < 0,

we have

∇F (x)z1 +∇G(x)z2 6= 0.

Moreover, a stationary point x of Φ is called a regular stationary point if the GCP is
regular at x.

It is not hard to see that, when the GCP reduces to the NCP, the regularity con-
dition introduced here is slightly weaker than that defined in [5]. Under the present
regularity condition, the following theorem establishes the equivalence between solu-
tions of the GCP and stationary points of the merit function Φ.

Theorem 4.3. x is a solution of the GCP if and only if x is a regular stationary
point of Φ.

Proof. If x is a solution of the GCP, then x is a stationary point of Φ, and, hence,
P = N = ∅. By definition, x is a regular point of Φ.

Conversely, suppose x is a regular stationary point of Φ. Let DF and DG satisfy
the conditions of Proposition 4.1. Let z1 = DFH(x) and z2 = DGH(x). Then

0 = ∇Φ(x) = ∇F (x)DFH(x) +∇G(x)DGH(x) = ∇F (x)z1 +∇G(x)z2.(4.1)

If x is not a solution of the GCP, it follows from Proposition 4.1 that z1 6= 0, z2 6= 0.
By the definition of regularity and Proposition 4.1, for z1 and z2,

∇F (x)z1 +∇G(x)z2 6= 0,
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146 H. JIANG, F. FUKUSHIMA, L. QI, AND D. SUN

which contradicts (4.1). Therefore x is a solution of the GCP.
Next we present a sufficient condition for ensuring regularity of the GCP. The

proof is based on a result of [5] for the NCP. In fact, when the GCP happens to be
the NCP, the obtained result boils down to that of [5].

Let D ∈ <|R|×|R| denote a diagonal matrix with diagonal elements D1, . . . , D|R|
defined by

Di =

{
1 if i ∈ P,
−1 if i ∈ N .

Evidently, DD is the |R| × |R| identity matrix. Using this notation, we establish the
following proposition.

Proposition 4.4. Assume that ∇G(x) is invertible and

D(∇F (x)T (∇G(x)T )−1)RRD

is an S0-matrix. Then the GCP is regular at x.
Proof. Since D(∇F (x)T (∇G(x)T )−1)RRD is an S0-matrix, there exists a vector

y1
R 6= 0 such that

y1
R ≥ 0, D(∇F (x)T (∇G(x)T )−1)RRDy1

R ≥ 0.(4.2)

Let vectors y2 ∈ <n and y ∈ <n be such that

y2
C = 0, y2

R = Dy1
R,(4.3)

y = (∇G(x)−1)T y2.(4.4)

Clearly,

y2
R 6= 0, y2

P ≥ 0, y2
N ≤ 0.(4.5)

For any two vectors z1 6= 0, z2 6= 0 in <n satisfying

z1
C = 0, z1

P > 0, z1
N < 0,

z2
C = 0, z2

P > 0, z2
N < 0,

it follows from (4.3), (4.4), and (4.5) that

yT∇G(x)z2 = (y2)T z2 = (y2
R)T z2

R > 0.(4.6)

By the definition of y, y2, and z1, we have

yT∇F (x)z1 = (y2)T∇G(x)−1∇F (x)z1

= (y2
R)T (∇G(x)−1∇F (x))RRz1

R
= (y1

R)TD(∇G(x)−1∇F (x))RRDDz1
R.

Then (4.2) and the fact that Dz1
R > 0 imply that

yT∇F (x)z1 ≥ 0,

which together with (4.6) yields

yT (∇F (x)z1 +∇G(x)z2) > 0.
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GENERALIZED COMPLEMENTARITY PROBLEMS 147

Consequently,

∇F (x)z1 +∇G(x)z2 6= 0.

Therefore the GCP is regular at x.
It has been proved in [20] that any stationary point of Φ is a solution of the GCP

if ∇G(x)T is invertible and ∇F (x)T (∇G(x)T )−1 is a P0-matrix. It is not difficult to
see that this result is a consequence of Proposition 4.4 by using the fact that a matrix
M is a P0-matrix if and only if the matrix DMD is a P0-matrix for any nonsingular
diagonal matrix D and the fact that any P0-matrix is an S0-matrix.

5. Global convergence. We now suppose that the algorithm generates an infi-
nite sequence {xk}; i.e., the stopping test in Step 1 of the algorithm is never fulfilled.
Let c > 0 be a constant such that

‖y‖ ≤ c‖y‖2
for all y ∈ <n. We first present a standard result.

Lemma 5.1. Let ŝ be a solution of (3.1). Then

1

2
‖H(xk) + Vkŝ‖22 − Φ(xk) ≤ −1

2
‖∇Φ(xk)‖2 min

{
∆̂

c
,
‖∇Φ(xk)‖2
‖V T

k Vk‖2

}
.

Proof. Suppose s̃ is a solution of the following minimization problem

min ∇Φ(xk)T s+
1

2
sTV T

k Vks

s.t. ‖s‖2 ≤ ∆̂

c
.

Then from Theorem 4 in [31],

1

2
‖H(xk) + Vks̃‖22 − Φ(xk) ≤ −1

2
‖∇Φ(xk)‖2 min

{
∆̂

c
,
‖∇Φ(xk)‖2
‖V T

k Vk‖2

}
.(5.1)

Since ‖s̃‖ ≤ c‖s̃‖2 ≤ ∆̂, s̃ is a feasible solution of (3.1). Since ŝ solves (3.1), the
desired result follows from (3.2) and (5.1).

Lemma 5.2. Suppose x∗ is the limit of a subsequence {xk}k∈K . If x∗ is not a

stationary point of Φ, then there exist k̂ and ∆ > 0 such that for all k ≥ k̂ (k ∈ K)

r̂ :=
Φ(xk + ŝ)− Φ(xk)

1
2‖H(xk) + Vkŝ‖22 − Φ(xk)

≥ ρ1

whenever ∆̂ ∈ (0,∆), where ŝ is a solution of (3.1).
Proof. First note that

r̂ = 1 +
−1

2 ŝ
TV T

k Vkŝ+ o(‖ŝ‖2)
1
2‖H(xk) + Vkŝ‖22 − Φ(xk)

.(5.2)

Since x∗ is not a stationary point and ∂H is upper semicontinuous, there exist positive
constants β1 and β2 such that

‖∇Φ(xk)‖2 ≥ β1,
‖∇Φ(xk)‖2
‖V T

k Vk‖2 ≥ β2(5.3)
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148 H. JIANG, F. FUKUSHIMA, L. QI, AND D. SUN

for all sufficiently large k ∈ K. By Lemma 5.1,

1

2
‖H(xk) + Vkŝ‖22 − Φ(xk) ≤ −1

2
β1 min

{
∆̂

c
, β2

}
(5.4)

for all sufficiently large k ∈ K. Then the desired result is a direct consequence of
(5.2), (5.3), and (5.4).

Lemma 5.3. Suppose x∗ is the limit of a subsequence {xk}k∈K . If x∗ is not a
stationary point of Φ, then

lim inf
k∈K, k→∞

δk > 0,

where δk is defined as in the algorithm.
Proof. By Lemma 5.2, there exists a ∆ > 0 such that r̂ ≥ ρ1 whenever ∆̂ < ∆

at each iteration k ∈ K sufficiently large. Thus, by the updating rule of the trust
region radius in the algorithm, we have δk ≥ α1∆ for all sufficiently large k ∈ K. The
desired result follows.

Now we are ready to establish a global convergence theorem for the proposed
trust region algorithm.

Theorem 5.4. Let {xk} be generated by the algorithm. Then any accumulation
point of {xk} is a stationary point of Φ. Moreover, it is a solution of the GCP if the
regularity condition holds at this point.

Proof. Suppose x∗ is an accumulation point of {xk}, say limk∈K, k→∞ xk = x∗.
If x∗ is not a stationary point of Φ, then Lemmas 5.1 and 5.3 imply that there exist
β1 > 0, β2 > 0, δ > 0, and k̂ such that (5.4) holds and δk ≥ δ for all k ≥ k̂ (k ∈ K).
By the algorithm, Lemma 5.1, (5.4), and the fact that Φ is nonnegative, we obtain

Φ(x1) ≥
∞∑
k=1

[
Φ(xk)− Φ(xk+1)

]

≥
∞∑
k=1

ρ1

[
Φ(xk)− 1

2
‖H(xk) + Vks

k‖22
]

≥
∑
k≥k̂
k∈K

ρ1

[
Φ(xk)− 1

2
‖H(xk) + Vks

k‖22
]

≥ ρ1

∑
k≥k̂
k∈K

1

2
β1 min

{
δk
c
, β2

}

≥ 1

2
ρ1β1

∑
k≥k̂
k∈K

min

{
δ

c
, β2

}
= ∞.

This is impossible. Therefore, x∗ is a stationary point of Φ.
We now turn to the case where {xk} does not necessarily have an accumulation

point.
Theorem 5.5. Let {xk} be generated by the algorithm. If {Vk} is bounded, then

{∇Φ(xk)} is not bounded away from zero; that is,

lim inf
k→∞

‖∇Φ(xk)‖ = 0.(5.5)
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GENERALIZED COMPLEMENTARITY PROBLEMS 149

Proof. Suppose (5.5) does not hold. Then the boundedness of {Vk} and Lemma
5.1 imply the existence of β1 and β2 such that (5.4) holds for all k. By the algorithm
and (5.4), we obtain

Φ(x1) ≥
∞∑
k=1

[
Φ(xk)− Φ(xk+1)

]

≥
∞∑
k=1

ρ1

[
Φ(xk)− 1

2
‖H(xk) + Vks

k‖22
]

≥ 1

2
ρ1β1

∞∑
k=1

min

{
δk
c
, β2

}
.

This implies

∞∑
k=1

δk <∞,

and, hence,

∞∑
k=1

‖xk+1 − xk‖ <∞.

This implies that {xk} converges to a point x∗. By Theorem 5.4, x∗ is a stationary
point of Φ; i.e, ∇Φ(x∗) = 0. This contradicts the assumption that

lim inf
k→∞

‖∇Φ(xk)‖ > 0.

Remark. If ∇F and ∇G are bounded on <n, then ∂H is bounded on <n and the
boundedness assumption on {Vk} is satisfied.

This theorem says that the sequence {xk} generated by the algorithm contains a
stationary subsequence {xk}k∈K in the sense that limk→∞,k∈K ‖∇Φ(xk)‖ = 0, even
if {xk} is unbounded. However, a stationary sequence is not necessarily a minimizing
sequence of Φ in general. Conditions under which any stationary sequence of Φ is a
minimizing sequence have been studied in [16] for the NCP.

6. Superlinear convergence. In this section, we shall be concerned with the
rate of convergence of the algorithm. It is known [33, 32] that semismoothness and
certain nonsingularity conditions at a solution of the system of nonsmooth equations
play a crucial role in establishing superlinear convergence of some generalized Newton
methods. Recall that H is said to be BD-regular at a point x if all the elements in
∂BH(x) are nonsingular [32]. We now derive some sufficient conditions for ensuring
BD-regularity at a solution of the GCP.

Suppose ∇G(x̄)T is invertible at a solution x̄ of the GCP. Let

M =


 Mαα Mαβ Mαγ

Mβα Mββ Mβγ

Mγα Mγβ Mγγ


 := ∇F (x̄)T (∇G(x̄)T )−1,

where

α := {i ∈ {1, . . . , n} | Fi(x̄) = 0, Gi(x̄) > 0},
β := {i ∈ {1, . . . , n} | Fi(x̄) = 0, Gi(x̄) = 0},
γ := {i ∈ {1, . . . , n} | Fi(x̄) > 0, Gi(x̄) = 0}.
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150 H. JIANG, F. FUKUSHIMA, L. QI, AND D. SUN

The GCP is said to be R-regular at x̄ if Mαα is nonsingular and the Schur complement
of Mαα in the matrix (

Mαα Mαβ

Mβα Mββ

)
;

i.e., Mββ −MβαM
−1
ααMαβ is a P -matrix, see [34].

Proposition 6.1. Let x̄ be a solution of the GCP. Suppose ∇G(x̄)T is invertible.
If the GCP is R-regular at x̄, then any V ∈ ∂H(x̄) is nonsingular.

Proof. Since ∇G(x̄)T is invertible, by (2.3) any V ∈ ∂H(x̄) can be represented as

V = DF∇F (x̄)T +DG∇G(x̄)T

=
(
DF∇F (x̄)T (∇G(x̄)T )−1 +DG

)∇G(x̄)T

= (DFM +DG)∇G(x̄)T ,

where DF and DG satisfy the condition (2.4) and M = ∇F (x̄)T (∇G(x̄)T )−1. Then
V is nonsingular if and only if DFM +DG is nonsingular. By some standard analysis
(see, e.g., [9]), the nonsingularity of DFM + DG can be deduced from the fact that
the GCP is R-regular at x.

Corollary 6.2. Suppose ∇G(x̄)T is invertible. If ∇F (x̄)T (∇G(x̄)T )−1 is a
P -matrix, then any V ∈ ∂H(x̄) is nonsingular.

Proof. Note that every principal submatrix of a P -matrix is a P -matrix, hence
nonsingular, and the Schur complement of every principal submatrix of a P -matrix
is a P -matrix. Therefore, the GCP is R-regular at x̄. The desired result follows from
Proposition 6.1.

Lemma 6.3. (a) H is semismooth on <n if F and G are continuously differ-
entiable on <n; (b) H is strongly semismooth on <n if ∇F and ∇G are Lipschitz
continuous on <n.

Proof. Apparently, H is (strongly) semismooth at x if and only if each component
of H is (strongly) semismooth at x. Therefore it suffices to prove that H1 is (strongly)
semismooth at any x ∈ <n under different assumptions.

Note that H1 can be regarded as a composition of the function φ : <2 → <
defined by (2.1) and the function h : <n → <2 with h(x) = (F1(x), G1(x)); i.e.,
H1(x) = φ(h(x)). It is known that the composition of semismooth functions are
semismooth [24, Theorem 5], and the composition of strongly semismooth functions
are strongly semismooth [13, Theorem 5.7]. By Lemma 5.6 in [13], φ is strongly
semismooth, hence semismooth on <2. Therefore (a) holds if F and G are semismooth
on <n, and (b) holds if F and G are strongly semismooth on <n. On the other hand,
the semismoothness of F and G follows from the continuous differentiability of F and
G, and the strong semismoothness of F and G follows from the Lipschitz continuity
of the Jacobians of F and G.

Lemma 6.4. Let {xk} be generated by the algorithm and x∗ be an accumulation
point of {xk}. If the BD-regularity condition holds at x∗, then x∗ is a solution of the
GCP and there exists an open neighborhood N (x∗) of x∗ such that when xk ∈ N (x∗),
we have

xk+1 = xk − V −1
k H(xk) ∈ N (x∗).

Proof. By the BD-regularity condition and Theorem 5.4, x∗ is a solution of the
GCP and V −1

k H(xk) → 0 as xk → x∗. Therefore, when xk is sufficiently close to x∗,
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GENERALIZED COMPLEMENTARITY PROBLEMS 151

we have ‖V −1
k H(xk)‖ ≤ ∆min and −V −1

k H(xk) is a solution of (3.1) if ∆̂ ≥ ∆min. On
the other hand, we have ‖H(xk−V −1

k H(xk))‖ = o(‖H(xk)‖) as xk → x∗ by Theorem

3.1 in [32]. This implies that r̂ ≥ ρ1 holds for some ∆̂ ≥ ∆min when xk is sufficiently
close to x∗. This in turn implies that, by the updating rule of the trust region radius,
∆k ≥ ∆min for all k large enough. Therefore we have xk+1 = xk − V −1

k H(xk) for all
k sufficiently large, and ‖xk+1 − x∗‖ = o(‖xk − x∗‖) as xk → x∗ from Theorem 3.1 in
[32]. The conclusion follows easily.

We are now in a position to present rate of convergence results for the proposed
algorithm.

Theorem 6.5. Suppose that the BD-regularity condition holds at an accumu-
lation point x∗ of the sequence {xk} generated by the algorithm. Then the entire
sequence {xk} converges to x∗ Q-superlinearly if F and G are continuously differen-
tiable on <n. Moreover, the rate of convergence is Q-quadratic if ∇F and ∇G are
Lipschitz continuous on <n.

Proof. Since x∗ is an accumulation point of {xk}, there exists a subsequence

{xk}k∈K such that limk∈K,k→∞ xk = x∗. By Lemma 6.4, there exists k̂ ∈ K such

that when k ≥ k̂

xk+1 = xk − V −1
k H(xk).

It follows that the algorithm reduces to the generalized Newton method considered
in [32]. Therefore, Q-superlinear convergence is guaranteed by Theorem 3.1 in [32].
Note that H is strongly semismooth if ∇F and ∇G are Lipschitz continuous. This
implies Q-quadratic convergence again by Theorem 3.1 in [32].

7. Computation of a generalized Jacobian. In the algorithm, we assumed
that a generalized Jacobian of H is available at any point x. We now present a method
for calculating a generalized Jacobian of H at x.

Define

I(x) := {i ∈ {1, . . . , n} | Fi(x)2 +Gi(x)2 = 0, ‖∇Fi(x)‖+ ‖∇Gi(x)‖ > 0}.
If I(x) 6= ∅, then we may assume, without loss of generality, that I(x) = {1, . . . , k}
for some k ≤ n and that ∇Fi(x) 6= 0 for each i ∈ I(x). Now we shall construct a
vector d ∈ <n such that

∇Fi(x)T d 6= 0 for i ∈ I(x).(7.1)

First let d := ∇F1(x) and

J(x) := {i ∈ I(x) | ∇Fi(x)T d = 0}.
If J(x) = ∅, then d satisfies (7.1). Otherwise, choose j ∈ J(x), let

d̄ :=
mini∈I(x)\J(x) |∇Fi(x)T d|

2 maxi∈J(x) ‖∇Fi(x)‖‖∇Fj(x)‖∇Fj(x),

and put d̂ := d+ d̄. Then it is clear that ∇Fj(x)T d̂ 6= 0. Moreover, for i ∈ I(x)\J(x),
we have

∇Fi(x)T d̂ = ∇Fi(x)T d+
mini∈I(x)\J(x) |∇Fi(x)T d|

2 maxi∈J(x) ‖∇Fi(x)‖‖∇Fj(x)‖∇Fi(x)T∇Fj(x).
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152 H. JIANG, F. FUKUSHIMA, L. QI, AND D. SUN

Since the absolute value of the second term on the right-hand side is never greater
than that of the first term, we have ∇Fi(x)T d̂ 6= 0 for i ∈ I(x) \ J(x). Define Ĵ(x) by

Ĵ(x) := {i ∈ I(x) | ∇Fi(x)T d̂ = 0}.

The above arguments indicate that Ĵ(x) ⊆ J(x) \ {j}. Put d := d̂ and J(x) := Ĵ(x).
If J(x) = ∅, then d satisfies (7.1). Otherwise, choose an index from J(x) and repeat
the above procedure. After at most k steps, we will have J(x) = ∅ and a vector d
satisfying (7.1).

For small t > 0, let

y(t) := x+ td+ d̂(t),

where ‖d̂(t)‖ = o(t) and d is a vector satisfying (7.1). Then H is differentiable

at y(t) with appropriately chosen d̂(t). Letting t tend to zero, we obtain a matrix
V := limt→0+ ∇H(y(t))T , which is an element of ∂BH(x) with the form DF∇F (x)T +
DG∇G(x)T , where DF = diag{DF

1 , . . . , D
F
n } and DG = diag{DG

1 , . . . , D
G
n } are de-

termined by

DF
i =




Fi(x)√
Fi(x)2 +Gi(x)2

− 1 if Fi(x)2 +Gi(x)2 > 0,

ξi if Fi(x) = Gi(x) = 0, and
‖∇Fi(x)‖+ ‖∇Gi(x)‖ = 0,

∇Fi(x)T d√
(∇Fi(x)T d)2 + (∇Gi(x)T d)2

− 1 if Fi(x) = Gi(x) = 0, and

‖∇Fi(x)‖+ ‖∇Gi(x)‖ > 0,

DG
i =




Gi(x)√
Fi(x)2 +Gi(x)2

− 1 if Fi(x)2 +Gi(x)2 > 0,

ηi if Fi(x) = Gi(x) = 0, and
‖∇Fi(x)‖+ ‖∇Gi(x)‖ = 0,

∇Gi(x)T d√
(∇Fi(x)T d)2 + (∇Gi(x)T d)2

− 1 if Fi(x) = Gi(x) = 0, and

‖∇Fi(x)‖+ ‖∇Gi(x)‖ > 0

for i = 1, . . . , n, and ξi and ηi are some constants. Note that we have not specified any
fixed numbers for DF

i and DG
i if Fi(x) = Gi(x) = 0 and ‖∇Fi(x)‖ + ‖∇Gi(x)‖ = 0.

In practice, however, this does not cause any problem in calculating a generalized
Jacobian V ∈ ∂BH(x). In fact, as shown easily, ‖∇Fi(x)‖ + ‖∇Gi(x)‖ = 0 implies
that the ith row of any V ∈ ∂BH(x) becomes a zero vector.

8. Numerical experiments. In this section, we present some numerical exper-
iments for the proposed algorithm. We have chosen the l∞-norm in the constraint set
of the subproblem (3.1) so that (3.1) becomes a linear least squares problem with box
constraints. We implemented a nonmonotone version of the algorithm in the sense
that r̂ in Step 3 of the algorithm is defined as

r̂ :=
Φ(xk + s)−Ψk

1
2‖H(xk) + Vkŝ‖22 − Φ(xk)

,
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GENERALIZED COMPLEMENTARITY PROBLEMS 153

where Ψk := max{Φ(xl) | l = k − lk, . . . , k} and lk is a nonnegative integer. This
means that the objective function value is decreased compared with the maximum of
the objective function values in the last lk + 1 iterations, not necessarily decreased
compared with the objective function value at the very last iteration. The nonmono-
tone version of the algorithm reduces to the algorithm in section 3 if lk ≡ 0 for any k.
In the code, we simply let lk = 3 for k ≥ 4 and lk = k−1 for k = 2, 3. The motivation
to use the nonmonotone version of the algorithm is that the nonmonotone strategy
can advance computational efficiency for complementarity problems, as observed in
[6, 5, 21]. This has also been confirmed by our experience.

The algorithm was implemented in MATLAB and run on a SPARC 10 worksta-
tion. The subproblem (3.1) was solved by the qp.m inside MATLAB. Throughout
the computational experiments, the parameters used in the algorithm were set as
∆min = 1.0, ∆1 = 100, ρ1 = 10−4, ρ2 = 0.75. The trust region radius is updated as
follows: If r̂ ≥ ρ2, then ∆k+1 := 2∆̂; if r̂ < ρ1, then ∆̂ := ∆̂/2. We used

min{‖min{F (x), G(x)}‖∞, ‖∇Φ(x)‖2} ≤ 10−6

as a stopping rule, where min{F (x), G(x)} denotes the vector with components min
{Fi(x), Gi(x)}, i = 1, . . . , n. Note that the second term on the left-hand side of the
above stopping rule is used as a safeguard against the case that an accumulation point
of the sequence generated by the algorithm is a mere stationary point of Φ, which is
not a solution of the NCP or the GCP.

The code stated above was tested on the problems from libraries GAMSLIB and
MCPLIB [1, 7, 10]. For our purpose, we tested all linear and nonlinear complementar-
ity problems from the libraries and leave other problems such as mixed complemen-
tarity problems in the sense of [1], nonlinear equations, and the KKT conditions of
nonlinear programming problems for the future investigation when the corresponding
theoretical results are justified. We have noted that some of the test problems such as
cammcp, hansmcp, and vonthmcp in GAMSLIB, and choi and powell mcp in
MCPLIB are actually not NCPs, although they were originally classified as NCPs [1].
Therefore cammcp, hansmcp, vonthmcp, choi, and powell mcp were not tested
for our code. On the other hand, we tested some problems such as those with the
suffix “mge” in GAMSLIB, and colvdual, colvnlp, nash, and powell in MCPLIB.
These problems were not originally classified as NCPs.

The numerical results are summarized in Tables 8.1 and 8.2 for the problems
from the libraries GAMSLIB and MCPLIB, respectively. In Tables 8.1 and 8.2, Dim
denotes the number of the variables in the problem, Iter denotes the number of
iterations, which is also equal to the number of Jacobian evaluations for the function
F and G, NF denotes the number of function evaluations for the functions F and G,
and Φ denotes the final value of Φ at the found solution.

Two generalized complementarity problems in [27] were tested too. The interested
reader is referred to [27] for full details of these two examples. The results are shown
in Table 8.3. Three different starting points have been used, as distinguished by Start
in Table 8.3.

Outrata–Zowe first problem [27]. Here n = 4. It is an implicit complementarity
problem with both F and G being linear functions. We used the same three starting
points as in [27].

Starting points: (a) (0, 0, 0, 0), (b) (−0.5,−0.5,−0.5,−0.5), (c) (−1,−1,−1,−1).
Outrata–Zowe second problem [27]. Here n = 4. This problem is a modification

of the last problem in which F is unchanged, but G is a nonlinear function.
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154 H. JIANG, F. FUKUSHIMA, L. QI, AND D. SUN

Table 8.1
Numerical results for the problems from GAMSLIB.

Problem Dim Iter NF Φ

cafemge 101 31 95 5.1899e-13
cammge 128 0 1 5.09253e-13
co2mge 208 1 2 1.2755e-14
dmcmge 170 – – –
etamge 114 276 911 4.07511e-14
finmge 153 0 1 2.19764e-14
hansmge 43 13 23 3.46003e-23
harkmcp∗ 32 9 12 4.89955e-09
kehomge 9 11 19 8.14523e-20
mr5mcp 350 23 43 1.54433e-14
nsmge 212 21 42 1.4332e-16
oligomcp 6 6 7 5.41969e-17
sammge 23 0 1 0
scarfmcp 18 11 16 1.68098e-16
scarfmge 18 13 19 1.63513e-16
shovmge 51 1 2 5.58898e-14
threemge 9 0 1 0
transmcp 11 13 17 5.87216e-15
two3mcp 6 11 16 3.59176e-15
unstmge 5 8 19 1.56619e-16
vonthmge 80 – – –

Table 8.2
Numerical results for the problems from MCPLIB.

Problem Dim Iter NF Φ

bertsekas 15 17 42 1.97117e-16
billups 1 81 1085 4.97509e-05
colvdual 20 260 3458 1.08274e-4
colvnlp 15 27 61 5.79401e-14
cycle 1 3 10 1.70007e-21
explcp 16 19 42 3.6185e-14
hanskoop 14 20 54 4.56762e-18
josephy 4 26 45 2.97784e-14
kojshin 4 13 14 4.59541e-13
mathinum 3 4 5 4.33461e-17
mathisum 3 6 14 3.70779e-22
nash 10 8 9 9.61443e-20
pgvon105 105 18 38 1.25115e-13
pgvon106 106 – – –
powell 16 9 17 7.80373e-18
scarfanum 13 11 21 1.68104e-16
scarfasum 14 7 19 1.78446e-16
scarfbnum 39 25 47 5.58127e-15
scarfbsum 40 17 25 2.76111e-18
sppe 27 8 9 3.92819e-18
tobin 42 12 15 2.59193e-24

Starting points: (a) (0, 0, 0, 0), (b) (−0.5,−0.5,−0.5,−0.5), (c) (−1,−1,−1,−1).

The numerical results presented in Tables 8.1, 8.2, and 8.3 show that the pro-
posed method is viable for solving most NCPs from GAMSLIB and MCPLIB as well
as the two GCPs efficiently. In Table 8.1, our code failed to solve dmcmge and
vonthmge within 500 iterations. The problem harkmcp was solved by using some
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Table 8.3
Numerical results for the two GCPs.

Problem Dim Start Iter NF Φ

Outrata-Zowe 1 4 (a) 5 17 7.64995e-18
4 (b) 4 16 9.7148e-15
4 (c) 5 11 3.4347e-24

Outrata-Zowe 2 4 (a) 5 17 1.0474e-18
4 (b) 4 16 4.88604e-15
4 (c) 5 11 7.054e-22

minor modification of the code. Specifically, the Hessian of the objective function
in the quadratic programming subproblem (3.1) was perturbed by adding 10−10 × I,
where I is the identity matrix of an appropriate dimension, if the condition number
of the Hessian is greater than 1015. The reason we made this change in the code for
harkmcp is that we noticed that the quadratic programming code qp.m failed to
produce a solution when no perturbation was adopted. In Table 8.2, the code reached
to a stationary point but it was an approximate solution point for the problem colv-
dual. The code also failed to solve the problem pgvon106 because the machine was
unable to evaluate the objective function, i.e., Φ = NaN, after the seventh iteration.
However, we mention that pgvon106 is not an NCP since some lower bounds of the
variable x are 10−7 rather than zero and that the Jacobian of the function F is highly
ill conditioned when components of x are close to zero. Notice in Table 8.1 that our
code terminated without proceeding any iteration for some problems in GAMSLIB;
i.e. Iter= 0. This is because the starting point provided in GAMSLIB is very close to
the solution of the corresponding problem, which can also be observed from the value
of Φ in the last column of Table 8.1.

9. Conclusions. In this paper, we have proposed a trust region method for
solving the generalized complementarity problem by using both semismooth equation
and differentiable optimization reformulations. The special trust region updating rule
enables us to establish not only global convergence but also local superlinear conver-
gence of the algorithm under some suitable conditions. We remark again that our
trust region method is very different from other existing methods of using line search
schemes as far as the globalization strategy is concerned. The proposed algorithm
was implemented in MATLAB and was tested for all the NCPs from GAMSLIB and
MCPLIB libraries. The preliminary numerical results presented show the viability of
this method. The code successfully solved most of the test problems in a reasonably
small number of function and Jacobian evaluations, although it failed or converged
slowly in some cases. The latter fact suggests that there remain more issues to be
addressed. This may be regarded as a further research topic. As expressed, we only
tested NCPs from these two libraries. Therefore a possible future topic is to extend
the proposed method to the mixed nonlinear complementarity problem which con-
tains the variational inequality problem as a special case if the KKT reformulation of
the latter problem is used.
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SPARC 10 workstation used in numerical tests.
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