Block Symmetric Gauss-Seidel Iteration and Multi-Block Semidefinite Programming

Defeng Sun

Department of Applied Mathematics

School of Mathematics, Sichuan University October 30, 2017

ı

Semidefinite Programming

The standard semidefinite programming (SDP):

$$\min_{X \in \mathcal{S}^n} \{ \langle C, X \rangle \mid \mathcal{A}X = b, \ X \succeq 0 \}.$$

The dual problem in its equivalent minimization form:

$$\min_{y \in \mathbb{R}^m} \{ -\langle b, y \rangle + \delta_{\mathcal{S}^n_+}(S) \mid \mathcal{A}^* y + S = C \}.$$

The Lagrangian function of the dual problem:

$$\mathcal{L}(y,S;X) := -\langle b,y \rangle + \delta_{\mathcal{S}^n_+}(S) + \langle X, \mathcal{A}^*y + S - C \rangle.$$

The augmented Lagrangian function of the dual problem ($\sigma > 0$):

$$\mathcal{L}_{\sigma}(y, S; X) := \mathcal{L}(y, S; X) + \frac{\sigma}{2} \|\mathcal{A}^* y + S - C\|^2.$$

SDPNAL

An inexact augmented Lagrangian method (ALM) framework was used in SDPNAL:

$$\begin{cases} y^{k+1} \approx \mathop{\arg\min}_{y \in \mathbb{R}^m} \Phi_{\sigma_k}(y; X^k), \\ X^{k+1} = \Pi_{\mathcal{S}^n_+}[X^k + \sigma(\mathcal{A}^* y^{k+1} - C)], \qquad k = 0, 1, 2, \dots, \\ \sigma_{k+1} = \rho \sigma_k \quad \text{or } \sigma_{k+1} = \sigma_k, \end{cases}$$

where for a given X

$$\Phi_{\sigma}(y;X) : = \min_{S \in \mathcal{S}_{+}^{n}} \mathcal{L}_{\sigma}(y,S;X)
= -\langle b, y \rangle + \frac{1}{2\sigma} (\|\Pi_{\mathcal{S}_{+}^{n}}[X + \sigma(\mathcal{A}^{*}y - C)]\|^{2} - \|X\|^{2}).$$

 $\Phi_{\sigma_k}(y;X^k)$ is continuously differentiable with respect to y and $\nabla_y\Phi_{\sigma_k}$ is strongly semismooth.

Newton-CG: y^{k+1} is computed via a semismooth Newton method in which each linear system is solved by a conjugate gradient method.

Pros and cons of ALM

ALM: fast local linear convergence (arbitrary linear convergence rate) when the penalty parameter exceeds a certain threshold. But

- Sometimes can be hard and expensive to solve the inner subproblems exactly or to high accuracy, especially in high-dimensional settings;
- Computationally, it is not economical to use the ALM during the early stage of solving the problem when the fast local linear convergence of ALM has not kicked in.

л

First-order method

In SDPNAL, the boundary-point method of Rendl et al. [Computing, 78 (2006)] was used to warm-start the second-order method, i.e., one modified gradient step was used instead of solving the inner subproblem:

$$y^{k+1} = y^k - (\sigma_k \mathcal{A} \mathcal{A}^*)^{-1} \nabla_y \Phi_{\sigma}(y; X^k)$$

= $y^k - (\sigma_k \mathcal{A} \mathcal{A}^*)^{-1} \nabla_y \mathcal{L}(y^k, \widetilde{X}^{k+1}),$

with $\widetilde{X}^{k+1} = \prod_{\mathcal{S}^n_+} [X^k + \sigma(\mathcal{A}^*y^k - C)]$. One can deduce that

$$\sigma_k \mathcal{A} \mathcal{A}^* y^{k+1} = \sigma_k \mathcal{A} \mathcal{A}^* y^k - \mathcal{A} \left(\Pi_{\mathcal{S}^n_+} [X^k + \sigma(\mathcal{A}^* y^k - C)] \right) + b,$$

which implies that

$$\begin{split} -b + \mathcal{A}X^k + \sigma_k \mathcal{A}(\mathcal{A}^*y^{k+1} + S^{k+1} - C) &= 0, \\ \text{with } \sigma S^{k+1} := \Pi_{\mathcal{S}^n_+}[-(X^k + \sigma(\mathcal{A}^*y^k - C)]. \text{ Therefore,} \\ \left\{ \begin{array}{l} S^{k+1} = \arg\min_S \mathcal{L}_{\sigma_k}(y^k, S; X^k), \\ y^{k+1} = \arg\min_y \mathcal{L}_{\sigma_k}(y, S^{k+1}; X^k). \end{array} \right. \end{split}$$

Multi-block SDP

The doubly nonnegative SDP

$$\min_{X \in S^n} \{ \langle C, X \rangle \mid \mathcal{A}_E X = b_E, \mathcal{A}_I X \ge b_I, \ X \succeq 0, \ X \ge 0 \}.$$

The more general convex quadratic SDP

$$\min \left\{ \frac{1}{2} \langle X, QX \rangle + \langle C, X \rangle | \mathcal{A}_E X = b_E, \mathcal{A}_I X \ge b_I, X \in \mathcal{S}^n_+ \cap \mathcal{N} \right\}. \tag{1}$$

- $Q: S^n \to S^n$: self-adjoint positive semidefinite;
- lacksquare $\mathcal{A}_E:\mathcal{S}^n o\mathbb{R}^{m_E}$ and $\mathcal{A}_I:\mathcal{S}^n o\mathbb{R}^{m_I}$ are linear maps;
- $lacksquare C \in \mathcal{S}^n$, $b_E \in \mathbb{R}^{m_E}$ and $b_I \in \mathbb{R}^{m_I}$ are given data;
- \mathcal{N} : a closed convex set (e.g. $\mathcal{N} = \{X \in \mathcal{S}^n \mid L \leq X \leq U\}$).

Recent Developments

[Fazel, Pong, Sun and Tseng, SIMAX, 34 (2013)]:

■ The introduction of the semiproximal ADMM (alternating direction methods of multipliers).

[Sun, Yang and Toh, SIOPT, 25 (2015)]:

- A convergent 3-block ADMM (ADMM3c) for doubly nonnegative SDP: only requires an inexpensive extra step per iteration but it is theoretically convergent and practically even faster.
- The precursor of the block symmetric Gauss Seidel iteration technique.

Fig. 1 from [Sun, Yang and Toh (2015)]

Figure: ADMM3c performs the best among a few first order methods (no inequality constraints).

Fig. 3 from [Sun, Yang and Toh (2015)]

Figure: ADMM3c performs as good as the directly extended 4-block ADMM.

Recent developments (II)

[Li, Sun and Toh, MP, 155 (2016)]:

- A Schur complement based (SCB) multi-block ADMM for convex quadratic conic programming;
- The block symmetric Gauss-Seidel (sGS) iteration technique.

[Li, Sun and Toh, arXiv:1512.08872 (2015)]¹

- The block sGS decomposition theorem;
- Its equivalence to the SCB reduction procedure;
- The quadratic part is not necessarily separable;
- Allows the updates of the blocks to be inexact.

¹Currently available at arXiv:1703.06629 (2017)

Dual of the convex QSDP

The dual of the convex QSDP problem (1) in its equivalent minimization form:

min
$$\delta_{\mathcal{N}}^*(-Z) + \frac{1}{2}\langle W, \mathcal{Q}W \rangle - \langle b_E, y_E \rangle - \langle b_I, y_I \rangle$$

s.t. $Z - \mathcal{Q}W + S + \mathcal{A}_E^* y_E + \mathcal{A}_I^* y_I = C,$ (2)
 $S \in \mathcal{S}_+^n, \ y_I \ge 0, \ W \in \mathcal{W}.$

 ${\mathcal W}$ is an arbitrary subspace of ${\mathcal S}^n$ containing ${
m Range}({\mathcal Q})$

- Generally, W is S^n or Range(Q).
- For first-order methods, $W = S^n$.

Fig. 1 from [Li, Sun and Toh (2016)]

Fig. 1 Performance profiles of SCB- SPADMM, ADMM and ADMMGB for the tested large scale QSDP

Figure: SCB-ADMM performs the best for solving the tested QSDP problems (without inequality constraints).

An inexact block symmetric Gauss-Seidel (sGS) iteration

Let $s\geq 2$ be a given integer and $\mathcal{U}:=\mathcal{U}_1\times\cdots\times\mathcal{U}_s$ with all \mathcal{U}_i being finite dimensional real Euclidean spaces. For any $u\in\mathcal{U}$ we write $u\equiv(u_1,\ldots,u_s)$. Let $\mathcal{H}:\mathcal{U}\to\mathcal{U}$ be a given self-adjoint positive semidefinite linear operator and

$$\mathcal{H}u := egin{pmatrix} \mathcal{H}_{11} & \mathcal{H}_{12} & \cdots & \mathcal{H}_{1s} \ \mathcal{H}_{12}^* & \mathcal{H}_{22} & \cdots & \mathcal{H}_{2s} \ dots & dots & \ddots & dots \ \mathcal{H}_{1s}^* & \mathcal{H}_{2s}^* & \cdots & \mathcal{H}_{ss} \end{pmatrix} egin{pmatrix} u_1 \ u_2 \ dots \ u_s \end{pmatrix},$$

where \mathcal{H}_{ii} are self-adjoint positive definite linear operators, \mathcal{H}_{ij} : $\mathcal{U}_j \to \mathcal{U}_i, i=1,\ldots,s-1, j>i$, are linear maps. We denote

$$\mathcal{H}_{\mathbf{u}} := \begin{pmatrix} 0 & \mathcal{H}_{12} & \cdots & \mathcal{H}_{1s} \\ & \ddots & \ddots & \vdots \\ & & \ddots & \mathcal{H}_{(s-1)s} \\ & & & 0 \end{pmatrix}, \mathcal{H}_{\mathbf{d}} := \begin{pmatrix} \mathcal{H}_{11} & & & \\ & \mathcal{H}_{22} & & \\ & & \ddots & \\ & & & \mathcal{H}_{ss} \end{pmatrix}.$$

$$(3)$$

Note that $\mathcal{H} = \mathcal{H}_d + \mathcal{H}_u + \mathcal{H}_u^*$ and \mathcal{H}_d is positive definite.

Cont.

Define the self-adjoint positive semidefinite linear operator $sGS(\mathcal{H})$: $\mathcal{U} \to \mathcal{U}$ by

$$\mathbf{sGS}(\mathcal{H}) := \mathcal{H}_u \mathcal{H}_d^{-1} \mathcal{H}_u^*.$$

For any $u \in \mathcal{U}$, denote

$$u_{\leq i} := \{u_1, \dots, u_i\} \text{ and } u_{\geq i} := \{u_i, \dots, u_s\}, i = 1, \dots, s.$$

Let $\widetilde{\delta}_i, \delta_i \in \mathcal{U}_i$, $i=1,\ldots,s$ be given error tolerance vectors with $\widetilde{\delta}_1=\delta_1$. Define

$$d(\widetilde{\delta}, \delta) := \delta + \mathcal{H}_u \mathcal{H}_d^{-1}(\delta - \widetilde{\delta}). \tag{4}$$

Let $\theta:\mathcal{U}_1\to(-\infty,\infty]$ be a given closed proper convex function and $b\in\mathcal{U}$ be a given vector. Consider the quadratic function

$$h(u) := \frac{1}{2} \langle u, \mathcal{H}u \rangle - \langle b, u \rangle \quad \forall u \in \mathcal{U}.$$

Suppose that $u^- \in \mathcal{U}$ is a given vector. We want to compute

$$\frac{\mathbf{u}^+}{\mathbf{u}^+} := \underset{u \in \mathcal{U}}{\operatorname{arg\,min}} \left\{ \theta(u_1) + h(u) + \frac{1}{2} \|u - \mathbf{u}^-\|_{\operatorname{sGS}(\mathcal{H})}^2 - \langle d(\widetilde{\delta}, \delta), u \rangle \right\}.$$

 $(5)_{14}$

Inexact block sGS decomposition theorem

Proposition 1 (Inexact block sGS decomposition)

Assume that \mathcal{H}_{ii} , $i=1,\ldots,s$ are positive definite. Then

$$\widehat{\mathcal{H}} := \mathcal{H} + \mathrm{sGS}(\mathcal{H}) = (\mathcal{H}_d + \mathcal{H}_u)\mathcal{H}_d^{-1}(\mathcal{H}_d + \mathcal{H}_u^*) \succ 0.$$

Furthermore, for $i=s,s-1,\ldots,2$ (the backwark sGS sweep), define

$$\widetilde{u}_i := \underset{u_i}{\operatorname{arg\,min}} \left\{ \theta(u_1^-) + h(u_{\leq i-1}^-, u_i, \widetilde{u}_{\geq i+1}) - \langle \widetilde{\delta}_i, u_i \rangle \right\}.$$
 (6)

Then, the optimal solution u^+ defined by (5) can be obtained exactly via

$$\begin{cases}
\mathbf{u}_{1}^{+} := \arg\min_{u_{1}} \left\{ \theta(u_{1}) + h(u_{1}, \widetilde{u}_{\geq 2}) - \langle \delta_{1}, u_{1} \rangle \right\}, \\
\mathbf{u}_{i}^{+} := \arg\min_{u_{i}} \left\{ \theta(u_{1}^{+}) + h(u_{\leq i-1}^{+}, u_{i}, \widetilde{u}_{\geq i+1}) - \langle \delta_{i}, u_{i} \rangle \right\}, \\
i = 2, \dots, s.
\end{cases}$$
(7)

An inexact block symmetric Gauss-Seidel (sGS) iteration

Exact v.s. Inexact

- One should interpret \widetilde{u}_i and u_i^+ as approximate solutions to the minimization problems without the terms involving $\widetilde{\delta}_i$ and δ_i .
- Once these approximate solutions have been computed, they would generate the error vectors $\widetilde{\delta}_i$ and δ_i .
- With these known error vectors, we know that \widetilde{u}_i and u_i^+ are actually the exact solutions to the minimization problems in (6) and (7).

Inexact block sGS decomposition theorem

Highlight

• When solving the subproblems in the forward GS sweep in (7) for $i=2,\ldots,s$, we may try to estimate u_i^+ by using \widetilde{u}_i , and in this case the corresponding error vector δ_i would be given by

$$\delta_i = \widetilde{\delta}_i + \sum_{j=1}^{i-1} \mathcal{H}_{ji}^* (u_j^+ - u_j^-).$$

In order to avoid solving the i-th problem in (7), one may accept such an approximate solution $u_i^+ = \widetilde{u}_i$ if the corresponding error vector satisfies an admissible condition such as $\|\delta_i\| \le c\|\widetilde{\delta}_i\|$ for some constant c > 1, say c = 10.

Error estimation in block sGS

Proposition 1 (Li-Sun-Toh)

Let $d(\widetilde{\delta}, \delta)$ be defined by (4). Then it holds that

$$\|\widehat{\mathcal{H}}^{-\frac{1}{2}}d(\widetilde{\delta},\delta)\| \le \|\mathcal{H}_d^{-\frac{1}{2}}(\delta-\widetilde{\delta})\| + \|\mathcal{H}_d^{\frac{1}{2}}(\mathcal{H}_d + \mathcal{H}_u)^{-1}\widetilde{\delta}\|.$$
 (8)

Recall that

$$\mathcal{H} = \mathcal{H}_d + \mathcal{H}_u + \mathcal{H}_u^* \succeq 0,$$

$$sGS(\mathcal{H}) := \mathcal{H}_u \mathcal{H}_d^{-1} \mathcal{H}_u^* \succeq 0,$$

$$\widehat{\mathcal{H}} := \mathcal{H} + sGS(\mathcal{H}) = (\mathcal{H}_d + \mathcal{H}_u) \mathcal{H}_d^{-1} (\mathcal{H}_d + \mathcal{H}_u^*) \succ 0.$$

Inexact block sGS and multi-block ADMM

The block sGS decomposition theorem allows us to design a convergent (inexact) sGS-ADMM for solving convex multi-block composite programming problems including convex quadratic SDPs with doubly nonnegative constraints.

[Chen, Sun and Toh, MP, 161 (2017) 327–343]:

An inexact multi-block ADMM-type first-order method for solving high-dimensional multi-block convex composite optimization problems to medium accuracy with the essential flexibility that the inner subproblems are allowed to be solved only approximately, which is a combination of

- An inexact 2-block majorized semi-proximal ADMM
- Inexact block symmetric Gauss-Seidel iteration with a nonsmooth block

The sGS-imsPADMM Algorithm

- **Only one cycle** of an inexact sGS iteration instead of an unknown number of cycles, as the BCD-type methods.
- The freedom to solve large scale linear systems of equations approximately by an iterative solver such as the CG method.
- Without such a flexibility, one would be forced to modify the corresponding subproblem by adding an appropriately chosen "large" semi-proximal term so as to get a closed-form solution for the modified subproblem. But such a modification can sometimes significantly slow down the outer iteration.

High-Dimensional Composite Conic Optimization

$$\min_{x} \left\{ \theta(x) + \frac{1}{2} \langle x, \mathcal{Q}x \rangle + \langle c, x \rangle \mid \mathcal{A}x - b = 0, \ x \in \mathcal{K} \right\}$$
 (9)

- \mathcal{X} , \mathcal{Y} : finite-dimensional real Euclidean spaces endowed with inner product $\langle \cdot, \cdot \rangle$ and its induced norm $\| \cdot \|$
- $\theta: \mathcal{X} \to (-\infty, +\infty]$: closed proper convex
- $\mathcal{Q}: \mathcal{X} \to \mathcal{X}$: self-adjoint positive semidefinite
- lacksquare $\mathcal{A}:\mathcal{X} o\mathcal{Y}$: linear mapping
- $c \in \mathcal{X}$, $b \in \mathcal{Y}$ are given data, $\mathcal{K} \subseteq \mathcal{X}$: closed convex cone

"High-dimensional": $\mathcal{A}\mathcal{A}^*$ or \mathcal{Q} is extremely large to be explicitly stored or decomposed by Cholesky factorization.

Example: QSDP, QP, Robust PCA.....

The Dual Problem

One can recast (9) (by introducing a slack variables $u \in \mathcal{X}$) as

$$\min \left\{ \theta(u) + \frac{1}{2} \langle x, \mathcal{Q}x \rangle + \langle c, x \rangle \mid \mathcal{A}x - b = 0, u - x = 0, x \in \mathcal{K} \right\}.$$
(10)

Soving the dual of problems (9) is equivalent to

$$\min \theta^*(-s) + \frac{1}{2} \langle w, \mathcal{Q}w \rangle - \langle b, \xi \rangle$$
s.t. $s + z - \mathcal{Q}w + \mathcal{A}^*\xi = c, z \in \mathcal{K}^*, w \in \mathcal{W},$ (11)

 $\mathcal{W} \subseteq \mathcal{X}$ is a subspace containing $\operatorname{Range}(\mathcal{Q})$, θ^* is the Fenchel conjugate of θ , \mathcal{K}^* is the dual cone of \mathcal{K} .

General Form of the Problem

Let m, n be two nonnegative integers, $\mathcal{Z}, \mathcal{X}_i, 1 \leq i \leq m$ and $\mathcal{Y}_j, 1 \leq j \leq n$ are finte dimensional real Euclidean spaces each endowed with $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$. Define $\mathcal{X} := \mathcal{X}_1 \times \ldots \times \mathcal{X}_m$ and $\mathcal{Y} := \mathcal{Y}_1 \times \ldots \times \mathcal{Y}_n$. Problem (11) belongs to

$$\min_{\substack{x \in \mathcal{X}, y \in \mathcal{Y} \\ \text{s.t.}}} p_1(x_1) + f(x_1, \dots, x_m) + q_1(y_1) + g(y_1, \dots, y_n)$$
s.t. $\mathcal{A}^*x + \mathcal{B}^*y = c$.

- $p_1: \mathcal{X}_1 \to (-\infty, \infty]$ and $q_1: \mathcal{Y}_1 \to (-\infty, \infty]$: closed proper convex;
- $f: \mathcal{X} \to (-\infty, \infty)$ and $g: \mathcal{Y} \to (-\infty, \infty)$: convex, continuously differentiable with Lipschitz continuous gradients;
- $\mathcal{A}: \mathcal{X} \to \mathcal{Y}$ and $\mathcal{B}: \mathcal{X} \to \mathcal{Z}$ are defined such that their adjoints are given by $\mathcal{A}^*x = \sum_{i=1}^m \mathcal{A}_i^*x_i$ for $x = (x_1, \dots, x_m) \in \mathcal{X}$, and $\mathcal{B}^*y = \sum_{j=1}^n \mathcal{B}_j^*y_j$ for $y = (y_1, \dots, y_n) \in \mathcal{Y}$ with $\mathcal{A}_i^*: \mathcal{X}_i \to \mathcal{Z}, i = 1, \dots, m$ and $\mathcal{B}_j^*: \mathcal{Y}_j \to \mathcal{Z}, j = 1, \dots, n$ are the adjoints of the linear maps $\mathcal{A}_i: \mathcal{Z} \to \mathcal{X}_i$ and $\mathcal{B}_j: \mathcal{Z} \to \mathcal{Y}_i$, respectively.

Majorized Augmented Lagrangian Function

Define for convenience $p(x):=p_1(x_1)$ and $q(y):=q_1(y_1)$. There exist self-adjoint positive semidefinite linear operators $\widehat{\Sigma}_f: \mathcal{X} \to \mathcal{X}$ and $\widehat{\Sigma}_g: \mathcal{Y} \to \mathcal{Y}$, such that for any $x, x' \in \mathcal{X}$ and $y, y' \in \mathcal{Y}$,

$$f(x) \leq \widehat{f}(x; x') := f(x') + \langle \nabla f(x'), x - x' \rangle + \frac{1}{2} \|x - x'\|_{\widehat{\Sigma}_{f}}^{2},$$

$$g(y) \leq \widehat{g}(y; y') := g(y') + \langle \nabla g(y'), y - y' \rangle + \frac{1}{2} \|y - y'\|_{\widehat{\Sigma}_{g}}^{2}.$$
(13)

Let $\sigma>0$. The majorized augmented Lagrangian function of problem (12) is defined by for any $(x',y')\in\mathcal{X}\times\mathcal{Y}$ and $(x,y,z)\in\mathcal{X}\times\mathcal{Y}\times\mathcal{Z}$,

$$\widehat{\mathcal{L}}_{\sigma}(x, y; (z, x', y')) := p(x) + \widehat{f}(x; x') + q(y) + \widehat{g}(y; y')$$

$$+ \langle z, \mathcal{A}^* x + \mathcal{B}^* y - c \rangle + \frac{\sigma}{2} \| \mathcal{A}^* x + \mathcal{B}^* y - c \|^2.$$

If f and g are quadratic functions, by taking $\widehat{\Sigma}_f = \Sigma_f$ and $\widehat{\Sigma}_g = \Sigma_g$ the majorized augmented Lagrangian function is also the augmented Lagrangian function.

An inexact majorized semi-Proximal ADMM

Let $\mathcal{S}:\mathcal{X}\to\mathcal{X}$ and $\mathcal{T}:\mathcal{Y}\to\mathcal{Y}$ being two self-adjoint positive semidefinite linear operators and define

$$\mathcal{M} := \widehat{\Sigma}_f + \mathcal{S} + \sigma \mathcal{A} \mathcal{A}^* \quad \text{and} \quad \mathcal{N} := \widehat{\Sigma}_g + \mathcal{T} + \sigma \mathcal{B} \mathcal{B}^*. \tag{14}$$

Suppose that $\{w^k:=(x^k,y^k,z^k)\}$ is a sequence in $\mathcal{X}\times\mathcal{Y}\times\mathcal{Z}$. For convenience, we define the two functions $\psi_k:\mathcal{X}\to(-\infty,\infty]$ and $\varphi_k:\mathcal{Y}\to(-\infty,\infty]$ by

$$\psi_k(x) := p(x) + \frac{1}{2} \langle x, \mathcal{M}x \rangle - \langle l_x^k, x \rangle,$$

$$\varphi_k(y) := q(y) + \frac{1}{2} \langle y, \mathcal{N}y \rangle - \langle l_y^k, y \rangle,$$

where

$$-l_x^k := \nabla f(x^k) + \mathcal{A}z^k - \mathcal{M}x^k + \sigma \mathcal{A}(\mathcal{A}^*x^k + \mathcal{B}^*y^k - c),$$

$$-l_y^k := \nabla g(y^k) + \mathcal{B}z^k - \mathcal{N}y^k + \sigma \mathcal{B}(\mathcal{A}^*x^{k+1} + \mathcal{B}^*y^k - c).$$

Let $\{\varepsilon_k\}$ be a summable sequence of nonnegative numbers, and define

$$\mathcal{E} := \sum_{k=0}^{\infty} \varepsilon_k < \infty, \quad \mathcal{E}' := \sum_{k=0}^{\infty} \varepsilon_k^2 < \infty.$$

An inexact 2-block Majorized sPADMM

Algorithm (imsPADMM)

Let $\tau \in (0, (1+\sqrt{5})/2)$ be the step-length. Let $w^0 := (x^0, y^0, z^0) \in \operatorname{dom} p \times \operatorname{dom} q \times \mathcal{Z}$ be the initial point. For $k = 0, 1, \ldots$ Choose \mathcal{S} and \mathcal{T} such that $\mathcal{M} \succ 0$ and $\mathcal{N} \succ 0$.

1. Compute x^{k+1} and $d_x^k \in \partial \psi_k(x^{k+1})$ s.t. $\|\mathcal{M}^{-\frac{1}{2}} d_x^k\| \leq \varepsilon_k$ and

$$x^{k+1} \approx \bar{x}^{k+1} := \underset{x \in \mathcal{X}}{\arg \min} \left\{ \psi_k(x) = \widehat{\mathcal{L}}_{\sigma}(x, y^k; w^k) + \frac{1}{2} \|x - x^k\|_{\mathcal{S}}^2 \right\}.$$
(15)

2. Compute y^{k+1} and $d_y^k \in \partial \varphi_k(y^{k+1})$ s.t. $\|\mathcal{N}^{-\frac{1}{2}}d_y^k\| \leq \varepsilon_k$ and

$$y^{k+1} \approx \bar{y}^{k+1} := \underset{y \in \mathcal{Y}}{\arg\min} \left\{ \widehat{\mathcal{L}}_{\sigma}(\bar{\boldsymbol{x}}^{k+1}, y; w^{k}) + \frac{1}{2} \|y - y^{k}\|_{\mathcal{T}}^{2} \right\}$$
$$= \underset{y \in \mathcal{Y}}{\arg\min} \left\{ \varphi_{k}(y) + \langle \sigma \mathcal{B} \mathcal{A}^{*}(\bar{\boldsymbol{x}}^{k+1} - x^{k+1}), y \rangle \right\}. \tag{16}$$

3. Compute $z^{k+1} := z^k + \tau \sigma (A^* x^{k+1} + B^* y^{k+1} - c)$.

Algorithmic design for multi-block problems

In imsPADMM, the main issue is how to choose $\mathcal S$ and $\mathcal T$, and how to compute x^{k+1} and y^{k+1} .

Decomposition of $\widehat{\Sigma}_f$ and $\widehat{\Sigma}_g$, consistent with the decompositions of $\mathcal X$ and $\mathcal Y$:

$$\widehat{\Sigma}_{f} = \begin{pmatrix} (\widehat{\Sigma}_{f})_{11} & (\widehat{\Sigma}_{f})_{12} & \cdots & (\widehat{\Sigma}_{f})_{1m} \\ (\widehat{\Sigma}_{f})_{12}^{*} & (\widehat{\Sigma}_{f})_{22} & \cdots & (\widehat{\Sigma}_{f})_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ (\widehat{\Sigma}_{f})_{1m}^{*} & (\widehat{\Sigma}_{f})_{2m}^{*} & \cdots & (\widehat{\Sigma}_{f})_{mm} \end{pmatrix},$$

$$\widehat{\Sigma}_{g} = \begin{pmatrix} (\widehat{\Sigma}_{g})_{11} & (\widehat{\Sigma}_{g})_{12} & \cdots & (\widehat{\Sigma}_{g})_{1n} \\ (\widehat{\Sigma}_{g})_{12}^{*} & (\widehat{\Sigma}_{g})_{22} & \cdots & (\widehat{\Sigma}_{g})_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ (\widehat{\Sigma}_{g})_{1n}^{*} & (\widehat{\Sigma}_{g})_{2n}^{*} & \cdots & (\widehat{\Sigma}_{g})_{nn} \end{pmatrix}.$$

Algorithmic design

Choose two self-adjoint positive semidefinite linear operators $\widetilde{\mathcal{S}}_1: \mathcal{X}_1 \to \mathcal{X}_1$ and $\widetilde{\mathcal{T}}_1: \mathcal{Y}_1 \to \mathcal{Y}_1$ satisfying

$$\widetilde{\mathcal{M}}_{11} := \widetilde{\mathcal{S}}_1 + (\widehat{\Sigma}_f)_{11} + \sigma \mathcal{A}_1 \mathcal{A}_1^* \succ 0, \ \widetilde{\mathcal{N}}_{11} := \widetilde{\mathcal{T}}_1 + (\widehat{\Sigma}_g)_{11} + \sigma \mathcal{B}_1 \mathcal{B}_1^* \succ 0,$$

for making the subproblems involving p_1 and q_1 easier to solve.

We can assume that the well-defined optimization problems

$$\min_{x_1} \left\{ p(x_1) + \frac{1}{2} \|x_1 - x_1'\|_{\widetilde{\mathcal{M}}_{11}}^2 \right\} \quad \text{and} \quad \min_{y_1} \left\{ q(y_1) + \frac{1}{2} \|y_1 - y_1'\|_{\widetilde{\mathcal{N}}_{11}}^2 \right\}$$

can be solved to arbitrary accuracy for any given $x_1' \in \mathcal{X}_1$ and $y_1' \in \mathcal{Y}_1$.

For $i=2,\ldots,m$, choose a linear operator $\widetilde{S}_i\succeq 0$ such that

$$\widetilde{\mathcal{M}}_{ii} := \widetilde{\mathcal{S}}_i + (\widehat{\Sigma}_f)_{ii} + \sigma \mathcal{A}_i \mathcal{A}_i^* \succ 0,$$

and similarly, for $j=2,\ldots,n$, we choose a linear operator $\widetilde{\mathcal{T}}_j\succeq 0$ such that

$$\widetilde{\mathcal{N}}_{jj} := \widetilde{\mathcal{T}}_j + (\widehat{\Sigma}_g)_{jj} + \sigma \mathcal{B}_j \mathcal{B}_j^* \succ 0.$$

Algorithm sGS-imsPADMM

Algorithm (sGS-imsPADMM)

Choose $\tau \in (0, (1+\sqrt{5})/2)$. Let $\{\widetilde{\varepsilon}_k\}_{k\geq 0}$ be a nonnegative summable sequence of real numbers. Let $(x^0, y^0, z^0) \in \operatorname{dom} p \times \operatorname{dom} q \times \mathcal{Z}$ be the initial point. For $k=0,1,\ldots$,

1a. for $i = m, \ldots, 2$ compute

$$\widetilde{\boldsymbol{x}}_{i}^{k+1} \approx \underset{\boldsymbol{x}_{i} \in \mathcal{X}_{i}}{\operatorname{arg min}} \left\{ \widehat{\mathcal{L}}_{\sigma}(\boldsymbol{x}_{\leq i-1}^{k}, \boldsymbol{x}_{i}, \widetilde{\boldsymbol{x}}_{\geq i+1}^{k+1}, \boldsymbol{y}^{k}; \boldsymbol{w}^{k}) + \frac{1}{2} \|\boldsymbol{x}_{i} - \boldsymbol{x}_{i}^{k}\|_{\widetilde{S}_{i}}^{2} \right\}, \\
\widetilde{\boldsymbol{\delta}}_{i}^{k} \in \partial_{\boldsymbol{x}_{i}} \widehat{\mathcal{L}}_{\sigma}(\boldsymbol{x}_{\leq i-1}^{k}, \widetilde{\boldsymbol{x}}_{i}^{k+1}, \widetilde{\boldsymbol{x}}_{\geq i+1}^{k+1}, \boldsymbol{y}^{k}; \boldsymbol{w}^{k}) + \widetilde{\mathcal{S}}_{i}(\widetilde{\boldsymbol{x}}_{i}^{k+1} - \boldsymbol{x}_{i}^{k}), \|\widetilde{\boldsymbol{\delta}}_{i}^{k}\| \leq \widetilde{\varepsilon}_{k}.$$

1b. For $i = 1, \ldots, m$ compute

$$x_i^{k+1} \approx \underset{x_i \in \mathcal{X}_i}{\arg \min} \Big\{ \widehat{\mathcal{L}}_{\sigma}(x_{\leq i-1}^{k+1}, x_i, \widetilde{x}_{\geq i+1}^{k+1}, y^k; w^k) + \frac{1}{2} \|x_i - x_i^k\|_{\widetilde{S}_i}^2 \Big\}, \\
 \delta_i^k \in \partial_{x_i} \widehat{\mathcal{L}}_{\sigma}(x_{\leq i-1}^{k+1}, x_i^{k+1}, \widetilde{x}_{> i+1}^{k+1}, y^k; w^k) + \widetilde{\mathcal{S}}_i(x_i^{k+1} - x_i^k), \|\delta_i^k\| \leq \widetilde{\varepsilon}_k.$$

Algorithm (sGS-imsPADMM (continued))

2a. For $j = n, \ldots, 2$ compute

$$\widetilde{y}_{j}^{k+1} \approx \underset{y_{j} \in \mathcal{Y}_{j}}{\arg \min} \left\{ \widehat{\mathcal{L}}_{\sigma}(x^{k+1}, y_{\leq j-1}^{k}, y_{j}, \widetilde{y}_{\geq j+1}^{k+1}; w^{k}) + \frac{1}{2} \|y_{j} - y_{j}^{k}\|_{\widetilde{\mathcal{T}}_{j}}^{2} \right\},
\widetilde{\gamma}_{j}^{k} \in \partial_{y_{j}} \widehat{\mathcal{L}}_{\sigma}(x^{k+1}, y_{\leq j-1}^{k}, \widetilde{y}_{j}^{k+1}, \widetilde{y}_{\geq j+1}^{k+1}; w^{k}) + \widetilde{\mathcal{T}}_{j}(\widetilde{y}_{j}^{k+1} - y_{j}^{k}), \|\widetilde{\gamma}_{j}^{k}\| \leq \widetilde{\varepsilon}_{k}.$$

2b. For $j = 1, \ldots, n$ compute

$$\begin{split} & y_{j}^{k+1} \approx \underset{y_{j} \in \mathcal{Y}_{j}}{\arg\min} \Big\{ \widehat{\mathcal{L}}_{\sigma}(x^{k+1}, y_{\leq j-1}^{k+1}, y_{j}, \widetilde{y}_{\geq j+1}^{k+1}; w^{k}) + \frac{1}{2} \|y_{j} - y_{j}^{k}\|_{\widetilde{\mathcal{T}}_{j}}^{2} \Big\}, \\ & \gamma_{j}^{k} \in \partial_{y_{j}} \widehat{\mathcal{L}}_{\sigma}(x^{k+1}, y_{\leq j-1}^{k+1}, y_{j}^{k+1}, \widetilde{y}_{\geq j+1}^{k+1}; w^{k}) + \widetilde{\mathcal{T}}_{j}(y_{j}^{k+1} - y_{j}^{k}), \|\gamma_{j}^{k}\| \leq \widetilde{\varepsilon}_{k}. \end{split}$$

3. Compute $z^{k+1} := z^k + \tau \sigma(A^* x^{k+1} + B^* y^{k+1} - c)$.

Algorithmic design

Define the linear operators

$$\widetilde{\mathcal{M}} := \widehat{\Sigma}_f + \sigma \mathcal{A} \mathcal{A}^* + \operatorname{Diag}(\widetilde{\mathcal{S}}_1, \dots, \widetilde{\mathcal{S}}_m),$$

$$\widetilde{\mathcal{N}} := \widehat{\Sigma}_q + \sigma \mathcal{B} \mathcal{B}^* + \operatorname{Diag}(\widetilde{\mathcal{T}}_1, \dots, \widetilde{\mathcal{T}}_n).$$
(17)

Define $\widetilde{\mathcal{M}}_u$ and $\widetilde{\mathcal{N}}_u$ analogously as \mathcal{H}_u in (3) for $\widetilde{\mathcal{M}}$ and $\widetilde{\mathcal{N}}$, and

$$\widetilde{\mathcal{M}}_d := \operatorname{Diag}(\widetilde{\mathcal{M}}_{11}, \dots, \widetilde{\mathcal{M}}_{mm}), \quad \widetilde{\mathcal{N}}_d := \operatorname{Diag}(\widetilde{\mathcal{N}}_{11}, \dots, \widetilde{\mathcal{N}}_{nn}).$$

Then,
$$\widetilde{\mathcal{M}}:=\widetilde{\mathcal{M}}_d+\widetilde{\mathcal{M}}_u+\widetilde{\mathcal{M}}_u^*$$
 and $\widetilde{\mathcal{N}}:=\widetilde{\mathcal{N}}_d+\widetilde{\mathcal{N}}_u+\widetilde{\mathcal{N}}_u^*$.

Algorithmic design

Moreover, we define the following linear operators:

$$\begin{split} \mathbf{sGS}(\widetilde{\mathcal{M}}) &:= \widetilde{\mathcal{M}}_u \widetilde{\mathcal{M}}_d^{-1} \widetilde{\mathcal{M}}_u^*, \qquad \mathbf{sGS}(\widetilde{\mathcal{N}}) := \widetilde{\mathcal{N}}_u \widetilde{\mathcal{N}}_d^{-1} \widetilde{\mathcal{N}}_u^*. \\ \widehat{\mathcal{S}} &:= \mathrm{Diag}(\widetilde{\mathcal{S}}_1, \dots, \widetilde{\mathcal{S}}_m) + \mathrm{sGS}(\widetilde{\mathcal{M}}), \quad \widehat{\mathcal{M}} := \widehat{\Sigma}_f + \sigma \mathcal{A} \mathcal{A}^* + \widehat{\mathcal{S}}, \\ \widehat{\mathcal{T}} &:= \mathrm{Diag}(\widetilde{\mathcal{T}}_1, \dots, \widetilde{\mathcal{T}}_n) + \mathrm{sGS}(\widetilde{\mathcal{N}}) \quad \text{and} \quad \widehat{\mathcal{N}} := \widehat{\Sigma}_q + \sigma \mathcal{B} \mathcal{B}^* + \widehat{\mathcal{T}}. \end{split}$$

Define the two constants

$$\kappa := 2\sqrt{m-1} \|\widetilde{\mathcal{M}}_d^{-\frac{1}{2}}\| + \sqrt{m} \|\widetilde{\mathcal{M}}_d^{\frac{1}{2}} (\widetilde{\mathcal{M}}_d + \widetilde{\mathcal{M}}_u)^{-1}\|,
\kappa' := 2\sqrt{n-1} \|\widetilde{\mathcal{N}}_d^{-\frac{1}{2}}\| + \sqrt{n} \|\widetilde{\mathcal{N}}_d^{\frac{1}{2}} (\widetilde{\mathcal{N}}_d + \widetilde{\mathcal{N}}_u)^{-1}\|.$$
(18)

For any $k\geq 0$, and $\widetilde{\delta}^k=(\widetilde{\delta}_1^k,\ldots,\widetilde{\delta}_m^k)$, $\delta^k=(\delta_1^k,\ldots,\delta_m^k)$, $\widetilde{\gamma}^k=(\widetilde{\gamma}_1^k,\ldots,\widetilde{\gamma}_n^k)$ and $\gamma^k=(\gamma_1^k,\ldots,\gamma_n^k)$ such that $\widetilde{\delta}_1^{k+1}:=\delta_1^{k+1}$ and $\widetilde{\gamma}_1^{k+1}:=\gamma_1^{k+1}$, we define

$$d_x^k := \delta^k + \widetilde{\mathcal{M}}_u \widetilde{\mathcal{M}}_d^{-1} (\delta^k - \widetilde{\delta}^k) \quad \text{and} \quad d_y^k := \gamma^k + \widetilde{\mathcal{N}}_u \widetilde{\mathcal{N}}_d^{-1} (\gamma^k - \widetilde{\gamma}^k). \tag{19}$$

imsPADMM & sGS-imsPADMM

Proposition 2

Suppose that $\mathcal{M}_d \succ 0$ and $\widetilde{\mathcal{N}}_d \succ 0$ for \mathcal{M} and $\widetilde{\mathcal{N}}$ defined in (17). Let κ and κ' be defined as in (18). Then, the sequences $\{w^k := (x^k, y^k, z^k)\}, \{\delta^k\}, \{\widetilde{\delta}^k\}, \{\gamma^k\}$ and $\{\widetilde{\gamma}^k\}$ generated by the sGS-imsPADMM are well-defined and it holds that

$$\widehat{\mathcal{M}} = \widetilde{\mathcal{M}} + sGS(\widetilde{\mathcal{M}}) \succ 0, \quad \widehat{\mathcal{N}} = \widetilde{\mathcal{N}} + sGS(\widetilde{\mathcal{N}}) \succ 0.$$
 (20)

Moreover, for any $k \geq 0$, d_x^k and d_y^k defined by (19) satisfy

$$\begin{cases}
d_x^k \in \partial_x (\widehat{\mathcal{L}}_{\sigma}^k(x^{k+1}, y^k) + \frac{1}{2} \|x^{k+1} - x^k\|_{\widehat{\mathcal{S}}}^2), \\
d_y^k \in \partial_y (\widehat{\mathcal{L}}_{\sigma}^k(x^{k+1}, y^{k+1}) + \frac{1}{2} \|y^{k+1} - y^k\|_{\widehat{\mathcal{T}}}^2),
\end{cases} (21)$$

$$\|\widehat{\mathcal{M}}^{-\frac{1}{2}} d_x^k\| \le \kappa \widetilde{\varepsilon}_k, \quad \|\widehat{\mathcal{N}}^{-\frac{1}{2}} d_y^k\| \le \kappa' \widetilde{\varepsilon}_k. \tag{22}$$

imsPADMM & sGS-imsPADMM

If in the imsPADMM, we choose $\mathcal{S}:=\widehat{\mathcal{S}},\ \mathcal{T}:=\widehat{\mathcal{T}}$, then we have $\mathcal{M}=\widehat{\mathcal{M}}\succ 0$ and $\mathcal{N}=\widehat{\mathcal{N}}\succ 0$. Moreover, we can define the sequence $\{\varepsilon_k\}$ by $\varepsilon_k:=\max\{\kappa,\kappa'\}\widetilde{\varepsilon}_k\ \forall k\geq 0$. The sequence $\{w^k\}$ generated by the sGS-imsPADMM always satisfies $\|\mathcal{M}^{-\frac{1}{2}}d_x^k\|\leq \varepsilon_k$ and $\|\mathcal{N}^{-\frac{1}{2}}d_y^k\|\leq \varepsilon_k$. Thus, $\{w^k\}$ can be viewed as a sequence generated by the imsPADMM with specially constructed semi-proximal terms.

- sGS-imsPADMM is an explicitly implementable method to handle high-dimensional convex composite conic optimization problems.
- imsPADMM has a compact formulation which can facilitate the convergence analysis of the sGS-imsPADMM.

Avoid of repetition

- We can use the \widetilde{x}_i^{k+1} computed in the backward GS sweep (Step 1a) to estimate x_i^{k+1} in the forward sweep (Step 1b) for $i=2,\ldots,m$.
- In this case, the corresponding error vector is given by

$$\delta_i^k = \widetilde{\delta}_i^k + \sum_{j=1}^{i-1} \widetilde{\mathcal{M}}_{ij} (x_j^{k+1} - x_j^k),$$

and we may accept the approximate solution $x_i^{k+1} = \widetilde{x}_i^{k+1}$ without solving an additional subproblem if $\|\delta_i^k\| \leq \widetilde{\varepsilon}_k$.

lacksquare A similar strategy also applies to the subproblems in Step 2b for $j=2,\ldots,n$.

2 E

Convergence

We only need to establish the convergence for imsPADMM!

Theorem 1

Suppose that the solution set $\overline{\mathcal{W}}$ to the KKT system of problem (12) is nonempty and the sequence $\{(x^k, y^k, z^k)\}$ is generated by the imsPADMM. Assume that²

$$\Sigma_f + \mathcal{S} + \sigma \mathcal{A} \mathcal{A}^* \succ 0 \quad \text{and} \quad \Sigma_g + \mathcal{T} + \sigma \mathcal{B} \mathcal{B}^* \succ 0.$$
 (23)

Then, the sequence $\{x^k, y^k, z^k\}$ converges to a point in $\overline{\mathcal{W}}$.

²In fact, the theorem is still valid if (23) is replaced by the condition that $\widehat{\Sigma}_f + \mathcal{S} + \sigma \mathcal{A} \mathcal{A}^* \succ 0$ and $\widehat{\Sigma}_g + \mathcal{T} + \sigma \mathcal{B} \mathcal{B}^* \succ 0$.

Numerical Experiments

To handle the inequality constraints in (2) we introduce a slack variable \boldsymbol{v} to get

$$\max \quad \left(-\delta_{\mathcal{N}}^{*}(-Z) - \delta_{\mathbb{R}_{+}^{m_{I}}}(v)\right) - \frac{1}{2}\langle W, \mathcal{Q}W \rangle - \delta_{\mathcal{S}_{+}^{n}}(S) + \langle b_{E}, y_{E} \rangle + \langle b_{I}, y_{I} \rangle$$

$$\text{s.t.} \quad Z - \mathcal{Q}W + S + \mathcal{A}_{E}^{*}y_{E} + \mathcal{A}_{I}^{*}y_{I} = C,$$

$$\mathcal{D}(v - y_{I}) = 0, \quad W \in \mathcal{W},$$

$$(24)$$

where $\mathcal{D} \in \mathbb{R}^{m_I \times m_I}$ is a fixed positive definite matrix.

We construct QSDP test instances based on the doubly nonnegative SDP problems arising from relaxation of binary integer quadratic (BIQ) programming with a large number of inequality constraints that was introduced by Sun et. al. for getting tighter bounds:

$$\begin{aligned} & \min \quad \frac{1}{2}\langle X,\, \mathcal{Q}(X)\rangle + \frac{1}{2}\langle \mathcal{Q},\, \overline{X}\rangle + \langle c,\, x\rangle \\ & \text{s.t.} \quad \operatorname{diag}(\overline{X}) - x = 0, \quad \alpha = 1, \ X = \left(\begin{array}{cc} \overline{X} & x \\ x^T & \alpha \end{array}\right) \in \mathcal{S}^n_+, \\ & X \in \mathcal{N} := \{X \in \mathcal{S}^n: \ X \geq 0\}, \\ & \left\{\begin{array}{cc} -\overline{X}_{ij} + x_i \geq 0, \\ -\overline{X}_{ij} + x_j \geq 0, & \forall \ i < j, \ j = 2, \dots, n-1. \\ \overline{X}_{ij} - x_i - x_j \geq -1 \end{array}\right. \end{aligned}$$

For convenience, we call them as QSDP-BIQ problems. When $\mathcal Q$ is vacuous, we call the corresponding linear SDP problems as SDP-BIQ problems.

- The test data for Q and c are taken from the Biq Mac Library http://biqmac.uni-klu.ac.at/biqmaclib.html.
- We tested one group of SDP-BIQ problems and three groups of QSDP-BIQ problems with each group consisting of 80 instances with n ranging from 151 to 501.
- We compare the performance of our sGS-imsPADMM with the directly extended multi-block sPADMM with the aggressive step-length of 1.618 on solving these SDP/QSDP-BIQ problems.
- Note: Although its convergence is not guaranteed, such a directly extended sPADMM is currently more or less the benchmark among first-order methods for solving multi-block linear and quadratic SDPs.

Stop the algorithm after 500,000 iterations, or

$$\eta_{\mathsf{qsdp}} = \max\{\eta_P, \eta_D, \eta_W, \eta_{I_1}, \eta_{I_2}, \eta_{s_1}, \eta_{I_3}, \eta_{S_2}, \eta_X, \eta_Z\} < 10^{-6},$$

where

$$\begin{split} \eta_D &= \frac{\|\mathcal{A}_E^* y_E + \mathcal{A}_I^* y_I + S + Z - \mathcal{Q}W - C\|}{1 + \|C\|}, \eta_P = \frac{\|\mathcal{A}_E X - b_E\|}{1 + \|b_E\|}, \\ \eta_{I_1} &= \frac{\|\min(0, y_I)\|}{1 + \|y_I\|}, \ \eta_{I_2} = \frac{\|\min(0, \mathcal{A}_I X - b_I)\|}{1 + \|b_I\|}, \ \eta_{I_3} = \frac{|\langle \mathcal{A}_I X - b_I, y_I \rangle|}{1 + \|\mathcal{A}_I x - b_I\| + \|y_I\|} \\ \eta_{S1} &= \frac{\|X - \Pi_{\mathcal{S}_I^n}(X)\|}{1 + \|X\|}, \ \eta_{S2} = \frac{|\langle X, S \rangle|}{1 + \|X\| + \|S\|}, \ \eta_W = \frac{\|\mathcal{Q}X - \mathcal{Q}W\|}{1 + \|\mathcal{Q}\|}, \\ \eta_X &= \frac{\|X - \Pi_{\mathcal{N}}(X)\|}{1 + \|X\|}, \ \eta_Z = \frac{\|X - \Pi_{\mathcal{N}}(X - Z)\|}{1 + \|X\| + \|Z\|}. \end{split}$$

In addition, we also measure the duality gap:

$$\eta_{gap} := \frac{\text{Obj}_{\text{primal}} - \text{Obj}_{\text{dual}}}{1 + |\text{Obj}_{\text{primal}}| + |\text{Obj}_{\text{dual}}|},$$

where

$$\begin{cases} & \text{Obj}_{\text{primal}} := \frac{1}{2} \langle X, \mathcal{Q} X \rangle + \langle C, X \rangle, \\ & \text{Obj}_{\text{dual}} := -\delta_{\mathcal{N}}^*(-Z) - \frac{1}{2} \langle W, \mathcal{Q} W \rangle + \langle b_E, y_E \rangle + \langle b_I, y_I \rangle. \end{cases}$$

Subproblems Involving Large Linear Systems of Equations

For example, the subproblem corresponding to the block y_I in ADMM type methods with/without semi-proximal term has to be solved:

$$\min \left\{ -\langle b_I, y_I \rangle + \frac{\sigma}{2} \| [\mathcal{A}_I, -\mathcal{D}]^* y_I - r \|^2 + \frac{1}{2} \| y_I - y_I^- \|_{\mathcal{T}}^2 \right\}, \tag{25}$$

where \mathcal{T} is a self-adjoint positive semidefinite linear operator on \mathbb{R}^{m_I} , and r and y_I^- are given data.

Define $\mathcal{V} := \mathcal{A}_I \mathcal{A}_I^* + \mathcal{D}^2$ and $\widetilde{r} := b_I + \sigma(\mathcal{A}_I, -\mathcal{D})r + \mathcal{T}y_I^-$. Solving (25) is equivalent to solving the linear equation

$$(\sigma \mathcal{V} + \mathcal{T})y_I = \widetilde{r} \tag{26}$$

Remark: It is generally very difficult to compute the solution of (26) exactly for large scale problems if \mathcal{T} is the zero operator, i.e., not adding a proximal term.

Solve $(\sigma \mathcal{V} + \mathcal{T})y_I = \widetilde{r}$

Suppose that ${\mathcal V}$ admits the eigenvalue decomposition

$$\mathcal{V} = \sum_{i=1}^{n} \lambda_i \mathcal{P}_i \mathcal{P}_i^*,$$

with $\lambda_1 \geq \ldots \geq \lambda_n \geq 0$. We can choose \mathcal{T} by using the first l largest eigenvalues and the corresponding eigenvectors of \mathcal{V} , i.e.,

$$\mathcal{T} = \sigma \sum_{i=l+1}^{n} (\lambda_{l+1} - \lambda_i) \mathcal{P}_i \mathcal{P}_i^*, \tag{27}$$

which is self-adjoint positive semidefinite.

Remark: it is more likely that such a \mathcal{T} is "smaller" than the natural choice of setting it to be $\sigma(\lambda_1 \mathcal{I} - \mathcal{V})$. Indeed we have observed in our numerical experiments that the latter choice always leads to more iterations compared to the choice in (27).

Solve
$$(\sigma \mathcal{V} + \mathcal{T})y_I = \widetilde{r}$$

 $(\sigma \mathcal{V} + \mathcal{T})^{-1}$ can be obtained analytically as

$$(\sigma \mathcal{V} + \mathcal{T})^{-1} = (\sigma \lambda_{l+1})^{-1} \mathcal{I} + \sum_{i=1}^{l} ((\sigma \lambda_i)^{-1} - (\sigma \lambda_{l+1})^{-1}) \mathcal{P}_i \mathcal{P}_i^*.$$

Thus, we only need to calculate the first few largest eigenvalues and the corresponding eigenvectors of $\mathcal V$ and this can be done efficiently via variants of the Lanczos method.

When the problem (25) is allowed to be solved **inexactly**, we can set $\mathcal{T}=0$ in (25) and solve the linear system $\sigma\mathcal{V}=\widetilde{r}$ by a preconditioned conjugate gradient (PCG) method.

■ In this setting, $(\sigma V + T)^{-1}$ with T defined in (27) can serve as an effective **preconditioner**.

Numerical Performance for SDP Problems

Figure: Performance profiles of sGS-isPADMM and sPADMM4d on solving the SDP-BIQ problems.

Numerical Performance for QSDP Problems

Figure: Performance profiles of sGS-isPADMM and sPADMM5d on solving the QSDP-BIQ problems (group 1).

Numerical Performance for QSDP Problems

Figure: Performance profiles of sGS-isPADMM and sPADMM5d on solving the QSDP-BIQ problems (group 2).

Numerical Performance for QSDP Problems

Figure: Performance profiles of sGS-isPADMM and sPADMM5d on solving the QSDP-BIQ problems (group 3).

Table: The numerical performance of sGS-isPADMM and the directly extended multiblock ADMM with step-length $\tau=1.618$ (n>500, accuracy $=10^{-6}$)

Problem	$m_E; m_I$	n_s	Iteration	η_{qsdp}	η_{gap}	Time
			sGS-isP sP-d	sGS-isP sP-d	sGS-isP sP-d	sGS-isP sP-d
SDP-BIQ						
bqp500-2	501;374250	501	17525 82401	9.9-7 9.9-7	-6.3-7 2.3-8	42:27 2:12:29
bqp500-4	501;374250	501	15352 75995	9.9-7 9.9-7	-6.4-7 -3.2-8	36:53 1:59:52
bqp500-6	501;374250	501	17747 78119	9.9-7 9.9-7	-1.6-7 -2.4-8	45:10 2:04:23
bqp500-8	501;374250	501	20386 110825	9.9-7 9.9-7	-4.3-7 2.1-8	52:04 3:10:43
bqp500-10	501;374250	501	16407 68985	9.7-7 9.9-7	-5.6-7 3.7-9	39:30 1:46:01
gka1f	501;374250	501	9101 60073	9.9-7 9.9-7	-4.4-7 1.1-8	20:22 1:32:22
gka2f	501;374250	501	16193 74034	9.9-7 9.9-7	-2.7-7 -1.1-8	39:35 1:59:59
gka3f	501;374250	501	16323 72563	9.9-7 9.9-7	-1.3-7 3.9-8	40:38 1:56:28
gka4f	501;374250	501	15502 63285	9.6-7 9.9-7	-6.1-7 3.4-8	36:58 1:41:20
gka5f	501;374250	501	17664 76164	9.9-7 9.9-7	-1.3-7 1.1-8	43:45 2:05:14
QSDP-BIQ (group 1)					
bqp500-2	501;374250	501	19053 71380	9.9-7 9.9-7	-1.2-7 1.1-8	1:02:31 1:52:02
bqp500-4	501;374250	501	13905 67865	9.9-7 9.9-7	-8.9-7 7.8-8	43:17 1:46:07
bqp500-6	501;374250	501	17211 62562	9.9-7 9.9-7	-2.0-7 6.9-8	56:23 1:37:19
bqp500-8	501;374250	501	19742 85057	9.9-7 9.9-7	-4.9-7 7.0-8	1:05:09 2:15:52
bqp500-10	501;374250	501	17690 65484	9.9-7 9.9-7	-2.3-7 6.7-8	58:00 1:43:04
gka1f	501;374250	501	8919 55669	9.9-7 9.9-7	-8.8-7 4.1-8	26:42 1:25:01
gka2f	501;374250	501	13587 61324	9.9-7 9.9-7	-4.5-7 2.1-8	42:50 1:37:15
gka3f	501;374250	501	13786 62438	9.9-7 9.9-7	-2.2-7 3.1-8	42:55 1:37:29
gka4f	501;374250	501	13953 57164	9.6-7 9.9-7	-7.2-7 -3.4-8	44:25 1:31:14
gka5f	501;374250	501	15968 62001	9.9-7 9.9-7	-1.4-7 4.6-8	50:22 1:35:40

Table: The numerical performance of sGS-isPADMM and the directly extended multiblock ADMM with step-length $\tau=1.618~(n>500,\,{\rm accuracy}=10^{-6})$

Problem	$m_E; m_I$	n_s	Iteration	η_{qsdp}	η_{gap}	Time
			sGS-isP sP-d	sGS-isP sP-d	sGS-isP sP-d	sGS-isP sP-d
QSDP-BIQ (group 2)					
bqp500-2	501;374250	501	16506 79086	9.9-7 9.9-7	-1.2-7 4.2-8	52:46 1:52:08
bqp500-4	501;374250	501	8675 30677	9.9-7 9.9-7	2.7-8 2.3-8	25:32 41:15
bqp500-6	501;374250	501	10043 42654	9.9-7 9.9-7	-3.0-8 8.3-8	29:46 58:58
bqp500-8	501;374250	501	9410 43785	9.9-7 9.9-7	-2.5-8 2.9-8	27:37 59:05
bqp500-10	501;374250	501	10656 35213	9.9-7 9.9-7	-3.6-8 8.8-8	32:35 47:00
gka1f	501;374250	501	10939 52226	9.9-7 9.9-7	-5.8-8 3.8-8	36:10 1:16:48
gka2f	501;374250	501	7757 34660	9.9-7 9.9-7	-1.8-8 6.0-8	25:17 48:40
gka3f	501;374250	501	11241 45857	9.9-7 9.9-7	-1.2-8 2.7-8	34:55 1:02:59
gka4f	501;374250	501	11706 37466	9.9-7 9.9-7	-3.7-8 6.4-8	36:19 51:25
gka5f	501;374250	501	14229 48670	9.9-7 9.9-7	-4.8-8 9.8-8	42:37 1:06:37
QSDP-BIQ ((group 3)					
bqp500-2	501;374250	501	18311 66867	9.9-7 9.9-7	-1.9-7 1.2-7	41:33 1:11:30
bqp500-4	501;374250	501	14169 65580	9.9-7 9.9-7	-7.8-7 1.1-7	30:04 1:10:29
bqp500-6	501;374250	501	16428 68301	9.9-7 9.9-7	-2.3-7 8.4-8	36:25 1:13:20
bqp500-8	501;374250	501	26308 107664	9.9-7 9.9-7	-4.0-7 9.5-9	1:01:17 2:00:06
bqp500-10	501;374250	501	16398 57221	9.9-7 9.9-7	-2.8-7 8.6-8	37:22 1:06:27
gka1f	501;374250	501	14479 51294	9.9-7 9.9-7	-3.6-7 7.0-8	31:05 59:17
gka2f	501;374250	501	9365 60799	9.9-7 9.9-7	-1.5-6 -1.9-9	18:30 1:04:14
gka3f	501;374250	501	14175 57782	9.9-7 9.9-7	-3.2-7 2.0-8	30:10 1:01:35
gka4f	501;374250	501	13356 56588	9.8-7 9.9-7	-5.8-7 -2.0-8	27:42 1:00:10
gka5f	501;374250	501	14122 58716	9.9-7 9.9-7	-1.4-7 9.3-8	29:38 1:01:13

Concluding remark

- Combining an inexact 2-block majorized sPADMM and the recent advances in the inexact block symmetric Gauss-Seidel (sGS) technique
- Only needs one cycle of an inexact sGS iteration, instead of an unknown number of cycles, to solve each of the subproblems involved.
- For the vast majority of the tested problems, the proposed sGS-imsPADMM is 2 to 3 times faster than the directly extended multi-block PADMM even with the aggressive step length of 1.618.

Conclusions

- One does not need to sacrifice speed in exchange for convergence guarantee in developing ADMM-type first order methods, at least for solving high-dimensional linear and convex quadratic SDP problems to moderate accuracy.
- The merit that is brought about by solving the original subproblems inexactly without adding proximal terms is thus evidently clear.
- More powerful algorithms are needed such as SDPNAL for solving the standard SDP.

Reference on first-order methods

X.D. Li, D.F. Sun and K.-C. Toh, A Schur complement based semiproximal ADMM for convex quadratic conic programming and extensions, Math. Program., 155 (2016) 333–373.

L. Chen, D.F. Sun and K.-C. Toh, An efficient inexact symmetric Gauss-Seidel based majorized ADMM for high-dimensional convex composite conic programming, Math. Program., 161 (2017) 237-270.

Reference on second-order methods

L.Q. Yang, D.F. Sun and K.-C. Toh, SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints, Math. Program. Comput., 7 (2015) 331–366.

X.D. Li, D.F. Sun and K.-C. Toh, QSDPNAL: A two-phase augmented Lagrangian method for convex quadratic semidefinite programming, arXiv:1512.08872 (2015).