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Semidefinite Programming

The standard semidefinite programming (SDP):

min
X∈Sn

{〈C,X〉 | AX = b, X � 0}.

The dual problem in its equivalent minimization form:

min
y∈IRm

{−〈b, y〉+ δSn+(S) | A∗y + S = C}.

The Lagrangian function of the dual problem:

L(y, S;X) := −〈b, y〉+ δSn+(S) + 〈X,A∗y + S − C〉.

The augmented Lagrangian function of the dual problem (σ > 0):

Lσ(y, S;X) := L(y, S;X) +
σ

2
‖A∗y + S − C‖2.
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SDPNAL

An inexact augmented Lagrangian method (ALM) framework was
used in SDPNAL:




yk+1 ≈ arg min
y∈IRm

Φσk(y;Xk),

Xk+1 = ΠSn+ [Xk + σ(A∗yk+1 − C)],

σk+1 = ρσk or σk+1 = σk,

k = 0, 1, 2, . . . ,

where for a given X

Φσ(y;X) : = min
S∈Sn+

Lσ(y, S;X)

= −〈b, y〉+ 1
2σ

(
‖ΠSn+ [X + σ(A∗y − C)]‖2 − ‖X‖2

)
.

Φσk(y;Xk) is continuously differentiable with respect to y and∇yΦσk

is strongly semismooth.
Newton-CG: yk+1 is computed via a semismooth Newton method
in which each linear system is solved by a conjugate gradient method.
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Pros and cons of ALM

ALM: fast local linear convergence (arbitrary linear convergence
rate) when the penalty parameter exceeds a certain threshold. But

Sometimes can be hard and expensive to solve the inner sub-
problems exactly or to high accuracy, especially in high-dimensional
settings;

Computationally, it is not economical to use the ALM during
the early stage of solving the problem when the fast local linear
convergence of ALM has not kicked in.
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First-order method

In SDPNAL, the boundary-point method of Rendl et al. [Computing,
78 (2006)] was used to warm-start the second-order method, i.e.,
one modified gradient step was used instead of solving the inner
subproblem:

yk+1 = yk − (σkAA∗)−1∇yΦσ(y;Xk)

= yk − (σkAA∗)−1∇yL(yk, X̃k+1),

with X̃k+1 = ΠSn+ [Xk + σ(A∗yk − C)]. One can deduce that

σkAA∗yk+1 = σkAA∗yk −A
(

ΠSn+ [Xk + σ(A∗yk − C)]
)

+ b,

which implies that

−b+AXk + σkA(A∗yk+1 + Sk+1 − C) = 0,

with σSk+1 := ΠSn+ [−(Xk + σ(A∗yk − C)]. Therefore,
{
Sk+1 = arg minS Lσk(yk, S;Xk),

yk+1 = arg miny Lσk(y, Sk+1;Xk).
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Multi-block SDP

The doubly nonnegative SDP

min
X∈Sn

{〈C,X〉 | AEX = bE ,AIX ≥ bI , X � 0, X ≥ 0}.

The more general convex quadratic SDP

min

{
1

2
〈X, QX〉+ 〈C, X〉|AEX = bE ,AIX ≥ bI , X ∈ Sn+ ∩N

}
.

(1)

Q : Sn → Sn: self-adjoint positive semidefinite;

AE : Sn → IRmE and AI : Sn → IRmI are linear maps;

C ∈ Sn, bE ∈ IRmE and bI ∈ IRmI are given data;

N : a closed convex set (e.g. N = {X ∈ Sn | L ≤ X ≤ U}).
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Recent Developments

[Fazel, Pong, Sun and Tseng, SIMAX, 34 (2013)]:

The introduction of the semiproximal ADMM (alternating di-
rection methods of multipliers).

[Sun, Yang and Toh, SIOPT, 25 (2015)]:

A convergent 3-block ADMM (ADMM3c) for doubly nonnega-
tive SDP: only requires an inexpensive extra step per iteration
but it is theoretically convergent and practically even faster.

The precursor of the block symmetric Gauss Seidel iteration
technique.
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Fig. 1 from [Sun, Yang and Toh (2015)]
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Table 1
Numbers of problems which are solved to the accuracy of 10−6 in η or η̂.

Problem set (No.)\solver ADMM3c SDPAD 2EBD ADMM3g
θ+ (58) 58 58 56 54
FAP ( 7) 7 7 7 7
QAP (95) 39 30 16 28
BIQ (134) 134 134 134 130
RCP (120) 120 114 109 113
Total (414) 358 343 322 332
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Fig. 1. Performance profiles (time) of
ADMM3c, SDPAD, ADMM3g and 2EBD.
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Fig. 2. Performance profiles (iteration)
of ADMM3c, SDPAD, ADMM3g and 2EBD.

Figure 1 shows the performance profiles in terms of computing time for ADMM3c,
SDPAD, 2EBD, and ADMM3g for all the tested problems including those problems
not listed in Table 2. We recall that a point (x, y) is in the performance profiles curve
of a method if and only if it can solve (100y)% of all the tested problems no slower
than x times of any other methods. It can be seen that ADMM3c outperforms the
three other solvers by a significant margin.

Figure 2 shows the performance profiles in terms of the number of iterations for
ADMM3c, SDPAD, 2EBD, and ADMM3g for all the tested problems. We may ob-
serve that for the majority of the tested problems, ADMM3c takes the least number
of iterations. For the BIQ problems, the solver 2EDB typically takes the least num-
ber of iterations. However, as each iteration of 2EDB requires quite a number of
intermediate calculations to estimate a step-length to achieve good convergence, the
nontrivial overheads incurred often counteract the savings in the number of iterations.
As a result, even though the performance profile of 2EDB in terms of the number of
iterations dominates that of ADMM3g, its profile in terms of the computing time does
not behave similarly.

5.2. Numerical results for SDP with many inequality constraints. In
this subsection, we will consider (SDP) with many inequality constraints AIxI ≥ bI .
The dual of (SDP) takes the form of

min
{
δSn

+
(S) + (δ�mI

+
(yI)− 〈bI , yI〉) + δK∗

p
(Z)− 〈bE , yE〉 |(5.19)

× S +A∗
IyI + Z +A∗

EyE = C
}
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Figure: ADMM3c performs the best among a few first order methods (no
inequality constraints).
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Fig. 3 from [Sun, Yang and Toh (2015)]
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Fig. 3. Performance profiles (time)
of sPadmm3c, Ladmm4g, sPadmm4d, and
sPadmm4d(1).
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Fig. 4. Performance profiles (iteration)
of sPadmm3c, Ladmm4g, sPadmm4d, and
sPadmm4d(1).

Additionally, we compute the relative gap by

ηg =
〈C,X〉 − (〈bE , yE〉+ 〈bI , yI〉)

1 + |〈C,X〉|+ |〈bE , yE〉+ 〈bI , yI〉|
.(5.22)

We terminate sPadmm3c, sPadmm4d, sPadmm4d(1), and Ladmm4g when η < 10−5

or when they reach the maximum number of 50,000 iterations.
In Table 3, we report some detailed numerical results for the solvers sPadmm3c,

Ladmm4g, sPadmm4d, and sPadmm4d(1) in solving a collection of 134 extended BIQ
problems.

Figure 3 shows the performance profiles in terms of computing time for sPadmm3c,
Ladmm4g, sPadmm4d, and sPadmm4d(1) in solving 134 extended BIQ problems.
One can observe that Ladmm4g is much slower than the other three solvers. The
solver sPadmm3c is clearly more efficient than the directly extended sPADMM with
unit step-length, i.e., sPadmm4d(1), and it is even faster than sPadmm4d with
τ = 1.618, though only marginally.

Figure 4 shows the performance profiles in terms of the number of iterations for
sPadmm3c, Ladmm4g, sPadmm4d, and sPadmm4d(1). Observe that for the majority
of the test problems, sPadmm3c takes fewer iterations than sPadmm4d with step-
length τ = 1.618. However, for some test problems, due to the overhead incurred
in handling the additional matrix variable introduced to reformulate (5.20) into the
form (4.8), sPadmm3c may take slightly more time than sPadmm4d, even though the
latter may take slightly more iterations.

6. Conclusions. In this paper, we have proposed a 3-block semiproximal
ADMM that is both convergent and efficient for finding a solution of medium ac-
curacy to conic programming problems with four types of constraints. By conducting
numerical experiments on a large number of DNN-SDP problems with equality and/or
inequality constraints, we have presented convincing numerical results showing that
for the vast majority of problems tested, our proposed (semiproximal) ADMM is at
least 20% faster than the directly extended (semiproximal) ADMM with unit step-
length. At least for the class of conic programming (P) problems, we can safely say
that we have resolved the dilemma that an ADMM is either efficient in practice but
without convergent guarantee in theory or the contrary. This opens up the possibil-
ity of designing a convergent and yet practically efficient ADMM with an intelligent
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Figure: ADMM3c performs as good as the directly extended 4-block
ADMM.
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Recent developments (II)

[Li, Sun and Toh, MP, 155 (2016)]:

A Schur complement based (SCB) multi-block ADMM for con-
vex quadratic conic programming;

The block symmetric Gauss-Seidel (sGS) iteration technique.

[Li, Sun and Toh, arXiv:1512.08872 (2015)]1

The block sGS decomposition theorem;

Its equivalence to the SCB reduction procedure;

The quadratic part is not necessarily separable;

Allows the updates of the blocks to be inexact.

1Currently available at arXiv:1703.06629 (2017)
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Dual of the convex QSDP

The dual of the convex QSDP problem (1) in its equivalent mini-
mization form:

min δ∗N (−Z) + 1
2〈W, QW 〉 − 〈bE , yE〉 − 〈bI , yI〉

s.t. Z −QW + S +A∗EyE +A∗IyI = C,

S ∈ Sn+, yI ≥ 0, W ∈ W.

(2)

W is an arbitrary subspace of Sn containing Range(Q)

Generally, W is Sn or Range(Q).

For first-order methods, W = Sn.
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Fig. 1 from [Li, Sun and Toh (2016)]

X. Li et al.
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Fig. 1 Performance profiles of Scb- spadmm, Admm and Admmgb for the tested large scale QSDP

QSDP problems. We recall that a point (x, y) is in the performance profiles curve
of a method if and only if it can solve (100y)% of all the tested problems no slower
than x times of any other methods. We may observe that for the majority of the
tested problems, Scb- spadmm takes the least number of iterations. Besides, in terms
of computing time, it can be seen that both Scb- spadmm and Admm outperform
Admmgb by a significant margin, even though Admm has no convergence guarantee.

4.2 Numerical results for nearest correlation matrix (NCM) approximations

In this subsection, we first consider the problem of finding the nearest correlation
matrix (NCM) to a given matrix G ∈ Sn :

min
1

2
‖H ◦ (X − G)‖2

F + 〈C, X〉
s.t. AE X = bE , X ∈ Sn+ ∩ K, (98)

where H ∈ Sn is a nonnegative weight matrix, AE : Sn → 	m E is a linear map,
G ∈ Sn , C ∈ Sn and bE ∈ 	m E are given data, K is a nonempty simple closed convex
set, e.g., K = {W ∈ Sn : L ≤ W ≤ U } with L , U ∈ Sn being given matrices. In
fact, this is also an instance of the general model of problem (93) with no inequality
constraints, QX = H ◦ H ◦ X and BX = H ◦ X . We place this special example of
QSDP here since an extension will be considered next.

Now, let’s consider an interesting variant of the above NCM problem:

min ‖H ◦ (X − G)‖2 + 〈C, X〉
s.t. AE X = bE , X ∈ Sn+ ∩ K. (99)

Note, in (99), instead of the Frobenius norm, we use the spectral norm. By introducing
a slack variable Y , we can reformulate problem (99) as

min ‖Y‖2 + 〈C, X〉
s.t. H ◦ (X − G) = Y, AE X = bE , X ∈ Sn+ ∩ K. (100)

123

Figure: SCB-ADMM performs the best for solving the tested QSDP prob-
lems (without inequality constraints).
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An inexact block symmetric Gauss-Seidel (sGS) iteration

Let s ≥ 2 be a given integer and U := U1×· · ·×Us with all Ui being
finite dimensional real Euclidean spaces. For any u ∈ U we write
u ≡ (u1, . . . , us). Let H : U → U be a given self-adjoint positive
semidefinite linear operator and

Hu :=




H11 H12 · · · H1s

H∗12 H22 · · · H2s
...

...
. . .

...
H∗1s H∗2s · · · Hss







u1

u2
...
us


 ,

where Hii are self-adjoint positive definite linear operators, Hij :
Uj → Ui, i = 1, . . . , s− 1, j > i, are linear maps. We denote

Hu :=




0 H12 · · · H1s

. . .
. . .

...
. . . H(s−1)s

0



,Hd :=




H11

H22

. . .

Hss


 .

(3)
Note that H = Hd +Hu +H∗u and Hd is positive definite.
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Cont.

Define the self-adjoint positive semidefinite linear operator sGS(H) :
U → U by

sGS(H) := HuH−1
d H∗u.

For any u ∈ U , denote

u≤i := {u1, . . . , ui} and u≥i := {ui, . . . , us}, i = 1, . . . , s.

Let δ̃i, δi ∈ Ui, i = 1, . . . , s be given error tolerance vectors with
δ̃1 = δ1. Define

d(δ̃, δ) := δ +HuH−1
d (δ − δ̃). (4)

Let θ : U1 → (−∞,∞] be a given closed proper convex function
and b ∈ U be a given vector. Consider the quadratic function

h(u) :=
1

2
〈u,Hu〉 − 〈b, u〉 ∀u ∈ U .

Suppose that u− ∈ U is a given vector. We want to compute

u+ := arg min
u∈U

{
θ(u1) + h(u) +

1

2
‖u− u−‖2sGS(H) − 〈d(δ̃, δ), u〉

}
.

(5)
14



Inexact block sGS decomposition theorem

Proposition 1 (Inexact block sGS decomposition)

Assume that Hii, i = 1, . . . , s are positive definite. Then

Ĥ := H+ sGS(H) = (Hd +Hu)H−1
d (Hd +H∗u) � 0.

Furthermore, for i = s, s− 1, . . . , 2 (the backwark sGS sweep),
define

ũi := arg min
ui

{
θ(u−1 ) + h(u−≤i−1, ui, ũ≥i+1)− 〈δ̃i, ui〉

}
. (6)

Then, the optimal solution u+ defined by (5) can be obtained
exactly via





u+
1 := arg minu1

{
θ(u1) + h(u1, ũ≥2)− 〈δ1, u1〉

}
,

u+
i := arg minui

{
θ(u+

1 ) + h(u+
≤i−1, ui, ũ≥i+1)− 〈δi, ui〉

}
,

i = 2, . . . , s.

(7)
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An inexact block symmetric Gauss-Seidel (sGS) iteration

Exact v.s. Inexact

One should interpret ũi and u+
i as approximate solutions to the

minimization problems without the terms involving δ̃i and δi.

Once these approximate solutions have been computed, they
would generate the error vectors δ̃i and δi.

With these known error vectors, we know that ũi and u+
i are

actually the exact solutions to the minimization problems in (6)
and (7).
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Inexact block sGS decomposition theorem

Highlight

When solving the subproblems in the forward GS sweep in (7)
for i = 2, . . . , s, we may try to estimate u+

i by using ũi, and in
this case the corresponding error vector δi would be given by

δi = δ̃i +
∑i−1

j=1H∗ji(u+
j − u−j ).

In order to avoid solving the i-th problem in (7), one may accept
such an approximate solution u+

i = ũi if the corresponding error

vector satisfies an admissible condition such as ‖δi‖ ≤ c‖δ̃i‖ for
some constant c > 1, say c = 10.
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Error estimation in block sGS

Proposition 1 (Li-Sun-Toh)

Let d(δ̃, δ) be defined by (4). Then it holds that

‖Ĥ− 1
2d(δ̃, δ)‖ ≤ ‖H−

1
2

d (δ − δ̃)‖+ ‖H
1
2
d (Hd +Hu)−1δ̃‖. (8)

Recall that
H = Hd +Hu +H∗u � 0,

sGS(H) := HuH−1
d H∗u � 0,

Ĥ := H+ sGS(H) = (Hd +Hu)H−1
d (Hd +H∗u) � 0.
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Inexact block sGS and multi-block ADMM

The block sGS decomposition theorem allows us to design a conver-
gent (inexact) sGS-ADMM for solving convex multi-block composite
programming problems including convex quadratic SDPs with dou-
bly nonnegative constraints.

[Chen, Sun and Toh, MP, 161 (2017) 327–343]:
An inexact multi-block ADMM-type first-order method for
solving high-dimensional multi-block convex composite optimization
problems to medium accuracy with the essential flexibility that the
inner subproblems are allowed to be solved only approximately, which
is a combination of

An inexact 2-block majorized semi-proximal ADMM

Inexact block symmetric Gauss-Seidel iteration with a non-
smooth block

19



The sGS-imsPADMM Algorithm

Only one cycle of an inexact sGS iteration instead of an un-
known number of cycles, as the BCD-type methods.

The freedom to solve large scale linear systems of equations
approximately by an iterative solver such as the CG method.

Without such a flexibility, one would be forced to modify the
corresponding subproblem by adding an appropriately chosen
“large” semi-proximal term so as to get a closed-form solu-
tion for the modified subproblem. But such a modification can
sometimes significantly slow down the outer iteration.
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High-Dimensional Composite Conic Optimization

min
x

{
θ(x) +

1

2
〈x, Qx〉+ 〈c, x〉 | Ax− b = 0, x ∈ K

}
(9)

X , Y: finite-dimensional real Euclidean spaces endowed with inner
product 〈·, ·〉 and its induced norm ‖ · ‖
θ : X → (−∞,+∞]: closed proper convex

Q : X → X : self-adjoint positive semidefinite

A : X → Y: linear mapping

c ∈ X , b ∈ Y are given data, K ⊆ X : closed convex cone

“High-dimensional”: AA∗ or Q is extremely large to be explicitly
stored or decomposed by Cholesky factorization.

Example: QSDP, QP, Robust PCA......
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The Dual Problem

One can recast (9) (by introducing a slack variables u ∈ X ) as

min
{
θ(u) +

1

2
〈x, Qx〉+ 〈c, x〉 | Ax− b = 0, u− x = 0, x ∈ K

}
.

(10)

Soving the dual of problems (9) is equivalent to

min θ∗(−s) + 1
2〈w, Qw〉 − 〈b, ξ〉

s.t. s+ z −Qw +A∗ξ = c, z ∈ K∗, w ∈ W,
(11)

W ⊆ X is a subspace containing Range(Q), θ∗ is the Fenchel
conjugate of θ, K∗ is the dual cone of K.
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General Form of the Problem

Let m, n be two nonnegative integers, Z, Xi, 1 ≤ i ≤ m and Yj , 1 ≤ j ≤
n are finte dimensional real Euclidean spaces each endowed with 〈·, ·〉 and

‖ · ‖. Define X := X1 × . . .×Xm and Y := Y1 × . . .×Yn. Problem (11)

belongs to

min
x∈X ,y∈Y

p1(x1) + f(x1, . . . , xm) + q1(y1) + g(y1, . . . , yn)

s.t. A∗x+ B∗y = c.

(12)

p1 : X1 → (−∞,∞] and q1 : Y1 → (−∞,∞]: closed proper convex;

f : X → (−∞,∞) and g : Y → (−∞,∞): convex, continuously
differentiable with Lipschitz continuous gradients;

A : X → Y and B : X → Z are defined such that their adjoints are
given by A∗x =

∑m
i=1A∗i xi for x = (x1, . . . , xm) ∈ X , and B∗y =∑n

j=1B∗j yj for y = (y1, . . . , yn) ∈ Y with A∗i : Xi → Z, i = 1, . . . ,m
and B∗j : Yj → Z, j = 1, . . . , n are the adjoints of the linear maps
Ai : Z → Xi and Bj : Z → Yi, respectively.
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Majorized Augmented Lagrangian Function

Define for convenience p(x) := p1(x1) and q(y) := q1(y1).
There exist self-adjoint positive semidefinite linear operators Σ̂f :

X → X and Σ̂g : Y → Y, such that for any x, x′ ∈ X and y, y′ ∈ Y,

f(x) ≤ f̂(x;x′) := f(x′) + 〈∇f(x′), x− x′〉+ 1
2‖x− x′‖2Σ̂f ,

g(y) ≤ ĝ(y; y′) := g(y′) + 〈∇g(y′), y − y′〉+ 1
2‖y − y′‖2Σ̂g .

(13)
Let σ > 0. The majorized augmented Lagrangian function of prob-
lem (12) is defined by for any (x′, y′) ∈ X × Y and (x, y, z) ∈
X × Y × Z,

L̂σ(x, y; (z, x′, y′)) := p(x) + f̂(x;x′) + q(y) + ĝ(y; y′)

+〈z,A∗x+ B∗y − c〉+ σ
2 ‖A∗x+ B∗y − c‖2.

If f and g are quadratic functions, by taking Σ̂f = Σf and Σ̂g = Σg the majorized

augmented Lagrangian function is also the augmented Lagrangian function.
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An inexact majorized semi-Proximal ADMM

Let S : X → X and T : Y → Y being two self-adjoint positive
semidefinite linear operators and define

M := Σ̂f + S + σAA∗ and N := Σ̂g + T + σBB∗. (14)

Suppose that {wk := (xk, yk, zk)} is a sequence in X ×Y ×Z. For
convenience, we define the two functions ψk : X → (−∞,∞] and
ϕk : Y → (−∞,∞] by

ψk(x) := p(x) + 1
2〈x,Mx〉 − 〈lkx, x〉,

ϕk(y) := q(y) + 1
2〈y, N y〉 − 〈lky , y〉,

where

−lkx := ∇f(xk) +Azk −Mxk + σA(A∗xk + B∗yk − c),
−lky := ∇g(yk) + Bzk −N yk + σB(A∗xk+1 + B∗yk − c).

Let {εk} be a summable sequence of nonnegative numbers, and
define

E :=

∞∑

k=0

εk <∞, E ′ :=
∞∑

k=0

ε2
k <∞.
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An inexact 2-block Majorized sPADMM

Algorithm (imsPADMM)

Let τ ∈ (0, (1 +
√

5)/2) be the step-length. Let
w0 := (x0, y0, z0) ∈ dom p× dom q ×Z be the initial point. For
k = 0, 1, . . .. Choose S and T such that M� 0 and N � 0.

1. Compute xk+1 and dkx ∈ ∂ψk(xk+1) s.t. ‖M− 1
2dkx‖ ≤ εk and

xk+1 ≈ x̄k+1 := arg min
x∈X

{
ψk(x) = L̂σ(x, yk;wk)+

1

2
‖x−xk‖2S

}
.

(15)

2. Compute yk+1 and dky ∈ ∂ϕk(yk+1) s.t. ‖N− 1
2dky‖ ≤ εk and

yk+1 ≈ ȳk+1 := arg min
y∈Y

{
L̂σ(x̄k+1, y;wk) +

1

2
‖y − yk‖2T

}

= arg min
y∈Y

{
ϕk(y) + 〈σBA∗(x̄k+1 − xk+1), y〉

}
.

(16)
3. Compute zk+1 := zk + τσ(A∗xk+1 + B∗yk+1 − c).
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Algorithmic design for multi-block problems

In imsPADMM, the main issue is how to choose S and T , and how
to compute xk+1 and yk+1.

Decomposition of Σ̂f and Σ̂g, consistent with the decompositions
of X and Y:

Σ̂f =




(Σ̂f )11 (Σ̂f )12 · · · (Σ̂f )1m

(Σ̂f )∗12 (Σ̂f )22 · · · (Σ̂f )2m
...

...
. . .

...

(Σ̂f )∗1m (Σ̂f )∗2m · · · (Σ̂f )mm


 ,

Σ̂g =




(Σ̂g)11 (Σ̂g)12 · · · (Σ̂g)1n

(Σ̂g)
∗
12 (Σ̂g)22 · · · (Σ̂g)2n

...
...

. . .
...

(Σ̂g)
∗
1n (Σ̂g)

∗
2n · · · (Σ̂g)nn


 .
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Algorithmic design

Choose two self-adjoint positive semidefinite linear operators S̃1 :
X1 → X1 and T̃1 : Y1 → Y1 satisfying

M̃11 := S̃1 +(Σ̂f )11 +σA1A∗1�0, Ñ11 := T̃1 +(Σ̂g)11 +σB1B∗1�0,

for making the subproblems involving p1 and q1 easier to solve.

We can assume that the well-defined optimization problems

min
x1

{
p(x1) +

1

2
‖x1 − x′1‖2M̃11

}
and min

y1

{
q(y1) +

1

2
‖y1 − y′1‖2Ñ11

}

can be solved to arbitrary accuracy for any given x′1 ∈ X1 and
y′1 ∈ Y1.

For i = 2, . . . ,m, choose a linear operator S̃i � 0 such that

M̃ii := S̃i + (Σ̂f )ii + σAiA∗i � 0,

and similarly, for j = 2, . . . , n, we choose a linear operator T̃j � 0
such that

Ñjj := T̃j + (Σ̂g)jj + σBjB∗j � 0.
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Algorithm sGS-imsPADMM

Algorithm (sGS-imsPADMM)

Choose τ ∈ (0, (1 +
√

5)/2). Let {ε̃k}k≥0 be a nonnegative
summable sequence of real numbers. Let
(x0, y0, z0)∈ domp× dom q ×Z be the initial point. For
k = 0, 1, . . .,

1a. for i = m, . . . , 2 compute

x̃k+1
i ≈ arg min

xi∈Xi

{
L̂σ(xk≤i−1, xi, x̃

k+1
≥i+1, y

k;wk) +
1

2
‖xi − xki ‖2S̃i

}
,

δ̃ki ∈ ∂xiL̂σ(xk≤i−1, x̃
k+1
i , x̃k+1

≥i+1, y
k;wk) + S̃i(x̃k+1

i − xki ), ‖δ̃ki ‖ ≤ ε̃k.

1b. For i = 1, . . . ,m compute

xk+1
i ≈ arg min

xi∈Xi

{
L̂σ(xk+1

≤i−1, xi, x̃
k+1
≥i+1, y

k;wk) +
1

2
‖xi − xki ‖2S̃i

}
,

δki ∈ ∂xiL̂σ(xk+1
≤i−1, x

k+1
i , x̃k+1

≥i+1, y
k;wk) + S̃i(xk+1

i − xki ), ‖δki ‖ ≤ ε̃k.
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Algorithm (sGS-imsPADMM (continued))

2a. For j = n, . . . , 2 compute

ỹk+1
j ≈ arg min

yj∈Yj

{
L̂σ(xk+1, yk≤j−1, yj , ỹ

k+1
≥j+1;wk) +

1

2
‖yj − ykj ‖2T̃j

}
,

γ̃kj ∈ ∂yj L̂σ(xk+1, yk≤j−1, ỹ
k+1
j , ỹk+1

≥j+1;wk) + T̃j(ỹk+1
j − ykj ), ‖γ̃kj ‖ ≤ ε̃k.

2b. For j = 1, . . . , n compute

yk+1
j ≈ arg min

yj∈Yj

{
L̂σ(xk+1, yk+1

≤j−1, yj , ỹ
k+1
≥j+1;wk) +

1

2
‖yj − ykj ‖2T̃j

}
,

γkj ∈ ∂yj L̂σ(xk+1, yk+1
≤j−1, y

k+1
j , ỹk+1

≥j+1;wk) + T̃j(yk+1
j − ykj ), ‖γkj ‖ ≤ ε̃k.

3. Compute zk+1 := zk + τσ(A∗xk+1 + B∗yk+1 − c).
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Algorithmic design

Define the linear operators

M̃ := Σ̂f + σAA∗ + Diag(S̃1, . . . , S̃m),

Ñ := Σ̂g + σBB∗ + Diag(T̃1, . . . , T̃n).
(17)

Define M̃u and Ñu analogously as Hu in (3) for M̃ and Ñ , and

M̃d := Diag(M̃11, . . . ,M̃mm), Ñd := Diag(Ñ11, . . . , Ñnn).

Then, M̃ := M̃d + M̃u + M̃∗u and Ñ := Ñd + Ñu + Ñ ∗u .
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Algorithmic design

Moreover, we define the following linear operators:

sGS(M̃) := M̃uM̃−1
d M̃∗u, sGS(Ñ ) := ÑuÑ−1

d Ñ ∗u .
Ŝ := Diag(S̃1, . . . , S̃m) + sGS(M̃), M̂ := Σ̂f + σAA∗ + Ŝ,
T̂ := Diag(T̃1, . . . , T̃n) + sGS(Ñ ) and N̂ := Σ̂g + σBB∗ + T̂ .

Define the two constants

κ := 2
√
m− 1‖M̃−

1
2

d ‖+
√
m‖M̃

1
2
d (M̃d + M̃u)−1‖,

κ′ := 2
√
n− 1‖Ñ−

1
2

d ‖+
√
n‖Ñ

1
2
d (Ñd + Ñu)−1‖.

(18)

For any k ≥ 0, and δ̃k = (δ̃k1 , . . . , δ̃
k
m), δk = (δk1 , . . . , δ

k
m), γ̃k =

(γ̃k1 , . . . , γ̃
k
n) and γk = (γk1 , . . . , γ

k
n) such that δ̃k+1

1 := δk+1
1 and

γ̃k+1
1 := γk+1

1 , we define

dkx := δk +M̃uM̃−1
d (δk− δ̃k) and dky := γk + ÑuÑ−1

d (γk− γ̃k).
(19)
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imsPADMM & sGS-imsPADMM

Proposition 2

Suppose that M̃d � 0 and Ñd � 0 for M̃ and Ñ defined in (17).
Let κ and κ′ be defined as in (18). Then, the sequences
{wk := (xk, yk, zk)}, {δk}, {δ̃k}, {γk} and {γ̃k} generated by the
sGS-imsPADMM are well-defined and it holds that

M̂ = M̃+ sGS(M̃) � 0, N̂ = Ñ + sGS(Ñ ) � 0. (20)

Moreover, for any k ≥ 0, dkx and dky defined by (19) satisfy





dkx ∈ ∂x
(
L̂kσ(xk+1, yk) + 1

2‖xk+1 − xk‖2Ŝ
)
,

dky ∈ ∂y
(
L̂kσ(xk+1, yk+1) + 1

2‖yk+1 − yk‖2T̂
)
,

(21)

‖M̂− 1
2dkx‖ ≤ κε̃k, ‖N̂− 1

2dky‖ ≤ κ′ε̃k. (22)
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imsPADMM & sGS-imsPADMM

If in the imsPADMM, we choose S := Ŝ, T := T̂ , then we have
M = M̂ � 0 and N = N̂ � 0. Moreover, we can define the
sequence {εk} by εk := max{κ, κ′}ε̃k ∀k ≥ 0. The sequence {wk}
generated by the sGS-imsPADMM always satisfies ‖M− 1

2dkx‖ ≤ εk
and ‖N− 1

2dky‖ ≤ εk. Thus, {wk} can be viewed as a sequence gen-
erated by the imsPADMM with specially constructed semi-proximal
terms.

sGS-imsPADMM is an explicitly implementable method to han-
dle high-dimensional convex composite conic optimization prob-
lems.

imsPADMM has a compact formulation which can facilitate the
convergence analysis of the sGS-imsPADMM.
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Avoid of repetition

We can use the x̃k+1
i computed in the backward GS sweep

(Step 1a) to estimate xk+1
i in the forward sweep (Step 1b) for

i = 2, . . . ,m.

In this case, the corresponding error vector is given by

δki = δ̃ki +

i−1∑

j=1

M̃ij(x
k+1
j − xkj ),

and we may accept the approximate solution xk+1
i = x̃k+1

i

without solving an additional subproblem if ‖δki ‖ ≤ ε̃k.

A similar strategy also applies to the subproblems in Step 2b
for j = 2, . . . , n.
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Convergence

We only need to establish the convergence for imsPADMM!

Theorem 1

Suppose that the solution set W to the KKT system of problem
(12) is nonempty and the sequence {(xk, yk, zk)} is generated by
the imsPADMM. Assume that2

Σf + S + σAA∗ � 0 and Σg + T + σBB∗ � 0. (23)

Then, the sequence {xk, yk, zk} converges to a point in W.

2In fact, the theorem is still valid if (23) is replaced by the condition that

Σ̂f + S + σAA∗ � 0 and Σ̂g + T + σBB∗ � 0.
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Numerical Experiments

To handle the inequality constraints in (2) we introduce a slack
variable v to get

max
(
− δ∗N (−Z)− δIR

mI
+

(v)
)
− 1

2
〈W, QW 〉 − δSn+(S)

+〈bE , yE〉+ 〈bI , yI〉
s.t. Z −QW + S +A∗EyE +A∗IyI = C,

D(v − yI) = 0, W ∈ W,

(24)

where D ∈ IRmI×mI is a fixed positive definite matrix.
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We construct QSDP test instances based on the doubly nonnegative
SDP problems arising from relaxation of binary integer quadratic
(BIQ) programming with a large number of inequality constraints
that was introduced by Sun et. al. for getting tighter bounds:

min 1
2〈X, Q(X)〉+ 1

2〈Q, X〉+ 〈c, x〉

s.t. diag(X)− x = 0, α = 1, X =

(
X x
xT α

)
∈ Sn+,

X ∈ N := {X ∈ Sn : X ≥ 0},




−Xij + xi ≥ 0,

−Xij + xj ≥ 0,

Xij − xi − xj ≥ −1

∀ i < j, j = 2, . . . , n− 1.

For convenience, we call them as QSDP-BIQ problems. When Q is
vacuous, we call the corresponding linear SDP problems as SDP-BIQ
problems.
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The test data for Q and c are taken from the Biq Mac Library
http://biqmac.uni-klu.ac.at/biqmaclib.html.

We tested one group of SDP-BIQ problems and three groups of
QSDP-BIQ problems with each group consisting of 80 instances
with n ranging from 151 to 501.

We compare the performance of our sGS-imsPADMM with the
directly extended multi-block sPADMM with the aggressive
step-length of 1.618 on solving these SDP/QSDP-BIQ prob-
lems.

Note: Although its convergence is not guaranteed, such a di-
rectly extended sPADMM is currently more or less the bench-
mark among first-order methods for solving multi-block linear
and quadratic SDPs.
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Stop the algorithm after 500,000 iterations, or

ηqsdp = max{ηP , ηD, ηW , ηI1 , ηI2 , ηs1 , ηI3 , ηS2 , ηX , ηZ} < 10−6,

where

ηD =
‖A∗EyE+A∗IyI+S+Z−QW−C‖

1+‖C‖ , ηP = ‖AEX−bE‖
1+‖bE‖ ,

ηI1 = ‖min(0,yI)‖
1+‖yI‖ , ηI2 = ‖min(0,AIX−bI)‖

1+‖bI‖ , ηI3 = |〈AIX−bI ,yI〉|
1+‖AIx−bI‖+‖yI‖

ηS1 =
‖X−ΠSn+

(X)‖
1+‖X‖ , ηS2 = |〈X,S〉|

1+‖X‖+‖S‖ , ηW = ‖QX−QW‖
1+‖Q‖ ,

ηX = ‖X−ΠN (X)‖
1+‖X‖ , ηZ = ‖X−ΠN (X−Z)‖

1+‖X‖+‖Z‖ .

In addition, we also measure the duality gap:

ηgap :=
Objprimal−Objdual

1+|Objprimal|+|Objdual| ,

where {
Objprimal := 1

2
〈X,QX〉+ 〈C,X〉,

Objdual := −δ∗N (−Z)− 1
2
〈W, QW 〉+ 〈bE , yE〉+ 〈bI , yI〉.
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Subproblems Involving Large Linear Systems of Equations

For example, the subproblem corresponding to the block yI in ADMM
type methods with/without semi-proximal term has to be solved:

min

{
−〈bI , yI〉+

σ

2
‖[AI ,−D]∗yI − r‖2 +

1

2
‖yI − y−I ‖2T

}
, (25)

where T is a self-adjoint positive semidefinite linear operator on
IRmI , and r and y−I are given data.

Define V := AIA∗I +D2 and r̃ := bI +σ(AI ,−D)r+T y−I . Solving
(25) is equivalent to solving the linear equation

(
σV + T

)
yI = r̃ (26)

Remark: It is generally very difficult to compute the solution of
(26) exactly for large scale problems if T is the zero operator, i.e.,
not adding a proximal term.
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Solve
(
σV + T

)
yI = r̃

Suppose that V admits the eigenvalue decomposition

V =

n∑

i=1

λiPiP∗i ,

with λ1 ≥ . . . ≥ λn ≥ 0. We can choose T by using the first l
largest eigenvalues and the corresponding eigenvectors of V, i.e.,

T = σ
∑n

i=l+1(λl+1 − λi)PiP∗i , (27)

which is self-adjoint positive semidefinite.

Remark: it is more likely that such a T is “smaller” than the natural
choice of setting it to be σ(λ1I−V). Indeed we have observed in our
numerical experiments that the latter choice always leads to more
iterations compared to the choice in (27).
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Solve
(
σV + T

)
yI = r̃

(σV + T )−1 can be obtained analytically as

(σV + T )−1 = (σλl+1)−1I +

l∑

i=1

((σλi)
−1 − (σλl+1)−1)PiP∗i .

Thus, we only need to calculate the first few largest eigenvalues
and the corresponding eigenvectors of V and this can be done
efficiently via variants of the Lanczos method.

When the problem (25) is allowed to be solved inexactly, we can
set T = 0 in (25) and solve the linear system σV = r̃ by a precon-
ditioned conjugate gradient (PCG) method.

In this setting, (σV + T )−1 with T defined in (27) can serve
as an effective preconditioner.
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Numerical Performance for SDP Problems
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Figure: Performance profiles of sGS-isPADMM and sPADMM4d on solving
the SDP-BIQ problems.
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Numerical Performance for QSDP Problems
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Figure: Performance profiles of sGS-isPADMM and sPADMM5d on solving
the QSDP-BIQ problems (group 1).
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Numerical Performance for QSDP Problems
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Figure: Performance profiles of sGS-isPADMM and sPADMM5d on solving
the QSDP-BIQ problems (group 2).
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Numerical Performance for QSDP Problems
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Figure: Performance profiles of sGS-isPADMM and sPADMM5d on solving
the QSDP-BIQ problems (group 3).

47



Table: The numerical performance of sGS-isPADMM and the directly extended multi-
block ADMM with step-length τ = 1.618 (n > 500, accuracy = 10−6)

Problem mE ;mI ns Iteration ηqsdp ηgap Time

sGS-isP|sP-d sGS-isP|sP-d sGS-isP|sP-d sGS-isP|sP-d
SDP-BIQ

bqp500-2 501;374250 501 17525|82401 9.9-7|9.9-7 -6.3-7|2.3-8 42:27|2:12:29
bqp500-4 501;374250 501 15352|75995 9.9-7|9.9-7 -6.4-7|-3.2-8 36:53|1:59:52
bqp500-6 501;374250 501 17747|78119 9.9-7|9.9-7 -1.6-7|-2.4-8 45:10|2:04:23
bqp500-8 501;374250 501 20386|110825 9.9-7|9.9-7 -4.3-7|2.1-8 52:04|3:10:43
bqp500-10 501;374250 501 16407|68985 9.7-7|9.9-7 -5.6-7|3.7-9 39:30|1:46:01
gka1f 501;374250 501 9101|60073 9.9-7|9.9-7 -4.4-7|1.1-8 20:22|1:32:22
gka2f 501;374250 501 16193|74034 9.9-7|9.9-7 -2.7-7|-1.1-8 39:35|1:59:59
gka3f 501;374250 501 16323|72563 9.9-7|9.9-7 -1.3-7|3.9-8 40:38|1:56:28
gka4f 501;374250 501 15502|63285 9.6-7|9.9-7 -6.1-7|3.4-8 36:58|1:41:20
gka5f 501;374250 501 17664|76164 9.9-7|9.9-7 -1.3-7|1.1-8 43:45|2:05:14
QSDP-BIQ (group 1)

bqp500-2 501;374250 501 19053|71380 9.9-7|9.9-7 -1.2-7|1.1-8 1:02:31|1:52:02
bqp500-4 501;374250 501 13905|67865 9.9-7|9.9-7 -8.9-7|7.8-8 43:17|1:46:07
bqp500-6 501;374250 501 17211|62562 9.9-7|9.9-7 -2.0-7|6.9-8 56:23|1:37:19
bqp500-8 501;374250 501 19742|85057 9.9-7|9.9-7 -4.9-7|7.0-8 1:05:09|2:15:52
bqp500-10 501;374250 501 17690|65484 9.9-7|9.9-7 -2.3-7|6.7-8 58:00|1:43:04
gka1f 501;374250 501 8919|55669 9.9-7|9.9-7 -8.8-7|4.1-8 26:42|1:25:01
gka2f 501;374250 501 13587|61324 9.9-7|9.9-7 -4.5-7|2.1-8 42:50|1:37:15
gka3f 501;374250 501 13786|62438 9.9-7|9.9-7 -2.2-7|3.1-8 42:55|1:37:29
gka4f 501;374250 501 13953|57164 9.6-7|9.9-7 -7.2-7|-3.4-8 44:25|1:31:14
gka5f 501;374250 501 15968|62001 9.9-7|9.9-7 -1.4-7|4.6-8 50:22|1:35:40
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Table: The numerical performance of sGS-isPADMM and the directly extended multi-
block ADMM with step-length τ = 1.618 (n > 500, accuracy = 10−6)

Problem mE ;mI ns Iteration ηqsdp ηgap Time

sGS-isP|sP-d sGS-isP|sP-d sGS-isP|sP-d sGS-isP|sP-d
QSDP-BIQ (group 2)

bqp500-2 501;374250 501 16506|79086 9.9-7|9.9-7 -1.2-7|4.2-8 52:46|1:52:08
bqp500-4 501;374250 501 8675|30677 9.9-7|9.9-7 2.7-8|2.3-8 25:32|41:15
bqp500-6 501;374250 501 10043|42654 9.9-7|9.9-7 -3.0-8|8.3-8 29:46|58:58
bqp500-8 501;374250 501 9410|43785 9.9-7|9.9-7 -2.5-8|2.9-8 27:37|59:05
bqp500-10 501;374250 501 10656|35213 9.9-7|9.9-7 -3.6-8|8.8-8 32:35|47:00
gka1f 501;374250 501 10939|52226 9.9-7|9.9-7 -5.8-8|3.8-8 36:10|1:16:48
gka2f 501;374250 501 7757|34660 9.9-7|9.9-7 -1.8-8|6.0-8 25:17|48:40
gka3f 501;374250 501 11241|45857 9.9-7|9.9-7 -1.2-8|2.7-8 34:55|1:02:59
gka4f 501;374250 501 11706|37466 9.9-7|9.9-7 -3.7-8|6.4-8 36:19|51:25
gka5f 501;374250 501 14229|48670 9.9-7|9.9-7 -4.8-8|9.8-8 42:37|1:06:37
QSDP-BIQ (group 3)

bqp500-2 501;374250 501 18311|66867 9.9-7|9.9-7 -1.9-7|1.2-7 41:33|1:11:30
bqp500-4 501;374250 501 14169|65580 9.9-7|9.9-7 -7.8-7|1.1-7 30:04|1:10:29
bqp500-6 501;374250 501 16428|68301 9.9-7|9.9-7 -2.3-7|8.4-8 36:25|1:13:20
bqp500-8 501;374250 501 26308|107664 9.9-7|9.9-7 -4.0-7|9.5-9 1:01:17|2:00:06
bqp500-10 501;374250 501 16398|57221 9.9-7|9.9-7 -2.8-7|8.6-8 37:22|1:06:27
gka1f 501;374250 501 14479|51294 9.9-7|9.9-7 -3.6-7|7.0-8 31:05|59:17
gka2f 501;374250 501 9365|60799 9.9-7|9.9-7 -1.5-6|-1.9-9 18:30|1:04:14
gka3f 501;374250 501 14175|57782 9.9-7|9.9-7 -3.2-7|2.0-8 30:10|1:01:35
gka4f 501;374250 501 13356|56588 9.8-7|9.9-7 -5.8-7|-2.0-8 27:42|1:00:10
gka5f 501;374250 501 14122|58716 9.9-7|9.9-7 -1.4-7|9.3-8 29:38|1:01:13
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Concluding remark

Combining an inexact 2-block majorized sPADMM and the
recent advances in the inexact block symmetric Gauss-Seidel
(sGS) technique

Only needs one cycle of an inexact sGS iteration, instead of an
unknown number of cycles, to solve each of the subproblems
involved.

For the vast majority of the tested problems, the proposed sGS-
imsPADMM is 2 to 3 times faster than the directly extended
multi-block PADMM even with the aggressive step length of
1.618.
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Conclusions

One does not need to sacrifice speed in exchange for conver-
gence guarantee in developing ADMM-type first order methods,
at least for solving high-dimensional linear and convex quadratic
SDP problems to moderate accuracy.

The merit that is brought about by solving the original subprob-
lems inexactly without adding proximal terms is thus evidently
clear.

More powerful algorithms are needed such as SDPNAL for solv-
ing the standard SDP.
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