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Semidefinite Programming

The standard semidefinite programming (SDP):

. _ oL
min {(C, X) | AX =b, X = 0}

The dual problem in its equivalent minimization form:

yrg]g;n{—(b,w +0s0(9) [ Ay + 5 =C}.

The Lagrangian function of the dual problem:
L(y, S X) == —(b,y) + dsn () + (X, A"y + S - C).
The augmented Lagrangian function of the dual problem (o > 0):

La(y,5:X) = L{y, S X) + T Ay + 5 = CI]”.



SDPNAL

An inexact augmented Lagrangian method (ALM) framework was
used in SDPNAL:

y* ! ~ arg min @, (y; X*),

yeR™
Xk—H:HSi[Xk+U(A*yk+1—C)], k=0,1,2,...,

Ok41 = PO OF Ofy1 = Ok,
where for a given X
D,(y; X): = mi oy, S5 X
(y; X) Srrelg}_ﬁ (y,5;X)
= —(b,y) + 95 (IMsy [X + o (A"y = ONI* — [ X]]?).

®,, (y; X*) is continuously differentiable with respect to y and V,®,,
is strongly semismooth.

Newton-CG: y**! is computed via a semismooth Newton method
in which each linear system is solved by a conjugate gradient method.

k3



Pros and cons of ALM

ALM: fast local linear convergence (arbitrary linear convergence
rate) when the penalty parameter exceeds a certain threshold. But

m Sometimes can be hard and expensive to solve the inner sub-
problems exactly or to high accuracy, especially in high-dimensional
settings;

m Computationally, it is not economical to use the ALM during
the early stage of solving the problem when the fast local linear
convergence of ALM has not kicked in.



First-order method

In SDPNAL, the boundary-point method of Rendl et al. [Computing,
78 (2006)] was used to warm-start the second-order method, i.e.,
one modified gradient step was used instead of solving the inner
subproblem:

L = g (0 AAT) IV, @, (y; XF)
= yk — (JkAA*)ilvyﬁ(yh XkJrl)’

with XF+1 = IIsp [X* + o(A*y* — C)]. One can deduce that
TR AA YT = oy AL F — A (Hs1 [X* 4 o (A — 0)]) +b,
which implies that
b+ AXF + o A(AT YT 4 SFTL —0) =0,
with 0S¥ = Tlgn [—(X* + o(A*y* — C)]. Therefore,
{ Sk = argming £, (v*, S; XF),

y*tl = arg min, L,, (v, Sktl. Xk,



Multi-block SDP

The doubly nonnegative SDP

){_nlgl{<c,X> | .AEX: bE,A[X > b[, X >~ 0, X > O}.
e n
The more general convex quadratic SDP

min{é(X, OX)+ (C, X)|ApX =bp, A X > b5, X ES_? ﬂ/\/}
(1)

B Q:S8" — 8™ self-adjoint positive semidefinite;

B A : S" - IR™F and A7 : 8™ — IR™ are linear maps;

m C eS8 b € R™F and by € R™ are given data;

m N: aclosed convex set (e.g. N ={X e€8"|L<X<U}).



Recent Developments

[Fazel, Pong, Sun and Tseng, SIMAX, 34 (2013)]:

m The introduction of the semiproximal ADMM (alternating di-
rection methods of multipliers).

[Sun, Yang and Toh, SIOPT, 25 (2015)]:

m A convergent 3-block ADMM (ADMM3c) for doubly nonnega-
tive SDP: only requires an inexpensive extra step per iteration
but it is theoretically convergent and practically even faster.

m The precursor of the block symmetric Gauss Seidel iteration
technique.



Fig. 1 from [Sun, Yang and Toh (2015)]

Performance Profile (time) (58 6,7 FAP, 95 QAP, 134 BIQ, 120 RCP problems) tol = 1e-06
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Figure: ADMM3c performs the best among a few first order methods (no
inequality constraints).



Fig. 3 from [Sun, Yang and Toh (2015)]

Figure:
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ADMM3c performs as good as the directly extended 4-block



Recent developments (I)

[Li, Sun and Toh, MP, 155 (2016)]:

m A Schur complement based (SCB) multi-block ADMM for con-
vex quadratic conic programming;

m The block symmetric Gauss-Seidel (sGS) iteration technique.

[Li, Sun and Toh, arXiv:1512.08872 (2015)]*
m The block sGS decomposition theorem;
m lts equivalence to the SCB reduction procedure;
m The quadratic part is not necessarily separable;

m Allows the updates of the blocks to be inexact.

Currently available at arXiv:1703.06629 (2017)
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Dual of the convex QSDP

The dual of the convex QSDP problem (1) in its equivalent mini-
mization form:

min 03 (—2) + %(VV, oOW) — (bg, yr) — (b1, yr)
st. Z—-OW+S+Apye + Ajyr =C, (2)
Sedst, yy=>0, Wew.
W is an arbitrary subspace of S™ containing Range(Q)

m Generally, W is 8™ or Range(Q).
m For first-order methods, W = S".
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Fig. 1 Performance profiles of SCB- SPADMM, ADMM and ADMMGB for the tested large scale QSDP

Figure: SCB-ADMM performs the best for solving the tested QSDP prob-
lems (without inequality constraints).
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An inexact block symmetric Gauss-Seidel (sGS) iteration

Let s > 2 be a given integer and U := Uy X - - - XU, with all U; being
finite dimensional real Euclidean spaces. For any u € U we write

u = (u,...,us). Let H: U — U be a given self-adjoint positive
semidefinite linear operator and
Hi Hiz - His\ [w
1o Hao -+ Has | | w2
Hu := ) . )
1s Has - Mss) \us
where H;; are self-adjoint positive definite linear operators, H;; :
Ui —U;,i=1,...,5—1,7 > 1, are linear maps. We denote
0 Hiz -+ His Hi1
: Hoo
Hy = yHa =
. H(s—l)s B
0 Hss
(3)

Note that H = Hg + H, + H,, and Hq is positive definite.



Define the self-adjoint positive semidefinite linear operator sGS(H) :
U — U by
sGS(H) = Hu H " H,.

For any w € U, denote

u<; = {ur,...,u;} and us; == {u;, ..., usb,i=1,...,s.
Let &,51 €U;, i=1,...,s be given error tolerance vectors with
(51 = (51. Define
d(6,0) := & + H,H;L (6 - 9). (4)

Let 6 : Uy — (—o0, 0] be a given closed proper convex function
and b € U be a given vector. Consider the quadratic function

1
h(u) = §<u,7—[u) —(b,u) Yuel.
Suppose that u~ € U is a given vector. We want to compute
. 1 _ i~
ut = argetlllnn {6(u1) + h(u) + §||u —u ||§GS(H) —(d(6,6), u)}.
(5)
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Inexact block sGS decomposition theorem

Proposition 1 (Inexact block sGS decomposition)

Assume that H;;,i = 1,...,s are positive definite. Then
H = H +sGS(H) = (Ha + Hu)H7 (Ha + HE) = 0.

Furthermore, fori = s,s — 1,...,2 (the backwark sGS sweep),
define

u; = arg min {0(u) + h(uz; 1, Ui Uit1) — ((i,uz)} (6)

Uq

Then, the optimal solution u™ defined by (5) can be obtained
exactly via

uf = argmin,, {0(u1) + h(u1,Usz) — (61,u1) },
uj = arg minuz, {0(u1+) + h(ugifl,ui,ﬂziﬂ) — <5i,ui>},

1=2,...,8.
(7)

15



An inexact block symmetric Gauss-Seidel (sGS) iteration

Exact v.s. Inexact

m One should interpret u; and uj as approximate solutions to the
minimization problems without the terms involving §; and ¢;.

m Once these approximate solutions have been computed, they
would generate the error vectors 9; and J;.

m With these known error vectors, we know that u; and u;" are
actually the exact solutions to the minimization problems in (6)
and (7).

16



Inexact block sGS decomposition theorem

Highlight

m When solving the subproblems in the forward GS sweep in (7)
fori=2,...,s, we may try to estimate uj by using u;, and in
this case the corresponding error vector d; would be given by

i = 8+ ST (uf — ).

In order to avoid solving the i-th problem in (7), one may accept
such an approximate solution ujr = w; if the corresponding error
vector satisfies an admissible condition such as [|&;| < ¢||&;]| for
some constant ¢ > 1, say ¢ = 10.

17



Error estimation in block sGS

Proposition 1 (Li-Sun-Toh)
Let d(5,8) be defined by (4). Then it holds that

~ 1 ~ _% ~ % o~
1H72d(5,0)[| < 11,2 (6 = O + |1 HZ (Ha + Ha) 10l (8)

Recall that

sGS(H) := H /H " H = 0,
H = H +sGS(H) = (Ha + Hu)Hy (Ha+ HE) = 0.



Inexact block sGS and multi-block ADMM

The block sGS decomposition theorem allows us to design a conver-
gent (inexact) sGS-ADMM for solving convex multi-block composite
programming problems including convex quadratic SDPs with dou-
bly nonnegative constraints.

[Chen, Sun and Toh, MP, 161 (2017) 327-343]:
An inexact multi-block ADMM-type first-order method for
solving high-dimensional multi-block convex composite optimization
problems to medium accuracy with the essential flexibility that the
inner subproblems are allowed to be solved only approximately, which
is a combination of

m An inexact 2-block majorized semi-proximal ADMM

m Inexact block symmetric Gauss-Seidel iteration with a non-
smooth block

10



The sGS-imsPADMM Algorithm

m Only one cycle of an inexact sGS iteration instead of an un-
known number of cycles, as the BCD-type methods.

m The freedom to solve large scale linear systems of equations
approximately by an iterative solver such as the CG method.

m Without such a flexibility, one would be forced to modify the
corresponding subproblem by adding an appropriately chosen
“large” semi-proximal term so as to get a closed-form solu-
tion for the modified subproblem. But such a modification can
sometimes significantly slow down the outer iteration.

20



High-Dimensional Composite Conic Optimization

x

min{&(:ﬂ)%—é(ﬂ:, Qr)+(c,z) | Ax—b=0,z €K } 9)

m X, V: finite-dimensional real Euclidean spaces endowed with inner
product (-,-) and its induced norm || - ||

m0:X — (—o0,+00]: closed proper convex

B Q: X — X: self-adjoint positive semidefinite

m A: X — ) linear mapping

mce X, be ) are given data, K C X: closed convex cone

“High-dimensional”: AA* or Q is extremely large to be explicitly
stored or decomposed by Cholesky factorization.

Example: QSDP, QP, Robust PCA......

21



The Dual Problem

One can recast (9) (by introducing a slack variables u € X') as
1
min {9(u)+§<x, Qz)+ (¢, z) | Ax —b=0,u—2 =0,z €K}
(10)
Soving the dual of problems (9) is equivalent to
min 6*(—s) + %(w, Quw) — (b, §) (1)
st. s+z—Quw+ A =c, ze L, weW,

W C X is a subspace containing Range(Q), 6* is the Fenchel
conjugate of 8, K* is the dual cone of K.

29



General Form of the Problem

Let m, n be two nonnegative integers, Z, X;, 1 <i<mand );, 1 <j <
n are finte dimensional real Euclidean spaces each endowed with (-, -) and
|| |l. Define X :=X; x...x X, and Y := Yy X ... X YV,. Problem (11)
belongs to

zergfl}yrleypl(:cl) + f(x1, o xm) Fa(yn) F9(yr, o yn)

st. Az + By =c.

(12)

mp X = (—o0,00] and ¢ : Yy — (—o00,00]: closed proper convex;

mf:X — (—o0,00) and g : Y — (—00,00): convex, continuously
differentiable with Lipschitz continuous gradients;

B A: X = )Yand B: X — Z are defined such that their adjoints are
given by A*x = Y Atz for z = (z1,...,x,) € X, and By =
S Biyifory=(y1,...,yn) €V With AF: X = Zi=1,...,m
and B} : V; — Z,j = 1,...,n are the adjoints of the linear maps
A; : Z — Xjand B : Z — ));, respectively.
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Majorized Augmented Lagrangian Function

Define for convenience p(x) := pi(x1) and q(y) := q1(y1)-
There exist self-adjoint positive semidefinite linear operators ¥ :

X — X and f]g : Y — Y, suchthatforany z,2’ € X and y,9/ € ),

fl) < flzsa’) = f(2') +(Vf(@), 2 — ) + 5]z ~ w’HZAf?

9(v) <3wy) = 9) + (VaW)y =)+ 3ly - I -
(13)
Let 0 > 0. The majorized augmented Lagrangian function of prob-
lem (12) is defined by for any (2/,y') € X x Y and (z,y,2) €
X XY X Z,

Lo(z,y; (2,2,y) = pla) + [(z;2)) +a(y) +9(y; )
+(z, Az + B*y — ¢) + 3| A%z + By — |
If fand g are quadratic functions, by taking if =Xyand f]g = X, the majorized
augmented Lagrangian function is also the augmented Lagrangian function.

24



An inexact majorized semi-Proximal ADMM

let S: X - X and 7 : Y — Y being two self-adjoint positive
semidefinite linear operators and define
M:=%;+8+0AA* and N :=%,+T +oBB". (14)

Suppose that {w”* := (z¥, y¥, 2*)} is a sequence in X x Y x Z. For
convenience, we define the two functions vy : X — (—o0, 00| and
i 2 ¥ — (—00, 00] by
Ui(@) = p() + 3{, Mz) = (I}, @),
er(y) == q(y) + 5y, Ny) — (I, v),
where
1k =V f(z*) + AZF — Mak + o A(A 2F + B yF — ¢),
—18 = Vg(yF) + BF — Ny¥ + oB(A*zF ! + ByF — ).

Let {ex} be a summable sequence of nonnegative numbers, and

define
oo o
5:228k<oo, 5/:225i<oo.
k=0 k=0

25



An inexact 2-block Majorized sSPADMM

Algorithm (imsPADMM)

Let 7 € (0, (1 ++/5)/2) be the step-length. Let
wY = (29,40, 20) € domp x domq x Z be the initial point. For
k=0,1,.... Choose S and T such that M = 0 and N = 0.

1. Compute z*+1 and dt € 9y (z%+1) s.t. [[M~2d%|| < &), and

— . - 1
ktl o ghtl . arg min {Tﬁk(x) = Ea(%yk§wk)+§’|x_$k||‘2$}'

TEX
(15)
2. Compute y*** and df € dpy(y"*) s.t. H./\/'_%dﬂ < ey and

X

k+1 o pk+1

. o 1
y gFt! = argmin { £, (251, y; w?) + §||y—yk||27}
yey

= arg min {cpk(y) + (cBA* (EkH — xk+1), y)}
yey

(16)
3. Compute 2FF1! .= 2F 4 1o (A*zP ! 4 Byt — o).



Algorithmic design for multi-block problems

In imsPADMM, the main issue is how to choose S and 7, and how
to compute zF*1 and y**1.

Decomposition of f]f and ig, consistent with the decompositions

of X and Y-
(X (Zp)e (Sf)im
S (Ep)iz (Bp)22 (Xf)2m
= : . 3
Cim Cpim (S f)mm
@9)11 @g)lz @g)m
S (Eg)ﬁ (29)22 (Zg)Qn
g .

27



Algorithmic design

Choose two self-adjoint positive semidefinite linear operators g’l :
X1 — A1 and T @ Y1 — Vi satisfying

lel = c§1 + (if)n +O’A1AT>0, ./\711 = :7:1 + (ig)ll +0515T>0,
for making the subproblems involving p1 and ¢; easier to solve.

We can assume that the well-defined optimization problems
. 1 12 : 1 12
min{p(1) + 5 llz1 = 2415, } and min{a(y) +Slo —uil%,, }

can be solved to arbitrary accuracy for any given z; € X} and

y1 € M. N
For i =2,...,m, choose a linear operator S; > 0 such that
Mii =S+ (Sp)ii + 0 AA; = 0,
and similarly, for j = 2,...,n, we choose a linear operator 7} =0
such that

Nij =T, + (Zg)j5 + 0B;BL = 0.

28



Algorithm sGS-imsPADMM

Algorithm (sGS-imsPADMM)

Choose T € (0, (1 +/5)/2). Let {€}x>0 be a nonnegative
summable sequence of real numbers. Let

(20,90, 20)€ domp x domq x Z be the initial point. For
k=0,1,.

la. fori=m,...,2 compute

~

~ . . 1
7+ ~ argmin{ £, (0, i, 750, 5 08) + Slles — a2

B € 85, By (ay_y, B0, BEEL yhs ) + Si@T — ob), ) < 5

1b. Fori=1,...,m compute
k+1 3kt ~k+ k k12
7% Nargeme{C (3[;<Z l,xz,x>z+1,y ;W) 4+ —H.CL‘Z—Z' H }
Ty i

0¥ € By Ly (B, 2 T o5 0F) + SiabH — 28), 6] < &



Algorithm (sGS-imsPADMM (continued))

2a. Forj=mn,...,2 compute
A 1
~ht1 . k1, k k1 .,k k(2
y; " ~a§ger;1}n{ﬁa(w Y LY W )+ 3 llys _yj||7~}}7
J J

5 € 8y, Lo (2™, gk, T B wh) + TG — o), 1371 < &

2b. Forj=1,...,n compute

. (A ~ 1
vt~ argmind £ (e yE s, s wt) + gl — 15
Y; €Y
V5 € By, Lo(a®H Bt L T ) + TS — o), If Il < &

3. Compute Rl ok e TO'(A*xk+1 + B*yk"H . C).



Algorithmic design

Define the linear operators

M = if + o AA* -I-Diag(gl,. .. ,gm),

v -~ - (17)
N =%, + oBB* + Diag(T, ..., Tn).

Define Jqu and ./\N/'u analogously as H,, in (3) for M and N, and
Md = Dia’g(ﬂ\/{/117 e anmm)a Nd = Dia‘g(/’\v/’117 e a/\7nn)~

Then, M= Md+ﬂu+ﬂz and ./\N/':=/\~fd+./\7u +./\~f{f

21



Algorithmic design

Moreover, we define the following linear operators:

SGS(M) 1= MMM, sGSWV) i= NN
S :=Diag(Sy,...,8m) + sGS(M), M =X+ O'.AA*+S
T :=Diag(T1,...,Tn) +sGS(N) and N := f] +oBB*+T.

Define the two constants

- 2\/—||Md 2|+ \/_||M3(Mvd + M),
W = 2y TN 2|+ VAl (N + K) L

For any k > 0, and 6% = (6F,... 0k), 6k = (sF,... 6k), F =
(A, ...,35) and v* = (4F,...,~F) such that &¥! = 5k+1 and

AR .= A FL e define

(18)

d® .= 5k+ﬂuﬂgl(5k—gk) and df, = 'yk—i-J\N/u./\Mfd_l('yk— kY.
1

Q!

—
(=]
~

29



imsPADMM & sGS-imsPADMM

Proposition 2

Suppose that My = 0 and Ny > 0 for M and N defined in (17).
Let r and «' be defined as in (18). Then, the sequences

{wh = (2%, y*, 27}, {6%}, {6F), {¥*} and {3*} generated by the
sGS-imsPADMM are well-defined and it holds that

M=M+sGS(M) =0, N =N+sGS(N)=0. (20
Moreover, for any k > 0, d% and d; defined by (19) satisfy

k Pk (k41 k L pktl _ k)2
{ dt € 0, (LE(a* 1, yF) + S|z z¥||%), (21)

dy € Oy (L5 1,y + g™ — y*2),

IM=2dE| < kgr,  |N3dE|| < W& (22)



imsPADMM & sGS-imsPADMM

If in the imsPADMM, we choose S := S, T := T, then we have
M=M23%0and N =N = 0. Moreover, we can define the
sequence {¢;.} by &5, := max{x, k'}&}, Vk > 0. The sequence {w*}
generated by the sGS-imsPADMM always satisfies ||/\/l_%d’;|| <ep
and ||./\/'_%d]§|| < &k. Thus, {w*} can be viewed as a sequence gen-
erated by the imsPADMM with specially constructed semi-proximal
terms.

m sGS-imsPADMM is an explicitly implementable method to han-
dle high-dimensional convex composite conic optimization prob-
lems.

m imsPADMM has a compact formulation which can facilitate the
convergence analysis of the sGS-imsPADMM.

24



Avoid of repetition

= We can use the !

(Step 1a) to estimate x
1=2,...,m.

computed in the backward GS sweep
"1 in the forward sweep (Step 1b) for

i

m In this case, the corresponding error vector is given by

i—1
OF =0f + ) My(htt — ),

J
=1

and we may accept the approximate solution xf“ = %f“

without solving an additional subproblem if ||5%|| < &.

m A similar strategy also applies to the subproblems in Step 2b
forj=2,...,n.

25



Convergence

We only need to establish the convergence for imsPADMM!

Suppose that the solution set W to the KKT system of problem

(12) is nonempty and the sequence {(z*, y*, 2*)} is generated by
the imsPADMM. Assume that>

Yr+S+0AA* -0 and Xy,+ T +oBB* > 0. (23)

Then, the sequence {z*,y*, z¥} converges to a point in W.

%In fact, the theorem is still valid if (23) is replaced by the condition that
YXr+S+0AA - 0and Xy + T +0BB* - 0.

26/



Numerical Experiments

To handle the inequality constraints in (2) we introduce a slack
variable v to get

max (= 03~ 2) ~ by (v) — 5 (W, QW) — b5y (9)
+(be, ye) + (b1, y1)

st. Z—-OW +S+Apye + Ajyr =C,
D(U—y[)zo, Wew,

(24)

where D € R™I*"™1 js a fixed positive definite matrix.

7



We construct QSDP test instances based on the doubly nonnegative
SDP problems arising from relaxation of binary integer quadratic
(BIQ) programming with a large number of inequality constraints
that was introduced by Sun et. al. for getting tighter bounds:

min %(X, QX)) + %(Q, X) + {c, x)

e X "
s.t.  diag(X) —z =0, oz—l,X—(xT a>€S’
XeN={Xe8": X >0}

—Yij—i-l’izo,
—Xi;+x; >0, Vi<j, j=2,...,n—1.

Xij—:l,‘i—:L'jZ—l

For convenience, we call them as QSDP-BIQ problems. When Q is
vacuous, we call the corresponding linear SDP problems as SDP-BIQ
problems.

28



m The test data for Q and c are taken from the Biq Mac Library
http://bigmac.uni-klu.ac.at/bigmaclib.html.

m We tested one group of SDP-BIQ problems and three groups of
QSDP-BIQ problems with each group consisting of 80 instances
with n ranging from 151 to 501.

m We compare the performance of our sGS-imsPADMM with the
directly extended multi-block sSPADMM with the aggressive
step-length of 1.618 on solving these SDP/QSDP-BIQ prob-
lems.

m Note: Although its convergence is not guaranteed, such a di-
rectly extended sPADMM is currently more or less the bench-
mark among first-order methods for solving multi-block linear
and quadratic SDPs.

20
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Stop the algorithm after 500,000 iterations, or

Tlqsdp = maX{UP,UD,UW,7711’771277751’7713,"752’77%772} < 10—6’

where
AL ys+ Ay +S+Z-QW—Cl | ApX—bg]|
D = T P = TR
_ [lmin(0,yp) _ | min(0,A; X b)) A X —brs)]
M= "1y, M = el s = TR Aa—br [+l
ns1 = [X—ILsn (X)]| - 1(X,5)] - lox—ow|
T THIXTTIST e
_IxX—Ip (X)) _ XTIy (X-2)|
X = I 0 12 T I

In addition, we also measure the duality gap:

n o Objprimal_Objdual
gap - 1+|Objprima1|+|0bjdual| ’

where
{ Objprimal i= 3 (X, QX) + (C, X),
Objqual i= =63 (=2) — 5(W, QW) + (bg, ys) + (b1, 1)
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Subproblems Involving Large Linear Systems of Equations

For example, the subproblem corresponding to the block y; in ADMM
type methods with /without semi-proximal term has to be solved:

) o N 1 _
win {01, 1) + S0 =DV ur =+l + o — w7 - (29

where T is a self-adjoint positive semidefinite linear operator on
IR™, and r and y; are given data.

Define V := Ar A3 +D? and 7 := by + o (A, —D)r+Ty; . Solving
(25) is equivalent to solving the linear equation

(cV+T)yr=7 (26)

Remark: It is generally very difficult to compute the solution of
(26) exactly for large scale problems if T is the zero operator, i.e.,
not adding a proximal term.
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Suppose that V admits the eigenvalue decomposition
n
V=Y MNPP;,
i=1

with Ay > ... > X\, > 0. We can choose T by using the first [
largest eigenvalues and the corresponding eigenvectors of V), i.e.,

T =03 i1 (N1 — M) PPy, (27)
which is self-adjoint positive semidefinite.

Remark: it is more likely that such a 7 is “smaller” than the natural
choice of setting it to be 0(A\Z—V). Indeed we have observed in our
numerical experiments that the latter choice always leads to more
iterations compared to the choice in (27).
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(oV + T)~! can be obtained analytically as

(V+T) = (oNy1) ' T+ Z o) = (0N41) PP

Thus, we only need to calculate the first few largest eigenvalues
and the corresponding eigenvectors of V' and this can be done
efficiently via variants of the Lanczos method.

When the problem (25) is allowed to be solved inexactly, we can
set 7 =0 in (25) and solve the linear system oV = 7 by a precon-
ditioned conjugate gradient (PCG) method.

m In this setting, (cV + 7)™ ! with T defined in (27) can serve
as an effective preconditioner.
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Numerical Performance for SDP Problems

Performance profile: iterations Performance profile: time
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Figure: Performance profiles of sGS-isPADMM and sPADMM4d on solving
the SDP-BIQ problems.
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Numerical Performance for QSDP Problems

Performance profile: iterations Performance profile: time
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Figure: Performance profiles of sGS-isPADMM and sPADMM5d on solving
the QSDP-BIQ problems (group 1).

45



Numerical Performance for QSDP Problems

Performance profile: iterations Performance profile: time
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Figure: Performance profiles of sGS-isPADMM and sPADMM5d on solving
the QSDP-BIQ problems (group 2).

46



Numerical Performance for QSDP Problems

Performance profile: iterations Performance profile: time
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Figure: Performance profiles of sGS-isPADMM and sPADMM5d on solving
the QSDP-BIQ problems (group 3).
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Table: The numerical performance of sGS-isPADMM and the directly extended multi-
block ADMM with step-length 7 = 1.618 (n > 500, accuracy = 10~6)

Problem mpg;my ng Iteration Ngsdp Ngap Time
sGS-isP|sP-d sGS-isP|sP-d sGS-isP|sP-d sGS-isP|sP-d
SDP-BIQ
bqp500-2 501;374250 501  17525|82401 9.9-7|9.9-7 6.3-7|2.3-8 42:27|2:12:29
bqp500-4 501;374250 501 15352|75995 9.9-7|9.9-7 -6.4-7|-3.2-8 36:53|1:59:52
bqp500-6 501;374250 501 17747|78119 9.9-7]9.9-7 -1.6-7|-2.4-8 45:10(2:04:23
bqp500-8 501;374250 501 20386110825 9.9-7(9.9-7 -4.3-7|2.1-8 52:04|3:10:43
bqp500-10 501;374250 501 16407|68985 9.7-7(9.9-7 -5.6-7(3.7-9 39:30{1:46:01
gkalf 501;374250 501 9101|60073 9.9-7(9.9-7 -4.4-7|1.1-8 20:22|1:32:22
gka2f 501;374250 501 1619374034 9.9-7]9.9-7 -2.7-7|-1.1-8 39:35|1:59:59
gka3f 501;374250 501 16323|72563 9.9-7]9.9-7 -1.3-7(3.9-8 40:38|1:56:28
gkaaf 501;374250 501 15502|63285 9.6-7(9.9-7 -6.1-7|3.4-8 36:58|1:41:20
gkabf 501;374250 501 17664|76164 9.9-7|9.9-7 -1.3-7|1.1-8 43:45|2:05:14
QSDP-BIQ (group 1)
bqp500-2 501;374250 501 19053|71380 9.9-7(9.9-7 -1.2-7]1.1-8 1:02:31]1:52:02
bqp500-4 501;374250 501 13905|67865 9.9-7]9.9-7 -8.9-7|7.8-8 43:17|1:46:07
bqp500-6 501;374250 501 17211(62562 9.9-7]9.9-7 -2.0-7/6.9-8 56:23|1:37:19
bqp500-8 501;374250 501 19742|85057 9.9-7(9.9-7 -4.9-7|7.0-8 1:05:09|2:15:52
bqp500-10 501;374250 501 17690|65484 9.9-7(9.9-7 -2.3-7|6.7-8 58:00(1:43:04
gkalf 501;374250 501  8919|55669 9.9-7(9.9-7 -8.8-7/4.1-8 26:42|1:25:01
gka2f 501;374250 501 13587(61324 9.9-7(9.9-7 -4.5-7|2.1-8 42:50(1:37:15
gka3f 501;374250 501 13786|62438 9.9-7]9.9-7 -2.2-7(3.1-8 42:55|1:37:29
gkaaf 501;374250 501 13953|57164 9.6-7(9.9-7 -7.2-7|-3.4-8 44:25|1:31:14
gkabf 501;374250 501 15968(62001 9.9-7|9.9-7 -1.4-7|4.6-8 50:22|1:35:40

A48



Table: The numerical performance of sGS-isPADMM and the directly extended multi-

block ADMM with step-length 7 = 1.618 (n > 500, accuracy = 10~6)

Problem mpg;my ng Iteration Ngsdp Ngap Time
sGS-isP|sP-d sGS-isP|sP-d sGS-isP|sP-d sGS-isP|sP-d
QSDP-BIQ (group 2)
bqp500-2 501;374250 501 16506|79086 9.9-7(9.9-7 -1.2-7|4.2-8 52:46|1:52:08
bqp500-4 501;374250 501  8675|30677 9.9-7|9.9-7 2.7-8|2.3-8 25:32|41:15
bqp500-6 501;374250 501 10043|42654 9.9-7]9.9-7 -3.0-8/8.3-8 29:46|58:58
bqp500-8 501;374250 501 9410(43785 9.9-7(9.9-7 -2.5-8]2.9-8 27:37|59:05
bqp500-10 501;374250 501 10656/35213 9.9-7|9.9-7 -3.6-8/8.8-8 32:35|47:00
gkalf 501;374250 501 10939|52226 9.9-7(9.9-7 -5.8-8/3.8-8 36:10(1:16:48
gka2f 501;374250 501  7757|34660 9.9-7(9.9-7 -1.8-8/6.0-8 25:17|48:40
gka3f 501;374250 501 1124145857 9.9-7(9.9-7 -1.2-8|2.7-8 34:55(1:02:59
gkaaf 501;374250 501 11706|37466 9.9-7(9.9-7 -3.7-8/6.4-8 36:19|51:25
gkabf 501;374250 501 14229|48670 9.9-7|9.9-7 -4.8-8]9.8-8 42:37|1:06:37
QSDP-BIQ (group 3)
bqp500-2 501;374250 501  18311|66867 9.9-7|9.9-7 -1.9-7|11.2-7 41:33|1:11:30
bqp500-4 501;374250 501 14169(65580 9.9-7(9.9-7 -7.8-7|1.1-7 30:04(1:10:29
bqp500-6 501;374250 501 16428|68301 9.9-7]9.9-7 -2.3-7(8.4-8 36:251:13:20
bqp500-8 501;374250 501 26308107664 9.9-7(9.9-7 -4.0-7(9.5-9 1:01:17]2:00:06
bqp500-10 501;374250 501 16398(57221 9.9-7(9.9-7 -2.8-7/8.6-8 37:22|1:06:27
gkalf 501;374250 501 14479|51294 9.9-7(9.9-7 -3.6-7|7.0-8 31:05|59:17
gka2f 501;374250 501  9365|60799 9.9-7|9.9-7 -1.5-6/-1.9-9 18:30(1:04:14
gka3f 501;374250 501 14175|57782 9.9-7]9.9-7 -3.2-7]2.0-8 30:10[1:01:35
gkaaf 501;374250 501 13356/56588 9.8-7(9.9-7 -5.8-7|-2.0-8 27:42|1:00:10
gkabf 501;374250 501 14122|58716 9.9-7|9.9-7 -1.4-7|9.3-8 29:38|1:01:13
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Concluding remark

m Combining an inexact 2-block majorized sSPADMM and the
recent advances in the inexact block symmetric Gauss-Seidel
(sGS) technique

m Only needs one cycle of an inexact sGS iteration, instead of an
unknown number of cycles, to solve each of the subproblems
involved.

m For the vast majority of the tested problems, the proposed sGS-
imsPADMM is 2 to 3 times faster than the directly extended
multi-block PADMM even with the aggressive step length of
1.618.

50



Conclusions

m One does not need to sacrifice speed in exchange for conver-
gence guarantee in developing ADMM-type first order methods,
at least for solving high-dimensional linear and convex quadratic
SDP problems to moderate accuracy.

m The merit that is brought about by solving the original subprob-
lems inexactly without adding proximal terms is thus evidently
clear.

m More powerful algorithms are needed such as SDPNAL for solv-
ing the standard SDP.

51



Reference on first-order methods

@ D.F. Sun, K.-C. Toh and L. Yang, A convergent 3-block semiproximal
alternating direction method of multipliers for conic programming with
4-type constraints SIAM J. Optim., 25 (2015) 882-915.

@ X.D. Li, D.F. Sun and K.-C. Toh, A Schur complement based semi-
proximal ADMM for convex quadratic conic programming and exten-
sions, Math. Program., 155 (2016) 333-373.

@ L. Chen, D.F. Sun and K.-C. Toh, An efficient inexact symmetric
Gauss-Seidel based majorized ADMM for high-dimensional convex
composite conic programming, Math. Program., 161 (2017) 237-270.

5D



Reference on second-order methods

@ X.Y. Zhao, D.F. Sun, K.-C. Toh, A Newton-CG augmented La-
grangian method for semidefinite programming, SIAM J. Optim., 20
(2010) 1737-1765.

@ L.Q. Yang, D.F. Sun and K.-C. Toh, SDPNAL+: a majorized semis-
mooth Newton-CG augmented Lagrangian method for semidefinite

programming with nonnegative constraints, Math. Program. Comput.,
7 (2015) 331-366.

@ X.D. Li, D.F. Sun and K.-C. Toh, QSDPNAL: A two-phase augmented
Lagrangian method for convex quadratic semidefinite programming,
arXiv:1512.08872 (2015).

1]



	An imsPADMM with Symmetric Gauss-Seidel Iteration
	An Inexact Majorized sPADMM
	Numerical Experiments
	Solving Subproblems Involving Large Linear Systems of Equations


