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Abstract. The accelerated proximal gradient (APG) method, first proposed by Nesterov for
minimizing smooth convex functions, later extended by Beck and Teboulle to composite convex
objective functions, and studied in a unifying manner by Tseng, has proven to be highly efficient in
solving some classes of large scale structured convex optimization (possibly nonsmooth) problems,
including nuclear norm minimization problems in matrix completion and /1 minimization problems
in compressed sensing. The method has superior worst-case iteration complexity over the classical
projected gradient method and usually has good practical performance on problems with appropriate
structures. In this paper, we extend the APG method to the inexact setting, where the subproblem
in each iteration is solved only approximately, and show that it enjoys the same worst-case iteration
complexity as the exact counterpart if the subproblems are progressively solved to sufficient accuracy.
We apply our inexact APG method to solve large scale convex quadratic semidefinite programming
(QSDP) problems of the form min{%(:{:7 Q(z)) + (¢, x) | A(z) = b,z >» 0}, where Q, A are given
linear maps and b, c are given data. The subproblem in each iteration is solved by a semismooth
Newton-CG (SSNCG) method with warm-start using the iterate from the previous iteration. Our
APG-SSNCG method is demonstrated to be efficient for QSDP problems whose positive semidefinite
linear maps Q are highly ill-conditioned or rank deficient.
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1. Introduction. Let 8™ be the space of n X n real symmetric matrices endowed
with the standard trace inner product (-, -) and Frobenius norm ||-||, and let ST (S% )
be the set of positive semidefinite (definite) matrices in S™. We consider the following
linearly constrained convex semidefinite programming (SDP) problem:

(P) min{f(z) : A(z)=b, 2 =0, x € S"},

where f is a smooth convex function on S, A: 8" — R™ is a linear map, b € R™,
and x = 0 means that z € S7. Let A" be the adjoint of A. The dual problem
associated with (P) is given by

(D) max{f(z) —(Vf(z),x) +{b,p) : Vf(x) —A'p—2=0,pe R™, 2= 0,z = 0}

We assume that the linear map A is surjective and that strong duality holds for (P)
and (D). Let x, be an optimal solution of (P) and (x., ps, z+) be an optimal solution
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of (D). Then, as a consequence of strong duality, they must satisfy the following KKT
conditions:

Alx)=0b, Vf(x)—A'p—2=0, (x,2)=0, z,2z>0.

The problem (P) contains the following important special case of convex quadratic
semidefinite programming (QSDP):

1
(1) min {§<x, Q(2)) + (¢, z) : A(z) = b,z = o},
where Q : 8™ — S" is a given self-adjoint positive semidefinite linear operator and
¢ € §". Note that the Lagrangian dual problem of (1) is given by

1
(2) max { — 3 (x, Q@) + (b.p) : A'(p) — Q@) +2 = ¢,z = 0.
A typical example of QSDP is the nearest correlation matrix problem, where given a

symmetric matrix u € 8" and a linear map £ : §" — R™*", one intends to solve
1
(3) min {§||£(x —u)|? : diag(z) =e, x = 0},

where e € R"™ is the vector of all ones and v € 8™ is given. If we let Q = L*L and
¢ =—L"L(u) in (3), then we get the QSDP problem (1). A well-studied special case
of (3) is the W-weighted nearest correlation matrix problem, where £ = W'/2 @ W1/2
for a given W € 87, and @ = W ® W. Note that for U € R"", V € R"*?,
U®V : R™° — S™ is the symmetrized Kronecker product linear map defined by
U V(M)=UMVT +vMTUT)/2.

There are several methods available for solving this special case of (3), which in-
clude the alternating projection method [4], the quasi-Newton method [6], the inexact
semismooth Newton-CG (SSNCG) method [10], and the inexact interior-point method
[13]. All these methods, excluding the inexact interior-point method, rely critically
on the fact that the projection of a given matrix z € §™ onto S} has an analyti-
cal formula with respect to the norm ||[W?/2(:)WW'/2||. However, all above-mentioned
techniques cannot be extended to efficiently solve the H-weighted case [4] of (3), where
L(z) = Hox for some H € 8™ with nonnegative entries and Q(x) = (H o H)ox, with
“o” denoting the Hadamard product of two matrices defined by (Ao B);; = A;;Bj.
The aforementioned methods are not well suited for the H-weighted case of (3) be-
cause there is no explicitly computable formula for the following problem:

(@) min{%HHo(x—u)Hz L wro}),

where v € 8™ is a given matrix. To tackle the H-weighted case of (3), Toh [12]
proposed an inexact interior-point method for a general convex QSDP including the
H-weighted nearest correlation matrix problem. Recently, Qi and Sun [11] introduced
an augmented Lagrangian dual method for solving the H-weighted version of (3),
where the inner subproblem was solved by an SSNCG method. The augmented La-
grangian dual method avoids solving (4) directly, and it can be much faster than the
inexact interior-point method [12]. However, if the weight matrix H is very sparse
or ill-conditioned, the conjugate gradient (CG) method would have great difficulty in
solving the linear system of equations in the semismooth Newton method, and the
augmented Lagrangian method would not be efficient or would even fail.
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Another example of QSDP comes from the civil engineering problem of estimating
a positive semidefinite stiffness matrix for a stable elastic structure from r measure-
ments of its displacements {u1,...,u,} C R™ in response to a set of static loads
{f1,-.-, fr} € R™ [15]. In this application, one is interested in the QSDP problem
min{||f — L(2)||* | = € S}}, where £ : 8" — R™ " is defined by L(z) = zu, and
f=1fs--, fr], w = [u1,...,u,]. In this case, the corresponding map Q = L*L is
given by Q(r) = (xB + Bx)/2 with B = uu”.

The main purpose of this paper is to design an efficient algorithm to solve the
problem (P). The algorithm we propose here is based on the accelerated proximal
gradient (APG) method of Beck and Teboulle [1] (the method is called FISTA in [1]),
where in the kth iteration with iterate Ty, a subproblem of the following form must
be solved:

(5) min{(Vf(ick), x—Tp) + %(96 — Tk, Hi(x —Tg)) : A(z) = b, x = 0},

where Hj, : S™ — 8™ is a given self-adjoint positive definite linear operator. In FISTA
[1], Hp is restricted to LZ, where Z denotes the identity map and L is a Lipschitz
constant for Vf. More significantly, for FISTA in [1], the subproblem (5) must be
solved exactly to generate the next iterate zyy;. In this paper, we design an inexact
APG method which overcomes the two limitations just mentioned. Specifically, in
our inexact algorithm, the subproblem (5) is solved only approximately and Hy, is
not restricted to be a scalar multiple of Z. In addition, we are able to show that if
the subproblem (5) is progressively solved with sufficient accuracy, then the number
of iterations needed to achieve e-optimality (in terms of the function value) is also
proportional to 1/4/¢, just as in the exact algorithm.

Another strong motivation for designing an inexact APG algorithm comes from
the recent paper [2], which considered the following regularized inverse problem:

!
(6) min { 5102 — yl|? + A5,

where ® : RP — R"™ is a given linear map and |||z is the atomic norm induced
by a given compact set of atoms B in RP. It appears that the APG algorithm is
highly suited for solving (6). But note that in each iteration of the APG algorithm,
a subproblem of the form min. {1z — z||* + pl/z[[s} = min{3 |y — |1* | lyls < u}
must be solved. However, for most choices of B, the subproblem does not admit an
analytical solution and has to be solved numerically. As a result, the subproblem
is never solved exactly. In fact, it could be computationally very expensive to solve
the subproblem to high accuracy. Our inexact APG algorithm thus has the attractive
computational advantage that the subproblems need only be solved with progressively
better accuracy while still maintaining the global iteration complexity.

We should mention that the fast gradient method of Nesterov [8] has also been
extended in [3] to the problem min{f(z) | € Q}, where the function f is convex (not
necessarily smooth) on the closed convex set @, and is equipped with the so-called
first-order (4, L)-oracle, where for any y € @, we can compute a pair (f5,(v), 95,(v))
such that 0 < f(z) — f5..(y) — (95,0.(y),  —y) < L[|z — y[|?> + 0 for all z € Q. In the
inexact-oracle fast gradient method in [3], the subproblem of the form min{(g, x —
y) + 2llz —y|* | « € Q} in each iteration must be solved exactly. Thus the kind of
inexactness considered in [3] is very different from what we consider in this paper.

From a practical perspective, the extension of the APG algorithm in [1] to the
inexact setting would not be as interesting if we could not demonstrate it to be com-
putationally viable or offer any computational advantage over alternative algorithms
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for solving a problem such as (1). Hence, even though the focus of this paper is on
designing some theoretical inexact APG algorithms for solving the problem (P), and
on establishing their iteration complexities, we do present some preliminary numeri-
cal results to demonstrate the practical viability of our proposed inexact algorithms.
In particular, as we will demonstrate later in the paper, if the linear operator Hy is
chosen appropriately so that the subproblem (5) is amenable to computation via the
SSNCG method, then our inexact APG algorithm can be much more efficient than
the state-of-the-art algorithm (the augmented Lagrangian method in [11]) for solving
some convex QSDP problems arising from the H-weighted case of the nearest correla-
tion matrix problem (3). In fact, from our preliminary numerical results, we observe
that when the weight matrix H in (4) is highly ill-conditioned, our inexact APG al-
gorithm can be 15-70 times faster than the state-of-the-art augmented Lagrangian
method designed in [11].

The paper is organized as follows. In section 2, we propose an inexact APG algo-
rithm for solving a minimization problem of the form min{ f(x)+g(x) : ¢ € X'}, where
f is a smooth convex function with Lipschitz continuous gradient and g is a proper
lower semicontinuous convex function. We also prove that the proposed inexact APG
algorithm enjoys the same iteration complexity as the FISTA algorithm in [1]. In
section 3, we propose and analyze an inexact APG algorithm for the problem (P) for
which the semidefinite least squares subproblem in each iteration is not required to
satisfy a stringent primal feasibility condition. In section 4, we conduct some prelim-
inary numerical experiments to evaluate the practical performance of our proposed
inexact APG algorithms for solving QSDP problems (1) arising from H-weighted near-
est correlation matrix problems. We also evaluate the performance of the proposed
algorithms on randomly generated QSDP problems for which the map Q takes the
form as in the stiffness matrix estimation problem in [15].

2. An inexact APG method. For more generality, we consider the following
minimization problem:

(7) min{F(z) := f(z) + g(z) : x € X},

where X is a finite-dimensional Hilbert space. The functions f : ¥ - R, g: X - RU
{+o0} are proper, lower semicontinuous convex functions (possibly nonsmooth). We
assume that dom(g) := {z € X : g(x) < oo} is closed, f is continuously differentiable
on X, and its gradient V f is Lipschitz continuous with modulus L on X, i.e.,

V(@) = Vil < Lz -yl VayeX,

We also assume that the problem (7) is solvable with an optimal solution x.. € dom(g).
The inexact APG algorithm we propose for solving (7) is described as follows.

Algorithm 1. Given a tolerance € > 0. Input y1 = 29 € dom(g), t; = 1. Set k = 1.
Tterate the following steps.
Step 1. Find an approximate minimizer

(8) wp =~ arg Imin {f(yk)+<Vf(yk)7 y—yk>+%<y—yk, Hk(y—yk)>+g(y)},

where H}, is a self-adjoint positive definite linear operator that is chosen by

the user.
144/1+482

Step 2. Compute ;41 = 2
Step 3. Compute Y41 = T + (?;:11

)(Jik — xk_l).
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Notice that Algorithm 1 is an inexact version of the algorithm FISTA in [1], where
xy, need not be the exact minimizer of the subproblem (8). In addition, the quadratic
term is not restricted to the form £ ||ly — y||%, where Ly, is a positive scalar.

Given any positive definite linear operator H; : X — X, and y; € X, we define
g;(-): X = R by
9) () = fy;) + (Vf(y;), = —y;) + %@3 — i (@ —y5))-

Note that if we choose H; = LZ, then we have f(x) < ¢;(z) for all 2 € dom(g).
Let {&}, {er} be given convergent sequences of nonnegative numbers such that

o0 o
Z§k<oo and Zek<oo,
k=1 k=1

Suppose that for each j we have an approximate minimizer
(10) xj ~ argmin{g;(z) + g(z) : x € X'}

that satisfies the conditions

13
(11) F(z;) < qs(w;) + 9(25) + 55
J
(12)  VF) + Moy =)+ =05 with |30 < ¢/ (Vo).
where v; € J0g(z;; 2%) (the set of %—subgradien‘cs of g at x;). Note that for z; to
J J

be an approximate minimizer, we must have z; € dom(g). We should mention that
the condition (11) is usually easy to satisfy. For example, if H; is chosen such that
f(x) < gj(x) for all 2 € dom(g), then (11) is automatically satisfied.

To establish the iteration complexity result analogous to that in [1] for Algo-
rithm 1, we need to establish a series of lemmas whose proofs are extensions of those
in [1] to account for the inexactness in z;. We should note that though the ideas
in the proofs are similar, as the reader will notice later, the technical details become
much more involved due to the error terms induced by the inexact solutions of the
subproblems.

LEMMA 2.1. We are given y; € X and a positive definite linear operator H; on
X such that the conditions (11) and (12) hold. Then for any x € X, we have

(13) Fx)—F(x;) >

N =

(x5 —y5, Hj(xj—y;))+y;—, Hj(x;—y;))+ (55, Jf—ﬂfﬁ—%-
J

Proof. The proof follows arguments similar to those in [1, Lemma 2.3], and we
omit it here. O
For later purposes, we define the following quantities:

(14) v = F(Jik) — F(JJ*) >0, up=trrr — (tk — 1)33k—1 — T,
1
(15) ap = tivg >0, by = §<Uk7 Hi(ur)) >0, er = tp(0k, ur),
] k . k
(16) 7= 5{w0 = 2, Hailwo — 3)), & = e &=> (& +e€).
j=1 j=1
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Note that for the choice where ¢; = 1/j* = ¢; for all j > 1, where > 1 is fixed, we
have

;& <
LEMMA 2.2. Suppose that Hi—1 = Hj = 0 for all k. Then

(17) k-1 +bp—1 > ap + by — e — &k
Proof. The proof follows arguments similar to those in [1, Lemma 4.1}, and we

omit it here. 0
LEMMA 2.3. Suppose that Hi—1 = Hy = 0 for all k. Then

(18) ar < (VT + &)* + 2§

Proof. Note that we have |ej| < ||7-[,:1/25;€||||H,1€/2uk|\tk < e HH}C/ZU;CH/\/? -
IRV

First, we show that a3 + by < 7 +e1v/b1 +&. Note that a; = F(z1) — F(z.) and
by = 3(x1 — @, H1(z1 — x.)). By applying the inequality (13) to z = @, with j =1
and noting that y; = xg, we have that

1
—a1 > =(z1 —y1, Hi(z1 — 1)) + (1 — @, Hi(zr —y1)) + (01, 2 —21) — &

2
1 1
= §<$1 — T, Hi(1 — 24)) — 5(3/1 — 2w, Hi(yr — x4)) + (01, o — 1) — &1
1
=0b; — §<9Co — &y, Hi(zo — x4)) + (01, 4 — 1) — &1

Hence, by using the fact that ||7-[1_1/251H < e1/V?2, we get

1
(19) a1+b < §<$0 — xy, Hi(wo — 22)) — (01, o — 1) + & < T+ e1y/by + &1
Let

Sk:el\/a++€k\/a+€l++§k

By Lemma 2.2, we have

TZCL1+51—61\/E—€1ZGQ+52—€1\/E—62\/5_—€1—§2
(20) > > ag + bk — Sk

Thus we have ap + by, < 7 + s, and hence

(21) Sp = Sp—1 + exV/bp + &k < Sp—1 + VT + 5+ g

Note that since 7 > by — e1v/b1 — &, we have Vb < i(e1 + /€] +4(T+&)) <
e1+v7+&. Hence s1 =e1vhi+& < er(e1+VT+ &) +& < Eg+&+a(VT+HVE).

The inequality (21) implies that

(T—I—Sk)—Ek\/T—I—S —(T—I—Sk,l +€k) < 0.
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Hence we must have

1
VT + sk < 5 <ek+\/ei—|—4(r+sk_1 +§k)>.

Consequently

1 1
Sk < Sp—1+ 56% + &+ §ek\/ei +4(7 + sp—1 + &)

<spo1 4 e+ &+ ek(\/FJr N/ Sk—1 + gk).

This implies that
k k k k
s < 81 —I—Ze? —I—Z@ + \/FZej —I—Zej\/sj_l +&
j=2 j=2 j=2 j=2

k
Sgk"‘ﬁék‘f'zej\/s—j
j=1
(22) < & + VT & + /5% Ex.

In the last inequality, we used the fact that s;_; +& < s; and 0 < 51 < -+ < 5.
The inequality (22) implies that

1 -
Vo% < 5(@ + (& + 46 + 4ékﬁ)1/2).

From here, we get s < Ei + 2&;, + 26,\/7, and the required result follows from the
fact that ap < 7 + s in (20). O
Now we are ready to state the iteration complexity result for the inexact APG
algorithm described in Algorithm 1.
THEOREM 2.1. Suppose the conditions (11) and (12) hold, and Hi—1 = Hi > 0
for all k. Then
4

(23) 0< Flaw) = F(e) < (V7 +a)? +26).

Proof. By Lemma 2.3 and the fact that ¢ > (k+ 1)/2, we have
4

F(xk) — F(fC*) = ak/t2 < (k‘ ¥ 1)2

(VT +&)* + 2&).

From the assumption on the sequences {&;} and {e;}, we know that both {&} and
{&} are bounded. Then the required convergent complexity result follows. O

Observe that in Theorem 2.1, we will recover the complexity result established in
[1] if € = 0= fj for all ]

2.1. Specialization to the case where g = dqn. Problem (P) can be expressed
in the form (7) with g = dq, where dq denotes the indicator function on the set

(24) Q={2e8": A(x)=0b, z = 0}.

The subproblem (8), for a fixed yi, then becomes the following constrained minimiza-
tion problem:

(25) min{Wf(yk), T —yp) + %(JJ =Yg, Hi(z —yr)) + Alx) = b,z = 0}.
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Suppose we have an approximate solution (zg,pk,zr) to the KKT optimality
conditions for (25). More specifically,

Vfyr) + Hi(rr —yr) — A"pr — 21 =: 0 = 0,
(26) A(z) — b =0,
(T, 2) =6, =0,  @p, 25 = 0.

To apply the complexity result established in Theorem 2.1, we need J; and g to
be sufficiently small so that the conditions (11) and (12) are satisfied. Observe that
we need xj to be contained in 2 in (26). Note that the first equation in (26) is the
feasibility condition for the dual problem of (25), and it corresponds to the condition
in (12) with v, = —A*p — zi. Indeed, as we shall show next, 7 is an ei-subgradient
of g at xp € Q if z; = 0. Now, given any v € Q, we need to show that g(v) >
g(zk) + (v, v — xk) — £. We have g(v) = 0, g(xy) = 0 since v, 2, € Q, and

(Vs v — ) = (A"pk + 2k, T — V) = (pr, Alwk) — A(V)) + (2ky Tk) — (21, V)
(27) = (2k, Tk) — (2k, V) < (28, Th) = €.

Note that in deriving (27), we used the fact that (zj, v) > 0 since v = 0 and z; = 0.
Thus the condition (12) is satisfied if H’H,:l/25k|\ < er/(V2ty) and e < & /(2t3).

As we have already noted in the last paragraph, the approximate solution xy
obtained by solving the subproblem (25) should be feasible; i.e., z; € . In practice
we can maintain the positive semidefiniteness of z by performing projection onto S.
But the residual vector ri := A(xg) — b is usually not exactly equal to 0, except for
some special cases. For the nearest correlation matrix problem (3), one can indeed
obtain an approximate solution xj which is contained in 2 by performing a simple
diagonal scaling to make the diagonal entries of the resulting matrix one.

In the following paragraph, we will propose a strategy to find a feasible solution
Zx € Q) given an approximate solution xy, of (26) for which ry is not necessarily 0, but
(zk, Pk, 21) satisfies the conditions that x = 0,2 > 0, and ||7-[,,:1/25k|\ < %ek/(ﬁtk)
and 5, < £&,/(2t3).

Suppose that there exists = 0 such that A(z) = b. Since A is surjective, AA* is
nonsingular. Let wy, = —A*(AA*)"1(ry). We note that ||w|l2 < [|[7%]|/omin(A), and
A(z, + wi) = b, where || - |2 denotes the spectral norm. However, xj + wj may not
be positive semidefinite. Thus we consider the following iterate:

T = Mag +wi) + (L =Nz = Az + Awi + (1 — AN)a),

where A\ € [0,1]. It is clear that A%y = b. By choosing A = 1 — |lwgl|2/(||wk|l2 +
Amin(T)), we can guarantee that Iy is positive semidefinite. For Z, we have

[kl
[|wkll2 + Amin(Z)

Wk (|2 _
< et Villallzl + Vi '(x)Amax<x>|zk||
min
by

-1
< 2 if w2 < \/ﬁa\\kzkH (1 + max((;))) :

Amin

0 < (Tk, z1) < Aek + Anllwll2llzell + VA max (T) || 21|

Moreover,

V(yk) + Hi(@Fx — yx) — (A*pr + 2) = O + Hi(Zx — 1) =: Op..
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Thus v = —A*pr — zx is an 2ep-subgradient of g at 7 € Q. Now H’;’-L,:l/ZSkH <
15, 260 + 113 (@ — ), and

I\f—xkl\z)"’

132 — )2 = (@ = @, Hen = 20) < nllwnlEAma(H1) (1 + 55— @

Thus we have

—1/25 1 : < __ %k —1/2 1 — 2kf2~?
I35 720u) < e/ (V2t0) i ol < 52 Qe ()2 (14 22

To conclude, (Zk, pk, zr) would satisfy the condition (12) if

(28)

Amin ((E)

max (Z)\ ™ | — g2\~
{4t§\/€£|zkll (1+//\\min(i)) 1 Qn)\::x(’]-[l)tk (1+ — ok 2) 1}.

Jwlls < min

We should note that even though we have succeeded in constructing a feasible Ty, in €2,
the accuracy requirement in (28) could be too stringent for computational efficiency.
For example, when opin(A) is small, or ||z is large, or & has a large condition
number, or Apax(H1) is large, we would expect that xj must be computed to rather
high accuracy so that [|rg| is small enough for (28) to be satisfied.

3. Analysis of an inexact APG method for (P). To apply Algorithm 1 to
solve the problem (P), the requirement that x; must be primal feasible, i.e., z} € Q,
can be restrictive as it limits our flexibility of choosing a nonprimal feasible algorithm
for solving (25). Even though the modification outlined in the last paragraph of
section 2.1 is able to produce a primal feasible Zj, the main drawback is that the
residual norm ||wy|| must satisfy the stringent accuracy condition in (28). To overcome
the drawbacks just mentioned, here we propose an inexact APG algorithm for solving
(P) for which the iterate xj; need not be strictly contained in 2. As the reader will
observe later, the analysis of the iteration complexity of the proposed inexact APG
becomes even more challenging than the analysis done in the previous section.

We let (x4, p«, 2+) be an optimal solution of (P) and (D). In this section, we let

(29)  au() = Flue) + (VS ) =~ ye) + 500 v Halo — )}, € &,

Note that X = 8™. The inexact APG algorithm we propose for solving (P) is given
as follows.

Algorithm 2. Given a tolerance € > 0. Input y; = 29 € X, t; = 1. Set k = 1.
Iterate the following steps.
Step 1. Find an approximate minimizer

(30) T A al"g;lél‘g(l{qk(l‘) t T E Q},

where Hj, is a self-adjoint positive definite operator that is chosen by the
user, and zy, is allowed to be contained in a suitable enlargement €2 of 2.
2
Step 2. Compute ;41 = w.
Step 3. Compute yp11 = v + (i’;;l

)(Jik — xk_l).
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Note that when 2, = €, the dual problem of (30) is given by
(31) max {a(e)  (Vau(e), 2) + (b, ) | Var(e) - Ap—2 =0, 2= 0,2 = 0}.

Let {&k}, {ex}, {pr} be given convergent sequences of nonnegative numbers such
that

oo oo oo
Z§k<oo, Z€k<007 and Zuk<oo,
k=1 k=1

k=1

and let A be a given positive number. We assume that the approximate minimizer xy
in (30) has the property that ) and its corresponding dual variables (py, z) satisfy
the following conditions:

flae) < qrlze) + &/ (2t7),
(Var(zk), m) — (b, pi)| < A,
(32) Va(zr) — A*pr — 21 = 6k, with [|[H 26, < e/ (V211),
7]l < pe/th,
<$7€7 Zk> < 5k/(2tz)7
xp = 0, 2 = 0,

where 7, := A(zx) — b. We assume that pe/t; > pr1/th,, and ex/tr > €1 /ths
for all k. Observe that the last five conditions in (32) stipulate that (zx, pg, z;) is an
approximate optimal solution of (30) and (31).

Just as in the previous section, we need to establish a series of lemmas to analyze
the iteration complexity of Algorithm 2. However, we should mention that the lack
of feasibility in zj, (i.e., xx may not be contained in ) introduces nontrivial technical
difficulties in the proof of the complexity result for Algorithm 2. For example, F'(xy) >
F(z,) no longer holds as in the feasible case when xj, € Q.

LemMA 3.1. We are given y; € X and a positive definite linear operator H; on
X such that the conditions in (32) hold. Then for any x € ST, we have

f(@) = f(z;) = 55 —ys, Hy(zy —y5)) + (5 — 2 Hi(x; —y;))

1
>
-2

+ (85 + A*pj, & — ;) — &/t5.

(33)
Proof. Since f(x;) < q;(x;) 4+ &;/(2t3), we have
Fl@) = £(es) 2 @)~ a5(e5) — &/ 282)
= (&) = F5) — (VS 5), 5 3} — 545 — vy, Myl — ) — &5/ 28)

>(Vf(y;), z —xj) — %@j —yj, Hi(x; — ;) — &/(28).

Note that in the last inequality, we have used the fact that f(z) — f(y;) > (Vf(y;),
x —yj;) for all z € X. Now, by using (32), we get
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flx) = f(z))
> (Vf(yj), x — ;) — %@Cj —yy, Myl — ;) — &/ (2t5)
= (0 + A'pj — Hj(zj —ys), & — xj) + (25, v — x5)
- 3@ — v Moy — ) - /(26)
> (0; + A'pj — Hj(xj —yj), ¢ — x5) — %@j —yj Myl —y5)) — &/85.

From here, the required inequality (33) follows readily. Note that in deriving the last
inequality, we have used the fact that (z;, z;) < &;/(2t3) and (z;, z) > 0. O
For later purposes, we define the following quantities for k£ > 1:

vp = for) = f(we), up =tpap — (t — a1 — 24,

1
(34) ar = tivg, by = §<uk, Hi(ug)) >0,  er = ti(0k, uk),

Nk = <pk7 ti”f’k - ti—lrk—1>7 with m= <p17 T1>7

Xk = |Pr—1 — prllpr—1, with x1 =0,

k k k
€k=Z€j, Ek:Z(fj‘Fe?)v XkZZXJw
j=1 j=1 j=1

1
T = 5@0 =z, Hi(xo — z4)).

Note that unlike the analysis in the previous section, ay may be negative.
LEMMA 3.2. Suppose that Hi—1 = Hy = 0 for all k. Then

(35) ag—1 + br—1 > ag + b, — ex — & — k.
Proof. By applying the inequality (33) to © = x_1 = 0 with j = k, we get
(36) Uk—1 — vk = f(zr-1) — f(z)
> %(9% = Yk, Hie(@re — yk)) + (Ye — 2e—1, Hi(r — yi))
+ {6 + A*pr, w1 — k) — &1 /12
Similarly, by applying the inequality (33) to x = z, > 0 with j = k, we get
(37) —vk = f(z) — f(z)
2 %(wk = Uiy He(@r = yr)) + (e — 2o; Hi(zr — yr))
+ {0k + A"pr, T — k) — /13

By multiplying (36) throughout by tx — 1 (note that ¢, > 1 for all £ > 1) and adding
that to (37), we get

(tk — 1)1)1@,1 — LUk
t
> §k<$k — Yks Hi(zr — y)) + (teyr — (te — D1 — 2, Hi(or — yr))

(38) (0 + A%pr, tpwr — (ty — Dagp—1 — 24) — &/t
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Now, by multiplying (38) throughout by #; and using the fact that ¢ | = tx(tx — 1),
we get

ap_1 — ay = ti—lvk—l — tivk
t2
> Ela —yi, Hie(ze — yr)) + telteyr — (te — Vag—1 — 2, Hi(or — yr))

2
— (O + A*pp, 2y — 2 xp_1 — the) — &

Let a = tpyg, b = tpzy, and ¢ = (ty — 1)xg_1 + x.. By using the fact that (b —
a, Hp(b—a))+2(a—c, Hy(b—a)) = (b—c, Hr(b—c))— (a—c, Hr(a—c)), we get
ak—1 — ap > %(b —c, Hig(b—c¢)) — %(a— c, Hi(a—c))

(39) — {0 + A py, tiajk — tiflxk_l — tpws) — k.
Now a — ¢ =ty — ¢ = tpwp—1 + (tk—1 — 1)(Th—1 — Th—2) — € = ug_1, b — ¢ = wy,
and t3zy —t3 | Tk—1 — tgxs = tug. Thus (39) implies that
ag—1 — a > %<Uk7 Hi(ur)) — %<kala Hi(uk—1)) — (0 + A"pr, tur) — &k
(40) > b, — bk—1 — Ok, teur) — (P, Altpuk)) — &
Note that in deriving (40), we have used the fact that Hy_1 = Hy. Now
(D Ateur)) = (pr, B (Azg, — b) — 181 (Azp—1 — b)) = (pk, thr — th_17—1)-

From here, the required result is proved. 0
LEMMA 3.3. Suppose that Hi—1 = Hy, = 0 and the conditions in (32) are satisfied
for all k. Then

(41) ar, + by < (VT +&)* + ||pellik + 2(6k + X +wr),
where wy, = Z;”:l €jv/Aj, and
Aj = llpjllpj +ay,  with a; =max{0, —a;}.

Proof. Note that we have |ex| < || 26klIHY *urlltr < ex |HY *urll/vV2 =
Ekm.

First, we show that a; + b1 < 7+ |(p1, r1)| + e1vb1 + &. Note that a; =
f(z1) = f(z.) and by = 2 (z1 — 2., Hi(z1 — 2.)). By applying the inequality (33) to
r =z, with 7 = 1, and noting that y; = 2o, we have that

1
—ay > §<$1 —y1, Hi(zr — 1)) + (1 — @, Hi(xr — ) + (01 + A'pr, 2 — 1) — &

1
= §<CC1 — zy, Hi(z1 —x4)) —

(01 + A,z —m1) = &

1
5(3/1 — Ty, Hi(yr — x4))

1 *
= b1 — 5 {20 — &, Hi(wo = 24)) + (01 + A'py, 2 — 21) — &1
Hence, by using the fact that ||Hf1/251|\ < e1/V/2, we get
1 *
a1 +b1 < 5 {20 — 2, Ha(wo — 24)) = (01 + A'pr, 20 — 1) + &

< T4 e/by + (p1, 1) + & < 7+ [{p1, )| + e Vb + &1
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Let 51 = e1v/b1 + & and, for k > 2,

k k k
=2 Vb + D &+
j=1 j=1 j=1
By Lemma 3.2, we have

T>a1+bi—evVbi—& —m

>ag+by—ea/by—€e1V/bi =& =& —m — 2
k41

k k
> zap b= gVbi— Y &=
j=1 j=1 j=1
k k k
>ap+br— Y ev/bi— > & — ok tire) = > x5
Jj=1 j=1 j=1

Note that in the last inequality, we used the fact that

k k—1 k
D = (ks ey + Y (05 — i, Br5) < ok, Bre) + Y X5
j=1 j=1 j=1

Thus we have ay + by, < 7+ |(pk, t37%)| + sk, and this implies that

(42) b < T+ Sk, where 7, := 7T + |(pk, tirk>| —ap < T+ Ap.
Hence
(43) Sk = Sk—1 + €V bk + & + Xk < Sk—1 + €6V Tk + Sk + §k + Xk

Note that since 71 > by — €1v/b1 — &1, we have /by < i(e1 + /ef +4(m + &) <
e1+y/T1 + &. Hence 51 = e1vbi1+& < e1(e1+v71 + &) +& < éi+&+a(ym+VE&).

The inequality (43) implies that

(Th + Sk) — €6/ Tk + Sk — (Tk + sp—1 + &k +Xk) <0.

Hence we must have

1
VTE+ 8K < B (€k+\/€i+4(7k+3k—1 +fk+Xk))-

Consequently, by using the fact that va + b < v/a + v/b for any a,b > 0, we have

1 1
S < Sp_1+ 56% + &k + Xk + iék\/ez +4(7'k + sp—1 + &k +Xk)

1 1
< sp_1+ 56i+€k+><k + §€k\/€%+4(T+Ak + sp—1 + &k + X&)

(44) SSkfl+€z+§k+Xk+6k(\/T+Ak+\/Sk,1+§k+X;€).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/07/14 to 137.132.123.69. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

AN INEXACT APG FOR LINEARLY CONSTRAINED CONVEX SDP 1055

This implies that

k k k
sp <51 +Z(€?+€j+Xj)+Z€j\/T+Aj+Z€j\/8j—l +& X
=2 =2 =2

k k
Sgk—F)Zk—FZej\/T—I—Aj—FZej\/S—j

j=1 j=1

(45) < &+ Xk + Wk + VT + /5

In the last inequality, we used the fact that s;_1+&+x; < s5,and 0 < 5p < -+ < s,
The inequality (45) implies that

(46) @S%(gk‘F\/Ei—F‘Lok)a

where 0 = & + Xk + Wk + €x+/7. From here, we get

(47) sEp < Ei + 20y,
The required result follows from (47) and the fact that ay+bg < 7455+ |(pg, targ)| <
T—|—Sk—|—Hpk||,uk. O
Let
(48) Qp :={x € S": || A(x) - b|| < ur/ts, x = 0}.

We assume that the minimization problem
min {f(x) tx € Qk}

has an optimal solution 2. Since z,,z; € Qx, we have f(x,) > f(2¥) and f(x1) >
f(x*). Hence vy, = f(x) — f(zs) < f(ar) — f(z¥). Also, since i/t > Mk+1/ti+l,
we have f(z%*1) > f(2F) and Qg1 C Q.

LEMMA 3.4. For all k > 1, we have

(49) 0 < fzs) = f(2) < |lpsllpn /R
Proof. By the convexity of f, we have
Flae) = f(25) SV @), 2 = 25) = (A"pu + 20, @ — af)

= (ps, Alws) = A(@})) + (2, 22) = (25, 7)
< ||p*HHb A < Ipsllp /2.

Note that in deriving the last inequality, we have used the fact that (z., z.) = 0,
(24, 2¥) > 0, and A(x,) = b. O

THEOREM 3.1. Let Mj, := maxi<j<p{+/(||[p«|| + |pjl)1; }. Suppose that Hy—1 =
Hi = 0 for all k. Then we have

(50)

?z!i“f;‘; < flaw) = fl@.) < (k+1) (V7 00"+ ol + 26000+ 206+ x0) ).

Proof. The inequality on the left-hand side of (50) follows from Lemma 3.4 and
the fact that t; > (k+1)/2 and f(z¥) — f(z.) < f(21) — f(x.). Next, we prove the
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inequality on the right-hand side of (50). By Lemma 3.3 and noting that b > 0, we
have

i (f(@r) = fza)) = ax < (VT 4+ &)* + llpellpe + 2(8k + Xx) + 2w

Now —a; = 3(f(x.) = f(2;)) < t5(f(2:) = f(a)) < [|pllpj. Hence aj < [|p. |, and

k
(51) we <3 e/ Ipillig + Ipallig < My
j=1

From here, the required result follows. a

From the assumption on the sequences {ex}, {&x}, and {ur}, we know that the
sequences {¢;} and {&} are bounded. In order to show that the sequence of function
values f(zj) converges to the optimal function value f(z.) with the convergent rate
O(1/k?), it is enough to show that the sequence {||px||} is bounded under certain
conditions, from which we can also have the boundedness of {M}} and {X1}. Then
the desired convergent rate of O(1/k?) for our inexact APG method follows.

3.1. Boundedness of {px}. In this subsection, we consider sufficient conditions
to ensure the boundedness of the sequence {py}.
LEMMA 3.5. Suppose that there exists (Z,p, Z) such that

(52) A(Z)=b, =0, Vf(z)=A"p+2z z>0.

If the sequence {f(xy)} is bounded from above, then the sequence {xy} is bounded.
Proof. By using the convexity of f, we have

f(@) = flag) <(Vf(@), 2 —ap) = (Ap+ 2,7 — )
= (p, A(@) — A(zy)) + (2, &) — (Z, zk)
< Ipll[|b — A(zi)|| + (2, T) — (2, zx)
< ||pll /5 + (2, 7) — (2, ax) < |pllpa + (2, T) — (2, ).

Thus
(53) Amin(2)Tr(zr) < (2, 2x) < [Pl + (2, 2) — f(2) + [ (k).
From here, the required result is proved. 0

Remark. The condition that {f(xx)} is bounded from above appears to be fairly
weak. But unfortunately we are not able to prove that this condition holds true.
In many cases of interest, such as the nearest correlation matrix problem (3), the
condition that {f(xx)} is bounded above or that {x} is bounded can be ensured
since 7 is bounded.

LEMMA 3.6. Suppose that Hy—1 = Hi = 0 for all k, {x} is bounded, and there
exists & such that

A(#) =b, &> 0.

Then the sequence {zy} is bounded. In addition, the sequence {py} is also bounded.
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Proof. From (32), we have

Amin (2)Tr(2) < (2, zx) = (&, Var(ag) — A*pr — Ok)
—(b, pr) + (2, Var(zr)) — <9C Ok)
<A+ (% —xk, Var(z)) — (T, 6k)
= A+ (2 —xx, VI(ye) + Hi(or — yr)) — (2, o)
< A+ (17— zkllIVF (k) + Halon — yi)l| + [ HE 2 2llex/ (V20)
(54) < A+ ||E — 2wl [V F () + Hlzn — i)l + 1722/ V2.

Since {xy} is bounded, it is clear that {yx} is also bounded. By the continuity of
Vf and the fact that 0 < Hy < Hi, the sequence {||Vf(yx) + Hi(xr — yi)|} is also
bounded. From (54), we can now conclude that {zx} is bounded.

Next, we show that {py} is bounded. Let A" = (AA*)"'A. Note that the
matrix AA* is nonsingular since A is assumed to be surjective. From (32), we have
pr = AT (Var(zr) — 2z, — 61), and hence

ol < ATV ar (@) = 2 = el < AT (195 () + Halwr = )|+l + 1561)-

Since Hp =< Hi = Amax(H1)I, we have |0 Vs (H [ Hy, 26k <
VAmax (H1)e1/v/2. By using the fact that the sequences {HVf(yk) + Hi(ze —y)ll}
and {z} are bounded, the boundedness of {p;} follows. O

3.2. An SSNCG method for solving the inner subproblem (30). In sec-
tion 3, an inexact APG method (Algorithm 2) was presented for solving (P) with the
desired convergent rate of O(1/k?). However, an important issue on how to efficiently
solve the inner subproblem (30) has not been addressed.

In this section, we propose the use of an SSNCG method to solve (30) with warm-
start using the iterate from the previous iteration. Note that the self-adjoint positive
definite linear operator Hj can be chosen by the user. Suppose that at each iteration
we are able to choose a linear operator of the form

Hy = wi ®wy, where wy € ST,
such that f(z) < qu(z) for all z € Q. (Note that we can always choose wy = VLI

if there are no other better choices.) Then the objective function g (-) in (30) can
equivalently be written as

a(z) = = |Jwy (2 — w)w /||2+f<yk>——Hw*”Vf(y@w,;“ZH?,

where uy, = yr—w;, 'V f(yx)w;, '. By dropping the last two constant terms in the above
equation, we can equivalently write (30) as the following well-studied W-weighted
semidefinite least squares problem:

(1
(55) min {§||w,1€/2(gc — uk)wi/zﬂz s Alx) = b, = 0}.

Let z = w;/zxw}c/? and uy = w,lc/2ukw,1€/2, and define the linear map A : S* — R™ by

Ax) = A(w, P 2w, V).
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Then (55) can equivalently be written as

(56) min{%H:ﬁ—ﬂkHQ - A@) =b, 220},
whose Lagrangian dual problem is given by

(57) max {0(p) = b7p — L [Ty (a4 + A'p)IP [ p € R™}.

where Ilsn (u) denotes the metric projection of u € 8™ onto St. The problem (57)
is an unconstrained continuously differentiable convex optimization problem, and it
can be efficiently solved by the SSNCG method developed in [10]. Note that once
an approximate solution py is computed from (57), an approximate solution for (55)
can be computed by setting zp = wk_l/ Zrw, ~1/2 With T) = Hgn (ug, + A*py), and its

complementary dual slack variable is zp = w,i/ Q(a:k — U — A*pk) 172

Note that the problem (57) is an unconstrained continuously dlfferentiable convex
optimization problem which can also be solved by a gradient ascent method. In
our numerical implementation, we use a gradient method to solve (57) during the
initial phase of Algorithm 2 when high-accuracy solutions are not required. When
the gradient method encounters difficulty in solving the subproblem to the required
accuracy or becomes inefficient, we switch to the SSNCG method to solve (57). We
should note that approximate solution computed for the current subproblem can be
used to warm-start the SSNCG and gradient methods for solving the next subproblem.
In fact, the strategy of solving a semidefinite least squares subproblem (30) in each
iteration of our inexact APG algorithm is practically viable precisely because we are
able to warm-start the SSNCG or gradient methods when solving the subproblems.
In our numerical experience, the SSNCG method would typically take fewer than five
Newton steps to solve each subproblem with warm-start.

To successfully apply the SSNCG method to solve (30), we must find a suitable
symmetrized Kronecker product approximation of Q. Note that for the H-weighted
nearest correlation matrix problem where Q is a diagonal operator defined by Q(x) =
(H o H) oz, a positive definite symmetrized Kronecker product approximation for Q
can be derived as follows. Consider a rank-one approximation dd’ of H o H; then
diag(d) ® diag(d) is a symmetrized Kronecker product approximation of Q. For the
vector d € R™, one can simply take

(58) d; = max{e, 12152(11{[{”}}’ i=1,....n

where € > 0 is a small positive number.
For the convex QSDP problem (1), where the linear operator Q is defined by

(59) Q(z) =B®I(x) = (Bx +zB)/2,

where B € S, we propose the following strategy for constructing a suitable sym-
metrized Kronecker product approximation of @ = B ® I. Suppose we have the
eigenvalue decomposition B = PAPT | where A = diag(\) and A = (\1,...,\,)7 is
the vector of eigenvalues of B. Then

(x, B® I(z)) = =(&, A& + &A) =

N)Ir—l
N)I»—l

ZZ i) =)0 g My,
i=1 j=1 i=1 j=1
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where & = PT2P and M = 1(Ae” + eA”) with e € R™ being the vector of all ones.
For the choice of wy, one may simply choose wy, = y/max(M)I, where max(M) is
the largest element of M. However, if the matrix B is ill-conditioned, this choice
of wi may not work very well in practice since max(M)I ® I may not be a good
approximation of @ = B ® I. To find a better approximation of Q, we propose
considering the following nonconvex minimization problem:

(60) mln{iihzh”hlhj—M” ZOVZ,]ZL,TL, hERi}

i=1 j=1

Thus, if h is a feasible solution to the above problem, then we have
<{,U, B® I({E)> = Z ZiijMij < Z Z:%ijﬁiﬁj = <{E, wkxwk> VareSt,
i=1 j=1 i=1 j=1

with w, = Pdiag(h)PT. Note that the above strategy can also be used to get a
suitable symmetrized Kronecker product approximation of the form diag(d) ® diag(d)
when Q is a diagonal operator.

To find a good feasible solution for (60), we consider the following strategy. Sup-
pose we are given an initial vector u € R’} such that wu” — M > 0. For example, we
may take u = y/max(M)e. Our purpose is to find a correction vector £ € R’ such
that h := u — & satisfies the constraint in (60) while the objective value is reduced.
Note that we have

hih; — M;; = wju; — My — (wi€; + w;&) + &€ > wiuy — My — (Wil + uj&).

Thus the constraints in (60) are satisfied if £ < u and
W& +ui& <wu; — My, YVi,j=1,...,n.

Since Y27, D70, hihy = (7€) — 2(e"u) (7€) + ("), and noting that 0 < e”¢ <
eTu, the objective value in (60) is minimized if e”¢ is maximized. Thus we propose
considering the following linear programming problem (LP):

(61) max{eTf | & +uj& < wu; —MijVi,j=1,...,n, 0<E< u}

Observe that the correction vector £ depends on the given vector u. Thus if necessary,
after a new u is obtained, one may repeat the process by solving the LP associated
with the new wu.

4. Numerical experiments. In this section, we report the performance of the
inexact APG algorithm (Algorithm 2) for large scale linearly constrained QSDP prob-
lems. We implemented our algorithm in MATLAB 2008a (version 7.6), and the nu-
merical experiments are run in MATLAB under a Linux operating system on an Intel
Core 2 Duo 2.40GHz CPU with 4GB memory.

We measure the infeasibilities for the primal and dual problems (1) and (2) as
follows:

_ Q@) +c—-Ap— -

Rp = 5
L4 le]

_ b= A@)|l
(62) Rp = T
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where x,p, z are computed from (57). In our numerical experiments, we stop the
inexact APG algorithm when

(63) max{Rp,RD} < Tol,

where Tol is a prespecified accuracy tolerance. Unless otherwise specified, we set
Tol = 107° as the default tolerance. In addition, we also stop the inexact APG
algorithm when the maximum number of outer iterations exceeds 300. When solving
the subproblem (57) at iteration k of our inexact APG method, we stop the SSNCG
or gradient method when [|VO(py)||/(1+b]]) < min{1/t31,0.2[|V f(zk—1) — A*pr—1—
zk-1ll/ (L + llel)}-

4.1. Example 1. In this example, we consider the following H-weighted nearest
correlation matrix problem:

(64) min {%HH o(z—uw)|? | diag(z) =e,x = 0}.

We compare the performance of our inexact APG (IAPG) method and the augmented
Lagrangian dual method (AL) studied by Qi and Sun in [11], whose MATLAB codes
are available at http://www.math.nus.edu.sg/~matsundf. We consider the gene cor-
relation matrices u from [5]. For testing purpose we perturb @ to

u:=(1—a)u+ak,

where @ € (0,1) and E is a randomly generated symmetric matrix with entries in
[-1,1]. We also set u;; = 1,4 = 1,...,n. The weight matrix H is a sparse random
symmetric matrix with about 50% nonzero entries. The MATLAB code for generating
H and FE is as follows:

H = sprand(n,n,0.5); H = triu(d) + triu(d,1)’; H= (H + H’)/2;
E = 2¢¥rand(n,n)-1; E = triu(E)+triu(E,1)’; E = (E+E’)/2.

In order to generate a good initial point, we use the SSNCG method in [10] to solve
the following unweighted nearest correlation matrix problem:

1
(65) min {EHx —u|? | diag(z) = e,z = o}.

Due to the difference in stopping criteria for different algorithms, we set different
accuracy tolerances for the IAPG and augmented Lagrangian methods. For the IAPG
method, we set Tol = 1075, For the augmented Lagrangian method, its stopping
criteria depend on a tolerance parameter Toll which controls the three conditions in
the KKT system (26). We set Toll = 104

Table 1 presents the numerical results obtained by the IAPG method (Algo-
rithm 2) and the augmented Lagrangian dual method (AL) for various instances of
Example 1. We use the primal infeasibility, primal objective value, and computing
time to compare the performance of the two algorithms. For each instance in the
table, we report the matrix dimension (n), the noise level (), the number of outer
iterations (iter), the total number of Newton systems solved (newt), the primal infea-
sibility (Rp), the dual infeasibility (Rp), the primal objective value (pobj) in (64),
the computation time (in the format hours:minutes:seconds), and the rank of the com-
puted solution (rankX). We may observe from the table that the IAPG method can

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/07/14 to 137.132.123.69. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

AN INEXACT APG FOR LINEARLY CONSTRAINED CONVEX SDP 1061

TABLE 1
Comparison of the inexact APG (IAPG) and augmented Lagrangian dual (AL) algorithms on
(64) using a sample correlation matriz from gene data sets. The weight matriz H is a sparse random
matriz with about 50% nonzero entries.

Algo. Problem | n o | Tter/newt Rp | Rp | pobj Time | RankX
IAPG Lymph | 587 0.1 193/201 5.46e-10 | 9.60e-7 | 5.04289799e0 2:50 | 179
0.05 | 300/327 1.31e-10 | 2.04e-6 | 2.53103607e-1 4:16 | 207
AL Lymph [ 587 0.1 | 12 T.136-7 ] 9.960-7 | 5.0428955820 5:39 [ 179
0.05 12 2.96e-7 | 1.07e-6 | 2.53101698e-1 30:58 | 207
IAPG ER | 692 0.1 167/172 2.27e-10 | 9.92e-7 | 1.26095534¢1 3:30 | 189
0.05 187/207 3.93e-11 | 9.54e-7 | 1.14555927e0 3:40 | 220
AL ER | 692 0.1 12 3.73e-T7 | 4.63e-7 | 1.26095561el 9:28 | 189
0.05 12 3.21e-7 | 1.02e-6 | 1.14555886e0 14:14 | 220
TAPG Arabid. [ 834 0.1 | 125/133 3.28¢-10 | 9.36e-7 | 3.46252363¢1 201 [ 101
0.05 131/148 2.41e-10 | 9.75e-7 | 5.50148194¢e0 4:09 | 220
AL Arabid.s | 834 0.1 13 2.28e-7 | 7.54e-7 | 3.46252429¢1l 12:35 | 191
0.05 12 2.96e-8 | 1.01e-6 | 5.50148169¢0 22:49 | 220
TAPG | Loukemia | 1255 0.1 | 104/111 5.356-10 | 7.97¢-7 | 1.0803960002 9:24 | 254
0.05 | 96/104 4.81e-10 | 9.31e-7 | 2.20789464e1 8:35 | 276
AL Leukemia | 1255 0.1 12 3.06e-7 | 2.74e-7 | 1.08939601¢2 22:04 | 254
0.05 11 2.90e-7 | 8.57e-7 | 2.20789454el 28:37 | 276
TAPG | heredit. | 1860 0.1 | 67/87 3.06e-10 | 8.68¢-7 | 4.5724449702 17:56 | 233
0.05 64/85 9.58e-10 | 7.04e-7 | 1.13171325¢e2 17:32 | 236
AL heredit. | 1869 0.1 13 2.31e-7 | 3.55e-7 | 4.57244525¢2 38:35 | 233
0.05 11 2.51e-7 | 6.29e-7 | 1.13171335¢2 36:31 | 236

solve (64) very efficiently. For each instance, the IAPG method can achieve nearly the
same primal objective value as the augmented Lagrangian method, and the former
can achieve much better primal infeasibility while taking less than 50% of the time
needed by the augmented Lagrangian method.

4.2. Example 2. We consider the same problem as in Example 1, but the
weight matrix H is generated from a weight matrix Hy used by a hedge fund com-
pany. The matrix Hy is a 93 x 93 symmetric matrix with all positive entries. It has
about 24% of the entries equal to 107°, and the rest are distributed in the interval
[2,1.28 x 10%]. It has 28 eigenvalues in the interval [—520, —0.04], 11 eigenvalues in
the interval [—5 x 10713,2 x 10713], and the rest of the 54 eigenvalues in the interval
[107%,2 x 10%]. The MATLAB code for generating the matrix H is given by tmp =
kron(ones(25,25) ,H0); H = tmp([1:n],[1:n]); H = (H+H’)/2.

We use the same implementation techniques as in Example 1. The stopping
tolerance for the IAPG method is set to Tol = 1076, while the tolerance for the
augmented Lagrangian method is set to Tol1l = 1072, Table 2 presents the numerical
results obtained by the IAPG and augmented Lagrangian dual (AL) methods. In the
table, “*” means that the augmented Lagrangian method cannot achieve the required
tolerance of 1072 in 24 hours. As we can see from Table 2, the IAPG method is
much more efficient than the augmented Lagrangian method, and it can achieve much
better primal infeasibility. For the last gene correlation matrix of size 1869, the IAPG
method can find a good approximate solution within half an hour. For the augmented
Lagrangian method, because the map Q associated with the weight matrix H is highly
ill-conditioned, the CG method has great difficulty in solving the ill-conditioned linear
system of equations obtained by the semismooth Newton method.

Note that we have also used Algorithm 1 to solve the problems in Tables 1 and 2
since we can obtain an approximate solution xj, which is feasible for (64) for the
subproblems (25) appearing in Algorithm 1. For these problems, the numerical results
obtained by Algorithm 1 are quite similar to those of Algorithm 2, and hence we shall
not report them here.
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TABLE 2
Same as Table 1, but with a “bad” weight matriz H.

Algo. Problem | n a | Tter/newt Rp | Rp | pobj Time | RankX
TIAPG Lymph | 587 0.1 72/159 1.76e-8 | 9.90e-7 | 8.92431024e+6 1:50 | 238
0.05 | 60/148 3.81e-8 | 9.75e-7 |1.69947194e+6 1:41 | 278
AL Lymph | 587 0.1 14 2.64e-5 | 1.06e-5 | 8.92425480e+6 56:07 | 260
0.05 12 1.69e-4 | 4.41e-5 | 1.69925778e+6 29:15 | 286
IAPG ER | 692 0.1 62/156 2.48¢-9 | 9.72e-7 | 1.51144194e+7 2:33 | 254
0.05 | 56/145 3.58e-9 | 9.55e-7 | 3.01128282¢+-6 2:22 | 295
AL ER | 692 0.1 16 1.22e-5 | 5.80e-6 | 1.51144456e+7 2:05:38 | 288
0.05 12 3.11e-5 | 6.29e-6 | 3.01123631e+6 53:15 | 309
IAPG Arabid. | 834 0.1 61/159 6.75e-9 | 9.98e-7 | 2.69548461e+7 4:01 | 254
0.05 | 54/145 1.06e-8 | 9.82e-7 | 5.87047119e+-6 3:41 | 286
AL Arabid. | 834 0.1 19 3.04e-6 | 3.94e-6 | 2.69548769¢e+7 4:49:00 | 308
0.05 13 1.69e-5 | 6.76e-6 | 5.87044318e+-6 1:28:59 | 328
TIAPG | Leukemia | 1255 0.1 65/158 8.43e-9 | 9.86e-7 | 7.17192454e+7 11:32 | 321
0.05 | 55/143 1.19e-7 | 9.80e-7 | 1.70092540e+7 10:18 | 340
AL Leukemia | 1255 0.1 | = R e
0.05 13 3.19e-5 | 5.15e-6 | 1.70091646e+7 5:55:21 | 432
IAPG heredit. | 1869 0.1 48/156 2.08e-8 | 9.16e-7 | 2.05907938e+8 29:07 | 294
0.05 | 49/136 6.39¢e-8 | 9.61e-7 | 5.13121563e+7 26:16 | 297
AL heredit. | 1869 0.1 | = R e
0.05 * S ENE ® |

4.3. Example 3. In this example, we report the performance of the inexact
APG on the linearly constrained QSDP problem (1). The linear operator Q is
given by Q(z) = %(Bx + zB) for a given B > 0, and the linear map A is given
by A(z) = diag(z). We generate a positive definite matrix X and set b = A(x).
Similarly we can generate a random vector p € R™ and a positive definite ma-
trix z and set ¢ = A*(p) + z — Q(x). The MATLAB code for generating the ma-
trix B is given by randvec = 1+ 9*rand(n,1); tmp = randn(n,ceil(n/4)); B =
diag(randvec)+(tmp*tmp’)/n; B = (B+B’)/2. Note that the matrix B generated
is rather well conditioned.

As discussed in section 3.2, we are able to find a good symmetrized Kronecker
product approximation w ® w of Q. By noting that

1

1 1
(T w@w(2)) +(c2) = §||w1/2(x —uw'?|? §||w’1/2cw’1/2|\2,

where v = —w~'cw™!, and dropping the constant term, we propose solving the

following problem to generate a good initial point for the inexact APG method:
1
min {5 [[w!/2(z = ww'2? | A@) = b, 2= 0);

this can be efficiently solved by the the SSNCG method in [10].
The performance results of our IAPG method on convex QSDP problems are
given in Table 3, where “pobj” and “dobj” are the primal and dual objective values

TABLE 3
Numerical results of the inexact APG algorithm on (1), where the positive definite matriz B
for the linear operator Q is well-conditioned.

n m cond(B) Iter/newt | Rp | Rp pobj dobj Time
500 500  9.21e+0 | 9/9 | 3.24e-10 | 9.70e-7 | -4.09219187e+4  -4.09219188e+4 13
1000 1000  9.43e+0 | 9/9 | 3.68e-10 | 9.28e-7 | -8.41240999e+4  -8.41241006e+4 1:13
2000 2000  9.28e+0 | 9/9 | 3.16e-10 | 8.53e-7 | -1.65502323e+5 -1.65502325e+5 8:49
2500 2500  9.34e+0 | 9/9 | 3.32e-10 | 8.57e-7 | -2.07906307e+5  -2.07906309e+5 | 16:15
3000 3000 9.34e+0 | 9/9 | 2.98¢-10 | 8.13e-7 | -2.49907743e+5  -2.49907745e+5 | 29:02
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for QSDP, respectively. We may see from the table that the IAPG method can solve
all five instances of QSDP problems very efficiently with very good primal infeasibility.

4.4. Example 4. We consider the same problem as Example 3, but the lin-
ear map A is generated by using the first generator in [7] with order p = 3. The
positive definite matrix B is generated by using the MATLAB built-in function
B = gallery(’lehmer’,n). The condition number cond(B) of the generated Lehmer
matrix B is within the range [n,4n?]. For this example, the simple choice of
W = \/Amax(B)I in the symmetrized Kronecker product w ® w for approximating
Q does not work well. In our numerical implementation, we employ the strategy
described in section 3.2 to find a suitable w.

TABLE 4
Same as Table 3, but the matriz B for the linear operator Q is ill-conditioned, and the linear
map A is randomly generated as in [7].

n | m | cond(B) Iter/newt | Rp | Rp pobj | dobj Time
500] 10000] 2.67e15 | 51/102] 3.02¢-8 | 9.79¢-7 | -0.19583805¢ 13 | -0.19584804c 1 3 1:20
1000| 50000| 1.07e+6 | 62/115| 2.43e-8 | 9.71e-7 | -1.74777588e+4 | -1.74776690e+4 11:46
2000 100000| 4.32e+6 | 76/94| 5.24¢-9 | 5.28¢-7 | -3.78101950e+4 | -3.78101705e+4 | 1:14:04
2500| 100000| 6.76e+6 80/96| 4.62e-9 | 5.64e-7 | -4.79637904e+4 | -4.7963787%+4 | 2:11:01

Table 4 presents the performance results of our IAPG method on convex QSDP
problems where the matrix B is very ill-conditioned. As observed from the table,
the condition numbers of B are large. We may see from the table that the TAPG
method can solve the problem very efficiently with a very accurate approximate op-
timal solution.
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