
Mathematical Programming Computation manuscript No.
(will be inserted by the editor)

An augmented Lagrangian method with constraint
generations for shape-constrained convex regression
problems

Meixia Lin · Defeng Sun · Kim-Chuan
Toh

Received: date / Accepted: date

Abstract Shape-constrained convex regression problem deals with fitting a
convex function to the observed data, where additional constraints are im-
posed, such as component-wise monotonicity and uniform Lipschitz continuity.
This paper provides a unified framework for computing the least squares es-
timator of a multivariate shape-constrained convex regression function in Rd.
We prove that the least squares estimator is computable via solving an essen-
tially constrained convex quadratic programming (QP) problem with (n+ 1)d
variables, n(n−1) linear inequality constraints and n possibly non-polyhedral
inequality constraints, where n is the number of data points. To efficiently solve
the generally very large-scale convex QP, we design a proximal augmented La-
grangian method (proxALM) whose subproblems are solved by the semismooth
Newton method (SSN). To further accelerate the computation when n is huge,
we design a practical implementation of the constraint generation method
such that each reduced problem is efficiently solved by our proposed proxALM.
Comprehensive numerical experiments, including those in the pricing of bas-
ket options and estimation of production functions in economics, demonstrate
that our proposed proxALM outperforms the state-of-the-art algorithms, and

Defeng Sun is supported in part by Hong Kong Research Grant Council under grant number
15304019 and Kim-Chuan Toh by the Ministry of Education, Singapore, under its Academic
Research Fund Tier 3 grant call (MOE-2019-T3-1-010).

Meixia Lin
Institute of Operations Research and Analytics, National University of Singapore, Singapore
E-mail: lin meixia@u.nus.edu

Defeng Sun
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom,
Hong Kong
E-mail: defeng.sun@polyu.edu.hk

Kim-Chuan Toh
Department of Mathematics and Institute of Operations Research and Analytics, National
University of Singapore, Singapore
E-mail: mattohkc@nus.edu.sg

2 M. Lin et al.

the proposed acceleration technique further shortens the computation time by
a large margin.

Keywords Shape-constrainted convex regression · Preconditioned proximal
point algorithm · Semismooth Newton method · Constraint generation
method

Mathematics Subject Classification (2010) 90C06 · 90C25 · 90C90

1 Introduction

Convex (or concave) regression is meant to estimate a convex (or concave)
function based on a finite number of observations. It is a topic of interest
in many fields such as economics, operations research and financial engineer-
ing. In economics, production functions [21,45,2], demand functions [44] and
utility functions [31] are often required to be concave. In operations research,
the performance measure expectations can be proved to be convex in the un-
derlying model parameters, e.g. in the context of queueing network [10]. In
financial engineering, the option pricing function has the convexity restriction
under the no-arbitrage condition, as can be seen from [1]. In the literature,
there are various methods for solving the convex regression problem. With
the specification of a functional form, one can apply a parametric approach
to estimate the convex function. For example, the Cobb-Douglas production
function is a particular functional form of the production function that is
widely used in applied production economics. To avoid strong prior assump-
tions on the functional form, one can also use a non-parametric approach to
perform the function estimation. Generally, the nonparametric estimation is
based on a given collection of primitive functions, such as local polynomial
[29], trigonometric series, spline estimator [15,36] and kernel-type estimator
[3]. However, such an approach may face some difficulties in imposing the
convexity constraint and choosing appropriate smoothing parameters (e.g. the
degree of the polynomial, or the kernel density bandwidth). To overcome these
difficulties, one may choose to estimate the functions by empirical risk mini-
mization [14] over the set of convex functions, wherein the squared error loss
[21] and the absolute error loss [8] are studied. In this paper, we focus on the
least squares estimator for convex regression, whose theoretical properties are
carefully studied in [20,42,28].

Suppose that we observe n data points {(Xi, Yi)}ni=1, which satisfy the
regression model Y = ψ(X) + ε for an unknown convex function ψ : Ω → R,
where Ω ⊂ Rd is a δ-neighborhood of conv(X1, · · · , Xn) (the convex hull
of {Xi}ni=1), ε is a random variable with expectation E[ε|X] = 0. The least

squares estimator ψ̂ of ψ is defined as

ψ̂ ∈ arg min
ψ∈C

n∑
i=1

(ψ(Xi)− Yi)2, C := {ψ : Ω → R | ψ is a convex function}.

Algorithms for shape-constrained convex regression 3

This infinite dimensional model appears to be intractable. Fortunately, the
authors in [23,42] have provided a computationally tractable optimal solution
to it. They showed that the family of convex functions can be characterized by
a subset of continuous, piecewise linear functions θi+〈ξi, X−Xi〉, i = 1, · · · , n,
whose intercepts θi’s and gradient vectors ξi’s are restricted to satisfy the
convexity conditions. That is, a convex quadratic programming (QP) problem

min
θ1,...,θn∈R,
ξ1,...,ξn∈Rd

{
1

2

n∑
i=1

(θi − Yi)2
∣∣∣ θi ≥ θj + 〈ξj , Xi −Xj〉, 1 ≤ i, j ≤ n

}
(1)

needs to be solved. The problem (1) with (n + 1)d variables and n(n − 1)
linear inequality constraints can be solved by interior point solvers such as
those implemented in MOSEK when n is not too large, as stated in [42]. How-
ever, interior point solvers may quickly run out of memory when n is large
due to the presence of a large number of n(n−1) linear inequality constraints.
Mazumder et al. [30] adapted a three-block alternating direction method of
multipliers (ADMM) to solve (1) but the method has no convergence guarantee.
It needs about 1000 seconds to solve an instance with d = 4, n ∼ 3000 to get
a rough approximate solution. As the objective function in (1) is not strongly
convex, some papers including [3,12] do not deal with (P) exactly but per-
turb the problem by adding an additional `2 regularization term on the ξi’s.
The regularization term allows one to apply the accelerated proximal gradient
(APG) method to the dual of the perturbed QP. For example, Aybat et al. [3]
proposed a parallel APG method. However, it is still not fast enough for solving
large problems as it needs 17 minutes to solve a problem with d = 80, n = 1600
on a 16-core machine sharing 32 GB. It should be noted that the regularization
parameter may need to be extremely small in order for a solution of the per-
turbed QP to be optimal to the original QP under some kind of exact penalty
property, while the dual of the perturbed QP also becomes harder to solve as
the parameter becomes smaller. The computational challenge in solving the
problem (1) still remains in need of more progress, especially for the case when
d and n are relatively large where existing methods are too expensive even for
computing a solution with a moderate accuracy.

In many real applications, one may need to impose more shape constraints
on the convex function ψ, such as component-wise monotonicity and uniform
Lipschitz continuity. For example, the option pricing function under the no-
arbitrage condition needs to be non-decreasing as well as convex as described
in [1]. In addition, when dealing with the Lipschitz convex regression as in [27,
4,30], the uniform Lipschitz property of the convex function is added when
performing the estimation. For the shape-constrained convex regression prob-
lem, the least squares estimator ψ̂ is defined as

ψ̂ ∈ arg min
ψ∈CS

n∑
i=1

(ψ(Xi)− Yi)2,

CS = {ψ : Ω → R | ψ is a convex function with Property S},
(2)

4 M. Lin et al.

where Property S specifies the shape constraint of ψ. We restrict ourselves to
the case when Property S takes one of the following forms:

(S1) (monotone constraint) ψ is non-decreasing in some of the coordinates
(denoted as K1) and non-increasing in some others (denoted as K2),
where K1 and K2 are disjoint subsets of {1, · · · , d};

(S2) (box constraint) the elements in ∂ψ(x) for any x ∈ Ω are bounded by
two given vectors L,U ∈ Rd;

(S3) (Lipschitz constraint) ψ is Lipschitz, i.e., |ψ(x)−ψ(y)| ≤ L‖x− y‖p for
any x, y ∈ Ω, where p = 1, 2,∞, and L is a given positive constant.

In this paper, we provide a unified framework for computing the least
squares estimator for the shape-constrained convex regression problem (2).
We prove that the minimal sum of squared error can be achieved via a set
of piecewise linear functions whose intercept and gradient vectors are con-
strained to satisfy the convexity conditions and required shape constraints
(see Theorem 1). This conclusion leads us to an essentially constrained QP
with (n + 1)d variables, n(n − 1) linear inequality constraints and n possibly
non-polyhedral constraints1. The addition of the shape constraints obviously
would make the QP even more complicated and difficult to solve. Note that
the estimator obtained in this way is nonsmooth, one can apply the Moreau
proximal smoothing technique to obtain a smooth approximation. In addition,
we can use a generalized form of the proposed constrained QP model as well
as a data-driven Lipschitz estimation method to handle the boundary effect
of the least squares estimator.

The main task in this framework is to solve the constrained QP in a robust
and efficient manner. Most existing methods for the QP in the standard convex
regression problem are either not extendable or difficult to be modified to effi-
ciently solve the constrained QP due to the additional shape constraints. More-
over, except for interior point solvers which are only suitable for moderate size
problems, almost all the other existing methods are first-order methods which
may suffer from slow convergence rate when solving large-scale problems. For
the multivariate shape-constrained convex regression problem, even with only
a moderate number of observations, say n = 103, the memory cost and compu-
tational cost are already massive since the underlying QP has about a million
constraints. To tackle the potentially very large-scale constrained QPs, we
design an asymptotically superlinearly convergent proximal augmented La-
grangian method (proxALM), whose subproblems are solved by the semismooth
Newton method (SSN), a second order method that has quadratic convergence.
In the algorithm, the second order sparsity structure of the problem is fully
uncovered and exploited to highly reduce the computational cost of solving the
Newton systems. Comprehensive numerical experiments demonstrate that our
proposed proxALM outperforms the state-of-the-art algorithms such as MOSEK

and ADMM by a large margin.

1 Strictly speaking, it is no longer a conventional QP problem in the presence of the
non-polyhedral constraints. Slightly abusing the notation, here we use QP for convenience.

Algorithms for shape-constrained convex regression 5

Note that when the number of observations is very large, memory issues
may appear. For the case when n is huge, say n = 105, the constrained QP
contains 1010 linear inequality constraints. As an illustration, a vector with
dimension 1010 requires 74.5GB of RAM to store in dense double precision,
which implies that it is almost impossible to solve the constrained QP with
n = 105 on an ordinary desktop PC. This motivates us to explore the problem
structure to overcome the computational and memory challenges of solving
high-sample problems. As constraint generation techniques (also known as
cutting plane methods) have been popular in solving linear programs with
a large number of constraints [7], some researchers have applied this idea to
solve convex regression problems. Hannah and Dunson [18] considered a glob-
ally convex regression model from locally linear estimates fitted on adaptively
selected observations, and Balázs et al. [4] proposed an aggregate cutting plane
method for solving the convex regression problem, but their computation was
limited to moderate problem sizes or low accuracy. Bertsimas and Mundru [6]
used a cutting plane method with each reduced problem solved by the commer-
cial solver Gurobi. They reported solving an instance with (n, d) = (105, 102)
to moderate accuracy in about 7 hours. Recently, Chen and Mazumder [12]
adapted the constraint generation method to solve the perturbed QP for the
case when n = 104, 105, d ≤ 10, where they applied the APG method to solve
the dual of each reduced problem. However, the solutions they obtained are
not guaranteed to satisfy the optimality conditions.

The main challenges of applying the constraint generation method to solve
convex regression problems are summarized in two aspects. First, each reduced
problem of the original QP without the perturbation term needs to be solved
to sufficiently high accuracy in order to determine the violated constraint
unambiguously. Second, given an approximate optimal solution, it is compu-
tationally expensive to search all O(n2) constraints to find the violated ones
and check the optimality conditions. Note that existing interior point solvers
or first-order algorithms (such as APG and ADMM) could not solve large-scale
problems to high accuracy efficiently. Thus a constraint generation method
employing those solvers needs to be conservative in allowing a small number
of violated constraints to be added in each round. As a result, it may take many
rounds of the constraint generation to find a solution with the required accu-
racy for the original QP. This implies that the computational cost of searching
for violated constraints and checking optimality conditions can be very high,
which is unaffordable in practice. Fortunately, our proposed proxALM allows
us to solve large-scales problems to high accuracy efficiently, which motivates
us to design a practical implementation of the constraint generation method
to solve the shape-constrained convex regression problem. In our implemen-
tation, we add a relatively large number of most violated constraints in each
round to greatly reduce the number of rounds of the constraint generation.
For each reduced problem, we apply our proxALM, which is demonstrated to
be much more efficient in solving large-scale problems than other state-of-the-
art algorithms.

We summarize our main contributions in this paper as follows.

6 M. Lin et al.

1 We provide a unified framework for computing the least squares estimator
for the shape-constrained convex regression problem (2), wherein a con-
strained QP with (n+ 1)d variables, n(n− 1) linear inequality constraints
and n possibly non-polyhedral inequality constraints needs to be solved.

2 We propose an asymptotically superlinearly convergent proximal augmented
Lagrangian method to solve the constrained QP, where each subproblem
of the proxALM is solved by the semismooth Newton method. We analyse
the second order sparsity structure of the subproblems and develop novel
numerical techniques to solve the semismooth Newton linear systems effi-
ciently through exploiting the uncovered structure. Comprehensive numer-
ical experiments, including those in the pricing of basket options and es-
timation of production functions, demonstrate that the proposed proxALM

outperforms other state-of-the-art algorithms such as MOSEK and ADMM by
a large margin, especially for large-scale problems.

3 To solve the shape-constrained convex regression problem with a huge sam-
ple size, we design a practical implementation of the constraint genera-
tion method where each of its reduced problem is solved by our proposed
proxALM. Numerical experiments are also performed to demonstrate the
high efficiency of the constraint generation method with proxALM.

In the remaining part of the paper, we provide a unified framework for
estimating the multivariate shape-constrained convex function in Section 2.
For solving the involved constrained QP, the proximal augmented Lagrangian
method is described in Section 3. The implementation details of the proposed
proxALM can be found in Section 4. In Section 5, we design a practical im-
plementation of the constraint generation method to solve shape-constrained
convex regression problems with huge samples sizes. Section 6 provides the
numerical comparison of proxALM with other start-of-the-art algorithms. Ex-
periments are also conducted to demonstrate the superior performance of the
constraint generation method combined with the proxALM for solving instances
with huge samples sizes. Then we apply our framework to perform the func-
tion estimation in several interesting real applications in Section 7. Finally, we
conclude the paper.

Notation. Denote X = (X1, · · · , Xn) ∈ Rd×n, en ∈ Rn be the vector of all
ones, In be the n× n identity matrix. For any matrix Z ∈ Rm×n, Zi denotes
the i-th column of Z. We use “Diag(z)” to denote the diagonal matrix whose
diagonal is given by the vector z, and use Diag(X1, · · · , Xn) to denote the
block diagonal matrix whose i-th block is the matrix Xi. For any symmetric
and positive semidefinite matrix H ∈ Rn×n, we define 〈x, x′〉H := 〈x,Hx′〉,
and ‖x‖H :=

√
〈x, x〉H for all x, x′ ∈ Rn. For a given closed subset C of Rn

and x ∈ Rn, we define distH(x,C) = min{‖x − y‖H | y ∈ C}. The largest
(smallest) eigenvalue of H is denoted as λmax(H) (λmin(H)). Given x ∈ Rn
and an index set K ⊂ {1, · · · , n}, xK denotes the sub-vector of x with those
elements not in K being removed. Let q : Rn → (−∞,∞] be a closed proper
convex function. The conjugate of q is q∗(z) := supx∈Rn{〈x, z〉−q(x)} and the

Algorithms for shape-constrained convex regression 7

Moreau envelope of q at x is defined by

Eq(x) := min
y∈Rn

{
q(y) +

1

2
‖y − x‖2

}
,

and the associated proximal mapping Proxq(x) is defined as the unique solution
of the above minimization problem. As proved in [33], Eq(·) is finite-valued,
convex and differentiable with ∇Eq(x) = x − Proxq(x). In addition, we can
see from [35,41] that Proxq(x) is Lipschitz continuous with modulus 1.

2 A unified framework to estimate the multivariate
shape-constrained convex function

In this section, we provide a unified framework for computing the least squares
estimator for the multivariate shape-constrained convex function defined in
(2). Before describing the process, we first characterize Property S in the
following proposition. For brevity, we omit the proof.

Proposition 1 A convex function ψ has Property S if and only if for any
x ∈ Rd, the subdifferential of ψ satisfies ∂ψ(x) ⊂ D, where D is defined
corresponding to Property S as follows:

(S1) (monotone constraint) D = {x ∈ Rd | xK1
≥ 0, xK2

≤ 0},
(S2) (box constraint) D = {x ∈ Rd | L ≤ x ≤ U},
(S3) (Lipschitz constraint) D = {x ∈ Rd | ‖x‖q ≤ L}, where q satisfies

1/p+ 1/q = 1. In particular, q =∞, 2, 1 when p = 1, 2,∞, respectively.

The least squares estimation problem (2) attempts to find a best-fitting

function ψ̂ from the function family CS , which is infinite dimensional. There-
fore, this problem is intractable in practice. In order to design a tractable
approach, we establish the following representation theorem to (2), which is
motivated by [23].

Theorem 1 Define the set of piecewise linear functions as

KS :=

{
φ : Ω → R

∣∣∣∣∣φ(x) = max
1≤j≤n

{θj + 〈ξj , x−Xj〉},

(θ1, · · · , θn, ξ1, · · · , ξn) ∈ FS

}
, (3)

where

FS :=

{
(θ1, · · · , θn, ξ1, · · · , ξn)

∣∣∣∣∣θi ∈ R, ξi ∈ D, i = 1, · · · , n,
θi ≥ θj + 〈ξj , Xi −Xj〉, 1 ≤ i, j ≤ n

}
, (4)

and D is defined as in Proposition 1. Consider the problem

min
φ∈KS

n∑
i=1

(φ(Xi)− Yi)2. (5)

8 M. Lin et al.

Then the following equality holds:

min
ψ∈CS

n∑
i=1

(ψ(Xi)− Yi)2 = min
φ∈KS

n∑
i=1

(φ(Xi)− Yi)2. (6)

Moreover, any solution φ̂ to (5) is a solution to the problem (2).

Proof We first prove that KS ⊂ CS , that is, the functions in KS are convex
functions with Property S. Convexity comes from the fact that any point-
wise maximum function is convex. Given any function φ ∈ KS determined
by (θ1, · · · , θn, ξ1, · · · , ξn) ∈ FS , the subdifferential of this piecewise linear
function is a polyhedron according to [40, Theorem 25.6], and it is given by

∂φ(x) = conv{ξi | i ∈ I(x)}, I(x) := {i | θi + 〈ξi, x−Xi〉 = φ(x)}.

By the definition of D and FS , we can see that ∂φ(x) ⊂ D for any x ∈ Ω.
According to Proposition 1, the convex function φ has Property S, which
means φ ∈ CS . Hence KS ⊂ CS . Therefore, we have that

min
ψ∈CS

n∑
i=1

(ψ(Xi)− Yi)2 ≤ min
φ∈KS

n∑
i=1

(φ(Xi)− Yi)2.

Next we prove the reverse inequality. Let ε > 0 be an arbitrary positive
number. Then there exists ψ̂ε ∈ CS such that

n∑
i=1

(ψ̂ε(Xi)− Yi)2 ≤ min
ψ∈CS

n∑
i=1

(ψ(Xi)− Yi)2 + ε.

For i = 1, · · · , n, choose ξ̂ε,i ∈ ∂ψ̂ε(Xi). Then

(ψ̂ε(X1), · · · , ψ̂ε(Xn), ξ̂ε,1, · · · , ξ̂ε,n) ∈ FS
and

φ̂ε(x) := max
1≤j≤n

{ψ̂ε(Xj) + 〈ξ̂ε,j , x−Xj〉} ∈ KS .

The fact that inequalities ψ̂ε(Xi) ≥ ψ̂ε(Xj) + 〈ξ̂ε,j , Xi − Xj〉 hold for all i, j
implies that

φ̂ε(Xi) = max
1≤j≤n

{ψ̂ε(Xj) + 〈ξ̂ε,j , Xi −Xj〉} = ψ̂ε(Xi), i = 1, · · · , n.

Then, it holds that

min
φ∈KS

n∑
i=1

(φ(Xi)− Yi)2 ≤
n∑
i=1

(φ̂ε(Xi)− Yi)2 =

n∑
i=1

(ψ̂ε(Xi)− Yi)2

≤ min
ψ∈CS

n∑
i=1

(ψ(Xi)− Yi)2 + ε.

Since the above inequality holds for any ε > 0, the equality (6) follows. Now

suppose that φ̂ is an optimal solution to (5). Since φ̂ ∈ CS , from (6) we know

that φ̂ is a solution to the problem (2). ut

Algorithms for shape-constrained convex regression 9

The theorem above provides a tractable approach to compute (2) through
solving (5). By definition, any function φ in KS , which is determined by
(θ1, · · · , θn, ξ1, · · · , ξn) ∈ FS , satisfies

φ(Xi) = max
1≤j≤n

{θj + 〈ξj , Xi −Xj〉} = θi, i = 1, · · · , n.

Therefore, we can conclude the framework for computing an optimal solution
to (2) as follows.

A unified framework for shape-constrained convex regression. Suppose that
{(θ̂i, ξ̂i)}ni=1 is an optimal solution to

min
θ1,...,θn∈R;ξ1,...,ξn∈Rd

{1

2
‖θ − Y ‖2

∣∣∣ (θ1, · · · , θn, ξ1, · · · , ξn) ∈ FS
}
, (7)

where the feasible set FS is defined as in (4). We can construct an optimal
solution to (2) by taking

ψ̂(x) = max
1≤j≤n

{
θ̂j + 〈ξ̂j , x−Xj〉

}
, x ∈ Ω. (8)

As one can see, the main task in our framework for estimating the shape-
constrained convex function is to solve the constrained convex quadratic pro-
gramming problem (7).

Define the matrix A = en ⊗ In − In ⊗ en ∈ Rn2×n, where “ ⊗ ” denotes
the Kronecker product. Then it could be seen that ATA = 2nIn − 2ene

T
n .

Denote ξ = (ξ1; · · · ; ξn) ∈ Rdn and B = Diag(B1, · · · , Bn) ∈ Rn2×dn with
Bi = enX

T
i − XT ∈ Rn×d for i = 1, · · · , n. Based on these notations, the

problem (7) can equivalently be written as

min
θ∈Rn,ξ∈Rdn

{1

2
‖θ − Y ‖2 + p(ξ) + δ+(Aθ +Bξ)

}
, (P)

where p(ξ) =
∑n
i=1 δD(ξi) and δ±(·) is the indicator function of Rn2

± .

Smooth approximation. Note that the function ψ̂ obtained by (8) is nons-
mooth. When a smooth function is required, we can compute a smooth ap-
proximation to ψ̂. The idea of Nesterov’s smoothing [34] could be applied,
and the details is described in [30, Section 3]. Alternatively, one can use the

Moreau envelope as a smooth approximation of ψ̂, namely

ψ̂M
τ (x) = τEψ̂/τ (x) = min

y∈Rd

{
ψ̂(y) +

τ

2
‖y − x‖2

}
, (9)

where τ > 0 is a regularization parameter. Note that

ψ̂M
τ (x) = min

y∈Rd,t∈R

{
t+

τ

2
‖y − x‖2

∣∣∣ t ≥ 〈ξ̂j , y〉 − 〈ξ̂j , Xj〉+ θ̂j , j = 1, · · · , n
}
,

10 M. Lin et al.

and the unique optimal solution Proxψ̂/τ (x) of (9) can be obtained by solving a
quadratic programming of dimension d+1, which could be efficiently computed
by Gurobi or MOSEK. One can see that for any τ > 0, ψ̂M

τ is convex, and

differentiable with ∇ψ̂M
τ (x) = τ(x−Proxψ̂/τ (x)). In addition, according to [5],

the approximation ψ̂M
τ of ψ̂ satisfies the approximation bound

0 ≤ ψ̂(x)− ψ̂M
τ (x) ≤ 1

2τ
dist2(0, ∂ψ̂(x)) ≤ L2

2τ
, ∀x ∈ Ω,

where L = max{‖ξj‖2 | j = 1, · · · , n}.

3 A proximal augmented Lagrangian method (proxALM) for (P)

The augmented Lagrangian method is a desirable method for solving convex
composite programming problems due to its superlinear convergence. To take
advantage of the fast local convergence, we design a proximal augmented La-
grangian method for solving (P). In order to solve the proxALM subproblems,
we propose a semismooth Newton method, which is proved to have quadratic
convergence. By making full use of the special structure of the problem, we
can exploit the second-order sparsity structure of the underlying subproblems
to greatly reduce the computational cost. It should be noted that in addition
to the algorithmic design, the most important part of the proxALM is the nu-
merical implementation, which will be discussed in detail in the next section.

The Lagrangian function associated with the unconstrained minimization
problem (P) is given by

l(θ, ξ;u, v)

= inf
η∈Rn2 ,y∈Rdn

{1

2
‖θ − Y ‖2 + p(ξ − y) + δ+(Aθ +Bξ − η)− 〈u, η〉 − 〈v, y〉

}
=

1

2
‖θ − Y ‖2 − p∗(−v)− 〈v, ξ〉 − δ+(u)− 〈u,Aθ +Bξ〉.

The dual problem of (P), maxu∈Rn2 ,v∈Rdn minθ∈Rn,ξ∈Rdn l(θ, ξ;u, v), is explic-
itly given as follows:

max
u∈Rn2 ,v∈Rdn

{
− 1

2
‖ATu‖2 − 〈Y,ATu〉 − p∗(−v)− δ+(u)

}
s.t. BTu+ v = 0.

(D)

The Karush-Kuhn-Tucker (KKT) conditions associated with (P) and (D) are:

θ − Y −ATu = 0, BTu+ v = 0, −v ∈ ∂p(ξ), −u ∈ ∂δ+(Aθ +Bξ). (10)

Algorithms for shape-constrained convex regression 11

The augmented Lagrangian function associated with (P) for any fixed σ > 0
can be derived as

Lσ(θ, ξ;u, v)

= sup
s∈Rn2 ,t∈Rdn

{
l(θ, ξ; s, t)− 1

2σ
‖s− u‖2 − 1

2σ
‖t− v‖2

}
=

1

2
‖θ − Y ‖2 + σEp(ξ −

v

σ
) + σEδ+(Aθ +Bξ − u

σ
)− 1

2σ
‖u‖2 − 1

2σ
‖v‖2.

Our proposed proxALM for solving (P) has the following template.

Algorithm 1 : Proximal augmented Lagrangian method for (P)

1: Initialization: Let H1 ∈ Rn×n, H2 ∈ Rdn×dn be given symmetric and positive definite
matrices, and {εk} be a given summable sequence of nonnegative numbers. Choose an

initial point (θ0, ξ0, u0, v0) ∈ Rn × Rdn × Rn2 × Rdn, σ0 > 0. For k = 0, 1, 2, . . .
2: repeat
3: Step 1. Compute

(θk+1, ξk+1)

≈ arg min
θ∈Rn,ξ∈Rdn

{
Φk(θ, ξ)=Lσk (θ, ξ;uk, vk)+

1

2σk
‖θ − θk‖2H1

+
1

2σk
‖ξ − ξk‖2H2

}(11)

such that the approximate solution (θk+1, ξk+1) satisfies the following stopping cri-
terion:

‖∇Φk(θk+1, ξk+1)‖ ≤
√
λmin

σk
εk, (A)

where λmin = min{λmin(H1), λmin(H2), 1}.
4: Step 2. Update u, v by

uk+1 = −σk
[
Aθk+1 +Bξk+1 − uk/σk −Π+(Aθk+1 +Bξk+1 − uk/σk)

]
,

vk+1 = −σk
[
ξk+1 − vk/σk − Proxp(ξk+1 − vk/σk)

]
.

5: Step 3. Update σk+1 ↑ σ∞ ≤ ∞.
6: until Stopping criterion is satisfied.

3.1 Convergence results for the proxALM

Define the maximal monotone operator Tl as

Tl(θ, ξ, u, v) =
{

(θ′, ξ′, u′, v′) | (θ′, ξ′,−u′,−v′) ∈ ∂l(θ, ξ, u, v)
}
,

and the block diagonal operator Σ = Diag(H1, H2, In2 , Idn). Note that the
solution set of the KKT system (10) is exactly T −1

l (0).

12 M. Lin et al.

We follow the idea of [25, Theorem 2.3 and Theorem 2.5] to get the fol-
lowing convergence results of Algorithm 1, where the details of the proof are
omitted here.

Theorem 2 Suppose that the solution set to the KKT system (10) is nonempty,
that is Λ := T −1

l (0) 6= ∅.
(1) Let {(θk, ξk, uk, vk)} be the infinite sequence generated by Algorithm 1.
Then {(θk, ξk, uk, vk)} is bounded, {(θk, ξk)} converges to an optimal solution
of (P), and {(uk, vk)} converges to an optimal solution of (D).
(2) Let r :=

∑∞
k=0 εk + distΣ((θ0, ξ0, u0, v0), Λ). Assume that for this r > 0,

there exists a constant κ > 0 such that Tl satisfies the following error bound
condition: for all (θ, ξ, u, v) satisfying dist((θ, ξ, u, v), Λ) ≤ r, it holds that

dist((θ, ξ, u, v), Λ) ≤ κdist(0, Tl(θ, ξ, u, v)). (12)

Suppose that {(θk, ξk, uk, vk)} is the sequence generated by Algorithm 1, where
in Step 1, the approximate solution (θk+1, ξk+1) also satisfies the stopping
criterion

‖∇Φk(θk+1, ξk+1)‖ ≤ δk
√
λmin

σk
‖(θk+1, ξk+1, uk+1, vk+1)− (θk, ξk, uk, vk)‖Σ ,

(B)

and {δk | 0 ≤ δk < 1} is a given summable sequence. Then it holds for all
k ≥ 0 that

distΣ((θk+1, ξk+1, uk+1, vk+1), Λ) ≤ µkdistΣ((θk, ξk, uk, vk), Λ), (13)

where

µk =
1

1− δk

(
δk +

(1 + δk)κλmax√
σ2
k + κ2λ2

max

)
→ µ∞ =

κλmax√
σ2
∞ + κ2λ2

max

< 1,

and λmax = max{λmax(H1), λmax(H2), 1}.

As one can see from Theorem 2, the fast linear convergence rate of Algo-
rithm 1 depends on the error bound condition (12) for the maximal monotone
operator Tl. For specifying whether the error bound condition (12) holds for
different choices of the closed convex set D, we give the following remark.

Remark 1 It is well known that any polyhedral multifunction is upper Lips-
chitz continuous at every point of its domain according to [39], which means
it satisfies the error bound condition (12) for any r > 0. For the cases when
D is a polyhedral set, e.g. D = Rd+(Rd−) or D = {x ∈ Rd | ‖x‖q ≤ L} with
q = 1 or q = ∞, Tl is a polyhedral multifunction, and hence it satisfies the
error bound condition (12). In general, one needs addtional assumptions such
as partial complementarity for the error bound condition (12) to hold with the
presence of nonpolyhedral constraints.

Algorithms for shape-constrained convex regression 13

3.2 A semismooth Newton method for solving the proxALM subproblems

One can see that the most computationally intensive step in the proxALM is in
solving the subproblem (11). Here we describe how it can be solved efficiently
by the semismooth Newton method. For any given σ > 0, (θ̃, ξ̃, ũ, ṽ) ∈ Rn ×
Rdn × Rn2 × Rdn, we aim to solve the proxALM subproblem, which has the
form:

min
θ∈Rn,ξ∈Rdn

{
Φ(θ, ξ) := Lσ(θ, ξ; ũ, ṽ) +

1

2σ
‖θ − θ̃‖2H1

+
1

2σ
‖ξ − ξ̃‖2H2

}
. (14)

Since Φ(·, ·) is strongly convex, the above minimization problem admits a
unique solution (θ̄, ξ̄), which can be computed by solving the nonsmooth equa-
tion

∇Φ(θ, ξ) = 0, (15)

where

∇Φ(θ, ξ) =

σAT
[
Aθ +Bξ − ũ

σ
−Π+(Aθ +Bξ − ũ

σ
)
]

σBT
[
Aθ +Bξ − ũ

σ
−Π+(Aθ +Bξ − ũ

σ
)
]


+

 θ − Y +
1

σ
H1(θ − θ̃)

σ
[
ξ − ṽ

σ
−Proxp(ξ −

ṽ

σ
)
]

+
1

σ
H2(ξ − ξ̃)

 .

To apply the SSN to solve the above nonsmooth equation, we need a suit-
able generalized Jacobian of ∇Φ(·, ·). Here we choose the following set as the
candidate:

∂̂2Φ(θ, ξ) = σ

(
AT

BT

)[
In2 − ∂Π+(Aθ +Bξ − ũ

σ
)
] (
A B

)
+

In+
1

σ
H1

0

0

σ
[
Idn − ∂Proxp(ξ −

ṽ

σ
)
]

+
1

σ
H2

 ,

where ∂Π+ is the Clarke generalized Jacobian of Π+(·) defined as

∂Π+(η) =

Diag(q)

∣∣∣∣∣∣
qi = 0 if ηi < 0
qi ∈ [0, 1] if ηi = 0
qi = 1 otherwise

 , ∀η ∈ Rn
2

and ∂Proxp is the Clarke generalized Jacobian of Proxp which will be described
in Section 4.

We give the following proposition to identify the strong semismoothness of
∇Φ(·, ·) with respect to ∂̂2Φ(·, ·), where the definition of strong semismoothness
could be found in [32,37,22,43].

14 M. Lin et al.

Proposition 2 Suppose that Proxp(·) is strongly semismooth with respect to
the Clarke generalized Jacobian ∂Proxp(·). Then ∇Φ(·, ·) is strongly semis-

mooth with respect to ∂̂2Φ(·, ·).

Proof By the definition of ∂Π+(·), we can see that ∂Π+(·) is nonempty,
compact valued, and upper-semicontinuous. Together with the property of
∂Proxp(·), it could be seen that the multifunction ∂̂2Φ(·, ·) is nonempty, com-
pact valued, and upper-semicontinuous.

Note that for any (θ, ξ) ∈ Rn × Rdn, ∇Φ(·, ·) is directionally differentiable
at (θ, ξ). Let (∆θ,∆ξ) ∈ Rn × Rdn be such that ‖(∆θ,∆ξ)‖ is sufficiently

small. Let H ∈ ∂̂2Φ(θ + ∆θ, ξ + ∆ξ), then by definition, there exists P ∈
∂Π+(A(θ+∆θ) +B(ξ+∆ξ)− ũ/σ) and Q ∈ ∂Proxp(ξ+∆ξ− ṽ/σ) such that

H = σ

(
AT

BT

)(
In2 − P

) (
A B

)
+

In+
1

σ
H1

0

0

σ
[
Idn −Q

]
+

1

σ
H2

 .

Since Π+(·) is piecewise affine, we know that

Π+(A(θ +∆θ) +B(ξ +∆ξ)− ũ/σ) = Π+(Aθ +Bξ − ũ/σ) + P (∆θ;∆ξ).

By the strong semismoothness of Proxp(·) with respect to ∂Proxp(·), we have
that

Proxp(ξ +∆ξ − ṽ/σ) = Proxp(ξ − ṽ/σ) +Q∆ξ +O(‖∆ξ‖2).

Therefore, it holds that

∇Φ(θ +∆θ, ξ +∆ξ)−∇Φ(θ, ξ)−H(∆θ,∆ξ) = O(‖(∆θ,∆ξ)‖2),

which means ∇Φ(·, ·) is strongly semismooth with respect to ∂̂2Φ(·, ·). ut

With the suitably chosen generalized Jacobian ∂̂2Φ(·, ·), we can design the
semismooth Newton method in Algorithm 2, which is a generalization of the
standard Newton method, for solving (14).

The convergence analysis for Algorithm 2 can be established as follows.

Theorem 3 Suppose that Proxp(·) is strongly semismooth with respect to ∂Proxp(·).
Let {(θj , ξj)} be the infinite sequence generated by Algorithm 2. Then, {(θj , ξj)}
converges to the unique optimal solution (θ̄, ξ̄) of problem (14), and

‖(θj+1, ξj+1)− (θ̄, ξ̄)‖ = O(‖(θj , ξj)− (θ̄, ξ̄)‖1+τ).

Proof According to Proposition 2, we have that∇Φ(·, ·) is strongly semismooth

with respect to ∂̂2Φ(·, ·). From [48, Proposition 3.3 and Theorem 3.4], we
can see that {(θj , ξj)} converges to the unique optimal solution (θ̄, ξ̄). By

the formulation of ∂̂2Φ(·, ·), we have that all the elements in ∂̂2Φ(θ, ξ) are
symmetric and positive definite for any (θ, ξ) ∈ Rn × Rdn due to the positive

Algorithms for shape-constrained convex regression 15

Algorithm 2 : Semismooth Newton method for (14)

1: Initialization: Given (θ0, ξ0) ∈ Rn × Rdn, γ̄ ∈ (0, 1), τ ∈ (0, 1], δ ∈ (0, 1), and µ ∈
(0, 1/2). For j = 0, 1, 2, . . .

2: repeat
3: Step 1. Select an element Hj ∈ ∂̂2Φ(θj , ξj). Apply a direct method or the precondi-

tioned conjugate gradient (PCG) method to find an approximate solution (∆θj ,∆ξj) ∈
Rn × Rdn to

Hj(∆θj ,∆ξj) ≈ −∇Φ(θj , ξj), (16)

such that Rj := Hj(∆θj ,∆ξj)+∇Φ(θj , ξj) satisfies ‖Rj‖ ≤ min(γ̄, ‖∇Φ(θj , ξj)‖1+τ).

4: Step 2. Set αj = δmj , where mj is the smallest nonnegative integer m such that

Φ(θj + δm∆θj , ξj + δm∆ξj) ≤ Φ(θj , ξj) + µδm〈∇Φ(θj , ξj), (∆θj ,∆ξj)〉.

5: Step 3. Set θj+1 = θj + αj∆θ
j , ξj+1 = ξj + αj∆ξ

j .
6: until Stopping criterion (A) or criterion (B) based on θj+1 and ξj+1 is satisfied.

definiteness of H1 and H2. Then for sufficiently large j, we have that {‖H−1
j ‖}

is uniformly bounded from [16, Lemma 7.5.2], and thus

‖(θj , ξj) + (∆θj , ∆ξj)− (θ̄, ξ̄)‖ = ‖(θj , ξj)− (θ̄, ξ̄) +H−1
j (Rj −∇Φ(θj , ξj))‖

≤ ‖H−1
j ‖
(
‖∇Φ(θj , ξj)‖1+τ + ‖Hj((θj , ξj)− (θ̄, ξ̄))−∇Φ(θj , ξj)‖

)
= O(‖∇Φ(θj , ξj)−∇Φ(θ̄, ξ̄)‖1+τ)

+O(‖∇Φ(θj , ξj)−∇Φ(θ̄, ξ̄)−Hj((θj , ξj)− (θ̄, ξ̄))‖)
= O(‖(θj , ξj)− (θ̄, ξ̄)‖1+τ), (17)

where we have used the strong semismoothness property of ∇Φ(·, ·) at (θ̄, ξ̄)

to get the the last equality. In addition, we could prove that there exists δ̂ > 0
such that

〈∇Φ(θj , ξj), (∆θj , ∆ξj)〉 ≤ −δ̂‖(∆θj , ∆ξj)‖2.
Together with [24, Proposition 7] and [16, Proposition 8.3.18], we can derive
that for µ ∈ (0, 1/2), there exists an integer j0 such that for all j ≥ j0,

Φ(θj +∆θj , ξj +∆ξj) ≤ Φ(θj , ξj) + µ〈∇Φ(θj , ξj), (∆θj , ∆ξj)〉,
which implies θj+1 = θj + ∆θj , ξj+1 = ξj + ∆ξj , for j ≥ j0. Combing with
(17), we complete the proof. ut

Note that in the above theorem, we have proved the Q-superlinear conver-
gence of the sequence {(θj , ξj)}, which implies the R-superlinear convergence
of {‖∇Φ(θj , ξj)‖} due to the fact that

‖∇Φ(θj , ξj)‖ = ‖∇Φ(θj , ξj)−∇Φ(θ̄, ξ̄)‖ = O(‖(θj , ξj)− (θ̄, ξ̄)‖).
This further implies that condition (A) or condition (B) in Algorithm 2 can
be met in a small number of iterations, typically at most dozens of steps.

Remark 2 As a side note, for each closed convex set D in Proposition 1, we
will prove in Proposition 3 that the assumption on ∂Proxp(·) in Theorem 3
always holds.

16 M. Lin et al.

4 Numerical implementation of Algorithm proxALM

In this section, we discuss some numerical details concerning the efficient im-
plementation of the proposed proxALM. For implementing the proxALM, we
need the proximal mapping Proxp(ξ) for any ξ ∈ Rdn and its generalized Ja-
cobian. In addition, when evaluating the function value of the problem (D),
we need the formula for p∗(·).

4.1 Computation associated with D

For any ξ = (ξ1; · · · ; ξn) ∈ Rdn, since p(ξ) =
∑n
i=1 δD(ξi), we have that

p∗(ξ) =

n∑
i=1

δ∗D(ξi), Proxp(ξ) =

ΠD(ξ1)
...

ΠD(ξn)

 ,

∂Proxp(ξ) =

∂ΠD(ξ1)
. . .

∂ΠD(ξn)

 ,

(18)

which means that we only need to focus on δ∗D(·), ΠD(·) and ∂ΠD(·) for each
of the set D defined in Proposition 1. We summarize the results in Table 1
– Table 3, where the detailed derivation associated with the case when D =
{x ∈ Rd | ‖x‖1 ≤ L} is given in Appendix A.

Table 1 Conjugate function δ∗D(·)

D δ∗D(x)

D = {x ∈ Rd | xK1 ≥ 0, xK2 ≤ 0} δ∗D(x) = δ−(xK1) + δ+(xK2) + δ{0}(xK3)*

D = {x ∈ Rd | L ≤ x ≤ U} δ∗D(x) = 〈U,max{x, 0}〉+ 〈L,min{x, 0}〉
D = {x ∈ Rd | ‖x‖q ≤ L} δ∗D(x) = L‖x‖p, 1/p+ 1/q = 1

* K3 := {1, · · · , d}\(K1 ∪K2)

From the formula of ∂ΠD(·) in Table 3, we could see that ∂Proxp(·) is a
nonempty, compact valued and upper-semicontinuous multifunction. We prove
the strong semismoothness of Proxp(·) with respect to ∂Proxp(·) in the follow-
ing proposition.

Proposition 3 For the closed convex set D defined in Proposition 1, Proxp(·)
is strongly semismooth with respect to ∂Proxp(·).

Proof By the formula of p(·) and the definition of strong semismoothness, it
suffices to prove that for each choice of D defined in Proposition 1, ΠD(·)
is strongly semismooth with respect to the corresponding Clarke generalized
Jacobian ∂ΠD(·) defined in Table 3.

Algorithms for shape-constrained convex regression 17

Table 2 Proximal mapping ΠD(·)

D ΠD(·)

D = {x ∈ Rd | xK1
≥ 0, xK2

≤ 0} (ΠD(x))i =

{
0 if i ∈ K1, xi < 0, or i ∈ K2, xi > 0

xi otherwise

D = {x ∈ Rd | L ≤ x ≤ U} (ΠD(x))i =

{
xi if Li ≤ xi ≤ Ui
0 otherwise

D = {x ∈ Rd | ‖x‖∞ ≤ L} (ΠD(x))i =

{
xi if |xi| ≤ L
sign(xi)L if |xi| > L

D = {x ∈ Rd | ‖x‖2 ≤ L} ΠD(x) =


x if ‖x‖2 ≤ L

L
x

‖x‖2
otherwise

D = {x ∈ Rd | ‖x‖1 ≤ L} ΠD(x) =

{
x if ‖x‖1 ≤ L
LPxΠ∆d

(Pxx/L)* otherwise

* Px = Diag(sign(x)) ∈ Rd×d, Π∆d
(·) denotes the projection onto the simplex ∆d = {x ∈

Rd | eTd x = 1, x ≥ 0}, which can be computed in O(d log(d)) operations.

Table 3 Generalized Jacobian of ΠD(·)

D ∂ΠD(·)

D = {x ∈ Rd | xK1
≥ 0, xK2

≤ 0} ∂ΠD(x) = Diag(u), ui ∈


{0} if i ∈ K1, xi < 0, or i ∈ K2, xi > 0

[0, 1] if i ∈ K1 ∪K2, xi = 0

{1} otherwise

D = {x ∈ Rd | L ≤ x ≤ U} ∂ΠD(x) = Diag(u), ui ∈


{1} if Li < xi < Ui

[0, 1] if xi = Li or xi = Ui

{0} otherwise

D = {x ∈ Rd | ‖x‖∞ ≤ L} ∂ΠD(x) = Diag(u), ui ∈


{1} if |xi| < L

[0, 1] if |xi| = L

{0} otherwise

D = {x ∈ Rd | ‖x‖2 ≤ L} ∂ΠD(x) =



{Id} if ‖x‖2 < L{
Id − t

xxT

L2
| 0 ≤ t ≤ 1

}
if ‖x‖2 = L{ L

‖x‖2
(Id −

xxT

‖x‖22
)
}

otherwise

D = {x ∈ Rd | ‖x‖1 ≤ L} H ∈ ∂ΠD(x), where H =

{
Id if ‖x‖1 ≤ L
PxH̃Px* otherwise

* H̃ = Diag(r) − 1
nnz(r)

rrT ∈ ∂Π∆d
(x), where r ∈ Rd is defined as ri = 1 if

(
Π∆d

(Pxx/L)
)
i
6= 0, and

ri = 0 otherwise.

For the case when D = {x ∈ Rd | xK1
≥ 0, xK2

≤ 0}, D = {x ∈ Rd |
L ≤ x ≤ U} or D = {x ∈ Rd | ‖x‖∞ ≤ L}, we can see that ΠD(·) is
a Lipschitz continuous piecewise affine function, and thus ΠD(·) is strongly
semismooth everywhere with respect to the corresponding Clarke generalized
Jacobian ∂ΠD(·) defined in Table 3 due to [16, Proposition 7.4.7]. For the case
when D = {x ∈ Rd | ‖x‖2 ≤ L}, the strong semismoothness of ΠD(·) with
respect to ∂ΠD(·) follows from the fact that the projection onto the second

18 M. Lin et al.

order cone is strongly semismooth [13, Proposition 4.3]. When D = {x ∈ Rd |
‖x‖1 ≤ L}, ΠD(·) is strongly semismooth with respect to the corresponding
∂ΠD(·) in Table 3, which is the so-called HS-Jacobian [17,26]. ut

4.2 Finding a computable element in ∂̂2Φ(θ, ξ)

As already mentioned, the most difficult part of the proxALM is in solving the
Newton system (16). For efficient practical implementation, we need to find

an efficiently computable element in ∂̂2Φ(θ, ξ) for any given (θ, ξ) ∈ Rn×Rdn.

From the definition of ∂̂2Φ(θ, ξ), we can rewrite it as

∂̂2Φ(θ, ξ) =M1(θ, ξ) +M2(ξ),

where

M1(θ, ξ) = σ

(
AT

BT

)(
In2 − ∂Π+(Aθ +Bξ − ũ

σ
)
) (
A B

)
,

M2(ξ) =

In+
1

σ
H1

0

0

σ
[
Idn − ∂Proxp(ξ −

ṽ

σ
)
]

+
1

σ
H2

 .

Based on our discussion on ∂Proxp(·) in (18) and ∂ΠD(·) in Table 3, we
can see that the elements in ∂Proxp(·) are block diagonal matrices. In order
to maintain the block diagonal structure, we choose H1 and H2 to be diagonal
matrices, and hence the elements in M2(ξ) for any ξ ∈ Rdn will also be block
diagonal matrices. One can easily pick an element in M2(ξ) by choosing an
element in ∂Proxp(ξ − ṽ/σ).

ForM1(θ, ξ), we choose an element Diag(w) in ∂Π+(Aθ+Bξ−ũ/σ), where

wi =

1 if (Aθ +Bξ − ũ

σ
)i ≥ 0

0 otherwise
, i = 1, · · · , n2.

By denoting w̄ ∈ Rn2

as w̄i = 1− wi for i = 1, · · · , n2, then

M = σ

(
AT

BT

)
Diag(w̄)

(
A B

)
= σ

(
ATDiag(w̄)A ATDiag(w̄)B

BTDiag(w̄)A BTDiag(w̄)B

)

Algorithms for shape-constrained convex regression 19

is an element in M1(θ, ξ). After some algebraic manipulations by making use
of the structure of A and B, we can prove the following results:

ATDiag(w̄)A = Diag

(
n∑
i=1

w̄(i)

)
+ Diag

(
w̄T(1)w̄(1), · · · , w̄T(n)w̄(n)

)
− (w̄(1), · · · , w̄(n))− (w̄T(1); · · · ; w̄T(n)) ∈ Rn×n,

ATDiag(w̄)B =
(
Diag(w̄(1))B1, · · · ,Diag(w̄(n))Bn

)
−Diag

(
w̄T(1)B1, · · · , w̄T(n)Bn

)
∈ Rn×dn,

BTDiag(w̄)B = Diag
(
BT1 Diag(w̄(1))B1, · · · , BTnDiag(w̄(n))Bn

)
∈ Rdn×dn,

where w̄(i) := w̄(i−1)n+1:in ∈ Rn. It can be seen that the 0-1 structure of
w̄ will reduce many operations in matrix-matrix multiplications, and hence
highly reduce the computational cost for computing M or matrix-vector prod-
ucts with M . Note that for all i, Diag(w̄(i))Bi is a matrix in Rn×d, with
its j-th row being the j-th row of Bi if (w̄(i))j = 1, or the zero vector if
(w̄(i))j = 0. Then the computation of w̄T(i)Bi can be obtained by summing

the non-zero rows of Diag(w̄(i))Bi, and the computation of BTi Diag(w̄(i))Bi =
(Diag(w̄(i))Bi)

T (Diag(w̄(i))Bi) can be highly reduced in the same way.

The special structure of the elements in ∂̂2Φ(θ, ξ), which we call as the
second-order sparsity, makes it possible for us to apply the SSN based proxALM

algorithm to solve the huge QP problem (P) that contains n(d + 1) vari-
ables, n(n − 1) linear inequality constraints and n possibly non-polyhedral
constraints.

5 A constraint generation method to accelerate the computation

Due to the existence of n(n− 1) linear inequality constraints, the problem (P)
is quite difficult to solve for the case when the number of observations n is
huge. This naturally motivated us to consider a constraint generation method
to avoid handling the full set of constraints when solving the problem. In
this section, we design a practical implementation of the constraint generation
method for solving the problem (P) with large n, where each reduced problem
is solved by the proxALM.

The basic idea of the constraint generation method is to start solving the
constrained QP with a subset of constraints, then add the most violated con-
straints (or part of violated constraints) to form a new reduced problem until
the optimality conditions are satisfied. In our implementation, there are three
points that we should emphasize. First, we add a relatively large number of
most violated constraints in each round to highly reduce the number of rounds
needed for the constraint generation method to terminate. Second, we apply
our proposed proxALM to solve each reduced problem to high accuracy, which
is demonstrated to be quite efficient for solving large-scale problems. Third, we

20 M. Lin et al.

divide the O(n2) constraints into blocks and check the optimality conditions
block-wise to cope with the memory demand.

Suppose that (θ∗, ξ∗, u∗, v∗) ∈ Rn ×Rdn ×Rn2 ×Rdn is a KKT solution of
the problems (P) and (D). Note that in the problem (P), the condition

Aθ +Bξ ≥ 0

imposes n2 linear inequality constraints on n(d + 1) variables. For the case
when n� d, no more than n(d+ 1) independent constraints would be active
at (θ∗, ξ∗). That is to say, there exists an index set I∗ ⊂ {1, 2, · · · , n2} with
|I∗| ≤ n(d+ 1) such that

(Aθ∗ +Bξ∗)I∗ = 0, (Aθ∗ +Bξ∗)Ī∗ ≥ 0,

where Ī∗ denotes the complement of I∗ in {1, 2, · · · , n2}. The small proportion
of active constraints inspires us to apply the idea of the constraint generation
as an acceleration technique to solve the problems with large n.

Given an index set I ⊂ {1, 2, · · · , n2}, we consider a variant of the problem
(P) as

min
θ∈Rn,ξ∈Rdn

{1

2
‖θ − Y ‖2 + p(ξ) + δ+(AIθ +BIξ)

}
, (19)

where AI denotes the matrix consisting of the rows of A indexed by I. The
corresponding dual problem is

max
u∈Rn2 ,v∈Rdn

{
− 1

2
‖ATu‖2 − 〈Y,ATu〉 − p∗(−v)− δ+(u)

}
s.t. BTu+ v = 0, uĪ = 0.

(20)

The KKT system associated with the problems (19) and (20) is

θ − Y −ATu = 0, BTu+ v = 0, uĪ = 0,

− v ∈ ∂p(ξ), −uI ∈ ∂δ+(AIθ +BIξ).
(21)

Suppose that (θ̄, ξ̄, ū, v̄) ∈ Rn × Rdn × Rn2 × Rdn satisfies the KKT system
(21). We could see that (θ̄, ξ̄, ū, v̄) naturally satisfies the KKT system (10)
associated with the problems (P) and (D), except for the following inequality

AĪθ +BĪξ ≥ 0.

Therefore, we add the indices in the index set I ′ := {i ∈ Ī | A{i}θ̄+B{i}ξ̄ < 0}
into I to get a new variant of the problem (P) as stated in (19), then repeat the
procedure until the stopping criteria of the problems (P) and (D) are satisfied.

Note that in this paper, we use the relative KKT residual

RKKT := max
{ ‖θ − Y −ATu‖

1 + ‖Y ‖+ ‖θ‖+ ‖u‖
,
‖BTu+ v‖

1 + ‖u‖+ ‖v‖
,
‖ξ − Proxp(ξ − v)‖

1 + ‖ξ‖+ ‖v‖
,

‖Aθ +Bξ −Π+(Aθ +Bξ − u)‖
1 + ‖Aθ‖+ ‖Bξ‖+ ‖u‖

}
≤ ε, (22)

Algorithms for shape-constrained convex regression 21

where ε > 0 is a given tolerance, to measure the accuracy of an approximate
optimal solution (θ, ξ, u, v) to the KKT system (10). In addition, given an
index set I ⊂ {1, 2, · · · , n2}, we define

RIKKT = max
{ ‖θ − Y −ATI uI‖

1 + ‖Y ‖+ ‖θ‖+ ‖uI‖
,
‖BTI uI + v‖

1 + ‖uI‖+ ‖v‖
,
‖ξ − Proxp(ξ − v)‖

1 + ‖ξ‖+ ‖v‖
,

‖AIθ +BIξ −Π+(AIθ +BIξ − uI)‖
1 + ‖AIθ‖+ ‖BIξ‖+ ‖uI‖

}
.

Next we present our practical implementation of the constraint genera-
tion method for solving the problem (P) in Algorithm 3, where we apply our
proposed proxALM to solve each of the reduced problems.

Algorithm 3 : Constraint generation method for (P)

1: Initialization: Given a tolerance ε > 0 and an initial index set I0 ⊂ {1, 2, · · · , n2},
solve the problem

min
θ∈Rn,ξ∈Rdn

{1

2
‖θ − Y ‖2 + p(ξ) + δ+(AI0θ +BI0ξ)

}
(PI0)

to get an approximate KKT solution (θ0, ξ0, u0, v0) ∈ Rn ×Rdn ×Rn2 ×Rdn such that

u0
Ī0

= 0 and RI0KKT ≤ ε. Compute RKKT and set k = 1.
2: repeat
3: Step 1. Let

Sk := {j ∈ Īk−1 | A{j}θk−1 +B{j}ξ
k−1 < 0}.

If |Sk| > |Ik−1|, set

Ik = Ik−1 ∪
{
j ∈ Īk−1

∣∣∣∣∣A{j}θ
k−1 +B{j}ξ

k−1 is among the first |Ik−1|

smallest values in ASkθ
k−1 +BSkξ

k−1

}
;

and otherwise, set Ik = Ik−1 ∪ Sk.

4: Step 2. Solve the problem

min
θ∈Rn,ξ∈Rdn

{1

2
‖θ − Y ‖2 + p(ξ) + δ+(AIkθ +BIkξ)

}
(PIk)

to get an approximate KKT solution (θk, ξk, uk, vk) ∈ Rn × Rdn × Rn2 × Rdn such

that uk
Īk

= 0 and R
Ik
KKT ≤ ε.

5: Step 3. Compute RKKT and set k ← k + 1.
6: until Stopping criteria RKKT ≤ ε is satisfied.

Remark 3 As a side note, in the kth iteration of Algorithm 3, we apply a
warm start technique by setting the initialization as the solution obtained in
the (k − 1)th iteration.

The convergence property of Algorithm 3 is presented in the following
theorem.

22 M. Lin et al.

Theorem 4 For any given tolerance ε and any initial index set I0 ⊂ {1, 2, · · · , n2},
Algorithm 3 will terminate after a finite number of rounds.

Proof We first prove that if Sk+1 = ∅, the corresponding (θk, ξk, uk, vk) ∈
Rn × Rdn × Rn2 × Rdn satisfies RKKT ≤ ε. Suppose Sk+1 = ∅, then we have

AĪkθ
k +BĪkξ

k ≥ 0.

Together with uk
Īk

= 0, we know that

‖θk − Y −ATuk‖
1 + ‖Y ‖+ ‖θk‖+ ‖uk‖

=
‖θk − Y −ATIku

k
Ik‖

1 + ‖Y ‖+ ‖θk‖+ ‖uk‖
,

‖BTuk + vk‖
1 + ‖uk‖+ ‖vk‖

=
‖BTIku

k
Ik + vk‖

1 + ‖uk
Ik
‖+ ‖vk‖

,

‖Aθk +Bξk −Π+(Aθk +Bξk − uk)‖
1 + ‖Aθk‖+ ‖Bξk‖+ ‖uk‖

≤
‖AIkθk +BIkξ

k −Π+(AIkθ
k +BIkξ

k − ukIk)‖
1 + ‖AIkθk‖+ ‖BIkξk‖+ ‖uk

Ik
‖

.

Combining with the fact that (θk, ξk, uk, vk) satisfies RIkKKT ≤ ε, we have

the corresponding relative KKT residual RKKT ≤ RIkKKT ≤ ε. As a result,
if RKKT > ε, we have Sk+1 6= ∅, which means that new constraints will be
added to construct a new reduced primal problem. Since the total number of
the constraints in the primal problem (P) is finite, our algorithm will terminate
after a finite number of rounds. ut

Note that in the algorithm, we add a relatively large number of violated
constraints instead of adding n violated constraints in each round as done in [6,
12]. The reason is that we have a highly efficient proxALM algorithm which can
solve each reduced problem (PIk) with a relatively large number of constraints.
The superior performance of this acceleration technique will be demonstrated
in the numerical experiments.

6 Numerical experiments

In this section, we conduct some numerical experiments to demonstrate the
performance of the proxALM for solving (P), under each case of D mentioned in
Proposition 1, as well as the performance of the constraint generation method
for the acceleration. In addition, we design a data-driven Lipschitz estimation
method to deal with the boundary effect of the convex regression problem.
All our computational results are obtained by running MATLAB R2018b on a
windows workstation (12-core, Intel Xeon E5-2680 @ 2.50GHz, 128 G RAM).

Algorithms for shape-constrained convex regression 23

6.1 Computational performance of the proxALM for solving (P)

In this subsection, we compare the performance of the proxALM, the sGS-ADMM,
and MOSEK for different choices of d and n. In the experiments, we stop the al-
gorithm when RKKT ≤ 10−4, where RKKT is defined in (22). In Algorithm
proxALM, we choose H1 = 10−3In, H2 = 10−3Idn, and use the stopping
criteria (B) in Step 1 with δk = max{0.1, 10−6/‖(θk+1, ξk+1, uk+1, vk+1) −
(θk, ξk, uk, vk)‖Σ}/(dk/20e2). Here, the sGS-ADMM is a symmetric Gauss-Seidel
based multi-block ADMM, which is proved to be convergent and has been demon-
strated to perform better than the possibly nonconvergent directly extended
multi-block ADMM [11]. The detailed description of the sGS-ADMM could be found
in Appendix B. As we can see in [3], as long as there is enough memory, MOSEK
can perform quite a lot better than the parallel APG method. Since there is
enough memory on our workstation, we just compare our proposed proxALM

with the state-of-the-art algorithms MOSEK and sGS-ADMM.

For a given convex function ψ : Rd → R, the synthetic dataset is generated
via the procedure in [30]. We first generate n samples Xi ∈ Rd, i = 1, · · · , n
uniformly from [−1, 1]d, then the corresponding responses are given as Yi =
ψ(Xi) + εi. The error vector ε follows the normal distribution N (0, σ2In),
where σ2 = Var({ψ(Xi)}ni=1)/SNR. In the experiments, we take SNR = 3.
Before we run the algorithms for the data X = (X1, · · · , Xn) ∈ Rd×n and
Y ∈ Rn, we process the data so as to build a more predictive model. For the
response Y and each row of the predictor X, we mean-center the vector and
then standardize it to have unit `2-norm.

1000 2000 3000 4000 5000

n

101

102

103

T
im

e
(s

)

d=2

proxALM
sGS-ADMM
MOSEK

1000 2000 3000 4000 5000

n

101

102

103

104

T
im

e
(s

)

d=5

proxALM
sGS-ADMM
MOSEK

1000 2000 3000 4000 5000

n

101

102

103

104

T
im

e
(s

)

d=10

proxALM
sGS-ADMM
MOSEK

Fig. 1 Convex regression for test function ψ(x) = exp(pT x), where p is a given random
vector with each coordinate drawn from the standard normal distribution

The numerical results on the comparison among proxALM, sGS-ADMM and
MOSEK can be found in Figure 1 – Figure 6. Note that we set the y-axes of all
figures in log-scale to better show the functional dependence on n. We con-
duct experiments on the unconstrained convex regression problem and each
case of shape-constrained convex regression we mentioned before, under dif-
ferent choices of (d, n). All the test functions are convex on Rd and satisfy
some specified shape constraints. As one can see from the figures, proxALM
outperforms the state-of-the-art solvers MOSEK and sGS-ADMM by a large mar-

24 M. Lin et al.

1000 2000 3000 4000 5000

n

102

103

T
im

e
(s

)

d=2

proxALM
sGS-ADMM
MOSEK

1000 2000 3000 4000 5000

n

102

103

104

T
im

e
(s

)

d=5

proxALM
sGS-ADMM
MOSEK

1000 2000 3000 4000 5000

n

101

102

103

104

T
im

e
(s

)

d=10

proxALM
sGS-ADMM
MOSEK

Fig. 2 Convex regression with monotone constraint (non-decreasing) for the test function
ψ(x) = (eTd x)+

1000 2000 3000 4000 5000

n

102

103

T
im

e
(s

)

d=2

proxALM
sGS-ADMM
MOSEK

1000 2000 3000 4000 5000

n

102

103

T
im

e
(s

)

d=5

proxALM
sGS-ADMM
MOSEK

1000 2000 3000 4000 5000

n

102

103

104

T
im

e
(s

)

d=10

proxALM
sGS-ADMM
MOSEK

Fig. 3 Convex regression with box constraint (L = 0d, U = ed) for the test function
ψ(x) = ln(1 + exp(eTd x))

1000 2000 3000 4000 5000

n

102

103

T
im

e
(s

)

d=2

proxALM
sGS-ADMM
MOSEK

1000 2000 3000 4000 5000

n

102

103

104

T
im

e
(s

)

d=5

proxALM
sGS-ADMM
MOSEK

1000 2000 3000 4000 5000

n

102

103

104

T
im

e
(s

)

d=10

proxALM
sGS-ADMM
MOSEK

Fig. 4 Convex regression with Lipschitz constraint (p = 1, q = ∞, L = 1) for the test

function ψ(x) =
√

1 + xT x

gin, especially for large-scale cases. For example, for the convex regression
with monotone constraint when (d, n) = (5, 5000), the proxALM takes about
800 seconds, while sGS-ADMM and MOSEK take around 4000 seconds.

More numerical results of the comparison on instances with larger d could
be found in Appendix C.

Algorithms for shape-constrained convex regression 25

1000 2000 3000 4000 5000

n

102

103

T
im

e
(s

)

d=2

proxALM
sGS-ADMM
MOSEK

1000 2000 3000 4000 5000

n

102

103

104

T
im

e
(s

)

d=5

proxALM
sGS-ADMM
MOSEK

1000 2000 3000 4000 5000

n

102

103

104

T
im

e
(s

)

d=10

proxALM
sGS-ADMM
MOSEK

Fig. 5 Convex regression with Lipschitz constraint (p = 2, q = 2, L = λmax(Q)) for the

test function ψ(x) =
√
xTQx, where Q ∈ Rd×d is a randomly generated symmetric and

positive definite matrix with known largest eigenvalue

1000 2000 3000 4000 5000

n

101

102

103

T
im

e
(s

)

d=2

proxALM
sGS-ADMM
MOSEK

1000 2000 3000 4000 5000

n

102

103

104

T
im

e
(s

)

d=5

proxALM
sGS-ADMM
MOSEK

1000 2000 3000 4000 5000

n

102

103

104

T
im

e
(s

)

d=10

proxALM
sGS-ADMM
MOSEK

Fig. 6 Convex regression with Lipschitz constraint (p = ∞, q = 1, L = 1) for the test
function ψ(x) = ln(1 + ex1 + · · ·+ exd)

6.2 Computational performance of the acceleration with the constraint
generation method

In this subsection, we mainly focus on the case when n� d. Consider the con-
vex function ψ(x) = 5‖x‖∞ + ‖x‖2, we sample n data points uniformly from
[−1, 1]d and add the Gaussian noise as stated in Section 6.1 with SNR= 10.
Figure 7 shows the time comparison among CGM+proxALM, CGM+sGS-ADMM,
CGM+MOSEK, proxALM, sGS-ADMM, MOSEK, where CGM+ means the constraint gen-
eration method is used for the acceleration, to solve the convex regression
problems with d = 2. Note that in the CGM, we take |I0| = 10n and select the
initial indices uniformly at random from the set {1, 2, · · · , n2}. We stop each
algorithm when RKKT ≤ 10−4.

From the result, we can see that CGM+proxALM outperforms all other algo-
rithms by quite a large margin. For example, for the case (d, n) = (2, 5000),
CGM+proxALM takes 28 seconds, proxALM takes 288 seconds, while the remain-
ing four algorithms take around 1000 seconds.

To further demonstrate the performance of the CGM with the proxALM, we
conduct experiments on examples with higher dimensions and larger sample
sizes. The results are shown in Table 4. In Algorithm CGM, we set |I0| = 50n for
d = 2, and |I0| = 10n for d = 10, 20. In consideration of memory cost, we divide

26 M. Lin et al.

1000 2000 3000 4000 5000

n

0

500

1000

1500

T
im

e
(s

)

proxALM
sGS-ADMM
MOSEK
CGM+proxALM
CGM+sGS-ADMM
CGM-MOSEK

Fig. 7 Time comparison among CGM+proxALM, CGM+sGS-ADMM, CGM+MOSEK, proxALM,
sGS-ADMM, MOSEK

the n2 constraints into ten parts when checking the optimality conditions (10)
and when selecting the new indices in Step 1 of Algorithm CGM.

Table 4 Performance of CGM+proxALM on convex regression on instances with large sample
sizes. Time is divides into three parts: CGM (constraint generation step), proxALM (running
time of the proxALM), and OPT (checking optimality conditions)

(d, n) CGM rounds RKKT Rgap R̂viotol R̂pinfeas Time(s)(CGM| proxALM|OPT)

(2, 10000) 3 1.39e-5 1.54e-4 1.88e-3 5.42e-6 36(2| 31| 3)
(2, 50000) 3 9.25e-5 2.01e-3 1.87e-3 1.61e-5 281(46| 172| 63)
(2, 100000) 4 6.87e-5 5.11e-3 6.16e-4 4.28e-6 1270(194| 740| 336)
(10, 10000) 4 1.58e-5 1.19e-3 1.30e-2 9.13e-6 27(3| 17| 7)
(10, 50000) 4 8.87e-5 9.23e-3 1.71e-2 2.24e-5 334(67| 181| 86)
(10, 100000) 5 2.42e-5 9.91e-3 7.93e-3 2.65e-6 1625(328| 855| 442)
(20, 10000) 3 6.57e-5 1.89e-3 1.17e-2 2.88e-5 45(3| 37| 5)
(20, 50000) 4 8.04e-5 5.59e-3 5.14e-3 1.57e-5 425(73| 265| 87)
(20, 100000) 5 3.88e-5 7.90e-3 1.31e-3 3.16e-7 1614(331| 836| 447)

Note that in the table, the number of CGM rounds includes the initialization
step, and Rrel is defined as

Rrel =
|pobj− dobj|

1 + |pobj|+ |dobj|
,

where pobj and dobj denote the primal and dual objective function values.
For better illustration, we also report the primal infeasibility [30,6] and the
violation tolerance [6] as

R̂pinfeas =
1

n
‖(Aθ +Bξ)−‖, R̂viotol = max |(Aθ +Bξ)−|,

respectively, where x− := min(x, 0).
We can see from the table that the CGM combined with the proxALM per-

forms quite well for estimating the convex regression functions with huge sam-
ple sizes. Note that in the table, time is divided into three parts: constraint

Algorithms for shape-constrained convex regression 27

generation step, running time of the proxALM and checking optimality condi-
tions. As the sample size of the instance increases, the time taken by the con-
straint generation step and checking optimality conditions increases rapidly
due to the huge number of n2 linear inequality constraints. For example, for
the instance with size (d, n) = (10, 100000), we need to solve a constrained
QP containing 1.1×106 variables and 1010 linear inequality constraints. From
the table we can see that checking the optimality conditions five times cost
442 seconds while estimating the convex regression function with CGM+proxALM

only costs 1625 seconds. The long computation time needed to check the opti-
mality conditions for large n is the reason why we choose to add more violated
constraints in each round so as to reduce the number of rounds in the con-
straint generation method. As a comparison, we note that the implementation
in [6] of the constraint generation method with each reduced problem solved by
Gurobi needs around 1 hour and 11 rounds of the constraint generation to solve
the problem of the same size, but only achieves the accuracy R̂viotol = 0.05,
R̂pinfeas = 0.004. The success of the proposed CGM combined with the proxALM

lies in two aspects. First, the number of rounds of the constraint generation is
highly reduced since we add a relatively large number of violated constraints
in each round. Second, the proxALM is quite efficient to solve each reduced
problem in the CGM compared to Gurobi or MOSEK.

6.3 Data-driven Lipschitz estimation method

An important issue in convex regression is over-fitting near the boundary of
conv(X1, · · · , Xn). That is, the norms of the fitted subgradients ξi’s near the
boundary can become arbitrarily large. The authors in [27,4,30] used the idea
of Lipschitz convex regression to deal with this problem. They propose to
compute the least squares estimator over the class of convex functions that are
uniformly Lipschitz with a given bound, which means that they compute the
estimator defined in (2) with Property S taking the form of (S3). In practice,
the challenge is in choosing the unknown Lipschitz constant in the model
based on the given data. Mazumder et al. [30] choose to estimate the Lipschitz
constant by using the cross-validation. In this paper, we provide a data-driven
Lipschitz estimation method for the Lipschitz convex regression.

For each Xi, we first find the k-nearest neighbors N (Xi) of Xi, and then
define

Li = median
{ |Yi − Yj |
‖Xi −Xj‖p

, j ∈ N (Xi)
}
,

where p = 1, 2,∞ is given. Then we solve the generalization form of (7) as

min
θ1,...,θn∈R;ξ1,...,ξn∈Rd

1

2

n∑
i=1

(θi − Yi)2

s.t. θi ≥ θj + 〈ξj , Xi −Xj〉, ∀ 1 ≤ i, j ≤ n,
ξi ∈ Di, i = 1, · · · , n,

(23)

28 M. Lin et al.

where Di = {x ∈ Rd | ‖x‖q ≤ Li} with 1/p+ 1/q = 1. The proposed proxALM

can be easily extended to solve (23) by letting p(ξ) =
∑n
i=1 δDi(ξi).

We use an example here to demonstrate the performance of Lipschitz con-
vex regression with the data-driven Lipschitz estimation method. Consider
the convex function ψ(x) = 2‖x‖∞ + ‖x‖2, we sample n = 80 data points
uniformly from [−1, 1]d and add the Gaussian noise as stated in Section 6.1.
The results for d = 1, 2 can be seen in Figure 8. When estimating the Lipschitz
constant for each data point, we take k = 5 and p = q = 2. As shown in the
figure, Lipschitz convex regression does reduce the estimation error near the
boundary of the convex hull of Xi’s.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

X

-2

-1

0

1

2

3

4

Y

Result of Lipschitz convex regression (d=1)

data point
true function
convex regression
Lipschitz convex regression

(a) d = 1 (b) d = 2

Fig. 8 Result of Lipschitz convex regression with the data-driven Lipschitz estimation
method

7 Real applications

In this section, we apply our framework for estimating the multivariate shape-
constrained convex functions in some real applications, namely, pricing of Eu-
ropean call options, pricing of basket options, prediction of average weekly
wages and estimation of production functions.

7.1 Option pricing of European call options

Consider a European call option whose payoff at maturity T is (ST − K)+,
where ST is a random variable that stands for the stock price at T , and K is
the predetermined strike price. We are interested in the option price at time
t, which is defined as

V (S) := E[e−r(T−t)(ST −K)+ | St = S], S > 0,

Algorithms for shape-constrained convex regression 29

where r is the risk-free interest rate. Under the Black-Scholes model, the ran-
dom variable ST satisfies

logST ∼ N
(

logSt + (r − 1

2
σ2)(T − t), σ2(T − t)

)
,

where σ is the volatility. It is well-known that V (·) is a convex function with
0 ≤ V ′(S) ≤ 1 for S > 0. Therefore, we can use the shape-constrained convex
regression model with Property (S2) to estimate the function V (·).

There are two reasons why we consider this application to demonstrate the
numerical performance of our framework. One is that V (·) admits a closed-
form solution as

V (S) = SΦ(d1)−Ke−r(T−t)Φ(d2), d1,2 =
log S

K + (r ± 1
2σ

2)(T − t)
σ
√
T − t

,

where Φ(·) is the cumulative distribution function of the standard normal
distribution. The second reason is that the estimation of function V (·) is used
in pricing American-type options by approximate dynamic programming, e.g.
[29].

In our experiment, we take t = 0.1, T = 0.4, K = 10, r = 0, σ = 0.2. We
sample 200 data points, denoted as {(Si, Vi)}200

i=1. For each Si, logSi is sampled
following the distribution N (logK + (r − σ2/2)t, σ2t), and the corresponding
Vi is sampled such that log Vi follows the distribution N (logSi+(r−σ2/2)(T−
t), σ2(T − t)). For comparison, we apply several regression models to estimate
the conditional expectation function V : linear regression, least squares linear
regression on a set of basis functions (e.g. weighted Laguerre basis in [29]),
unconstrained convex regression and convex regression with box constraint
(L = 0, U = 1).

8 8.5 9 9.5 10 10.5 11 11.5 12

S

-1

0

1

2

3

4

5

6

V

Comparison among regression models

data point
true function
linear regression
Laguerre regression
uncontrained convex regression
shape-constrained convex regression

8.3 8.4 8.5 8.6 8.7 8.8 8.9 9
-0.6

-0.4

-0.2

0

0.2

Fig. 9 Results of the estimation of the option pricing of European call option

The comparison among regression models is shown in Figure 9. We can see
that the performance of shape-constrained convex regression is the best. The
poor performance of linear regression, Laguerre regression and unconstrained
convex regression appears near the boundary in three aspects. The first is that

30 M. Lin et al.

the results from linear regression and Laguerre regression take negative values
when S is small, which contradicts the fact that V is always non-negative.
The second is that the Laguerre regression can not obtain the required convex
property. The last is that when S is large, the gradients of the results obtained
by Laguerre regression and unconstrained convex regression are too large. To
deal with this over-fitting problem, we add the box constraint to the convex
regression, which comes from prior knowledge. We can see that the result of
shape-constrained convex regression performs better near the boundary, which
demonstrates the advantage of the additional shape constraint.

7.2 Option pricing of basket options

To test multivariate convex regression problems, we consider pricing the basket
option on weighted average of M underlying assets.

Basket option of two European call options (M = 2). We first consider a
basket option of two European call options, where

V (x, y) = E[e−r(T−t)(w1S
1
T + w2S

2
T −K)+ | S1

t = x, S2
t = y], x, y > 0,

where w = (w1, w2)T is a given weight vector such that w ≥ 0, w1 + w2 = 1.
The random variables S1

T and S2
T satisfy(

logS1
T

logS2
T

)
∼ N

((
logS1

t + (r − σ2
1/2)(T − t)

logS2
t + (r − σ2

2/2)(T − t)

)
, (T − t)

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
,

where σ1, σ2 are volatilities. One can show that V (·, ·) is a convex function
with 0 ≤ ∇V (x, y) ≤ w, and the proof can be found in Appendix D. We
can apply the multivariate shape-constrained convex regression model with
Property (S2) (L = 0, U = w) to estimate the function V .

The convex function V (·, ·) does not admit a closed-form solution. However
V is also the solution of the Black-Scholes PDE, which can be solved by the
finite difference method. The details of the corresponding convection-diffusion
equation and the finite difference method for solving it could be found in
Appendix E. We use the solution obtained by the finite difference method as
the benchmark.

In the experiment, we take r = 0, ρ = 0.1, σ1 = 0.2, σ2 = 0.3, K = 10,
t = 0, T = 0.5, w1 = w2 = 0.5. We sample 200 data points, denoted as
{(Si, Vi)}200

i=1, where Si follows the uniform distribution on the open interval
(0, 5K)× (0, 5K) and Vi follows the distribution

N

(
logSi + (T − t)

(
r − σ2

1/2

r − σ2
2/2

)
, (T − t)

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
.

The numerical result is shown in Figure 10. For better illustration, we also
plot the absolute error and relative error of the results of the unconstrained

Algorithms for shape-constrained convex regression 31

convex regression and shape-constrained convex regression. As we can see, the
shape-constrained convex regression performs much better than unconstrained
convex regression, especially near the boundary.

(a)

(b) (c)

Fig. 10 Result of the estimation of the option pricing of basket option (M = 2)

Basket option of more underlying assets (M > 2). The basket option in prac-
tice always contains many underlying assets, possibly greater than two. The fi-
nite difference method is very time-consuming when solving the 3-dimensional
convection-diffusion equation, and even impossible to be applied to the higher
dimensional cases due to the curse of dimensionality. For M > 2, researchers
tend to apply the Monte Carlo simulation to estimate the convex function
associated with the basket option. Therefore, we treat the solution obtained
by the Monte Carlo simulation as the benchmark.

To demonstrate the performance of the shape-constrained convex regres-
sion, we design the experiments for estimating the basket option for M = 5
and M = 10. That is, we consider a basket option of M European call options,

32 M. Lin et al.

which is defined as: for any x1, · · · , xM > 0,

V (x1, · · · , xM)

= E[e−r(T−t)(w1S
1
T + · · ·+ wMS

M
T −K)+ | S1

t = x1, · · · , SMt = xM],

where w = (w1, · · · , wM)T is a given weight vector such that w ≥ 0, w1 + · · ·+
wM = 1. The random variables S1

T , · · · , SMT satisfy


logS1

T

...

logSMT

∼N



logS1
t + (r − σ2

1/2)(T − t)
...

logSMt + (r − σ2
M/2)(T − t)

, (T − t)


σ2
1 · · · ρσ1σM

...
. . .

...

ρσ1σM · · · σ2
M


 ,

where σ1, · · · , σM are volatilities. Then V is a convex function with 0 ≤ ∇V ≤
w. We apply the multivariate shape-constrained convex regression model with
Property (S2) (L = 0, U = w) to estimate the function V .

Table 5 Estimation of basket option
with M = 5

Model n MSE Time

UC

200 5.56e+1 00:00:07
400 1.42e+1 00:00:27
600 7.41e+1 00:00:22

SC

200 4.07e-1 00:00:12
400 3.86e-1 00:00:51
600 5.95e-1 00:00:27

Table 6 Estimation of basket option
with M = 10

Model n MSE Time

UC

200 2.05e+1 00:00:12
400 4.06e+1 00:00:10
600 5.98e+1 00:00:20

SC

200 2.21e+0 00:00:35
400 1.32e+0 00:00:27
600 1.00e+0 00:00:42

In the experiment, we set r = 0, ρ = 0.1, K = 10, t = 0, T = 0.5,
wi = 1/M , σi = 0.2 + 0.025(i − 1), i = 1, · · · ,M . We sample n data points
as the case for M = 2. To illustrate the performance of our procedure, we
uniformly generate 1000 test points in the range (0, 5K)M . At each test point,
we use the Monte Carlo simulation with 105 samples to compute the “true”
function value. We summarize the results of M = 5 and M = 10 in Table 5
and Table 6, respectively. In the tables, “UC” represents the unconstrained
convex regression, “SC” represents the shape-constrained convex regression,
and “MSE” represents the mean squared error. As one can see, the shape-
constrained convex regression takes a little bit longer time to be solved than
the unconstrained convex regression, but get a much better estimated result.

7.3 Prediction of average weekly wages

We consider the problem of estimating the average weekly wages based on
years of education and experience as given in [38, Chapter 10]. This dataset is

Algorithms for shape-constrained convex regression 33

from 1988 March U.S. Current Population Survey, which can be downloaded
as ex1029 in the R package Sleuth2. The set contains weekly wages in 1987 for
a sample of 25632 males between the age of 18 and 70 who worked full-time,
with their years of education and years of experience. After averaging over a
grid with cell size of 1 year by 1 year and ignoring the outliers, we finally come
to a dataset with 857 samples.

A reasonable assumption for this application is that the wages are con-
cave in years of experience and a transformation of years of education, i.e.,

1.2years of education, according to [18]. The estimated result is shown in Fig-
ure 11. The shape-constrained convex regression problem is solved within 1
minute.

(a) Estimated function values at each Xi (b) Visualization of the function

Fig. 11 Results of the estimation of average weekly wages

7.4 Estimation of production functions

In economics, a production function gives the technological relation between
quantities of inputs and quantities of output of goods. Production functions are
known to be concave and non-decreasing [19,45,47]. We apply our framework
to estimate the production function for the plastic industry (CIIU3 industry
code: 2520) in the year 2011. The dataset can be downloaded from the website
of Chile’s National Institute of Statistics. As in the setting in [47], we use labor
and capital as the input variables, and value added as the output variable. In
the dataset, labor is measured as the total man-hours per year, capital and
value added are measured in millions of Chilean peso. After removing some
outliers, the dataset contains 250 samples. The numerical results can be found
in Figure 12. The shape-constrained convex regression problem is solved within
3 seconds.

Another example is to explain the labour demand of 569 Belgian firms for
the year 1996. The dataset can be obtained from [46]2. The dataset includes the

2 https://www.wiley.com/legacy/wileychi/verbeek2ed/datasets.html

34 M. Lin et al.

0 1 2 3 4

capital 104
0 2 4 6 8

labor 107

0

5000

10000

15000

es
tim

at
ed

 c
on

ve
x

re
gr

es
si

on
 v

al
ue

-5000

0

5000

10000

15000

20000

da
ta

 p
oi

nt

(a) Correlogram of the function (b) Visualization of the function

Fig. 12 Result of estimation of production function of plastic in Chile

0 50 100
wage

0 1000 2000
labour

0 50 100 150
capital

-50

0

50

100

150

200

es
tim

at
ed

 c
on

ve
x

re
gr

es
si

on
 v

al
ue

0

50

100

150

200

250

da
ta

 p
oi

nt

(a) Correlogram of the function (b) Visualization of the function

Fig. 13 Result of estimation of production function of Belgian firms

total number of employees (labour), their average wage (wage), the amount
of capital (capital) and a measure of output (value added). The labour is
measured as the number of workers, the wage is measured in units of 1000
euro, and the capital and value added is measured in units of a million euro.
After removing the outliers, the dataset contains 562 samples. The result can
be found in Figure 13. The problem is solved in 22 seconds.

8 Conclusion and future work

In this paper, we provide a unified framework for computing a least squares
estimator for the multivariate shape-constrained convex regression function.
In addition, we propose an efficient algorithm, which is a semismoothn New-
ton based proximal augmented Lagrangian method, to solve the large-scale
constrained QP in the framework. Moreover, in order to accelerate the com-
putation under the large-sample setting, we design a practical implementation
of the constraint generation method, where the reduce problem in each round

Algorithms for shape-constrained convex regression 35

is solved by the proxALM. We conduct extensive numerical experiments to
demonstrate the efficiency and robustness of our proposed proxALM, as well
as the superior performance of the acceleration with the constraint generation
method.

Acknowledgements The authors would like to thank Professor Necdet S. Aybat for help-
ful clarifications on his work in [3].

References

1. Aıt-Sahalia, Y., Duarte, J.: Nonparametric option pricing under shape restrictions. Jour-
nal of Econometrics 116(1-2), 9–47 (2003)

2. Allon, G., Beenstock, M., Hackman, S., Passy, U., Shapiro, A.: Nonparametric esti-
mation of concave production technologies by entropic methods. Journal of Applied
Econometrics 22(4), 795–816 (2007)

3. Aybat, N.S., Wang, Z.: A parallel method for large scale convex regression problems.
In: 53rd IEEE Conference on Decision and Control, pp. 5710–5717. IEEE (2014)

4. Balázs, G., György, A., Szepesvári, C.: Near-optimal max-affine estimators for convex
regression. In: AISTATS (2015)

5. Beck, A., Teboulle, M.: Smoothing and first order methods: A unified framework. SIAM
Journal on Optimization 22(2), 557–580 (2012)

6. Bertsimas, D., Mundru, N.: Sparse convex regression. INFORMS Journal on Computing,
to appear (2020)

7. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization, vol. 6. Athena
Scientific Belmont, MA (1997)

8. Blanchet, J., Glynn, P.W., Yan, J., Zhou, Z.: Multivariate distributionally robust convex
regression under absolute error loss. In: Advances in Neural Information Processing
Systems, pp. 11817–11826 (2019)

9. Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block con-
vex minimization problems is not necessarily convergent. Mathematical Programming
155(1-2), 57–79 (2016)

10. Chen, H., Yao, D.D.: Fundamentals of queueing networks: Performance, asymptotics,
and optimization, vol. 46. Springer Science & Business Media (2013)

11. Chen, L., Sun, D.F., Toh, K.C.: An efficient inexact symmetric Gauss–Seidel based
majorized ADMM for high-dimensional convex composite conic programming. Mathe-
matical Programming 161(1-2), 237–270 (2017)

12. Chen, W., Mazumder, R.: Multivariate convex regression at scale. arXiv preprint
arXiv:2005.11588 (2020)

13. Chen, X., Sun, D., Sun, J.: Complementarity functions and numerical experiments
on some smoothing Newton methods for second-order-cone complementarity problems.
Computational Optimization and Applications 25(1-3), 39–56 (2003)

14. Cui, Y., Pang, J.S., Sen, B.: Composite difference-max programs for modern statistical
estimation problems. SIAM Journal on Optimization 28(4), 3344–3374 (2018)

15. Dontchev, A.L., Qi, H., Qi, L.: Quadratic convergence of Newton’s method for convex
interpolation and smoothing. Constructive Approximation 19(1) (2003)

16. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems. Springer Science & Business Media (2007)

17. Han, J., Sun, D.F.: Newton and quasi-Newton methods for normal maps with polyhedral
sets. Journal of Optimization Theory and Applications 94(3), 659–676 (1997)

18. Hannah, L.A., Dunson, D.B.: Multivariate convex regression with adaptive partitioning.
The Journal of Machine Learning Research 14(1), 3261–3294 (2013)

19. Hanoch, G., Rothschild, M.: Testing the assumptions of production theory: a nonpara-
metric approach. Journal of Political Economy 80(2), 256–275 (1972)

20. Hanson, D., Pledger, G.: Consistency in concave regression. The Annals of Statistics
pp. 1038–1050 (1976)

36 M. Lin et al.

21. Hildreth, C.: Point estimates of ordinates of concave functions. Journal of the American
Statistical Association 49(267), 598–619 (1954)

22. Kummer, B.: Newton’s method for non-differentiable functions. Advances in Mathe-
matical Optimization 45, 114–125 (1988)

23. Kuosmanen, T.: Representation theorem for convex nonparametric least squares. The
Econometrics Journal 11(2), 308–325 (2008)

24. Li, X., Sun, D., Toh, K.C.: On efficiently solving the subproblems of a level-set method
for fused lasso problems. SIAM Journal on Optimization 28(2), 1842–1866 (2018)

25. Li, X., Sun, D., Toh, K.C.: An asymptotically superlinearly convergent semismooth
Newton augmented Lagrangian method for Linear Programming. SIAM Journal on
Optimization 30(3), 2410–2440 (2020)

26. Li, X., Sun, D., Toh, K.C.: On the efficient computation of a generalized Jacobian of the
projector over the Birkhoff polytope. Mathematical Programming 179(1-2), 419–446
(2020)

27. Lim, E.: On convergence rates of convex regression in multiple dimensions. INFORMS
Journal on Computing 26(3), 616–628 (2014)

28. Lim, E., Glynn, P.W.: Consistency of multidimensional convex regression. Operations
Research 60(1), 196–208 (2012)

29. Longstaff, F.A., Schwartz, E.S.: Valuing American options by simulation: a simple least-
squares approach. The Review of Financial Studies 14(1), 113–147 (2001)

30. Mazumder, R., Choudhury, A., Iyengar, G., Sen, B.: A computational framework for
multivariate convex regression and its variants. Journal of the American Statistical
Association 114(525), 318–331 (2019)

31. Meyer, R.F., Pratt, J.W.: The consistent assessment and fairing of preference functions.
IEEE Transactions on Systems Science and Cybernetics 4(3), 270–278 (1968)

32. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM
Journal on Control and Optimization 15(6), 959–972 (1977)

33. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bulletin de la Société
mathématique de France 93, 273–299 (1965)

34. Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical Program-
ming 103(1), 127–152 (2005)

35. Nocedal, J., Wright, S.: Numerical Optimization. Springer Science & Business Media
(2006)

36. Qi, H., Yang, X.: Regularity and well-posedness of a dual program for convex best
C1-spline interpolation. Computational Optimization and Applications 37(3), 409–425
(2007)

37. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Mathematical Programming
58(1-3), 353–367 (1993)

38. Ramsey, F., Schafer, D.: The Statistical Sleuth: A Course in Methods of Data Analysis.
Boston: Cengage Learning (2012)

39. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. In: Mathe-
matical Programming at Oberwolfach, pp. 206–214. Springer (1981)

40. Rockafellar, R.T.: Convex Analysis, vol. 28. Princeton University Press (1970)
41. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM Journal

on Control and Optimization 14(5), 877–898 (1976)
42. Seijo, E., Sen, B.: Nonparametric least squares estimation of a multivariate convex

regression function. The Annals of Statistics 39(3), 1633–1657 (2011)
43. Sun, D.F., Sun, J.: Semismooth matrix-valued functions. Mathematics of Operations

Research 27(1), 150–169 (2002)
44. Varian, H.R.: The nonparametric approach to demand analysis. Econometrica: Journal

of the Econometric Society pp. 945–973 (1982)
45. Varian, H.R.: The nonparametric approach to production analysis. Econometrica: Jour-

nal of the Econometric Society pp. 579–597 (1984)
46. Verbeek, M.: A Guide to Modern Econometrics. John Wiley & Sons (2008)
47. Yagi, D., Chen, Y., Johnson, A.L., Kuosmanen, T.: Shape-constrained kernel-weighted

least squares: Estimating production functions for Chilean manufacturing industries.
Journal of Business & Economic Statistics pp. 1–12 (2018)

48. Zhao, X.Y., Sun, D.F., Toh, K.C.: A Newton-CG augmented Lagrangian method for
semidefinite programming. SIAM Journal on Optimization 20(4), 1737–1765 (2010)

Algorithms for shape-constrained convex regression 37

Appendices

A Derivation of the proximal mapping and generalized Jacobian
associated with D = {x ∈ Rd | ‖x‖1 ≤ L}

For x ∈ Rd, let Px = Diag(sign(x)) ∈ Rd×d, then

ΠD(x) = arg min
y∈Rd

{1

2
‖y − x‖2 | ‖y‖1 ≤ L

}
= LPx

(
arg min
y∈Rd

{1

2
‖y − Pxx/L‖2 | eTd y ≤ 1, y ≥ 0

})
=

{
x if ‖x‖1 ≤ L,
LPxΠ∆d

(Pxx/L) otherwise,

where ∆d = {x ∈ Rd | eTd x = 1, x ≥ 0}. To derive the generalized Jacobian of ΠD(·), we
need the generalized Jacobian of Π∆d

(·). Following the idea in [17,26], we can explicitly
compute an element of the generalized Jacobian of Π∆d

(·) at Pxx/L. Let K be the set of
index i such that (Π∆(Pxx/L))i = 0. Then

H̃ = Id −
[
ITK ed

] ([IK
eTd

] [
ITK ed

])† [IK
eTd

]

is an element in ∂Π∆d
(Pxx/L), where IK means the matrix consisting of the rows of the

identity matrix Id, indexed by K. After some algebraic computation, we can see

H̃ = Id −
[
ITK ed

] [I|K| + 1
n−|K| e|K|e

T
|K| −

1
n−|K| e|K|

− 1
n−|K| e

T
|K|

1
n−|K|

][
IK

eTd

]
= Diag(r)−

1

nnz(r)
rrT ,

where r ∈ Rd is defined as ri = 1 if (Π∆(Pxx/L))i 6= 0 and ri = 0 otherwise. Therefore,

H ∈ ∂ΠD(x), where H =

{
Id if ‖x‖1 ≤ L,

PxH̃Px otherwise.

B A symmetric Gauss-Seidel based alternating direction method of
multipliers (sGS-ADMM) for (P)

In the literature, popular first-order methods based on the framework of alternating direction
method of multipliers have been applied to solve (P). In [30, Section A.2], the problem (P)
is reformulated as

min
θ∈Rn,ξ∈Rdn,η∈Rn2

{1

2
‖θ − Y ‖2 + p(ξ) + δ+(η) | Aθ +Bξ − η = 0

}
.

The corresponding augmented Lagrangian function for a fixed σ > 0 is defined by

L̃σ(θ, ξ, η;u) =
1

2
‖θ − Y ‖2 + p(ξ) + δ+(η) +

σ

2
‖Aθ +Bξ − η −

u

σ
‖2 −

1

2σ
‖u‖2.

Then the two-block ADMM is given as
ξk+1 = arg min L̃σ(θk, ξ, ηk;uk) = arg min

{
p(ξ) +

σ

2
‖Aθk +Bξ − ηk −

uk

σ
‖2
}
,

(θk+1, ηk+1) = arg min L̃σ(θ, ξk+1, η;uk),

uk+1 = uk − τσ(Aθk+1 +Bξk+1 − ηk+1),

38 M. Lin et al.

where τ ∈ (0, (1 +
√

5/2)) is a given step length. As described in [30], the subproblem of
updating ξ is separable in the variables ξi’s for i = 1, · · · , n, and the update of each ξi
can be solved by using an interior point method. The update of θ and η is performed by
using a block coordinate descent method, which may converge slowly. One can also apply
the directly extended three-block ADMM algorithm as in [30, Section 2.1] to solve (P), and the
steps are given by 

ξk+1 = arg min L̃σ(θk, ξ, ηk;uk),

θk+1 = arg min L̃σ(θ, ξk+1, ηk;uk),

ηk+1 = arg min L̃σ(θk+1, ξk+1, η;uk),

uk+1 = uk − τσ(Aθk+1 +Bξk+1 − ηk+1).

In the directly extended three-block ADMM, the subproblem of updating θ can be computed
by solving a linear system, and that of updating η can be solved by the projection onto

Rn2

+ . However, it is shown in [9] that the directly extended three-block ADMM may not be
convergent. Thus it is desirable to employ an algorithm that is guaranteed to converge.

In this section, we aim to present an efficient and convergent multi-block ADMM for solving
(P). The authors in [11] have proposed an inexact symmetric Gauss-Seidel based multi-block
ADMM for solving high-dimensional convex composite conic optimization problems, and it was
demonstrated to perform better than the possibly nonconvergent directly extended multi-
block ADMM. To adapt the sGS-ADMM in [11] to solve (P), we first rewrite (P) as follows:

min
θ∈Rn,ξ,y∈Rdn,η∈Rn2

{1

2
‖θ − Y ‖2 + p(y) + δ+(η)

∣∣∣ Aθ +Bξ − η = 0, ξ − y = 0
}
. (24)

Given a parameter σ > 0, the augmented Lagrangian function associated with (24) is defined
by

L̂σ(θ, ξ, y, η;u, v) =
1

2
‖θ − Y ‖2 + p(y) + δ+(η)− 〈u,Aθ +Bξ − η〉 − 〈v, ξ − y〉

+
σ

2
‖Aθ +Bξ − η‖2 +

σ

2
‖ξ − y‖2

=
1

2
‖θ − Y ‖2 + p(y) + δ+(η) +

σ

2
‖Aθ +Bξ − η −

u

σ
‖2 +

σ

2
‖ξ − y −

v

σ
‖2

−
1

2σ
‖u‖2 −

1

2σ
‖v‖2. (25)

Then the sGS-ADMM algorithm for solving (P) is given as in Algorithm 4.
In Algorithm 4, all the subproblems can be solved explicitly. In Step 1, ηk+1 and yk+1

are separable and can be solved independently as

yk+1 = Proxp/σ(ξk − vk/σ), ηk+1 = Π+(Aθk +Bξk − uk/σ),

where Π±(·) denotes the projection onto Rn2

± . In Step 2a and Step 2c, θ can be computed
by solving the following linear system

(In + σATA)θ = Y − σAT (Bξ − η − u/σ).

By noting that ATA = 2nIn − 2eneTn , one can apply the Sherman-Morrison-Woodbury
formula to compute

(In + σATA)−1 =
1

1 + 2σn
(In + 2σene

T
n).

Thus θ can be computed in O(n) operations. For Step 2b, ξk+1 can be computed by solving
the linear equation

(Idn +BTB)ξ = yk+1 + vk/σ −BT (Aθ̂k+1 − ηk+1 − uk/σ).

Algorithms for shape-constrained convex regression 39

Algorithm 4 : Symmetric Gauss-Seidel based ADMM for (P)

1: Initialization: Choose an initial point (θ0, ξ0, y0, η0, u0, v0) ∈ Rn×Rdn×Rdn×Rn2 ×
Rn2 × Rdn, and a positive parameter σ > 0. For k = 0, 1, 2, . . .

2: repeat
3: Step 1. Compute

(yk+1, ηk+1) = arg min L̂σ(θk, ξk, y, η;uk, vk).

4: Step 2. Compute

Step 2a. θ̂k+1 = arg min L̂σ(θ, ξk, yk+1, ηk+1;uk, vk),

Step 2b. ξk+1 = arg min L̂σ(θ̂k+1, ξ, yk+1, ηk+1;uk, vk),

Step 2c. θk+1 = arg min L̂σ(θ, ξk+1, yk+1, ηk+1;uk, vk).

5: Step 3. Compute

uk+1 = uk − τσ(Aθk+1 +Bξk+1 − ηk+1), vk+1 = vk − τσ(ξk+1 − yk+1),

where τ ∈ (0, (1 +
√

5)/2) is the step length that is typically chosen to be 1.618.
6: until Stopping criterion is satisfied.

As the coefficient matrix Idn + BTB is a block diagonal matrix consisting of n blocks of
d × d submatrices, each ξi can be computed separately, and the inverse of each block only
needs to be computed once.

The convergence result of Algorithm 4 is presented in the following theorem, which is
taken directly from [11, Theorem 5.1].

Theorem 5 Suppose that the solution set to the KKT system (10) is nonempty. Let
{(θk, ξk, yk, ηk, uk, vk)} be the sequence generated by Algorithm 4. Then {(θk, ξk, yk, ηk)}
converges to an optimal solution of problem (24), and {(uk, vk)} converges to an optimal
solution of its dual (D).

C More results on comparison of algorithms for solving (P)

Table 7 – Table 12 show the comparison among proxALM, sGS-ADMM and MOSEK on instances
with relatively large d and n. Note that here we set the stopping criterion to RKKT ≤ 10−6

to show that our proposed proxALM is capable of solving the problem (P) to relatively high
accuracy. As one can see that, when estimating the function ψ(x) = exp(pT x) for moderate
(d, n) = (100, 1000), proxALM is about 3 times faster than sGS-ADMM, and about 29 times
faster than MOSEK. For the case when d = 100, n = 4000, which is a large problem with
404, 000 variables and about 16, 000, 000 inequality constraints, MOSEK runs out of memory,
while proxALM could solve it within 7 minutes and sGS-ADMM takes 17 minutes. From the
tables, we can see that sGS-ADMM performs much better than MOSEK in each instance, and
proxALM performs even better than sGS-ADMM. In most of the cases, proxALM is at least 10
times faster than MOSEK.

D Property of basket option of two European call options

The function V (x, y) is differentiable since it is the solution of the Black-Scholes PDE. By
the definition of V , we can see that V is non-decreasing in x and y, which means that

40 M. Lin et al.

Table 7 Convex regression for test function ψ(x) = exp(pT x), where p is a given random
vector with each coordinate drawn from the standard normal distribution

Algorithm
(d, n)

(50, 500) (50, 1000) (50, 2000) (100, 1000) (100, 2000) (100, 4000)

proxALM

Iteration 12(11)* 16(20) 21(38) 15(20) 20(38) 26(51)
Time 00:00:02 00:00:06 00:00:57 00:00:07 00:01:14 00:06:44
RKKT 4.18e-8 8.97e-8 9.14e-7 6.14e-7 3.41e-7 9.48e-7

sGS-ADMM

Iteration 389 562 1206 355 701 1263
Time 00:00:05 00:00:25 00:03:57 00:00:19 00:02:39 00:16:59
RKKT 9.95e-7 9.88e-7 9.92e-7 9.99e-7 9.91e-7 9.98e-7

MOSEK

Iteration 10 11 13 11 10 O.M.
Time 00:00:20 00:01:50 00:10:50 00:03:22 00:19:46 O.M.
RKKT 6.59e-9 3.92e-9 1.53e-7 7.98e-10 7.65e-8 O.M.

* “12(11)” means “proxALM iterations (total inner SSN iterations)”. O.M. means the al-
gorithm runs out of memory. Time is in the format of hours:minutes:seconds.

Table 8 Convex regression with monotone constraint (non-decreasing) for the test function
ψ(x) = (eTd x)+

Algorithm
(d, n)

(50, 500) (50, 1000) (50, 2000) (100, 1000) (100, 2000) (100, 4000)

proxALM

Iteration 15(18) 17(23) 23(77) 17(29) 21(59) 32(96)
Time 00:00:02 00:00:07 00:02:48 00:00:12 00:02:09 00:12:34
RKKT 1.87e-7 1.50e-7 1.38e-7 8.16e-7 8.23e-7 8.97e-7

sGS-ADMM

Iteration 529 917 1685 541 905 1582
Time 00:00:08 00:00:49 00:06:18 00:00:34 00:03:50 00:25:18
RKKT 9.79e-7 9.99e-7 9.98e-7 9.85e-7 9.88e-7 9.98e-7

MOSEK

Iteration 14 13 14 13 16 O.M.
Time 00:00:24 00:02:00 00:11:32 00:03:47 00:25:23 O.M.
RKKT 1.54e-9 1.45e-9 2.63e-8 2.37e-7 1.31e-9 O.M.

Table 9 Convex regression with box constraint (L = 0d, U = ed) for the test function
ψ(x) = ln(1 + exp(eTd x))

Algorithm
(d, n)

(50, 500) (50, 1000) (50, 2000) (100, 1000) (100, 2000) (100, 4000)

proxALM

Iteration 23(40) 24(67) 30(135) 17(28) 21(60) 33(102)
Time 00:00:03 00:00:18 00:04:35 00:00:12 00:02:32 00:12:56
RKKT 9.55e-7 8.79e-7 7.02e-7 6.65e-8 3.54e-7 9.39e-7

sGS-ADMM

Iteration 663 1016 2689 513 871 1541
Time 00:00:11 00:00:54 00:10:05 00:00:33 00:03:50 00:23:32
RKKT 9.60e-7 9.73e-7 9.98e-7 9.92e-7 9.95e-7 1.00e-6

MOSEK

Iteration 19 24 31 18 15 O.M.
Time 00:00:31 00:02:52 00:19:03 00:04:50 00:25:10 O.M.
RKKT 2.40e-7 6.03e-8 1.11e-8 3.18e-9 2.23e-9 O.M.

Algorithms for shape-constrained convex regression 41

Table 10 Convex regression with Lipschitz constraint (p = 1, q = ∞, L = 1) for the test

function ψ(x) =
√

1 + xT x

Algorithm
(d, n)

(50, 500) (50, 1000) (50, 2000) (100, 1000) (100, 2000) (100, 4000)

proxALM

Iteration 13(14) 17(30) 24(51) 16(26) 21(44) 33(72)
Time 00:00:02 00:00:08 00:01:12 00:00:11 00:01:26 00:07:59
RKKT 5.05e-7 5.08e-7 9.45e-7 4.31e-7 2.41e-7 9.77e-7

sGS-ADMM

Iteration 531 928 1730 509 973 1691
Time 00:00:09 00:00:50 00:06:47 00:00:33 00:04:21 00:27:33
RKKT 9.77e-7 9.97e-7 9.84e-7 9.89e-7 9.90e-7 9.98e-7

MOSEK

Iteration 10 11 12 10 11 O.M.
Time 00:00:23 00:01:55 00:10:32 00:03:38 00:21:27 O.M.
RKKT 7.51e-9 3.46e-10 1.16e-9 5.87e-13 3.00e-10 O.M.

Table 11 Convex regression with Lipschitz constraint (p = 2, q = 2, L = λmax(Q)) for the

test function ψ(x) =
√
xTQx

Algorithm
(d, n)

(50, 500) (50, 1000) (50, 2000) (100, 1000) (100, 2000) (100, 4000)

proxALM

Iteration 12(11) 17(30) 21(41) 15(20) 21(41) 23(48)
Time 00:00:02 00:00:08 00:00:55 00:00:08 00:01:12 00:06:22
RKKT 1.27e-10 4.07e-7 1.94e-7 3.28e-7 7.10e-7 9.69e-7

sGS-ADMM

Iteration 541 953 1481 494 934 1591
Time 00:00:11 00:00:53 00:05:39 00:00:35 00:04:22 00:23:59
RKKT 9.76e-7 9.99e-7 9.99e-7 9.94e-7 9.91e-7 9.91e-7

MOSEK

Iteration 10 13 13 11 12 O.M.
Time 00:00:23 00:02:03 00:10:57 00:03:44 00:22:47 O.M.
RKKT 2.50e-7 1.06e-9 1.19e-8 7.53e-9 2.12e-12 O.M.

* Q ∈ Rd×d is a randomly generated symmetric and positive definite matrix with known
largest eigenvalue.

Table 12 Convex regression with Lipschitz constraint (p = ∞, q = 1, L = 1) for the test
function ψ(x) = ln(1 + ex1 + · · ·+ exd)

Algorithm
(d, n)

(50, 500) (50, 1000) (50, 2000) (100, 1000) (100, 2000) (100, 4000)

proxALM

Iteration 12(12) 16(22) 22(44) 15(21) 19(35) 27(62)
Time 00:00:02 00:00:06 00:00:49 00:00:08 00:01:09 00:08:37
RKKT 3.04e-7 4.43e-7 8.49e-7 2.07e-7 6.63e-7 8.41e-7

sGS-ADMM

Iteration 413 767 1401 436 775 1379
Time 00:00:08 00:00:45 00:05:25 00:00:31 00:03:24 00:21:59
RKKT 9.88e-7 9.96e-7 9.80e-7 9.79e-7 9.99e-7 1.00e-6

MOSEK

Iteration 12 12 14 13 8 O.M.
Time 00:00:41 00:03:28 00:21:06 00:07:26 00:39:55 O.M.
RKKT 1.23e-8 1.26e-7 5.33e-9 3.09e-10 2.92e-9 O.M.

42 M. Lin et al.

∇V (x, y) ≥ 0. According to the distribution of S1
T and S2

T , we have that

V (x, y) = e−r(T−t)Ezf(x, y, z),

where

f(x, y, z) = (xw1e
(r−σ2

1/2)(T−t)+
√
T−tz1 + yw2e

(r−σ2
2/2)(T−t)+

√
T−tz2 −K)+,(

z1

z2

)
∼ N (0,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
).

For any x1, x2, y ∈ R, we can see that

|V (x1, y)− V (x2, y)| = e−r(T−t)
∣∣∣Ez [f(x1, y, z)− f(x1, y, z)]

∣∣∣
≤ e−r(T−t)Ez |f(x1, y, z)− f(x1, y, z)|

≤ e−r(T−t)Ez [w1e
(r−σ2

1/2)(T−t)+
√
T−tz1 |x1 − x2|]

= w1|x1 − x2|e−σ
2
1/2(T−t)Ez [e

√
T−tz1]

= w1|x1 − x2|.

Similarly, we can prove that for any x, y1, y2 ∈ R,

|V (x, y1)− V (x, y2)| ≤ w2|y1 − y2|.

Therefore, we have that fact that 0 ≤ ∇V (x, y) ≤ w for any x, y.

E A finite difference method for estimating the basket option of
two European call options

It is well-known that the function V (x, y) = U(0, x, y), where U satisfies the Black-Scholes
PDE

∂U

∂t
+ rx

∂U

∂x
+ ry

∂U

∂y
+

1

2
σ2

1x
2 ∂

2U

∂2x2
+ ρσ1σ2xy

∂2U

∂xy
+

1

2
σ2

2y
2 ∂

2U

∂2y2
− rU = 0,

U(T, x, y) = (w1x+ w2y −K)+.

Let τ = T − t, u(τ, x, y) = U(t, x, y), then u satisfies
∂u

∂τ
− rx

∂u

∂x
− ry

∂u

∂y
−

1

2
σ2

1x
2 ∂

2u

∂2x2
− ρσ1σ2xy

∂2u

∂xy
−

1

2
σ2

2y
2 ∂

2u

∂2y2
+ ru = 0,

u(0, x, y) = (w1x+ w2y −K)+.

The above convection-diffusion equation can be solved numerically on a bounded region
(0, xmax) × (0, ymax) by the standard finite difference method with the artificial boundary
conditions 

u(τ, x, 0) = c(w1x,K, r, τ, σ1),

u(τ, 0, y) = c(w2y,K, r, τ, σ2),

∂

∂x
u(τ, xmax, y) = w1,

∂

∂y
u(τ, x, ymax) = w2,

where

c(x,K, r, τ, σ) = xΦ(d1)−Ke−rτΦ(d2), d1,2 =
log x

K
+ (r ± 1

2
σ2)τ

σ
√
τ

,

and Φ(·) is the cumulative distribution function of the standard normal distribution.

