
Computational Optimization and Applications, 25, 39–56, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Complementarity Functions and Numerical
Experiments on Some Smoothing Newton Methods
for Second-Order-Cone Complementarity Problems
X.D. CHEN∗ chenxiongda@yahoo.com
Department of Applied Mathematics, Tongji University, Shanghai, China

D. SUN† matsundf@nus.edu.sg
Department of Mathematics, National University of Singapore, Republic of Singapore

J. SUN‡ jsun@nus.edu.sg
SMA and Department of Decision Sciences, National University of Singapore, Republic of Singapore

Received February 26, 2002; Revised July 26, 2002; Accepted September 16, 2002

Dedication: I still remember the first optimization book in English that I read is “Computational Methods in
Optimization. A Unified Approach”, written by Lucien in 1971. So I was very excited when I first met Lucient in
1995 in Coogee Beach, an eastern suburb in Sydney, where Liqun Qi introduced him to me. Lucien has a broad
interest in optimization both in theory and applications. He always likes to tackle challenging problems. It is my
great honor to dedicate this paper to Lucien on the occasion of his 72nd birthday.—Defeng Sun

Abstract. Two results on the second-order-cone complementarity problem are presented. We show that the
squared smoothing function is strongly semismooth. Under monotonicity and strict feasibility we provide a
new proof, based on a penalized natural complementarity function, for the solution set of the second-order-cone
complementarity problem being bounded. Numerical results of squared smoothing Newton algorithms are reported.

Keywords: complementarity function, soc, smoothing Newton method, quadratic convergence

1. Introduction

Optimization problems with second order cone constraints have wide range of applications
in engineering, control, and management science [11]. In this paper we focus on the second
order cone complementarity problem (SOCCP for short), which includes the Karush-Kuhn-
Tucker (KKT) system of the second order cone programming problem as a special case.
Through the so-called complementarity function (C-function for short), the SOCCP can
be transformed into a system of nonsmooth equations [7]. For applications of C-functions

∗Research is supported by SMA.
†Research is partially supported by Grant R146-000-035-101 from NUS.
‡Research is partially supported by SMA and Grants RP314000-028/042-112 from NUS.

40 CHEN, SUN AND SUN

in vector spaces, see [6, 13]. C-functions are usually smoothed and regularized, say, by
convolution and Tikhonov regularization [16] in solving vector complementarity problems
in order to facilitate the so-called smoothing Newton methods. Using the same framework,
we show that the SOCCP can also be effectively solved by a smoothing Newton method.
In Section 2, some preliminary results for the second order cone are presented and two
C-functions of the second order cone are analyzed. The boundedness property of the level
set of one of the C-functions is proved in Section 3, which is used to characterize the
boundedness of the solution set of the SOCCP. Section 4 shows the strong semismoothness
of the squared smoothing function. The algorithms and the numerical experiments are
presented in Sections 5 and 6, respectively.

2. Preliminary results

The second order cone (SOC) inRn , also called Lorentz cone or ice-cream cone, is defined by

Kn = {(
x1, xT

2

)T ∣∣ x1 ∈ R, x2 ∈ Rn−1 and x1 ≥ ‖x2‖
}
. (2.1)

Here and below, ‖·‖ denotes the 2-norm. If there is no ambiguity, for convenience, we write
x = (x1, x2) instead of x = (x1, xT

2)T . We are interested in complementarity problems
involving the second order cone in its constraints. In general, the SOCCP has the following
form:

Find an x ∈ K, such that F(x) ∈ K and xT F(x) = 0, (2.2)

where F : RN → RN is a continuously differentiable function, and

K = Kn1 × · · · × Kn p (2.3)

with p, n1, . . . , n p ≥ 1 and n1 +· · ·+n p = N . Unless otherwise specified, in the following
analysis we assume that K = Kn . This, however, does not lose any generality because our
analysis can be easily extended to the general case.

The SOC is associated with its Jordan algebra. A Jordan algebra is a vector space with
the following property [5]:

Definition 2.1. A real vector space V is called a Jordan algebra if a bilinear mapping
(Jordan product) (x, y) → x ◦ y from V × V into V is defined with the following property

x2 ◦ (x ◦ y) − x ◦ (x2 ◦ y) = 0, ∀x, y ∈ V, (2.4)

where x2 = x ◦ x .

Some basic properties of the Jordan algebra can be found in [4, 5]. In the context of the
SOC, the Jordan product is defined as

x ◦ y =
(

xT y

y1x2 + x1 y2

)
(2.5)

COMPLEMENTARITY FUNCTIONS AND NUMERICAL EXPERIMENTS 41

if x = (x1, x2) and y = (y1, y2). An important character of Jordan algebra is its eigen-
decomposition. The eigen-decomposition of the SOC is defined in the following way. For
any x ∈ Rn , x = λ1u1 + λ2u2 is called the eigen-decomposition of x in which

λi = x1 + (−1)i‖x2‖ and ui =




1

2

(
1, (−1)i x2

‖x2‖
)

, if x2 �= 0,

1

2

(
1, (−1)i ω

‖ω‖
)

, otherwise, for any ω �= 0.

(2.6)

By using the eigen-decomposition, a scalar function can be extended to an SOC function.
Given a function f (·) : R → R, the corresponding SOC function is defined as

f (x) = f (λ1)u1 + f (λ2)u2. (2.7)

For convenience of discussion, we denote

x+ = (λ1)+u1 + (λ2)+u2,

|x | = |λ1|u1 + |λ2|u2,

and

x− = (λ1)−u1 + (λ2)−u2,

where for any scalar α ∈ R, α+ = max{0, α} and α− = max{0, −α}. It can be seen that
x = x+ − x−, x+, x− ∈ Kn and x+ ◦ x− = 0. For any x ∈ Kn , it is obvious that both
eigenvalues of x are nonnegative, therefore we define

x1/2 = λ
1/2
1 u1 + λ

1/2
2 u2.

It has been shown that the following results hold, e.g., see Fukushima, Luo and Tseng
[7].

Proposition 2.2.
(a) |x | = (x2)1/2.

(b) x2 = (λ1)2u1 + (λ2)2u2.
(c) x+ is the projection of x onto Kn and x+ = (x + |x |)/2.

(d) x, y ∈ Kn and xT y = 0 ⇔ x, y ∈ Kn and x ◦ y = 0 ⇔ x − [x − y]+ = 0.

A function ψ : Rn →Rn is called an SOC C-function if xT y = 0, x, y ∈K ⇔ ψ(x, y) = 0.

The result in Proposition 2.2 (d) shows that φ(x, y) := x − [x − y]+ is a C-function. Let
the penalized natural function be defined as

φp(x, y) := x − [x − y]+ + x+ ◦ y+.

42 CHEN, SUN AND SUN

In the following, we will discuss some properties of φ and φp in Propositions 2.3 and
2.4 and show that φp is a C-function in Proposition 2.5. Note that φp is the counterpart of
penalized C-function given in [1] in the context of nonlinear complementarity problems.

Proposition 2.3. Both φ(x, y) := x − [x − y]+ and φp(x, y) := x − [x − y]+ + x+ ◦ y+
are symmetric in x and y, i.e.,

φ(x, y) = φ(y, x) and φp(x, y) = φp(y, x). (2.8)

Proof: We have

φ(x, y) = x − [x − y]+
= x − (x − y + |x − y|)/2

= 1

2
(x + y − |x − y|) (2.9)

and φp(x, y) = φ(x, y) + x+ ◦ y+ = φ(y, x) + y+ ◦ x+ = φp(y, x). Hence, the conclusion
follows.

Proposition 2.4.

‖φp(x, y)‖ ≥ max{‖x−‖, ‖y−‖}.

Proof: By Proposition 2.3, it suffices to prove that

‖φp(x, y)‖ ≥ ‖x−‖. (2.10)

We have

‖φp(x, y)‖2 = ‖x+ − x− − [x − y]+ + x+ ◦ y+‖2

= ‖x−‖2 + ‖x+ − [x − y]+ + x+ ◦ y+‖2

+ 2[−x−]T (x+ − [x − y]+ + x+ ◦ y+)

≥ ‖x−‖2 − 2[x−]T x+ + 2[x−]T [x − y]+ − 2[x−]T (x+ ◦ y+)

≥ ‖x−‖2 − 2([x−] ◦ [x+])T y+
= ‖x−‖2,

where the first inequality holds due to the nonnegativity of norm, the second inequality due
to Proposition 2.2 and the nonnegativity of an inner product of two elements in Kn , and the
last equality follows from the property of Jordan product [7]:

(x ◦ y)T z = (y ◦ z)T x = (z ◦ x)T y (2.11)

for all x, y, z ∈ Rn .

COMPLEMENTARITY FUNCTIONS AND NUMERICAL EXPERIMENTS 43

It can easily be seen that we have ‖φ(x, y)‖ ≥ max{‖x−‖, ‖y−‖} similarly.

Proposition 2.5. The following two statements are equivalent:
(a) x ∈ Kn, y ∈ Kn and xT y = 0.
(b) φp(x, y) = x − [x − y]+ + x+ ◦ y+ = 0.

Proof: (a)⇒(b): In this case, φp(x, y) = φ(x, y). By Proposition 2.2, (b) holds.
(b)⇒(a): From Proposition 2.4, if either x �∈ Kn or y �∈ Kn , then ‖φp(x, y)‖ > 0. Thus

x, y ∈ Kn . In such case

[φp(x, y)]1 =




y1 + xT y, if x − y ∈ Kn;

(x1 + y1 − ‖x2 − y2‖)/2 + xT y, if x − y �∈ Kn ∪ (−Kn);

x1 + xT y, if x − y ∈ −Kn.

(2.12)

Since for x, y ∈ Kn , x1, y1 and x1+y1−‖x2−y2‖ are all nonnegative, one has [φp(x, y)]1 =
0 only if xT y = 0.

Note that we obtain Problem (2.2) if we substitute y = F(x) in above proposition. Therefore,
to solve Problem (2.2) is to find the solution to φp(x, F(x)) = 0.

3. Boundedness properties of an SOC function

In this section, we show that under certain conditions the level sets of the merit function
based on φp are bounded. As a consequence of Proposition 2.5, the solution set of Problem
(2.2) is also bounded.

For a given function F : Rn → Rn , define

�p(x) = x − [x − F(x)]+ + x+ ◦ [F(x)]+. (3.1)

In the following, we will use the fact that if xk ∈ Kn , then the boundedness of {xk} is
equivalent to the boundedness of {xk

1 }.
Recall that a function F is said to be monotone on Rn if

(x − y)T (F(x) − F(y)) ≥ 0, ∀ x, y ∈ Rn (3.2)

and strictly monotone if the above inequality holds strictly for any x �= y.

Lemma 3.1. Suppose that the SOCCP has a strictly feasible point x̂, i.e., x̂ ∈ int Kn

and F(x̂) ∈ int Kn, and that F is a monotone function. For any sequence {xk} satisfying
‖xk‖ → ∞, lim supk→∞ ‖xk

−‖ < ∞ and lim supk→∞ ‖F−(xk)‖ < ∞, we have

(xk
+)T F+(xk) → ∞. (3.3)

44 CHEN, SUN AND SUN

Proof: Since F is monotone, the following statement holds for all xk ,

(xk − x̂)T (F(xk) − F(x̂)) ≥ 0, (3.4)

which can be expanded as

(xk)T F(x̂) + (x̂)T F(xk) ≤ (xk)T F(xk) + (x̂)T F(x̂). (3.5)

Since xk = xk
+ − xk

− and F(xk) = F+(xk) − F−(xk), we have

(xk
+)T F(x̂) − (xk

−)T F(x̂) + (x̂)T F+(xk) − (x̂)T F−(xk)

≤ (xk)T F(xk) + (x̂)T F(x̂). (3.6)

Note that

(xk
+)T F(x̂) = [xk

+]1[F(x̂)]1 + [xk
+]T

2 [F(x̂)]2

≥ [xk
+]1[F(x̂)]1 − ‖[xk

+]2‖‖[F(x̂)]2‖
≥ [xk

+]1[F(x̂)]1 − [xk
+]1‖[F(x̂)]2‖

= [xk
+]1 ([F(x̂)]1 − ‖[F(x̂)]2‖). (3.7)

Since ‖xk
+‖ ≥ ‖xk‖ − ‖xk

−‖, the assumptions on {xk} imply that ‖xk
+‖ → ∞ and [xk

+]1 →
∞. Because x̂ is a strictly feasible point of Problem (2.2), we have

(xk
+)T F(x̂) → ∞. (3.8)

Moreover, lim supk→∞(xk
−)T F(x̂) < ∞, lim supk→∞ x̂ T F−(xk) < ∞ and x̂ T F+(xk) ≥

0, which, together with (3.8), gives that

(xk)T F(xk) → ∞. (3.9)

Further expanding (xk)T F(xk), we have

(xk)T F(xk) = (xk
+)T F+(xk) + (xk

−)T F−(xk) − (xk
+)T F−(xk) − (xk

−)T F+(xk). (3.10)

Since the third and fourth terms of the right hand side are nonpositive and the second is
bounded from above, we have (xk

+)T F+(xk) → ∞.

Now we are ready to prove the boundedness of level sets of the natural merit function
‖�p(x)‖.

Theorem 3.2. The level set L = {x | ‖�p(x)‖ ≤ C} is bound provided that F is monotone
and that Problem (2.2) has a strictly feasible point, where C ≥ 0 is a constant.

COMPLEMENTARITY FUNCTIONS AND NUMERICAL EXPERIMENTS 45

Proof: It is sufficient to prove that ‖�p(x)‖ → ∞ whenever ‖x‖ → ∞. If ‖x−‖ → ∞
or ‖F−(x)‖ → ∞, the result holds by Proposition 2.4.

On the other hand, if lim sup ‖x−‖ < ∞ and lim sup ‖F−(x)‖ < ∞, then there exists a
constant C0 such that max{‖x−‖, ‖F−(x)‖} < C0. Hence,

[x − (x − F(x))+]1

=




x1, if x − F(x) ∈ −Kn,

F1(x), if x − F(x) ∈ Kn,

1

2
(x1 + F1(x) − ‖x2 − F2(x)‖), if x − F(x) �∈ Kn ∪ −Kn

≥




[x+]1 − [x−]1, if x − F(x) ∈ −Kn,

[F+(x)]1 − [F−(x)]1, if x − F(x) ∈ Kn,

1

2
([x+]1 + [F+(x)]1 − ‖[x+]2 − [F+(x)]2‖)

− 1

2
([x−]1 + [F−(x)]1 + ‖[x−]2 − [F−(x)]2‖), if x − F(x) �∈ Kn ∪ −Kn

≥




[x+]1 − C0, if x − F(x) ∈ −Kn,

[F+(x)]1 − C0, if x − F(x) ∈ Kn,

1

2
([x+]1 + [F+(x)]1 − ‖[x+]2‖
− ‖[F+(x)]2‖) − 2C0, if x − F(x) �∈ Kn ∪ −Kn,

(3.11)

which, means

lim inf [x − (x − F(x))+]1 > −∞.

Since Lemma 3.1 implies that xT
+ F+(x) → ∞, we have [�p(x)]1 → ∞, which in turn

implies that ‖�p(x)‖ → ∞.

As a natural consequence, we have the following result, which has been proved in [3, 8, 12].

Corollary 3.3. If F is monotone and if Problem (2.2) has a strictly feasible point, then
the solution set of Problem (2.2) is bounded.

Since �p is a C-function and its level sets are bounded, one may expect to solve the SOCCP
by solving �p(x) = 0 like in the case of nonlinear complementarity problems [1]. However,
unlike the vector case, there is a complication: The Jacobian of �p(x) is not necessarily a
P-matrix or quasi-P matrix. Consider the following example.

Example 3.4. Let F : R3 → R3 be defined as

F(x) = x + (2, 4, 8)T . (3.12)

46 CHEN, SUN AND SUN

Obviously, F ′(x) = I is a positive definite matrix and

∇x�p(x)
∣∣
x=(2,−4,0)T = 1

4




22 −21 24

−18 25 −6

18 −12 28


, (3.13)

which is neither a P-matrix nor a quasi-P matrix since its determinant is − 29
16 , a negative

number.
As a result, if we apply Newton-type methods to �p, the Jacobian could be singular,

causing failure of the algorithms. We will list our experimental results in Section 6, which
do include several failure examples.

4. Strong semismoothness of smoothing functions

Different from function �p, the function �(x) = x − [x − F(x)]+ can guarantee the
nonsingularity of the Jacobian if F(x) is strongly monotone, which is shown in [18]. In
addition, as we will show now, the smoothing function of �(x), denoted by

�(x, µ) = 1

2
(x + F(x) −

√
(x − F(x))2 + 4µ2e), e = (1, 0) ∈ R×Rn−1 (4.1)

(forgive the abused notation) is strongly semismooth provided that F ′ is locally Lipschitz
continuous, therefore the corresponding smoothing Newton methods will have quadratic
convergence (see Section 5). For the original definition of strong semismoothness and its
relation to quadratic convergence, see [14].

It is clear that in order to show the strong semismoothness of �(x, µ) it is sufficient to
show that f (x, µ) =

√
x2 + µ2e is strongly semismooth. Let D f be the set of points where

f is differentiable. It is shown in [17] that f is strongly semismooth at (x, µ) if it is locally
Lipschitz, directionally differentiable at (x, µ) and for (h, ε) → 0 with (h, ε) ∈ Rn × R
and (x + h, µ + ε) ∈ D f the following relation holds

f (x + h, µ + ε) − f (x, µ) − f ′(x + h, µ + ε)

(
h

ε

)
= O(‖(h, ε)‖2). (4.2)

First we introduce the associated matrix (operator) Lx of any x ∈ Rn under the SOC
structure [7]:

Lx =
[

x1 xT
2

x2 x1 I

]
. (4.3)

Notice that Lx y = x ◦ y holds for all y.

COMPLEMENTARITY FUNCTIONS AND NUMERICAL EXPERIMENTS 47

Lemma 4.1. If x = λ1u1 + λ2u2 is the eigen-decomposition of x ∈ Rn, then Lx has the
eigen-decomposition of the following form:

Lx = Q diag

(
λ1, λ2,

λ1 + λ2

2
, . . . ,

λ1 + λ2

2

)
QT , (4.4)

where, Qn×(n−2) ∈ Rn×(n−2) is any matrix so that Q = [
√

2u1,
√

2u2, Qn×(n−2)] is
orthonormal.

Proof: It can be verified by simple calculations.

Theorem 4.2. The function f (x, µ) =
√

x2 + µ2e is strongly semismooth on (x, µ) ∈
Rn × R.

Proof: We need to show that f is locally Lipschitz and directionally differentiable at
(x, µ) and (4.2) holds.

By the eigen-decomposition of the SOC, one can easily show the Lipschitz continuity of
f (x, µ).

To show the directional differentiability of f (x, µ), first we note the following fact:
f (x, µ) is directional differentiable at (0, 0) due to its positive homogeneity and

f ′((0, 0); (h, ε)) = f (h, ε).

Moreover, if either µ �= 0 or x is neither on the boundary of Kn nor −Kn , f is continuously
differentiable around (x, µ), and is thus directionally differentiable at (x, µ).

Next, we consider the directional differentiability of f at (x, µ) with µ = 0 and a nonzero
x on the boundary of Kn or −Kn . In this case we have ‖x2‖ > 0. Let x = λ1u1 + λ2u2 and
x(t) = x + th = λ1(t)u1(t) + λ2(t)u2(t) be the SOC eigen-decompositions of x and x(t),
respectively, where for i = 1, 2,

λi = x1 + (−1)i‖x2‖, ui = 1

2

(
1, (−1)i x2

‖x2‖
)

, (4.5)

λi (t) = x1 + th1 + (−1)i‖x2 + th2‖, and ui (t) = 1

2

(
1, (−1)i x2 + th2

‖x2 + th2‖
)

.

(4.6)

We only prove the case that x is on the boundary of Kn . Therefore, λ1 = 0 and λ2 �= 0. The
case that x is on the boundary of −Kn can be proved similarly.

We have the following facts:

λi (t) − λi = 2tuT
i h + O(t2) (4.7)

48 CHEN, SUN AND SUN

and

ui (t) − ui = t
2


 0

(−1)i

(
I − x2xT

2

‖x2‖2

)
h2

‖x2‖


 + O(t2), (4.8)

which can be obtained by direct calculations. Therefore,

f (x + th, tε) − f (x, 0)

=
√

λ2
2(t) + (tε)2u2(t) +

√
λ2

1(t) + (tε)2u1(t) − |λ2|u2

=
√

λ2
2(t) + (tε)2[u2(t) − u2] + [√

λ2
2(t) + (tε)2 − |λ2|

]
u2 +

√
λ2

1(t) + (tε)2u1

= t |λ2|
2


 0(

I − x2xT
2

‖x2‖2

)
h2

‖x2‖


 + 2sign(λ2)t

(
uT

2 h
)
u2 +

√
λ2

1(t) + (tε)2u1 + O(t2)

= t sign(λ2)

2


 2uT

2 h

λ2h2

‖x2‖ +
(

h1 − x1
xT

2 h2

‖x2‖2

)
x2

‖x2‖


 + |t |

√
4
(
uT

1 h
)2 + ε2u1 + O(t2),

(4.9)

where sign(·) is a scalar function taking values −1, 0, or +1 if the variable is negative, zero
or positive, respectively. The above equation implies the directional differentiability of f
at (x, 0).

We next prove (4.2). Notice that by Lemma 4.1 that L f (x,µ) is nonsingular if and only if
f is differentiable at (x, µ), i.e., (x, µ) ∈ D f . Moreover, for any (x, µ) ∈ D f , we have

f ′
x (x, µ) = L−1

f (x,µ)Lx and f ′
µ(x, µ) = µL−1

f (x,µ)e, (4.10)

which can be obtained by finding the derivatives on both sides of

f (x, µ) ◦ f (x, µ) = x2 + µ2e. (4.11)

Now, letting (x + h, µ + ε) ∈ D f and denoting f = f (x, µ) and f̂ = f (x + h, µ + ε),
we have the following equality:

f (x + h, µ + ε) − f (x, µ) − f ′
x (x + h, µ + ε)h − f ′

µ(x + h, µ + ε)ε

= L−1
f̂

[L f̂ (
√

(x + h)2 + (µ + ε)2e −
√

x2 + µ2e) − (x + h) ◦ h − (µ + ε)εe]

= L−1
f̂

[(x + h)2 + (µ + ε)2e − (x + h) ◦ h − (µ + ε)εe

−
√

(x + h)2 + (µ + ε)2e ◦
√

x2 + µ2e]

= L−1
f̂

[
1

2
(
√

(x + h)2 + (µ + ε)2e −
√

x2 + µ2e)2 − 1

2
(h2 + ε2e)

]
. (4.12)

COMPLEMENTARITY FUNCTIONS AND NUMERICAL EXPERIMENTS 49

We consider the following three cases:

Case (a). If (x, µ) = 0, the right hand side of (4.12) vanishes.

Case (b). Consider the case when L f is invertible. In this case, L−1
f̂

is uniformly bounded
when (h, ε) → 0. Then, by the Lipschitz property of f , we have

f (x + h, µ + ε) − f (x, µ) − f ′
x (x + h, µ + ε)h

− f ′
µ(x + h, µ + ε)ε = O(‖(h, ε)‖2).

Case (c). L f is singular. Since f ∈ Kn , it can only happen if µ = 0 and either

λ2(f) > λ1(f) = 0 or λ2(f) = λ1(f) = 0 (4.13)

by Lemma 4.1. The second subcase in (4.13) reduces to Case (a). In the first subcase, we
have f = |x | ∈ ∂Kn , the boundary of Kn . Let λ̂1û1 + λ̂2û2 be the eigen-decomposition of
x̂ := x + h. Then L f̂ = QF̂QT , where

F̂ = diag


√

λ̂2
2 + ε2,

√
λ̂1

2 + ε2,

√
λ̂2

2 + ε2 +
√

λ̂1
2 + ε2

2
, . . . ,

√
λ̂2

2 + ε2 +
√

λ̂1
2 + ε2

2


 (4.14)

and Q is an orthonormal matrix with Qn×(n−2) ∈ Rn×(n−2):

Q = [√
2û2,

√
2û1, Qn×(n−2)

]
. (4.15)

Therefore, when µ = 0 and x ∈ ∂Kn , the right hand side of (4.12) is

L−1
f̂

(x ◦ (x̂ − f̂))

=

 2û2ûT

2√
λ̂2

2 + ε2
+ 2û1ûT

1√
λ̂2

1 + ε2
+ 2Qn×(n−2) QT

n×(n−2)√
λ̂2

2 + ε2 +
√

λ̂2
1 + ε2




× [
x ◦ ((

λ̂2 −
√

λ̂2
2 + ε2

)
û2 + (

λ̂1 −
√

λ̂2
1 + ε2

)
û1

)]

=
2xT û2

(
λ̂2 −

√
λ̂2

2 + ε2
)

√
λ̂2

2 + ε2
û2 +

2xT û1
(
λ̂1 −

√
λ̂2

1 + ε2
)

√
λ̂2

1 + ε2
û1

= O(‖(h, ε)‖2), (4.16)

50 CHEN, SUN AND SUN

where, the first equality is by (4.14), the second equality is by (2.11) and the third equality
holds because xT û2 → λ2 and λ̂2 → λ2 > 0, λ̂1 = O(‖h‖) when h → 0 and

xT û1 = (λ1u1 + λ2u2)T û2

= λ2

4

(
1, − x2 + h2

‖x2 + h2‖
)T (

1,
x2

‖x2‖
)

= λ2

4‖x2‖‖x2 + h2‖
(‖x2‖‖x2 + h2‖ − xT

2 (x2 + h2)
)

= λ2

8‖x2‖‖x2 + h2‖ (‖x2 − (x2 + h2)‖2 − (‖x2‖ − ‖x2 + h2‖)2)

= O(‖h2‖2). (4.17)

Similarly, when µ = 0 and x ∈ −∂Kn , the right hand side of (4.12) is of order
O(‖(h, ε)‖2).

Overall, we have proved that for all (x + h, µ + ε) ∈ D f and (h, ε) → 0,

f (x + h, µ + ε) − f (x, µ) − f ′(x + h, µ + ε)

(
h

ε

)
= O(‖(h, ε)‖2). (4.18)

This completes the proof.

As a simple consequence by fixing µ = 0, we have

Proposition 4.3. The SOC functions [x]+ and |x | are strongly semismooth at x ∈ Rn.

5. A squared smoothing Newton method

Given a continuously differentiable function F : Rn → Rn , in order to solve the SOCCP,
let z = (x, ε) ∈ Rn × R and define

H (z) =
(

�(x, ε)

ε

)
, (5.1)

where �(x, ε) = 1
2 (x + F(x) −

√
(x − F(x))2 + 4ε2e). We also define the merit function

ψ(z) : Rn × R → R+ by ψ(z) = ‖H (z)‖2 and β : Rn × R → R+ by

β(z) = γ min{1, ψ(z)} (5.2)

in which γ ∈ (0, 1). Here, to find the root of (5.1) implies that ε = 0 and �(x, 0) is nothing
but our C-function given in Proposition 2.2(d). Therefore, the SOCCP is equivalent to the
system H (z) = 0.

COMPLEMENTARITY FUNCTIONS AND NUMERICAL EXPERIMENTS 51

Algorithm 5.1.

Step 0. Choose constants δ ∈ (0, 1) and σ ∈ (0, 1
2). Choose ε0 = ε̄ ∈ R++ = {ε | ε > 0}

and γ ∈ (0, 1) such that γ ε̄ < 1. Given an arbitrary x0 ∈ Rn , z̄ = z0 = (x0, ε0). Set
k = 0.

Step 1. If H (zk) = 0, stop. Otherwise, let βk = β(zk).
Step 2. Compute �zk = (�xk, �εk) ∈ Rn × R by

H (zk) + H ′(zk)�zk = βk z̄. (5.3)

Step 3. Let lk be the smallest nonnegative integer l satisfying

ψ(zk + δl�zk) ≤ [1 − 2σ (1 − γ ε̄)δl]ψ(zk). (5.4)

Set zk+1 = zk + δlk �zk .
Step 4. Set k = k + 1 and go to Step 1.

Theorem 5.2. Suppose that H ′(z) is nonsingular for all z = (x, ε) with ε �= 0. Then
Algorithm 5.1 is well defined and any accumulation point z∗ of the sequence {zk} generated
by this algorithm is a solution of H (z) = 0. Moreover, if all V ∈ ∂ H (z∗) are nonsingular
at some z∗ = (x∗, 0), where ∂ H stands for the generalized Jacobian of H in the sense of
Clarke [2], and F ′ is Lipschitz continuous around x∗, then the whole sequence {zk} converge
to z∗ Q-quadratically.

The proof of the above theorem is similar to that in [15] and [16], and we omit it. In
addition, we have shown in [18] for a more general setting that the quadratic convergence
will occur if F ′ is Lipschitz continuous around x∗ and F ′(x∗) is positive definite on the
affine hull of the critical cone of F at x∗. As a special case, the whole sequence {zk}
converge to z∗ Q-quadratically if F ′ is Lipschitz continuous around x∗ and F is strongly
monotone.

6. Numerical experiments

In our numerical experiments, we test the second order cone programs of the following
form:

min
p∑

i=1

cT
i xi

s.t.
p∑

i=1

Ai xi = b

xi ∈ Kni , i = 1, . . . , p,

(6.1)

52 CHEN, SUN AND SUN

where ci , xi ∈ Rni , b ∈ Rm and Ai ∈ Rm×ni . Let y ∈ Rm be the dual variable of the
equality constraint. The KKT system of the above problem is

p∑
i=1

Ai xi = b, xT
i

(
ci − AT

i y
) = 0, i = 1, . . . , p,

xi ∈ Kni , ci − AT
i y ∈ Kni , i = 1, . . . , p.

(6.2)

Let N = ∑p
i=1 ni , c = (cT

1 , . . . , cT
p)T , x = (xT

1 , . . . , xT
p)T and A = (AT

1 , . . . , AT
p)T .

Then to solve the above KKT system is equivalent to find a root of

H




y

x

ε


 =




b − Ax

x + c − AT y −
√

(x − c + AT y)2 + 4ε2e

ε


 = 0. (6.3)

Note that all the vector operations are those on the SOC, see definitions in Section 2. We
note that Huang et al. [9] recently proposed a revised version of Algorithm 5.1 for solving
linear complementarity problems that assures the superlinear convergence under either the
nonsingularity of all generalized Jacobian or the strict complementarity condition at the
solution. We applied their techniques to the SOCCP in our numerical implementation.

We use randomly generated problems in which the involved matrices are not sparse. The
test problems are generated with sizes N (=2m) from 100 to 800 with each ni = 5. (By our
numerical observation, other ni leads to similar numerical results. We only report the result
of ni = 5 here.) The random problems of each size are generated 10 times, and thus we
have totally 80 random problems. The problems are generated by choosing vectors b and
c so that they are feasible and their optimal values are obtainable. In detail, we generate a
random matrix A and a random vector x in the SOC which gives a right hand side b = Ax
and so the SOCCP is feasible. Moreover, we generate a random vector c in the SOC so the
optimal value of the SOCCP is obtainable. There are different types of initial points. One
is to set variables x to be 0.2e, 0.5e and 1.0e and y to be the zero vector, where e is the
unit vector in the feasible cone. The other is to set x and y randomly with x in the interior
of the feasible cone. By using these different types of initializations, one can show that the
initial points play more important roles in the interior point methods than they do in the
smoothing Newton methods. The algorithm is coded in the similar style as SDPT3 used by
Toh et al. [19]. Although there are some differences between the interior-point method and
the smoothing Newton method, the kernel of both algorithms are similar. Both require to
solve a Newton equation obtained from a KKT system at each iteration. We also adopt the
“primal feasibility projection” used in [10], i.e., if

‖A(x + �x) − b‖ > ‖Ax − b‖, (6.4)

we replace �x by its orthogonal projection onto the null space {u | Au = 0}. We use

‖H (z)‖ ≤ restol (6.5)

COMPLEMENTARITY FUNCTIONS AND NUMERICAL EXPERIMENTS 53

1 2 3 4 5 6 7 8 9 10 11
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Newton Method for the SOCCP

iteration number

lo
g

of
 re

si
du

al
 n

or
m

m=400, n=800

Figure 1. The logarithm of residual norm ‖H (z)‖ by iterations.

as our stopping criterion, where the residual tolerance restol = 10−6 and z = (y, x, ε).
Also we set the minimal step length and maximal iteration number as steptol = 10−6 and
maxit = 100. Other parameters used in Algorithm 5 are as follows: σ = 0.35, δ = 0.95,
γ = 0.2, and ε̄ = 1.0. Since we adopt the techniques in [9], the additional parameters used
are: t = 0.2, κ = 2.0 and τ = 0.1. We reduce γ and τ by half until they satisfy the initial
condition:

γ ‖H (z0)‖ + τ
√

n < 1, (6.6)

in which z0 is the initial z. See [9] for more details.
The numerical tests are done on a HP workstation installed Windows 2000 and the source

code is written in MATLAB 6.1.
Figure 1 shows the convergence behavior of one of the largest test problems, i.e., N = 800

and m = 400, with initial points x = 1.0e and y = 0. Tables 1–4 show the average iteration
numbers (iter) and average CPU (cpu) time in second for 10 test problems of each size, for
the different initializations respectively. The computational results are certainly preliminary.
However, they show that the smoothing Newton method could in general perform very
efficiently in practice.

The results in Tables 1–4 show that our algorithm takes more cpu times than the SDPT3
does, while less iteration numbers are needed. However, we stress that the convergence

54 CHEN, SUN AND SUN

Table 1. Average performances of Algorithm 5.1 and SDPT3 for 10 problems with initial point x = 0.2e and
y = 0.

Algorithm 5.1 SDPT3

m N iter cpu(s) iter cpu(s)

50 100 8.7 0.420 19.2 0.310

100 200 7.9 1.147 19.0 0.922

150 300 7.9 2.700 18.0 2.356

200 400 7.8 5.536 18.0 4.843

250 500 8.1 11.214 19.0 9.548

300 600 7.8 17.077 17.0 13.391

350 700 8.1 29.381∗ 21.0 25.523

400 800 8.0 39.435∗ 20.0 35.159

∗Stands for that one random problem fails to converge for too
short steps. The average is based on the successful instances
through our numerical report.

Table 2. The same as Table 1 except the initial points x = 0.5e.

Algorithm 5.1 SDPT3

m N iter cpu(s) iter cpu(s)

50 100 7.8 0.333 13.2 0.218

100 200 7.5 0.987 13.0 0.640

150 300 7.7 2.383 12.0 1.611

200 400 7.9 5.358 14.0 3.901

250 500 8.5 11.580 13.0 6.709

300 600 8.9 19.304 14.0 11.106

350 700 8.1 28.864∗ 14.0 17.272

400 800 8.5 41.779 13.0 23.140

criteria of these two algorithms are different. We also point out that there is room for im-
provement of the code of Algorithm 5.1 by refining the costly matrix computations as in
SDPT3 [19].

We also did some tests for the penalized C-function φp. By using

�(x, ε) = 1

2
(x + F(x) −

√
(x − F(x))2 + 4ε2e + θ [x]+ ◦ [F(x)]+), (6.7)

we have the penalized smoothing Newton algorithm for the SOCCP. The parameter θ ∈
[0, 1]. If θ = 0, then we go back to the squared smoothing method in (5.1), whereas θ > 0,
we have the penalized natural squared smoothing method. As stated in Example 3.4, the
algorithm may generate poor search directions for the merit function. We observed that the
smoothing Newton algorithm behaves better when θ is close to 0. To show the effects of

COMPLEMENTARITY FUNCTIONS AND NUMERICAL EXPERIMENTS 55

Table 3. The same as Table 1 except the initial points x = 1.0e.

Algorithm 5.1 SDPT3

m N iter cpu(s) iter cpu(s)

50 100 8.2 0.311 10.1 0.176

100 200 8.1 0.986 10.0 0.506

150 300 8.7 2.642 10.0 1.353

200 400 9.2 6.233 10.0 2.880

250 500 9.2 12.508 10.0 5.203

300 600 10.5 23.639 10.0 8.147

350 700 10.1 38.437∗ 11.0 13.859

400 800 10.0 50.803∗ 10.0 18.186

Table 4. The same as Table 1 except the initial points are randomly set.

Algorithm 5.1 SDPT3

m N iter cpu(s) iter cpu(s)

50 100 8.9 0.312 10.1 0.206

100 200 9.0 1.094 10.0 0.502

150 300 9.2 2.958 11.0 1.485

200 400 9.0 6.409 10.0 2.853

250 500 8.9 13.070 11.0 5.665

300 600 9.1 19.260 10.0 8.131

350 700 8.9 33.107 11.0 13.823

400 800 8.8 44.847 11.0 39.879

Table 5. Numerical results for penalized C-function.

θ 0.02 0.04 0.06 0.08 0.10

m N iter cpu(s) iter cpu(s) iter cpu(s) iter cpu(s) iter cpu(s)

50 100 10 1.016 12 1.156 15 1.344 18 1.531 22 1.813

100 200 10 3.297 12 3.531 15 4.625 19 5.500 26 7.735

150 300 10 7.438 13 9.750 16 10.843 21 15.672 29 23.265

200 400 10 14.156 13 20.000 17 27.578 21 30.781 29 56.718

250 500 11 30.125 13 – 21 75.578 29 – 49 –

300 600 10 39.578 13 59.640 17 87.452 21 92.593 27 129.248

350 700 11 – 14 93.655 18 132.826 24 191.997 36 324.606

400 800 12 – 15 170.185 17 – 21 218.997 5 –

– Stands for “Jacobian singular at a certain iterate.”

56 CHEN, SUN AND SUN

different penalized parameters, we tested the problems of each size with initial x = 0.2e
and y = 0, and report the results in Table 5. (One can compare these results with those in
Table 1). Note that the Jacobians are singular in some cases even with small parameter θ .
With these parameters, the algorithm generates ill conditioned Jacobians at some iterates,
and fails due to too short steps. It is a future topic of research whether one can have a
“scaled” penalized natural C-function with nonsingular Jacobians and bounded level sets.

Acknowledgment

Many thanks to Professor K.-C. Toh for his helpful discussion on the numerical implemen-
tation.

References

1. B. Chen, X. Chen, and C. Kanzow, “A penalized Fischer-Burmeister NCP-function,” Math. Prog., vol. 88,
pp. 211–216, 2000.

2. F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley: New York, 1983.
3. J.-P. Crouzeix, “Pseudomonotone variational inequality problems: Existence of solutions,” Math. Prog.,

vol. 78, pp. 305–314, 1997.
4. J. Faraut and A. Koranyi, Analysis on symmetric cones. Clarendon Press: Oxford, 1994.
5. L. Faybusovich, “Linear systems in Jordan algebras and primal-dual interior-point algorithms,” Journal of

Comp. and Appl. Math., vol. 86, pp. 149–175, 1997.
6. M.C. Ferris and C. Kanzow, “Complementarity and related problems: A survey,” in P.M. Pardalos and

M.G.C. Resende (Eds.), Handbook of Applied Optimization, Oxford University Press: New York, 2002,
pp. 514–530.

7. M. Fukushima, Z.Q. Luo, and P. Tseng, “Smoothing functions for second-order-cone complementarity prob-
lems,” SIAM Journal on Optimization, vol. 12, pp. 436–460, 2002.

8. Y.R. He and K.F. Ng, “Characterize the boundedness of solution set of generalized complementarity problems,”
Math. Prog., in press.

9. Z. Huang, L. Qi, and D. Sun, “Sub-quadratic convergence of a smoothing Newton algorithm for the P0- and
monotone LCP,” http://www.math.nus.edu.sg/∼matsundf/.

10. C. Kanzow and C. Nagel, “Semidefinite programs: New search directions, smoothing-type methods, and
numerical results,” SIAM Journal on Optimization, vol. 13, pp. 1–23, 2002. http://ifamus.mathematik.
uni-wuerzburg.de/∼kanzow/.

11. M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-order cone programming,”
Linear Alg. Appl., vol. 284, pp. 193–228, 1998.

12. L. McLinden, “Stable monotone variational inequalities,” Math. Prog., vol. 48, pp. 303–338, 1990.
13. J.S. Pang, “Complementarity problems,” In R. Horst and P. Pardalos (Eds.), Handbook in Global Optimization,

Kluwer Academic Publishers: Boston, 1994.
14. L. Qi and J. Sun, “A nonsmooth version of Newton’s method,” Math. Prog., vol. 58, pp. 353–367, 1993.
15. L. Qi, D. Sun, and G. Zhou, “A new look at smoothing Newton methods for nonlinear complementarity

problems and box constrained variational inequalities,” Math. Prog., vol. 87, pp. 1–35, 2001.
16. D. Sun and L. Qi, “Solving variational inequality problems via smoothing-nonsmooth reformulations,”

J. Comput. Appl. Math., vol. 129, pp. 37–62, 2001.
17. D. Sun and J. Sun, “Semismooth matrix valued functions,” Math. Oper. Res., vol. 27, pp. 150–169, 2002.
18. J. Sun, D. Sun, and L. Qi, “Quadratic convergence of a squared smoothing Newton method for nons-

mooth matrix equations and its applications in semidefinite optimization problems,” Technical Report, De-
partment of Decision Sciences, National University of Singapore 2002, http://www.fba.nus.edu.sg/
depart/ds/sunjiehomepage/.

19. K.C. Toh, M.J. Todd, and R.H. Tütüncü, “SDPT3—A MatLab software package for semidefinite programming,
version 2.1,” Optimization Methods and Software, vol. 11, pp. 545–581, 1999.

