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Abstract. Semismooth* Newton methods have been proposed in recent years targeting 
multivalued inclusion problems and have been successfully implemented to deal with sev
eral concrete generalized equations. In this paper, we show that two typical implementa
tions of them that are available are exactly the applications of G-semismooth Newton 
methods for solving nonsmooth equations localized from these generalized equations. This 
new understanding expands the breadth of G-semismooth Newton methods in theory, 
results in a few interesting problems regarding the two categories of nonsmooth Newton 
methods, and more importantly, provides informative observations in facilitating the design 
and implementation of practical Newton-type algorithms for solving generalized equations.
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1. Introduction
Starting from the seminal work of Kummer [42], Newton-type methods for solving nonsmooth equations have 
evolved for several decades. The literature on this topic is abundant; one may refer to Hoheisel et al. [29, 30], 
Izmailov and Solodov [33], Kummer [43], Pang [51], Qi and Sun [53], Robinson [56], and the references therein. 
Nowadays, nonsmooth Newton methods have been heavily incorporated into efficient numerical optimization 
software for large-scale optimization problems (Li et al. [45], Yang et al. [63], Zhao et al. [64]). For generalized 
equations (GEs), nonsmooth Newton methods have also been extensively studied. In the pioneering work of this 
field, Josephy [34, 35] considered the GEs in the form of

0 ∈ H(x) +Θ(x), 
where H : X → Y is a single-valued function, Θ : X ⇉ Y is a multifunction, and X and Y are finite-dimensional 
real Hilbert spaces, each endowed with an inner product and its induced norm. Studies in this direction include 
Aragón Artacho et al. [2, 3], Bonnans [5], Cibulka et al. [7], de Oliveira et al. [8], Dontchev [10], Dontchev [11], 
Dontchev and Rockafellar [12], Ferreira [13], Ferreira and Silva [14], Ferreira and Silva [15], Fischer [16], Gaydu 
and Geoffroy [18], Geoffroy and Piétrus [19], Gfrerer [20], Izmailov and Solodov [31], Izmailov and Solodov [32], 
Izmailov and Solodov [33], and Solodov and Svaiter [61] to name only a few. In these algorithms, the single- 
valued part H is linearized, whereas the multivalued part Θ is kept. So, the subproblems are linearized general
ized equations. Alternatively, the constructions of Newton-type methods for nonsmooth GEs by approximating the 
multivalued part Θ have been investigated in Azé and Chou [4], Dias and Smirnov [9], Gaydu and Geoffroy [18], 
Hoheisel et al. [29], and Klatte and Kummer [41]. Significant progress has also been made in Newton-type methods 
with subproblems being coderivative (or graphical derivative) inclusions (Aragón Artacho et al. [1], Khanh et al. [36], 
Khanh et al. [37], Khanh et al. [38], Khanh et al. [39], Mordukhovich [49], Mordukhovich [50]).

Recently, a semismooth* Newton method was proposed in Gfrerer and Outrata [23] for solving GEs in the form of
0 ∈ Φ(x), (1) 

where Φ : X ⇉ Y is a set-valued mapping with closed graph, and it was extended in Gfrerer and Outrata [24] 
using subspace containing derivatives (SCD). A particular property of these semismooth* Newton methods is 
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that the subproblems involved are linear systems of equations, which is different from the methods mentioned 
above for solving (1). Moreover, because an inequality involving the target solution should be properly fulfilled 
in the “approximation step” at each iteration of these algorithms, specific implementations of these algorithms 
should be elaborately designed to make them practical. These implementations are rarely available in the litera
ture. However, the two executable representatives of them, even seemingly sophisticated, are of practical value.

Specifically, on the one hand, the semismooth* Newton method in Gfrerer and Outrata [23] for (1) was imple
mented in Gfrerer and Outrata [23, section 5] for solving the GE:

0 ∈ F(x) + ∇G(x)ND(G(x)), (2) 

where F : Rn→ Rn is continuously differentiable, G : Rn→ Rs is twice continuously differentiable, D ⊆ Rs is a 
convex polyhedral set, ∇G(x) denotes the adjoint of the Jacobian operator G′(x), and ND(·) denotes the normal 
cone mapping used in convex analysis. As mentioned in Gfrerer and Outrata [23], the GE (2) arises frequently in 
optimization and equilibrium models, and it is equivalent to the GE given by 0 ∈ F(x) +NG�1(D)(x) under certain 
constraint qualifications (Gfrerer and Mordukhovich [22, proposition 2.1]). On the other hand, in Gfrerer et al. 
[25], the SCD semismooth* Newton method was applied to the GE:

0 ∈ F(x) + ∂q(x), (3) 

where ∂q is the subdifferential mapping of a given closed proper convex function q : Rn→ (�∞,∞]. Such an 
implementation was further extended in Gfrerer et al. [26] to a more general class of GEs.

The GEs (2) and (3) are of significant importance for taking a closer look at these semismooth* Newton meth
ods. Because the corresponding subproblems for computing the Newton directions are linear systems of equa
tions, which are akin to the subproblems of semismooth Newton methods, it is natural to ask whether these 
implementations admit a connection to the existing Newton-type methods for solving nonsmooth equations. 
Note that when Φ in (1) is single valued and locally Lipschitz continuous around a point x, it is easy to see that 
the semismooth* property of Φ at x is exactly G semismoothness (semismoothness in the sense of Gowda [27]) of 
Φ at x: for example, by Gfrerer and Outrata [23, proposition 3.7]. Moreover, when solving a locally Lipschitz con
tinuous equation, the relationship between the semismooth* Newton method and the G-semismooth Newton 
method of Kummer [42] (cf. Section 2.2 for details) has been discussed in Gfrerer and Outrata [23, section 4]. For 
solving GEs beyond nonsmooth equations, the relationship between the two types of nonsmooth Newton meth
ods is unknown.

In this paper, by reformulating the GEs (2) and (3) as nonsmooth equations, which are proved to be locally 
Lipschitz continuous, we show that the corresponding practical implementations of semismooth* Newton meth
ods are exactly the applications of G-semismooth Newton methods. Specifically, we show that the algorithm 
implemented in Gfrerer and Outrata [23, section 5] for solving (2) is an application of a G-semismooth Newton 
method for solving an implicitly defined equation. Furthermore, for the algorithm in Gfrerer et al. [25] for solving 
(3), we take the proximal residual mapping as the Lipschitz continuous localization of (3) and show that the 
implemented SCD semismooth* Newton method is also an application of a G-semismooth Newton method. 
Additionally, we show that the conditions for ensuring the convergence of these semismooth* Newton methods 
are sufficient for the corresponding applications of the G-semismooth Newton methods. Therefore, one can con
clude that these implementable semismooth* Newton methods are G-semismooth Newton methods. This leads 
to a concrete foundation for comprehending semismooth* Newton methods and is beneficial for developing 
practical nonsmooth Newton methods for solving GEs, especially considering globalization. Here, we emphasize 
that we focus on the local convergence properties. For globalizing the G-semismooth Newton method, one may 
refer to the (inexact) smoothing Newton methods studied in Gao and Sun [17] and Qi et al. [54] (note that 
although semismoothness was used in the cited two references, a quick examination reveals that G semismooth
ness is sufficient for convergence and rate of convergence analysis). In addition, we only consider GEs or non
smooth equations instead of C1, 1 optimization problems, for which traditional globalized G-semismooth Newton 
methods generally require the directional differentiability of the gradient mapping. This requirement can be 
removed by involving the Lipschitz constant of the gradient mapping and a modulus for local stability in the 
line search as in the recent coderivative-based nonsmooth Newton methods for C1, 1 optimization problems or 
composite optimization problems with C1, 1 envelopes (Khanh et al. [38], Khanh et al. [39], Mordukhovich [49]). 
Most recently, the issue of globalizing the semismooth* Newton method for nonconvex composite optimization 
problems has also been discussed (Gfrerer [21]).

The remaining parts of this paper are organized as follows. In Section 2, we collect some basic results in varia
tional analysis and briefly introduce the G-semismooth Newton method. In Section 3, the implementable 
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semismooth* Newton methods in Gfrerer and Outrata [23, section 5] and Gfrerer et al. [25] are introduced together 
with some intermediate results, which are necessary for further discussions. In Section 4 and Section 5, we show 
that these executable implementations of semismooth* Newton methods are applications of G-semismooth Newton 
methods for solving nonsmooth equations involving locally Lipschitz continuous functions. This constitutes the 
main contribution of this work. We conclude our paper in Section 6.

2. Preliminaries
This section presents the definitions and necessary tools from variational analysis (Mordukhovich [48, 49], Rock
afellar [59]). It also provides preliminary results and reviews the G-semismooth Newton method.

2.1. Basic Variational Analysis
Let X and Y be two finite-dimensional real Hilbert spaces, each equipped with an inner product 〈 · , · 〉 and its 
induced norm ‖ · ‖. For any x ∈ X and δ > 0, Bδ(x) denotes the closed ball centered at x with radius δ, and BX and 
BY are the unit balls in X and Y, respectively. Moreover, [x] denotes the subspace spanned by the given vector 
x ∈ X . The notation (·; ·) means that two vectors or linear operators are stacked symbolically in column order. For 
a subspace X0 of X , we use X⊥0 to denote its orthogonal complement in X . We use L(X ,Y) to represent the space 
of all linear operators from X to Y and write L(X) ≡ L(X ,X ) for convenience. For an arbitrary linear operator V, 
we use rgeV to denote its range space and kerV to denote its null space. If V is a matrix, we use V⊤ to denote its 
transpose.

For a nonempty set C ⊆ X , we use riC and intC to denote the relative interior and interior of C, respectively. 
The linearity space of C, denoted by linC, is the largest linear subspace contained in C. Meanwhile, we use spanC 
to denote the smallest linear subspace that contains C. When C is locally closed at x ∈ C, the contingent (Bouli
gand) cone TC(x), the regular (Fréchet) normal cone N̂C(x), and the limiting (Mordukhovich) normal cone NC(x)
to C at x are defined, respectively, by

TC(x) :� limsup
t↘0

C� x
t

, N̂C(x) :� (TC(x))◦, and NC(x) :� limsup
x→x,x∈C

N̂C(x):

Furthermore, KC(x, d) :� TC(x) ∩ [d]⊥ is the critical cone to C at x ∈ C with respect to d ∈ N̂C(x).
If K ⊆ X is a closed convex cone, we use K◦ to denote its polar (i.e., K◦ :� {x ∈ X | 〈x, x′〉 ≤ 0 ∀x′ ∈ K}). In this 

case, one has linK � K ∩ (�K) and spanK � K+ (�K). Moreover, it holds (linK)⊥ � spanK◦ and (spanK)⊥ � linK◦.
For a set-valued mapping Φ : X ⇉ Y, we use gphΦ to denote its graph in X × Y. The mapping Φ is called 

outer semicontinuous at x if for any ε > 0, there exists δ > 0 such that Φ(x′) ⊆ Φ(x) + εBY holds for all 
x′ ∈ x+ δBX . When gphΦ is (locally) closed, the regular (Fréchet) coderivative and the limiting (Mordukhovich) 
coderivative of Φ at (x, y) are the multifunctions D̂∗Φ(x, y) : Y ⇉ X and D∗Φ(x, y) : Y ⇉ X , respectively, such 
that

D̂∗Φ(x, y)(v∗) :� {u∗ ∈ X | (u∗;�v∗) ∈ N̂gphΦ(x; y)} ∀v∗ ∈ Y,
D∗Φ(x, y)(v∗) :� {u∗ ∈ X | (u∗;�v∗) ∈NgphΦ(x; y)} ∀v∗ ∈ Y:

(

If Φ is single valued, one can write the two coderivatives as D̂∗Φ(x) and D∗Φ(x) for simplicity. If Φ is Fréchet dif
ferentiable at x, by Mordukhovich [48, theorem 1.38], one has D̂∗Φ(x)(v∗) � {∇Φ(x)v∗}, where ∇Φ(x) is the adjoint 
of the Fréchet derivative Φ′(x). If Φ is strictly differentiable at x, one also has D∗Φ(x)(v∗) � {∇Φ(x)v∗}. If Φ is 
Lipschitz continuous in an open neighborhood Ω of x, from Rademacher’s theorem (Rademacher [55]), we know 
Φ is almost everywhere Fréchet differentiable in Ω. In this case, the Bouligand subdifferential of Φ(·) at x is 
defined by

∂BΦ(x) :� lim
k→∞
Φ′(x(k)) | Φ is differentiable at x(k), x(k) → x

� �

, (4) 

and Clarke’s generalized Jacobian of Φ at x is defined by ∂Φ(x) :� conv∂BΦ(x) (i.e., by taking the convex hull of 
the Bouligand subdifferential).

In Gfrerer and Outrata [23], a generalization of the coderivatives was introduced. Specifically, for Φ : X ⇉ Y 

with closed graph, one can let D̂∗Φ : gphΦ→ (Y ⇉ X ) be a mapping such that for every pair (x; y) in gphΦ, the 
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set gphD̂∗Φ(x, y) is a cone. One can define the associated limiting mapping D∗Φ : gphΦ→ (Y ⇉ X) by

gphD∗Φ(x, y) :� lim sup

(x′;y′) →
gphΦ

(x;y)

gphD̂∗Φ(x′, y′):

Here, D̂∗ and D∗ serve as the generalizations of the regular and limiting coderivatives D̂∗ and D∗, respectively. In 
Gfrerer and Outrata [23], the notion of semismoothness* was originally proposed for sets and is equivalent to the 
semismoothness of sets in Henrion and Outrata [28, definition 2.3]. The following definition of generalized semi
smoothness* comes from its application and generalization to gphΦ.

Definition 1 (Gfrerer and Outrata [23, definition 4.8]). Let Φ : X ⇉ Y and (x; y) ∈ gphΦ, which is nonempty and closed. 
Then, Φ is called semismooth* at (x, y) with respect to D∗Φ if for every ɛ > 0, there is some δ > 0 such that

| 〈x∗, x� x〉� 〈y∗, y� y〉 | ≤ ɛ‖(x; y)� (x; y)‖ ‖(x∗; y∗)‖ ∀(x; y) ∈ Bδ(x; y), ∀(y∗; x∗) ∈ gphD̂∗Φ(x, y):

Finally, we discuss proximal mappings and projections. For a maximal monotone mapping M : X ⇉ X , the 
corresponding proximal mapping is defined by proxλM :� (I +λM)�1, λ > 0, which is single valued and 
Lipschitz continuous with unit Lipschitz constant, where I represents the identity operator. Given a closed 
proper convex function q : X → (�∞, +∞] and a parameter λ > 0, its subdifferential mapping ∂q is always maxi
mal monotone. Taking M ≡ ∂q, it is easy to see that

proxλM(x) � Pλq(x) :� arg min
z

q(z) + 1
2λ ‖z� x‖2

� �

∀x ∈ X : (5) 

Therefore, for a nonempty closed convex subset C ⊆ X with δC being its indicator function, the projection map
ping (with respect to ‖ · ‖) can be defined by ΠC(x) :� PλδC(x) for any λ > 0. The following lemma on the Bouli
gand subdifferential of the projection mapping onto a convex polyhedral set is necessary for subsequent 
discussions.

Lemma 1. Let Q ⊂ Rl be a nonempty polyhedral convex set. Then, for a given µ ∈ Rl,

∂BΠQ(µ) � {ΠspanG(·) | G is a face of K(µ) :�KQ(ΠQ(µ), µ�ΠQ(µ))}:

Proof. We know from Pang [51, lemma 5(i)] and the definition of K(µ) that for any ∆µ ∈ Rl with ‖∆µ‖ being suffi
ciently small, it holds that

ΠQ(µ+∆µ) �ΠQ(µ) +ΠK(µ)(∆µ): (6) 

Moreover, if ΠQ is differentiable at µ+∆µ, one has from Pang [51, lemma 5(ii)] that

Π′Q(µ+∆µ) �ΠlinK(µ+∆µ)(·) �ΠlinTQ(ΠQ(µ+∆µ))(·), 

where the last equality comes from Gfrerer and Outrata [23, (2.3), lemma 2.4]. Note that lim∆µ→0ΠK(µ)(∆µ) � 0. 
Therefore, from Gfrerer and Outrata [23, lemma 2.4], we know that for every ∆µ with ‖∆µ‖ sufficiently small, 
one has linK(µ+∆µ) � spanG, with G being a face of K(µ). Consequently, one has Π′Q(µ+∆µ) �ΠspanG(·) so that

∂BΠQ(µ) ⊆ {ΠspanG(·) | G is a face of K(µ)}: (7) 

On the other hand, let G be an arbitrary face of K(µ). It holds G � K(µ) ∩ [ν]⊥ for some ν ∈ K(µ)◦. Because G is a 
closed convex set, one has from Rockafellar [57, theorem 6.2] that riG is nonempty. Let µ̃ ∈ riG ⊆ K(µ) be fixed. It 
holds that TG(µ̃) � spanG. Moreover, from Moreau’s decomposition theorem (Rockafellar [57, theorem 31.5]), one 
can get ΠK(µ)(µ̃ + ν) � µ̃. Then, by Pang [51, lemma 5.1(i)], we know that for all ∆µ ∈ Rl with ‖∆µ‖ sufficiently 
small, it holds that ΠK(µ)(µ̃ + ν+∆µ) � µ̃ +ΠTK(µ)(µ̃)∩[ν]

⊥ (∆µ) � µ̃ +ΠspanG(∆µ). Thus, ΠK(µ)(·) is differentiable at 
µ̃ + ν with Π′K(µ)(µ̃ + ν) �ΠspanG(·). Note that for any integer k > 0, one has G � K(µ) ∩ [ν=k]⊥. Meanwhile, as G is a 
closed convex cone, one has µ̃=k ∈ riG. Therefore, ΠK(µ)(·) is differentiable at (µ̃ + ν)=k for all k > 0 with 
Π′K(µ)(µ̃=k+ ν=k) �ΠspanG(·). Consequently, by (6), one has

Π′Q(µ+ (µ̃=k+ ν=k)) �Π′K(µ)(µ̃=k+ ν=k) �ΠspanG(·):

Taking limits in the above equality along with k→∞, one gets ΠspanG(·) ∈ ∂BΠQ(µ). This, together with (7), com
pletes the proof of the lemma. w
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2.2. A G-Semismooth Newton Method
The terminology “G-semismoothness” was coined in Pang et al. [52, p. 41] for distinguishing the definition of 
semismoothness in Gowda [27] from those in Mifflin [47] and Qi and Sun [53] involving directional differentia
bility. Specifically, let Ω ⊆ X be an open set, H : Ω→ Y be a continuous function, and T : Ω ⇉ L(X ,Y) be a set- 
valued mapping. According to Gowda [27, definition 2], we say H is called G-semismooth with respect to T at 
x ∈Ω if for any h→ 0 and V ∈ T (x+ h), it holds that H(x+ h)�H(x)�Vh � o(‖h‖). When H is locally Lipschitz 
continuous around x, it is simply called G-semismooth at x if T is taken as ∂H, and this definition is invariant if 
∂H is replaced by ∂BH (cf. Gowda [27, section 2.3]). The following G-semismooth Newton method, based on G 
semismoothness, is a trivial inexact extension of Kummer [42].

Algorithm 1 (A G-Semismooth Newton Method for Solving Nonsmooth Equations)
Input: x(0) ∈ X , H : Ω ⊆ X → Y, T : X ⇉ L(X ,Y), and ϱ ≥ 0.
Output: {x(k)}.
For k � 0, 1, : : : , 
1. if H(x(k)) � 0, stop the algorithm;
2. select Vk ∈ L(X ,Y) such that dist(Vk,T (x(k))) ≤ ϱ‖H(x(k))‖, compute ∆x(k) via solving Vk∆x ��H(x(k)), and 
obtain x(k+1) :� x(k) +∆x(k).

Theorem 1. Let Ω ⊆ X be an open set. Suppose that H : Ω→ X is locally Lipschitz continuous (with modulus ϑ > 0) and 
G-semismooth with respect to T : Ω ⇉ L(X ,Y) at x such that H(x) � 0. Assume that T (·) is compact valued and outer 
semicontinuous at x and that V�1 exists for all V ∈ T (x). Then, there exists a neighborhood of x such that for any x(0) in it, 
Algorithm 1 either terminates in finitely many steps or generates an infinite sequence {x(k)} satisfying ‖x(k+1) � x‖ �
o(‖x(k) � x‖) as k→∞.

Proof. Note that ‖H(x)‖ ≤ ϑ ‖x� x‖ for all x sufficiently close to x. Meanwhile, the G semismoothness of H at x 
implies that the multifunction T (x) +ϑϱ‖x� x‖BL(X ,Y) is a Newton map (cf. Klatte and Kummer [41, definition 2] 
or Kummer [44] for the definition) for H at x. As T (·) is compact valued and outer semicontinuous at x and all 
V ∈ T (x) are nonsingular, the Newton-regularity condition (Klatte and Kummer [41, definition 3]) holds at x. So, 
the convergence properties of Algorithm 1 follow from Klatte and Kummer [41, theorem 4] (or Klatte and Kum
mer [40, lemma 10.1]). w

3. Implementable Semismooth* Newton Methods for GEs
This section reviews the two typical semismooth* Newton methods that are implementable to concrete GEs.

3.1. A Semismooth* Newton Method for the GE (2)
In Gfrerer and Outrata [23, section 5], the semismooth* Newton method (Gfrerer and Outrata [23, algorithm 3]) 
for solving the GE (1) was implemented to (2) by introducing an auxiliary variable d ∈ Rs and solving the equiva
lent problem

0 ∈H(x, d) :�
F(x) + ∇G(x)ND(d)

G(x)� d

 !

: (8) 

Note that x solves (2) if and only if (x, d) � (x, G(x)) solves (8). For convenience, define the Lagrangian function
Lλ(x) :� F(x) + ∇G(x)λ ∀(x;λ) ∈ Rn × Rs:

For a given point ẑ :� ((x̂, d̂); (p̂∗, G(x̂)� d̂)) ∈ gphH, one can choose λ̂ ∈ND(d̂) such that p̂∗ � Lλ̂(x̂). Moreover, one 
can define for all (p; q∗) ∈ Rn × Rs the mapping

T(x̂, d̂, λ̂)(p, q∗) :� {(∇Lλ̂(x̂)p+∇G(x̂)q∗, d∗) | d∗ + q∗ ∈ D̂∗ND(d̂, λ̂)(G′(x̂)p)}: (9) 

In this case, according to Gfrerer and Outrata [23, equation 5.5], the regular coderivative of H at ẑ satisfies

D̂∗H(ẑ)(p, q∗) ⊆ T(x̂, d̂, λ̂)(p, q∗): (10) 

For implementing the semismooth* Newton method (Gfrerer and Outrata [23, algorithm 3]) to (8), a mapping 
D̂∗H that surrogates D̂∗H has been specified based on (9). Furthermore, by defining D∗H as the outer limit of 
D̂∗H, it is known from Gfrerer and Outrata [23, theorem 5.5] that the mapping H in (8) is semismooth* with 
respect to D∗H at every point ((x, G(x)); (0, 0)) ∈ gphH. Then, the “approximation step” in Gfrerer and Outrata 
[23] was given as the following algorithm.
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Algorithm 2 (An Approximation Step)
Input: x ∈ Rn.
Output: û ∈ Rn, x̂ ∈ Rn, λ̂ ∈ Rs, d̂ ∈ Rs, p̂∗ ∈ Rn:

1. compute

û � arg min
u∈Rn

1
2 ‖u‖

2
+ 〈F(x), u〉 |G(x) + G′(x)u ∈ D

� �

(11) 

together with a multiplier λ̂ ∈ND(G(x) +G′(x)û) satisfying û + F(x) +∇G(x)λ̂ � û +Lλ̂(x) � 0;
2. set x̂ :� x, d̂ :� G(x) +G′(x)û, p̂∗ :� Lλ̂(x̂), and ŷ :� (p̂∗, G(x̂)� d̂).

The semismooth* Newton method in Gfrerer and Outrata [23, section 5] for solving (2) is given as Algorithm 3.

Algorithm 3 (An Implementable Semismooth* Newton Method for Solving (2))
Input: F : Rn→ Rn, G : Rn→ Rs, and x(0) ∈ Rn:
Output: {x(k)}:
For k � 0, 1, : : : , 
1. if x(k) solves (2), stop the algorithm;
2. run Algorithm 2 with input x(k) to compute λ̂(k), d̂

(k)
, and L

λ̂
(k) (x̂(k));

3. set l̂
(k)
� dim(linTD(d̂

(k)
)), and compute an s × (s� l̂

(k)
) matrix Ŵ (k), whose columns form a basis for 

spanND(d̂
(k)
), and then, an n × (n� (s� l̂

(k)
)) matrix Ẑ(k), whose columns are an orthogonal basis for 

ker(Ŵ (k)⊤G′(x(k)));
4. set x(k+1) :� x(k) +∆x(k) with the Newton direction ∆x(k) being a solution to the linear system

Ẑ(k)
⊤

(L′
λ̂
(k) (x(k))∆x(k) +L

λ̂
(k) (x(k))) � 0,

Ŵ (k)⊤
(G(x(k)) +G′(x(k))∆x(k) � d̂

(k)
) � 0:

8
<

:
(12) 

Recall that a point (x, d) is called nondegenerate with modulus γ > 0 to the GE (2) if one has ‖∇G(x)λ‖ ≥ γ‖λ‖
for all λ ∈ spanND(d). It is called nondegenerate if the above condition holds with some γ > 0. The following 
assumption (Gfrerer and Outrata [23, assumption 1]) is essential for Algorithm 2.

Assumption 1. (x, G(x)) is a nondegenerate solution to (8) with modulus γ̃ > 0.

Remark 1. The point (x, d) is called nondegenerate if and only if G′(x)Rn + linTD(d) � Rs. Moreover, from Gfrerer 
and Outrata [23, remark 5.3 and lemma 5.4], it holds that for any ẑ :� ((x̂, d̂); (p̂∗, G(x̂)� d̂)) ∈ gphH with (x̂, d̂)
being nondegenerate, one has that (10) holds as equality, and there exists only one λ ∈ND(d̂), denoted by 
λ̂(x̂, d̂, p̂∗), such that p̂∗ � F(x̂) + ∇G(x̂)λ.

Then, one has the following result (there is a typo in Gfrerer and Outrata [23, equation 5.13], and we take the 
revised form).

Proposition 1 (Gfrerer and Outrata [23, proposition 5.7]). Under Assumption 1, there exists a positive radius ω and posi
tive reals β,βu, and βλ such that for all x ∈ Bω(x), the quadratic program in (11) is well defined and admits a unique solu
tion û, and the output of Algorithm 2 satisfies ‖û‖ ≤ βu‖x̂� x‖,

‖((x̂; d̂); ŷ)� ((x; G(x)); (0; 0))‖ ≤ β‖x̂� x‖, and ‖λ̂�λ‖ ≤ βλ‖x̂� x‖, 

where λ is the unique multiplier for x. Further, (x̂, d̂) is nondegenerate with modulus γ̃=2 and ND(d̂) ⊆ND(G(x)).

The following assumption (Gfrerer and Outrata [23, assumption 2]) provides a regularity condition that guar
antees that the linear system (12) admits a unique solution (there is a typo in Gfrerer and Outrata [23], and we 
use the corrected form here).

Assumption 2. For any face F of the critical cone KD(G(x),λ), there is a matrix ZF , whose columns form an orthogonal 
basis of {u | G′(x)u ∈ spanF} such that the matrix Z⊤FL′

λ
(x)ZF is nonsingular.

According to Gfrerer and Outrata [23, theorem 5.12], under Assumptions 1 and 2, there exists a neighborhood 
U of x such that for every starting point x(0) ∈U, Algorithm 3 either stops after finitely many iterations at a solu
tion of (2) or produces a sequence {x(k)} converging superlinearly to x.
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3.2. An SCD Semismooth* Newton Method for the GE (3)
In Gfrerer et al. [25], the SCD semismooth* Newton method proposed in Gfrerer and Outrata [24] for (1) (with 
X ≡ Y) was implemented to the GE (3). As was observed in Gfrerer and Outrata [24], when applying the semi
smooth* Newton methods to (3), it is advantageous to work with linear subspaces L ⊆ X × X having the same 
dimension n with X and contained in the graph of the limiting coderivative at a certain point (x; y) ∈ gphΦ (i.e., 
L ⊆ gphD∗Φ(x, y)). Specifically, denote by Zn the metric space of all n-dimensional subspaces of X × X equipped 
with the metric dZn(L1, L2) :� ‖ΠL1 �ΠL2‖, where ΠLi is the projection operator on Li, i � 1, 2. Further, define L∗ :�

{(�v∗; u∗) | (u∗; v∗) ∈ L⊥} for any L ∈ Zn. According to Gfrerer and Outrata [24, definition 3.3], Φ : X ⇉ X with closed 
graph is called graphically smooth of dimension n at (x, y) if (x; y) ∈ gphΦ and TgphΦ(x; y) ∈ Zn. Denote by OΦ the 
set of all points where Φ is graphically smooth of dimension n. Then, one can define for Φ the following set- 
valued mappings (from gphΦ to Zn):

Ŝ ∗Φ(x, y) :�

(
{(TgphΦ(x; y))∗} if (x, y) ∈OΦ,

∅ else,
S∗Φ(x, y) :� lim sup

(u;v) →
gphΦ

(x;y)

Ŝ ∗Φ(u, v):

The following definition of the SCD property also comes from Gfrerer and Outrata [24, definition 3.3].

Definition 2. Φ is said to have the SCD property at (x, y) if (x; y) ∈ gphΦ and S∗Φ(x, y)≠ ∅. It has the SCD property 
around (x, y) if (x; y) ∈ gphΦ and there is a neighborhood N of (x; y) such that Φ has the SCD property at every 
(x′; y′) ∈ gphΦ ∩N . It is called an SCD mapping if Φ has the SCD property at every point (x, y) such that 
(x; y) ∈ gphΦ.

The following definition of SCD regularity was given in Gfrerer and Outrata [24, definition 4.1].

Definition 3. Define Zreg
n :� {L ∈ Zn | (y∗; 0) ∈ L⇒ y∗ � 0}. A mapping Φ : X ⇉ X is called SCD regular around 

(x, y) if (x; y) ∈ gphΦ, Φ has the SCD property around (x, y), and S∗Φ(x, y) ⊆ Zreg
n . Moreover, the modulus of SCD 

regularity of Φ around (x, y) is defined by

scd reg Φ(x, y) :� sup{‖y∗‖ | (y∗; x∗) ∈ L, L ∈ S∗Φ(x, y), ‖x∗‖ ≤ 1}:

According to Gfrerer and Outrata [24, lemma 3.7], the SCD property was coined because for any subspace 
L ∈ S∗Φ(x, y), one has L ⊆ gphD∗Φ(x, y). Moreover, based on this property, the semismoothness* in Definition 1 can 
be extended to the following SCD semismoothness*.

Definition 4. (Gfrerer and Outrata [24, definition 5.1]). Let Φ : X ⇉ X and (x; y) ∈ gphΦ, which is nonempty and 
closed. Then, Φ is called SCD semismooth* at (x, y) if Φ has the SCD property around (x, y) and for every ɛ > 0, 
there exists some δ > 0 such that

| 〈x∗, x� x〉� 〈y∗, y� y〉 | ≤ ɛ‖(x; y)� (x; y)‖ ‖(x∗; y∗)‖
∀(x; y) ∈ Bδ(x; y), ∀(y∗; x∗) ∈ ∪ S∗Φ(x, y) ⊆ gphD∗Φ(x, y):

Note that the GE (3) can be solved equivalently via finding (x; d) ∈ Rn × Rn such that

0 ∈ J (x, d) :� F(x) + ∂q(d)
x� d

� �

: (13) 

Given γ > 0, define the proximal residual mapping uγ : Rn→ Rn by

uγ(x) :� Pγ�1q(x� γ�1F(x))� x ∀x ∈ Rn: (14) 

In Gfrerer et al. [25, section 5], the following implementable SCD semismooth* Newton method was proposed 
for (3), which is an application of Gfrerer and Outrata [24, algorithm 1] to (13).

Algorithm 4 (An Implementable SCD Semismooth* Newton Method for Solving (3))
Input: x(0) ∈ Rn, F : Rn→ Rn, and q : Rn→ R̄:
Output: {x(k)}:
For k � 0, 1, : : : , 

1. if 0 ∈ F(x(k)) + ∂q(x(k)), stop the algorithm;
2. select γ(k) > 0, and compute u(k) :� uγ(k) (x(k)), d̂

(k)
:� x(k) + u(k), and d̂

∗(k)
:��γ(k)u(k) � F(x(k));
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3. select (X∗(k), Y∗(k))with rge(Y∗(k); X∗(k)) ∈ S∗∂q(d̂
(k)

, d̂
∗(k)
), compute the Newton direction ∆x(k) from

(Y∗(k)⊤F′(x(k)) +X∗(k)⊤)∆x(k) � (γ(k)Y∗(k)⊤ +X∗(k)⊤)u(k), (15) 

and obtain the new iterate via x(k+1) :� x(k) +∆x(k):

One has the following convergence theorem for Algorithm 4.

Theorem 2. (Gfrerer et al. [25, theorem 5.2]). Let x be a solution of (3), and assume that ∂q is SCD semismooth* at 
(x, � F(x)). In addition, suppose that F+ ∂q is SCD regular around (x, 0). Then, for every pair γ,γ with 0 < γ ≤ γ, there 
exists a neighborhood U of x such that for every starting point x(0) ∈U, Algorithm 4 produces a sequence {x(k)} converging 
superlinearly to x, provided that we choose in every iteration step γ(k) ∈ [γ,γ].

4. Proof of Algorithm 3 as a G-Semismooth Newton Method
In this section, we demonstrate that Algorithm 3 can be treated as an application of the G-semismooth Newton 
method (Algorithm 1).

4.1. Lipschitz Continuous Localization
Let F, G, and D be the functions and the polyhedral set in (2). Suppose that Assumption 1 holds and ω > 0 is the 
radius given by Proposition 1. Recall from Proposition 1 that the output û by running Algorithm 2 can be locally 
represented via the solution mapping

S(x) :� {u |0 ∈ u+ F(x) + ∇G(x)ND(G(x) +G′(x)u)} ∀x ∈ Bω(x), (16) 

which is well defined and single valued. Note that S(x) � 0 if and only if x is a solution of the GE (2) on Bω(x). 
Moreover, the corresponding multiplier calculated from Algorithm 2 can also be defined as a single-valued map
ping Λ(·) on Bω(x). It has been established in Proposition 1 that S(·) is isolated calm at point x in the sense that 
‖S(x)‖ ≤ βu‖x� x‖ ∀x ∈ Bω(x). In fact, a more robust result can be obtained, for which the following consequence 
of the reduction approach (Bonnans and Shapiro [6, example 3.139]) is necessary.

Lemma 2. Suppose that Assumption 1 holds and ω > 0 is the radius given by Proposition 1. Define for x ∈ Bω(x) the 
parameterized nonsmooth equation

H̃(u,λ; x) :�
u+ F(x) + ∇G(x)λ

G(x) +G′(x)u�ΠD(G(x) +G′(x)u+λ)

 !

� 0: (17) 

Then, for any x̃ ∈ Bω(x), the nondegeneracy condition holds at (x̃, d̃) :� (x̃, G(x̃) +G′(x̃)S(x̃)) for all x̃ ∈ Bω(x), where S(·)
is defined by (16) in the sense that

G′(x̃)Rn + linTD(d̃) � Rs ∀x̃ ∈ Bω(x): (18) 

Moreover, let l̃ be the dimension of linTD(d̃), and define Q :� W̃⊤
(TD(d̃)), where W̃ ∈ Rs×s�l̃ is any matrix whose columns 

are linearly independent such that rgeW̃ � spanND(d̃). Then, the nonsmooth Equation (17) is locally equivalent to

H̃W̃ (u,µ; x) :�
u+ F(x) + ∇G(x)W̃µ

W̃⊤
(G(x) +G′(x)u� d̃)�ΠQ(W̃

⊤
(G(x) +G′(x)u� d̃) +µ)

 !

� 0 (19) 

in the sense that when x is sufficiently close to x̃, (u,λ) solves (17) if and only if (u,µ) solves (19) and λ � W̃µ.

Proof. Because Assumption 1 holds, according to the proof of Gfrerer and Outrata [23, proposition 5.7], for any 
x̃ ∈ Bω(x), one has that (ũ, λ̃) :� (S(x̃),Λ(x̃)) is the unique point such that (17) holds at (ũ, λ̃; x̃). Moreover, from 
Remark 1 and the proof of Gfrerer and Outrata [23, proposition 5.7], we know that the nondegeneracy Condition (18) 
holds at (x̃, d̃). From the definitions of d̃ and W̃ , we know that the mapping d→ W̃⊤

(d� d̃) meets the requirements 
in Bonnans and Shapiro [6, definition 3.135] so that D is C∞-cone reducible to Q, which is a pointed closed convex 
cone. Then, it comes from Shapiro [60, section 4] that the nonsmooth Equation (17) is locally equivalent to (19). w

Based on the above lemma, the following result holds.

Proposition 2. Suppose that Assumption 1 holds and ω > 0 is the radius given by Proposition 1. Then, both the mapping 
S(·) defined in (16) and the multiplier mapping Λ(·) are Lipschitz continuous in Bω(x). Moreover, S(·) is G semismooth in 
intBω(x).

Chen, Sun, and Zhang: Two Semismooth* Newton Methods Are G Semismooth 
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Proof. Let x̃ ∈ Bω(x), and define (ũ, λ̃) :� (S(x̃),Λ(x̃)) and d̃ :� G(x̃) +G′(x̃)ũ. With l̃, Q, and W̃ being defined the 
same as those in Lemma 2, it comes from this lemma that the parameterized nonsmooth Equation (17) is locally 
equivalent to (19) around x̃, and (18) holds. In particular, H̃W̃ (ũ, µ̃; x̃) � 0, with µ̃ ∈ Rs�l̃ being the unique vector 
such that λ̃ � W̃µ̃.

Moreover, it holds that

〈∆u, ((ũ + F(x̃))′u + (∇G(x̃)W̃µ̃)
′
u)∆u〉 � ‖∆u‖2:

Therefore, by following the proof of Meng et al. [46, proposition 2] and using Meng et al. [46, corollary 2], we 
know that there exists a neighborhood O(x̃) of x̃ such that S(·) and Λ(·) are Lipschitz continuous. Because Bω(x)
is a compact set, for all x̃ ∈ Bω(x), one can always find a finite collection χ of x̃ such that the union of these open 
neighborhoods ∪x̃∈χO(x̃) covers Bω(x). Therefore, S(·) and Λ(·) are Lipschitz continuous in Bω(x). Finally, as the 
projection onto Q is strongly G-semismooth, by Meng et al. [46, corollary 2], we know that S(·) is G-semismooth 
with respect to ∂BS or ∂S. This completes the proof. w

According to Rademacher’s theorem, the solution mapping S(·) defined in (16) is almost everywhere differen
tiable in Bω(x) because of Proposition 2. It is not hard to compute the Frechét derivative of S when it is differen
tiable, but it is hard to directly compute the corresponding Bouligand subdifferential (4) or Clarke’s generalized 
Jacobian by taking limits because S(·) is implicitly defined. Therefore, to implement Algorithm 1 to solve the non
smooth equation S(x) � 0, the corresponding mapping T should be explicitly computed, which will be done in 
the next part.

4.2. G Semismoothness
The analysis in Meng et al. [46] for locally Lipschitz continuous homeomorphisms can be utilized to compute a 
set-valued mapping such that the solution mapping S(·) defined in (16) is G-semismooth with respect to it. Speci
fically, we have the following key result, which gives the G semismoothness of S around x.

Proposition 3. Suppose that Assumption 1 holds and ω > 0 is the radius given by Proposition 1. Then, the solution map
ping S(·) defined in (16) is G-semismooth at every x̃ ∈ intBω(x) with respect to the set-valued mapping

T S(x) :�
�L′λ(x) +∇G(x)W[W⊤G′(x)∇G(x)W]�1W⊤(G′(x)L′λ(x)� [G(x) +G′(x)u]′x)

|W has full column rank, rgeW � (spanF )
⊥ with F being a face of KD(d,λ)

( )

, (20) 

where u :� S(x), d :� G(x) +G′(x)S(x), and λ :� Λ(x). Moreover, T S(·) is outer semicontinuous at every x̃ ∈ intBω(x).

Proof. Let x̃ ∈ intBω(x), and define ũ :� S(x̃), d̃ :� G(x̃) +G′(x̃)ũ, and λ̃ :�Λ(x̃). Let l̃, W̃ , and Q be the same as 
those defined in Lemma 2. We know from Lemma 2 that the parameterized nonsmooth Equation (17) is locally 
equivalent to (19) around x̃, and (18) holds. Then, by following the analysis of Meng et al. [46, proposition 2], the 
mapping

Ψ(v,ς, x) :�

v+ F(x) + ∇G(x)W̃ς

W̃⊤
[G(x) +G′(x)v� d̃]�ΠQ(W̃

⊤
[G(x) +G′(x)v� d̃] + ς)

x

0

B
B
@

1

C
C
A

is locally Lipschitz homeomorphism around (ũ, µ̃, x̃), where µ̃ is the unique vector such that λ̃ � W̃µ̃. Note that

(W̃⊤
[G(x) +G′(x)v� d̃] + ς)′(v,ς, x) � (W̃⊤G′(x), I, W̃⊤

[G(x) +G′(x)v]′x), 

which is always surjective. Consequently, from Sun [62, lemma 2.1], we know that

∂BΨ(v,ς, x) �

I ∇G(x)W̃ L′W̃ς
(x)

(I�Ξ)W̃⊤G′(x) �Ξ (I�Ξ)W̃⊤
[G(x) +G′(x)v]′x

0 0 I

0

B
B
@

1

C
C
A

| Ξ ∈ ∂BΠQ(W̃
⊤
[G(x) +G′(x)v� d̃] + ς)

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

: (21) 

Because the projection operator ΠQ is (strongly) semismooth, one has that Ψ is also semismooth, and it follows 
from Meng et al. [46, theorem 2] that Ψ�1 is semismooth at (0, 0, x̃) ∈ Rn × Rs�l̃ × Rn. Moreover, from Meng et al. 
[46, lemma 2], we know that all of the elements of ∂BΨ(v,ς, x) are nonsingular whenever (v,ς, x) is sufficiently 
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close to (ũ, µ̃, x̃). It can be observed from (21) that each element of ∂BΨ is nonsingular at (v,ς, x) if and only if 
each matrix Ξ+ (I�Ξ)W̃⊤G′(x)∇G(x)W̃ is nonsingular for all Ξ ∈ ∂BΠQ(W̃

⊤
[G(x) +G′(x)v� d̃] + ς). Therefore, 

for all (v,ς, x) sufficiently close to (ũ, µ̃, x̃), it holds by elementary column transformations that

∂BΨ(v,ς, x)

�

I�∇G(x)W̃(Γ(Ξ))�1
(I�Ξ)W̃⊤G′(x) ∇G(x)W̃(Γ(Ξ))�1

ES(v,ς,Ξ)

(Γ(Ξ))�1
(I�Ξ)W̃⊤G′(x) �(Γ(Ξ))�1

EΛ(v,ς,Ξ)

0 0 I

0

B
B
@

1

C
C
A

�1

| Γ(Ξ) :� Ξ+ (I�Ξ)W̃⊤G′(x)∇G(x)W̃ with Ξ ∈ ∂BΠQ(W̃
⊤
[G(x) +G′(x)u� d̃] + ς)

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

, 

where

ES(v,ς,Ξ) :��L′W̃ς
(x) + ∇G(x)W̃(Γ(Ξ))�1

(I�Ξ)W̃⊤
(G′(x)L′W̃ς

(x)� [G(x) +G′(x)v]′x),

EΛ(v,ς,Ξ) :��(Γ(Ξ))�1
(I�Ξ)W̃⊤

(G′(x)L′W̃ς
(x)� [G(x) +G′(x)v]′x):

8
<

:

Note that for all x sufficiently close to x̃, it holds that (u;µ; x) �Ψ�1(0, 0, x), where µ is the unique vector such that 
λ � W̃µ. Because Ψ�1 is G-semismooth, the solution mapping S(·) is G-semismooth at x̃ with respect to

ẼS(x) :�
�L′λ(x) +∇G(x)W̃(Γ(Ξ))�1

(I�Ξ)W̃⊤
(G′(x)L′λ(x)� [G(x) +G′(x)u]′x)

| Γ(Ξ) :� Ξ+ (I�Ξ)W̃⊤G′(x)∇G(x)W̃ with Ξ ∈ ∂BΠQ(W̃
⊤
[G(x) +G′(x)u� d̃] +µ)

( )

:

Moreover, ẼS(·) is outer semicontinuous around x̃. According to Lemma 1, one has for all x sufficiently close to x̃,

ẼS(x) �
�L′λ(x) + ∇G(x)W̃(Γ̃G)

�1Π(spanG)
⊥W̃⊤
(G′(x)L′λ(x)� [G(x) +G′(x)u]′x)

| Γ̃G :�ΠspanG +Π(spanG)
⊥W̃⊤G′(x)∇G(x)W̃ , G is a face of KQ(W̃

⊤
[d� d̃],µ)

8
<

:

9
=

;
: (22) 

Let G be a face of KQ(W̃
⊤
[d� d̃],µ). One can find two matrices U1 and U2, whose columns form an orthonormal 

basis of spanG and (spanG)
⊥, respectively. Note that ΠspanG �U1U⊤1 and Π(spanG)

⊥ �U2U⊤2 . Consequently,

(Γ̃G)
�1Π(spanG)

⊥ � [U1U⊤1 +U2U⊤2 W̃⊤G′(x)∇G(x)W̃]�1U2U⊤2 :

For any w and ν such that ν � [U1U⊤1 +U2U⊤2 W̃⊤G′(x)∇G(x)W̃]�1U2U⊤2 w, it holds that

U1U⊤1 ν+U2U⊤2 W̃⊤G′(x)∇G(x)W̃ν �U2U⊤2 w

⇒ U⊤1 ν � 0 and U⊤2 W̃⊤G′(x)∇G(x)W̃ν �U⊤2 w

⇒ ν �U2ξ for some ξ, and U⊤2 W̃⊤G′(x)∇G(x)W̃U2ξ �U⊤2 w:

Therefore, one gets ν �U2ξ �U2[U⊤2 W̃⊤G′(x)∇G(x)W̃U2]
�1U⊤2 w so that

W̃(Γ̃G)
�1Π(spanG)

⊥W̃⊤
� W̃U2[U⊤2 W̃⊤G′(x)∇G(x)W̃U2]

�1U⊤2 W̃⊤
: (23) 

Recall that λ � W̃µ so that [λ]⊥ � {e | 〈W̃⊤e,µ〉 � 0}, which implies W̃⊤
([λ]⊥) � [µ]⊥. One has from Rockafellar and 

Wets [59, theorem 6.31] that

KD(d,λ) � {e |e ∈ TD(d), 〈e,λ〉 � 0} � {e |W̃⊤e ∈ TQ(W̃
⊤
[d� d̃]), 〈W̃⊤e,µ〉 � 0}: (24) 

Therefore, it holds that

W̃⊤
KD(d,λ) � KQ(W̃

⊤
[d� d̃],µ): (25) 
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Consequently, one has for any given υ ∈ Rs�l̃ ,

sup
e∈KD(d,λ)

{〈W̃υ, e〉} � sup
e∈KD(d,λ)

{〈υ, W̃⊤e〉 |e ∈ KD(d,λ)} � sup
ν∈Rs�l̃

{〈υ,ν〉 |ν ∈KQ(W̃
⊤
[d� d̃],µ)}:

Therefore, υ ∈KQ(W̃
⊤
[d� d̃],µ)◦ if and only if W̃υ ∈KD(d,λ)◦. Recall that G is a face of KQ(W̃

⊤
[d� d̃],µ) (i.e., 

there exists a nonzero vector υ̃ ∈ Rs�l̃ in its polar such that G �KQ(W̃
⊤
[d� d̃],µ) ∩ [υ̃]⊥). Note that

F̃ :� {p |W̃⊤p ∈ G} � {p |W̃⊤p ∈ KQ(W̃
⊤
[d� d̃],µ) ∩ [υ̃]⊥} �KD(d,λ) ∩ [W̃ υ̃]⊥:

Because W̃υ̃ ∈KD(d,λ)◦, the set F̃ is a face of KD(d,λ). Moreover, one has spanF̃ � {p | W̃⊤p ∈ spanG}. Recall that 
rgeU1 � spanG so that spanF̃ � {p | W̃⊤p ∈ rgeU1} � {p | U⊤2 W̃⊤p � 0}. Therefore, if W is a matrix with full column 
rank such that rgeW � (spanF̃ )

⊥
� rge(W̃U2), there exists a nonsingular square matrix P such that W � W̃U2P. In 

this case, one has

W[W⊤G′(x)∇G(x)W]�1W⊤ � W̃U2P[P⊤(W̃U2)
⊤G′(x)∇G(x)W̃U2P]�1P⊤(W̃U2)

⊤

� W̃U2P[(W̃U2)
⊤G′(x)∇G(x)W̃U2P]�1

(P⊤)�1P⊤(W̃U2)
⊤

� W̃U2[(W̃U2)
⊤G′(x)∇G(x)W̃U2]

�1
(W̃U2)

⊤
:

Such an equality, together with (20), (22), and (23), implies that

ẼS(x) ⊆ T S(x): (26) 

Next, we show that the inclusion in (26) is an equality. Let F be an arbitrary face of KD(d,λ) (i.e., there exists λ̆ ∈
KD(d,λ)◦ �ND(d) + span[λ] ⊆ spanND(d) ⊆ spanND(d̃) such that F �KD(d,λ) ∩ [λ̆]⊥). Because λ̆ ∈ rgeW̃ , one has 
λ̆ �ΠrgeW̃ (λ̆) � W̃[W̃⊤W̃]�1W̃⊤

λ̆. Then, by (24), one can get

KD(d,λ) ∩ [λ̆]⊥ � {e | W̃⊤e ∈ TQ(W̃
⊤
(d� d̃)), 〈W̃⊤e,µ〉 � 0, 〈W̃⊤e, [W̃⊤W̃]�1W̃⊤

λ̆〉 � 0}:

Therefore, it holds that W̃⊤
F �KQ(W̃

⊤
[d� d̃],µ) ∩ [(W̃⊤W̃)�1W̃⊤

λ̆]⊥. Then, from (25), one has [W̃⊤W̃]�1W̃⊤
λ̆ ∈

(W̃⊤
KD(d,λ))◦ � (KQ(W̃

⊤
[d� d̃],µ))◦. Therefore, it holds that

〈[W̃⊤W̃]�1W̃⊤
λ̆, W̃⊤d̂〉 � 〈W̃[W̃⊤W̃]�1W̃⊤

λ̆, d̂〉 � 〈λ̆, d̂〉 ≤ 0 ∀d̂ ∈KD(d,λ):

Consequently, W̃⊤
F is exactly a face of KQ(W̃

⊤
[d� d̃],µ). Thus, the inclusion in (26) holds as an equality (i.e., 

T S(x) � ẼS(x) for all x sufficiently close to x̃). Therefore, T S(·) is also outer semicontinuous at any x̃ ∈ intBω(x). 
This completes the proof. w

4.3. Regularity Conditions
The following result is crucial for using Algorithm 1 to solve S(x) � 0.

Proposition 4. Under Assumption 1, it holds that Assumption 2 is equivalent to the regularity condition that every ele
ment of T S(x) defined in (20) is nonsingular.

Proof. Because Assumption 1 holds, one has u � S(x). Then, by Proposition 3, it holds that

T S(x) �
�L′

λ
(x) +∇G(x)W[W⊤G′(x)∇G(x)W]�1W⊤(G′(x)L′

λ
(x)�G′(x))

≡�(I�Πrge(∇G(x)W))L
′

λ
(x)�Πrge(∇G(x)W)

|W has full column rank, rgeW � (spanF )
⊥ with F being a face of KD(d,λ)

8
>><

>>:

9
>>=

>>;

, 

where d :� G(x) +G′(x)S(x) and λ :� Λ(x). Let F be an arbitrary face of KD(G(x),λ) with W having full column 
rank such that rgeW � (spanF )

⊥. Let Z be an arbitrary matrix (with full column rank) such that rgeZ � {u | G′(x)u 
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∈ spanF} � ker(W⊤G′(x)). Note that rge(∇G(x)W) � kerZ⊤. Therefore, it holds that

� (I�Πrge(∇G(x)W))L
′

λ
(x)ν�Πrge(∇G(x)W)ν≠ 0 ∀ν≠ 0

� (I�Πrge(∇G(x)W))L
′

λ
(x)ν≠ 0 ∀ν≠ 0 such that Πrge(∇G(x)W)ν � 0

� Z(Z⊤Z)�1Z⊤L′
λ
(x)ν≠ 0 ∀0 ≠ ν ∈ rgeZ

� Z⊤L′
λ
(x)ν≠ 0 ∀0 ≠ ν ∈ rgeZ:

Thus, Assumption 2 is equivalent to the condition that every element of T S(x) is nonsingular. This completes the 
proof. w

4.4. Equivalence to a G-Semismooth Newton Method
We are ready to show that the semismooth* Newton method in Algorithm 3 is exactly a special case of the 
G-semismooth Newton method in Algorithm 1. Suppose that Assumptions 1 and 2 hold. Let ω be the parameter 
defined in Proposition 1. For any x̃ ∈ Bω(x) with d̃ � G(x̃) +G′(x̃)S(x̃) and ũ � S(x̃), one has λ̃ ∈ND(d̃). Moreover, 
it is easy to see that F̄ :� linTD(d̃) � linKD(d̃, λ̃) is a face of KD(d̃, λ̃). In fact, from the proof of Proposition 3, one 
can see that F̄ is exactly the face such that W̃⊤

F̄ � G ≡ {0}, where W̃ is a matrix with full column rank such that 
rgeW̃ � spanND(d̃), whereas G is a face of KQ(0, µ̃) � W̃⊤

KD(d̃, λ̃). Consequently, the columns of W̃ form a basis 
of (spanF̄ )

⊥ so that by (20), one can get

Vx̃ : ��L′λ̃(x̃) +∇G(x̃)W̃[W̃⊤G′(x̃)∇G(x̃)W̃]�1W̃⊤
(G′(x̃)L′λ̃(x̃)� [G(x̃) +G′(x̃)ũ]′x)

��ΠZL′λ̃(x̃)�ΠW �∇G(x̃)W̃[W̃⊤G′(x̃)∇G(x̃)W̃]�1W̃⊤
(G′(x̃)ũ)′x ∈ T S(x̃), (27) 

where W :� rge(∇G(x̃)W̃) and Z :�W⊥. Based on the results established in the previous two subsections, we can 
apply Algorithm 1 to solve Problem (2). The resulting implementation is given as follows.

Algorithm 5 (A G-Semismooth Newton Method for Solving (2))
Input: F : Rn→ Rn, G : Rn→ Rs, D ⊂ Rs, x(0) ∈ Rn, and ϱ ≥ 0:
Output: {x(k)}:

For k � 0, 1, : : : , 
1. if x(k) solves (2), stop the algorithm;
2. run the approximation step in Algorithm 2 with input x(k) to compute û(k), λ̂(k), d̂

(k)
, and L

λ̂
(k) (x(k));

3. compute V(k) such that dist(V(k),T S(x(k))) ≤ ϱ‖û(k)‖, with T S being given in (20);
4. compute the Newton direction ∆x(k) satisfying V(k)∆x(k) + û(k) � 0, and set x(k+1) :� x(k) +∆x(k).

The following result shows that Algorithm 3 is a special case of Algorithm 5.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Then, Algorithm 3 is an instance of Algorithm 1 (in the form of Algo
rithm 5) in the sense that the local superlinear convergence of Algorithm 3 can be obtained from Theorem 1.

Proof. Let {x(k)} be the sequence generated by Algorithm 3. For a fixed k ≥ 1 such that x(k) is well defined, we 
assume that x(k�1) is also the output of the final step at the iteration indexed by (k � 1) of Algorithm 5. Then, the 
first two steps at the iteration indexed by k of Algorithm 5 are the same as the first two steps at the iteration 
indexed by k of Algorithm 3. During the third step of Algorithm 5 at iteration k, one can take

W(k) :� rge(∇G(x(k))Ŵ (k)
), Z(k) :� (W(k))⊥, and V(k) :��Π

Z(k)
L′

λ̂
(k) (x

(k))�Π
W(k) , 

where Ŵ (k) comes from the third step of Algorithm 3 at the iteration indexed by k. Then, from (27), one has

dist(V(k),T S(x(k))) ≤ ‖∇G(x(k))Ŵ (k)
[(Ŵ (k)

)
⊤G′(x(k))∇G(x(k))Ŵ (k)

]
�1
(Ŵ (k)

)
⊤
(G′(x(k))û(k))′x‖, 

where û(k) :� S(x(k)). Then, the corresponding ∆x(k) computed by the final step at the iteration indexed by k of 
Algorithm 5 is the same as the one calculated by (12) at the iteration indexed by k. Let ω be the parameter speci
fied in Proposition 1. Recall that for any x̃ ∈ Bω(x), Vx̃ in (27) is independent of the specific choice of the corre
sponding W̃ in (27). Without loss of generality, one can assume that W̃ in (27) is uniformly bounded. One has 
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that [W̃⊤G′(x̃)∇G(x̃)W̃]�1 is well defined and uniformly bounded because the nondegeneracy condition holds 
and G is continuously differentiable. Furthermore, because G′(·) is also continuously differentiable, one can get 
dist(V(k),T S(x(k))) ≤ ϱ‖û(k)‖with

ϱ :� sup
x̃∈Bω(x)

{‖∇G(x̃)W̃[W̃⊤G′(x̃)∇G(x̃)W̃]�1W̃⊤G′′(x̃)‖} < ∞:

Consequently, the iteration sequence {x(k)} generated by Algorithm 3 can be viewed as the one generated by 
Algorithm 5.

Hence, if x(0) is sufficiently close to x, one has from Proposition 3 and Proposition 4 that the local superlinear 
convergence of Algorithm 3 is guaranteed by Theorem 1. This completes the proof. w

5. Proof of Algorithm 4 as a G-Semismooth Newton Method
In this section, we show that Algorithm 4 is also an application of Algorithm 1. The methodology developed 
here also can be used to show that the implementable SCD semismooth* Newton method in the more recent 
work (Gfrerer et al. [26]) is also a G-semismooth Newton method.

We first provide the following two preliminary results.

Lemma 3. Let q be the function in (3) and Pγ�1q be the proximal mapping defined by (5) with γ > 0. For any y, z ∈ Rn such 
that (z; y) ∈ gphPγ�1q, it holds that

{rge(I; B) | B ∈ ∂BPγ�1q(z)} � S∗Pγ�1q
(z, y)

� {{(�(e∗ + γe);�γe) | (e; e∗) ∈ L} | L ∈ S∗∂q(y,γ(z� y))}, (28) 

where the definitions of S∗Pγ�1q 
and S∗∂q come from Definition 2.

Proof. Because q is a closed proper convex function, one has for any y, z ∈ Rn,
(z; y) ∈ gphPγ�1q � γ(z� y) ∈ ∂q(y) � φ(z, y) :� (y;γ(z� y)) ∈ gph∂q: (29) 

Meanwhile, one has φ′(z, y) � 0 I
γI �γI

� �

, which is nonsingular for all γ > 0. Note that

0 �I
I 0

� �
0 γI
I �γI

� �
0 �I
I 0

� �⊤ e
e∗

� �

�
�(e∗ + γe)
�γe

� �

:

Thus, from Gfrerer and Outrata [24, lemma 3.11 and proposition 3.14] and Rockafellar and Wets [59, theorem 
13.52], one gets (28). w

Lemma 4. Let uγ be the function defined in (14) with γ > 0. Suppose that x is a solution to the GE (3). For any x ∈ Rn, by 
setting u :� uγ(x), z :� x� γ�1F(x), and z :� x� γ�1F(x), one has

‖u+ x� x‖2 + ‖F(x)� F(x)� γu‖2 ≤ max{1,γ2}‖z� z‖2:
Proof. Note that u+ x � Pγ�1q(z). One has (u+ x;�F(x)� γu) � (u+ x;γ(z� (u+ x))) ∈ gph∂q from (29). Moreover, 
one has x � Pγ�1q(z) so that

‖u+ x� x‖2 + ‖F(x)� F(x)� γu‖2

� ‖Pγ�1q(z)�Pγ�1q(z)‖2 + ‖F(x)� F(x)� γ(Pγ�1q(z)� x)‖2

� ‖Pγ�1q(z)�Pγ�1q(z)‖2 + ‖F(x)� γx + γx� F(x)� γ(Pγ�1q(z)� x)‖2

� ‖Pγ�1q(z)�Pγ�1q(z)‖2 + γ2‖z� z� (Pγ�1q(z)�Pγ�1q(z))‖2 ≤ max{1,γ2}‖z� z‖2, 

where the last inequality comes from Rockafellar [58, proposition 1(c)]. This completes the proof. w

5.1. Lipschitz Continuous Localization and G Semismoothness
Recall that the GE in (3) is equivalent to the nonsmooth equation uγ(x) � 0 (for any γ > 0) with uγ in (14). Let U 
be a neighborhood of x such that F is Lipschitz continuous on it with modulus ℓ > 0. According to Gfrerer et al. 
[25, equation 5.13], one has

‖uγ(x)� uγ(x′)‖ ≤ 2‖x� x′‖ + γ�1‖F(x)� F(x′)‖ ≤ (2+ ℓγ)‖x� x′‖ ∀x, x′ ∈U:
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Therefore, for any γ > 0, the function uγ(·) is Lipschitz continuous on U. It is not easy to calculate the Bouligand 
subdifferential of uγ(·), although locally, it is almost everywhere differentiable. Instead, it is more reasonable to 
consider using the composite mapping T uγ : Rn ⇉ Rn×n defined by

T uγ(x) � ∂BPγ�1q(·) |x�γ�1F(x) · (I� γ�1F′(x))� I: (30) 

Note that for any γ > 0, the mapping T uγ(·) defined in (30) is outer semicontinuous at x.
Next, we show that uγ (γ > 0) defined in (14) is G-semismooth at a solution x to the GE (3) with respect to T uγ 

defined by (30). For convenience of comparison, we take identical values for all parameters here to those used in 
the conditions in Gfrerer et al. [25].

Proposition 5. Let x be a solution to the GE (3) and Br(x) be the ball such that F is Lipschitz continuous on it with modu
lus ℓ ≥ 0. For any ɛ > 0, let δ and δq be two positive constants (depending on ɛ) such that δ ≤ min δq

1+ℓ , r
n o

,

| 〈e∗, d� x〉� 〈e, d∗ + F(x)〉 | ≤ ɛ

2
ffiffiffi
2
√
(ℓ+ 1)

‖(e; e∗)‖ ‖(d� x; d∗ + F(x))‖

∀(d; d∗) ∈ gph∂q ∩ Bδq(x;�F(x)), ∀(e; e∗) ∈ L ∈ S∗∂q(d, d∗), (31) 

and
‖F(x)� F(x)� F′(x)(x� x)‖ ≤ ɛ

2
ffiffi
2
√
(ℓ+1)
‖x� x‖ ∀x ∈ Bδ(x): (32) 

Then, for any x̂ ∈ Rn satisfying ‖x̂� x‖ ≤ min{ min{δq, r}
(1+ℓγ)max 1,γ{ } ,δ}, the following results hold. 

a. For any v ∈ Rn and any B ∈ ∂BPγ�1q(x̂� γ�1F(x̂)), one has

| 〈γv, uγ(x̂)〉� (〈γBv, (I� γ�1F′(x̂))(x̂� x)〉� 〈γv, x̂� x〉) |

≤
ɛ

2
ffiffiffi
2
√
(l+ 1)

(‖(Bv;γ(I�B)v)‖max 1,γ
� �

1+ ℓ
γ

� �

+ ‖Bv‖)‖x̂� x‖: (33) 

b. For any B ∈ ∂BPγ�1q(x̂� γ�1F(x̂)) such that C :� B(I� γ�1F′(x̂))� I ∈ T uγ(x̂) is nonsingular, by taking M :� γC⊤, 
one has

‖C�1uγ(x̂)� (x̂� x)‖ ≤ ɛ

2
ffiffiffi
2
√
(ℓ+ 1)

(max 1,γ
� �

1+ ℓ
γ

� �

‖(BM�1;γ(I�B)M�1)‖F + ‖BM�1‖F)‖x̂� x‖:

Proof.
a. Note that whenever x̂ satisfies ‖x̂� x‖ ≤ min{δq, r}

(1+ l
γ)max 1,γ{ }, one can get from Lemma 4 that

‖(ŷ� x;γ(ẑ� ŷ) + F(x))‖ � ‖(û + x̂� x; F(x)� F(x̂)�γû)‖

≤ max 1,γ
� �

‖ẑ� z‖ ≤ max 1,γ
� �

1+ ℓ
γ

� �

‖x̂� x‖ ≤ min δq, r
� �

, 

where û :� uγ(x̂), ẑ :� x̂� γ�1F(x̂), ŷ :� û + x̂ � Pγ�1q(ẑ), and z :� x� γ�1F(x). Therefore, whenever x̂ satisfies 
‖x̂� x‖ ≤ min{δq, r}

(1+ l
γ)max 1,γ{ }, one can take (d; d∗) � (ŷ;γ(ẑ� ŷ)) ∈ gph∂q ∩ Bδq(x, � F(x)) in (31) such that for all 

(e; e∗) ∈ L ∈ S∗∂q(d, d∗),

| 〈γe, ẑ� z〉� 〈e∗ + γe, ŷ� x〉 |
� |〈e∗ + γe, ŷ� x〉� 〈γe, ẑ� x + 1

γF(x)〉 | � |〈e∗, ŷ� x〉� 〈e,γ(ẑ� ŷ) + F(x)〉 |

≤
ɛ

2
ffiffiffi
2
√
(ℓ+ 1)

‖(e; e∗)‖ ‖(ŷ� x;γ(ẑ� ŷ) + F(x))‖ ≤ ɛ

2
ffiffiffi
2
√
(ℓ+ 1)

‖(e; e∗)‖max 1,γ
� �

1+ ℓ
γ

� �

‖x̂� x‖:
(34) 

Also, by using (28) of Lemma 3, one can get

S∗∂q(ŷ,γ(ẑ � ŷ)) � {rge(�γ�1B;�(I�B)) | B ∈ ∂BPγ�1q(ẑ)} � {rge(B;γ(I�B)) | B ∈ ∂BPγ�1q(ẑ)}:

Thus, (e; e∗) ∈ L if and only if (e; e∗) � (Bv;γ(I�B)v) for some v ∈ Rn, where B ∈ ∂BPγ�1q(ẑ) is the symmetric posi
tive semidefinite n × n matrix such that L � rge(B;γ(I�B)). Moreover, in this case, one has from (28) that 
(e∗ + γe;γe) � (γ(I�B)v+ γBv;γBv) � γ(v; Bv) ∈ S∗Pγ�1q

(z, y).
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Therefore, if x̂ satisfies ‖x̂� x‖ ≤ min{δq, r}
(1+ l

γ)max 1,γ{ }, one can obtain from (34) that for any v ∈ Rn and any 

B ∈ ∂BPγ�1q(x̂� γ�1F(x̂)), it holds that

| 〈γBv, ẑ� z〉� 〈γv, ŷ� x〉 | ≤ ɛ

2
ffiffiffi
2
√
(ℓ+ 1)

‖(Bv;γ(I�B)v)‖max 1,γ
� �

1+ ℓ
γ

� �

‖x̂� x‖: (35) 

Note that both (32) and (35) hold if x̂ satisfies ‖x̂� x‖ ≤ min min{δq, r}
(1+ℓγ)max 1,γ{ } ,δ
� �

≤ min δq
1+ℓ , r
n o

. In this case, one has

| 〈γv, uγ(x̂)〉� (〈γBv, (I� γ�1F′(x̂))(x̂� x)〉� 〈γv, x̂� x〉) |

� |〈γv, û〉 + 〈γv, x̂� x〉� 〈γBv, x̂� x� γ�1(F(x̂)� F(x))� γ�1F′(x̂)(x̂� x) + γ�1(F(x̂)� F(x))〉 |

≤ |〈γv, ŷ� x〉� 〈γBv, ẑ� z〉 | + |〈Bv, F(x̂)� F(x)� F′(x̂)(x̂� x)〉 |

≤
ɛ

2
ffiffiffi
2
√
(ℓ+ 1)

‖(Bv;γ(I�B)v)‖max 1,γ
� �

1+ ℓ
γ

� �

‖x̂� x‖ + ɛ

2
ffiffiffi
2
√
(ℓ+ 1)

‖Bv‖ ‖x̂� x‖, 

which completes the proof of (a).
b. When C is not singular, we can take vi in (33) as the ith column of M�1 � (γC⊤)�1 for i � 1, : : : , n; that is, γv⊤i is 

the ith row of C�1. Consequently,

‖C�1uγ(x̂)� (x̂� x)‖
� ‖C�1uγ(x̂)�C�1B(I� γ�1F′(x̂))(x̂� x) +C�1(x̂� x)‖

�
Xn

i�1
| 〈γvi, uγ(x̂)〉� (〈γBvi, (I� γ�1F′(x̂))(x̂� x)〉� 〈γvi, x̂� x〉) |2

 !1
2

≤
ɛ

2
ffiffiffi
2
√
(ℓ+ 1)

Xn

i�1
max 1,γ

� �
1+ ℓ
γ

� �

‖(Bvi;γ(I�B)vi)‖ + ‖Bvi‖

� �2
 !1

2

‖x̂� x‖

≤
ɛ

2
ffiffiffi
2
√
(ℓ+ 1)

max 1,γ
� �

1+ ℓ
γ

� �
Xn

i�1
‖(Bvi;γ(I�B)vi)‖

2

 !1
2

+
Xn

i�1
‖Bvi‖

2

 !1
2

0

@

1

A‖x̂� x‖

�
ɛ

2
ffiffiffi
2
√
(ℓ+ 1)

max 1,γ
� �

1+ ℓ
γ

� �

‖(BM�1;γ(I�B)M�1)‖F + ‖BM�1‖F

� �

‖x̂� x‖, 

where the last inequality comes from the triangle inequality and the final equality comes from the definition of 
the Frobenius norm. This completes the proof of (b). w

The G-semismoothness of uγ with respect to T uγ is given as follows.

Corollary 1. Let x be a solution to the GE (3) and Br(x) be the ball such that F is Lipschitz continuous on it with modulus 
ℓ ≥ 0. Assume that ∂q is SCD semismooth* at (x, � F(x)). For any γ > 0, the mapping uγ defined in (14) is G-semismooth 
with respect to T uγ given in (30) at x.

Proof. Let ɛ > 0 be arbitrarily given. Note that one can find two positive constants δ and δq with δ ≤ min δq
1+ℓ , r
n o

such that (31) and (32) hold. Then, by Proposition 5(a), we know that for any x̂ ∈ Rn satisfying 

‖x̂� x‖ ≤ min min{δq, r}
(1+ℓγ)max 1,γ{ } ,δ
� �

, it holds for any v ∈ Rn and any B ∈ ∂BPγ�1q(x̂� γ�1F(x̂)) that

| 〈γv, uγ(x̂)〉� (〈γBv, (I� γ�1F′(x̂))(x̂� x)〉� 〈γv, x̂� x〉) |

≤
ɛ

2
ffiffiffi
2
√
(ℓ+ 1)

‖(Bv;γ(I�B)v)‖max 1,γ
� �

1+ ℓ
γ

� �

+ ‖Bv‖
� �

‖x̂� x‖:

Because B is a firmly nonexpansive mapping by Gfrerer and Outrata [24, proposition 3.22], one can get that 
‖(Bv;γ(I�B)v)‖ ≤ max{1,γ}‖v‖. Therefore, by taking v as the vector such that ‖γv‖ � 1 and

〈γv, uγ(x̂)� (B(I� γ�1F′(x̂))� I)(x̂� x)〉 � ‖uγ(x̂)� (B(I� γ�1F′(x̂))� I)(x̂� x)‖, 
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one can get ‖Bv‖ ≤ max 1, 1
γ

n o
and

‖uγ(x̂)� (B(I� γ�1F′(x̂))� I)(x̂� x)‖ ≤ ɛ

2
ffiffiffi
2
√
(ℓ+ 1)

max 1,γ2� �
‖v‖ 1+ ℓ

γ

� �

+ ‖Bv‖
� �

‖x̂� x‖:

Consequently, uγ is G-semismooth with respect to T uγ , and this completes the proof. w

5.2. Regularity Conditions
When using T uγ in (30) as a generalized Jacobian in a G-semismooth Newton method for solving the nonsmooth 
equation uγ(x) � 0, conditions for ensuring T uγ being nonsingular around a reference solution should be verified. 
On the other hand, Algorithm 4 is well defined only if the coefficient matrix of the linear Equation (15) is nonsin
gular. In fact, we have the following results on the equivalence between the two regularity conditions mentioned 
above.

Lemma 5. Let γ > 0 and uγ be the function defined in (14). For any x ∈ Rn, every element of T uγ(x) is nonsingular if and only 
if (Y∗⊤F′(x) +X∗⊤) is nonsingular for all X∗ ∈ Rn×n and Y∗ ∈ Rn×n such that rge(Y∗; X∗) ∈ S∗∂q(x+ uγ(x), � γuγ(x)� F(x)).

Proof. For convenience, denote u :� uγ(x), z :� x� γ�1F(x), and y :� u+ x � Pγ�1q(z). It is easy to see from (5) that 
γ(z� y) ∈ ∂q(y) so that (x+ uγ(x);�γuγ(x)� F(x)) � (y;γ(z� y)) ∈ gph∂q. By using (28) of Lemma 3, we have

S∗∂q(x+ uγ(x), � γuγ(x)� F(x)) � {rge(B;γ(I�B)) | B ∈ ∂BPγ�1q(z)}: (36) 

By (30), one has T uγ(x) � {B(I� γ�1F′(x))� I | B ∈ ∂BPγ�1q(z)}. Thus, it is sufficient to prove that for every 
B ∈ ∂BPγ�1q(z), the matrix B(I� γ�1F′(x))� I is nonsingular if and only if Y∗⊤F′(x) +X∗⊤ is nonsingular for all X∗ ∈
Rn×n and Y∗ ∈ Rn×n such that rge(Y∗; X∗) � rge(B;γ(I�B)).

Fix B ∈ ∂BPγ�1q(z). On the one hand, suppose that B(I� γ�1F′(x))� I ∈ T uγ(x) is singular. By taking Y∗ � B and 
X∗ � γ(I�B), one has Y∗⊤F′(x) +X∗⊤ � BF′(x) + γ(I�B) ��γ(B(I� γ�1F′(x))� I), which is also singular. On the 
other hand, if Y∗⊤F′(x) +X∗⊤ is singular with rge(Y∗; X∗) � rge(B;γ(I�B)) (i.e., there exists a nonzero vector v ∈
Rn such that Y∗⊤F′(x)v+X∗⊤v � 0), one has for every w ∈ Rn,

w⊤Y∗⊤F′(x)v+w⊤X∗⊤v � (Y∗w)⊤F′(x)v+ (X∗w)⊤v � ((Y∗w)⊤F′(x) + (X∗w)⊤)v � 0:

Because rge(Y∗; X∗) � rge(B;γ(I�B)), one has

w⊤(BF′(x) + γ(I�B))v � ((Bw)⊤F′(x) + (γ(I�B)w)⊤)v � 0 ∀w ∈ Rn:

Therefore, we have (BF′(x) + γ(I�B))v � 0, which implies that the matrix �γ(B(I� γ�1F′(x))� I) is nonsingular. 
This completes the proof. w

Corollary 2. Let x be a solution to the GE (3). Then, F+ ∂q is SCD regular around (x, 0) if and only if every element of 
T uγ(x) defined in (30) is nonsingular for any γ > 0.

Proof. According to Gfrerer et al. [25, proposition 5.1(ii)], we know that F+ ∂q is SCD regular around (x, 0) if and 
only if Y∗⊤F′(x) +X∗⊤ is nonsingular for all X∗ ∈ Rn×n and Y∗ ∈ Rn×n such that rge(Y∗; X∗) ∈ S∗∂q(x, � F(x)). Thus, 
the conclusion follows from Lemma 5. This completes the proof. w

The following result is also a consequence of Lemma 5.

Lemma 6. Let uγ (γ > 0) be the function defined in (14) and J be the mapping defined in (13). For any x ∈ Rn such that 
every element of T uγ(x) is nonsingular, one has

S∗J ((x, x+ uγ(x)), (F(x) + d∗, � uγ(x))) � rge(CB; I) | B ∈ ∂BPγ�1q(x� γ�1F(x))
� �

, (37) 

where CB :�
BM̃�1 BM̃�1

γ(I�B)M̃�1
γ(I�B)M̃�1

� I

 !

with M̃ :� F′(x)⊤B+ γ(I�B).
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Proof. According to Gfrerer et al. [25, proposition 5.1(1)], we know that for any (x; d) ∈ R2n and d∗ ∈ ∂q(d),

S∗J ((x, d), (F(x) + d∗, x� d)) �

(

rge
Y∗ 0
0 �I

 !

;
F′(x)⊤Y∗ �I

X∗ I

 ! !

rge(Y∗; X∗) ∈ S∗∂q(d, d∗)

)

:

�
�
�
�
�

From Lemma 5, we know that every element of T uγ(x) is nonsingular if and only if (Y∗⊤F′(x) +X∗⊤) is nonsingu
lar for all X∗ and Y∗ such that rge(Y∗; X∗) ⊆ S∗∂q(x+ uγ(x), � γuγ(x)� F(x)). Moreover, (36) holds in this case so that 
with z :� x� γ�1F(x), one has

S∗J ((x, x+ uγ(x)), (F(x) + d∗, � uγ(x))) � rge
Y∗ 0
0 �I

 !
F′(x)⊤Y∗ �I

X∗ I

 !�1

; I

0

@

1

A

�
�
�
�
�

rge(Y∗; X∗) � rge(B;γ(I�B)),
B ∈ ∂BPγ�1q(z)

8
<

:

9
=

;
:

(38) 
Fix B ∈ ∂BPγ�1q(z), and choose (Y∗; X∗) such that rge(Y∗; X∗) � rge(B;γ(I�B)). Because that (B;γ(I�B)) has full col
umn rank, there exists a nonsingular matrix P ∈ Rn×n such that Y∗ � BP and X∗ � γ(I�B)P. Moreover, because 
M :� F′(x)⊤Y∗ +X∗ � (F′(x)⊤B+ γ(I�B))P is nonsingular, one has M�1 � P�1(F′(x)⊤B+ γ(I�B))�1 and

Y∗ 0

0 �I

 !
F′(x)⊤Y∗ �I

X∗ I

 !�1

�
BP 0

0 �I

 !
F′(x)⊤BP �I

γ(I�B)P I

 !�1

�
BP 0

0 �I

 !
M�1 M�1

�γ(I�B)PM�1 I� γ(I�B)PM�1

 !

�
BPM�1 BPM�1

γ(I�B)PM�1 γ(I�B)PM�1� I

 !

�
B(F′(x)⊤B+ γ(I�B))�1 B(F′(x)⊤B+ γ(I�B))�1

γ(I�B)(F′(x)⊤B+ γ(I�B))�1 γ(I�B)(F′(x)⊤B+ γ(I�B))�1
� I

0

@

1

A:

Therefore, one can remove the dependence on the precise choice of (Y∗; X∗) and use only the information of B in 
(38). So, we obtain (37). This completes the proof. w

5.3. Equivalence to a G-Semismooth Newton Method
Based on the discussions in the previous subsections, a G-semismooth Newton method (Algorithm 1) for solving 
(3) via its equivalent form (14) can be given as follows.

Algorithm 6 (A G-Semismooth Newton Method for Solving (3))
Input: x(0) ∈ Rn, F : Rn→ Rn, and q : Rn→ R̄.
Output: {x(k)}.

For k � 0, 1, : : : , 
1. if 0 ∈ F(x(k)) + ∂q(x(k)), stop the algorithm;
2. select γ(k) > 0, and compute u(k) :� uγ(k) (x(k));
3. select V(k) ∈ T u

γ(k)
(x(k)) via (30), then compute the Newton direction ∆x(k) from V(k)∆x(k) ��u(k), and obtain the 

new iterate via x(k+1) :� x(k) +∆x(k).

Note that Algorithm 6 is essentially a “uniform” version of Algorithm 1 for solving a family of problems (i.e., 
{uγ(x) � 0,γ > 0}), sharing the common solutions. In each iteration, one selects one instance of these problems 
and performs the G-semismooth Newton step via T uγ . In the following, we show that Algorithm 6 is well 
defined if Algorithm 4 is and vice versa. Moreover, a sequence generated by one of them can be treated as the 
one generated by the other.

Lemma 7. Given x(0) ∈ Rn and {γ(k)}, suppose that both Algorithm 4 and Algorithm 6 generate the same point x(k) after the 
iteration indexed by (k � 1) ≥ 0 and that B(k) ∈ ∂BP

γ(k)�1q(·) |x(k )�γ(k )�1F(x(k)) is chosen such that

rge(Y∗(k); X∗(k)) :� rge(B(k);γ(k)(I�B(k))) and V(k) :� B(k)(I� γ(k)�1F′(x(k)))� I: (39) 
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Then, one has rge(Y∗(k); X∗(k)) ∈ S∗∂q(d̂
(k)

, d̂
∗(k)
) and V(k) ∈ T u

γ(k )
(x(k)). Moreover, both of the algorithms generate the same 

x(k+1) if (39) is used in them.

Proof. Recall that in the iteration indexed by k of Algorithm 4, the Newton direction ∆x(k) generated by (15) (i.e., 
the linear system) is

(Y∗(k)⊤F′(x(k)) +X∗(k)⊤)∆x(k) � (γ(k)Y∗(k)⊤ +X∗(k)⊤)u(k), (40) 

where u(k) :� u
γ(k)
(x(k)), d̂

(k)
:� x(k) + u(k), and d̂

∗(k)
:��γ(k)u(k)� F(x(k)). Thus, by denoting W as the nonsingular 

transition matrix such that Y∗(k) � B(k)W and X∗(k) � γ(k)(I�B(k))W, (40) is equivalent to

(W⊤B(k)F′(x(k)) + γ(k)W⊤(I�B(k)))∆x(k) � (γ(k)W⊤B(k) + γ(k)W⊤(I�B(k)))u(k)

or equivalently, (B(k)(I� 1
γ(k )

F′(x(k)))� I)∆x(k) ��u(k), which is exactly the Newton system of the G-semismooth 
Newton method using T u

γ(k)
(Algorithm 6). This completes the proof. w

Next, we show that the local superlinear convergence of Algorithm 6 can be obtained under the assumptions 
made in Theorem 2 (i.e., Gfrerer et al. [25, theorem 5.2]).

Proposition 6. Let x be a solution of (3). Assume that ∂q is SCD semismooth* at (x, � F(x)) and ∂q+ F is SCD regular 
around (x, 0). Then, for every pair γ,γ with 0 < γ ≤ γ, there exists a neighborhood U of x such that for every starting 
point x(0) ∈ U , Algorithm 6 produces a sequence {x(k)} converging superlinearly to x, provided that we choose in every itera
tion step γ(k) ∈ [γ,γ].

Proof. From Gfrerer et al. [25, proposition 5.1], we know ∂q+ F is SCD regular around (x, 0) if and only if the 
mapping J defined in (13) is SCD regular around ((x, x), (0, 0)). Moreover, according to Gfrerer and Outrata [24, 
proposition 4.8], for every κ > scd regJ ((x, x), (0, 0)), one can find a positive radius ρ > 0 such that for every γ ∈
[γ,γ] and every x ∈ Rn such that (x, x+ uγ(x)) ∈ Bρ(x, x), the mapping J is also SCD regular around ((x, x+
uγ(x)), (�γuγ(x), � uγ(x))) and κ > scd reg J ((x, x+ uγ(x)), (�γuγ(x), � uγ(x))). Thus, by Lemma 5 and Gfrerer 
et al. [25, proposition 5.1(1)], each element of T uγ(x) is nonsingular. Moreover, by combining Gfrerer and Outrata 
[24, equation 34] and Lemma 6, we obtain for any B ∈ ∂BPγ�1q(·) |x�γ�1F(x),

‖
B[F′(x)⊤B+ γ(I�B)]�1 B[F′(x)⊤B+ γ(I�B)]�1

γ(I�B)[F′(x)⊤B+ γ(I�B)]�1 γ(I�B)[F′(x)⊤B+ γ(I�B)]�1
� I

 !

‖ ≤ κ: (41) 

Let Br(x) be the ball such that F is Lipschitz continuous on it with modulus ℓ ≥ 0. Take 0 < ξ < 1 and

ɛ :�
2
ffiffiffi
2
√
(ℓ+ 1)ξ

ffiffiffi
n
√
κ max
γ∈[γ,γ]

(max 1,γ
� �

(1+ ℓ
γ
) + 1)

: (42) 

Then, for any x̂ satisfying ‖x̂� x‖ ≤ min{ min{δq, r}
(1+ℓγ)max 1,γ{ } ,δ} and (x̂, x̂ + uγ(x̂)) ∈ Bρ(x, x), where δq and δ ≤ min{ δq

1+ℓ , r}

are the positive constants (depending on ɛ) such that (31) and (32) holds, one can obtain from Proposition 5(b)
the nonsingularity of each element Ĉ :� B̂(I� γ�1F′(x̂))� I ∈ T uγ(x̂)with B̂ ∈ ∂BPγ�1q(x̂� γ�1F(x̂)), and

‖Ĉ�1uγ(x̂)� (x̂� x)‖

≤
ɛ

2
ffiffiffi
2
√
(ℓ+ 1)

max 1,γ
� �

1+ ℓ
γ

� �

‖(B̂M�1;γ(I� B̂)M�1)‖F + ‖B̂M�1‖F

� �

‖x̂� x‖

≤

ffiffiffi
n
√
κɛ

2
ffiffiffi
2
√
(ℓ+ 1)

max
γ∈[γ,γ]

max 1,γ
� �

1+ ℓ
γ

� �

+ 1
� �

‖x̂� x‖ � ξ‖x̂� x‖, 

where M :� γĈ⊤ ≡�F′(x̂)⊤B̂� γ(I� B̂) and the last inequality comes from (41). Then, by letting

U :� x̂ ‖x̂� x‖ ≤ min
min{δq, r}

(1+ ℓγ)max 1,γ
� � ,δ

( )

, (x̂, x̂ + uγ(x̂)) ∈ Bρ(x, x) ∀γ ∈ [γ,γ]

�
�
�
�
�

)

,
(

(43) 
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one can get the convergence of Algorithm 6 provided that x(0) ∈ U. The superlinear convergence rate comes from 
further shrinking the value of ɛ, and this completes the proof. w

Finally, we have the following result, showing that Algorithm 4 is an instance of Algorithm 6.

Theorem 4. Under the assumptions of Theorem 2, Algorithm 4 is an instance of Algorithm 6, and the local superlinear con
vergence of Algorithm 4 (i.e., Theorem 2) can be guaranteed by Proposition 6.

Proof. The conclusion of the theorem follows immediately from Lemma 7 and Proposition 6. w

6. Conclusions
This paper showed that the two typical implementable semismooth* Newton methods are applications of 
G-semismooth Newton methods. This further enriches the comprehension of G-semismooth Newton methods 
and helps design practical Newton-type methods for GEs. Accordingly, a natural question is whether an imple
mentable semismooth* Newton method is achievable for solving a GE that cannot be reformulated to locally 
Lipschitz continuous equations. Moreover, the relationship between the generic semismooth* Newton methods 
and G-semismooth Newton methods is still unclear, so another question is whether one can obtain generaliza
tions of G-semismooth Newton methods, involving certain tractable “approximation steps” that can solve a 
broader class of problems. We leave these questions for future research.
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