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Gauss-Seidel method for solving Qx = b

@ Update only one element of the variable x in each iteration.

Input: Q € R"*" b € R" and x° € R

fork=0,1,...
fori=1,...,n

k+1 ._ -1 i—1 k+1 k
x; =Qy (bi - 23:1 Qijx; 7 — Z?:H—l Qijxj)

end for
end for

@ converges if Q is diagonally dominant, or symmetric positive definite.



F. Gauss and L. Seidel

Johann Carl Friedrich Gauf} Philipp Ludwig von Seidel
(30 April 1777--23 February 1855) (23 October 1821--13 August 1896)

*Photos from Wikipedia



Gauss-Seidel iteration — resources

Mentioned in a private letter! from Gauss to Gerling in 1823.
A publication was not delivered before 1874 by Seidel.
CARL FRIEDRICH GAUSS

WERKE

NEUNTER BAND.

"HERAUSGEGEBEN

KONIGLICHEN GESELLSCHAFT DER WISSENSCHAFTEN
w
GOTTINGEN.
IN COMMISSION BEI B. G, TEUBNER IN LEIPZIG.
1908.

LIn Carl Friedrich Gauss Werke 9, Geodasie, 278-281 (1903). English translation in J.-L.
Chabert (Ed.), A History of Algorithms, Springer-Verlag, Berlin, Heidelberg, 297-298 (1999).



Gauss' letter to Gerling

(6.]
[Uber Stationsausgleichungen.]

Gauss an Gerime. Géottingen, 26. December 1823.

Mein Brief ist zu spit zur Post gek und mir zuriickgebracht. Ich
erbreche ihn daher wieder, um noch die praktische Anweisung zur Elimination
beizufiigen. Freilich gibt es dabei vielfache kleine Localvortheile, die sich
nur ex usu lernen lassen.

Die Bedingungsgleichungen sind also:
0=+  6+67a—13b— 28c— 26d
0 ==— 7558 —13a+69b— 50c— 6d
0 = —14604 —28a—50b+ 156c— 78d
0 422156 —26a— 6b— 78¢}110d;
Summe = 0.

I

@ Gauss considered a 4 dimensional symmetric positive semidefinite but
singular linear equation.

e Starting from (a,b,c,d) = (0,0,0,0), update exactly one variable
from {a,b,c,d} each time via a certain rule.

@ Gauss worked with integers: an inexact iterative method!



The conditional equations are:

0=+ 6 +67a -13b - 28c - 26d

=- 7558 - 13a +69b - 50c - 6d
0=-14604 - 28a - 50b + 156¢ - 78d
0=+22156 - 26a - 6b - 78c +110d
sum =0

To eliminate indirectly now, I notice that, if three of the quantities a, b, c, d are set equal to
0, the fourth will take the greatest value if d is chosen as the fourth quantity. Naturally each
quantity has to be determined from its own equation, and so d from the fourth one. So I put d
= - 201 and substitute this value. The constant terms then become: + 5232, - 6352, + 1074,
+46; the rest remaining unchanged.

Now I let b be next,and I find b = + 92, I substitute it, and I find the constant terms:
+ 4036, - 4, - 3526, - 506. 1 continue in this way until there is nothing left to correct. But in
actual fact, for the whole of this calculation, I merely write out the following table:



Gauss' algorithm and conclusion

=-201| b=+92 =-60| c=+12| a=+5| b=-2| a=-1
+6 + 5232 + 4036 +16 -320 +15 +41 -26
-7558 - 6352 -4 +776 +176 +111 -27 -14
- 14604 + 1074 - 3526 - 1846 +26 -114 -14 +14
+ 22156 + 46 - 506 + 1054 +118 -12 0 +26
In that I am only taking the calculation to the next 1/2000th of a second, I see that there is
now nothing more to correct. I collect up the terms: Almos
prove. Co
— - — — pleasant «
a=-60 b=+92 |c=+12 d=-201 reralis 1
+5 -2 again hav
-1 knowns.

-56 +90 +12 -201 about oth



Seidel's method

To solve the linear equation

Ax =b| with AeR™" beR™,

Seidel defined the quadratic function

1

1 i} 1
a(e) i= 511z — bl3 = 5 (. (4" A)z) — (b, Az) + 3 b]*

to solve the corresponding normal equation

Qr = A" with Q:=A"A.

@ Update only one component of the vector x each step to reduce the
value of q.

@ The most rational thing (according to Seidel): choose the index that
brings the maximum update (decrease) of g.



Gauss-Seidel

The well-known Gauss-Seidel iterative method:
@ Forget the “optimal” choice indicated by Gauss and Seidel.
@ Changes are carried “cyclically”.
@ Successively update the elements of x in a fixed order.
@ Turn to the first one if the last one is updated.

How about turning to the penultimate one and so on after the last
one is updated

@ such as the symmetric Gauss-Seidel (sGS) iterative method??

@ Note that for n = 2, GS = sGS, which means that the two-block case
is indeed special. Maybe sGS is the real tool?

2R.E. Bank, T.F. Dupont, and H. Yserentant, “The hierarchical basis multigrid
method”, Numerische Mathematik 52, 427-458 (1988).



Comparison: GS vs. sGS

————————————————————————

GS
@_,@_} ......

: /< ] one cycle]
il /@‘_‘_@ :




A simple optimization model

Let A€ R™*™ and b€ R™. Let L C R™ be a closed convex set (K is
simple, e.g., R, the second-order-cone, SDP cone, etc). Consider the
feasibility problem: find € R™ such that

b— Ax € K,
or equivalently, find z € R, z € R™ such that
z=b—Ax, zeKk.
In the exact spirit as in Seidel’s original work, we can consider

1
min d(2) + 5l + Az b|%,

where i (+) is the indicator function over K, i.e., 0x(2) =0 if z € K and
Ok(z) =40 if z ¢ K.

@ The nonsmooth part Ji(-) corresponds to one block of variables!
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A general form

Consider the block vector
x = (x1,X2,...,Xs) €EX =X X Xy x --- x Xs. Given a positive

semidefinite linear operator Q such that

Q11 Q2 -+ Qi X1
To Qoo -+ Qo X2

Ox = _ : _ : . , Qi = 0.
QTS Q;s e st Xs

Let p: X1 — (—o00,+00] be a given closed proper convex function. Let

the quadratic function
Q(X) = %<X’ QX> - <I‘, X>.

12



Consider the problem meigp(xl) + q(x)

@ Block GS and block sGS (no conditions) are applicable.

@ For sGS, one can get iteration complexity + linear convergence under
error bounds with no efforts

@ But, more importantly, block sGS can be used together with the

celebrated acceleration technique of Nesterov®.

3Yu. E. Nesterov, “A method of solving a convex programming problem with
convergence rate O(1/k?)", Soviet Mathematics Doklady 27(2), 372-376 (1983).



Yurii Nesterov (January 25, 1956-)

@ George Dantzig Prize (2000); John von Neumann Theory Prize
(2009); the EURO Gold Medal (2016).

@ An accelerated version of the gradient descent method that converges
one order faster than the ordinary gradient descent method.
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An inexact block sGS iteration

Consider the following block decomposition:

0 Qi --- Qs X1
) . X5
Ux =
Q(sfl)s
0 Xs

Then Q =U* + D+ U, where Dx = (Q11X1, . .., QssXs)-
Let § = (31, .. .,55) and 6+ = (67,...,6F) with 61 = 57 being given error
tolerance vectors. Define

A(5,07) == 0" +UDTH (0 —6), T :=UD'U* (sGS decomp. op.).

Let y € X be given. Define

xt = argmin {px) 400 + 51k -yl - (A6 0} (@)

(1) looks complicated, but is much easier to solve!
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An inexact block sGS decomposition theorem

Theorem (Li-Sun-Toh)

Giveny. Fori=s,...,2, define

%; = argmin{p(y1) + q(¥<i—1,Xi, X>it1) — (05, i)}

X
_ 2 i—1 .
= Qm‘l (ri +d; — Z;=1 QLyj — Z;=i+1 Qijxj)

computed in the backward GS cycle. The optimal solution x* in (1)
can be obtained exactly via

x{ = g i {p(x1) + q(x1,%32) — (67, x1)},
xt = argmin {p(xf) + a0k Ly, X Roin) — (07 X))
= 0 (ri+0f — Yoo Opxt — 30 Q) 122,
where xz'-", i1=1,2,...,s, is computed in the forward GS cycle.

Reduces to the classical block sGS if both p(-) =0 and § = 0.
Caution: Such a theorem is not available for GS even if p(-) = 0.




An inexact APG (accelerated proximal gradient)

Consider
min{F(z) := p(x) + f(x) | x € X'}

with |[Vf(x) = Vf(xX)|| < L||x —x'|| Vx,x' € X.

Algorithm. Input y' = x° € dom(p), t; = 1. lterate
1. Find an approximate minimizer x* to

. 1
min{p(y) + F(y") + (VA" y = ¥9) + 5l = v 0l -y},
where Hj. > 0 is a priorily given linear operator.

144/1+4t2 _ _
2. Compute tj41 = —Y5—=, y" =xF + (%)(Xk —xk=1).

17



An inexact APG

Consider the following admissible conditions
F(x*) < p") + F7"F) + (V") xP = y*) + 5 (" = y", H(x* —y")),

V") + Hy(x* —y*) +9F =6 with |[#H, 265 <

ft

where v* € Op(x*) = the set of subgradients of p at x*, {¢,} is a
nonnegative summable sequence. Note t; ~ k/2 for k large.

Theorem (Jiang-Sun-Toh)

Suppose that the above conditions hold and Hy_1 = Hy = 0 for all k.
Then

0< FxF) - F(x") < (k+1) 5 [ —x*||H1+fZej |

j=1



An inexact APG

Apply the inexact APG to
min{F(x) := p(x1) + f(x) | x € X'}.

Since Vf(-) is Lipschitz continuous, 3 a symmetric PSD linear operator
Q : X — X such that

Q= M, YMecdf(x),Vxex

and Q; = 0 for all 4.
Given ¥, we have for all x € X,

169 < @) = 15" + (V16 x = y") + 5 x = y", Qx—y")).

APG subproblem: need to solve a nonsmooth composite QP of the form
min{p(x1) + ax(x)}, == (x1,%X2,..., %),

which is not easy to solve!
Idea: add an additional proximal term to make it easier (too easy bad too)!

10



Elimination of one block via the Danskin theorem

Let x = (x1,X2,...,Xs) € X := X x Xy X -+ X Xy and the
corresponding optimization problem

min{p(x1) + ¢(z) + ¢(z,x) |z € Z, x € X}

— ’min{p(Xl) + f(x) | x € X} "

where p(-), ¢(+) are convex functions (possibly nonsmooth), and
f(x) = min{p(2) + ¢(2,%) |z € Z},
z(x) = argmin{...}.

Assume that ¢, ¢ satisfy the conditions in the next theorem, then f has
Lipschitz continuous gradient V f(x) = V,¢(z(x), X).

20



A Danskin-type theorem

: Z — (—o00,00] is a closed proper convex function.

)1 Zx X — Ris a convex function.

z,-) : 8 — R is continuously differentiable on € for each z.
V.¢(z,x) is continuous on dom(¢p) x €.

°
o ¢(
° ¢(

Consider f : Q — [—00, +00) defined by
f(@) = int {p(z) + 6 )}, x€Q

Condition: The minimizer z(x) is unique for each x and is bounded on a
compact set.

21



A Danskin-type theorem

Theorem

(i) If 3 an open neighborhood Ny of x such that z(-) is bounded on any
compact subset of N, then the convex function f is differentiable on Ny
and

Vf(x') = Vxo(z(x'),x') Vx' e Nk

(ii) Suppose that z(-) is bounded on any nonempty compact subset of Z.
Assume that for any z € dom(y), Vx¢(z,-) is Lipschitz continuous on Z
and 3 X = 0 such that for all x € X and z € dom(y),

Y=H VHE I bz x).

Then, V f(-) is Lipschitz continuous on X with the Lipschitz constant
[|Z||l2 (the spectral norm of ) and for any x € X,

Y>=G VGedf(x),

where 0 f(x) denotes the generalized Hessian of f at x.



An Inexact accelerated block coordi

min{p(x1) + ¢(2) + 6(z,%) | z € Z, x € X}

Algorithm 2. Input y! = x° € dom(p) x Xp x -+ x Xy, t1 = 1. Let {ex}
be a nonnegative summable sequence. lterate

1. Suppose 6F, 6% € X;, i =1,...,s, with §F = 6%, are error vectors
such that

max{[|%[], 161} < ex/(vV2t),

z" = argmin {(p(z) + ¢>(z,y’“)}7 (elimination via Danskin)

x* = argmin {p(x,) + g (x) + 5|~ ¥ — (A, ), %) .

X

(inexact sGS)

144/1+482 _ B
2. Compute tpq1 = —5—=, yEHl = xkF 4 (i’,z“l)(xk — xk1),

il



An Inexact accelerated block coordi

Theorem

Let H=Q+T and B =2||D~Y/2| + |H~Y/2||. The sequence {(z*,x*)}
generated by Algorithm 2 satisfies

2

OSF(X]C)_F(X*)S (k+1)2

[(1° = x* 2+ miqﬂ-

Jj=1

24



Least squares semidefinite programming (LSSDP)

Given fixed G, g, consider the LSSDP
min  F(Z,v,S,yg,yr) = [65(—Z) + o (—v)] + s (5)
1 . . 1
— (b, yp) + 5112 + S+ Apye + Ajyr + GI* + Sllv = yr + g,
where for a given closed convex set C, §5(-) is the conjugate function of
dc(+) defined by

d¢ () = sup (-, W),
wec

ST is the cone of n by n symmetric positive semidefinite matrices, and P
is a polyhedral set.

5



Existing first-order methods for LSSDP

@ Block coordinate descent (BCD) type method [Luo, Tseng,...] with
iteration complexity of O(1/k).

@ Accelerated proximal gradient (APG) method [Nesterov,
Beck-Teboulle] with iteration complexity of O(1/k?).

o Accelerated randomized BCD-type method [Beck, Nesterov,
Richtarik,...] with iteration complexity of O(1/k?).

26



Inexact ABCD for LSSDP: version 1

Step 1. Suppose 0%, 6% € R™=, ok, 5k € R satisfy

max{ |65 |, 1671 16511, 19711} < ft
(ZF, %) = argming {F(Z,v, S*, 7%, 55)}. (Projection onto P, K)

g%y = argmin, {F(Z"v*,S* yp,35) — (0%, ys)}, (Chol. or CG)
= argminyI{F(Zk,Uk,§k,y%,y1) — (o%, yr)}, (Chol. or CG)
Sk = argminS{F(Zk,vk, S, Q]’f;,g)’f)}, (Projection onto S7})

yi = argmin, {F(Z" v* S* 9%, u1) — (67. y1)}, (Chol. or CG)
y,’% = argminyE{F(Zk,vk,Sk,yE,y’f) — <5%, yE>} (Chol. or CG)

Step 2. Set tj4; = — Y% ;Hti and 75, = tt’;;l Compute

(SFHL GEFL GhLy = (14 1) (S*, yh, yF) — T (SF7L gt b1y,

27



Inexact ABCD for LSSDP: version 2

We can also treat (S, yg,ys) as a single block and use a semismooth
Newton-CG (SNCG) algorithm introduced in [Zhao-Sun-Toh, SIAM J.
Optim. 20(4), 1737-1765 (2010)] to solve it inexactly. Choose 7 = 1075.

Step 1. Suppose 0% € R™=, 6% € R™1 are error vectors such that

€k

V2t

max{]| 6%, 171} <

Compute

(Z*,v*) = argmin {F(Z,v, Ek,g’fE,g’;)}, (Projection onto P, K)
Zwv

(S*, %, y7) = argmin

F(Zk,v’“,S, yE7yI) + %HyE - ?7%“2
SWYEYI

_<5§‘> yE> - <5II€7 y1>
(SNCG)

144/144t2
Step 2. Set tp1 = w, 7, = =1 Compute

2 thi1

(SFHL GEFL GRELy — (14 1) (S*, ks, yF) — T (SF7L ot i),

28



Numerical experiments

@ We compare the performance of ABCD against BCD, APG and
eARBCG (an enhanced accelerated randomized block coordinate
gradient method) for solving LSSDP.

@ We test the algorithms on LSSDP problem by taking
G = —C, g = 0 for the data arising from various classes of
semidefinite programming (SDP).

209



Numerical results

Stop the algorithms after 25,000 iterations, or

n= maX{??177727773} < 10767

where = 1b=ABXll o VL s diX)
X = HS’;(A*E:UE + Ay +Z2+G), Y =lp(Ayye + Ajyr + S+ G),
s = k(g —yr1).
problem set (No.) \ solver | ABCD | APG | eARBCG | BCD
0. (64) 64 | 64 64 11
FAP ( 7) 7 7 7
QAP (95) 9%5 | 95 24 0
BIQ (165) 165 | 165 | 165 65
RCP (120) 120 | 120 | 120 | 108
exBIQ (165) 165 | 141 | 165 10
Total (616) 616 | 592 | 545 | 201

20



erformance profiles

Performance Profile (64 9+, 7 FAP, 95 QAP, 165 BIQ, 120 RCP, 165 exBIQ problems) tol = 1e-06
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at most x times of the best

Figure: Performance profiles of ABCD, APG, eARBCG and BCD on [1,10]
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Higher accuracy results for ABCD

Number of problems which are solved to the accuracy of 107%, 10~7, 108
by the ABCD method.

problem set (No.) | 1076 | 1077 | 1078

0. (64) 64 | 58 | 52
FAP (7) 7 7 7

QAP (95) 95 | 95 | o5
BIQ (165) 165 | 165 | 165
RCP (120) 120 | 120 | 118

exBIQ (165) 165 | 165 | 165
Total (616) 616 | 610 | 602

29



Tolerance profiles of the ABCD

Tolerance Profile (64 8+, 7 FAP, 95 QAP, 165 BIQ, 120 RCP, 165 exBIQ problems)

1 :
0.8t
%]
S
o
S 0.6f |
-
ks
°
09 0.4F J —tol = 1le-7 )
S N - = =tol = 1le-8
0.2 " -
.,
'l
¢

o1 2 3 4 5 6 7 8 9 10
at most x times of tol = 1e-6

Figure: Tolerance profiles of ABCD on [1,10]
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Convex composite quadratic programming (CCQP):

Consider the convex optimization model:

min 9(y1)+f(y17y23"'7y5)

2
st. Ajyr + Ajyo + -+ Ajys = c. (2)

Linear mappings: A;, i =1,...,s, Ay =7 Afyi, y:= (y1,...,ys)-
Closed proper convex function 0 : J); — (—o0, +00] and convex quadratic
function f(y) = 5(y, Qu) — (b, y). Then, (2) can be written compactly as

min{0(y1) + f(y) | Ay = c}.

Given o > 0, the augmented Lagrangian function of the CCQP is

Loyia) = 0() + J(y) + (. A'y = &) + S A"y — c|*.

quadratic

24



CCQP

The proximal augmented Lagrangian method (pALM) for the CCQP:

Given (y°,2) in the domain and 7 € (0,2). For k =0,1,...

1
Step 1. y**! ~ argmin £, (y;2%) + |y — "7
. N O 1
=argmin {0(y1) + f(y) + (", Ay =) + S| A"y — e + Sy — "7 }-
Yy

Step 2. 2%t =2k + ro(A*yF L —¢).

@ 7T is the block sGS decomposition operator, which does not need to
be formulated explicitly. Note that 7 > 0 but 7 % 0. So it is not a
classical pALM.

e y**1 is obtained via the inexact block sGS procedure [s blocks in
total].

@ In practice, the dual step-length 7 is often chosen in [1.618,1.95].

25



CCQP

Consider the convex composite quadratic programming

min {w(m) + %(w, Qx) — (¢, ) ‘ Agx =bg, Ajx —br € IC}. 3)

zeX

@ ¢: X — (—o0,+00] is a closed proper convex function [simple].
o Q: X — X is a self-adjoint positive semidefinite linear operator.
@ Ap : X — 2y and Aj : X — 25 are the given linear mappings.
o b= (bg;br) € Z:= Z; X Z, is a given vector.

@ ce Xis given. K C 25 is a closed convex set (cone) [simple].

Let Z be the identity operator in Z,. By introducing a slack variable
' € Z,, we can reformulate the above problem equivalently as

i, {v@ +oe@) + 500 | (42 9) (5) =0},

whose dual is an instance of the CCQP (in the next page).
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CCQP

The dual of the above problem [or equivalently problem (3)] is
: LA r (AE A7
%nil/{lz{p(yHE(y,Qy)*(b,d ‘ y+ (%)y - ( 0 I’)z: (8)}

y = (u,v) € X x Zs.

p(y) = p(u,v) = P*(u) + 5. (v).
dic(+) is the indicator function over K.

Nonsmoothness only exists in one block of variables, i.e., the y-block.

Block sGS + pALM work perfectly [both y" and z can be decomposed
into many blocks].

Convex quadratic programming (QP), Convex quadratic semidefinite
programming (QSDP),...

27



Penalized and Constrained Regression Models

The penalized and constrained (PAC) regression often arises in
high-dimensional generalized linear models with linear equality and
inequality constraints, e.g.,

. 1
min {p(:z:)—!—ﬁH‘I)x—nHQ Agx = bg, AIbeI}. (4)

@ PeR™" Ap e R"EX" Ay e R"*™ n e R™, by € R"® and
by € R are the given data.

@ p is a proper closed convex regularizer such as p(z) = ||z|;.
@ A > 0 is a parameter.

@ Obviously, the dual of problem (4), which is a special case of problem
(3), is a particular case of CCQP.

28



Convex quadratic constraints

Suppose that there are some additional convex quadratic constraints to
problem (3):
(x, Qix) — (i) < b;, i=1,...,1,

where Q; > 0 for all 4. By noting that Q; = £,L; for a certain linear
operator L;, we can write the above constraints as

1C52|? = (eiz) <bi, i=1,....1

which can be equivalently reformulated as

[y

We can further rewrite the above as
1+b; + (ci,x)
1—-b—(c,z) | €y, i=1,...,1,
2L x

§1+b1+<cz,a¢>, Z:1,,l
2

where K; is the second-order-cone of a proper dimension, i = 1,...,1.

Therefore, convex quadratic constraints can be added to problem (3)

without changing its structure.
20



Extensions

@ There are many applications that can be “solved” via block sGS +
pALM if the solution accuracy is not a big concern.

@ More extensions can be done. For example, for the doubly
non-negative SDP problems or the rank-correction models, for the
dual forms (more efficient in general), one needs to deal with TWO
nonsmooth blocks plus many smooth blocks. Then, again, one can
use the sGS decomposition theorem + proximal ADMM (pADMM)
instead of pALM to handle these situations [not often encountered in
optimization applications].

@ As one can see, we can also deal with problems whose objective
functions involving non-quadratic smooth functions via majorizations.

@ To make the algorithms even faster, we often introduce indefinite
proximal terms with guaranteed convergence.

@ Here, for big sparse optimization problems, the more critical second
order sparsity (SOS) is not touched yet ...
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