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Gauss-Seidel method for solving Qx = b

Update only one element of the variable x in each iteration.

Input: Q ∈ <n×n,b ∈ <n and x0 ∈ <n
for k = 0, 1, . . .

for i = 1, . . . , n

xk+1
i := Q−1

ii

(
bi −

∑i−1
j=1 Qijx

k+1
j −

∑n
j=i+1 Qijx

k
j

)
end for

end for

converges if Q is diagonally dominant, or symmetric positive definite.
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F. Gauss and L. Seidel

Johann Carl Friedrich Gauß
(30 April 1777--23 February 1855)

Philipp Ludwig von Seidel
(23 October 1821--13 August 1896)

*Photos from Wikipedia
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Gauss-Seidel iteration – resources

Mentioned in a private letter1 from Gauss to Gerling in 1823.
A publication was not delivered before 1874 by Seidel.

|00005||

1In Carl Friedrich Gauss Werke 9, Geodäsie, 278-281 (1903). English translation in J.-L.
Chabert (Ed.), A History of Algorithms, Springer-Verlag, Berlin, Heidelberg, 297–298 (1999).
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Gauss’ letter to Gerling

|00284||

......

|00284||

......

......

Gauss considered a 4 dimensional linear equation.

Starting from (a, b, c, d) = (0, 0, 0, 0), update exactly one variable
from {a, b, c, d} each time via a certain rule.

Gauss worked with integers.
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Seidel’s method

To solve the linear equation

Ax = b with A ∈ <m×n, b ∈ <m,

Seidel defined the quadratic function

q(x) :=
1

2
‖Ax− b‖22 =

1

2
〈x, (A∗A)x〉 − 〈b, Ax〉+

1

2
‖b‖2

to solve the corresponding normal equation

Qx = A∗b with Q := A∗A.

Update only one component of the vector x each step to reduce the
value of q.

The most rational thing (according to Seidel): choose the index that
brings the maximum update (decrease) of q.
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Gauss-Seidel

The well-known Gauss-Seidel iterative method:

Forget the “optimal” choice indicated by Gauss and Seidel.

Changes are carried “cyclically”.

Successively update the elements of x in a fixed order.

Turn to the first one if the last one is updated.

How about turning to the penultimate one and so on after the last
one is updated

such as the symmetric Gauss-Seidel (sGS) iterative method2?

2R.E. Bank, T.F. Dupont, and H. Yserentant, “The hierarchical basis multigrid
method”, Numerische Mathematik 52, 427–458 (1988).
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Comparison: GS vs. sGS

GS

x1 x2 · · · xn

x1 x2 · · · · · ·

one cycle

sGS

x1 x2 · · · xn−1

xn−1

xn

x2

x1

· · ·

x2 · · · · · ·

one cycle
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A simple optimization model

Let A ∈ <m×n and b ∈ <m. Let K ⊆ <m be a closed convex set.
Consider the feasibility problem: find x ∈ <n such that

b−Ax ∈ K,

or equivalently, find x ∈ <n, z ∈ <m such that

z = b−Ax, z ∈ K.

In the exact spirit as in Seidel’s original work, we can consider

min
(z,x)

δK(z) +
1

2
‖z +Ax− b‖2,

where δK(·) is the indicator function over K, i.e., δK(z) = 0 if z ∈ K and
δK(z) = +∞ if z /∈ K.

The nonsmooth part δK(·) corresponds to one block of variables!
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A general form

Consider the block vector
x = (x1,x2, . . . ,xs) ∈ X := X1 ×X2 × · · · × Xs. Given a positive
semidefinite linear operator Q such that

Qx ≡


Q11 Q12 · · · Q1s

Q∗12 Q22 · · · Q2s

...
...

. . .
...

Q∗1s Q∗2s · · · Qss




x1

x2

...
xs

 , Qii � 0.

Let p : X1 → (−∞,+∞] be a given closed proper convex function. Let
the quadratic function

q(x) := 1
2 〈x, Qx〉 − 〈r, x〉.

Consider the problem min
x∈X

p(x1) + q(x)

Both block GS and block sGS are applicable.

block sGS can be used together with the celebrated acceleration
technique of Nesterov3.

3Yu. E. Nesterov, “A method of solving a convex programming problem with
convergence rate O(1/k2)”, Soviet Mathematics Doklady 27(2), 372–376 (1983).
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Yurii Nesterov

Yurii Nesterov (January 25, 1956–)

George Dantzig Prize (2000); John von Neumann Theory Prize
(2009); the EURO Gold Medal (2016).

An accelerated version of the gradient descent method that converges
one order faster than the ordinary gradient descent method.
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An inexact block sGS iteration

Consider the following block decomposition:

Ux ≡


0 Q12 · · · Q1s

. . .
...

. . . Q(s−1)s
0




x1

x2

...
xs

 .

Then Q = U∗ +D + U , where Dx = (Q11x1, . . . ,Qssxs).

Let δ̂ ≡ (δ̂1, . . . , δ̂s) and δ+ ≡ (δ+1 , . . . , δ
+
s ) with δ̂1 = δ+1 being given error

tolerance vectors. Define

∆(δ̂, δ+) := δ+ + UD−1(δ+ − δ̂), T := UD−1U∗ (sGS decomp. op.).

Let y ∈ X be given. Define

x+ := arg min
x∈X

{
p(x1) + q(x) +

1

2
‖x− y‖2T − 〈∆(δ̂, δ+), x〉

}
. (1)

(1) looks complicated, but is much easier to solve!
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An inexact block sGS decomposition theorem

Theorem (Li-Sun-Toh)

Given y. For i = s, . . . , 2, define

x̂i := arg min
xi

{ p(y1) + q(y≤i−1,xi, x̂≥i+1)− 〈δ̂i, xi〉}

= Q−1ii
(
ri + δ̂i −

∑i−1
j=1Q∗jiyj −

∑s
j=i+1Qijx̂j

)
computed in the backward GS cycle. The optimal solution x+ in (1)
can be obtained exactly via

x+
1 = arg min

x1

{ p(x1) + q(x1, x̂≥2)− 〈δ+1 , x1〉},
x+
i = arg min

xi

{ p(x+
1 ) + q(x+

≤i−1,xi, x̂≥i+1)− 〈δ+i , xi〉}

= Q−1ii (ri + δ+i −
∑i−1
j=1Q∗jix+

j −
∑s
j=i+1Qijx̂j), i ≥ 2,

where x+
i , i = 1, 2, . . . , s, is computed in the forward GS cycle.

Reduces to the classical block sGS if both p(·) ≡ 0 and δ = 0.
Caution: Such a theorem is not available for GS even if p(·) ≡ 0.
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An inexact APG (accelerated proximal gradient)

Consider

min{F (x) := p(x) + f(x) | x ∈ X}

with ‖∇f(x)−∇f(x′)‖ ≤ L‖x− x′‖ ∀ x,x′ ∈ X .

Algorithm. Input y1 = x0 ∈ dom(p), t1 = 1. Iterate

1. Find an approximate minimizer xk to

min
y∈X

{
p(y) + f(yk) + 〈∇f(yk), y − yk〉+

1

2
〈y − yk, Hk(y − yk)〉

}
,

where Hk � 0 is a priorily given linear operator.

2. Compute tk+1 =
1+
√

1+4t2k
2 , yk+1 = xk +

(
tk−1
tk+1

)
(xk − xk−1).
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An inexact APG

Consider the following admissible conditions

F (xk) ≤ p(xk) + f(yk) + 〈∇f(yk), xk − yk〉+ 1
2
〈xk − yk, Hk(x

k − yk)〉,

∇f(yk) +Hj(x
k − yk) + γk =: δk with ‖H−1/2

k δk‖ ≤ εk√
2tk

,

where γk ∈ ∂p(xk) = the set of subgradients of p at xk, {εk} is a
nonnegative summable sequence. Note tk ≈ k/2 for k large.

Theorem (Jiang-Sun-Toh)

Suppose that the above conditions hold and Hk−1 � Hk � 0 for all k.
Then

0 ≤ F (xk)− F (x∗) ≤ 4

(k + 1)2

[(√
τ +

k∑
j=1

εj
)2

+ 2

k∑
j=1

ε2j

]
,

where τ = 1
2‖x0 − x∗‖2H1

.
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An inexact APG

Apply the inexact APG to

min{F (x) := p(x1) + f(x) | x ∈ X}.

Since ∇f(·) is Lipschitz continuous, ∃ a symmetric PSD linear operator
Q : X → X such that

Q � M, ∀ M ∈ ∂2f(x), ∀ x ∈ X

and Qii � 0 for all i.
Given yk, we have for all x ∈ X ,

f(x) ≤ qk(x) := f(yk) + 〈∇f(yk), x− yk〉+ 1

2
〈x− yk, Q(x− yk)〉.

APG subproblem: need to solve a nonsmooth composite QP of the form

min
x∈X
{p(x1) + qk(x)}, x = (x1,x2, . . . ,xs),

which is not easy to solve!
Idea: add an additional proximal term to make it easier (too easy bad too)!
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Elimination of one block via the Danskin theorem

Let x = (x1,x2, . . . ,xs) ∈ X := X1 ×X2 × · · · × Xs and the
corresponding optimization problem

min{p(x1) + ϕ(z) + φ(z,x) | z ∈ Z, x ∈ X}

= min{p(x1) + f(x) | x ∈ X} ,

where p(·), ϕ(·) are convex functions (possibly nonsmooth), and

f(x) = min{ϕ(z) + φ(z,x) | z ∈ Z},

z(x) = argmin{. . .}.

Assume that ϕ, φ satisfy the conditions in the next theorem, then f has
Lipschitz continuous gradient ∇f(x) = ∇xφ(z(x),x).
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A Danskin-type theorem

ϕ : Z → (−∞,∞] is a closed proper convex function.
φ(·, ·) : Z × X → < is a convex function.
φ(z, ·) : Ω→ < is continuously differentiable on Ω for each z.
∇xφ(z,x) is continuous on dom(ϕ)× Ω.

Consider f : Ω→ [−∞,+∞) defined by

f(x) = inf
z∈Z
{ϕ(z) + φ(z,x)}, x ∈ Ω.

Condition: The minimizer z(x) is unique for each x and is bounded on a
compact set.
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A Danskin-type theorem

Theorem

(i) If ∃ an open neighborhood Nx of x such that z(·) is bounded on any
compact subset of Nx, then the convex function f is differentiable on Nx

and
∇f(x′) = ∇xφ(z(x′),x′) ∀x′ ∈ Nx.

(ii) Suppose that z(·) is bounded on any nonempty compact subset of Z.
Assume that for any z ∈ dom(ϕ), ∇xφ(z, ·) is Lipschitz continuous on Z
and ∃ Σ � 0 such that for all x ∈ X and z ∈ dom(ϕ),

Σ � H ∀H ∈ ∂2xxφ(z,x).

Then, ∇f(·) is Lipschitz continuous on X with the Lipschitz constant
||Σ‖2 (the spectral norm of Σ) and for any x ∈ X ,

Σ � G ∀G ∈ ∂2f(x),

where ∂2f(x) denotes the generalized Hessian of f at x.
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An inexact accelerated block coordinate gradient descent
method

min{p(x1) + ϕ(z) + φ(z,x) | z ∈ Z, x ∈ X}

Algorithm 2. Input y1 = x0 ∈ dom(p)× X2 × · · · × Xs, t1 = 1. Let {εk}
be a nonnegative summable sequence. Iterate

1. Suppose δki , δ̂
k
i ∈ Xi, i = 1, . . . , s, with δ̂k1 = δk1 , are error vectors

such that

max{‖δk‖, ‖δ̂k‖} ≤ εk/(
√

2tk),

zk = arg min
z

{
ϕ(z) + φ(z,yk)

}
, (elimination via Danskin)

xk = arg min
x

{
p(x1) + qk(x) +

1

2
‖x− yk‖2T − 〈∆(δ̂k, δk), x〉

}
.

(inexact sGS)

2. Compute tk+1 =
1+
√

1+4t2k
2 , yk+1 = xk +

(
tk−1
tk+1

)
(xk − xk−1).
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An inexact accelerated block coordinate gradient descent
method

Theorem

Let H = Q+ T and β = 2‖D−1/2‖+ ‖H−1/2‖. The sequence {(zk,xk)}
generated by Algorithm 2 satisfies

0 ≤ F (xk)− F (x∗) ≤ 4

(k + 1)2

[(√
τ + β

k∑
j=1

εj
)2

+ 2β2
k∑
j=1

ε2j

]
,

where τ = 1
2‖x0 − x∗‖2H.
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Least squares semidefinite programming (LSSDP)

Given fixed G, g, consider the LSSDP

min F (Z, v, S, yE, yI) := [δ∗P(−Z) + δ∗K(−v)] + δSn
+

(S)

−〈bE , yE〉+
1

2
‖Z + S +A∗EyE +A∗IyI +G‖2 +

1

2
‖v − yI + g‖2,

where for a given closed convex set C, δ∗C(·) is the conjugate function of
δC(·) defined by

δ∗C(·) = sup
W∈C
〈·, W 〉,

Sn+ is the cone of n by n symmetric positive semidefinite matrices, and P
is a polyhedral set.
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Existing first-order methods for LSSDP

Block coordinate descent (BCD) type method [Luo,Tseng,...] with
iteration complexity of O(1/k).

Accelerated proximal gradient (APG) method [Nesterov,
Beck-Teboulle] with iteration complexity of O(1/k2).

Accelerated randomized BCD-type method [Beck, Nesterov,
Richtarik,...] with iteration complexity of O(1/k2).
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Inexact ABCD for LSSDP: version 1

Step 1. Suppose δkE , δ̂
k
E ∈ <mE , δkI , δ̂

k
I ∈ <mI satisfy

max{‖δkE‖, ‖δkI ‖, ‖δ̂kE‖, ‖δ̂kI ‖} ≤
εk√
2tk

.

(Zk, vk) = arg minZ,v
{
F (Z, v, S̃k, ỹkE , ỹ

k
I )
}
, (Projection onto P, K)

ŷkE = arg minyE
{
F (Zk, vk, S̃k, yE , ỹ

k
I )− 〈δ̂kE , yE〉

}
, (Chol. or CG)

ŷkI = arg minyI
{
F (Zk, vk, S̃k, ŷkE , yI)− 〈δ̂kI , yI〉

}
, (Chol. or CG)

Sk = arg minS
{
F (Zk, vk, S, ŷkE , ŷ

k
I )
}
, (Projection onto Sn+)

ykI = arg minyI
{
F (Zk, vk, Sk, ŷkE , yI)− 〈δkI , yI〉

}
, (Chol. or CG)

ykE = arg minyE
{
F (Zk, vk, Sk, yE , y

k
I )− 〈δkE , yE〉

}
. (Chol. or CG)

Step 2. Set tk+1 =
1+
√

1+4t2k
2 and τk = tk−1

tk+1
. Compute

(S̃k+1, ỹk+1
E , ỹk+1

I ) = (1 + τk)(Sk, ykE , y
k
I )− τk(Sk−1, yk−1E , yk−1I ).
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Inexact ABCD for LSSDP: version 2

We can also treat (S, yE , yI) as a single block and use a semismooth
Newton-CG (SNCG) algorithm introduced in [Zhao-Sun-Toh, SIAM J.
Optim. 20(4), 1737-1765 (2010)] to solve it inexactly. Choose τ = 10−6.

Step 1. Suppose δkE ∈ <mE , δkI ∈ <mI are error vectors such that

max{‖δkE‖, ‖δkI ‖} ≤
εk√
2tk

.

Compute

(Zk, vk) = arg min
Z,v

{
F (Z, v, S̃k, ỹkE , ỹ

k
I )
}
, (Projection onto P, K)

(Sk, ykE , y
k
I ) = arg min

S,yE ,yI

{
F (Zk, vk, S, yE , yI) + τ

2‖yE − ỹkE‖2

−〈δkE , yE〉 − 〈δkI , yI〉

}
.

(SNCG)

Step 2. Set tk+1 =
1+
√

1+4t2k
2 , τk = tk−1

tk+1
. Compute

(S̃k+1, ỹk+1
E , ỹk+1

I ) = (1 + τk)(Sk, ykE , y
k
I )− τk(Sk−1, yk−1E , yk−1I ).
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Numerical experiments

We compare the performance of ABCD against BCD, APG and
eARBCG (an enhanced accelerated randomized block coordinate
gradient method) for solving LSSDP.

We test the algorithms on LSSDP problem by taking
G = −C, g = 0 for the data arising from various classes of
semidefinite programming (SDP).
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Numerical results

Stop the algorithms after 25,000 iterations, or

η = max{η1, η2, η3} < 10−6,

where η1 = ‖bE−AEX‖
1+‖bE‖ , η2 = ‖X−Y ‖

1+‖X‖ , η3 = ‖s−AIX‖
1+‖s‖ ,

X = ΠSn+(A∗EyE +A∗IyI + Z +G), Y = ΠP(A∗EyE +A∗IyI + S +G),

s = ΠK(g − yI).

problem set (No.) \ solver ABCD APG eARBCG BCD

θ+ (64) 64 64 64 11

FAP ( 7) 7 7 7 7

QAP (95) 95 95 24 0

BIQ (165) 165 165 165 65

RCP (120) 120 120 120 108

exBIQ (165) 165 141 165 10

Total (616) 616 592 545 201
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Performance profiles
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Figure: Performance profiles of ABCD, APG, eARBCG and BCD on [1, 10]
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Higher accuracy results for ABCD

Number of problems which are solved to the accuracy of 10−6, 10−7, 10−8

by the ABCD method.

problem set (No.) 10−6 10−7 10−8

θ+ (64) 64 58 52

FAP ( 7) 7 7 7

QAP (95) 95 95 95

BIQ (165) 165 165 165

RCP (120) 120 120 118

exBIQ (165) 165 165 165

Total (616) 616 610 602
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Tolerance profiles of the ABCD
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Figure: Tolerance profiles of ABCD on [1, 10]
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Convex composite quadratic programming (CCQP): Constrained cases

Consider the convex optimization model:

min θ(y1) + f(y1, y2, . . . , ys)

s.t. A∗1y1 +A∗2y2 + · · ·+A∗sys = c .
(2)

Linear mappings: Ai, i = 1, . . . , s, A∗y =
∑s
i=1A∗i yi, y := (y1, . . . , ys).

Closed proper convex function θ : Y1 → (−∞,+∞] and convex quadratic
function f(y) = 1

2 〈y, Qy〉 − 〈b, y〉. Then, (2) can be written compactly as

min{θ(y1) + f(y) | A∗y = c}.

Given σ > 0, the augmented Lagrangian function of the CCQP is

Lσ(y;x) = θ(y1) + f(y) + 〈x, A∗y − c〉+
σ

2
‖A∗y − c‖2︸ ︷︷ ︸

quadratic

.
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CCQP

The proximal augmented Lagrangian method (pALM) for the CCQP:

Given (y0, x0) in the domain and τ ∈ (0, 2). For k = 0, 1, . . .

Step 1. yk+1 ≈ arg minLσ(y;xk) + 1
2‖y − yk‖2T

= arg min
y

{
θ(y1) + f(y) + 〈xk, A∗y− c〉+ σ

2
‖A∗y− c‖2 +

1

2
‖y− yk‖2T

}
.

Step 2. xk+1 = xk + τσ(A∗yk+1 − c).

T is the block sGS decomposition operator, which does not need to
be formulated explicitly. Note that T � 0 but T � 0. So it is not a
classical pALM.

yk+1 is obtained via the inexact block sGS procedure [s blocks in
total].

In practice, the dual step-length τ is often chosen in [1.618, 1.95].
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CCQP

Consider the convex composite quadratic programming

min
x∈X

{
ψ(x) +

1

2
〈x,Qx〉 − 〈c, x〉

∣∣∣ AEx = bE , AIx ≥ bI
}
. (3)

ψ : X → (−∞,+∞] is a closed proper convex function.

Q : X → X is a self-adjoint positive semidefinite linear operator.

AE : X → Z1 and AI : X → Z2 are the given linear mappings.

b = (bE ; bI) ∈ Z := Z1 ×Z2 is a given vector.

c ∈ X , b ∈ Z are the given data.

Let I be the identity operator in Z2. By introducing a slack variable
x′ ∈ Z2, we can reformulate the above problem equivalently as

min
x∈X ,x′∈Z2

{
ψ(x) +

1

2
〈x,Qx〉 − 〈c, x〉

∣∣∣ (AE 0
AI I

)(
x
x′

)
= b, x′ ≤ 0

}
,

whose dual is an instance of the CCQP (in the next page).
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CCQP

The dual of the above problem [or equivalently problem (3)] is

min
y,y′,z

{
p(y) +

1

2
〈y′,Qy′〉 − 〈b, z〉

∣∣∣ y + (Q
0

)
y′ −

(
A∗E A∗I
0 I

)
z =

(
c
0

)}
.

y := (u, v) ∈ X × Z2.

p(y) = p(u, v) = ψ∗1(u) + δ+(v).

δ+ is the indicator function of the nonnegative orthant in Z2.

Nonsmoothness only exists in one block of variables, i.e., the y-block.

Block sGS + pALM work perfectly [both y′ and z can be decomposed
into many blocks].

Convex quadratic programming (QP), Convex quadratic semidefinite
programming (QSDP), ...
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Penalized and Constrained Regression Models

The penalized and constrained (PAC) regression often arises in
high-dimensional generalized linear models with linear equality and
inequality constraints, e.g.,

min
x∈Rn

{
p(x) +

1

2λ
‖Φx− η‖2

∣∣∣ AEx = bE , AIx ≥ bI
}
. (4)

Φ ∈ Rm×n, AE ∈ RrE×n, AI ∈ RrI×n, η ∈ Rm, bE ∈ RrE and
bI ∈ RrI are the given data.

p is a proper closed convex regularizer such as p(x) = ‖x‖1.

λ > 0 is a parameter.

Obviously, the dual of problem (4), which is a special case of problem
(3), is a particular case of CCQP.
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Extensions

There are many applications that can be “solved” via block sGS +
pALM if the solution accuracy is not a big concern.

More extensions can be done. For example, for the doubly
non-negative SDP problems or the rank-correction models, for the
dual forms (more efficient in general), one needs to deal with TWO
nonsmooth blocks plus many smooth blocks. Then, again, one can
use the sGS decomposition theorem + proximal ADMM (pADMM)
instead of pALM to handle these situations [not often encountered in
optimization applications].

As one can see, we can also deal with problems whose objective
functions involving non-quadratic smooth functions via majorizations.

To make the algorithms even faster, we often introduce indefinite
proximal terms with guaranteed convergence.

Here, for big sparse optimization problems, the more critical second
order sparsity (SOS) is not touched yet ...
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