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Abstract. The inverse quadratic eigenvalue problem (IQEP) arises in the field of structural
dynamics. It aims to find three symmetric matrices, known as the mass, the damping, and the
stiffness matrices, such that they are closest to the given analytical matrices and satisfy the measured
data. The difficulty of this problem lies in the fact that in applications the mass matrix should
be positive definite and the stiffness matrix positive semidefinite. Based on an equivalent dual
optimization version of the IQEP, we present a quadratically convergent Newton-type method. Our
numerical experiments confirm the high efficiency of the proposed method.
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1. Introduction. Throughout this paper the following notation will be used:
• A � 0 (A � 0, respectively) means that the n×n real matrix A is symmetric

and positive semidefinite (symmetric and positive definite, respectively).
• AT , σ(A), and ‖A‖ denote the transpose, the spectrum, and the Frobenius

norm of A ∈ R
n×n, respectively.

• I denotes the identity matrix of an appropriate dimension.
• Sn and Sn

+ denote the set of all real n× n symmetric matrices and the cone
of positive semidefinite matrices in this set, respectively. Let

Ω0 := Sn × Sn × Sn and Ω := Sn
+ × Sn × Sn

+.

For given matrices M,C,K ∈ R
n×n, let

Q(λ) := λ2M + λC + K.

Then the quadratic eigenvalue problem (QEP) is to find scalars λ ∈ C and nonzero
vectors x such that

(1.1) Q(λ)x = 0,

where λ and x are called the eigenvalue and the eigenvector, respectively. For various
applications, mathematical properties, and numerical solution techniques of the QEP,
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2532 ZHENG-JIAN BAI, DELIN CHU, AND DEFENG SUN

we refer the reader to the survey paper [48]. In many practical applications, the
matrices M , C, and K are required to be symmetric. In particular, in one of the most
popular numerical models, the finite element model (FEM) [19, 48]

(1.2) Mẍ(t) + Cẋ(t) + Kx(t) = 0,

the mass matrix M , the damping matrix C, and the stiffness matrix K are required
to be symmetric with M and K being positive definite and positive semidefinite,
respectively. It is shown in [48] that the general solution to the homogeneous equation
(1.2) is given in terms of the solution of the QEP (1.1). Unfortunately, the natural
frequencies and model shapes (eigenvalues and eigenvectors) predicted by the FEM
often disagree with the physical experimental results. The FEM updating aims to
improve the numerical model (1.2) by the measured data. Various model updating
methods have been presented in the literature [19, 27, 29, 33]. Mathematically, the
model updating problem is an inverse quadratic eigenvalue problem (IQEP) which
aims to find matrices M , C, and K such that they are closest to the given estimated
analytical matrices and satisfy the partially measured eigendata. The general IQEP
can be defined as follows: Given a measured partial eigenpair (Λ, X) ∈ R

k×k × R
n×k

with

(1.3) 1 ≤ k ≤ n, rank(X) = k, and Λ = diag{Λ1, . . . ,Λμ,Λμ+1, . . . ,Λν},
where

Λi = diag{

si︷ ︸︸ ︷
λ

[2]
i , . . . , λ

[2]
i } for 1 ≤ i ≤ μ and Λi = λiIsi for μ + 1 ≤ i ≤ ν,

λ
[2]
i =

[
αi βi

−βi αi

]
∈ R

2×2, βi �= 0, σ(Λi) ∩ σ(Λj) = ∅, ∀ 1 ≤ i �= j ≤ μ,

λi ∈ R, λi �= λj , ∀μ + 1 ≤ i �= j ≤ ν,

k =

μ∑
i=1

2si +

ν∑
i=μ+1

si,

find M,C,K ∈ Sn with M � 0 and K � 0 such that

(1.4) MXΛ2 + CXΛ + KX = 0.

The model updating problem for given Ma, Ca,Ka ∈ Sn, which are called the es-
timated analytic mass, damping, and stiffness matrices, respectively, in the FEM
updating [19], is then to find M,C,K ∈ Sn such that (M,C,K) is a solution to the
following optimization problem:

inf
c1
2
‖M −Ma‖2

+
c2
2
‖C − Ca‖2 +

1

2
‖K −Ka‖2

subject to (s.t.) MXΛ2 + CXΛ + KX = 0,

M � 0, C = CT , K � 0,

where c1 and c2 are two positive weighting parameters. It is noted that in numerical
computation it is better to replace the condition M � 0 by M � 0. This consideration
leads us to focus on the following optimization problem:

(1.5)

min
c1
2
‖M −Ma‖2

+
c2
2
‖C − Ca‖2 +

1

2
‖K −Ka‖2

s.t. MXΛ2 + CXΛ + KX = 0,

M � 0, C = CT , K � 0.
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To avoid confusion, we refer to the optimization problem (1.5) as the IQEP.
As in [25], let the QR factorization of X be given by

X = Q

[
R
0

]
,

where Q ∈ R
n×n is orthogonal and R ∈ R

k×k is nonsingular and upper triangular.
By renaming M :=

√
c1Q

TMQ, C :=
√
c2Q

TCQ, K := QTKQ, Ma :=
√
c1Q

TMaQ,
Ca :=

√
c2Q

TCaQ, and Ka := QTKaQ, without loss of generality, we may assume
from now on that problem (1.5) takes the following form:

(1.6)

min
1

2
‖M −Ma‖2 +

1

2
‖C − Ca‖2 +

1

2
‖K −Ka‖2

s.t.
1

√
c1

M

[
R
0

]
Λ2 +

1
√
c2

C

[
R
0

]
Λ + K

[
R
0

]
= 0,

M � 0, C = CT , K � 0.

Theorem 1.1. Problem (1.6) admits a strictly feasible solution if and only if Λ
is nonsingular.

Proof. First we show the necessity by contradiction. Assume that Λ is singular.
Then there exists a nonzero vector y such that

Λy = 0.

As a result, for any feasible solution (M,C,K) to problem (1.6), we have(
1

√
c1

M

[
R
0

]
Λ2 +

1
√
c2

C

[
R
0

]
Λ + K

[
R
0

])
y = 0; i.e., K

[
Ry
0

]
= 0.

Note that R is nonsingular, which yields that Ry �= 0. Hence K must be singular.
This is a contradiction to the existence of a strictly feasible solution to problem (1.6).
Therefore, problem (1.6) can admit a strictly feasible solution only if Λ is nonsingular.

Next we show the sufficiency. Following the idea of [12], we can obtain a special
feasible solution to (1.6) as follows:

(1.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M̂ =
√
c1

[
(RRT )−1 0

0 I

]
,

Ĉ =
√
c2

[
−R−T (Λ + ΛT )R−1 0

0 0

]
,

K̂ =

[
R−TΛTΛR−1 0

0 I

]
.

Since both R and Λ are nonsingular, M̂ and K̂ are symmetric and positive definite.
This implies that (M̂, Ĉ, K̂) above is a strictly feasible solution to problem (1.6).

Because of Theorem 1.1 and the generalized Slater condition (2.4) (see section 2)
used in our dual approach, in the following development we make a blanket assump-
tion, unless stated otherwise, that the following condition holds.

Assumption 1.2. Λ is nonsingular.
Remark 1.3. Problem (1.6) fails to possess a strictly feasible solution if Λ is

singular. As a remedy, we can reduce problem (1.6) equivalently to a similar problem
which admits a strictly feasible solution. See Appendix B for discussions on this.
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2534 ZHENG-JIAN BAI, DELIN CHU, AND DEFENG SUN

Due to complicated structures of the IQEP and a lack of tools for dealing with
it, many authors considered various simplified versions of the IQEP by dropping or
relaxing the requirement on the positive semidefiniteness of the matrices M and K [3,
4, 5, 6, 14, 18, 19, 26, 51, 52, 53]. As observed in the literature on structural dynamics
[18, 19], however, these approaches may fail to guarantee the positive semidefiniteness
of M and K, which is vital in applications.

In this paper, we deal directly with the IQEP with the required positive semi-
definiteness condition on the matrices M and K. We shall introduce a generalized
Newton method to the dual of problem (1.6), whose objective function is continu-
ously differentiable but not twice differentiable. This approach is motivated by two
recent papers due to Chu, Kuo, and Lin [12] and Qi and Sun [37]. In [12], Chu,
Kuo, and Lin made an important step by showing for the first time that the general
IQEP admits a nontrivial solution; i.e., there exist symmetric matrices M , C, and
K with M � 0 and K � 0 satisfying (1.4). In [37], based on recent developments
in strongly semismooth matrix-valued functions [47], Qi and Sun presented a highly
efficient quadratically convergent Newton method for solving the nearest correlation
matrix problem proposed by Higham in [22] (see Boyd and Xiao [10], Malick [30],
and Toh, Tütüncü, and Todd [50] for more discussions on this problem and its exten-
sions). Theoretically, the Newton method introduced in [37] can be used to solve a
much broader class of problems that includes the IQEP. However, there exist several
practical difficulties in applying the approach by Qi and Sun [37] to the IQEP. In
particular, for the IQEP we must first circumvent the incomputability of an element
in Clarke’s generalized Jacobian of the gradient mapping of the dual function needed
in the approach by Qi and Sun [37]. We shall address this important issue under a
more general setting in this paper by introducing a modified version of Clarke’s gener-
alized Jacobian. Consequently, the convergence analysis must be modified, too. Note
that the IQEP is a special constrained least-squares problem, which can be solved
by applying conventional approaches such as first order methods or a quasi-Newton
method (e.g., Malick [30] suggested using the BFGS update) to its dual problem.
Here, we show that a generalized Newton method can be applied to the dual of the
IQEP with guaranteed quadratic convergence and high efficiency.

The organization of this paper is as follows. In section 2, we discuss some basic
convex optimization theory used in this paper and present some results regarding
Clarke’s generalized Jacobian of certain locally Lipschitz functions. In section 3, we
present the dual forms of the IQEP. In section 4, we give the details of our generalized
Newton method and its convergence analysis. We report our numerical results in
section 5 and make some final conclusions in section 6.

2. Preliminaries. Let X and Y be two finite dimensional real vector spaces,
each equipped with a scalar inner product 〈·, ·〉 and its induced norm ‖ · ‖. Let
A : X → Y be a linear operator and A∗ : Y → X be the adjoint of A. Let x0 be a
given vector in X . Consider the following constrained least-squares problem:

(2.1)

min
1

2
〈x− x0, x− x0〉

s.t. Ax = b,

x ∈ Q,

where b ∈ Y and Q is a closed convex cone in X . In the literature, problem (2.1) is
also known as the best approximation problem in Hilbert space. For a survey on the
latter, see [36]. Let D ⊆ X be a closed convex set. For any x ∈ X , let ΠD(x) denote
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INVERSE QUADRATIC EIGENVALUE PROBLEMS 2535

the metric projection of x onto D; i.e., ΠD(x) is the unique optimal solution to the
following convex programming problem:

min
1

2
〈z − x, z − x〉

s.t. z ∈ D.

Then, the dual of problem (2.1) (cf. Rockafellar and Wets [44]) has the following form:

(2.2)
max −θ(y)

s.t. y ∈ Y,

where θ : Y → R is given by

(2.3) θ(y) :=
1

2
‖x0 + A∗y‖2 − 1

2
‖x0 + A∗y − ΠQ(x0 + A∗y)‖2 − 〈b, y〉 − 1

2
‖x0‖2.

Recall that the generalized Slater condition is said to hold for the convex opti-
mization problem (2.1) if

(2.4)

{
A : X → Y is onto,

∃ x̄ ∈ X such that Ax̄ = b, x̄ ∈ int (Q) ,

where “int” denotes the topological interior of a given set. The following result is
well known in the classical duality theory for convex programming [43, Theorems 17
and 18].

Proposition 2.1. Under the generalized Slater condition (2.4), the following
hold:

(i) There exists at least one ȳ ∈ Y that solves the dual problem (2.2). The unique
solution to the original problem (2.1) is given by

(2.5) x̄ = ΠQ(x0 + A∗ȳ).

(ii) For every real number τ , the level set {y ∈ Y : θ(y) ≤ τ} is closed, bounded,
and convex.

For more recent discussions about the above duality theory for the constrained
least-squares problem (2.1) and its extensions, see [10, 30, 37].

Since Q is assumed to be a closed convex cone, by [54], we know that the function
θ defined by (2.3) takes the following form:

(2.6) θ(y) =
1

2
‖ΠQ(x0 + A∗y)‖2 − 〈b, y〉 − 1

2
‖x0‖2, y ∈ Y.

From [54] we also know that θ is a continuously differentiable convex function and
that its gradient at y ∈ Y is given by

∇θ(y) = AΠQ(x0 + A∗y) − b.

Furthermore, since ΠQ(·) is globally Lipschitz continuous with modulus 1, ∇θ(·) is
globally Lipschitz continuous. Therefore, if the Slater condition (2.4) holds, then
one may use any gradient-based method, such as the steepest descent method or
quasi-Newton methods (e.g., the BFGS method suggested by Malick [30]), to find an
optimal solution y∗ to the dual problem (2.2) first and then use (2.5) to get an optimal
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2536 ZHENG-JIAN BAI, DELIN CHU, AND DEFENG SUN

solution to problem (2.1). This is exactly the dual approach outlined by Rockafellar in
[43, page 4] for general convex optimization problems and tailored to the constrained
least-squares problem (2.1). Since in general ΠQ(·) is not continuously differentiable,
θ(·) is not twice differentiable. So we cannot directly use the Newton method to solve
(2.2); i.e.,

(2.7)
min θ(y)

s.t. y ∈ Y.

Fortunately, we may apply Clarke’s Jacobian-based Newton method developed in
the last two decades for solving locally Lipschitz equations [24, 39]. The success of
using Clarke’s Jacobian-based Newton method to solve the nearest correlation matrix
problem in Qi and Sun [37] inspires us to explore this idea further.

Let Z be an arbitrary finite dimensional real vector space. Let O be an open set
in Y and let Ξ : O ⊆ Y → Z be a locally Lipschitz continuous function on the open
set O. Rademacher’s theorem [44, Chapter 9.J] says that Ξ is almost everywhere
Fréchet differentiable in O. We denote by OΞ the set of points in O where Ξ is
Fréchet differentiable. Let Ξ′(y) denote the Jacobian of Ξ at y ∈ OΞ. Then Clarke’s
generalized Jacobian of Ξ at y ∈ O is defined by [13]

∂Ξ(y) := conv{∂BΞ(y)},

where “conv” denotes the convex hull and the Bouligand subdifferential ∂BΞ(y) is
defined by Qi in [38] as

∂BΞ(y) :=

{
V : V = lim

j→∞
Ξ′(yj), yj → y, yj ∈ OΞ

}
.

Suppose that F : O ⊆ Y → Y is a locally Lipschitz continuous function on the
open set O. Let y0 be an arbitrary point in O. Then Clarke’s Jacobian-based Newton
method for solving the locally Lipschitz equation F (y) = 0 can be described by

(2.8) yj+1 = yj − V −1
j F (yj), Vj ∈ ∂F (yj), j = 0, 1, 2, . . . .

In general, the above iterative method does not converge even if {‖V −1
j ‖} is uniformly

bounded and y0 is arbitrarily close to a given solution of F (y) = 0 (see [24]). Kummer
in [24] proposed a general condition guaranteeing the superlinear convergence of (2.8),
which generalized Kojima and Shindo’s condition for superlinear (quadratic) conver-
gence of the Newton method for piecewise smooth equations [23]. Kummer’s result
was largely unnoticed until Qi and Sun in [39] published their now well-known work
by showing that the iteration sequence generated by (2.8) can converge superlinearly
if F is a semismooth function.

The concept of semismoothness was introduced by Mifflin [32] for functionals. In
order to study the convergence of the iterative method (2.8), Qi and Sun [39] extended
the definition of semismoothness to vector-valued functions. The following definition
of semismoothness is convenient to use.

Definition 2.2. Let Ξ : O ⊆ Y → Z be a locally Lipschitz continuous function
on the open set O. We say that Ξ is semismooth at a point y ∈ O if

(i) Ξ is directionally differentiable at y, and
(ii) for any x → y and V ∈ ∂Ξ(x),

(2.9) Ξ(x) − Ξ(y) − V (x− y) = o(‖x− y‖).
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The function Ξ : O ⊆ Y → Z is said to be strongly semismooth at a point y ∈ O if F
is semismooth at y, and for any x → y and V ∈ ∂Ξ(x),

(2.10) Ξ(x) − Ξ(y) − V (x− y) = O(‖x− y‖2).

The following convergence result is established in [39, Theorem 3.2], while the
result on superlinear convergence can also be found in [24, Proposition 3].

Proposition 2.3. Let F : O ⊆ Y → Y be a locally Lipschitz continuous function
on the open set O. Let ȳ ∈ O be such that F (ȳ) = 0. Assume that F is semismooth
at ȳ and that every element in ∂F (ȳ) is nonsingular. Then every sequence generated
by (2.8) converges to ȳ superlinearly provided that the starting point y0 is sufficiently
close to ȳ. Moreover, if F is strongly semismooth at ȳ, the rate of convergence is
quadratic.

Now, we consider the following equation:

(2.11) F (y) := ∇θ(y) = AΠQ(x0 + A∗y) − b = 0, y ∈ Y.

We have already shown that F is a globally Lipschitz continuous mapping, and thus
∂F (y) is well defined everywhere in Y. In order to apply Clarke’s Jacobian-based
Newton method (2.8) to find a solution of (2.11), we need to assume that the two
conditions imposed in Proposition 2.3 are valid. Certainly, the (strong) semismooth-
ness of F at ȳ follows easily if the metric projector ΠQ(·) is (strongly) semismooth
at x0 + A∗ȳ. This means that if one knows in advance that ΠQ(·) is (strongly)
semismooth everywhere in Y (as is the case for the IQEP discussed in this paper),
then there is no need to be concerned about the semismoothness assumption on F .
However, the second condition, i.e., the nonsingularity assumption on the generalized
Jacobian ∂F (ȳ), needs more elaboration. We shall discuss this issue in the remaining
part of this section.

Let F : Y → Y be defined by (2.11). The next proposition on Clarke’s Jacobian
of F follows easily from [13, page 75].

Proposition 2.4. Let ȳ ∈ Y and x̄ := x0 + A∗ȳ. Then, for any d ∈ Y, it holds
that

(2.12) ∂F (ȳ)d ⊆ A ∂ΠQ(x̄)A∗d.

Proposition 2.4 relates the Jacobian of F to the Jacobian of the metric projector
ΠQ(·). Note, however, that (2.12) does not mean that ∂F (ȳ) ⊆ A ∂ΠQ(x̄)A∗. For the
metric projector, we have the following result from [31, Proposition 1].

Lemma 2.5. Let D ⊆ X be a closed convex set. Then, for any x ∈ X and
V ∈ ∂ΠD(x),

(i) V is self-adjoint,
(ii) 〈d, V d〉 ≥ 0 for all d ∈ X ,
(iii) 〈V d, d− V d〉 ≥ 0 for all d ∈ X .
Let D ⊆ X be a closed convex set. For any x ∈ X , denote

dist(x,D) := inf{‖x− d‖ : d ∈ D}.

The tangent cone of D at a point x ∈ D, which we denote by TD(x), consisting of all
tangent vectors of D at x, is defined by (cf. [9, section 2.2.4])

(2.13) TD(x) := {d ∈ X : dist(x + td,D) = o(t), t ≥ 0}.
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2538 ZHENG-JIAN BAI, DELIN CHU, AND DEFENG SUN

For any x ∈ D, we denote by lin (TD(x)) the lineality space of TD(x), i.e., the largest
linear space in TD(x).

The following definition of constraint nondegeneracy is adapted from the works of
Robinson, who defined it for general optimization problems and variational inequali-
ties [40, 41, 42].

Definition 2.6. We say that a feasible point x to problem (2.1) is constraint
nondegenerate if

(2.14)

(
A
I

)
X +

(
0

lin(TQ(x))

)
=

(
Y
X

)
or, equivalently, if

(2.15) A lin (TQ(x)) = Y.

The constraint nondegenerate condition (2.14) in its general form is extensively
used by Bonnans and Shapiro in [9] for perturbation analysis of optimization prob-
lems. In the context of semidefinite programming, condition (2.14) reduces to the
primal nondegenerate condition proposed by Alizadeh, Haeberly, and Overton [1].
For the conventional nonlinear programming problem with finitely many equality and
inequality constraints, the constraint nondegenerate condition is equivalent to the
well-known linear independence constraint qualification [40, 46].

Definition 2.7. Let D ⊆ X be a closed convex set. We say that the metric
projector ΠD(·) is Jacobian amicable at x ∈ X if, for any V ∈ ∂ΠD(x) and d ∈ X
such that V d = 0, it holds that

d ∈ (lin (TD(x+)))
⊥
,

where x+ := ΠD(x) and (lin (TD(x+)))
⊥

is defined by

(lin (TD(x+)))
⊥

:= {d ∈ X : 〈d, h〉 = 0 ∀h ∈ lin (TD(x+))}.

We say that ΠD(·) is Jacobian amicable if it is Jacobian amicable at every point in X .
Now, we are ready to state our result on the nonsingularity of Clarke’s Jacobian

of the mapping F defined by (2.11).
Proposition 2.8. Let ȳ ∈ Y be such that F (ȳ) = 0. Let x̄ := x0 + A∗ȳ and

x̄+ := ΠQ(x̄). Assume that the constraint nondegenerate condition (2.15) holds at
x̄+ and that ΠQ(·) is Jacobian amicable at x̄. Then every element in A∂ΠQ(x̄)A∗ is
self-adjoint and positive definite.

Proof. Let V be an arbitrary element in A∂ΠQ(x̄)A∗. Then, there exists an
element W ∈ ∂ΠQ(x̄) such that

V = AWA∗.

Since, by Lemma 2.5, W is self-adjoint and positive semidefinite, we know that V is
also self-adjoint and positive semidefinite.

Next, we show the positive definiteness of V . Let d ∈ Y be such that V d = 0.
Then, by (iii) of Lemma 2.5, we obtain that

0 = 〈d, V d〉 = 〈d,AWA∗d〉 = 〈A∗d,WA∗d〉 ≥ 〈WA∗d,WA∗d〉,

which implies

WA∗d = 0.
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Therefore, by the assumption that ΠQ(·) is Jacobian amicable at x̄, we know that

A∗d ∈ (lin (TQ(x̄+)))
⊥
.

Since the constraint nondegenerate condition (2.15) holds at x̄+, there exists a vector
h ∈ lin (TQ(x̄+)) such that Ah = d. Hence, since A∗d ∈ (lin (TQ(x̄+)))⊥ and h ∈
lin (TQ(x̄+)), it holds that

〈d, d〉 = 〈d,Ah〉 = 〈A∗d, h〉 = 0.

Thus d = 0. This, together with the fact that V is self-adjoint and positive semidefi-
nite, shows that V is self-adjoint and positive definite.

Proposition 2.8 motivates us to define the following modified version of the Jaco-
bian-based Newton method (2.8) to solve (2.11):
(2.16)
yj+1 = yj − V −1

j F (yj), Vj := AWjA∗, Wj ∈ ∂ΠQ(x0 + A∗yj), j = 0, 1, 2, . . . ,

where y0 ∈ Y is an initial point.
By Proposition 2.8, we can obtain the following convergence results for the iter-

ative method (2.16) in a way similar to that of Proposition 2.3. We include a brief
proof for the sake of completeness.

Proposition 2.9. Let ȳ ∈ Y be such that F (ȳ) = 0. Let x̄ := x0 + A∗ȳ and
x̄+ := ΠQ(x̄). Assume that the constraint nondegenerate condition (2.15) holds at x̄+,
ΠQ(·) is semismooth at x̄, and ΠQ(·) is Jacobian amicable at x̄. Then every sequence
generated by (2.16) converges to ȳ superlinearly provided that the starting point y0 is
sufficiently close to ȳ. Moreover, if ΠQ(·) is strongly semismooth at x̄, the rate of
convergence is quadratic.

Proof. Since, by Proposition 2.8, every element in A∂ΠQ(x̄)A∗ is positive definite,
we know from the basic properties of ∂ΠQ(·) (cf. [13, Proposition 2.6.2]) that there
exist a constant c > 0 and an open neighborhood N of ȳ such that for any y ∈ N and
W ∈ ∂ΠQ(x0 + A∗y), AWA∗ is positive definite and satisfies

(2.17) ‖ (AWA∗)
−1 ‖ ≤ c.

By using (2.9) in Definition 2.2, we obtain for any y ∈ N and W ∈ ∂ΠQ(x0+A∗y)
with y → ȳ that

(2.18) ‖ΠQ(x0 +A∗y)−ΠQ(x̄)−W (A∗y−A∗ȳ)‖ = o(‖A∗(y− ȳ)‖) = o(‖(y− ȳ)‖),

which implies that for any y ∈ N (shrinking N if necessary) and W ∈ ∂ΠQ(x0 +A∗y)
we have

(2.19) ‖ΠQ(x0 + A∗y) − ΠQ(x̄) −W (A∗y −A∗ȳ)‖ ≤ (2c‖A‖)−1 ‖y − ȳ‖.

Then from (2.16), (2.17), and (2.19), we know that for any yj ∈ N , Wj ∈ ∂ΠQ(x0 +
A∗yj), and Vj = AWjA∗,

(2.20)

‖yj+1 − ȳ‖ = ‖yj − ȳ − V −1
j F (yj)‖

= ‖V −1
j [Vj(y

j − ȳ) − F (yj) + F (ȳ)]‖
≤ c‖F (yj) − F (ȳ) − Vj(y

j − ȳ)‖
≤ c‖A‖‖ΠQ(x0 + A∗yj) − ΠQ(x̄) −Wj(A∗yj −A∗ȳ)‖

≤ 1

2
‖yj − ȳ‖.

D
ow

nl
oa

de
d 

12
/3

0/
12

 to
 1

39
.1

84
.3

0.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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This shows that once y0 ∈ N , the whole iteration sequence {yj} converges to ȳ linearly.
The superlinear convergence of {yj} follows from (2.18) and the second inequality in
(2.20).

If ΠQ(·) is strongly semismooth at x̄, then by repeating the above process and us-
ing (2.10) in Definition 2.2 we can easily prove the quadratic convergence of {yj}.

In Proposition 2.9, besides the well-studied constraint nondegenerate condition
(2.15) at x̄+ in the literature, we also assume that ΠQ(·) is Jacobian amicable at
x̄, which may hold for many interesting closed convex cones. Here we discuss the
Jacobian amicability of ΠQ(·) only for the case that Q = Sn

+, the cone of symmetric
and positive semidefinite matrices in Sn.

Let A ∈ Sn. Then A admits the following spectral decomposition:

(2.21) A = PΣPT ,

where

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1

. . .

σk1

0
. . .

0
σk1+k2+1

. . .

σn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with σi > 0 (i = 1, . . . , k1) and σi < 0 (i = k1 + k2 + 1, . . . , n) is the diagonal matrix
of eigenvalues of A, and

P =
[
P1 P2 P3

]
with P1 ∈ R

n×k1 , P2 ∈ R
n×k2 , and P3 ∈ R

n×(n−k1−k2) is a corresponding orthogonal
matrix of orthonormal eigenvectors. Under the Frobenius inner product, the projec-
tion A+ := ΠSn

+
(A) of a matrix A ∈ Sn onto the cone Sn

+ has an analytic formula
[21, 49]

A+ = P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1

. . .

σk1

0
. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
PT .

Define the matrix U ∈ R
k1×(n−k1−k2) with entries

Uij :=
max{σi, 0} + max{σk1+k2+j , 0}

|σi| + |σk1+k2+j |
, i = 1, . . . , k1, j = 1, . . . , n− k1 − k2.

Bonnans, Cominetti, and Shapiro [8] showed that ΠSn
+
(·) is directionally differentiable

everywhere in Sn. For any H ∈ Sn, D. Sun and J. Sun [47] gave the following explicit
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formula for Π′
Sn

+
(A;H):

(2.22) Π′
Sn

+
(A;H) = P

⎡⎢⎢⎣
PT

1 HP1 PT
1 HP2 U ◦ PT

1 HP3

PT
2 HP1 ΠSk2

+

(
PT

2 HP2

)
0

PT
3 HP1 ◦ UT 0 0

⎤⎥⎥⎦PT ,

where ◦ denotes the Hadamard product. More importantly, Sun and Sun proved that
ΠSn

+
is a strongly semismooth matrix-valued function [47]. When A is nonsingular,

i.e., k2 = 0, ΠSn
+
(·) is continuously differentiable around A, and the formula (2.22)

reduces to the classical result of Löwner [28]. See Donoghue [16] and Bhatia [7] for
detailed discussions on the latter and Chen, Qi, and Tseng [11] for a generalization.

From (2.13) and (2.22), one can obtain Arnold’s well-known characterization of
the tangent cone of Sn

+ at A+ [2],

TSn
+
(A+) = {B ∈ Sn : B = Π′

Sn
+
(A+;B)}

=
{
B ∈ Sn :

[
P2 P3

]T
B
[
P2 P3

]
� 0

}
,

and its lineality space,

(2.23) lin
(
TSn

+
(A+)

)
=
{
B ∈ Sn :

[
P2 P3

]T
B
[
P2 P3

]
= 0

}
.

Let Φ(·) := Π′
Sn

+
(A; ·). It is proved in [35, Lemma 11] that

(2.24) ∂BΠSn
+
(A) = ∂BΦ(0)

and that the operator W : Sn → Sn defined by

(2.25) W (H) = P

⎡⎢⎣ PT
1 HP1 PT

1 HP2 U ◦ PT
1 HP3

PT
2 HP1 0 0

PT
3 HP1 ◦ UT 0 0

⎤⎥⎦PT ∀H ∈ Sn

is an element in ∂BΠSn
+
(A).

The next proposition shows that ΠSn
+
(·) is Jacobian amicable at A.

Proposition 2.10. The projection operator ΠSn
+
(·) is Jacobian amicable every-

where in Sn.

Proof. Let A ∈ Sn admit the spectral decomposition (2.21). Let W ∈ ∂ΠSn
+
(A)

and H ∈ Sn be such that W (H) = 0. Then from (2.22), (2.24), and the definition of
the matrix U , we obtain

PT
1 HP1 = 0, PT

1 HP2 = 0, and PT
1 HP3 = 0,

which, together with (2.23), implies

H ∈
(
lin

(
TSn

+
(A+)

))⊥
.

Since A is chosen arbitrarily, we know from the definition that ΠSn
+
(·) is Jacobian

amicable everywhere in Sn.
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3. Dual reformulations. In this section, we will consider the dual problem of
the IQEP, i.e., problem (1.6). As mentioned in section 1, we need only focus on the
IQEP under Assumption 1.2, i.e., Λ is nonsingular. Denote

M :=

[
M1 M2

MT
2 M4

]
, C :=

[
C1 C2

CT
2 C4

]
, K :=

[
K1 K2

KT
2 K4

]
,

where M1, C1,K1 ∈ Sk, M2, C2,K2 ∈ R
k×(n−k), and M4, C4,K4 ∈ S(n−k). Let

S := RΛR−1. Then problem (1.6) can be written equivalently as

(3.1)

min
1

2
‖M −Ma‖2 +

1

2
‖C − Ca‖2 +

1

2
‖K −Ka‖2

s.t.
1

√
c1

(Λ2)T (RTM1R) +
1

√
c2

ΛT (RTC1R) + (RTK1R) = 0,

1
√
c1

(S2)TM2 +
1

√
c2

STC2 + K2 = 0,

(M,C,K) ∈ Ω.

Let Ω0 be equipped with the natural inner product〈
(M,C,K), (M̃, C̃, K̃)

〉
:= 〈M, M̃〉 + 〈C, C̃〉 + 〈K, K̃〉, (M,C,K), (M̃, C̃, K̃) ∈ Ω0,

and its induced norm ‖ · ‖. Define

H(M,C,K)

:=
1

√
c1

(Λ2)T
(
RTM1R

)
+

1
√
c2

ΛT
(
RTC1R

)
+
(
RTK1R

)
, (M,C,K) ∈ Ω0,

(3.2)

G(M,C,K) :=
1

√
c1

(S2)TM2 +
1

√
c2

STC2 + K2, (M,C,K) ∈ Ω0,(3.3)

and

(3.4) A(M,C,K) := (H(M,C,K),G(M,C,K)) , (M,C,K) ∈ Ω0.

Then, problem (3.1), which is a special case of problem (2.1), becomes

(3.5)

min
1

2
‖(M,C,K) − (Ma, Ca,Ka)‖2

s.t. A(M,C,K) = 0,

(M,C,K) ∈ Ω.

Let

(3.6) R(H) := {H(M,C,K) : (M,C,K) ∈ Ω0}.

Obviously, the linear operator H : Ω0 → R(H) defined in (3.2) is surjective. The
adjoint H∗ : R(H) → Ω0 of H is given by

(3.7) H∗(Y ) := (H∗
1(Y ),H∗

2(Y ),H∗
3(Y )) , Y ∈ R(H),
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where for each Y ∈ R(H),

H∗
1(Y ) =

1

2
√
c1

[
RΛ2Y RT + (RΛ2Y RT )T 0

0 0

]
,

H∗
2(Y ) =

1

2
√
c2

[
RΛY RT + (RΛY RT )T 0

0 0

]
,

H∗
3(Y ) =

1

2

[
RY RT + (RY RT )T 0

0 0

]
.

Similarly, G : Ω0 → R
k×(n−k) defined in (3.3) is also surjective, and its adjoint

G∗ : R
k×(n−k) → Ω0 is given by

(3.8) G∗(Z) := (G∗
1 (Z),G∗

2 (Z),G∗
3 (Z)),

where for each Z ∈ R
k×(n−k),

G∗
1 (Z) =

1

2
√
c1

[
0 S2Z

(S2Z)T 0

]
,

G∗
2 (Z) =

1

2
√
c2

[
0 SZ

(SZ)T 0

]
,

G∗
3 (Z) =

1

2

[
0 Z
ZT 0

]
.

Since both H : Ω0 → R(H) and G : Ω0 → R
k×(n−k) are surjective, the linear operator

A : Ω0 → R(H) × R
k×(n−k) defined by (3.4) is also surjective. The adjoint A∗ :

R(H) × R
k×(n−k) → Ω0 of A takes the following form:

A∗(Y,Z) := (A∗
1(Y,Z),A∗

2(Y,Z),A∗
3(Y,Z))(3.9)

= H∗(Y ) + G∗(Z), (Y,Z) ∈ R(H) × R
k×(n−k),

where for each (Y,Z) ∈ R(H)×R
k×(n−k), H∗(Y ) and G∗(Z) are defined by (3.7) and

(3.8), respectively. Define θ : R(H) × R
k×(n−k) → R by

(3.10) θ(Y,Z) :=
1

2
‖ΠΩ((Ma, Ca,Ka) + A∗(Y,Z))‖2 − 1

2
‖(Ma, Ca,Ka)‖2.

By (2.6) and (2.7), the dual of problem (3.5) is

(3.11)
min θ(Y,Z)

s.t. (Y,Z) ∈ R(H) × R
k×(n−k).

Since Λ is nonsingular, by Theorem 1.1, problem (1.6), or, equivalently, problem

(3.5), admits a strictly feasible solution; i.e., there exists a triplet (M̂, Ĉ, K̂) ∈ Ω0

such that A(M̂, Ĉ, K̂) = 0 and (M̂, Ĉ, K̂) ∈ int (Ω). Moreover, the linear operator
A : Ω0 → R(H) × R

k×(n−k) defined by problem (3.5) is surjective. Thus, for the
convex optimization problem (3.5), the generalized Slater condition (2.4) is satisfied.
Consequently, the following result follows directly from Proposition 2.1.

Proposition 3.1. There exists at least one pair (Y ,Z) ∈ R
k×k ×R

k×(n−k) that
solves the dual problem (3.11). The unique solution to the original problem (1.6) is
given by

(M,C,K) = ΠΩ

(
(Ma, Ca,Ka) + A∗(Y ,Z)

)
.
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Furthermore, for every real number τ , the level set

{(Y,Z) ∈ R
k×k × R

k×(n−k) : θ(Y,Z) ≤ τ}

is closed, bounded, and convex.
It is clear from Proposition 3.1 that we need only find a solution of the dual

problem (3.11) in order to obtain the unique solution of the original problem (1.6).
Remark 3.2. The operator H defined above is not necessarily surjective from Ω0

to R
k×k. To see this, we refer the reader to Proposition A.1 in Appendix A.
Next, we discuss the following simplified version of the IQEP:

(3.12)

min
1

2
‖(M,C,K) − (Ma, Ca,Ka)‖2

s.t. A(M,C,K) = 0,

(M,C,K) ∈ Ω0,

which admits an explicit optimal solution and has been considered by many authors;
for example, see [14, 19]. The dual of problem (3.12) is

(3.13)
min θ0(Y,Z)

s.t. (Y,Z) ∈ R(H) × R
k×(n−k),

where θ0 : R(H) × R
k×(n−k) → R is defined by

θ0(Y,Z) :=
1

2
‖ΠΩ0

((Ma, Ca,Ka) + A∗(Y,Z))‖2 − 1

2
‖(Ma, Ca,Ka)‖2.

Let (Y 0, Z0) ∈ R(H) × R
k×(n−k) be a solution to the dual problem (3.13). By

section 2, the solution (M0, C0,K0) to problem (3.12) is given by
(3.14)

(M0, C0,K0) = ΠΩ0
((Ma, Ca,Ka) + A∗(Y 0, Z0)) = (Ma, Ca,Ka) + A∗(Y 0, Z0).

Although (Y 0, Z0) may not be a solution to the dual problem (3.11) as M0 and K0

above may fail to be positive semidefinite, it may be a good guess at the solution of
problem (3.11). Hence, we will use it as the starting point to our Newton method to
be proposed in the next section.

Now we discuss the computation of (Y 0, Z0) based on (3.13). Since (Y 0, Z0) ∈
R(H) × R

k×(n−k) satisfies

∇θ0(Y
0, Z0) = A

(
(Ma, Ca,Ka) + A∗(Y 0, Z0)

)
= 0,

thus, by (3.4), (Y 0, Z0) ∈ R(H) × R
k×(n−k) is a solution of

(3.15) (H ((Ma, Ca,Ka) + A∗(Y,Z)) , G ((Ma, Ca,Ka) + A∗(Y,Z))) = 0.

Therefore, we can obtain (Y 0, Z0) by solving (3.15). Since the linear operator A :
Ω0 → R(H)×R

k×(n−k) defined by (3.4) is surjective, AA∗ is self-adjoint and positive
definite. This implies that (Y 0, Z0) is the unique solution to (3.15).

By (3.7), (3.8), and (3.9), we obtain that for any (Y,Z) ∈ R(H) × R
k×(n−k),

H((Ma, Ca,Ka) + A∗(Y,Z)) = H(Ma, Ca,Ka) + H(H∗(Y ))

= H(Ma, Ca,Ka) + U1Y RTR

+
1

2

(
1

c1
(Λ2)TRTRY T (Λ2)TRTR +

1

c2
ΛTRTRY TΛTRTR + RTRY TRTR
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and

G((Ma, Ca,Ka) + A∗(Y,Z)) = G(Ma, Ca,Ka) + G(G∗(Z)) = G(Ma, Ca,Ka) + U2Z,

where

(3.16) U1 :=
1

2

(
1

c1
(Λ2)TRTRΛ2 +

1

c2
ΛTRTRΛ + RTR

)
and

(3.17) U2 :=
1

2

(
1

c1
(S2)TS2 +

1

c2
STS + I

)
.

Since the linear operator H : Ω0 → R(H) defined by (3.2) is surjective, HH∗ is self-
adjoint and positive definite. So we may use the conjugate gradient (CG) method1

[20, Algorithm 10.2.1] to solve the first equation of (3.15), i.e.,

−H(Ma, Ca,Ka) = H(H∗(Y ))

= U1Y RTR +
1

2

(
1

c1
(Λ2)TRTRY T (Λ2)TRTR +

1

c2
ΛTRTRY TΛTRTR + RTRY TRTR

)
,

(3.18)

to get Y 0 ∈ R(H). The required total computational cost of computing Y 0 is O(k5)
flops (the CG method needs at most k2 steps with each step costing O(k3) flops).
The solution to the second equation of (3.15), i.e,

−G(Ma, Ca,Ka) = G(G∗(Z)) = U2Z,

is given explicitly by

Z0 = −U−1
2 G(Ma, Ca,Ka).

We need O(nk2) flops to compute Z0. The optimal solution to problem (3.12) can
then be obtained via (3.14).

Remark 3.3. The above arguments imply that if we drop the positive semidefi-
niteness requirement on M and K, we can obtain the solution to problem (3.12) with
a total cost of O(nk2+k5). This cost amount is small as in practice k � n. It is noted
that in our approach the presence of the weighting parameters c1 and c2 presents no
difficulty at all.

4. Algorithm and convergence analysis. In this section, we shall first present
a globalized version of Clarke’s Jacobian-based Newton method (2.16) for solving the
dual problem (3.11) with θ : R(H) × R

k×(n−k) → R being defined by (3.10).
Let F : R(H) × R

k×(n−k) → R(H) × R
k×(n−k) be defined by

F (Y,Z) = ∇θ(Y,Z) = AΠΩ ((Ma, Ca,Ka) + A∗(Y,Z)) , (Y,Z) ∈ R(H)×R
k×(n−k),

where A : Ω0 → R(H) × R
k×(n−k) is defined by (3.4) and A∗ is the adjoint of A.

1Strictly speaking, we should apply the CG method to the equivalent equation form Ax = b
of (3.18), where A ∈ Sm is positive definite, b ∈ R

m, and m is the dimension of R(H). In the
implementation of CG methods there is no need to form A and b explicitly. One may also consider the
preconditioned CG method to solve (3.18). However, caution should be taken as the preconditioned
CG method may not guarantee that the generated matrices Y stay in R(H).
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Algorithm 4.1 (Newton method).

Step 0. Given (Y 0, Z0) ∈ R(H) × R
k×(n−k), η ∈ (0, 1), ρ, δ ∈ (0, 1/2). j := 0.

Step 1. Select an element Wj ∈ ∂ΠΩ ((Ma, Ca,Ka) + A∗(Y j , Zj)) and let Vj :=
AWjA∗. Apply the conjugate gradient method [20, Algorithm 10.2.1] to find
an approximate solution (ΔY j ,ΔZj) ∈ R(H) × R

k×(n−k) to

(4.1) F (Y j , Zj) + Vj(ΔY,ΔZ) = 0

such that

(4.2) ‖F (Y j , Zj) + Vj(ΔY j ,ΔZj)‖ ≤ ηj‖F (Y j , Zj)‖

and

(4.3)
〈
F (Y j , Zj), (ΔY j ,ΔZj)

〉
≤ −ηj

〈
(ΔY j ,ΔZj), (ΔY j ,ΔZj)

〉
,

where ηj := min{η, ‖F (Y j , Zj)‖}. If (4.2) and (4.3) are not achievable, let

(ΔY j ,ΔZj) := −F (Y j , Zj) = −AΠΩ

(
(Ma, Ca,Ka) + A∗(Y j , Zj)

)
.

Step 2. Let mj be the smallest nonnegative integer m such that

θ
(
(Y j , Zj) + ρm(ΔY j ,ΔZj)

)
− θ(Y j , Zj) ≤ δρm

〈
F (Y j , Zj), (ΔY j ,ΔZj)

〉
.

Set

(Y j+1, Zj+1) := (Y j , Zj) + ρmj (ΔY j ,ΔZj).

Step 3. Replace j by j + 1 and go to Step 1.
Next we make several comments on the above algorithm before we present our

convergence analysis.
• The starting point. One may choose an arbitrary starting point (Y 0, Z0) as

long as (Y 0, Z0) ∈ R(H) × R
k×(n−k). In numerical computation, we recom-

mend choosing the solution to (3.15) as (Y 0, Z0).
• The generalized Jacobian. In Step 1 of Algorithm 4.1, we need to select an

element

Wj ∈ ∂ΠΩ

(
(Ma, Ca,Ka) + A∗(Y j , Zj)

)
at the jth iteration. This can be computed according to (2.25) once the spec-
tral decompositions of Ma + A∗

1(Y
j , Zj) and Ka + A∗

3(Y
j , Zj) are available.

• The conjugate gradient method. In Step 1 of Algorithm 4.1, if we apply the
CG method [20, Algorithm 10.2.1] to (4.1), we can always keep (ΔY j ,ΔZj) ∈
R(H)×R

k×(n−k) when the initial guess is in R(H)×R
k×(n−k). One may also

consider the preconditioned CG method to solve (3.18) as long as the precon-
ditioned CG method can guarantee that (ΔY j ,ΔZj) ∈ R(H) × R

k×(n−k).
The next theorem is our global convergence result.
Theorem 4.2. For any (Y 0, Z0) ∈ R(H) × R

k×(n−k), Algorithm 4.1 generates
an infinite sequence {(Y j , Zj)} with the properties that for each j ≥ 0, (Y j , Zj) ∈
R(H) × R

k×(n−k), {(Y j , Zj)} is bounded, and any accumulation point of {(Y j , Zj)}
is a solution to problem (3.11).

D
ow

nl
oa

de
d 

12
/3

0/
12

 to
 1

39
.1

84
.3

0.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVERSE QUADRATIC EIGENVALUE PROBLEMS 2547

Proof. Since, by Step 1 of Algorithm 4.1, for any j ≥ 0, (ΔY j ,ΔZj) is always
a descent direction of θ(·) at (Y j , Zj) and (ΔY j ,ΔZj) ∈ R(H) × R

k×(n−k), Algo-
rithm 4.1 is well defined. Then an infinite sequence {(Y j , Zj)} is generated and for
each j ≥ 0, (Y j , Zj) ∈ R(H) × R

k×(n−k).
From Theorem 1.1 we know that problem (3.1) has a strictly feasible solution.

This, together with the surjectivity of A : Ω0 → R(H) × R
k×(n−k), implies that the

generalized Slater condition (2.4) holds for problem (3.1). Thus, by Proposition 3.1,
the level set

{(Y,Z) ∈ R(H) × R
k×(n−k) : θ(Y,Z) ≤ θ(Y 0, Z0)}

is bounded. Therefore, the sequence {(Y j , Zj)} is bounded. Furthermore, by employ-
ing standard convergence analysis of optimization methods (cf. [15, Theorem 6.3.3]),
we can conclude that

lim
j→∞

∇θ(Y j , Zj) = 0,

which, together with the convexity of θ(·) and the boundedness of {(Y j , Zj)}, implies
that any accumulation point of {(Y j , Zj)} is a solution to (3.11).

Theorem 4.2 shows that our algorithm converges globally. For discussions on the
rate of convergence, we need the constraint nondegenerate condition (2.15) at the
solution (M,C,K) of problem (1.6). In our case, this condition can be written as

(4.4) A
(
lin

(
TSn

+
(M)

)
,Sn, lin

(
TSn

+
(K)

))
= R(H) × R

k×(n−k).

Proposition 4.3. Condition (4.4) holds if the solution (M,C,K) ∈ Ω0 to
problem (1.6) satisfies K � 0 or M � 0.

Proof. Since

lin
(
TSn

+
(K)

)
= Sn if K � 0,

lin
(
TSn

+
(M)

)
= Sn if M � 0,

the proof of Proposition A.1 in Appendix A gives that

H
(
lin

(
TSn

+
(M)

)
,Sn,Sn

)
= R(H)

and

G
(
lin

(
TSn

+
(M)

)
,Sn,Sn

)
= R

k×(n−k),

and a similar discussion also yields that

H
(
Sn,Sn, lin

(
TSn

+
(K)

))
= R(H)

and

G
(
Sn,Sn, lin

(
TSn

+
(M)

))
= R

k×(n−k),

Proposition 4.3 follows readily.
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Another interesting special case that guarantees condition (4.4) is Λ = τI for
some τ �= 0. This can be seen easily because in this case, for the solution (M,C,K)
to problem (1.6), we have

H
(
lin

(
TSn

+
(M)

)
,Sn, lin

(
TSn

+
(K)

))
= Sk = R(H)

and

G
(
lin

(
TSn

+
(M)

)
,Sn, lin

(
TSn

+
(K)

))
= R

k×(n−k) = R(G),

where R(G) denotes the range of the linear operator G : Ω0 → R
k×(n−k) defined by

(3.3).
We are now ready to show the quadratic convergence of Algorithm 4.1.
Theorem 4.4. Let (Y ,Z) be an accumulation point of the infinite sequence

{(Y j , Zj)} generated by Algorithm 4.1 for solving the dual problem (3.11). Then let
(M,C,K) be the solution to problem (1.6). Assume that the constraint nondegenerate
condition (4.4) holds at (M,C,K). Then the whole sequence {(Y j , Zj)} converges to
(Y ,Z) quadratically.

Proof. By Proposition 3.1, we know

(M,C,K) := ΠΩ

(
(Ma, Ca,Ka) + A∗(Y ,Z)

)
.

By Theorem 4.2, the whole sequence {(Y j , Zj)} is bounded and (Y ,Z) is a solution
of the dual problem (3.11) such that

F (Y ,Z) = ∇θ(Y ,Z) = 0.

From the constraint nondegenerate condition (4.4) and Propositions 2.8 and 2.10,
we know that any element V := AWA∗ with W ∈ ∂ΠΩ(M,C,K)) is self-adjoint and
positive definite. Then, by Proposition 2.4, any element in ∂F (Y ,Z) is also positive
definite. This, together with the convexity of θ, implies that (Y ,Z) is the unique
solution of (3.11). Consequently, by Theorem 4.2, the whole sequence {(Y j , Zj)}
converges to (Y ,Z). Thus, for all j sufficiently large, Vj is positive definite and
{‖V −1

j ‖} is uniformly bounded. Hence, for all j sufficiently large, the CG method

can find (ΔY j ,ΔZj) ∈ R(H)×R
k×(n−k) such that both (4.2) and (4.3) are satisfied.

Then, by Propositions 2.9 and 2.10, for all j sufficiently large,

‖(Y j , Zj) + (ΔY j ,ΔZj) − (Y ,Z)‖ ≤ O(‖(Y j , Zj) − (Y ,Z)‖2) + ηj‖V −1
j ‖‖F (Y j , Zj)‖

= O(‖(Y j , Zj) − (Y ,Z)‖2) + O(‖F (Y j , Zj)‖2)

= O(‖(Y j , Zj) − (Y ,Z)‖2),

(4.5)

where in the last inequality the global Lipschitz continuity of F was used. By using
(4.5) and the fact that {(Y j , Zj)} converges to (Y ,Z), we have for all j sufficiently
large that

(4.6) (Y j , Zj)−(Y ,Z) = −(ΔY j ,ΔZj)+O(‖(ΔY j ,ΔZj)‖2) and (ΔY j ,ΔZj) → 0.

For each j ≥ 0, let

rj := F (Y j , Zj) + Vj(ΔY j ,ΔZj) .

Then for all j sufficiently large,
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−
〈
F (Y j , Zj), (ΔY j ,ΔZj)

〉
=
〈
(ΔY j ,ΔZj), Vj(ΔY j ,ΔZj)

〉
−
〈
(ΔY j ,ΔZj), rj

〉
≥
〈
(ΔY j ,ΔZj), Vj(ΔY j ,ΔZj)

〉
− ‖(ΔY j ,ΔZj)‖‖rj‖

≥
〈
(ΔY j ,ΔZj), Vj(ΔY j ,ΔZj)

〉
− ηj‖(ΔY j ,ΔZj)‖‖F (Y j , Zj)‖

≥
〈
(ΔY j ,ΔZj), Vj(ΔY j ,ΔZj)

〉
− ‖(ΔY j ,ΔZj)‖‖F (Y j , Zj)‖2

=
〈
(ΔY j ,ΔZj), Vj(ΔY j ,ΔZj)

〉
− ‖(ΔY j ,ΔZj)‖‖F (Y j , Zj) − F (Y ,Z)‖2

≥
〈
(ΔY j ,ΔZj), Vj(ΔY j ,ΔZj)

〉
− ‖(ΔY j ,ΔZj)‖‖A‖2‖A∗‖2‖(Y j , Zj) − (Y ,Z)‖2,

which, together with (4.6) and the uniform positive definiteness of Vj , implies that
there exists a positive constant ρ̂ > 0 such that for all j sufficiently large we have

−
〈
F (Y j , Zj), (ΔY j ,ΔZj)

〉
≥ ρ̂‖(ΔY j ,ΔZj)‖2.

Then, since F is strongly semismooth at (Y ,Z) as ΠSn
+
(·) is strongly semismooth [47],

we know from [17, Theorem 3.3 and Remark 3.4] that for all j sufficiently large,

θ
(
(Y j , Zj) + (ΔY j ,ΔZj)

)
− θ(Y j , Zj) ≤ δ

〈
F (Y j , Zj), (ΔY j ,ΔZj)

〉
,

which implies that for all j sufficiently large,

(Y j+1, Zj+1) = (Y j , Zj) + (ΔY j ,ΔZj).

This, together with (4.5), completes the proof.
Theorems 4.2 and 4.4 present global and local convergence analysis of Algo-

rithm 4.1 for solving the IQEP under Assumption 1.2. In fact, our algorithm can
also be used to solve the IQEP of general matrix weights even if Assumption 1.2 fails
to hold. Without giving details, we briefly outline the way of doing so in Appendix B.

5. Numerical experiments. In this section, we report our numerical exper-
iments of Algorithm 4.1 for solving the IQEP (1.6) carried out in MATLAB 7.0.1

running on a PC Intel Pentium IV of 2.40 GHz CPU. In both of the following two
numerical examples, we randomly generate Λ ∈ R

k×k by using the built-in function
randn in MATLAB 7.0.1. The total number of complex-valued eigenvalues is chosen
to be around k/2. The matrix R ∈ R

k×k is obtained by applying the QR factorization
to a random generated n× k matrix X by using randn.

Example 5.1. Let M̂ , Ĉ, and K̂ be given by (1.7). Set

Ma := M̂ + τRM , Ca := Ĉ + τRC , Ka := K̂ + τRK ,

where RM , RC , and RK are n×n symmetric matrices with random entries uniformly
distributed between −1.0 and 1.0, and τ ∈ R is a perturbed parameter. We report our
numerical results for (a) k = 30, n = 100, 200, 500, 1000, 1500, 2000, and τ = 0.1, 1.0
and (b) k ≈ n/3, n = 100, 200, 300, 400, 450, and τ = 0.1, 1.0.

Example 5.2. The matrices GM and GK are random n × n correlation matri-
ces generated by MATLAB 7.0.1’s gallery (‘randcorr’,n), and the matrix GC is
a random n × n symmetric matrix with entries (GC)ij ∈ [−1, 1] and (GC)ii = 1.0
for i, j = 1, 2, . . . , n. Then Ma, Ca, and Ka are, respectively, obtained via per-
turbing

√
c1GM ,

√
c2GC , and GK by a random n × n symmetric matrix with en-

tries in [−τ, τ ], where τ = 0.1, 1.0. We report our numerical results for (a) k = 30,
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Table 1

Numerical results of Example 5.1(a).

k = 30, c1 = c2 = 1
τ n cputime It. Func. Res0. Res*. Tol.

0.1 100 01 m 26 s 18 24 1.2 × 102 5.4 × 10−10 3.9 × 10−11

200 04 m 39 s 14 15 3.2 × 102 9.0 × 10−10 3.9 × 10−11

500 21 m 16 s 11 12 1.8 × 103 6.1 × 10−9 1.3 × 10−10

1,000 44 m 13 s 9 10 4.2 × 103 9.3 × 10−8 1.1 × 10−9

1,500 08 h 49 m 11 s 7 8 9.0 × 103 1.9 × 10−6 1.6 × 10−8

2,000 05 h 24 m 37 s 9 10 1.4 × 104 5.0 × 10−6 3.3 × 10−8

1.0 100 40.6 s 10 11 1.2 × 103 1.9 × 10−9 2.7 × 10−11

200 01 m 37 s 9 11 3.7 × 103 1.8 × 10−6 1.3 × 10−8

500 09 m 03 s 10 12 1.4 × 104 7.0 × 10−7 2.0 × 10−9

1,000 01 h 09 m 50 s 10 11 4.5 × 104 1.7 × 10−5 2.4 × 10−8

1,500 08 h 12 m 53 s 14 18 6.7 × 104 3.9 × 10−5 3.6 × 10−8

2,000 08 h 54 m 57 s 10 12 1.0 × 105 8.0 × 10−5 5.7 × 10−8

k = 30, c1 = 10, and c2 = 0.1
τ n cputime It. Func. Res0. Res*. Tol.

0.1 100 35.5 s 9 10 7.7 × 101 5.1 × 10−9 2.8 × 10−10

200 04 m 18 s 9 10 2.8 × 102 1.7 × 10−6 5.1 × 10−8

500 20 m 14 s 7 8 1.4 × 103 5.4 × 10−7 7.3 × 10−9

1,000 53 m 30 s 8 9 3.7 × 103 1.8 × 10−6 1.3 × 10−8

1,500 05 h 50 m 22 s 10 11 6.0 × 103 7.9 × 10−6 3.7 × 10−8

2,000 05 h 22 m 25 s 9 10 8.1 × 103 1.3 × 10−6 4.8 × 10−9

1.0 100 36.4 s 6 7 1.3 × 103 1.3 × 10−6 9.4 × 10−9

200 03 m 10 s 7 8 3.7 × 103 5.1 × 10−8 1.9 × 10−10

500 19 m 33 s 8 9 1.2 × 104 5.3 × 10−6 7.8 × 10−9

1,000 02 h 02 m 35 s 10 11 2.8 × 104 8.9 × 10−7 6.6 × 10−10

1,500 04 h 52 m 15 s 11 14 6.9 × 104 6.7 × 10−7 3.3 × 10−10

2,000 12 h 30 m 15 s 11 12 8.9 × 104 3.2 × 10−5 1.2 × 10−8

n = 100, 200, 500, 1000, 1500, 2000, and τ = 0.1, 1.0 and (b) k ≈ n/3, n = 100, 200,
300, 400, 450, and τ = 0.1, 1.0.

In our numerical experiments, the initial point (Y 0, Z0) is chosen to be the solu-
tion to (3.15), and the stopping criterion is

Tol. :=
‖∇θ(Yk, Zk)‖

max
{

1,
∥∥( 1√

c1
Ma,

1√
c2
Ca,Ka)

∥∥} ≤ 10−7.

We set other parameters used in our algorithm as η = 10−6, ρ = 0.5, and δ =
10−4. Our numerical results are given in Tables 1–4, where It., Func., Res0., and
Res*. stand for the number of iterations, the number of function evaluations, and the
residuals ‖∇θ(·)‖ at the starting point (Y 0, Z0) and at the final iterate of our algorithm
(the largest number of iterations in CG is set to be max(5000, nk)), respectively. In
Algorithm 4.1, the major cost at the jth iteration is solving the linear system (4.1),
i.e., (

H
(
ΠΩ((Ma, Ca,Ka) + A∗(Y j , Zj)) + WjA∗(ΔY j ,ΔZj)

)
G
(
ΠΩ((Ma, Ca,Ka) + A∗(Y j , Zj)) + WjA∗(ΔY j ,ΔZj)

)) = 0,

where Wj ∈ ∂ΠΩ ((Ma, Ca,Ka) + A∗(Y j , Zj)). For better numerical performance,
instead of solving the above linear system directly, we apply the CG method to the
following preconditioned linear system [45, Chapter 9]:
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Table 2

Numerical results of Example 5.1(b).

k ≈ n/3, c1 = c2 = 1
τ n k cputime It. Func. Res0. Res*. Tol.

0.1 100 33 02 m 31 s 18 23 1.0 × 102 9.8 × 10−7 7.2 × 10−8

200 66 01 h 05 m 26 s 40 69 5.3 × 102 1.4 × 10−8 6.3 × 10−10

300 100 01 h 37 m 32 s 20 21 1.0 × 103 4.8 × 10−7 1.6 × 10−8

400 133 10 h 23 m 23 s 15 16 2.0 × 103 1.6 × 10−8 4.5 × 10−10

450 150 10 h 24 m 04 s 14 15 2.7 × 103 3.0 × 10−8 7.4 × 10−10

1.0 100 33 01 m 43 s 10 12 1.4 × 103 1.7 × 10−7 2.3 × 10−9

200 66 22 m 02 s 19 35 5.5 × 103 1.4 × 10−5 9.5 × 10−8

300 100 01 h 32 m 58 s 12 14 1.2 × 104 1.3 × 10−5 5.9 × 10−8

400 133 02 h 46 m 54 s 14 16 2.4 × 104 2.4 × 10−6 8.3 × 10−9

450 150 09 h 38 m 15 s 18 21 2.9 × 104 4.9 × 10−7 1.5 × 10−9

k ≈ n/3, c1 = 10, and c2 = 0.1
τ n k cputime It. Func. Res0. Res*. Tol.

0.1 100 33 46.1 s 9 11 7.5 × 101 2.6 × 10−8 1.4 × 10−9

200 66 42 m 42 s 13 15 3.6 × 102 1.8 × 10−6 5.8 × 10−8

300 100 02 h 24 m 23 s 17 20 1.1 × 103 2.9 × 10−7 6.5 × 10−9

400 133 04 h 38 m 42 s 10 11 1.8 × 103 2.4 × 10−6 4.0 × 10−8

450 150 12 h 23 m 44 s 13 14 2.2 × 103 5.8 × 10−7 8.8 × 10−9

1.0 100 33 02 m 29 s 10 11 1.5 × 103 2.5 × 10−8 1.8 × 10−10

200 66 23 m 26 s 10 11 5.0 × 103 5.5 × 10−8 2.0 × 10−10

300 100 01 h 17 m 47 s 10 11 1.0 × 104 2.9 × 10−7 7.1 × 10−10

400 133 06 h 24 m 49 s 17 22 1.9 × 104 8.4 × 10−6 1.5 × 10−8

450 150 06 h 39 m 33 s 11 12 2.6 × 104 6.7 × 10−7 1.1 × 10−9

Table 3

Numerical results of Example 5.2(a).

k = 30, c1 = c2 = 1
τ n cputime It. Func. Res0. Res*. Tol.

0.1 100 25.1 s 9 10 6.2 × 102 1.2 × 10−8 2.6 × 10−10

200 02 m 17 s 8 9 2.4 × 103 8.9 × 10−9 1.0 × 10−10

500 16 m 55 s 10 53 9.9 × 103 6.5 × 10−8 3.1 × 10−10

1,000 01 h 39 m 23 s 11 12 2.8 × 104 1.9 × 10−5 4.6 × 10−8

1,500 04 h 48 m 57 s 11 27 5.5 × 104 3.9 × 10−5 6.2 × 10−8

2,000 05 h 01 m 57 s 7 8 8.7 × 104 1.9 × 10−5 2.2 × 10−8

1.0 100 40.3 s 13 15 1.7 × 103 1.3 × 10−7 1.5 × 10−9

200 01 m 30 s 11 13 4.2 × 103 1.4 × 10−6 8.4 × 10−9

500 31 m 46 s 15 45 1.3 × 104 2.5 × 10−8 6.1 × 10−11

1,000 03 h 04 m 28 s 12 15 4.7 × 104 1.8 × 10−7 2.2 × 10−10

1,500 05 h 09 m 11 s 10 11 8.7 × 104 1.6 × 10−5 1.3 × 10−8

2,000 12 h 47 m 19 s 9 10 1.2 × 105 2.3 × 10−5 1.4 × 10−8

k = 30, c1 = 10, and c2 = 0.1
τ n cputime It. Func. Res0. Res*. Tol.

0.1 100 31.4 s 8 9 1.7 × 102 9.5 × 10−9 2.0 × 10−10

200 04 m 30 s 11 12 3.0 × 102 5.3 × 10−6 5.9 × 10−8

500 17 m 31 s 8 9 1.8 × 103 1.8 × 10−6 8.2 × 10−9

1,000 02 h 17 m 39 s 9 10 2.8 × 103 1.9 × 10−6 4.4 × 10−9

1,500 04 h 32 m 10 s 7 8 6.4 × 103 3.5 × 10−7 5.4 × 10−10

2,000 Failed 7 8 1.0 × 104 5.6 × 10−4 6.5 × 10−7

1.0 100 02 m 36 s 13 14 1.2 × 103 7.0 × 10−7 4.8 × 10−9

200 03 m 30 s 7 8 2.8 × 103 3.0 × 10−8 1.0 × 10−10

500 45 m 44 s 11 14 1.2 × 104 7.0 × 10−6 9.8 × 10−9

1,000 54 m 36 s 9 11 2.9 × 104 1.4 × 10−5 9.6 × 10−9

1,500 04 h 53 m 19 s 8 9 6.1 × 104 9.8 × 10−5 4.6 × 10−8

2,000 10 h 53 m 54 s 6 7 9.3 × 104 2.2 × 10−4 7.7 × 10−8
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Table 4

Numerical results of Example 5.2(b).

k ≈ n/3, c1 = c2 = 1
τ n k cputime It. Func. Res0. Res*. Tol.

0.1 100 33 47.8 s 12 13 8.3 × 102 1.5 × 10−6 3.3 × 10−8

200 66 12 m 01 s 16 22 3.3 × 103 1.6 × 10−8 1.8 × 10−10

300 100 01 h 58 m 22 s 14 15 7.7 × 103 2.2 × 10−7 1.7 × 10−9

400 133 05 h 39 m 37 s 17 18 1.6 × 104 6.2 × 10−8 3.7 × 10−10

450 150 05 h 28 m 26 s 20 21 1.7 × 104 5.1 × 10−8 2.7 × 10−10

1.0 100 33 37.4 s 9 10 1.6 × 103 2.1 × 10−6 2.5 × 10−8

200 66 01 h 24 m 43 s 45 75 5.2 × 103 1.8 × 10−7 1.1 × 10−9

300 100 01 h 38 m 58 s 29 33 1.5 × 104 6.3 × 10−7 2.6 × 10−9

400 133 04 h 36 m 30 s 16 18 2.5 × 104 2.6 × 10−6 8.0 × 10−9

450 150 04 h 55 m 35 s 18 20 3.1 × 104 1.0 × 10−5 2.7 × 10−8

k ≈ n/3, c1 = 10, and c2 = 0.1
τ n k cputime It. Func. Res0. Res*. Tol.

0.1 100 33 52.0 s 8 9 1.8 × 102 1.0 × 10−7 2.2 × 10−9

200 66 11 m 01 s 9 10 4.5 × 102 5.6 × 10−7 6.3 × 10−9

300 100 02 h 20 m 24 s 13 14 1.1 × 103 1.4 × 10−7 1.1 × 10−9

400 133 03 h 06 m 49 s 10 11 3.0 × 103 1.3 × 10−7 7.5 × 10−10

450 150 06 h 01 m 45 s 15 16 2.4 × 103 1.3 × 10−6 6.6 × 10−9

1.0 100 33 01 m 54 s 9 10 9.8 × 102 1.7 × 10−8 1.2 × 10−10

200 66 22 m 27 s 8 9 4.7 × 103 2.2 × 10−5 7.6 × 10−8

300 100 01 h 21 m 14 s 11 13 9.8 × 103 4.3 × 10−6 1.0 × 10−8

400 133 03 h 22 m 32 s 12 14 1.9 × 104 2.5 × 10−5 4.4 × 10−8

450 150 06 h 59 m 29 s 16 20 2.3 × 104 1.7 × 10−5 2.5 × 10−8

(
U−1

1 H
(
ΠΩ((Ma, Ca,Ka) + A∗(Y j , Zj)) + WjA∗(ΔY j ,ΔZj)

)
(RTR)−1

U−1
2 G

(
ΠΩ((Ma, Ca,Ka) + A∗(Y j , Zj)) + WjA∗(ΔY j ,ΔZj)

) )
= 0,

where U1 and U2 are given by (3.16) and (3.17), respectively. That is, we apply a
preconditioned CG method to the linear system (4.1).

Based on our numerical experiments, we make the following observations.
• Our algorithm converges to the required accuracy at a relatively small number

of iterations for all but one case (n = 2, 000, k = 30, c1 = 10, c2 = 0.1, τ = 1)
in Table 3. Here, Failed means that the CG method fails to converge within
the required maximum number of iterations. Therefore, it is not contradictive
with the global convergence result as in Theorem 4.2. Quadratic convergence
was observed for all convergent cases. This confirms our theoretical result on
quadratic convergence.

• The largest numerical examples that we tested in this paper are (i) n = 2,000
and k = 30 and (ii) n = 450 and k = 150. For case (i), there are roughly
6,000,000 unknowns in the primal problem and 60,000 unknowns in the dual
problem, while for case (ii), these numbers are roughly 300,000 and 67,000,
respectively. In consideration of the scales of problems solved, our algorithm
is very effective.

• We also tested the cases where k ≈ n/4, which have better numerical per-
formance than the cases where k ≈ n/3. Generally speaking, the smaller
the ratio k

n is, the better our algorithm performs. This is no surprise as a

smaller ratio k
n implies that the constraint nondegenerate condition (4.4) is

more likely to hold.
• Finally, note that the numbers of iterations for some small cases (see, for

instance, n = 100, 200, τ = 0.1, c1 = c2 = 1 in Table 1 and n = 300, τ = 0.1,
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Table 5

Numerical results of Example 5.1(I).

k = 10, c1 = c2 = 1, and τ = 0.1
Alg. n cputime It. Func. Res*.

Newton 50 1.0 s 6 7 3.1 × 10−5

100 2.0 s 8 9 1.0 × 10−5

150 3.0 s 8 9 2.9 × 10−5

200 3.9 s 7 8 1.0 × 10−6

BFGS 50 14.3 s 163 328 4.9 × 10−5

100 51.4 s 197 395 4.8 × 10−5

150 01 m 59 s 202 406 4.7 × 10−5

200 LS failed 214 447 5.1 × 10−5

k = 10, c1 = 10, c2 = 0.1, and τ = 0.1
Alg. n cputime It. Func. Res*.

Newton 50 0.9 s 5 6 4.7 × 10−5

100 1.6 s 6 7 9.0 × 10−6

150 2.2 s 6 7 4.5 × 10−5

200 4.1 s 7 8 3.2 × 10−6

BFGS 50 10.9 s 128 257 3.1 × 10−5

100 34.6 s 135 271 3.7 × 10−5

150 01 m 20 s 134 269 4.1 × 10−5

200 02 m 29 s 135 270 4.4 × 10−5

c1 = c2 = 1 in Table 2) are larger than those of some large-scale cases. This is
normal, as these problems are randomly generated so that the resulting linear
system (4.1) may have different condition numbers and the total number of
iterations may be different.

To further illustrate the effectiveness of our method, we compared the performance
of our method with that of the well-known BFGS method with the Wolfe line search,
which was described in detail in [34, Chapter 8] and was suggested by Malick [30] to
solve some semidefinite least-squares problems.

In our experiments for the comparison, the starting point is the solution of (3.15),
and the stopping tolerance is

‖∇θ(Y j , Zj)‖ ≤ 5.0 × 10−5.

The reason that we did not choose a higher accuracy is because the BFGS method
may run into difficulties for an accuracy greater than 5.0 × 10−5. In Tables 5–8,
we report the numerical results of Examples 5.1 and 5.2 for the following two cases:
(I) k = 10, n = 50, 100, 150, 200, and τ = 0.1 and (II) k ≈ n/3, n = 50, 75, 100, and
τ = 0.1. Table 9 includes the numerical results of Example 5.2 for the fixed n = 100
and k = 10 with the varying τ : τ = 0.01, 0.1, 1.0. Here, Res*. stands for the residuals
‖∇θ(·)‖ at the final iterate of an algorithm (the maximal number of iterations is set to
be 5,000), while It. and Func. still denote the number of iterations and the number
of function evaluations, respectively. LS failed means that the line search failed (i.e.,
the step length is too small to proceed) during the computation.

We see from the numerical performances that our method needs fewer than 15 it-
erations for all the problems to obtain the required accuracy, while the BFGS method
needs more iterations. In terms of the cputime, our method also performs much better
than the BFGS method.

6. Conclusions. In this paper, we considered the inverse quadratic eigenvalue
problem (IQEP) with the positive semidefiniteness condition on matrices M and K.
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Table 6

Numerical results of Example 5.1(II).

k ≈ n/3, c1 = c2 = 1, and τ = 0.1
Alg. n k cputime It. Func. Res*.

Newton 50 16 2.3 s 10 12 2.6 × 10−6

75 25 4.8 s 10 11 2.3 × 10−6

100 33 18.1 s 13 15 1.1 × 10−5

BFGS 50 16 48.2 s 326 653 3.3 × 10−5

75 25 07 m 40 s 714 1429 4.3 × 10−5

100 33 43 m 51 s 1416 2833 4.8 × 10−5

k ≈ n/3, c1 = 10, c2 = 0.1, and τ = 0.1
Alg. n k cputime It. Func. Res*.

Newton 50 16 2.3 s 8 9 1.1 × 10−5

75 25 4.9 s 8 9 2.1 × 10−5

100 33 13.3 s 10 11 2.0 × 10−5

BFGS 50 16 40.6 s 284 569 4.3 × 10−5

75 25 06 m 39 s 624 1249 4.7 × 10−5

100 33 38 m 09 s 1223 2448 4.9 × 10−5

Table 7

Numerical results of Example 5.2(I).

k = 10, c1 = c2 = 1, and τ = 0.1
Alg. n cputime It. Func. Res*.

Newton 50 2.6 s 13 15 5.1 × 10−7

100 5.3 s 14 16 1.0 × 10−6

150 8.7 s 13 14 2.1 × 10−5

200 13.4 s 12 13 2.1 × 10−5

BFGS 50 22.3 s 294 471 4.2 × 10−5

100 01 m 14 s 316 420 3.2 × 10−5

150 02 m 57 s 344 449 3.7 × 10−5

200 05 m 50 s 372 474 4.3 × 10−5

k = 10, c1 = 10, c2 = 0.1, and τ = 0.1
Alg. n cputime It. Func. Res*.

Newton 50 1.4 s 8 9 6.1 × 10−7

100 2.3 s 7 8 2.0 × 10−5

150 5.7 s 8 9 3.4 × 10−5

200 9.6 s 10 11 1.3 × 10−6

BFGS 50 16.3 s 203 387 4.6 × 10−5

100 56.9 s 229 419 3.8 × 10−5

150 03 m 00 s 274 507 2.4 × 10−5

200 05 m 15 s 300 551 3.9 × 10−5

We expressed the IQEP as a semidefinite constraint nonlinear optimization problem
and introduced a quadratically convergent Newton method for solving the problem.
Our numerical experiments show that our method is very efficient. We also observed
that the BFGS method converges much more slowly than the Newton method and,
moreover, that the Newton method is capable of solving problems of large scales. Since
the vast majority of our computer cputime is spent on the preconditioned conjugate
gradient method for solving the linear equation (4.1), we would save much computing
time by finding a better preconditioner for (4.1). We leave this as our future research
topic. Another interesting topic would be to study the IQEP with M , C, and K being
of various special structures.

Appendix A. In this appendix, we study the linear space R(H) defined by (3.6),
which varies according to the distribution of the prescribed eigenvalues. For the sake
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Table 8

Numerical results of Example 5.2(II).

k ≈ n/3, c1 = c2 = 1, and τ = 0.1
Alg. n k cputime It. Func. Res*.

Newton 50 16 2.2 s 7 8 5.6 × 10−6

75 25 4.0 s 7 8 1.7 × 10−5

100 33 13.1 s 8 9 2.1 × 10−6

BFGS 50 16 47.0 s 331 664 4.0 × 10−5

75 25 08 m 23 s 789 1580 4.5 × 10−5

100 33 39 m 10 s 1260 2523 4.9 × 10−5

k ≈ n/3, c1 = 10, c2 = 0.1, and τ = 0.1
Alg. n k cputime It. Func. Res*.

Newton 50 16 1.9 s 6 7 3.1 × 10−6

75 25 5.3 s 6 7 4.3 × 10−5

100 33 10.5 s 7 8 6.0 × 10−6

BFGS 50 16 42.8 s 298 597 4.9 × 10−5

75 25 07 m 39 s 717 1435 4.7 × 10−5

100 33 37 m 34 s 1206 2413 3.3 × 10−5

Table 9

Numerical results of Example 5.2.

n = 100, k = 10, and c1 = c2 = 1
Alg. τ cputime It. Func. Res*.

Newton 0.01 2.8 s 10 11 8.0 × 10−7

0.1 2.8 s 10 11 7.6 × 10−7

1.0 2.7 s 9 10 8.1 × 10−6

BFGS 0.01 01 m 10 s 273 538 2.9 × 10−5

0.1 01 m 18 s 279 559 4.0 × 10−5

1.0 LS failed 472 997 8.7 × 10−5

n = 100, k = 10, c1 = 10, and c2 = 0.1
Alg. τ cputime It. Func. Res*.

Newton 0.01 1.4 s 6 7 1.3 × 10−5

0.1 1.6 s 6 7 7.2 × 10−6

1.0 1.9 s 7 8 2.4 × 10−5

BFGS 0.01 48.3 s 185 369 4.9 × 10−5

0.1 53.9 s 209 417 2.0 × 10−5

1.0 01 m 29 s 348 694 4.7 × 10−5

of convenience, we define a new linear operator J : Sk × Sk × Sk → R
k×k by

J (B,D,E) :=
1

√
c1

(Λ2)TB +
1

√
c2

ΛTD + E, (B,D,E) ∈ Sk × Sk × Sk,

where Λ is defined by (1.3).
Denote

R(J ) := {J (B,D,E) : (B,D,E) ∈ Sk × Sk × Sk}.

By the definitions of R(H) and R(J ), we can see that R(H) = R(J ). The following
result gives the exact number of Dim (R(H)), the dimension of R(H).

Proposition A.1. Suppose that the prescribed eigenmatrix Λ is defined by (1.3).
Then we have

Dim (R(H)) = Dim (R(J )) = k2 −
μ∑

i=1

si(si − 1) − 1

2

ν∑
i=μ+1

si(si − 1).
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In particular, if s1 = · · · = sμ = sμ+1 = · · · = sν = 1, Dim (R(H)) = Dim (R(J )) =
k2.

Proof. For any D̃ ∈ Sk and Y ∈ R
k×k, denote

D̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D̃1,1 · · · D̃1,μ D̃1,μ+1 · · · D̃1,ν

...
. . .

...
...

. . .
...

D̃T
1,μ · · · D̃μ,μ D̃μ,μ+1 · · · D̃μ,ν

D̃T
1,μ+1 · · · D̃T

μ,μ+1 D̃μ+1,μ+1 · · · D̃μ+1,ν

...
. . .

...
...

. . .
...

D̃T
1,ν · · · D̃T

μ,ν D̃T
μ+1,ν · · · D̃ν,ν

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

(A.1) Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1,1 · · · Y1,μ Y1,μ+1 · · · Y1,ν

...
. . .

...
...

. . .
...

Yμ,1 · · · Yμ,μ Yμ,μ+1 · · · Yμ,ν

Yμ+1,1 · · · Yμ+1,μ Yμ+1,μ+1 · · · Yμ+1,ν

...
. . .

...
...

. . .
...

Yν,1 · · · Yν,μ Yν,μ+1 · · · Yν,ν

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where D̃i,j , Yi,j ∈ R
si×sj and Yj,i ∈ R

sj×si with 1 ≤ i ≤ j ≤ ν.
First, we note that for any Y ∈ R

k×k,

Y ∈ R(J )

⇔ 1√
c1

(Λ2)TB + 1√
c2

ΛTD + E = Y for some (B,D,E) ∈ Sk × Sk × Sk

⇔ E = Y − (Λ2)T
(

1√
c1
B
)
− ΛT

(
1√
c2
D
)

for some (B,D,E) ∈ Sk × Sk × Sk

⇔ Y − (Λ2)T
(

1√
c1
B
)
− ΛT

(
1√
c2
D
)

= E = ET

= Y T −
(

1√
c1
B
)

Λ2 −
(

1√
c2
D
)

Λ for some (B,D,E) ∈ Sk × Sk × Sk

⇔
(

1√
c2
D
)

Λ − ΛT
(

1√
c2
D
)

= Y T − Y + (Λ2)T
(

1√
c1
B
)
−
(

1√
c1
B
)

Λ2 for some (B,D) ∈ Sk × Sk

⇔ D̃Λ − ΛT D̃ = Y T − Y for some D̃ ∈ Sk,

(A.2)

where D̃ = 1√
c2
D + ( 1√

c1
B)Λ + ΛT ( 1√

c1
B). Then it is easy to verify that the last

equation in (A.2) holds for some D̃ ∈ Sk if and only if

D̃i,iΛi − ΛT
i D̃i,i = Y T

i,i − Yi,i, i = 1, . . . , ν,(A.3)

D̃i,jΛj − ΛT
i D̃i,j = Y T

j,i − Yi,j , 1 ≤ i < j ≤ ν.(A.4)

• Since σ(Λi) ∩ σ(Λj) = ∅, for any Yi,j ∈ R
si×sj , there always exists a unique

D̃i,j ∈ R
si×sj such that (A.4) holds.

• For μ + 1 ≤ i ≤ ν, since Λi = λiIsi , (A.3) holds if and only if

(A.5) Y T
i,i = Yi,i.
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• For 1 ≤ i ≤ μ,

Λi = αiI + βiJ, J = diag(

si︷ ︸︸ ︷
J2, . . . , J2), J2 =

[
0 1
−1 0

]
.

Thus, (A.3) holds if and only if

(Yi,i(2q + 1 : 2q + 2, 2p + 1 : 2p + 2))
T − Yi,i(2p + 1 : 2p + 2, 2q + 1 : 2q + 2)

∈
{[

y1 y2

−y2 y1

]
: y1, y2 ∈ R

}
,

(A.6)

where 0 ≤ p < q ≤ si − 1 and Yi,i(u1 : u2, v1 : v2) denotes the submatrix
obtained by extracting rows u1 through u2 and columns v1 through v2 from
a matrix Yi,i.

Hence, we have obtained that Y ∈ R(J ) if and only if Y is of form (A.1) satisfying
(A.5) and (A.6). Therefore,

Dim (R(H)) Dim (R(J )) = k2 −
μ∑

i=1

si(si − 1) − 1

2

ν∑
i=μ+1

si(si − 1),

which implies that if s1 = · · · = sμ = sμ+1 = · · · = sν = 1, Dim (R(H)) =
Dim (R(J )) = k2.

Remark A.2. From the proof of Proposition A.1 on the dimension of R(J ) (and
also R(H)), we actually get the general solution of J (B,D,E) = 0 for any fixed
B ∈ Sk, and thus the general solution of A(M,C,K) = 0 for any fixed M ∈ Sn. This
generalizes a corresponding result of [25] for Λ with simple eigenvalues only.

Appendix B. Let ΦM ,ΦC ,ΦK ∈ Sn be three positive definite matrices. The
IQEP of matrix weights can be defined as

min 1
2‖Φ

−1
M (M −Ma)Φ

−1
M ‖2 + 1

2‖Φ
−1
C (C − Ca)Φ

−1
C ‖2 + 1

2‖Φ
−1
K (K −Ka)Φ

−1
K ‖2

s.t. M

[
R
0

]
Λ2 + C

[
R
0

]
Λ + K

[
R
0

]
= 0,

(M,C,K) ∈ Ω.

(B.1)

By renaming M := Φ−1
M MΦ−1

M , C := Φ−1
C CΦ−1

C , K := Φ−1
K KΦ−1

K , Ma := φ−1
M MaΦ

−1
M ,

Ca := Φ−1
C CaΦ

−1
C , and Ka := Φ−1

K KaΦ
−1
K , we can write problem (B.1) equivalently

as

(B.2)

min 1
2‖M −Ma‖2 + 1

2‖C − Ca‖2 + 1
2‖K −Ka‖2

s.t. (ΦMMΦM )

[
R
0

]
Λ2 + (ΦCCΦC)

[
R
0

]
Λ + (ΦKKΦK)

[
R
0

]
= 0,

(M,C,K) ∈ Ω.

Then, from the proof of Theorem 1.1, we can see that problem (B.2) admits a strictly
feasible solution if and only if Λ is nonsingular.
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Next, we shall show how problem (B.1) can be reduced to a similar problem which
has a strictly feasible solution if Λ is singular. Without loss of generality, we assume
that

Λ = diag{Ot,Γ},

where Ot = diag{
t︷ ︸︸ ︷

0, . . . , 0} and Γ is nonsingular and has the same structure as Λ
defined in (1.3). Partition M , C, K, and

[
R
0

]
by

M =

[
M1 M2

MT
2 M4

]
, C =

[
C1 C2

CT
2 C4

]
, K =

[
K1 K2

KT
2 K4

]
,

and

[
R
0

]
=

[
R1 R2

0 R3

]
,

where M1, C1,K1 ∈ St, M2,K2, C2,∈ R
t×(n−t), M4, C4,K4 ∈ S(n−t), and R1 ∈ R

t×t,
R2 ∈ R

t×(k−t), R3 ∈ R
(n−t)×(k−t). The matrix R3 can be further written as R3 =[

R4
0

]
, where R4 ∈ R

(k−t)×(k−t) is an invertible upper triangular matrix. Then the
first equation in problem (B.1) takes the following form:

(B.3)

⎧⎪⎨⎪⎩
K1R1 = 0, KT

2 R1 = 0,

(M1R2Γ
2 + C1R2Γ) + (M2R3Γ

2 + C2R3Γ) + (K1R2 + K2R3) = 0,

(MT
2 R2Γ

2 + CT
2 R2Γ) + (M4R3Γ

2 + C4R3Γ + K4R3) + KT
2 R2 = 0.

Since R1 is invertible, we have

K1 = 0 and K2 = 0.

Let

Â(M,C,K4) :=

(
(M1R2Γ

2 + C1R2Γ) + (M2R3Γ
2 + C2R3Γ)

(MT
2 R2Γ

2 + CT
2 R2Γ) + (M4R3Γ

2 + C4R3Γ + K4R3)

)
.

Then the last two equations in (B.3) reduce to Â(M,C,K4) = 0. Partition Ka by

Ka =

[
(Ka)1 (Ka)2

(Ka)
T
2 (Ka)4

]

with (Ka)1 ∈ St, (Ka)2 ∈ R
t×(n−t), and (Ka)4 ∈ S(n−t). Let

Ψ := Φ−1
K =

[
L1 L2

LT
2 L4

]
and ΨKaΨ :=

[
(Ha)1 (Ha)2

(Ha)
T
2 (Ha)4

]
,

where L1, (Ha)1 ∈ St, L2, (Ha)2 ∈ R
t×(n−t), and L4, (Ha)4 ∈ S(n−t). By using the

fact that

‖Ψ(K −Ka)Ψ‖2 =

∥∥∥∥∥
[

L2K4L
T
2 − (Ha)1 L2K4L4 − (Ha)2

L4K4L
T
2 − (Ha)

T
2 L4K4L4 − (Ha)4

]∥∥∥∥∥
2

=
∥∥Ψ−1

K (K4 − Υa)Ψ
−1
K

∥∥2
+ κ,
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where

ΨK = (LT
2 L2 + L2

4)
− 1

2 ,

Υa = Ψ2
K

[
(LT

2 (Ha)1L2 + 2LT
2 (Ha)2L4 + L4(Ha)4L4

]
Ψ2

K ,

κ = −‖Ψ−1
K ΥaΨ

−1
K ‖2 + ‖ΨKaΨ‖2,

we can see that problem (B.1) is equivalent to

min 1
2‖Φ

−1
M (M −Ma)Φ

−1
M ‖2 + 1

2‖Φ
−1
C (C − Ca)Φ

−1
C ‖2 + 1

2‖Ψ
−1
K (K4 − Υa)Ψ

−1
K ‖2

s.t. Â(M,C,K4) = 0,

M � 0, CT = C, K4 � 0.

(B.4)

By renaming M := Φ−1
M MΦ−1

M , C := Φ−1
C CΦ−1

C , K4 := Ψ−1
K K4Ψ

−1
K , Ma := Φ−1

M MaΦ
−1
M ,

Ca := Φ−1
C CaΦ

−1
C , and Υa := Ψ−1

K ΥaΨ
−1
K , we see that problem (B.4) takes the fol-

lowing form:

(B.5)

min 1
2‖M −Ma‖2 + 1

2‖C − Ca‖2 + 1
2‖K4 − Υa‖2

s.t. Â (ΦMMΦM ,ΦCCΦC ,ΨKK4ΨK) = 0,

M � 0, CT = C, K4 � 0.

Let M̂ , Ĉ, and K̂4 be defined by

M̂ :=

[
M̂1 M̂2

M̂T
2 M̂4

]
, Ĉ :=

[
Ĉ1 Ĉ2

ĈT
2 Ĉ4

]
, and K̂4 :=

[
R−T

4 ΓTΓR−1
4 0

0 I

]
,

where

M̂1 = R−T
1 R−1

1 , M̂2 = −
[
R−T

1 R−1
1 R2R

−1
4 0

]
, Ĉ1 = 0, Ĉ2 = 0,

and

M̂4 =

[
R−T

4 RT
2 R

−T
1 R−1

1 R2R
−1
4 + R−T

4 R−1
4 0

0 I

]
,

Ĉ4 = −
[

R−T
4 (Γ + ΓT )R−1

4 0

0 0

]
.

Clearly, (
Φ−1

M M̂Φ−1
M ,Φ−1

C ĈΦ−1
C ,Ψ−1

K K̂4Ψ
−1
K

)
is a strictly feasible solution to problem (B.5). Therefore, we can apply Algorithm 4.1
to the dual of problem (B.5).

Acknowledgments. The authors would like to thank the associate editor and
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