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Globally and Quadratically Convergent Algorithm
for Minimizing the Sum of Euclidean Norms'
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Abstract. For the problem of minimizing the sum of Euclidean norms
(MSN), most existing quadratically convergent algorithms require a
strict complementarity assumption. However, this assumption is not
satisfied for a number of MSN problems. In this paper, we present a
globally and quadratically convergent algorithm for the MSN problem.
In particular, the quadratic convergence result is obtained without
assuming strict complementarity. Examples without strictly complemen-
tary solutions are given to show that our algorithm can indeed achieve
quadratic convergence. Preliminary numerical results are reported.
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1. Introduction

Consider the problem of minimizing a sum of Euclidean norms (MSN):

m
3 T
min ¥ [la;— A7 x|, )
xeR"i=1
where a,, as, . . ., a,, € R are column vectors and A,, A, ..., A,, are nxd

matrices. Let

f)= 3 £, )

i=1
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where
fi)=lla—Arx, i=1,2,...,m.

The problem (1) arises in many applications, such as VLSL design, Eucli-
dean facilities location, and Steiner minimal tree with a given topology; see
e.g. Refs. 1-3 for more details.

Many algorithms have been proposed for the problem (1); see e.g. Refs.
1-4. Under a strict complementarity assumption, quadratic convergence
results have been obtained in Refs. 1, 2, 4. However, the assumption is not
satisfied for some MSN problems; even simple ones such as Euclidean
single-facility location problems.

In this paper, we reformulate the problem (1) as a monotone vari-
ational inequality problem (MVIP for short). Then, we present an algorithm
for (1) by solving the MVIP. The algorithm is globally and quadratically
convergent. In particular, unlike current results obtained in Refs. 1, 2, 4, the
quadratic convergence is obtained without assuming strict complementarity.

The rest of the paper is organized as follows. In Section 2, we reformu-
late the problem (1) as an MVIP. In Section 3, we propose an algorithm for
the MSN problem by solving the MVIP. In Section 4, we show that the
algorithm is quadratically convergent without assuming the strict comp-
lementarity. A number of examples are given in Section 5 to show that
conditions used in this paper are satisfied, but that strict complementarity
does not hold. In Section 6, we report some preliminary numerical results.
We conclude the paper in Section 7.

Concerning notation, we let

Ri={xeR": x=0}
and
R, ={xeR:x>0}.

If n=1, then R} and R}, are denoted by R, and R,, respectively. In this
paper, unless otherwise stated, all vectors are column vectors. We denote
the cardinality of a set ../ by |../|. For a closed convex set QcR" and
xeR", we let IIg(x) be the Euclidean projection of x onto Q. If Q =N,
then we denote ITg(x) by x .. We use el0" to denote the limit of a positive
scalar e which tends to 0.

We let I, denote the d x d identity matrix, 0, ,, the nXx m zero matrix,
0, € R” the zero column vector, and e, € R” the column vector of ones. To
represent a large matrix with several smaller matrices, we use semicolons
for column concatenation and commas for row concatenation. These
notations also applies to vectors. Given a finite number of square matrices
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01,...,0,, we denote the block diagonal matrix with these matrices as
blocks by either diag(Q,, ..., Q,) or diag(Q;,i=1,...,n). Let
M={1,2,...,m}.

Given vectors y; e R, ie M, we let

V1 Od . Od
Duniemy=|" %
0, 04 -
Let
0=D(y,,ieM), A =diag(A1,;, ie M),
R =diag(A,, ie M), X = diag(A,y:y!, ie M).
If

||yi||:1’ iGM,

then it is readily shown that

Q"AQ=R, 3)
QRO" =X, “4)
RQ'A'=Q". &)

2. Reformulation

In this section, we reformulate the problem (1) as a monotone vari-
ational inequality problem. This reformulation is important to our design
of quadratically convergent algorithms. Firstly, we give the following
lemma. We omit the proof of the lemma as it is easy.

Lemma 2.1. Let d(x) = ||x||, xe R". Then, yedd(x) if and only if there
exist g=0 and £=0 such that

x-gy=0, 1/2-1/D)|ylF=h  gh=0. (6)

Let . be the solution set of problem (1). It is known that xe. if and
only if

%é%m. (7)
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From Lemma 2.1 and Theorem 4.2.1 in Ref. 5, Chapter VI, for ie M,

. d T -

S RS R PR ST
Thus, (7) is equivalent to the following system:
—Ay =0, Al x—a;+21;y:=0, ieM, 9
12-/DlyillP=hi  Ahi=0, =0, 1,20, ieM, (10)
where

A=[A,A4s,..., A, and y=[yi;¥2;...;Vml
Let

A=A .. s A,]eR” and h=T[h;...;h,]eR".

Let [x*; y*; A*; h*] be a solution of the system (9)—(10). We say that strict
complementarity holds at [x*; y*; A*; h*] if

AF+hF >0, Vie M. (11)
Note that (11) is equivalent to the following:

ly*]| <1 whenever ¢;— A/ x*=0,  VieM. (12)
Let

A =diag(A 1, ie M), Y=[Inl...:llymlle R™. (13)
Let

u=I[x;y; A]le R, where g = n+md+m.
Define F: R >R? by

—Ay
Fuy=| A™x—a+Ay |, (14)
(1/2)e,, =(1/2)Y.

and the set QR by

Q= {u:=[x; y; \]eR%: xeR", ye R™, L e RT}. (15)

Then, it is readily shown that the system (9)—(10) is equivalent to the follow-
ing variational inequality problem: find a vector u* = [x*; y*; A*]€ Q such
that

Fw*) " (u—u*)=0, YueQ. (16)
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Lemma 2.2. The function F is a smooth monotone mapping in Q.
Moreover, if 4 has rank #n, then the solution set of (16) is nonempty and
bounded.

Proof. Let
J(»)=D(yi, ie M), 7
where D(y;, ie M) is defined in (3). The Jacobian matrix of F is given by

On xn -A On xm
Fu=4" A  JOo) | (18)
Om xn —J(J/) T Om X m

Since F’(u) is the sum of a skew-symmetric matrix and a diagonal matrix
with nonnegative diagonal elements, F’(x) is positive semidefinite in €.
Therefore, F is a smooth monotone mapping in Q. It follows from Lemma
2.1 in Ref. 4 that the solution set .~ of (1) is nonempty and bounded if 4
has rank n. Thus, it is readily proven that the solution set of (9)—(10) is
nonempty and bounded. Therefore, the solution set of (16) is nonempty and
bounded. O

Let z = [x; y; s]e R? and let T1(z) be the Euclidean projection of z onto
Q. It is well known that solving (16) is equivalent to solving the Robinson
normal equation,

E(z) = F(Ila(2)) + z —Tla(2) = 0, (19)

in the following sense: if z* is a solution of (19), then Tlg(z*) = [x*; y*; s¥]
is a solution of (16); conversely, if u* is a solution of (16), then
z* = u* — F(u*) is a solution of (19); see Ref. 6. Let

A = diag((s)+ 1y, ie M). (20)
The function E(z) can be rewritten as follows:
Eiz)=| A'x—a+Ay . 21

(1/2)e,, —(1/2)Y + 5 —s.,

Lemma 2.3. The function E has the following properties:

(i)  E is strongly semismooth.
(i) If A has rank n, then the solution set of (19), i.e., E~'(0), is non-
empty and bounded.
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Proof.

(1) TItis readily shown that the function s, is strongly semismooth; see
Ref. 7 for the definition of semismoothness. By using Theorem 19 in Ref. 8
and (21), we can conclude that E is strongly semismooth.

(i) Let ./ be the solution set of (16) and let .7z be the solution set
of (19). By Lemma 2, .7 is bounded. For any z = [x; y; s]e. /%,

u= Ta(z) = [x; y; 8. 1€ SF.
By (19),
z=u~—F(u).

Since ./, is bounded, this implies that ||[F(u)|| is bounded for all ue. /.
Thus, there exists a ¢> 0 such that

llz]|=¢,  forallze 7. O

Now, we will give a smooth approximation to the function E defined
in (19). In Ref. 9, Chen and Mangasarian presented a class of smooth
approximations to the function

r. = max{0, r}, reR.

Among these smooth approximations, the Chen—Harker—Kanzow—Smale
smooth function is the most commonly used. It is defined by

0 1) = 1/20r+ NP +40), (1, )eR,, x K. (22)
Let p: R* >R be defined by

o(ld,r),  ifr#0,
tr)= 23
P {n, if1=0. )
The properties of the above functions ¢ and p can be found in Refs. 4 and
10-12.
Let v:=[t; z] = [t; x; y; s]. Define D: R "' >R" by

D(1,5) = [p(t, s1); . .. s (1, 5], (24)
define P: R?"' >R’ by
P(v) = [x;y; D(1, 5)], (25)

define K: R" ' SR by
K(t, S) = dlag(p(ta Si)Id’ ie M)a (26)
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and define H: R 5>R*! by

[ ¢
HO= by + (1 + 12 - P(v)}

t

—Ay+tx

=17 : 27
A'x—a+K(t,s)y+ty

| (1/2)e,,—(1/2)Y+ (1 +1)s— D(1, s)

where Fis defined in (14). Note that
F(P(w))+ (1+1)z—P(v)

is the Tikhonov regularization of F(P(v))+z— P(v). The Tikhonov reg-
ularization was used to study variational inequalities and complementarity
problems; see e.g. Refs. 11 and 12.

Lemma 2.4. The function H has the following properties:

(i) H is continuously differentiable on (R\{0}) x R? and strongly
semismooth on R x R7.
(i) For any ze R, lim, _,oH(v) = [0; E(z)].

Proof. The results follow readily from (21) and (27). O

Let

Di(t, s) =[0p(t, 51)/0t; ... ; Ip(t, 5,m)/ 1],

(28)
Di(t, s) = diag(dp(t, s;)/9s;, ie M).

Then, we have the following lemma.

Lemma 2.5. For any v =[t; z]e R, x R?, the Jacobian of H is given
by

1 0, o 0
X lln —A Onx m
H'(v)= - , (29)
y+JDi(t,s) A K(t,8)+tl,;, JDi(t,s)
S_D;(ta S) Omxn _JT (1+t)lm_D(([5 S)

where J = J(y) is defined as in (17) and H’(v) is nonsingular.
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Proof. It is readily shown that (29) holds by simple computation. For
any v = [t; z]e R, x RY, in order to prove that H’'(v) is nonsingular, we need
only to prove that the submatrix

tl, —-A 0,5
w=|4" K(t,s)+ tl,, JD(t,s) (30)
Omxn _JT (1 +t)Im_D:(t, S)

is nonsingular. Let

0)1 _A On xm
N = A T Omd J s
Om xn -J r Om

P =diag(l,, L., Di(t, 5)),

Q = diag(11,, K(t, 5) + tha, (1 + )1, = Di(1, 9)).
Then,

W=NP+ Q.

Since N is positive semidefinite and since P, Q are positive-definite diagonal
matrices, by Theorem 3.3 in Ref. 13, W is nonsingular. Therefore, H'(v) is
nonsingular. O

3. Algorithm

Let ye(0, 1). Define W: R"' >R, by

()= || H)|] (31
and define B: R*"' SR, by
B(v) = ymin(v*¥(v), ¥(v)). (32)

Now, we will describe an algorithm for finding a solution of H(v) =0. The
algorithm is a modified version of the smoothing Newton algorithm pro-
posed in Ref. 10.

Algorithm 3.1.

Step 0. Choose 7eR,.,0€(0,1), and o0€(0,1/2). Let 7:=[f;0,]e
RxR? and o° =[1°; 2°], where *: =7 and z° is an arbitrary



JOTA: VOL. 119, NO. 2, NOVEMBER 2003 365

initial point in R?. Choose y<(0, 1) such that
yi=yJ¥e’) < 1. (33)

Set k: =0.
Step 1. If H(v*) =0, then stop. Otherwise, let B, := B(v").
Step 2. Compute Av* :=[At*; Az"] by solving the linear system

HW" + H' (A = B,.o. (34)
Step 3. Let /, be the smallest nonnegative integer / satisfying
Y(* + 8'Av)=[1 - 20(1 — yDSTP(Y). (35)
Define v* ' = v* + §"Av*.
Step 4. Setk =k+1 and go to Step 1.
Remark 3.1. Define
hy=—Ay+tx+ Atx,
hy=A"x —a+ K(t, s)y + ty + At(y + ID/(1, 5)),
hy=(1/2)e,—(1/2)Y+ (1 +1)s — D(t, s) + At(s — D;(t, 5)),
Ny =(1+0l,—Dit,s), N, = Di(t, s),
N3 =K(t,5)+ th.a+ IN:NT' T,

where J, K(t, 5), D(t, s), D;(t, s), Di(t, s) are defined as in (17), (26), (24), (28).
Let

d;=dp(t, s;)/9s;, ieM.
Then,

Ni'=diag(1/(1 +t—d,), ie M),

Ny =diag([p(t, s) + QL+ [d: /(1 + t = d)y:yi , ie M).
For ie M, let

bi=d,/I(1+ 1 = d)( p(t, )+ 0 + ||yl pl, )+ 0).
By simple computation, we have

N3 =diag([1/(p(t, s) + OUa=biyiyi s i€ M).

From (27) and (29), we can solve (34) by the following procedure. For
simplicity, we omit k in (34).



366 JOTA: VOL. 119, NO. 2, NOVEMBER 2003

Procedure 3.1.

(1) Compute At = —1+ B(v)7.
(i) Compute N7' and N3'.
(i) Compute Ax by

(tI,+ AN3' A") Ax = —hy + AN3' hs, (36)

where /’l4 = _hz + JNzNIl h';
(iv) Compute Ay = —N3'A"Ax+ N3'hy.
(v) Compute As=—N7'hy+ N7 J Ay.

The system (36) is an n-dimensional symmetric positive-definite linear sys-
tem, which can be solved by a direct method such as the Cholesky factoriz-
ation method. The above procedure for a search direction is similar to the
one used in the interior-point method in Ref. 3.

Theorem 3.1. Algorithm 3.1 is well defined. Let {v* =[¢*; z*]} be an
infinite sequence generated by Algorithm 3.1. Then,

lim Hv*)=0 and lim “=0. (37)

k—+o0 k —+00

Moreover, the sequence {v*} is bounded if A has rank .

Proof. We omit the proof as it is similar to that of Theorem 4.5 in
Ref. 11. O

4. Quadratic Convergence

Let v* =[r*; z*] be a limit point of the sequence {v*} generated by
Algorithm 3.1. By Theorem 3.1, t* =0 and v* is a solution of H(v) =0.
Define

27 (%) = {lim H'(0%): 0" = [¢*; 2], * L 0" and 2" —z*}. (38)

Theorem 4.1. Suppose that v* =[r*; z*] is an accumulation point of
an infinite sequence {v*} generated by Algorithm 3.1. Assume that all
We ./ (v*) are nonsingular. Then, the whole sequence {v*} converges to v*
quadratically, i.e.,

10" =¥ = O(llv" = v¥]) (39)
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and
Y ) = O EIHP). (40)
Proof. See Theorem 4.8 in Ref. 4. O
Let v* =[r*; x*; y*; s*] be a solution of H(v) =0. Then, x* is an opti-
mal solution to problem (1) and [x*; y*; s*] is a solution to (19). Let
Mo(x*) = {ie M: ||a;— A] x*|| = 0}.
Define
Ao =[A;, ie Mo(x*)]
and

GxH= 3 Vi(xh), (41)

i€ M\Mo(x*)
where, for ie M\ M, (x*),
V() = [1/|la; — Af x*|[14,47
—[1/lla: = AT x*|F14i(a; — AT x*) (a;— AT x*)" 47

To prove a quadratic convergence result for Algorithm 3.1, we made the
following assumptions:

(A1) The matrix G(x*) is positive definite.
(A2) The matrix A, has full column rank.

Without loss of generality, we suppose that
lla:— A7 x*|| =0, i=1,....j,
where j = |[M,(x*)| and

lla;— A x*||>0,  i=j+1,...,m.
From (21), for ie M, we have
A x* —ai+ (s¥).yF =0, 42)
(1/2) (1 = [[y¥I[?) + s¥ = (s¥). = 0. (43)
We claim that
s¥=0, i=1,...,J (44)

By (43),
lyEl=1, ieM,
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since

Sz* - (Sz*)+50

Suppose that there exists i€ {1,...,/} such that s} >0. By (43), ||y¥]| =1
and hence (s7),y¥#0, but this contradicts (42). Therefore, we proved our

claim.
Now, fori=1,...,j, by (43),

llyEll<1 if and only if s* <0.
Let
J={sF<0,i=1,...,}.

Fori=j+1,...,m, from (42),

(s¥): >0.
Thus,

s¥F>0, i=j+1,...,m,
and by (43),

=1, i=j+1,...,m.
Using (42), we have

57 = ll= AT 4,

yE=(a;— A x¥)/|a;— AT x|,  i=j+1,...,m.
Define

Ao=1[A4,..., 4], A=[Aji1,..., Al

By (42) and (46), the matrix G(x*) can be rewritten as follows:

Gx*) = % (I/sHA—yr(HHA!

i€ M\ My (x*)
= AP pn-jpa—J1JHAT,
where
Py =diag(sFl;,i=j+1,...,m),
Ji=DO¥,i=j+1,...,m).

(45)

(462)
(46b)

(47)

(48)
(49)

Proposition 4.1. Suppose that v* =[r*; x*; y*;s*] is a solution of
H(v) =0 and that x* satisfies (Al) and (A2). Then, all We ./ (v*) are

nonsingular.
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Proof. For any We o/ (v*), there exists a sequence {v* = [¢*; x*; *; 5"}
such that

1 O i O
. r, Kk x* Onxn -A Onxm
W= lim H'(v")= r
k—>+00 y* + J*D;k A K* .]*D;k

§* — D¥ Oprn —(J*T I,—D*
Here,
JE=J(%), K*=K(0, s*)
are defined as in (17)—(26) and
D¥ = lim D.(t*,s"),  D¥= lim D", s"),

Lot Lot
P P

where D/ (7", s) and D/ (", 5*) are defined as in (28). From (23), (44), and (46),
p0,s¥) =0, i=1,...,J,

and
p(0, s¥) = s*, i=j+1,...,m.
Thus,
K* = diag(0axa, P1), (50)
where P, is defined in (48). By (44), (46), and simple computation, we have
lim op(f*, s%)/9sk €[0,1],  i=1,....J, (51)
ke +
i
lim op(¢*, s¥)/9st =0, i€.s, (52)
k +
e
lim op(¢*, s¥)/o9s =1, i=j+1,...,m. (53)
k +
i
Hence,
D;k = dlag(Dl s I;n *j)a (54)
where

D, =diag(d,i=1,...,j), de[0,1]. (55)
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We suppose that

Then,

Let

Then,

Define

Let

Then,

Let

d; =0, i=1,...,m,
diE(O,l), i:}’l1+1,...,n2
dizl, i:n2+1,...,j.

A/g{1,2,...,n1},

lyill=1,  i=m+1,....}

N:diag(di’i:nl-‘r1,-‘-7n2)3
N=diag(l—d;,i=n+1,...,n).

D, =diag(0, N, I;_,,).

JOIZD(yt*sl.ZI:"'snl)a JO2:D(yl*’i:nl+17"'sn2)y
103:D(y;k,i:n2+l,...,j).

AOI = [Ala ceey Anl]y A02 = [An1+ | CICICIRIEY Anz]y
Aoz = [Anz+1, ) A_/]-

Ao =[Ao1, Aoz, Aoz

[0, —A 0
U=|4" K*  J*D¥
00w =(J¥)" I,— D}
[0 —Ay —Ap -Ay; -A 0 0 0 07
Al 0 0 0 0 0 0 0 0
Ay 0 0 0 0 0 JoN 0 0
Ay 0 0 0 0 0 0 Jos O
=147 o0 0 0 P, 0 0 0 J
0 —Joy 0 0 0 I, 0 0 0
0 0 -J» 0 0 0 N 0 0
0 0 0 Js 0 0 0 0 0
L0 0 0 0 -JI 0 0 0 0

(56)
(57)

(38)
(39)
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To prove that ¥ is nonsingular, it suffices to show that U is nonsingular. Let
U,=0, where ¢ = (q1; ... ; qo).

Here, ¢ eR", g2 eR", g eR™", ¢, e RV g5 e R goeR™,
g €R?M, gg e R ™™, go e R™ /. Then, we have

Aorga+ Aorqs + Agzga+ Ags =0, (60)
Aiq1 =0, (61)
Ad2q1 +JaNg7 =0, (62)
A gy +Jo3qs = 0, (63)
ATqi+ Pygs+J,qo=0, (64)
~J5iga+qs=0, (65)
—J4q3+ Ngz: =0, (66)
~J03q4=0, (67)
Jigs=0. (68)
It follows from (64) that
gs=—-P1'A7q,— P1'J1qo. (69)

Premultiplying (69) by J{ and using (68) and (3), we get
JIPT' ATq1 ==J1 P J1go = =AY qo,
where
Ay =diag(s¥,i=j+1,...,m).
Thus, we have
go=-MNJ PT'A7q=-JTA"q,. (70)

Note that the second equation in (70) is obtained by using (5). Premultiplying
(69) by A4 and applying (70), we get

Ags=—AP7 Iy jya= T JDA g1 = -G(x*)g1,

1e.,

Ags+G(x*) ¢, =0. (71)
Premultiplying (60) by ¢{ and applying (61), we have

qi Aoxqs+ qi Aosqs+qi Ags = 0. (72)

Premultiplying (63) by g4 and applying (67), we obtain
614TA0T3 q1 = —quosqs =0. (73)
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From (66), we have

47=N"'J5q5. (74)
Let

N =diag((d;/(1 —d)yiy! i=m+1,...,m).
By using (4), we obtain

JuoNN'J,=N. (75)
Premultiplying (62) by ¢3 and applying (74) and (75), we have

43 Ay = =43 JoNg7 = =q3 Jo NN~ J02 ¢ = —¢3 Ngs. (76)
From (71), (72), (73), (76), we get

g1 G(x*) g1 +q3 Ngs = 0. (a7

Since N is positive semidefinite, by (77) and (A1), ¢, = 0. Hence, ¢s = 0 from
(63), go = 0 from (70), and then ¢s = 0 from (69). Since g5 = 0, by (60) and (A2),
¢-=0, g3=0 and ¢, =0. Thus ¢g; =0 from (74) and gs =0 from (65). There-
fore, ¢ = 0. This implies that the matrix Uis nonsingular and the proof is com-
pleted. |

By combining Theorem 4.1 and Proposition 4.1, we obtain the main
result of the paper as follows.

Theorem 4.2. Suppose that v* =[r*; x*; y*; s*] is an accumulation
point of the infinite sequence {v*} generated by Algorithm 3.1 and that x*
satisfies (A1) and (A2). Then, the whole sequence {v*} converges to v*
quadratically.

Remark 4.1. Theorem 4.2 shows that, under conditions (Al) and
(A2), Algorithm 3.1 has quadratic convergence. In Refs. 1-2, in order to
get quadratic convergence results, besides assumptions (Al) and (A2), a
strict complementarity assumption is needed.

Remark 4.2. In Ref. 3, by reformulating the MSN problem as a
second-order cone programming problem, an interior-point algorithm with
polynomial complexity is presented. However, most existing interior-point
algorithms with quadratic convergence require a strict complementarity
assumption.

In Section 5, we will show that conditions (A1) and (A2) are satisfied
always for the Euclidean single-facility location (ESFL) problem, but that
strict complementarity does not hold for a number of problems in this class.
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5. ESFL Problem

Let ¢i,¢a, ..., ¢, be m, m=3, distinct points in R’. Let 0, w-,...,
®,, be m positive weights. Find a point xe R that minimizes

J) =3 oflx—cfl. (78)
i=1
This is called the Euclidean single-facility location (ESFL) problem in
Ref. 3. Let
a;= W;C; and AITZ (U,'Id, ie M.

Then, the ESFL problem can be transformed into a special case of problem
(1). In what follows, we assume always that ¢;, ie M, are not collinear. The
following lemma will be used later. We shall omit its proof, since it is easy.

Lemma 5.1. Let L={1,2,...,1},0,eR’ icL, satisfying |jo;]|]=1,
ie L, and let u;,ie L, be positive numbers. If there exist v; and v;, with
i,je L, such that v; and v, are linearly independent, then the matrix

!
N=Y ui(Id_UiUiT)
i=1

is positive definite.

Let
g(x)=0wllx-cl, ieM.
Then, for ie M,
{,(x—c)/|lx —cll}, if x# ¢,
9gi(x) = . d _—
{wy:yeR:,|y=1}, ifx=c.

Proposition 5.1. If the vectors ¢;,ie M, are not collinear, then con-
ditions (A1) and (A2) are satisfied at any xe R".
Proof. For any xe R’ let
My(x)={ie M: g;(x)=0}.
Clearly, either My(x) = or My(x) only has one element.
Case 1. My(x)={i}. In this case,
Ay =[A;,ie My(x)] = w14,
which means that (A2) holds. For ie M and x#¢,, let
v:(x) = (x = ¢c)/|lx =il
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Then, from (41),
Gx)= Y [1/g0)] L= vi(x) [0:()]].

ie M\My(x)

If the vectors c¢;,ie M are not collinear, then there exist v;(x) and
v;(x), 1, je M\M(x), such that v;(x) and v;(x) are linearly independent. By
Lemma 5.1, the matrix G(x) is positive definite, i.e., (A1) holds.

Case 2. My(x)=. Similar to the proof of Case 1, we have that

G(x)="3, [1/g/(x)] (L= v:(x) [0:(x)]")
ie M
is positive definite, which shows that (A1) holds. O
Proposition 5.2. If there exists ie M such that

) w;/(Ci_Cj)/HCi_C/H > (79)

jeM.j=i

;=

then ¢; is a solution of (78). However, strict complementarity does not holds
at the solution point c;.

Proof. By (79), there exists y; € R satisfying || ;|| = 1 such that

wyi+ Y oici—c)/llci—¢l =0, (80)

jEM.,j#i

which means that 0edf'(¢;). Thus, ¢; is a solution of (78).

For any y; € R? satisfying ||y:]| < 1, by using (79), we have

wyi+ Y 0;(c—c)/|lei—cll#0. (81)

jeM,j#=1

This shows that the strict complementarity does not holds at the solution
point ¢;. O

Remark 5.1. (79) holds for a number of ESFL problems. For
example, let
d22: Clzods (l)]zl, sz[l:od*l]y w2:19

c;=1[0;1;0,4_2], w;=1, cs=[0;-1;0,_5], w,=1.
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Then,

w; =

4
Y o, _C/)/Hcl _C‘/H
=2

6. Preliminary Numerical Experiments

To show that the method proposed in the paper has quadratic conver-
gence, we implemented Algorithm 3.1 in MATLAB and tested the following
two Euclidean single-facility location (ESFL) problems. Note that, at the
solution points of these two examples, strict complementarity does not hold.

Example 6.1. Here

d:2> 012[0;0]7 w1:15 62:[1;0]7 w2:1>
Cc3 = [O, 1], w3:3, C4:[0;—1], Wy = 3.

The solution is x* =[0; 0].

Example 6.2. Here
d=4, ¢; =[0;0;0; 0], w;=0.5, ¢, =[1;0;0;0], @,=0.5,
¢;=1[0;1;0;0], w3 =2, ¢, =1[0;-1;0;0], ws=2.
The solution is x* =[0; 0; 0; 0].
Throughout our computational experiments, we used the following
parameters:
§=0.5, ©0=0.0005, =05 =03, y=0.5.
We terminated the iteration when
IEGE)]|.=1077,

where E is defined in (19). The outputs of the algorithm for Examples 6.1
and 6.2 are given in Tables 1 and 2, which show the quadratic convergence
of this method.

7. Conclusions

In this paper, we proposed a globally and quadratically convergent
method for the problem of minimizing a sum of Euclidean norms. In par-
ticular, the quadratic convergence of the method was proved without
assuming strict complementarity.
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Table 1. Output of Algorithm 3.1 for Example 6.1.
k V(EY! 18z l.- X X2 o
1 7.21E+00 3.67E+00 2.11E-01 1.63E-01 1
2 7.19E+00 2.76E+00 1.66E-01 -1.90E-01 0.5
3 7.12E+00 1.14E+00 1.75E-01 9.06E-02 1
4 7.14E+00 6.26E-01 1.73E-01 1.26E-01 1
5 7.07E+00 2.46E-01 1.34E-01 6.75E-02 1
6 7.01E+00 1.05E-01 5.96E-02 1.26E-02 1
7 7.00E+00 2.73E-02 1.12E-02 3.27E-03 1
8 7.00E+00 1.31E-03 7.67E-04 1.69E-04 1
9 7.00E+00 7.09E-06 2.47E-06 3.25E-07 1
10 7.00E+00 1.29E-10 6.06E-11 1.72E-11 1
11 7.00E+00 6.66E-16 —1.04E-16 2.49E-21 1
Table 2. Output of Algorithm 3.1 for Example 6.2.
ko f(x5 IEG) ). x5 x5 x5 x5 8%
1 5.10E+00 2.51E+00 2.81E-01 2.54E-01 2.54E-01 2.54E-01 1
2 4.82E+00 1.49E+00 2.16E-01 -7.91E-02 1.87E-01 1.87E-01 0.5
3 4.74E+00 8.56E-01 1.94E-01 1.82E-01 1.36E-01 1.36E-01 1
4  4.69E+00 4.19E-01 1.77E-01 1.85E-01 1.12E-01 1.12E-01 1
5  4.61E+00 1.67E-01 1.51E-01 1.38E-01 7.19E-02 7.19E-02 1
6  4.54E+00 5.39E-02 1.01E-01 4.80E-02 3.27E-02 3.27E-02 1
7 4.50E+00 1.50E-01 2.88E-02 2.82E-03 8.29E-03 8.29E-03 1
8  4.50E+00 9.31E-03 1.69E-02 7.11E-03 6.44E-03 6.44E-03 1
9  4.50E+00 6.84E-03 1.44E-03 2.88E-05 4.23E-04 4.23E-04 1
10 4.50E+00 5.22E-05 3.97E-05 1.42E-05 1.47E-05 1.47E-05 1
11 4.50E+00 4.55E-08 9.85E-09 8.97E-10 3.06E-09 3.06E-09 1
12 4.50E+00 2.59E-15 1.61E-15 6.26E-16 6.77E-16 6.77E-16 1

Our numerical implementation of the algorithm is very preliminary.
There are numerous computational issues to be investigated in order to
make the algorithm practically efficient and robust. The main compu-
tational step in each iteration of Algorithm 1 lies in solving the linear system
(36). Thus, it is necessary for us to come up with ways to solve it efficiently
by exploiting sparsity or special structures present in the linear system. We
shall leave these as further research topics.
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