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Summary

The research of traditional boundary-valued ODEs has gone through a long his-

tory. With the advent of engineering systems like: multi-rigid-body dynamics with

frictional contacts and constrained control systems, the smooth-coefficient differ-

ential equations are insufficient to practical utilizations. Many dynamic systems

will naturally lead themselves to the ODEs with nonsmooth functions right-hand

side as below  ẋ(t) = f(t, x), 0 ≤ t ≤ T

Γ(x(0), x(T )) = 0,

where f and Γ can be nonsmooth. To explore a certain method to attack this

nonsmooth problem is the main goal in this thesis. In fact, the issue of solving a

nonsmooth boundary-valued ODE is really a big challenge which involves interac-

tions of different fields such as optimal control, ODE theory, nonsmooth analysis

and so on. One type of the nonsmooth dynamic system: differential variational

inequalities (DVIs) is worthy to mention which have been studied by Pang and

Stewart for several years, as they are special case for the nonsmooth ODEs in a

sense that the former can be reduced to the latter problem. Therefore, some of the

v



Summary vi

DVIs’ results can be inherited and applied to the study of the nonsmooth ODEs.

One of common numerical methods for boundary value problem is the shoot-

ing method. It will provide the primary structure for the algorithm we want to

develop. However, there are fundamental disadvantages mainly in that it inher-

its its stability properties from the stability of the initial value problems that it

solves, not just the stability of the given boundary value problem. The smoothing

Newton method proposed by Qi, Sun and Zhou serves as a promising modification

to the shooting method because it guarantees the global convergence. More im-

portantly, this technique is specialized for the nonsmooth equations. On the other

aspect, obtained from the smoothing Newton method, the solution map x(t) to the

nonsmooth boundary value ODE is proved to be a semismooth (strongly semis-

mooth) function around its nondifferentiable points, provided that f is semismooth

(strongly semismooth, respectively) with respect to x(t). Since the semismooth-

ness (strongly semismoothness) is closely correlated to the superlinear (quadratic,

respectively) convergence, the algorithm based on the smoothing Newton method

will not lose its efficiency.

Some preliminaries are introduced in Chapter 2 as a preparation for the later

discussions. In order to simplify the form of a nonsmooth ODE with parameters

right-hand side as a usual ODE system and to facilitate the convergence analysis, a

reformulation to the original problem is established in Chapter 3. The algorithm for

the smoothing Newton method and its convergence property are given in Chapter

4, where the numerical results are also reported. Chapter 5 concerns about some

final remarks and conclusions.



Chapter 1
Introduction

Ordinary Differential Equations (ODEs) with smoothing right-hand side has been

quite familiar to us, since they have been studied for centuries (see [5] as a refer-

ence). Consider the standard Boundary-valued ODE form: ẋ(t) = f(t, x), 0 ≤ t ≤ T

Γ(x(0), x(T )) = 0.
(1.1)

Here f, Γ : Rn → Rn are given vector functions. With the growing tendency to

explore the engineering systems such as: multi-rigid-body dynamics with frictional

contacts [1, 4, 6, 3] and constrained control systems [19, 12, 13, 18, 14, 8], traditional

ODEs seem to be inadequate to cope with these situations, where Nonsmooth

Boundary-value ODEs appear natural. We say an ODE is nonsmooth, when the

differential and/or the boundary function (f and/or Γ) in (1.1) are/is nonsmooth.

When we cope with the nonsmooth functions, it is necessary to introduce the

concept of Generalized Jacobian. Let X and Y be finite dimensional vector spaces,

each equipped with a scalar innerproduct and an induced norm. Let O be an open

set in X. Suppose H : O ⊆ X → Y is a locally Lipschitz function. According to

Rademacher’s Theorem , H is differentiable almost everywhere. Denote the set of

points at which H is differentiable by DH . We write JxH(x) for the usual jacobian

1
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matrix of partial derivatives whenever x is a point at which the necessary partial

derivatives exist. Let ∂H(x) be the generalized Jacobian defined by Clarke in 2.6

of [11]. From the work of Warga [34, Theorem 4], the set ∂H(x) is not affected if

we “dig out” the sets of Lebesgue measure zero (see [11, Theorem 4] for the case

m = 1), i.e., if S is any set of Lebesgue measure zero in X, then

∂H(x) = conv{ lim
k→∞

JxH(xk) : xk → x, xk ∈ DH , xk 6∈ S}. (1.2)

The nonsmooth ODE equation is definitely hard to solve and has been rarely

touched until now. Nevertheless, another dynamic system Differential Variational

Inequalities (DVIs) presented by Pang and Stewart in [23, 24, 25] can be served as

a special case to the nonsmooth ODEs. The general form for the DVI is:

ẋ(t) = f(t, x(t), u(t))

u(t) ∈ SOL(K,F (t, x(t), ·)) (1.3)

0 = Γ(x(0), x(T )),

where, the second inclusion denotes the solution to the Variational Inequalities(VIs),

for which a comprehensive reference is available [16]. According to the work from

[23, 24], (1.3) can be looked upon as a special case of Differential Algebraic Equa-

tions(DAEs). When dealing with a DVI, one has to encounter nonsmooth func-

tions, as the VIs always lead to nonsmooth equations. In other words, a VI can

be reformulated to a nonsmooth algebraic equation. Once the solution to this al-

gebraic equation is obtained and be substituted into the first differential equation

ẋ = f(t, x(t)) we will get to a nonsmooth ODE.

Same as the motivation of studying the nonsmooth ODEs, one of the reasons

to put forward the DVI as a distinctive class of dynamic system is that it also

comes from those of practical engineering problems. Most applications of recent

dynamic optimization take place in the context of the Optimal Control Problem
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[11, 19, 12, 13, 18, 14, 2, 9] in standard or Pontryagin form. It is a formulation that

has proved to be a natural one in the modeling of a variety of physical, economic,

and engineering problems. In fact, the control problems act as the main source of

the nonsmooth ODEs and the DVIs.

Given the dynamics, control and state constraints, and the functions h : Rn →

R and ϕ : [0, T ]× Rn × Rm → R, the optimal control problem is addressed by:

min
∫ T

0
ϕ(t, x(t), u(t))dt+ h[x(T )]

s.t. ẋ(t) = f(t, x(t), u(t)), u(t) ∈ K a.e. t ∈ [0, T ]

x(0) = x0

x ∈ W 1,∞, u ∈ L∞,

(1.4)

where the state x(t) ∈ Rn, the control u(t) ∈ Rm and K is closed and convex. Here,

Lp denotes the usual Lebesgue space of measurable functions with p − th power

integrable, and Wm,p is the Sobolev space consisting of vector-valued functions

whose j − th derivative lies in Lp for all 0 ≤ j ≤ m. Assume that (1.4) has a local

minimizer (x∗, u∗) and that ϕ and f are twice continuously differentiable.

The Hamiltonian denoted by H is defined as:

H(t, x(t), u(t), λ(t)) = ϕ(t, x, u) + λTf(t, x, u),

where the variable λ ∈ W 2,∞ is called associated Lagrange multipliers.

Instead of studying (1.4) directly, we examine the famous first-order necessary

optimality condition (Maximum Principle):

Let (x∗, u∗) be a solution to the problem (1.4), then there exists a λ∗(·) : [0, T ] → Rn

satisfying the following at (x∗, u∗, λ∗):

ẋ(t) = f(t, x(t), u(t)), x(0) = x0

λ̇ = −∇xH(t, x(t), u(t), λ(t)), λ(T ) = hx[x(T )] (1.5)

H(t, x∗(t), u∗(t), λ∗(t)) = max
u∈K

H(t, x(t), u(t), λ(t)), a.e. t ∈ [0, T ].
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The last equation

H(t, x∗(t), u∗(t), λ∗(t)) = max
u∈K

H(t, x(t), u(t), λ(t)), a.e. t ∈ [0, T ]

can be rephrased as:

〈∇u(H(t, x∗(t), u∗(t), λ∗(t))), (u− u′)〉 ≥ 0 for all u′ ∈ K.

Together with the definition of the VIs in [23, Section 2], this inequality can be

converted into an inclusion:

u(t) ∈ SOL(K,∇uH(t, x(t), u(t), ·, λ(t))).

By replacing the last equation in (1.5) with this inclusion, a DVI with the form of

(1.3) is established. Then after substituting u(t) into the two differential equations

of (1.5), the DVI is reduced to a boundary-valued ODE with nonsmooth right-hand

side functions.

For instance, the differential Nash game [7, 15] and multi-rigid-body dynamics

with contact and friction are typical control problems that result in the nonsmooth

ODEs. In [23, Section 4], Pang and Stewart provide us a careful deduction of these

two systems.

The key point in the thesis is to apply the smoothing Newton method devel-

oped in [29] for the nonlinear complementarity problems and the VIs to solving

the nonsmooth dynamic systems. This requires the collection of techniques from

different areas. The classical single shooting method will be our consideration on

dealing with the ODE, i.e., to “shoot” an ideal initial value x(0; c) = c in order to

satisfy the boundary condition

h(c) := Γ(c, x(T ; c)) = 0.

In essence, shooting is nothing but Newton’s method to find out the root of an

equation h(c) = 0. However, the single shooting cannot have global convergence,
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in a sense that the terminal value x(T ; c) obtained from shooting would terribly

deviate from the exact terminal condition, if the initial value c is not properly

estimated. In order to conquer such a pitfall, other techniques should be put into

use as a modification of the single shooting to insure the globalization. For this

purpose, the global convergence for the smoothing Newton’s method proves to be

a suitable alternative, which is a big contribution even under a smoothing case.

Note that the function f(t, x) in (1.1) can be nonsmooth, in order to apply the

smoothing Newton method, f should be approximated by some smoothing function

(the existence of such smoothing function can be obtained via convolution, see

[32, 35] and the reference therein). Let us denote f ε(t, x) as the smoothing function

to f(t, x), in which ε = 0 if f(t, x) is a smooth function. It follows that the solution

x(t; c) to (1.1) becomes xε(t; c), which results in a new boundary equation:

hε(c) = Γ(c, xε(T ; c)) = 0. (1.6)

One significant contribution of this paper is to reformulate (1.1) along with (1.6) to

a new nonsmooth dynamic system. We discuss the details in later chapter. What-

ever formulation we have transferred to, finally, we have to establish an equation

with respect to hε(c) as:

E(ε, c) =

 ε

hε(c)

 = 0,

which is solved by the smoothing Newton method.

To the best of our knowledge, nearly no numerical examples and results have

been given for the nonsmooth boundary-value ODEs so far. Even for its special

case: the DVIs, the computational work is almost blank. Therefore, all the research

works on this topic are mainly at the theoretical aspect and this newly developed

technique needs to be implemented. To this end, we provide the smoothing Newton

algorithm and implement it with numerical examples. Results are to be reported
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at the end. Meanwhile, convergence analysis is also included in as a justification

of this algorithm.

1.1 Overall Arrangement

In Chapter 2, firstly we introduce the classical results of the ODEs as well as the

numerical methods for a boundary value problem. Then some knowledge about

the nonsmoothness is presented in Section 2.2 that includes the concept of semis-

moothness and varies types of smoothing functions. In Section 2.3 we introduce

the standard form of the a DVI and its extension problems. We construct a refor-

mulation in Chapter 3, which is the most important part in this thesis. After all

the nonsmooth functions being replaced by their smoothing approximations, we

reformulated the the nonsmooth boundary ODE with parameters right-hand side

to an initial value problem together with its boundary equation. In Chapter 4, an

algorithm of the smoothing Newton method for solving the reformulated ODEs is

established. Based on the algorithm, both the global and superlinear (quadratic)

convergence are analyzed. Some numerical results are also reported at the end of

this chapter. The whole thesis is ended with some conclusions and remarks given

in Chapter 5.



Chapter 2
Preliminaries

In this chapter, we have two classes of preliminary discussions: ODEs and Nons-

moothness, for they are fundamental compositions in our subject. The former is

mainly about the ODE sensitivity theory and numerical methods for the boundary

value problems (BVP), while the latter part focuses on the semismoothness. Es-

pecially, the sensitivity theory and semismoothness are critical to the convergence

analysis of the smoothing Newton Algorithm. In addition, knowledge about the

DVIs will also be presented as a specific case.

2.1 Theories of ODEs

Consider the initial-value problems (IVP) : ẋ = f(t, x), 0 ≤ t ≤ T

x(0) = c (given),
(2.1)

where f : Rn+1 → Rn is a given vector function and c ∈ Rn is an initial vector.

Lemma 2.1.1. Suppose f is Locally Lipschitz continuous in a neighborhood of

the trajectory starting at c0; i.e., there is an open neighborhood NT of the set

7
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ΞT = {x(t; c0) : 0 ≤ t ≤ T} and a scalar L ≥ 0 such that

‖ f(t, x(t; c))− f(t, x(t; c′)) ‖≤ L ‖ x(t; c)− x(t; c′) ‖, ∀ x(t; c), x(t; c′) ∈ NT .

Then, there exists a neighborhood N0 of c0 such that for every c ∈ N0, the ODE

(2.1) has a unique solution x(t; c) on [0, T ] which satisfies, for any c and c′ ∈ N0,

‖x(t; c)− x(t; c′)‖ ≤ eLt‖c− c′‖, ∀ t ∈ [0, T ]. (2.2)

Proof. Let x(t; c), x(t; c′) be two solutions to (2.1). From the variational rules of

the derivative of the solution map, they can be written as

x(t; c) =

∫ t

0

f(s, x(s; c))ds+ c

x(t; c′) =

∫ t

0

f(s, x(s; c′))ds+ c′.

We have

‖x(t; c)− x(t; c′)‖ ≤ ‖c− c′‖+

∫ t

0

‖f(s, x(s; c))− f(s, x(s; c′))‖ds

≤ ‖c− c′‖+ L

∫ t

0

‖x(s; c)− x(s; c′)‖ds.

According to the Gronwall lemma, we deduce

‖x(t; c)− x(t; c′)‖ ≤ ‖c− c′‖+ L

∫ t

0

‖c− c′‖eL(t−s)ds

= ‖c− c′‖+ L‖c− c′‖
∫ t

0

eL(t−s)ds

= ‖c− c′‖ − ‖c− c′‖(1− eLt)

= eLt‖c− c′‖,

which gives the inequality (2.2).

The uniqueness of the solution map x(t; c) for every c ∈ N0 can be directly

obtained from the Lipschitz continuity with respect to initial data in (2.2). �
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This result is particularly true as f(t, x) is globally Lipschitz continuous. For

the latter case, see [5, Theorem 1.1]. More details about the locally Lipschitz

characterization of ODE function and its solution map can be referred to Theorem

2.1.12 in [31].

Next, we take a further step into the boundary-value problem of ODE, which

is defined as:  ẋ = f(t, x), 0 ≤ t ≤ T

Γ(x(0), x(T )) = 0.
(2.3)

We consider an initial value method: Single Shooting method [5, Chapter 7]. The

shooting method is a straightforward extension of the initial value techniques for

solving the BVPs. Essentially, one “shoots” trajectories of the same ODE with

different initial values until one “hits” the correct given boundary values at the

other interval end.

We denote x(t; c) := x(t) as the solution of the ODE (2.3) satisfying the initial

condition x(0, c) = c. Substituting it into the boundary equation, we have

h(c) := Γ(c, x(T ; c)) = 0. (2.4)

This gives a set of n algebraic equations for the n unknowns c. The single shooting

method is that, for a given c, one solves algebraic equation (2.4) with solving the

corresponding initial value ODE problem.

Consider Newton’s method for finding out the root of (2.4). The iteration is:

cν+1 = cν − (Jch(c))
−1h(cν),

where c0 is an initial guess. In order to evaluate Jch(c) at c = cν , we must

differentiate the expression of h with respect to c. Denote the Jacobian matrices

of Γ(u,v) with respect to its first and second argument vectors by

B0 = JuΓ(u,v), BT = JvΓ(u,v) (2.5)
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(Often in application, Γ is linear in u,v and the n×nmatrices B0, BT are constant).

Using the notation in (2.5), we have:

Q := Jch(c) = B0 +BTX(T ),

where X(t) is the n × n fundamental solution matrix to the following system [5,

Section 6.1]:  Ẋ(t) = A(t)X(t), 0 ≤ t ≤ T

X(0) = I,
(2.6)

with A(t, x(t; cν)) = Jxf(t, x). Therefore, the n + 1 IVPs are to be solved at each

iteration by using Newton’s method. Finally, once an appropriate initial value c

has been found, we can use this value to obtain the solution to the original BVP

from integrating the corresponding IVP.

The advantages of single shooting are conceptually simple and easy to imple-

ment. However, there are difficulties as well. Because the algorithm inherits its

stability properties from that of IVPs, but not the stability of the given BVPs, the

process of shooting will involve integrating a potentially unstable IVP even if the

BVP is stable. Another difficulty lies in the lack of global convergence for the single

shooting method, that is, there is no guarantee with the existence of solutions for

an arbitrarily given initial value c. Nevertheless, the smoothing Newton method

we will apply later in Chapter 4 does not have this trouble. The globalization tech-

nique can be used not only in the smoothing functions, but also in the nonsmooth

problems.

Both of the disadvantages of the single shooting become worse for larger inter-

vals of integration of IVPs. This fact leads to another type of shooting method:

Multiple shooting, which works well in the case when single shooting is unsatis-

factory. The basic idea of multiple shooting is then to restrict the size of intervals

over which IVPs are integrated. After partitioning the time interval [0, T ] into N
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subinterval: [tn−1, tn], n = 1, · · · , N , we approximate the solution of the ODE by

constructing an approximate solution on each [tn−1, tn] and patching these approx-

imate solutions together to form a globle one. We just give a simple introduction

to this method, do not pursue this further, though.

2.2 Introduction to Nonsmoothness

2.2.1 Semismoothness

In this section, we give definition of Semismoothness, which involves the concept

of generalized Jacobian ∂H(x) (see (1.2) in Section 1). Semismoothness was in-

troduced originally by Mifflin [22] for functionals. Convex functions, smooth func-

tions, and piecewise linear functions are examples of semismooth functions. The

composition of semismooth functions is still a semismooth function. Semismooth

functions play an important role in the global convergence theory of nonsmooth

optimization; Indeed, we need the concept to establish the superlinear convergence

of smoothing Newton Methods that will be discussed in later chapter. Let us see

the definition below [33, Definition 5].

Definition 1. Suppose that H : O ⊆ X → Y is locally Lipschitz continuous

function. H is said to be semismooth at x ∈ O if

(i) H(x) is directionally differentiable at x; and

(ii) for any y → x and V ∈ ∂H(y),

H(y)−H(x)− V (y − x) = o(‖ y − x ‖). (2.7)

Part (i) and (ii) in this definition do not imply each other. H is said to be

G−semismooth at x if condition (2.7) holds. G−semismooth was used in [17, 26]
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to obtain inverse and implicit function theorems and stability analysis for nons-

mooth equations. Moreover, a stronger notion is γ−order semismoothness with

γ > 0. For any γ > 0, H is said to be γ-order G-semismooth (respectively, γ-order

semismooth) at x, if H is G-semismooth (respectively, semismooth) at x and for

any y → x and V ∈ ∂H(y),

H(y)−H(x)− V (y − x) = O(‖y − x‖1+γ). (2.8)

When γ = 1 (1-order G-semismooth (respectively, 1-order semismooth) at x), H

is said to be strongly G-semismooth (respectively, strongly semismooth) at x.

From definition 1, one needs to consider the set of differentiable points DH .

Sometimes this brings us much troubles in proving the semismoothness of a func-

tion. Fortunately, by the work of Warga [34, Theorem 4], the set ∂H(x) remains

the same if we do not consider the sets of Lebesgue measure zero. The following

result cited from [33, Lemma 6] modified the original definition of semismoothness.

Theorem 2.2.1. Let H : O ⊆ X → Y be a locally Lipschitz near x ∈ O. Let γ > 0

be a constant. If S is a set of Lebesgue measure zero in X, then H is G-semismooth

(γ-order G-semismooth) at x if and only if for any y → x, y ∈ DH , and y 6∈ S,

H(y)−H(x)− JyH(y)(y − x) = o(‖y − x‖) (O(‖y − x‖1+γ). (2.9)

Hence, those nondifferentiable points with Lebesgue measure zero can be ignored,

when the semismoothness of a function is to be proved. This will save us much

work in later convergence discussions.

2.2.2 Classifications to Smoothing function

We provide some computable smoothing functions [28] for variational inequality

problems.
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Consider the equation:

H(u) = 0, (2.10)

where H : Rn → Rn is locally Lipschitz continuous but not necessarily continuous

differentiable. As was mentioned in Introduction Section, H is differentiable almost

everywhere by Rademacher Theorem [11]. Such nonsmooth equations arise from

nonlinear complementarity problems, VIs, maximal monotone operator problems

[28].

The smoothing method is to construct a smoothing function Gε : Rn → Rn of

H such that, for any ε > 0, Gε is continuous differentiable on Rn and, for any

u ∈ Rn, it satisfies,

‖H(z)−Gε(z)‖ → 0, as ε ↓ 0, z → u. (2.11)

To solve equation (2.10), we can approximately solve the following problems for a

given positive sequence {εk}, k = 0, 1, . . . ,

Gεk

(uk) = 0. (2.12)

In conclusion, we give a definition of smoothing function [28, Section 2.1]:

Definition 2. A function Gε : Rn → Rm is called a smoothing function of a

nonsmooth function H : Rn → Rm, if any ε > 0, Gε(·) is continuously differentiable

and, for any u ∈ Rn,

‖H(z)−Gε(z)‖ → 0, as ε ↓ 0, z → u.

Equation (2.11) provides a generalized definition for a smoothing function and

almost all the existing smoothing functions are included in.

Usually, a convolution is involved in computing these smoothing functions. We

just give a rough picture of the computation work via convolution (one can see
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[28, Section 3] for further knowledge). A function ρ : R → R+ is called a kernel

function if it is integrable (in the sense of Lebesgue) and∫
R
ρ(s)ds = 1.

Suppose that ρ is a kernel function. Define Θ : R++ × Rm → R+ by

Θ(ε, x) := ε−mΦ(ε−1x),

where (ε, x) ∈ R++ × Rm and

Φ(z) :=
m∏

i=1

ρ(zi), z ∈ Rm.

Then, a smoothing approximation of a nonsmooth function F : Rm → Rp via

convolution can be described by

F ε(x) :=
∫

Rm F (x− y)Θ(ε, y)dy

=
∫

Rm F (x− εy)Φ(y)dy

=
∫

Rm F (y)Θ(ε, x− y)dy.

(2.13)

Denote F 0(x) = F (x), and F |ε|(x) = F−|ε|(x).

Next, we introduce smoothing functions for simple nonsmooth functions, begin-

ning with the Plus function first. One of the simplest but very useful nonsmooth

function is the plus function p : R → R+, define by

p(t) := max{0, t} for any t ∈ R.

We define P (ε, t) such that

P (0, t) := p(t) and P (−|ε|, t) := P (|ε|, t), (ε, t) ∈ R2,

as the smoothing function to p(t).

One of the well-known smoothing functions for the plus function p is

P (ε, t) =
1

2
(t+

√
t2 + 4ε2). (2.14)
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We can derive lots of good properties from P (ε, t) such as: P is globally Lipschitz

continuous on R2 and continuously differentiable on R++ × R; The directional

derivative of P at (0, t) exists; P is semismooth on R2, and so on.

Another widely used function is Absolute Value Function: q : R → R, which is

defined by

q(t) = |t| t ∈ R.

Notice that q(t) can be written as the linear combination of plus functions, i.e.,

q(t) = p(t) + p(−t).

Thus, based on the above discussion about P , one can easily obtain the smoothing

function of q:

Q(ε, t) = P (ε, t) + P (ε,−t), (ε, t) ∈ R++ × R,

where P is the smoothing function of the plus functionp(t). Analogously, we have

Q(0, t) := q(t) = |t| and Q(−|ε|, t) := Q(|ε|, t), (ε, t) ∈ R2.

Finally, we study a class of computable smoothing function for the VIs, or a

smoothing approximation of

H(u) := u− ΠK(u− F (u))

for any u ∈ Rn when K is a closed convex subset of Rn (we discuss more about the

VIs in following Section 2.3). When K is Rn
+, ΠK(u) is the Euclidean projection

of u onto the nonnegative orthant and satisfies

H(u) = u− ΠK(u− F (u))

= u−max{0, u− F (u)}

= min{u, F (u)}.
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By using (2.14) again yields the smoothing function of H(u) and we have

φ(ε, u) :=


1
2
(u1 + F (u1)−

√
(u1 − F (u1))2 + 4ε2)
...

1
2
(un + F (un)−

√
(un − F (un))2 + 4ε2

 .

and

φ(0, u) := H(u); φ(−|ε|, u) := φ(|ε|, u), (ε, u) ∈ Rn+1.

Knowledge on the smoothing functions is quite rich. It has been shown that for

each semismooth function, there exists a smoothing function with semismoothness

itself via convolution approach ([32], [35, Theorem 2.12]). See [30] for the smooth

approximation functions for eigenvalues of a real symmetric matrix. Usually, a

multivariate integral is involved in computing equation (2.13), which makes them

uncomputable in practice. However, we need computable smoothing approxima-

tions for those nonsmooth functions arising from complementarity problems and

variational inequality problems.

2.3 Standard formulation of DVIs

DVIs as the unusual nonsmooth dynamic systems were firstly addressed by Pang

and Stewart in [23]. In their paper, it gives a formal definition. Let f : R1+n+m →

Rn and F : R1+n+m → Rm be two continuous vector functions; Let K be a

nonempty closed convex subset of Rm. Let Γ : R2n → Rn be a boundary function

and T > 0 be a terminal time. The DVI defined by three functions: f, F and Γ,

the set K, and the scalar T is to find time-dependent trajectories x(t) and u(t)
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that satisfy condition (2.15) for t ∈ [0, T ].

ẋ(t) = f(t, x(t), u(t))

u(t) ∈ SOL(K,F (t, x(t), ·)) (2.15)

0 = Γ(x(0), x(T )).

SOL(K,F (t, x(t), ·)) denotes the solution set to a VI (K,F) [16]:

(u′ − u)TF(u) ≥ 0, ∀ u′ ∈ K.

Moreover, u ∈ SOL(K,F (t, x, ·)) if and only if

0 = u− ΠK(u− F (t, x, u)),

where ΠK denotes the Euclidean projector onto the closed convex set K, which is

the unique solution of the convex minimization problem in the variable y, where x

is considered fixed:

Minimize 1
2
(y − x)T (y − x)

subject to y ∈ K.

For a detailed study on the differentiability properties of this operator and for ref-

erences, please see ([16, Section 1.5.2]).

Assume that (see [23, Section 5.1], and [24, Section 3]):

(A) F (t, x, u) is a continuous, uniformly P function [16] on K with modulus that

is independent of (t, x); i.e., there exists a constant ηF > 0 such that

max
1≤ν≤N

(uν − u′ν)
T (Fν(t, x, u)− Fν(t, x, u

′)) ≥ νF‖u− u′‖2

for all (t, x) ∈ [0, T ]×X and

u ≡ (uν)
N
ν=1 and u′ ≡ (u′ν)

N
ν=1 in K =

N∏
ν=1

Kν ;
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(B) F (·, ·, u) is Lipschitz continuous with a constant that is independent of u;

(C) f is Lipschitz continuous and directionally differentiable on an open neigh-

borhood NT of the nominal trajectory ΞT ≡ {x(t, c0) : 0 ≤ t ≤ T}.

Remarks: Assumption (A) is a very strong condition, however it cannot be much

relaxed for the reason that “uniformly P function” is to ensure the uniqueness

and Lipschitz continuity of the solution u(t;x). Thus this assumption seems a

reasonable one.

From [23, Theorem 1], under the assumptions (A) and (B), the solution u(t;x)

to the VI: (K,F (t, x, ·)) is Lipschitz continuous and unique on a close convex set

K. By casting the VI as a projector Π on the close convex set K, we can expect a

semismooth solution u(t, x) defined with an implicit function. Since f is supposed

to be a Lipschitzian, after putting u(t, x) into f(t, x(t), u(t)), the reduced ODE

function f(t, x, u(t, x)) is also semismooth.

When K is a cone C. DVI (2.15) will become a differential complementarity

problem (DCP):

ẋ(t) = f(t, x(t), u(t))

C 3 u(t) ⊥ F (t, x(t), u(t)) ∈ C∗

0 = Γ(x(0), x(T )),

where

C∗ ≡ {v ∈ Rm : uTv ≥ 0 ∀u ∈ C}

is the dual cone of C. Moreover, if the ODE function f is separable with x, u

and the VI function F happens to be linear in x and u, i.e., the VI is a linear
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complementarity problem (LCP). The DCP yields a more specific form:

ẋ(t) = f̂(t, x) +Bu

0 ≤ u ⊥ q + Cx+Du ≥ 0 (2.16)

0 = Γ(x(0), x(T )),

where q is a given m-vector; B,C and D are given matrices in Rn×m,Rm×n and

Rm×m, respectively. In this case, it is easy to see that C has been reduced to Rm
+ .

The aim of introducing this special form is that the numerical examples in later

chapter are mainly dependent on the system (2.16). For further study of the LCP

problem, one can refer to [10, 20], which are Ph.D thesis by Camlibel and Heemels

respectively.



Chapter 3
Reformulation of Nonsmooth ODEs

3.1 Generic Case

Let us rewrite the ODE system (1.1) presented at the very beginning ẋ(t) = f(t, x), 0 ≤ t ≤ T

Γ(x(0), x(T )) = 0.

As is mentioned before, the main contribution to the thesis is reformulating (1.1)

from nonsmooth equations to a smoothing system. There are two reasons for this

transformation. One is to simplify the notation in order that the newly defined

system would be more clear in variables and of uniform structure as a usual ODE.

The other reason is to facilitate the proof of semismoothness for the solution set

x(t) so that a satisfactory convergence property could be obtained.

Given an initial value c such that x(0; c) = c, recall the single shooting method,

whose motivation is to find out the root of equation (2.4)

h(c) := Γ(c, x(T ; c)) = 0.

Note that f(t, x) in (1.1) could be a nonsmooth function, it needs to be smoothed

first. Denote g(t, ε, x) ≡ f ε(t, x) as the smoothing function to f(t, x) (ε = 0 when

20



3.1 Generic Case 21

f is smooth). From definition 2, g(t, ε, c) is continuously differentiable for any

ε > 0. Consider the following initial ODE: ẋ = f ε(t, x) ≡ g(t, ε, x), 0 ≤ t ≤ T

x(0) = c.
(3.1)

Since an extra variable ε has been added into (3.1) due to the smoothing function

g(t, ε, x), the solution x(t; c) is not only dependent on t and the parameter c, but

also changes with ε. Hence the notation of the solution x(t; c) will be altered to

xε(t; c). As a consequence, the boundary equation (2.4) becomes:

hε(c) = Γ(c, xε(T ; c)) = 0. (3.2)

In addition, based on the fact that hε(c) might also be a nonsmooth function,

again, it has to be constructed into its corresponding smoothing approximation.

Let us denote this smoothing function by h̃ε(c). When hε(c) is a smooth function,

h̃ε(c) will be hε(c) itself. Consequently, (3.2) is presented as:

h̃ε(c) ≡ Γ̃(c, xε(T ; c)) = 0. (3.3)

Apparently, it seems to be enough to get to the equation (3.3), since h̃ε(c) = 0

is already the equation to be solved by using the smoothing Newton method.

However, it is somewhat confusing in notation. To avoid such inconvenience in

application, (3.1) requires further reformulation. One can easily see that ε and c

play the similar roles in the process of solving equation (3.2), so it comes up quite

natural that we shall take ε as another parameter in both xε(t; c) and hε(c), just

as the same position we do on the initial value c. Actually, one advantage to do

this is that all the existing results for initial-valued ODEs can be inherited to our

reformulated ODE system.

The following steps are the essential part in the whole reformulation work.

The thing is that ε is just a common parameter along with the smoothing func-

tion g(t, ε, x). If we can make ε be the initial value for some other variable in
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ODE problem (3.1), the two parameters ε and c would be taken into the identical

operations during the whole solving process.

Let τ(t) ≡ ε, whose initial value is always ε by its definition. Therefore, (3.1)

is transformed to: 

ẋ = g(t, τ, x), 0 ≤ t ≤ T

τ̇ ≡ 0, 0 ≤ t ≤ T

x(0) = c

τ(0) = ε.

This is equivalent to the initial-valued ODE below:
ẏ = p(t, y), 0 ≤ t ≤ T

y(0) =

 ε

c

 ,
(3.4)

in which the new ODE variable is defined as y ≡ (τ, x)T ( notice that y(t;−|ε|, c) :=

y(t; |ε|, c)); and p : Rn+1 → Rn+1 has the following form:

p(t, y) ≡

 0

g(t, τ, x)

 . (3.5)

(3.4) appears to be a standard initial value problem except for the semismoothness

of the differential function p(t, y).

Meanwhile, h̃ε(c) will also change its notation into

ĥ(ε, c) := Γ̂(y(0), y(T ; ε, c))

≡ Γ̂((ε, c), y(T ; ε, c)).
(3.6)

Finally, by constructing the function E(ε, c) as

E(ε, c) =

 ε

ĥ(ε, c)

 = 0, (3.7)
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we can utilize the smoothing Newton method to approximate the exact solution c∗

to ĥ(ε, c), or in other words, the real initial value for the original boundary-valued

ODE problem (1.1). With this initial value c∗, we can proceed to work out all the

numerical solutions x(t) with respect to every t from 0 to T .

3.2 A Specific Case: Boundary-valued ODE with

an LCP

The pure illustration based on general nonsmooth ODEs might be too abstract to

fully understand. In order to give a more clear picture of the reformulation, let us

consider the differential complementarity problem (DCP) (2.16):

ẋ(t) = f̂(t, x) +Bu

0 ≤ u ⊥ q + Cx+Du ≥ 0

0 = Γ(x(0), x(T )),

where, the LCP matrix D is supposed to be a P0− matrix (P0− LCP); i.e., all of

its principal minors are nonnegative. We assume f̂(t, x) satisfies assumption (C)

in Section 2.3, hence, so does the ODE function f̂(t, x) +Bu.

We know that

0 ≤ u ⊥ q + Cx+Du ≥ 0 (3.8)

if and only if

0 = u− ΠK(u− F (t, x, u)), (3.9)

where F (t, x, u) ≡ q + Cx + Du. Given an initial value c for x(0; c), with the

smoothing function φ : R3 → R,

φ(µ, a, b) =
1

2
(a+ b−

√
(a− b)2 + 4µ2)
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corresponding to the nonsmooth algebraic equation (3.9), we can obtain the solu-

tion map u(x(t; c)) of (3.9) that is semismooth at µ = 0 (see the algorithm for a

P0− LCP in [21] for the details).

However, note that once u(x(t; c)) is solved, the variable µ is required to ap-

proach zero. On the other hand, in Newton’s method the Jacobian of the function

h(c) ≡ Γ(x(0), x(T )),

Jch(c) must be calculated (for simplicity of explanation, h is supposed to be smooth

around any ε with ε > 0), which involves computing Jxu(x(T ; c))− the Jacobian

of u(x(T ; c)) (see (2.6)). Due to the fact that u(x(T ; c)) is discontinuous at µ = 0,

if µ is such a small number as 10−6, it would lead to an ill-conditioned Jacobian

Jxu(x(T ; c)) so that Newton’s method could lose its efficiency. To conquer this

problem, we have to set a lower bound, say ε, to µ in each inner iteration (iteration

for solving LCP) in order to prevent it from being too small. By doing so, ε will

act as a parameter in the ODE function f ε(t, x) ≡ f̂(t, x) + Buε(x). As a result,

the solution to the differential equation and the boundary function will be xε(t; c)

and hε(c), respectively.

Following the same notation that is described in Section 3.1, f ε(t, x) is to be

replaced by g(t, ε, x). Similarly, consider the initial-valued ODE (3.1), with a new

variable τ(t) ≡ ε being introduced in, we get to the objective boundary equation

(3.6) and approximate its solution c∗ via the smoothing Newton method as the

outer iteration for system (3.7):

E(ε, c) =

 ε

ĥ(ε, c)

 = 0.

Within the inner steps for LCP, µ is bounded below by the parameter ε. For this

purpose, throughout the entire outer iterations for solving (3.7), we can let ε be

a decreasing sequence {εk} in the manner that each εk in the kth step is imposed
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to be the lower bound of µ. Therefore, with the sequence {εk} tending to zero, µ

will become an infinitesimal at the final step. More details will be shown in the

algorithm for the smoothing Newton method in chapter 4.



Chapter 4
A Smoothing Newton Method

In this chapter, we develop a smoothing Newton method for (3.7), whose funda-

mental is the version of the QSZ smoothing Newton algorithm in [29]. Besides, the

convergence analysis and the numerical results are also reported in later sections.

4.1 Algorithm for Smoothing Newton Methods

Recall the problem we get started, which is defined by (3.7):

E(ε, c) =

 ε

ĥ(ε, c)

 = 0,

where

ĥ(ε, c) ≡ Γ̂((ε, c), y(T ; ε, c)).

Here y(T ; ε, c) is the solution to (3.4):
ẏ = p(t, y), 0 ≤ t ≤ T

y(0) =

 ε

c

 ,

26
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From the discussion in chapter 3, p(t, y) and ĥ(ε, c) are continuously differentiable

for any ε > 0.

From (3.7), for any ε > 0 a straightforward calculation yields:

J(ε,c)E(ε, c) =

 1 0

Jεĥ(ε, c) Jcĥ(ε, c)

 . (4.1)

By the definition of ĥ(ε, c), we have:

Jεĥ(ε, c) = B̂TJεy(T ; ε, c)

and

Jcĥ(ε, c) = B̂0 + B̂TJcy(T ; ε, c),

where B̂0 = JuΓ̂(u,v)
∣∣∣u=(ε,c)
v=y(T ;ε,c)

and B̂T = JvΓ̂(u,v)
∣∣∣u=(ε,c)
v=y(T ;ε,c)

.

Next we derive the calculation of Jεy(T ; ε, c) and Jcy(T ; ε, c). As is mentioned

in Section 2.1, Jcy(t; ε, c) is the (n+ 1)× n fundamental solution to the following

system: 
Ẏ (t) = Â(t)Y (t), 0 ≤ t ≤ T

Y (0) =

 0

I

 (4.2)

with Â(t, y(t; ε, c)) = Jyp(t, y). Similarly, Jεy(t; ε, c) is the (n+ 1)× 1 solution to
Ẏ (t) = Â(t)Y (t), 0 ≤ t ≤ T

Y (0) =

 1

0

 (4.3)

For the simplicity of derivation, we assume the differential function is separable in

variable x(t; ε, c) and u(x). Then, from (3.5), p(t, y) is defined as:

p(t, y) ≡

 0

f̂(t, x) +Bu(x)

 , (4.4)
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where u(x) is the solution to a nonsmooth problem. Hence, Jyp(t, y) (the Jacobian

of p(t, y) with respect to y ≡ (τ, x)T ) becomes:

Jyp(t, y) =

 0 0

0 Jxf̂(t, x) +BJxu(x).

 . (4.5)

By observation from (4.5), one can see that Jxu(x) serves as a very critical part in

computing Jyp(t, y) (Actually, it confirms what we have mentioned in Section 3.2

that the Jacobian of ĥ(ε, c) will be affected by Jxu(x)).

Given ε̄ > 0 and γ ∈ (0, 1) such that γ|ε̄| < 1. Let z := (ε, c), zk := (εk, c
k)

and z̄ := (ε̄, 0) ∈ R× Rn. Define ψ : Rn+1 → R+ and β : Rn+1 → R+ by

ψ(z) := ‖E(z)‖2 and β(z) := γmin{1, ψ(z)}, (4.6)

respectively.

Algorithm 4.1

Step 0: Choose δ ∈ (0, 1) and σ ∈ (0, 1/2). Let ε0 := ε̄, c0 ∈ Rn be an arbitrary

point and k := 0.

Step 1: If ‖E(zk)‖ ≤ tol, then stop. Otherwise, let βk := β(zk).

Step 2: Compute 4zk := (4εk,4ck) ∈ R× Rn by

E(zk) + JzE(zk)4zk = βkz̄. (4.7)

Step 3: Let λk be the maximum of the values 1, δ, δ2, · · · such that

ψ(zk + λk4zk) ≤ [1− 2σ(1− γ|ε̄|)λk]ψ(zk). (4.8)

Step 4: Set zk+1 := zk + λk4zk and k := k + 1. Go to Step 1.
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4.2 Convergence Analysis

4.2.1 Global Convergence

Since Algorithm 4.1 derives from QSZ method in [29], the global convergence dis-

cussed therein provides a way that we can use to show the global convergence of

Algorithm 4.1.

Denote

Ω := {z = (ε, c) ∈ R× Rn | ε ≥ β(z)ε̄}.

Then, because for any z ∈ Rn+1, β(z) ≤ γ < 1, it follows that for any x ∈ Rn,

(ε̄, c) ∈ Ω.

Under the assumption [29, page 15] that:

(D) For every k ≥ 0, if εk > 0 and zk ∈ Ω, then JzE(zk) is nonsingular; and

(E) and for any accumulation point z∗ = (ε∗, c∗) = limk→∞ zk, if ε∗ > 0 and

z∗ ∈ Ω, then ∂E(z∗) is nonsingular,

the sequence {zk} := {(εk, ck)} generated by Algorithm 4.1 is well-defined as a

result of the proposition 7 and proposition 8 in [29, Section 4]. This means for

each k ≥ 0, if εk > 0, zk ∈ Ω and JzE(zk) is invertible, then

εk+1 > 0 and zk+1 ∈ Ω.

Furthermore, we have the following theorem for the global convergence accord-

ing to Theorem 4 in [29]

Theorem 4.2.1. Suppose that Assumption (D) and (E) are satisfied. Then an

infinite sequence {zk} is generated by Algorithm 4.1 and each accumulation point

z̃ of {zk} is a solution of E(z)=0.
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4.2.2 Superlinear and Quadratic Convergence

The superlinear or quadratic convergence for Algorithm 4.1 tied with the semis-

moothness of the function E(ε, c) at its nondifferentiable point (0, c), for any

c ∈ Rn. To show this, we need to prove the function ĥ(ε, c) ≡ Γ̂((ε, c), y(T ; ε, c)) is

semismooth at (0, c). Since in Section 3.1, ĥ(ε, c) is defined as the smoothing func-

tion of the original h(c), its semismoothness, therefore only depends on y(T ; ε, c)−

the solution map to the ODE (3.4). In this section, we prove the semismoothness

of y(T ; ε, c) and the superlinear (quadratic) convergence.

Lemma 4.2.1. Suppose p(t, y) in (3.4) is Locally Lipschitz continuous in a neigh-

borhood of the trajectory starting at (0, c∗). Then, there exists a neighborhood

N0 of (0, c∗) such that for every (ε, c) ∈ N0, the ODE (2.1) has a unique solution

y(t; ε, c) on [0, T ] which satisfies, for any (ε, c) and (ε′, c′) ∈ N0,

‖y(t; ε, c)− y(t; ε′, c′)‖ ≤ eLt

∥∥∥∥∥∥
 ε− ε′

c− c′

∥∥∥∥∥∥ , ∀ t ∈ [0, T ].

Remarks: Recall the definition of y(t; ε, c) in Section (3.1), we have y(t;−|ε|, c) :=

y(t; |ε|, c). This means ε here is not restricted to be nonnegative anymore.

This Lemma (4.2.1) is an immediate consequence of Lemma (2.1.1). Because

of the reformulation that transforms the parameter ε to the initial value of another

variable τ , the Lipschitz continuity on initial data for traditional ODEs remains

valid in the nonsmooth ODEs (2.1.1).

Theorem 4.2.2. Suppose the functions p(t, y) is continuously differentiable at

y(t; ε, c) for any ε > 0, and semismooth at y(t; 0, c∗). Then the solution map

y(t; ε, c) to the ODE system (3.4) is semismooth at (0, c∗), c∗ ∈ Rn for all t ∈ [0, T ].

(The inspiration of the proof to Theorem 4.2.4 from [24, Theorem 8])

Proof. We know that y(t; ε, c) is smooth for any (ε, c) except for the set S :=

{(0, c)|c ∈ Rn}, which is Lebesgue measure zero in R × Rn. By the Theorem
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2.2.1, it is sufficient to prove that for any ε > 0 (which indicates the existence of

J(ε,c)y(t; ε, c)),

y(t; ε, c)− y(t; 0, c∗)− J(ε,c)y(t; ε, c)

 ε

c− c∗

 = o

∥∥∥∥∥∥
 ε

c− c∗

∥∥∥∥∥∥ . (4.9)

For our convenience of notation, denote z := (ε, c) and z0 := (0, c∗).

Then, we have

y(t; z) =

∫ t

0

p(ω, y(ω; z))dω + z, (4.10)

y(t; z0) =

∫ t

0

p(ω, y(ω; z0))dω + z0, (4.11)

and

Jzy(t; z)(z − z0) =

∫ t

0

[Jyp(ω, y(ω; z))Jzy(ω; z)](z − z0)dω + I(z − z0). (4.12)

Together with (4.10),(4.11) and (4.12), the left-hand side of (4.9) is:∫ t

0

[p(ω, y(ω; z))− p(ω, y(ω; z0))− Jyp(ω, y(ω; z))(y(ω; z)− y(ω; z0))

+ Jyp(ω, y(ω; z))(y(ω; z)− y(ω; z0))− Jyp(ω, y(ω; z))Jzy(ω; z)(z − z0)] dω.

Write

e(t; z, z0) := y(t; z)− y(t; z0)− Jzy(t; z)(z − z0)

ep(t; z, z0) := p(t, y(t; z))− p(t, y(t; z0))− Jyp(t, y(t; z))(y(t; z)− y(t; z0)).

p(t, y(t; z)) is continuously differentiable hence locally Lipschitz continuous near

y(t; z) = y(t; ε, c) for ε > 0, which means Jyp(t, y(t; z)) is bounded with the con-

stant Lp.

This yields

‖e(t; z, z0)‖ ≤
∫ t

0

‖ep(ω; z, z0)‖dω + Lp

∫ t

0

‖e(ω; z, z0)‖dω.
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Using the Gronwall’s lemma again, we obtain

‖e(t; z, z0)‖ ≤
∫ t

0

‖ep(ω; z, z0)‖dω + Lp

∫ t

0

(

∫ ω

0

‖ep(s; z, z0)‖ds)eLp(t−ω) dω.

On the other side, p(t, y) is semismooth at y(t; z0), and from Lemma 4.2.1 y(t; z)

is locally Lipschitz continuous near z0.

We deduce

lim
z→z0

ep(ω; z, z0)

‖z − z0‖
= lim

z→z0

ep(ω; z, z0)

‖y(ω; z)− y(ω; z0)‖
· ‖y(ω; z)− y(ω; z0)‖

‖z − z0‖
= 0.

An application of the Lebesgue dominated convergence theorem leads to

lim
z→z0

e(t; z, z0)

‖z − z0‖
= 0,

which verify the y(t; z) = y(t; ε, c) is semismooth at z0 = (0, c∗). �

Theorem 4.2.3. Suppose all the conditions in Theorem 4.2.2 are satisfied. More-

over, the functions p(t, y) is uniformly strongly semismooth at y(t; z0), i.e.,

ep(t; z, z0) = O(‖y(t; z)− y(t; z0)‖2), for all t ∈ [0, T ]. (4.13)

Then the solution map y(t; z) to the ODE system (3.4) is strongly semismooth at

z0 for all t ∈ [0, T ].

Proof. Refer to the proving process in Theorem 4.2.2, we get to

‖e(t; z, z0)‖ ≤
∫ t

0

‖ep(ω; z, z0)‖dω + Lp

∫ t

0

(

∫ ω

0

‖ep(s; z, z0)‖ds)eLp(t−ω) dω.

From (4.13), ep(s; z, z0) is estimated by

lim
z→z0

ep(s; z, z0)

‖z − z0‖2
= M,

where M > 0 is a constant that irrelevant to the integral variable s, hence the inte-

gral can be re-evaluated and apply the Lebesgue dominated convergence theorem
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again, we have

lim
z→z0

e(t; z, z0)

‖z − z0‖2
≤ Mt+ Lp

∫ t

0

Mω eLp(t−ω) dω

=
M(eLpt − 1)

Lp

.

Since 0 ≤ t ≤ T , we deduce

lim
z→z0

e(t; z, z0)

‖z − z0‖2
≤ M(eLpT − 1)

Lp

,

which establishes the strongly semismoothness of y(t; z) at y(t; z0). �

Remarks: The assumption that p(t, y) is uniformly strongly semismooth at y(t; 0, c∗)

for all t ∈ [0, T ] is not unrealistic. The following simple example shows the exis-

tence of such a function p. Consider a nonsmooth initial value problem: ṗ = max(0, p), 0 ≤ t ≤ T

p(0) = c.
(4.14)

One can easily see that the solution p(t; c) to the system (4.14) is

p(t; c) =

 cet c > 0

c c ≤ 0,
(4.15)

which is nondifferentiable at c = 0, so let us check the semismoothness at this

point. For c = 0, we have

p(t; c′)− p(t; 0)− Jcp(t; c
′)(c′ − 0) = 0 c′ > 0

p(t; c′)− p(t; 0)− Jcp(t; c
′)(c′ − 0) = 0 c′ < 0.

This shows that p(t; c) is strongly semismooth at c = 0 for all t ∈ [0, T ].

Theorem 4.2.4. Suppose that Assumption (D) and (E) are satisfied and z∗ is

an accumulation point of the infinite sequence {zk} generated by Algorithm 4.1.
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Suppose that E is semismooth at z∗ and that all V ∈ ∂E(z∗) are nonsingular.

Then the whole sequence {zk} converges to z∗ superlinearly,

‖zk+1 − z∗‖ = o(‖zk − z∗‖) (4.16)

Furthermore, if E is strongly semismooth at z∗, then

‖zk+1 − z∗‖ = O(‖zk − z∗‖2) (4.17)

Proof. From Theorem 4.2.1 that z∗ is a solution of E(z) = 0. Then, from [27,

Proposition 3.1], for all zk sufficiently close to z∗,

‖(JzE(zk))−1‖ = O(1).

Recall the Step 2 in Algorithm 4.1, we have

4zk = (JzE(zk))−1(−E(zk) + E(z∗) + βkz̄),

and consider

‖zk +4zk − z∗‖ = ‖ − (JzE(zk))−1(E(zk)− E(z∗)) + zk − z∗ + (JzE(zk))−1βkz̄‖

≤ ‖(JzE(zk))−1(E(zk)− E(z∗))− (zk − z∗)‖+ ‖(JzE(zk))−1βkz̄)|.

Assume E is semismooth (strongly semismooth, respectively), we have

(JzE(zk))−1(E(zk)− E(z∗))− (zk − z∗) = (JzE(zk))−1o(‖zk − z∗‖).

On the other side, from the definition of βk and the fact that zk → z∗ as k →∞,

for all k sufficiently large, βk = γψ(zk). Hence ‖βkz̄‖ ≤ γ‖z̄‖‖ψ(zk)‖. We get

‖zk +4zk − z∗‖ = o(‖zk − z∗‖) +O(ψ(zk))

(= O(‖zk − z∗‖) +O(ψ(zk)).
(4.18)

Because E is locally Lipschitz continuous near z∗ for all zk close to z∗,

ψ(zk) = ‖E(zk)‖2 = O(‖zk − z∗‖2). (4.19)
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Together with (4.18), (4.19) for all zk sufficiently close to z∗, we deduce

‖zk +4zk − z∗‖ = o(‖zk − z∗‖)

(= O(‖zk − z∗‖2)).
(4.20)

Claim

zk+1 = zk +4zk;

and after substituting zk+1 into (4.20), the superlinear (quadratical) convergence

is verified.

Follow the proof for Theorem 8 in [29], we obtain

ψ(zk +4zk) = o(ψ(zk))

(= O(ψ(zk)2)).
(4.21)

Compare (4.21) with (4.8) in Step 3 of Algorithm 4.1, we conclude that the claim

is true. �

4.3 Numerical Experience

In this section, we present some numerical experiments for Algorithm 4.1 imple-

mented in Matlab to see the behavior of the smoothing Newton method. All the

models we use are based on the DCP (2.16)

ẋ(t) = f̂(t, x) +Bu

0 ≤ u ⊥ q + Cx+Du ≥ 0

0 = Γ(x(0), x(T )),

where the LCP is generated from a convex quadratically constrained (QP) pro-

gramming problem [21, Section 6] with D being assumed to be a P0−matrix, while

the vector q is randomly given.
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Recall the Jacobian Jyp(t, y) (4.5) calculated in Section 4.1 which involves com-

puting Jxu(x), where u(x) is the solution to the LCP for a given x. This requires

us to analyze the P0−LCP [21, Section 2].

Let φ : R3 → R

φ(µ, a, b) = a+ b−
√

(a− b)2 + 4µ2

and let Φ : R2n+1 → Rn be:

Φ(µ, u, s) :=


φ(µ, u1, s1)

...

φ(µ, un, sn).

 .

Then, given the initial value for x(t; c) solving the LCP (3.8) is equivalent to finding

out the root for H(µ, u, s;x):

H(µ, u, s;x) :=


µ

s−Du− Cx− q

Φ(µ, u, s) + α(µ)u

 , (4.22)

in which α : R → R+ is a twice continuously differentiable function satisfying

α(µ) > 0 for µ 6= 0, and

α(0) = 0, |α(µ)| = O(µ3), and |α′(µ)| = O(µ2).

When µ 6= 0, denote JH(µ, u, s;x) as the Jacobian with respect to the vector

(µ, u, s)T .

JH(µ, u, s;x) =


1 0 0

0 −D I

JµΦ + α′(µ)u JuΦ + α(µ)I JsΦ

 . (4.23)

Moreover, H(µ, u, s;x) = 0 infers

JH(µ, u, s;x)


Jxµ

Jxu(x)

Jxs(x)

 + JxH(µ, u, s;x) = 0. (4.24)



4.3 Numerical Experience 37

Combing (4.23) and (4.24) yields a linear equation in Jxu(x) and Jxs(x), which

is easy to calculate. Up to now, we have demonstrated the way to calculate

J(ε,c)E(ε, c).

Example 4.3.1. We consider the boundary value ODE as below ẋ = Ax+ q(t) +Bu(x), 0 ≤ t ≤ 1

0 = wmax(x(0), x(1)) + (1− w)(B0x(0) +B1x(1)− b)

with u(x) satisfying (3.8). The weight in the boundary condition w varies between

[0, 1].

The data of ODE is given by:

A =


0 1 0

0 0 1

−2 1 2

 ; q(t) =


0

0

(π3 + π) sinπt+ (2 + 2π2) cos πt


and

B0 =


1 0 0

0 0 0

0 0 0

 ; B1 =


0 0 0

1 0 0

0 1 0

 ; b =


1.6348

0

1.1116

 .

Without the LCP term u(x) and the nonsmooth function max(x(0), x(1)) in the

boundary condition, this problem would be a very typical boundary ODE system

and can be well solved by using the single shooting method. By means of adjusting

the value of the coefficient matrix B, we can control the degree of how the LCP

affects the pure ODE system.

Example 4.3.2. Consider the nonsmooth ODE as below ẋ = f̂(t, x) +Bu(x), 0 ≤ t ≤ 1

0 = wmax(x(0), x(1)) + (1− w)(B0x(0) +B1x(1))
(4.25)

with u(x) solving (3.8).
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We write x = (x1, x2)
T and define the data in the problem as

f̂(t, y) =

 x2(t)

−ex1(t)+1

 ; B0 =

 1 0

0 0

 ; B1 =

 0 0

1 0

 .

Note that both boundary functions of Example (4.3.1) and Example (4.3.2) are

no longer continuously differentiable but the linear combination of a nonsmooth

function and a linear operator. Such kind of problem has never been attacked

before, while the numerical reports for (4.25) by means of Algorithm 4.1 is quite

encouraging.

Refer to Section 3.1, in order to use the smoothing Newton method, the bound-

ary function

h(c) ≡ wmax(c, x(1; c)) + (1− w)(B0c+B1x(1; , c))

must be smoothed first. Let

h̃ε(c) = 1
2
w(c+ xε(1; c) +

√
(c− xε(1; c))2 + 4ε2)

+(1− w)(B0c+B1x
ε(1; c))

(4.26)

be its smoothing function, where ε arises from the procedure for solving the LCP

(3.8). Denote the dimension of the variable x(t) by n. Then from (4.26), for any

ε > 0 a straightforward calculation yields

Jεh̃ = wJε max +(1− w)B1Jεx
ε(1; c)

Jch̃ = wJc max +(1− w)(B0 +B1Jcx
ε(1; c)),

where the calculations of Jεx(1) and Jcx(1) are analogous to that of (4.2) and (4.3),

respectively,

Jε max :=
1

2
vec

{
Jεx

ε
i (1; c) +

(ci − xε
i (1; ci))(−Jεx

ε
i (1; ci)) + 4ε√

(ci − xε
i (1; ci))

2 + 4ε2
: i = 1, 2, · · · , n

}
,
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and

Jc max :=
1

2
( I + Jcx

ε(1; c) + F − FJcx
ε(1; c)),

where I denotes the 2× 2 identity matrix,

F := diag

{
ci − xε

i (1; ci)√
(ci − xε

i (1; ci))
2 + 4ε2

: i = 1, 2, · · · , n

}
.

For any positive integers n1 and n2, let rand(n1, n2) denote a matrix by n1×n2

whose each element is randomly chosen in (0, 1). Throughout the computational

experiments, the parameters used in Algorithm 4.1 were chosen as δ = 0.5, σ =

0.0001, ε0 = 1, γ = 0.1 min{1, 1/ε0}. Let the coefficient B of u(x) be an identity

matrix. We used ‖E(zk)‖ ≤ 10−6 as the stopping rule. With varies randomly

given starting points c0, the two problems are tested ten times for different w by

using algorithm 4.1. The iteration numbers are listed in Table 4.1 and Table 4.2,

respectively.
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c0 rand(0, 1) 10*rand(0, 1) 100*rand(0, 1)

w 0 0.5 1 0 0.5 1 0 0.5 1

N

13 15 14 16 14 13 16 18 25

13 20 26 13 12 18 19 15 19

14 17 17 22 19 26 19 16 20

13 19 16 12 21 20 15 17 20

10 18 19 14 16 18 18 19 21

15 12 15 12 14 13 18 19 20

12 13 19 15 18 15 20 22 24

17 13 16 11 13 13 22 21 21

14 15 12 17 17 18 15 15 15

14 16 21 16 14 16 20 16 14

Table 4.1: The numerical results for Example 4.3.1, where N is iteration number

c0 rand(0, 1) −rand(0, 1) 5 ∗ rand(0, 1)

w 0 0.5 1 0 0.5 1 0 0.5 1

N

6 5 4 8 6 5 7 5 4

6 5 4 6 5 5 5 6 4

10 6 4 4 7 6 6 8 4

6 5 4 9 6 5 4 5 4

5 6 4 8 6 5 11 7 4

4 6 4 7 6 6 6 6 4

5 5 4 6 6 6 5 7 4

5 5 4 11 5 5 6 6 4

6 5 5 5 6 4 7 5 4

5 4 4 11 5 5 6 8 4

Table 4.2: The numerical results for Example 4.3.2, where N is iteration number
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Conclusions

Example 4.3.1 and Example 4.3.2 are only of three or two dimensions, which cannot

fully show the advantages of Algorithm 4.1 for the nonsmooth ODEs, and one can

test some large scaled boundary valued problems arising from the constrained

control systems. Furthermore, During the procedure of the computation, not all

the problems can be observed the quadratic convergence but only the superlinear

convergence, whereas the former is provided theoretically. One of the reasons

comes from the inexact finite difference method for the initial value ODE, which

means E(εk, ck) is just an approximation to its real value in each step k. Due to

this fact, an inexact smoothing Newton method might be developed to make up

for the computational errors. In addition, the uniformly strong semismoothness

assumed in Theorem 4.2.3 still needs a deep discussion. At least, we have shown

the reasonability of this assumption. One may derive certain conditions under

which the assumption can be satisfied.

Another point worthy of discusstion is that the whole structure of solving the

nonsmooth ODE is based on the single shooting method. Meanwhile, there are

many other classical ways for the boundary value ODEs such as: implicit Runge-

Kutta methods, finite element methods, etc. that could be combined with the

41
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smoothing Newton method. We do not choose these methods mainly because

of the potential large scale which might be involved in the numerical practice.

Nevertheless, there is still feasibility of this new idea, which remains to be a further

study.

Finally, even if the boundary condition h(c) ≡ Γ(c, x(T ; c)) = 0 is already

smooth in x(t; c), we can still add a regularization term α(ε)c in the smoothing

function E(ε, c) as we do in the third term of (4.22) to improve the Jacobian

condition J(ε,c)E and accelerate the convergence rate of Algorithm 4.1. As an

extension, chances are that the nonsmooth boundary-valued ODE system could be

expected to a more general form: a differential algebraic equation (DAE) problem

[5]  ẋ = f(t, x, u)

0 = g(t, x, u),

so that the robustness of the smoothing Newton method for the differential systems

can be fully tested. All that have been mentioned above leave us significant research

topics in the future.
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