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Linear Programming
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The primal form of standard Linear Programming (LP):

(P)

min 〈c, x〉

s.t. Ax = b ,

x ≥ 0 ,

where A : ℜn → ℜm is a linear operator, c ∈ ℜn , and b ∈ ℜm.
The dual form takes:

(D)

max 〈b, y〉

s.t. A∗y − c = z ,

z ≤ 0 ,

where A∗ is the adjoint of the linear operator A.



Brief History of LP

Zhejiang University, Hangzhou, December 16, 2011 NUS/SUN – 3 / 40

• Simplex Method
• G.B. Dantzig (1947)
• Very efficient
• Not polynomial algorithm. Klee and Minty (1972) gave an example
• Average analysis versus worst-case analysis

• Khachiyan’s Ellipsoid Method (1979)
• Polynomial algorithm
• Less efficient

• Interior-Point Algorithms
• Karmarkar (1984)
• Polynomial algorithm
• Efficient for some large-scale sparse LPs

• Efficient Softwares Available
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Let X be the Cartesian product of several finite dimensional real matrix
spaces, symmetric or non-symmetric, with the inner product 〈·, ·〉 and its
induced norm ‖ · ‖.

Let f : X → (−∞,∞] be a closed proper convex function.

The Fenchel conjugate of f is defined by

f∗(z) := sup
x∈X

{〈z, x〉 − f(x)} .

For example, if f(x) = δℜn
+
(x), the indicator function over ℜn

+, then
f∗(x) = δ(−ℜn

+)(x).

We are ready to define matrix programming ...



Matrix Programming
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The “standard” Matrix Programming (MP) and its dual take the forms:

(P)
min 〈c, x〉+ f(x)

s.t. Ax = b

and

(D)
max 〈b, y〉 − f∗(z)

s.t. A∗y − c = z ,

where A∗ is the adjoint of the linear operator A : X → ℜm, c ∈ X , b ∈ ℜm.

Here, f and f∗ should be “simple” and “computable”. In standard linear
programming, f(x) = δℜn

+
(x), the indicator function over ℜn

+ and
f∗(x) = δ(−ℜn

+)(x).



Matrix Cone Programming
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When f(x) = δK(x), the indicator function of a closed convex cone K, we can
write (P) and (D) equivalently as the following Matrix Cone Programming
(MCP):

(P)

min 〈c, x〉

s.t. Ax = b ,

x ∈ K ,

(D)

max 〈b, y〉

s.t. A∗y − c = z ,

z ∈ K◦ ,

where K◦ is the polar of K, i.e,

K◦ := {z ∈ X | 〈z, x〉 ≤ 0 ∀x ∈ K } .

The dual cone of K is denoted by K∗ := −K◦.



Semidefinite Programming
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Semidefinite programming (SDP): Let Sn and Sn
+ be, respectively, the space

of n× n symmetric matrices and the cone of real positive semidefinite
matrices in Sn. When f(x) = δSn

+
(x), the indictor function over Sn

+, we have
the familiar SDP:

(P)

min 〈c, x〉

s.t. Ax = b ,

x ∈ Sn
+ ,

(D)

max 〈b, y〉

s.t. A∗y − c = z ,

z ∈ −Sn
+ .

The SDP cone Sn
+ is self-dual, i.e., Sn

+ = (Sn
+)

∗. There are many
non-self-dual matrix cones.



Copositive Cone Programming
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Copositive cone programming: f(x) = δC(x), the indictor function over the
cone of copositive matrices, i.e.,

C := {x ∈ Sn | aTxa ≥ 0 for all a ∈ ℜn
+} .

The function f∗(x) = δ(−C∗)(x), where C∗, the dual cone of C, is the cone of
completely positive matrices, i.e.,

C∗ = conv{aaT | a ∈ ℜn
+} .

Copositive programming is hard. Murty and Kabadi 1 has shown that
checking whether a given matrix x ∈ C is a co-NP-complete decision problem.

1
K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and nonlinear

programming. Mathematical Programming 39 (1987) 117–129.



Desirable Properties of f
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More specifically, we require

• The Moreau-Yosida regularization of f

ψf (x) := min
z∈X

f(z) +
1

2
‖z − x‖2

has a closed form solution, denoted by Pf (x) [non-expansive operator], or at
least admits an effective algorithm.

• One can easily compute the directional derivative of

∇ψf (x) = x− Pf (x).

Thus, to be able to characterize the Bouligand-sub-differential of ∇ψf .

• The function ∇ψf is (strongly) semismooth.



Moreau’s Decomposition
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Note that Moreau’s decomposition

Pf (x) + Pf∗(x) = x, ∀x ∈ X

is very useful in checking these properties for f .

If f(x) = δK(x), the indicator function over a closed convex cone K, then

Pf (x) = ΠK(x) and Pf∗(x) = ΠKo(x) ,

where ΠD is the metric projection over a closed convex set D and Ko is the
polar of K.

For example, K = Sn
+, the cone of real positive semi-definite symmetric

matrices, ΠSn
+
(x) needs one eigenvalue decomposition[divide and

conquer–4n3 operations].



More Examples
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More generally, if f is positively homogenous, then f∗(x) = δ∂f(0)(x) and

x− Pf (x) = Pf∗(x) = Π∂f(0)(x) , ∀x ∈ X .

Let us first look at one simple example:

min
y∈ℜk

‖A0 −
∑k

i=1 yiAi‖2 ,

where Ai are m by n matrices, ‖ · ‖2 is the spectral (operator) norm of
matrices (the largest singular value).

Use ‖ · ‖∗ to denote the nuclear norm (the sum of all singular values) and B1
∗

to denote the unit nuclear norm ball.
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We can equivalently write it in the form of (D):

max 〈0, y〉 − ‖Z‖2

s.t. Ay −A0 = Z

and the corresponding form of (P):

min 〈A0, X〉+ δB1
∗
(X)

s.t. A∗X = 0 .



Zhejiang University, Hangzhou, December 16, 2011 NUS/SUN – 13 / 40

Slightly more complicated:

min
y∈ℜk

‖A0 −
∑k

i=1 yiAi‖2 + λ‖y‖1 ,

λ > 0 and ‖ · ‖1 is the l1-norm, in order to get a sparse y. Use epi f1 to
denote the epigraph of the l1-norm function.

Now we may write it as (D)

max 〈(−λ, 0), (y0, y)〉 − ‖Z‖2 − δepi f1(z0, z)

s.t. Ay −A0 = Z ,

(y0, y) = (z0, z).
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The corresponding (P) form is:

min 〈A0, X〉+ 〈0, (x0, x)〉+ δB1
∗
(X) + δ(−epi f∞)(x0, x)

s.t. (x0,A
∗X + x) = (−λ, 0) ,

where epi f∞ is the epigraph of the l∞ norm function.

The (P) form can be simplified as:

min 〈A0, X〉+ 〈0, x〉+ δB1
∗
(X) + δBλ

∞
(x)

s.t. A∗X + x = 0 ,

where Bλ
∞ is the l∞ norm ball centered at the origin with radius λ.
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A bit more complicated:

min
y∈ℜk

1
2‖A0 −

∑k
i=1 yiAi‖

2
2 + λ‖y‖1 .

Now we may write it as the (D) form:

max 〈0, y〉 − 1
2‖Z‖

2
2 − λ‖z‖1

s.t. Ay −A0 = Z ,
y = z .
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The corresponding (P) form is:

min 〈A0, X〉+ 〈0, x〉+ 1
2‖X‖2∗ + δBλ

∞
(x)

s.t. A∗X + x = 0 .
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In low rank matrix optimization problems, we need to solve (P) form for the
nonsymmetric problem:

min 〈C,X〉+
k

∑

j=1

σj(X)

s.t. A(X) = b

and the (P) form for the symmetric problem:

min 〈C,X〉+
k

∑

j=1

λj(X) + δSn
+
(X)

s.t. A(X) = b .



One non-symmetric matrix cone
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Define
Kε

m,n := {(t,X) ∈ ℜ × ℜm×n | ε−1t ≥ ‖X‖2}

for ε > 0.

We drop m and n if they are clear from the context and omit ε if it is 1.
So K is the epigraph of the operator norm ‖ · ‖2.

When n = 1, K is the epigraph of the l2-norm, which is better known as the
second order cone, or Lorentz cone, or ice-cream cone.



Why bother?
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Note that we can write t ≥ ‖X‖2 (here, X ∈ ℜm×n) equivalently as

Sm+n ∋

[

tIm X
XT tIn

]

� 0 .

However, this changes the dimension from mn to 1
2(m+ n)2. No one will do

it if m≪ n or n≪ m. Think about the second order cone case (n = 1).

Most importantly, now it is clear that we cannot expect IPMs to solve large
scale SDPs. Such transformations must be avoided. The remedy – go back to
the problem where it comes from and resort to nonsmooth analysis –
semismooth analysis.



Why nonsmooth?
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Recall that
∇ψf (x) = x− Pf (x)

is only Lipschitz continuous.

[Non-smoothness allows non-singularity!] while Smoothness =⇒ Singularity.

Non-singularity makes the conjugate gradient methods to solve the
corresponding linear systems possible.



Where are we?
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Hyperbolic cone

Homogenous cone

Symmetric cone

SDP cone
Positive orthant

Figure 1: The cones relationship
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Let X ∈ ℜm×n admit the following singular value decomposition:

X = U [Σ(X) 0]V
T
= U [Σ(X) 0]

[

V 1 V 2

]T
= UΣ(X)V

T
1 ,

where U ∈ Om, V ∈ On and V 1 ∈ ℜn×m, V 2 ∈ ℜn×(n−m) and
V =

[

V 1 V 2

]

.

The set of such matrices (U, V ) in the singular value decomposition is
denoted by Om,n(X), i.e.,

Om,n(X) := {(U, V ) ∈ ℜm×m ×ℜn×n |X = U [Σ(X) 0]V T } .
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For any positive constant ε > 0, denote the closed convex cone Dε
n by

Dε
n := {(t, x) ∈ ℜ× ℜn | ε−1t ≥ xi, i = 1, . . . , n} .

For any (t, x) ∈ ℜ ×ℜn, ΠDε
n
(t, x) is the unique optimal solution to the

following simple quadratic convex optimization problem

min
1

2

(

(τ − t)2 + ‖y − x‖2
)

s.t. ε−1τ ≥ yi, i = 1, . . . , n .
(1)

We can solve (1) at a cost of O(n) operations.
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For any positive constant ε > 0, define the matrix cone Mε
n in Sn as the

epigraph of the convex function ελmax(·), i.e.,

Mε
n := {(t,X) ∈ ℜ × Sn | ε−1t ≥ λmax(X)} . (2)

Proposition 1. Let X have the eigenvalue decomposition

X = Pdiag(λ(X))P
T
, (3)

where P ∈ On. Then,

ΠMε
n
(t,X) = (t̄, Pdiag(ȳ)P

T
) ∀ (t,X) ∈ ℜ × Sn ,

where (t̄, ȳ) = ΠDε
n
(t, λ(X)) ∈ ℜ ×ℜn.
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Theorem 1. Let ΠKε(·, ·) be the metric projector over Kε under Frobenius
norm in ℜm×n. For any (t,X) ∈ ℜ × ℜm×n, we have

ΠKε(t,X) =
(

t̄, U [diag(ȳ) 0]V
T
)

, (4)

where
(t̄, ȳ) = ΠCε

m
(t, σ(X)) ∈ ℜ× ℜm

and for any positive constant ε > 0, we denote the closed convex cone Cε
m by

Cε
m := {(t, x) ∈ ℜ× ℜm | ε−1t ≥ ‖x‖∞} .

Proof. Trivial. Just use von Neumann’s inequality
‖σ(X)− σ(Y )‖ ≤ ‖X − Y ‖.
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Note that for any (t, x) ∈ ℜ × ℜm, ΠCε
m
(t, x) is the unique optimal solution

to the following convex optimization problem

min
1

2

(

(τ − t)2 + ‖y − x‖2
)

s.t. ε−1τ ≥ ‖y‖∞ .

This is simple quadratic programming – it can be solved in O(m) operations.
So the cost of this part is negligible.
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Define the index sets a, b and c by

a := {i |σi(X) > 0}, b := {i |σi(X) = 0} and c := {m+ 1, . . . , n} .

Let µ1 > µ2 > . . . > µr > 0 be the nonzero distinct singular values of X.
Then, let

ak := {i |σi(X) = µk}, k = 1, . . . , r .
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Define S : ℜm×m → Sm and T : ℜm×m → ℜm×m as follows

S(Z) :=
1

2
(Z + ZT ) and T (Z) :=

1

2
(Z − ZT ) .

For convenience, write σ0(X) = +∞ and σn+1(X) = −∞. Let s0 = 0 and
sk =

∑k
i=1 σi(X), k = 1, . . . ,m. Let k̄ be the smallest integer

k ∈ {0, 1, . . . ,m} such that

σk+1(X) ≤ (sk + εt)/(k + ε2) < σk(X) . (5)

Denote
θ(t, σ(X)) := (sk + εt)/(k + ε2) . (6)
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Define three index sets α, β and γ in {1, . . . , n} by

α := {i |σi(X) > θε(t, σ(X))}, β := {i |σi(X) = θε(t, σ(X))}

and
γ := {i |σi(X) < θε(t, σ(X))} .

Let δ :=
√

1 + k̄. Define a linear operator ρ : ℜ× ℜm×n → ℜ as follows

ρ(η,H) :=

{

δ−1(η +Tr(S(U
T
αHV α))) if t ≥ −‖X‖∗ ,

0 otherwise .

Denote
(

g0(t, σ(X)), g(t, σ(X))
)

:= ΠCm(t, σ(X)) .
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Define Ω1 ∈ ℜm×m, Ω2 ∈ ℜm×m and Ω3 ∈ ℜm×(n−m) (depending on X) as
follows, for any i, j ∈ {1, . . . ,m},

(Ω1)ij :=







gi(t, σ(X))− gj(t, σ(X))

σi(X)− σj(X)
if σi(X) 6= σj(X) ,

0 otherwise ,
(7)

(Ω2)ij :=







gi(t, σ(X)) + gj(t, σ(X))

σi(X) + σj(X)
if σi(X) + σj(X) 6= 0 ,

0 otherwise
(8)

and for any i ∈ {1, . . . ,m} and j ∈ {1, . . . , n−m}

(Ω3)ij :=







gi(t, σ(X))

σi(X)
if σi(X) 6= 0 ,

0 if σi(X) = 0 ,
(9)
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Theorem 2. The metric projector over the matrix cone K, ΠK(·, ·) is
directionally differentiable at (t,X). For any given direction

(η,H) ∈ ℜ × ℜm×n, let A := U
T
HV 1, B := U

T
HV 2.

Then the directional derivative Π′
K((t,X); (η,H)) can be computed as follows

(i) if t > ‖X‖2, then Π′
K((t,X); (η,H)) = (η,H);

(ii) if ‖X‖2 ≥ t > −‖X‖∗, then Π′
K((t,X); (η,H)) = (η,H) with
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η = δ−1ψδ
0
(η,H) ,

H = U





ηI|α| 0 (Ω1)αγ ◦ S(A)αγ
0 Ψδ(η,H) S(A)βγ

(Ω1)γα ◦ S(A)γα S(A)γβ S(A)γγ



V
T

1

+U

[

(Ω2)aa ◦ T (A)aa (Ω2)ab ◦ T (A)ab
(Ω2)ba ◦ T (A)ba T (A)bb

]

V
T

1
+ U

[

(Ω3)ac′ ◦Bac′

Bbc′

]

V
T

2
,

where
(

ψδ
0(η,H),Ψδ(η,H)

)

∈ ℜ × S |β| is given by

(

ψδ
0(η,H),Ψδ(η,H)

)

:= ΠMδ
|β|
(ρ(η,H), S(U

T
βHV β)) .
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In particular, if t = ‖X‖2 > 0, we have that k̄ = 0, δ = 1, α = ∅, ρ(η,H) = η
and

η = ψδ
0(η,H), H = U

[

Ψδ(η,H) + T (A)ββ Aβγ

Aγβ Aγγ

]

V
T
1 + UBV

T
2 ;

(iii) if t = −‖X‖∗, then Π′
K((t,X); (η,H)) = (η,H) with

η = δ−1ψδ
0(η,H) , (10)

H = U

[

ηI|α| 0

0 Ψδ
1(η,H)

]

V
T
1 + U

[

0
Ψδ

2(η,H)

]

V
T
2 , (11)
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where ψδ
0(η,H) ∈ ℜ, Ψδ

1(η,H) ∈ ℜ|β|×|β| and Ψδ
2(η,H) ∈ ℜ|β|×(n−m) are

given by

(

ψδ
0(η,H),

[

Ψδ
1(η,H) Ψδ

2(η,H)
] )

:= ΠKδ
|β|,(n−|a|)

(

ρ(η,H),
[

U
T
βHVβ U

T
βHV 2

] )

.

(iv) if t < −‖X‖∗, then

Π′
K((t,X); (η,H)) = (0, 0) .
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Moreover, ΠK(·, ·) is 1-order B-differentiable (or B-diff. of degree 2) at (t,X),
i.e., for any (η,H) ∈ ℜ × ℜm×n with (η,H) → (0, 0), we have

ΠK(t+ η,X +H)−ΠK(t,X)−Π′
K((t,X); (η,H)) = O(‖(η,H)‖2) .
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Theorem 3. The metric projector ΠK(·, ·) is differentiable at
(t,X) ∈ ℜ × ℜm×n if and only if (t,X) satisfies one of the following three
conditions:

(i) t > ‖X‖2;

(ii) ‖X‖2 > t > −‖X‖∗ but σk̄+1(X) < θ(t, σ(X));

(iii) t < −‖X‖∗.

In this case, for any (η,H) ∈ ℜ × ℜm×n, Π′
K(t,X)(η,H) = (η̄, H), where

under condition (i), (η,H) = (η,H); under condition (ii),
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η = δ−1ρ(η,H)

and

H = U

[

δ−1ρ(η,H)I|α| (Ω1)αγ ◦ S(A)αγ
(Ω1)γα ◦ S(A)γα S(A)γγ

]

V
T
1

+ U

[

(Ω2)aa ◦ T (A)aa (Ω2)ab ◦ T (A)ab
(Ω2)ba ◦ T (A)ba T (A)bb

]

V
T
1 + U

[

(Ω3)ac′ ◦Bac′

Bbc′

]

V
T
2

with A := U
T
HV 1, B := U

T
HV

T
2 ; and under condition (iii), (η,H) = (0, 0).
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Theorem 4. ΠK(·, ·) is strongly G-semismooth at any (t,X) ∈ ℜ× ℜm×n

and ΠK(·, ·) is 1-order B-diff at any (t,X) ∈ ℜ× ℜm×n

Note that a locally Lipschitz function G : ℜp → ℜq is said to be strongly
G-semismooth at x if

G(x+ h)−G(x)− ∂G(x+ h)h = O(‖h‖2) .



Do we know more now?
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Five matrix cones can be included:
1) The epigraph of the Frobenius norm (the second order cone):

{(t,X) | t ≥ ‖X‖F }.

2) The epigraph of the l∞ norm

{(t,X) | t ≥ ‖X‖∞}.

3) The epigraph of the l1 norm

{(t,X) | t ≥ ‖X‖1}.

4) The epigraph of the operator norm

{(t,X) | t ≥ ‖X‖2}.

5) The epigraph of the nuclear norm

{(t,X) | t ≥ ‖X‖∗}.



More can be done ...
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The epigraph of any absolutely symmetric convex functions instead of just the
norm functions.

One does not need to consider the epigraphs only, instead one may focus on
the Moreau-Yosida regulation of interesting convex functions.

Many more need to be done on second order variational analysis for matrix
optimization problems.

The proximal point algorithm (PPA) is currently the targeted numerical
approach. Better ideas needed.


