
EFFICIENT HESSIAN BASED ALGORITHMS

FOR SOLVING SPARSE GROUP LASSO AND

MULTIPLE GRAPHICAL LASSO PROBLEMS

ZHANG YANGJING

(B.Sc., Tsinghua University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE

2019

Supervisor:

Professor Toh Kim-Chuan, Main Supervisor

Examiners:

Professor Zhao Gong Yun

Associate Professor Chua Chek Beng, Nanyang

Technological University

Professor Qi Hou-Duo, University of Southampton

To my parents

DECLARATION

I hereby declare that the thesis is my original work and it has

been written by me in its entirety. I have duly

acknowledged all the sources of information which

have been used in the thesis.

This thesis has also not been submitted for any degree

in any university previously.

Zhang Yangjing

14 January 2019

Acknowledgements

I would like to take this opportunity to express my heartfelt thanks to all those who

have contributed in one way or another to the completion of this thesis. Firstly,

I would like to express my sincere gratitude to my supervisor Professor Toh Kim

Chuan for the professional supervision and continuous support of my Ph.D study.

I have learned a lot from his insight on numerical optimization and knowledge on

algorithmic implementation. Additionally, the financial support from his research

grant sustains my fifth year’s research. This thesis would not have been possible

without the mentorship and support of him.

My deepest thanks also go to Professor Sun defeng. He has led me to the

flourishing area of optimization. His rigorous attitude and inexhaustible enthusiasm

for research have been influencing me profoundly and continuously. I owe him a

great debt of gratitude.

I would also like to express my thanks to all the members in our optimization

group, for the fruitful discussions we made and the Saturday optimization seminars

we attended. Particularly, I would like to convey my special thanks to my collabo-

rator Dr. Zhang Ning for the helpful discussions and valuable cooperations, to my

senior fellows Dr. Cui Ying and Dr. Li Xudong for their help and suggestions.

vii

viii Acknowledgements

I am also grateful to my fellow graduate students at the Department of Math-

ematics, National University of Singapore, in particular, Guan Yu, Huang Ruizhi,

Lam Xin Yee, Li Ning, Pang Tongyao, Wang Liuquan, Wu Bin. We shared the same

office or the same hostel in the past few years and strived for the same goal together.

The valuable and enjoyable time with them will always remain in my memory.

I am thankful to the National University of Singapore for providing four-year

research scholarship towards the completion of the present dissertation and the fi-

nancial support for the conference trip.

I am indebted to my father Zhang Wenhong and my mother Yang Huaxiang for

their unconditional love, devotion, and support. Last but not least, my profound

love and gratitude go to my husband Yao Jie. Our first meeting is in a math class.

“What does this symbol mean?”

“You sure you are in the right classroom? Haha, let me help you.”

It is his understanding, encouragement, and love that accompany me along the long

journey of Ph.D study. I would not have been here today if it were not for the love

and support from my family.

Contents

Acknowledgements vii

Summary xi

1 Introduction 1

1.1 Literature review . 1

1.1.1 Sparse group Lasso models . 1

1.1.2 Multiple graphical Lasso models 6

1.2 Contributions . 14

1.3 Thesis organization . 15

2 Preliminaries 17

2.1 Notations . 17

2.2 Moreau-Yosida regularization . 19

2.3 Semismooth Newton methods . 22

3 Augmented Lagrangian method for solving sparse group Lasso prob-

lems 29

ix

x Contents

3.1 Generalized Jacobian of Proxp(·) . 32

3.2 Inexact semismooth Newton based augmented Lagrangian method . . 35

3.2.1 Convergence rates for ALM (Algorithm 2) 38

3.2.2 Semismooth Newton method for solving subproblem (3.14) . . 41

3.2.3 Efficient techniques for solving the linear system (3.23) 43

3.3 Numerical experiments . 46

3.3.1 Dual based semi-proximal ADMM 49

3.3.2 Synthetic data . 50

3.3.3 UCI data sets with random groups 51

3.3.4 UCI datesets with simulated groups 55

3.3.5 NCEP/NCAR reanalysis 1 dataset 60

4 Proximal point algorithm for solving multiple graphical Lasso prob-

lems 63

4.1 Proximal mapping of the GGL regularizer and its generalized Jacobian 64

4.2 Proximal mapping of the FGL regularizer and its generalized Jacobian 66

4.3 Inexact semismooth Newton based proximal point algorithm 69

4.3.1 Semismooth Newton method for solving subproblem (4.14) . . 72

4.4 Numerical experiments . 74

4.4.1 Dual based ADMM . 76

4.4.2 Nearest-neighbour networks 77

4.4.3 Standard & Poor’s 500 stock price 81

4.4.4 University webpages . 83

4.4.5 20 Newsgroups . 89

5 Conclusions and future works 95

Bibliography 97

Summary

This thesis focuses on designing efficient algorithms for solving large-scale statistical

problems: the sparse group Lasso and multiple graphical Lasso problems.

The first part of the thesis has proposed an augmented Lagrangian method for

large-scale non-overlapping sparse group Lasso problems with each subproblem be-

ing solved by a superlinearly convergent semismooth Newton method. The sparse

group Lasso is a widely used statistical model which encourages the sparsity both

on a group and within the group level. Theoretically, we prove that, if the penalty

parameter is chosen sufficiently large, the augmented Lagrangian method converges

globally at an arbitrarily fast linear rate for the primal iterative sequence, the dual

infeasibility, and the duality gap of the primal and dual objective functions. Com-

putationally, we derive explicitly the generalized Jacobian of the proximal mapping

associated with the sparse group Lasso regularizer and exploit fully the underlying

second order sparsity through the semismooth Newton method. Numerical exper-

iments on both the synthetic and real data sets demonstrate that our proposed

algorithm not only can solve the problems to high accuracy, but it is also far more

superior than existing state-of-the-art first order methods for solving the sparse

group Lasso problems.

The second part of the thesis is devoted to the computation of two multiple

xi

xii Summary

graphical models: the group graphical Lasso model and the fused graphical Las-

so model, which can be applied to analysing data from different classes or over a

temporal grid. We develop an efficient proximal point algorithm for solving these

two models, where the subproblem in each iteration of the algorithm is solved by

a superlinearly convergent semismooth Newton method. To implement the semis-

mooth Newton method, we derived explicit expressions for the generalized Jacobian

of the proximal mapping of the group graphical Lasso regularizer and that of the

fused graphical Lasso regularizer. Unlike those widely used first order methods,

our method has fully exploited the underlying second order information through

the semismooth Newton method. This has not only accelerated the convergence of

the algorithm, but also improves its robustness. The efficiency and robustness of

our proposed algorithm are demonstrated by comparing with some state-of-the-art

methods on both synthetic and real data sets.

Chapter 1
Introduction

In this thesis, we focus on designing efficient algorithms for solving some large-scale

convex composite statistical problems. Of particular interest is the non-overlapping

sparse group Lasso model, which has been widely applied to different fields, such as

text processing, bioinformatics, signal interpretation, and object tracking. Besides,

another aim of this thesis is to solve two multiple graphical models, which have been

especially appealing for learning the conditional independence structures among a

large number of variables from different classes or over a temporal grid.

1.1 Literature review

1.1.1 Sparse group Lasso models

In recent decades, high-dimensional feature selection problems have become increas-

ingly important, and the penalized regression models have been proven to be par-

ticularly useful for these feature selection problems. For many such problems in

real applications, the number of predictors n is much larger than the number of

observations m. A notable example of the penalized regression model is the Lasso

model that was first proposed by Tibshirani [81]:

min
x∈Rn

1

2
‖Ax− b‖2 + λ1‖x‖1, (1.1)

1

2 Chapter 1. Introduction

where A : Rn → Rm is a linear map, b ∈ Rm is the given response vector, λ1 is

a nonnegative regularization parameter, ‖ · ‖ and ‖ · ‖1 denote the `2 norm and `1

norm, respectively. Furthermore, by assuming that some prior information about the

group structure of the underlying solution x is known, Yuan and Lin [92] proposed

the group Lasso model:

min
x∈Rn

1

2
‖Ax− b‖2 + λ2

g∑
l=1

wl‖xGl‖, (1.2)

where λ2 is a nonnegative regularization parameter, for l = 1, 2, . . . , g, wl > 0, and

Gl ⊆ {1, 2, . . . , n} is the set of indices corresponding to the l-th group of features.

We denote the restriction of the vector x to the index set Gl as xGl . The group Lasso

model (1.2) can select a small set of groups. However, it does not ensure sparsity

within each group. For the purpose of achieving sparsity of groups and within each

group, Friedman et al. [31] proposed the sparse group Lasso (SGLasso) model (1.3),

potentially with overlaps between groups:

min
x∈Rn

1

2
‖Ax− b‖2 + λ1‖x‖1 + λ2

g∑
l=1

wl‖xGl‖. (1.3)

For convenience, we denote the SGLasso regularizer by the proper closed convex

function

p(x) := λ1‖x‖1 + λ2

g∑
l=1

wl‖xGl‖, ∀x ∈ Rn. (1.4)

One can observe that the SGLasso model (1.3) is a combination of the Lasso model

(1.1) and the group Lasso model (1.2). The SGLasso problem (1.3) contains the

Lasso problem (1.1) as a special case if we take the parameter λ2 = 0. Besides, the

SGLasso problem (1.3) reduces to the group Lasso problem (1.2) if λ1 is zero. Apart

from the above penalized regression models, there exist a number of variants with

different regularizers, such as the fused Lasso [82] and the network Lasso [36].

The SGLasso model has been widely applied to different fields, such as text pro-

cessing, bioinformatics, signal interpretation, and object tracking (e.g., [23, 43, 44,

47, 70, 99]). Its wide ranging applications have inspired many researchers to design

1.1 Literature review 3

various algorithms for solving the SGLasso problem. These algorithms include the

(accelerated) proximal gradient method (see e.g., [3, 92]), (randomized) block coor-

dinate descent algorithm (see e.g., [72, 73, 78]), and alternating direction method of

multipliers (see e.g., [8]). To the best of our knowledge, these existing algorithms are

first order methods that are applied directly to the primal problem (1.3) and they

hardly utilize any second order information. We note that even though there exist

a number of algorithms for the Lasso problem (1.1) with second order information

being incorporated, such as block active set methods [9, 46], orthant based methods

[2, 9, 19], and the semismooth Newton augmented Lagrangian method (Ssnal) [54],

there is currently no second order method designed for the SGLasso problem.

To design an efficient second order information based algorithm for solving the

dual problem of the SGLasso problem (1.3), this thesis extends the Ssnal for the

Lasso problem established in [54] with three major reasons. First of all, unlike

the other methods, the Ssnal does not require the uniqueness of solutions for

the primal problem. Secondly, the Ssnal does not need to identify the active

sets explicitly, which is critical for our SGLasso setting where the regularizer is no

longer piecewise linear. Thirdly and more importantly, the Ssnal has an excellent

numerical performance for solving the Lasso problem.

Solving the SGLasso problem is especially challenging when there are overlapping

groups because of the complex structure of the SGLasso regularizer p. The compli-

cated composite structure of p generally makes it impossible to compute its proximal

mapping analytically. However, the efficient computation of such a proximal map-

ping is indispensable to a number of algorithms, and many of the papers mentioned

in the last paragraph thus considered the simpler case of the non-overlapping S-

GLasso problem. As a first attempt to design a Hessian based algorithm for the

SGLasso problem, we will also focus on the simpler case of the non-overlapping S-

GLasso problem. The non-overlapping case can be treated as a preliminary study

towards the final goal of designing a second order information based algorithm for

solving the overlapping SGLasso problem. For the rest of this thesis, we make the

4 Chapter 1. Introduction

following blanket assumption.

Assumption 1. The different groups Gl, l = 1, 2, . . . , g form a partition of {1, 2, . . . , n},

i.e., Gi ∩Gj = ∅ for all 1 ≤ i < j ≤ g, and ∪gl=1Gl = {1, 2, . . . , n}.

In order to solve the non-overlapping SGLasso problem, we aim to use the semis-

mooth Newton (SSN) augmented Lagrangian (Ssnal) framework for solving the

dual problem of (1.3). This approach is motivated by the success of the Ssnal

when applied to the dual of the Lasso problem [54] and that of the fused Lasso

problem [55]. We note that the objective functions of the Lasso and fused Lasso

problems are piecewise linear-quadratic, and therefore as proven in [54, 55], both the

primal and dual iterates generated by the augmented Lagrangian method (ALM)

are asymptotically superlinearly convergent. It is this attractive convergence prop-

erty that leads to the impressive numerical performances of the Ssnal for solving

the Lasso and fused Lasso problems. However, the regularizer p in the objective

function of the SGLasso problem (1.3) is no longer a polyhedral function due to

the presence of the `2 norm. As a result, the asymptotic superlinear convergence of

both the primal and dual iterative sequences generated by the ALM are no longer

guaranteed to hold by existing theoretical results. Fortunately, by leveraging on the

recent advances made by Cui, Sun, and Toh [16] on the analysis of the asymptotic

R-superlinear convergence of the ALM for convex composite conic programming,

we are able to establish the global linear convergence (with an arbitrary rate) of

the primal iterative sequence, the dual infeasibility, and the dual function values

generated by the ALM for the SGLasso problem. With this convergence result, we

could expect the ALM to be highly efficient for solving the SGLasso problem.

The remaining challenge of designing an efficient ALM to solve (1.3) is in solving

the subproblem in each iteration. As inspired by the success in [54, 55], we will de-

sign a highly efficient SSN method for solving the subproblem in each ALM iteration.

The effectiveness of the SSN method relies critically on the efficient computation of

1.1 Literature review 5

the generalized Jacobian of the proximal mapping associated with the SGLasso reg-

ularizer p. Thus a major contribution of this thesis is to analyse the structure of the

generalized Jacobian and its efficient computation. As far as we know, the elements

in the generalized Jacobian of the proximal mapping of p have not been derived

before, and this thesis aims to derive an explicit formula for them. We note that

the SGLasso regularizer p enjoys the “prox-decomposition” property [90], similar to

the fused Lasso regularizer (see [55]). With the “prox-decomposition” property and

some necessary properties for the `1 norm and `2 norm, we are able to derive an

explicit formula for the generalized Jacobian of the proximal mapping of p. Based

on the structure of the generalized Jacobian of the proximal mapping of p, we can

derive a certain structured sparsity (which we name as the second order sparsity)

in the Hessians associated with the objective function in each ALM subproblem to

implement the SSN method efficiently. We should emphasize that the efficiency of

the SSN method depends critically on the second order sparsity and the sparsity

of the primal iterates. Moreover, the SSN method will be proven to have superlin-

ear/quadratic convergence. In a nutshell, the globally fast linear convergence (with

an arbitrary linear rate) of the ALM and the superlinear/quadratic convergence of

the SSN method for solving each ALM subproblem can guarantee that our Ssnal

is highly efficient and robust for solving large-scale SGLasso problems.

In the numerical experiments, our ALM will be compared with existing state-of-

the-art first order methods: (a) the sPADMM (semi-proximal alternating direction

method of multipliers), (b) the APG (accelerated proximal gradient) method, and

(c) the BCD (block coordinate descent) method. For one instance in the data set

E2006.train, the dimension is (16087, 150360), and SSNAL solved it to the desired

accuracy in 3 seconds, sPADMM took more than 8 minutes, while APG failed to

solve it within 10000 steps. And our algorithm is around 30 times faster compared

to sPADMM and APG for over 60% of the tested instances on UCI data sets with

random groups.

6 Chapter 1. Introduction

1.1.2 Multiple graphical Lasso models

In modern multivariate data analysis, one of the most important problems is the

estimation of the precision matrix (or the inverse covariance matrix) via an undi-

rected graphical model. A Gaussian graphical model for a Gaussian random vector

∆ ∼ Nn(µ,Σ) is represented by a graph G = (V,E), where V is a collection of n

vertices corresponding to the n random variables and an edge Eij is absent if and

only if the i-th and j-th random variables are conditionally independent of each

other, given all other variables. Furthermore, the i-th and j-th random variables

are independent conditionally on the other variables if and only if the (i, j)-th entry

in the precision matrix (Σ−1)ij is zero, as proven by Dempster [20]. Thus, finding

the graph structure of a Gaussian graphical model is equivalent to the estimation

of the corresponding precision matrix. In the high-dimensional and low-sample-size

setting, it is always assumed that the conditional independence structure or the pre-

cision matrix is sparse in some sense. In other words, its corresponding undirected

graph G is expected to to be sparse. To promote sparsity, there has been a great deal

of interest in using the `1 norm penalties in statistical applications, for example, the

famous Lasso model (1.1). In particular, various researchers (e.g., [4, 30, 93]) have

adopted the following `1-norm penalized maximum likelihood approach to estimate

the precision matrix:

min
Θ�0

− log det Θ + 〈S,Θ〉+ λ1

∑
i 6=j |Θij| (1.5)

where λ1 is again a nonnegative penalty parameter, S = 1
N−1

∑N
i=1(δi − µ̄)(δi −

µ̄)T is the sample covariance matrix with δ1, δ2, . . . , δN being N samples drawn

independently from the multivariate Gaussian distribution Nn(µ,Σ) and µ̄ being

the sample mean, i.e., µ̄ = 1
N

∑N
i=1 δi.

The single Gaussian graphical model has been widely used in many applications.

For solving the `1 norm penalized single Gaussian graphical model (1.5), numer-

ous algorithms have been designed in the literature, e.g., block coordinate descent

method [4, 5, 18, 30, 95], alternating direction method of multipliers [94], Nesterov’s

1.1 Literature review 7

first order methods and their variants [4, 5, 59, 60], projected gradient method [22],

interior point method [53], and proximal point algorithm [87]. Among them, the first

four types of methods are generally referred to as first order methods. First order

methods are often believed to be easily implementable and efficient in computing

solutions of low or moderate accuracy in many cases. However, they generally have

difficulty in obtaining high accuracy solutions. Unlike the first order methods, the

last two types of methods can utilize second order information and therefore are

always efficient in finding solutions of high accuracy.

In many applications, a single Gaussian graphical model is typically enough to

capture the conditional independence structure of the random variables. However,

in some situations it is more reasonable to fit a collection of such models jointly, due

to the similarity or heterogeneity of the data involved. We refer to these models for

estimating multiple precision matrices simultaneously as multiple graphical models.

A scenario where multiple graphical models are more suitable than a single graph-

ical model is when the data comes from several distinct but closely related classes,

which share the same collection of variables but differ in terms of the dependency

structure. Their dependency graphs can have common edges across a portion of

all classes and unique edges restricted to only certain classes. In this case, fitting

separate graphical models for distinct classes does not exploit the similarity among

the dependency graphs. In contrast, joint estimation of these models could exploit

information across different but related classes. An example is the inference of words

relationships from webpages, which is used in our numerical experiments in section

4.4.4. In this example, webpages from the computer science departments of various

universities are classified into several classes: Student, Faculty, Staff, Department,

etc. In addition to the data from different classes, another scenario that would favor

multiple graphical models over a single graphical model is when the data contains

sequences of multivariate time-stamped observations. Such data might correspond

to a series of dependency graphs over time. To visualize these dependency graphs

8 Chapter 1. Introduction

and understand how they evolve over time, one might estimate the precision matri-

ces jointly instead of separately. For example, the Standard & Poor’s 500 stock price

data, tested in section 4.4.3, contains the daily returns of 500 stocks over several

years. The relationships among stocks might change smoothly over time. In sum-

mary, there are two major applications of multiple graphical models: (i) estimating

multiple precision matrices simultaneously for a collection of variables across distinct

classes; (ii) inferring the time-varying networks and finding the change-points.

The following paragraph formulates the multiple graphical model explicitly. Sup-

pose that there are L random n-vectors ∆(l) (from different classes or over a temporal

grid) drawn independently from different distributions Nn(µ(l),Σ(l)), l = 1, 2, . . . , L.

Assume that the vector ∆(l) hasNl observations δ
(l)
1 , δ

(l)
2 , . . . , δ

(l)
Nl

for each l ∈ {1, 2, . . . , L}.

Then, the sample means are µ̄(l) := 1
Nl

∑Nl
i=1 δ

(l)
i and the sample covariance matrices

are S(l) := 1
Nl−1

∑Nl
i=1(δ

(l)
i − µ̄(l))(δ

(l)
i − µ̄(l))T , l = 1, 2, . . . , L. In this setting, a sin-

gle Gaussian graphical model is usually not applicable since it is limited to handle

observations from the same distribution. A multiple graphical model for estimating

precision matrices (Σ(l))−1, l = 1, 2, . . . , L jointly is the optimization model with

arguments Θ := (Θ(1), . . . ,Θ(L)) ∈ Sn × · · · × Sn:

min
Θ

L∑
l=1

(
− log det Θ(l) + 〈S(l),Θ(l)〉

)
+ P(Θ), (1.6)

where P is a penalty function, which usually promotes sparsity in each Θ(l) and en-

courages different Θ(l)’s to share certain characteristics. The solution (Θ(1), . . . ,Θ(L))

of problem (1.6) will constitute an estimate of ((Σ(1))−1, . . . , (Σ(L))−1). One can ob-

serve that the multiple graphical model (1.6) reduces to the single graphical model

(1.5) when L = 1 and P(Θ) = λ1

∑
i 6=j |Θ

(1)
ij |. In the literature, various form-

s of the penalty function P that can encourage similarity among these graphical

models have been considered to link the estimation of separate graphical models

[1, 17, 33, 35, 38, 40, 66, 84]. The following notations of various norms are defined

in section 2.1 which summarizes all the used notations. One typical type of penalties

is a mixture of the `1 norm and the (sequential or pairwise) fused penalty: Ahmed

1.1 Literature review 9

and Xing [1] and Yang et al. [88] dealt with the following penalty of this type

P(Θ) = λ1‖Θ‖1, 1, ∗ + λ2

L∑
l=2

‖Θ(l) −Θ(l−1)‖1, ∗.

A slightly different penalty, which involves diagonal elements, was used by Monti et

al. [66]

P(Θ) = λ1‖Θ‖1, 1 + λ2

L∑
l=2

‖Θ(l) −Θ(l−1)‖1.

Applying the Frobenius norm to the sequential fused terms, Gibberd and Nelson

[33] presented another penalty

P(Θ) = λ1‖Θ‖1, 1, ∗ + λ2

L∑
l=2

‖Θ(l) −Θ(l−1)‖F, ∗.

In addition to the sequential fused penalty used above, the pairwise fused penalty

was also involved, for example, in the penalty proposed by Danaher, Wang, and

Witten [17]

P(Θ) = λ1‖Θ‖1, 1, ∗ + λ2

∑
l<l′

‖Θ(l) −Θ(l′)‖1.

Another type of penalties makes use of the `1, q regularizers: such as P(Θ) =

λ2‖Θ‖1,∞ by Honorio and Samaras [40], P(Θ) = λ2‖Θ‖1, 2, ∗ by Varoquaux et al.

[84], and P(Θ) = λ1‖Θ‖1, 1, ∗ + λ2‖Θ‖1, 2, ∗ by Danaher, Wang, and Witten [17].

Apart from the above two types, another type of penalties is based on the smart de-

compositions of Θ(l) into a common substructure A and an individual substructure

B(l). Guo et al. [35] utilized the decompositions Θ(l) = A � B(l), where � de-

notes the Hadamard product, and proposed the following penalty via a nonconvex

optimization problem:

P(Θ) = min
A,B

λ1‖A‖1, ∗ + λ2‖B‖1, 1, ∗

s.t. Θ(l) = A�B(l), l = 1, 2, . . . , L,

Aii = 1, Aij ≥ 0, i, j = 1, 2, . . . , p,

A ∈ Sp, B = (B(1), . . . , B(L)) ∈ Sp × · · · × Sp.

10 Chapter 1. Introduction

While Hara and Washio [38] adopted different decompositions Θ(l) = A + B(l) and

proposed the following penalty based on a convex optimization problem:

P(Θ) = min
A,B

λ1‖A‖1 + λ2‖B‖1, q

s.t. Θ(l) = A+B(l),

A+B(l) � 0, l = 1, 2, . . . , L,

In this thesis, we focus on the following two particular choices of regularizers:

(i) the group graphical Lasso (GGL) regularizer which was initially presented in

[17]:

P(Θ) = λ1‖Θ‖1, 1, ∗ + λ2‖Θ‖1, 2, ∗

= λ1

L∑
l=1

∑
i 6=j

|Θ(l)
ij |+ λ2

∑
i 6=j

(
L∑
l=1

|Θ(l)
ij |2
)1/2

;
(1.7)

(ii) the fused graphical Lasso (FGL) regularizer which was used in [1, 88]:

P(Θ) = λ1‖Θ‖1, 1, ∗ + λ2

L∑
l=2

‖Θ(l) −Θ(l−1)‖1, ∗

= λ1

L∑
l=1

∑
i 6=j

|Θ(l)
ij |+ λ2

L∑
l=2

∑
i 6=j

|Θ(l)
ij −Θ

(l−1)
ij |.

(1.8)

We refer to the problem (1.6) where the regularizer P is defined by (1.7) as the GGL

problem and the problem (1.6) where the regularizer P is defined by (1.8) as the

FGL problem. For both GGL and FGL regularizers, the first terms are exactly the

same, which promote sparsity in the estimated precision matrices. When λ2 = 0,

the GGL and FGL problems amount to performing L uncoupled precision matrix

estimation problems (1.5). Without loss of generality, we assume that λ1 + λ2 > 0

throughout this thesis. Next, we give further explanations and comparisons of the

two regularizers.

(a) The GGL regularizer defined in (1.7), acting on a collection of matrices, can

be viewed as an extension of the sparse group Lasso regularizer acting on a

vector proposed in [31]. More precisely, the GGL regularizer can be viewed

1.1 Literature review 11

as the sparse group Lasso regularizer applied to the (i, j)-th elements across

all L precision matrices (see (4.5) for details). Due to the second term of the

GGL regularizer, the zeros in the L estimated precision matrices Θ(l)’s tend to

occur at the same indices. Specifically, each Θ(l) in the solution to the GGL

problem will have an identical pattern of nonzero elements when λ1 = 0 and

λ2 > 0, as stated in [17].

(b) The FGL regularizer in (1.8) is in some sense a generalized fused Lasso reg-

ularizer [82]. It applies the `1 penalty to all the off-diagonal elements of the

L precision matrices and the differences of the elements of successive preci-

sion matrices. Many elements with the same indices in the estimated matrices

Θ(1), . . . ,Θ(L) will be close or even identical when the parameter λ2 is large

enough. Therefore, the FGL regularizer encourages not only shared pattern

of sparsity, but also shared values across different graphs, whereas the GGL

regularizer encourages a weaker form of regularity that merely promotes the

similarity of the network structure.

The regularized multiple Gaussian graphical models have been widely used in

various applications. However, the existing algorithms for solving the GGL or FGL

problem are quite limited in the literature. One of the most extensively used algo-

rithms for solving this class of problems is the alternating direction method of multi-

pliers (ADMM), see e.g., [17, 33, 37]. Besides, a proximal Newton-type method (see

e.g., [41, 51, 83]) was implemented by Yang et al. [88] for solving the FGL problems.

In particular, the method in [88] is a hybrid of the proximal gradient method with

Armijo backtracking line search and the non-monotone spectral projected gradient

(NSPG) method (see e.g., [61]). As we know, ADMM could be a fast first order

method for finding approximate solutions of low or moderate accuracy. However,

ADMM hardly utilize any second order information, which must be used in order to

obtain highly accurate solutions. Although the proximal Newton-type method does

12 Chapter 1. Introduction

incorporate some form of second order information, a complicated quadratic approx-

imation problem has to be solved in each iteration, and this computation is usually

time-consuming. It is worth mentioning that the regularizers are often introduced

to promote certain structures in the estimated precision matrices, and the trade-

off between the biases and variances in the resulting estimates is controlled by the

choice of the regularization parameters [26]. But in practice, it is extremely hard to

find the optimal regularization parameters. Therefore, a sequence of regularization

parameters is usually applied in the practical implementations, and consequently,

a sequence of corresponding optimization problems need to be solved [27]. Under

such a circumstance, a highly efficient and robust algorithm for finding the optimal

solutions becomes particularly important.

In this thesis, we apply a semismooth Newton (SSN) based proximal point algo-

rithm (PPA) for solving the GGL and FGL models. It is well known that the PPA

can be treated as a dual application of the augmented Lagrangian method (ALM)

for solving convex optimization problems [75]. Our approach is greatly inspired by

and based on the works [97] (details are shown in Chapter 3) and [55], which have

presented superior numerical performance of the SSN based ALM, known as Ssnal,

for solving the SGLasso and fused Lasso problems, respectively. Thanks to the fact

that the GGL and FGL problems have close connections to the SGLasso and fused

Lasso problems, respectively, many of the virtues and theoretical insights of the

Ssnal for solving the SGLasso and fused Lasso problems can be observed when

we apply the SSN based PPA to solve the GGL and FGL problems. However, we

should emphasize that solving the GGL and FGL problems is much more challeng-

ing than solving the SGLasso and fused Lasso problems. Our current problems are

matrix optimization problems over the Cartesian product of a collection of cones

of symmetric positive definite matrices, whereas each of the latter problems is an

optimization problem over a single vector variable. Specifically, the difficulties are

mainly due to the log-determinant function log det (·) and the matrix arguments, as

described below.

1.1 Literature review 13

(a) Unlike the simple quadratic functions in the SGLasso and fused Lasso prob-

lems, which are essentially regularized least square problems, the function

log det (·) is strictly concave and twice differentiable on the space of positive

definite matrices. Therefore, the GGL and FGL models contain the underlying

constraints: their solutions should be positive definite. The positive definite

constraints increase greatly the difficulty and complexity of theoretical analysis

and numerical implementation.

(b) The construction of an efficiently computable element in the generalized Ja-

cobian of the proximal mapping of the SGLasso (or fused Lasso) regularizer

is an essential step in [97] (or [55]) for solving the SGLasso (or fused Lasso)

problem. Based on the well-established constructions, we could obtain an effi-

ciently computable generalized Jacobian of the proximal mapping of the GGL

(or FGL) regularizer. However, this process needs more complicated manip-

ulations of coordinates for a collection of matrix variables, unlike the vector

case of the SGLasso (or fused Lasso) problem.

The key issue in the implementation of the PPA for solving the GGL (or FGL)

model is the computation of the solution of the subproblem in each PPA iteration.

For this purpose, we will design an SSN method to solve those subproblems. We note

that the numerical performance of the SSN method relies critically on the efficient

calculation of the generalized Jacobian of the proximal mapping of the GGL (or

FGL) regularizer and that of the log-determinant function. Fortunately, the gener-

alized Jacobian of the proximal mapping of the GGL regularizer and that of the FGL

regularizer can be constructed efficiently based on those of the proximal mapping of

the SGLasso regularizer given in [97] and that of the fused Lasso regularizer given

in [55], respectively. As a result, the generalized Jacobian of the proximal mapping

of the GGL or FGL regularizer would inherit the structured sparsity (referred to

as second order sparsity) from that of the SGLasso or fused Lasso regularizer. Due

to the structured sparsity, the computation of a matrix-vector product in the SSN

14 Chapter 1. Introduction

method is reasonably cheap and thus the SSN method is quite efficient for solving

each subproblem. To summarize, our SSN based PPA for solving the GGL and FGL

problems has a linear convergent guarantee and the convergence rate can be as fast

as one wish by choosing a sufficiently large proximal penalty parameter. Moreover,

the SSN method for solving each of the PPA subproblems can be shown to be su-

perlinearly convergent. Thus, based on these excellent convergent properties and

the novel exploitation of second order sparsity, we can expect the SSN based PPA

for solving the GGL and FGL problems to be highly efficient numerically.

We illustrate the performance on a number of data sets: (a) recovering the

structure of the simulated nearest-neighbour networks, (b) analysing the correla-

tions among Standard & Poor 500 stocks, (c) learning semantic connections among

terms from webpages or 20 newsgroups. The multiple graphical Lasso model can

fully recover the true structure of the nearest-neighbour networks. On the Stan-

dard & Poor 500 stock price data sets, our algorithm solved all instances within 2

minutes and is faster than the alternating direction method of multipliers and the

proximal Newton-type method except for one instance. When applied to analysing

the dependency structure of terms in the newsgroups data, our algorithm is 8 ∼ 10

times faster in comparison with the other two methods for over 40% of the tested

instances.

1.2 Contributions

One important contribution of the thesis is the design of an efficient augmented

Lagrangian method for large-scale non-overlapping sparse group Lasso problems

with each subproblem being solved by a superlinearly convergent inexact semismooth

Newton method. Meanwhile, the explicit formula for the generalized Jacobian of

the proximal mapping of the SGLasso regularizer has been established. As far as

we know, the elements in the generalized Jacobian of the proximal mapping of the

SGLasso regularizer have not been derived before. Theoretically, it is shown that,

1.3 Thesis organization 15

if the penalty parameter is chosen sufficiently large, the augmented Lagrangian

method converges globally at an arbitrarily fast linear rate for the primal iterative

sequence, the dual infeasibility, and the duality gap of the primal and dual objective

functions. Computationally, we derive explicitly the generalized Jacobian of the

proximal mapping associated with the sparse group Lasso regularizer and exploit

fully the underlying second order sparsity through the semismooth Newton method.

Our proposed algorithm is also shown numerically to be far more efficient than

existing state-of-the-art first order methods for solving sparse group Lasso problems.

The first part of the thesis has been submitted to and accepted by the journal

Mathematical Programming [97].

The thesis also contributes to the efficient computations of the group graphical

Lasso problem and the fused graphical Lasso problem. Specifically, it has designed

a semismooth Newton based proximal point algorithm for both problems. The pro-

posed algorithm is proven to be superlinearly convergent for solving the group and

fused graphical Lasso problems. As indispensable parts for the semismooth New-

ton method for solving each subproblem, the generalized Jacobian of the proximal

mapping of the group graphical Lasso regularizer and that of the fused graphical

Lasso regularizer have been derived for the first time in the literature. Extensive

numerical experiments have been conducted to show the efficiency of our algorithm

on the data sets of simulated nearest-neighbour graphs, Standard & Poor’s 500 stock

price, university webpages, and 20 newsgroups.

1.3 Thesis organization

The rest of the thesis is organized as follows. Chapter 2 presents some preliminaries

that are critical for subsequent discussions. In chapter 3, we design the semismooth

Newton based augmented Lagrangian method (Ssnal) for solving the dual of the

SGLasso problem and derive the superlinear convergence results. A semismooth

Newton method based proximal point algorithm is implemented for solving the

16 Chapter 1. Introduction

group graphical Lasso problem and the fused graphical Lasso problem in chapter 4.

Finally, concluding remarks are given in chapter 5.

Chapter 2
Preliminaries

2.1 Notations

• For a linear map A, we denote its adjoint by A∗. For a matrix A, we denote

its transpose by AT .

• For any proper convex function f , we denote its conjugate function by f ∗, i.e.,

f ∗(x) = supz{〈x, z〉 − f(z)}. We denote its effective domain by dom f .

• For a set C, we denote its convex hull by conv{C} and its relative interior by

ri{C}.

• For a given closed convex set C and a vector x, we denote the distance of x to

C by dist(x,C) := infx′∈C{‖x − x′‖} and the Euclidean projection of x onto

C by ΠC(x) := arg minx′∈C{‖x− x′‖}.

• We define sign(·) in a component-wise fashion such that sign(t) = 1 if t > 0,

sign(t) = 0 if t = 0, and sign(t) = −1 if t < 0. The function max(· , 0) = (·)+ is

also defined in a component-wise fashion, where (t)+ = t if t > 0 and (t)+ = 0

if t ≤ 0.

• The function composition is denoted by ◦, that is, for any functions f and g,

(f ◦ g)(·) := f(g(·)). The Hadamard product is denoted by �.

17

18 Chapter 2. Preliminaries

• For a given vector x, supp(x) denotes the support of x, i.e., the set of indices

such that xi 6= 0.

• For a given vector x ∈ Rn and an index set G ⊆ {1, 2, . . . , n}, xG denotes the

restriction of the vector x to the index set G.

• e denotes the vector of all ones.

• In denotes the n×n identity matrix, and I denotes an identity matrix or map

when the dimension is clear from the context.

• Diag(A1, A2, . . . , An) denotes the block diagonal matrix whose i-th diagonal

block is the matrix Ai, i = 1, 2, . . . , n. diag(A) denotes the diagonal vector of

a matrix A.

• We use the Matlab notation [A;B] to denote the matrix obtained by ap-

pending B below the last row of A, when the number of columns of A and B

is identical.

• Given {Gl | l = 1, 2, . . . , g} as a partition of the set {1, 2, . . . , n}, define the

linear operator Pl : Rn → R|Gl| by Plx = xGl . Define P : Rn → Rn by

Px = [P1x;P2x; . . . ;Pgx] = [xG1 ;xG2 ; . . . ;xGg], ∀x ∈ Rn. Define B2 := Bλ2,12 ×

· · · × Bλ2,g2 , where Bλ2,l2 := {ul ∈ R|Gl| | ‖ul‖ ≤ λ2,l} and λ2,l := λ2wl.

• Sn+ (Sn++) denotes the cone of positive semidefinite (definite) matrices in the

space of n × n real symmetric matrices Sn. For any A, B ∈ Sn, we denote

A � B if A − B ∈ Sn+ and A � B if A − B ∈ Sn++. In particular, A � 0

indicates A ∈ Sn+, and A � 0 indicates A ∈ Sn++.

• We let X := Sn+×· · ·×Sn+ and Y =: Sn×· · ·×Sn be the Cartesian product of

L positive semidefinite cones Sn+ and that of L spaces of symmetric matrices

Sn respectively.

• For any matrix A ∈ Rm×n, Aij denotes the (i, j)-th element of A. For any

X := (X(1), . . . , X(L)) ∈ Y , X[ij] := [X
(1)
ij ; . . . ;X

(L)
ij] ∈ RL denotes the column

2.2 Moreau-Yosida regularization 19

vector obtained by taking out the (i, j)-th elements across all L matrices X(l),

l = 1, 2, . . . , L.

• We define the vectorization operator vec : Y → RLn(n+1)/2 as follows:

vec(X) = [X[11];X[22]; . . . ;X[nn];X[12];X[13];X[23]; . . . ;X[1n]; . . . ;X[(n−1)n]], X ∈ Y .

Besides, we let mat : RLn(n+1)/2 → Y be the inverse of vec.

• cov(A) ∈ RL×L denotes the sample covariance if A ∈ RN×L is a matrix whose

columns represent L random variables and whose rows represent N obser-

vations. Suppose aTi is the i-th row of the matrix A, i = 1, 2, . . . , N , the

sample mean is µ̄ := 1
N

∑N
i=1 ai, and the sample covariance is cov(A) :=

1
N−1

∑N
i=1(ai − µ̄)(ai − µ̄)T .

• We denote the Moore-Penrose pseudo inverse of any matrix A ∈ Rm×n by A†.

• For any matrix A, we denote ‖A‖1 :=
∑

i,j |Aij|, ‖A‖1, ∗ :=
∑

i 6=j |Aij|, ‖A‖F :=√∑
i,j |Aij|2, ‖A‖F, ∗ :=

√∑
i 6=j |Aij|2.

• For a collection of matrices Θ := (Θ(1), . . . ,Θ(L)) ∈ Sn × · · · × Sn, we denote

‖Θ‖1, q :=
∑

i,j

(∑L
l=1 |Θ

(l)
ij |q
)1/q

, ‖Θ‖1, q, ∗ :=
∑

i 6=j

(∑L
l=1 |Θ

(l)
ij |q
)1/q

, for q ∈

[1, ∞); and ‖Θ‖1,∞ :=
∑

i,j max
l
|Θ(l)

ij |, ‖Θ‖1,∞, ∗ :=
∑

i 6=j max
l
|Θ(l)

ij |.

2.2 Moreau-Yosida regularization

In this section, an important tool, the Moreau-Yosida regularization is introduced,

which is in some sense one way to smooth a nonsmooth function. Let E be a real

finite dimensional Euclidean space equipped with an inner product 〈·, ·〉 and its

induced norm ‖ · ‖. Let f : E → (−∞,+∞] be a closed proper convex function.

The Moreau-Yosida regularization of f at x ∈ E is defined by

Φf (x) := min
y∈E

{
f(y) +

1

2
‖y − x‖2

}
, ∀x ∈ E . (2.1)

20 Chapter 2. Preliminaries

The function Φ is also known as the Moreau envelope of f . From [67, 89], we have

the following proposition which shows that (2.1) is well-defined.

Proposition 2.1. For any x ∈ E, problem (2.1) has a unique optimal solution.

Definition 2.1 (Proximal point mapping). The unique optimal solution of (2.1),

denoted by Proxf (x), is called the proximal mapping of x associated with f .

It is well known that the proximal mappings associated with `1 norm and `2

norm can be expressed as follows: for any given c > 0 and u ∈ Rn,

Proxc‖·‖1(u) = sign(u)�max {|u| − ce, 0} ,

Proxc‖·‖(u) =


u
‖u‖ max{‖u‖ − c, 0}, if u 6= 0,

0, otherwise.

The following propositions provide some important properties of the Moreau-

Yosida regularizarion.

Proposition 2.2. [39, Theorem XV.4.1.4 and Theorem XV.4.1.7] Let f : E →

(−∞,+∞] be a closed proper convex function, Φf be the Moreau-Yosida regulariza-

tion of f , and Proxf be the associated proximal point mapping. Then the following

properties hold.

(i) arg minx∈E f(x) = arg minx∈E Φf (x).

(ii) Both Proxf and I − Proxf are firmly non-expansive, i.e., for any x, y ∈ E,

‖Proxf (x)− Proxf (y)‖2 ≤ 〈Proxf (x)− Proxf (y), x− y〉,

‖(x− Proxf (x))− (y − Proxf (y))‖2 ≤ 〈(x− Proxf (x))− (y − Proxf (y)), x− y〉.

(iii) The Moreau envelope Φf is continuously differentiable, and its gradient can be

computed via

∇Φf (x) = x− Proxf (x), ∀x ∈ E .

2.2 Moreau-Yosida regularization 21

Proposition 2.3 (Moreau decomposition). Let f : E → (−∞,+∞] be a closed

proper convex function and f ∗ be its conjugate function. Let σ be a positive scalar.

Then the following Moreau identity holds:

Proxσf (x) + σProxσ−1f∗(σ
−1x) = x, ∀x ∈ E .

Proof. For any u ∈ E , we have that u = Proxσf (x) ⇐⇒ x− u ∈ σ∂f(u) ⇐⇒ u ∈

∂f ∗(σ−1x−σ−1u) ⇐⇒ Proxσ−1f∗(σ
−1x) = σ−1x−σ−1u ⇐⇒ u+σProxσ−1f∗(σ

−1x) =

x. This completes the proof.

Next we present some properties about the proximal mapping associated with a

log-determinant function and its Jacobian, which are mainly adopted from [85, 87].

The results shall be used in the sequel since the log-determinant function is involved

in the objective function of the multiple graphical Lasso model (1.6). The log-

determinant function is defined as follows:

ϑ(A) := − log det(A), ∀A ∈ Sn.

Given β > 0, two scalar functions are defined as follow:

φ+
β (x) :=

√
x2 + 4β + x

2
, φ−β (x) :=

√
x2 + 4β − x

2
, ∀x ∈ R.

In addition, their matrix counterparts are defined by

φ+
β (A) := QDiag(φ+

β (d1), . . . , φ+
β (dn))QT ,

φ−β (A) := QDiag(φ−β (d1), . . . , φ−β (dn))QT ,

for any A ∈ Sn with its eigenvalue decomposition A = QDiag(d1, d2, . . . , dn)QT ,

where d1 ≥ d2 ≥ · · · ≥ dn. It is easy to show that φ+
β and φ−β are well-defined.

Moreover, φ+
β (A) and φ−β (A) are positive definite for any A ∈ Sn.

Utilizing the functions defined above, the following proposition gives the proximal

mapping of the log-determinant function ϑ.

22 Chapter 2. Preliminaries

Proposition 2.4. Let ϑ(·) := − log det(·) be defined on Sn++ and β > 0. Then it

holds that

φ+
β (A) = Proxβϑ(A) = arg min

B�0

{
ϑ(B) + 1

2β
‖B − A‖2

}
, ∀A ∈ Sn,

Φβϑ(A) = − log det(φ+
β (A)) + 1

2β
‖φ−β (A)‖2.

(2.2)

Furthermore, the function Φβϑ(·) is strictly convex on Sn++.

Proof. The relationships in (2.2) can be obtained directly from [87, Proposition 2.3].

From the fact the ϑ(·) is strictly convex on Sn++, and using the definitions of the

Moreau-Yosida envelope and strict convexity, we can deduce that the function Φβϑ(·)

is strictly convex on Sn++. The proof is completed.

Proposition 2.5. [85, Lemma 2.1(b)] Let β be a given positive scalar. The func-

tion φ+
β : Sn → Sn is continuously differentiable, and its directional derivative

(φ+
β)′(A)[B] at A for any B ∈ Sn is given by

(φ+
β)′(A)[B] = Q(Γ� (QTBQ))QT ,

where A admits the eigenvalue decomposition A = QDiag(d1, d2, . . . , dn)QT , d1 ≥

d2 ≥ · · · ≥ dn, and Γ ∈ Sn is defined by

Γij =
φ+
β (di) + φ+

β (dj)√
d2
i + 4β +

√
d2
j + 4β

, i, j = 1, 2, . . . , n.

2.3 Semismooth Newton methods

This section introduces the concept of semismoothness and semismooth Newton

methods. We begin with the definitions of directional differentiability. Various

definitions of directional derivatives and their relationships can be found in, for

example, [6, 77].

Definition 2.2 (Directional differentiability). [6, Definition 2.44] We say that

F : Rn → Rm is directionally differentiable at a point x ∈ Rn in a direction h ∈ Rn

if the limit

F ′(x, h) := lim
t↓0

F(x+ th)−F(x)

t

2.3 Semismooth Newton methods 23

exists. If F is differentiable at x in every direction h ∈ Rn, we say that F is

directionally differentiable at x.

One, often used, concept of differentiability is differentiability in the sense of

Fréchet.

Definition 2.3 (Fréchet differentiability). [6, Definition 2.48] We say that F :

Rn → Rm is directionally differentiable at a point x ∈ Rn in the Fréchet sense if F

is directionally differentiable at x and

F(x+ h) = F(x) + F ′(x, h) + o(‖h‖), h ∈ Rn.

If, in addition, F ′(x, ·) is linear and continuous, it is said that F is Fréchet differen-

tiable at x.

The following theorem will lead to the definition of the generalized Jacobian in

the sense of Clarke.

Theorem 2.6 (Rademacher’s theorem). Suppose that F : Rn → Rm is locally

Lipschitz continuous on an open set O ⊆ Rn. Then F is almost everywhere (Fréchet)

differentiable in O.

Let F : Rn → Rm be a locally Lipschitz continuous function. Then by Rademach-

er’s theorem, F is (Fréchet) differentiable almost everywhere. Let DF be the set of

points in Rn where F is differentiable and F ′(x) be the Jacobian of F at x ∈ DF .

The Bouligand subdifferential (B-subdifferential) of F at any x ∈ Rn is defined as

∂BF(x) =

{
lim
xk→x

F ′(xk) |xk ∈ DF
}
,

and the Clarke generalized Jacobian (Hessian) of F at x ∈ Rn is defined as

∂F(x) = conv{∂BF(x)}.

From [14], we have the following proposition about the properties of the B-subdifferential

and the Clarke generalized Jacobian.

24 Chapter 2. Preliminaries

Proposition 2.7. Let O ⊆ Rn be an open set and F : O → Rm be a locally Lipschitz

continuous function. Then the following properties hold:

(i) ∂BF(x) is a nonempty compact subset of Rm×n, for any x ∈ O.

(ii) ∂BF(x) is upper semicontinuous at x ∈ O, i.e., for any ε > 0 there exists δ > 0

such that

∂BF(y) ⊆ ∂BF(x) + εBm×n, ∀ y satisfying ‖y − x‖ < δ,

where Bm×n ⊆ Rm×n is the open unit ball centered at the origin.

The properties above are also true for ∂F(·).

The following definitions of semismoothness and “semismoothness with respect

to a multifunction”, which are mainly adopted from [48, 55, 65, 71], will play an

important role in the semismooth Newton methods.

Definition 2.4. Let O ⊆ Rn be an open set and F : O → Rm be a locally

Lipschitz continuous function. F is said to be G-semismooth at x ∈ O if for any

V ∈ ∂F(x+ ∆x) with ∆x→ 0,

F(x+ ∆x)−F(x)− V∆x = o(‖∆x‖).

F is said to be strongly G-semismooth at x ∈ O if for any V ∈ ∂F(x + ∆x) with

∆x→ 0,

F(x+ ∆x)−F(x)− V∆x = o(‖∆x‖2).

If, in addition, F is directionally differentiable at x, then it is said that F is semis-

mooth and strongly semismooth at x respectively.

Definition 2.5. LetO ⊆ Rn be an open set, K : O ⇒ Rm×n be a nonempty compact

valued, upper semicontinuous multifunction, and F : O → Rm be a locally Lipschitz

continuous function. F is said to be semismooth at x ∈ O with respect to the

2.3 Semismooth Newton methods 25

multifunction K if F is directionally differentiable at x and for any V ∈ K(x+ ∆x)

with ∆x→ 0,

F(x+ ∆x)−F(x)− V∆x = o(‖∆x‖).

Let α be a positive constant. F is said to be α-order (strongly, if α = 1) semismooth

at x ∈ O with respect to K if F is directionally differentiable at x and for any

V ∈ K(x+ ∆x) with ∆x→ 0,

F(x+ ∆x)−F(x)− V∆x = O(‖∆x‖1+α).

F is said to be a semismooth (respectively, α-order semismooth, strongly semis-

mooth) function on O with respect to K if it is semismooth (respectively, α-order

semismooth, strongly semismooth) everywhere in O with respect to K.

We usually regard Definition 2.4 as the classic and standard definition of semis-

moothness, whereas Definition 2.5 is more general as it involves a multifunction

which could be but not limited to the Clarke generalized Jacobian. By definition,

if F is semismooth (strongly semismooth) at x under Definition 2.4, then F is

semismooth (strongly semismooth) at x with respect to the multifunction ∂F under

Definition 2.5. We will see in the next lemma that the proximal mappings of the `1

norm and `2 norm are strongly semismooth, which is an important result for solving

the SGLasso problem later.

Lemma 2.8. For any c > 0, the proximal mappings Proxc‖·‖1(·) and Proxc‖·‖(·) are

strongly semismooth.

Proof. Since Proxc‖·‖1(·) is a Lipschitz continuous piecewise affine function, it fol-

lows from [25, Proposition 7.4.7] that Proxc‖·‖1(·) is strongly semismooth every-

where. Next, we focus on the proximal mapping Proxc‖·‖(·). From the definition of

Proxc‖·‖(·) and the fact that the projection of any vector onto the second order cone,

i.e., the epigraph of the `2 norm function, is strongly semismooth [13, Proposition

4.3], we can obtain the conclusion directly from [64, Theorem 4].

26 Chapter 2. Preliminaries

Next, the semismooth Newton (SSN) method is briefly introduced. Generally,

to solve

F(x) = 0,

where F : Rn → Rn is a locally Lipschitz continuous function, one can employ the

following SSN method:

xk+1 = xk − V −1
k F(xk), Vk ∈ ∂F(xk), k = 0, 1,

The SSN method is extremely appealing and has been extensively investigated in the

literature (e.g., [48, 49, 71, 80, 98]). We find that most of the existing studies (e.g.,

[71, 80]) used the Clarke generalized Jacobian Vk ∈ ∂F(xk) in the updating scheme

and established correspondingly the convergence results of the SSN method. How-

ever, using elements of the Clarke generalized Jacobian ∂F(·) to define the method

is not without drawbacks. An important point to consider is that the calculation

of the Clarke generalized Jacobian is too difficult a task to accomplish in some cas-

es. To address this burden, some researchers considered to find cheaper substitutes

for the Clarke generalized Jacobian. Roughly speaking, the SSN method and its

convergence analysis in the literature mainly relied on two properties of the Clarke

generalized Jacobian of a semismooth function: (i) it is a nonempty compact valued,

upper semicontinuous multifunction; (ii) the linear approximation equation holds:

for any V ∈ ∂F(x + ∆x) with ∆x → 0, F(x + ∆x) − F(x) − V∆x = o(‖∆x‖).

In view of the above observations, one might consider some surrogate generalized

Jacobians possessing the two special properties of the Clarke generalized Jacobian.

For example, based on the two properties, the concept of “linear Newton approxi-

mations” was proposed in [25]. This concept is claimed in [25] to be more general in

terms of three aspects: (i) the Clarke generalized Jacobian of a semismooth function

defines a linear Newton approximation; (ii) semismooth functions can have linear

Newton approximations other than the Clarke generalized Jacobian; (iii) functions

that are not semismooth can admit linear Newton approximations also. Apart from

the concept of “linear Newton approximations”, the paper [55] proposed to use such

2.3 Semismooth Newton methods 27

a multifunction in Definition 2.5, with respect to which F is semismooth, in place

of the Clarke generalized Jacobian. Besides, the superlinear convergence of the SSN

method was established in [55] where a surrogate multifunction is used in place of

the Clarke generalized Jacobian. Owing to the well established convergence results

of the SSN methods and a wide range of choices of a multifunction in place of the

Clarke generalized Jacobian, the thesis aims to construct qualified multifunctions

as surrogate Clarke generalized Jacobians and then implement the SSN method for

solving nonsmooth equations.

Since the SSN method is applied for solving subproblems in our algorithms, and

these subproblems are minimizations of SC1 functions, we consider the SSN method

for solving the following optimization problem

min
x∈Rn

f(x),

where f : Rn → R is a convex LC1 function. An LC1 function is a continuously

differentiable function whose gradient is locally Lipschitz continuous. Moreover, an

LC1 function is said to be SC1 if its gradient is semismooth. Or, equivalently, the

nonsmooth equation is considered

∇f(x) = 0. (2.3)

In fact, there exist a number of works investigating the SSN method for minimiz-

ing SC1 problems, such as [24, 69]. However, they used the B-subdifferential or

the Clarke generalized Jacobian in the SSN method. In some cases, for instance,

the problems that this thesis aims to solve, the B-subdifferential or the Clarke gen-

eralized Jacobian is not easy to find. As a result, the existing SSN method and

theoretical results can not be applied directly to our problems. Instead, an extend-

ed SSN method and its convergence results could be used. For the ease of reading,

we summarize the framework of the SSN method and its superlinear convergence

here.

28 Chapter 2. Preliminaries

Algorithm 1 A semismooth Newton method for solving (2.3)

Given µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], and δ ∈ (0, 1). Let K be a nonempty

compact valued, upper semicontinuous multifunction, with respect to which ∇f is

semismooth. Choose x0 ∈ Rn. Iterate the following steps for j = 0, 1, . . .

Step 1. (Newton direction) Choose Vj ∈ K(xj). Solve the following linear system

Vjd = −∇f(xj) (2.4)

by a direct method or by the conjugate gradient (CG) algorithm to find dj

such that ‖Vjdj +∇f(xj)‖ ≤ min(η̄, ‖∇f(xj)‖1+τ).

Step 2. (Line search) Set αj = δmj , where mj is the smallest nonnegative integer

m for which

f(yj + δmdj) ≤ f(yj) + µδm〈∇f(yj), dj〉.

Step 3. Set xj+1 = xj + αjd
j.

The convergence result for the above SSN method can be obtained from [55, 98].

Theorem 2.9. Suppose that the equation (2.3) admits an unique solution x̄, K

is a nonempty compact valued, upper semicontinuous multifunction, with respect to

which ∇f is semismooth, and every V ∈ K(x̄) is nonsingular. Let {xj} be the infinite

sequence generated by Algorithm 1. Then {xj} converges to the unique solution x̄ of

equation (2.3). Moreover, the convergence rate is at least superlinear:

‖xj+1 − x̄‖ = O(‖xj − x̄‖1+τ),

where τ ∈ (0, 1] is the parameter given in Algorithm 1.

Chapter 3
Augmented Lagrangian method for solving

sparse group Lasso problems

This chapter addresses the issue of solving the SGLasso problem (1.3). The SGLasso

problem (1.3) can be written equivalently as follows:

(P) min
x∈Rn

h(x) := f(x) + p(x),

where f(x) := 1
2
‖Ax − b‖2, p(x) := ϕ(x) + φ(x), ϕ(x) := λ1‖x‖1, and φ(x) :=∑g

l=1 λ2,l‖xGl‖ with λ2,l := λ2wl, l = 1, 2, . . . , g. The dual problem (see [7, Theorem

3.3.5]) of (P) takes the following form:

(D)
max g(y, z) := −〈b, y〉 − 1

2
‖y‖2 − p∗(z)

s.t. A∗y + z = 0.

In addition, the Karush-Kuhn-Tucker (KKT) optimality system associated with (P)

and (D) is given by

Ax− y − b = 0, Proxp(x+ z)− x = 0, A∗y + z = 0, (3.1)

Next, we analyse the vital decomposition property, which is termed as “prox-

decomposition” in [90], of the SGLasso regularizer p. In the next proposition, we

show that the proximal mapping Proxp(·) of p = ϕ+ φ can be decomposed into the

29

30
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

composition of the proximal mappings Proxϕ(·) and Proxφ(·). With this decomposi-

tion property, we are able to compute Proxp(·) in a closed form. This decomposition

result was proven in [91, Theorem 1], which is mainly an extension of that for the

fused Lasso regularizer in [29]. Here, we give another short proof based on the

systematic investigation in [90].

Proposition 3.1. Under Assumption 1, it holds that

Proxp(u) = Proxφ ◦ Proxϕ (u), ∀u ∈ Rn.

Proof. Under Assumption 1, the function p has a separable structure. Hence, the op-

timization problem in the definition of Proxp is separable for each group. Therefore,

it is sufficient to prove that

Proxλ1‖·‖1+λ2,l‖·‖(ul) = Proxλ2,l‖·‖ ◦ Proxλ1‖·‖1(ul), ∀ul ∈ R|Gl|, l = 1, 2, . . . , g.

By [90, Theorem 1], for each l ∈ {1, 2, . . . , g}, it suffices to show that

∂(λ1‖ul‖1) ⊆ ∂(λ1‖vl‖1), vl := Proxλ2,l‖·‖(ul), ∀ul ∈ R|Gl|.

For any given ul ∈ R|Gl|, we discuss the following two cases.

Case 1: If ‖ul‖ ≤ λ2,l, then vl = 0. It follows that ∂(λ1‖vl‖1) = [−λ1, λ1]|Gl|, which

obviously contains ∂(λ1‖ul‖1).

Case 2: If ‖ul‖ > λ2,l, then vl = (1 − λ2,l/‖ul‖)ul, which implies that sign(vl) =

sign(ul). Thus, it holds that ∂(λ1‖ul‖1) = ∂(λ1‖vl‖1).

Hence, the proof is completed.

Consider an arbitrary point u ∈ Rn. Based on the above proposition, we are

now ready to compute Proxp(u) explicitly. Let v := Proxϕ(u). For each group

Gl, l = 1, 2, . . . , g, it holds that

arg min
xGl

{
λ2,l‖xGl‖+

1

2
‖xGl − vGl‖2

}
= vGl − Π

B
λ2,l
2

(vGl).

31

That is, PlProxφ(v) = Plv − Π
B
λ2,l
2

(Plv). Therefore, we have

Proxp(u) = Proxφ(v) = v − P∗ΠB2(Pv). (3.2)

In the paragraph that follows, we introduce some error bound results which will

be used later in the convergence rate analysis. Define the proximal residual function

R : Rn → Rn by

R(x) := x− Proxp(x−∇f(x)), ∀x ∈ Rn.

Since ri{dom f} ∩ ri{dom p} 6= ∅, we know from [74, Theorem 23.8] that the Clarke

generalized Jacobian ∂h : Rn ⇒ Rn takes the following form:

∂h(x) = {v ∈ Rn | v ∈ ∇f(x) + ∂p(x)}, ∀x ∈ Rn.

Suppose that λ1 + λ2 > 0. Let ΩP be the optimal solution set of (P). Since f is

nonnegative on Rn, it is easy to obtain that h(x)→ +∞ as ‖x‖ → +∞. Thus, ΩP

is a compact convex set. The first order optimality condition of (P) implies that

x̄ ∈ ΩP is equivalent to 0 ∈ ∂h(x̄), which in turn is equivalent to R(x̄) = 0. It

was proven in [96, Theorem 1] that the local error bound condition (in the sense

of Luo and Tseng [62]) holds around the optimal solution set ΩP , i.e., for every

ξ ≥ infx h(x), there exist positive scalars κ0 and δ0 such that

dist(x,ΩP) ≤ κ0‖R(x)‖, ∀ x ∈ Rn satisfying h(x) ≤ ξ and ‖R(x)‖ ≤ δ0.

Therefore, by using the facts that ΩP is compact and that R is continuous, we know

that for any r1 > 0, there exists κ1 > 0 such that

dist(x,ΩP) ≤ κ1‖R(x)‖, ∀x ∈ Rn satisfying dist (x,ΩP) ≤ r1.

Furthermore, by mimicking the proofs in [21, Theorem 3.1] or [15, Proposition 2.4]

and noting that ΩP is a compact set, we can obtain the following result with no

difficulty.

Proposition 3.2. For any r > 0, there exists κ > 0 such that

dist(x,ΩP) ≤ κ dist(0, ∂h(x)), ∀x ∈ Rn satisfying dist (x,ΩP) ≤ r.

32
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

3.1 Generalized Jacobian of Proxp(·)

This section shall analyse the generalized Jacobian of the proximal mapping Proxp(·)

of the SGLasso regularizer p. From Proposition 3.1, for any u ∈ Rn, we have

Proxp(u) = Proxφ(Proxϕ (u)).

At the first glance, we may try to apply the chain rule in deriving the generalized

Jacobian of Proxp(·). Indeed it was illustrated in [79] that under certain conditions,

the generalized Jacobian for composite functions can be obtained by the chain rule in

a similar fashion as in finding the ordinary Jacobian for composite smooth functions.

Specifically, if the conditions in [79, Lemma 2.1] hold, then we could have obtained

by the chain rule the following B-subdifferential, which is a subset of the Clarke

generalized Jacobian,

∂BProxp(u) =
{

Θ̃ ·Θ
∣∣ Θ̃ ∈ ∂BProxφ(v), Θ ∈ ∂BProxϕ(u), v = Proxϕ (u)

}
.

However, the conditions in [79, Lemma 2.1] may not hold in our context, and con-

sequently the above equation is usually invalid. Therefore, the B-subdifferential of

Proxp(·) is nontrivial to obtain, and we have to find an alternative surrogate to

bypass this difficulty. The challenge just highlighted also appeared in [55] when

analysing the generalized Jacobian of the proximal mapping of the fused Lasso

regularizer. In that work, the general definition “semismoothness with respect to

a multifunction” (Definiton 2.5) was adopted, and such a multifunction was con-

structed to play the role of the Clarke generalized Jacobian. Here, we shall use the

same strategy, and our task now is to identify such a multifunction.

Before characterizing the multifunction relating to the semismoothness, based on

the fact in (3.2) that Proxφ(v) = v −P∗ΠB2(Pv), ∀ v ∈ Rn, we define the following

alternative for the generalized Jacobian of Proxφ(·):

∂̂Proxφ(v) :=
{
I − P∗ΣP

∣∣Σ = Diag(Σ1, . . . ,Σg),Σl ∈ ∂Π
B
λ2,l
2

(vGl), l = 1, 2, . . . , g
}
.

It can be observed that the main part of ∂̂Proxφ(·) is the block diagonal matrix Σ,

of which each block is the Clarke generalized Jacobian of a projection operator onto

3.1 Generalized Jacobian of Proxp(·) 33

an `2-norm ball. Since ∂Π
B
λ2,l
2

(·) admits a closed form expression, so does ∂̂Proxφ(·).

Now, we are in a position to present the following multifunction M : Rn ⇒ Rn×n

and regard it as the surrogate generalized Jacobian of Proxp(·) at any u ∈ Rn:

M(u) :=

(I − P∗ΣP)Θ
∣∣∣ Σ = Diag(Σ1, . . . ,Σg),Σl ∈ ∂Π

B
λ2,l
2

(vGl), l = 1, 2, . . . , g,

v = Proxϕ(u), Θ ∈ ∂Proxϕ(u)

 .

(3.3)

Remark 3.3. For l = 1, 2, . . . , g and vl ∈ R|Gl|, the projection onto an `2-norm ball

and its Clarke generalized Jacobian are given as follows, respectively:

Π
B
λ2,l
2

(vl) =

λ2,l
vl
‖vl‖

, if ‖vl‖ > λ2,l,

vl, otherwise,

(3.4)

∂Π
B
λ2,l
2

(vl) =



{ λ2,l‖vl‖(I −
vlv

T
l

‖vl‖2
)}, if ‖vl‖ > λ2,l,

{I − t vlv
T
l

(λ2,l)2
| 0 ≤ t ≤ 1}, if ‖vl‖ = λ2,l,

{I}, if ‖vl‖ < λ2,l.

(3.5)

In numerical computations, for any u ∈ Rn, one needs to construct at least one

element in M(u) explicitly. This can be done as follows. For l = 1, 2, . . . , g, choose

Σl =


λ2,l
‖vl‖

(I − vlv
T
l

‖vl‖2
), if ‖vl‖ > λ2,l,

I, if ‖vl‖ ≤ λ2,l.

In addition, the Clarke generalized Jacobian of Proxϕ are given as follows:

∂Proxϕ(u) =


Diag(θ)

∣∣∣∣ θ ∈ Rn, θi ∈


{1}, if |ui| > λ1,

{t | 0 ≤ t ≤ 1}, if |ui| = λ1,

{0}, if |ui| < λ1,

i = 1, . . . , n


.

(3.6)

Define a vector θ ∈ Rn and construct a matrix Θ = Diag(θ) with

θi =

 0, if |ui| ≤ λ1,

1, otherwise, i = 1, . . . , n.
(3.7)

34
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

We also construct one element for numerical implementations:

Θ = Diag(θ) ∈ ∂Proxϕ(u). (3.8)

Therefore, it holds that (I − P∗ΣP)Θ ∈M(u).

The following main theorem of this section justifies why M(u) in (3.3) can be

treated as the surrogate generalized Jacobian of Proxp(·) at u. That is, it shows

that the proximal mapping Proxp is strongly semismooth on Rn with respect to the

multifunction M defined in (3.3).

Theorem 3.4. Assume that Assumption 1 holds. Let u ∈ Rn. Then the multi-

function M, defined in (3.3), is a nonempty compact valued, upper semicontinuous

multifunction, and for any M ∈ M(u), M is symmetric and positive semidefinite.

Moreover, for any M ∈M(w) with w → u,

Proxp(w)− Proxp(u)−M(w − u) = O(‖w − u‖2). (3.9)

Proof. By Lemma 2.8, Proposition 3.1, and [25, Theorem 7.5.17], one can deduce

that the point-to-set map M has nonempty compact images and is upper semi-

continuous, and equation (3.9) holds. It remains to show that M is symmetric

and positive semidefinite for any M ∈ M(u). Denote v := Proxϕ(u). Take

M ∈ M(u) arbitrarily. Then, there exist Σl ∈ ∂Π
B
λ2,l
2

(vGl), l = 1, 2, . . . , g and

Θ = Diag(θ) ∈ ∂Proxϕ(u), given by (3.5) and (3.6), respectively, such that

M =

g∑
l=1

P∗l (I − Σl)PlΘ.

It suffices to show that P∗l (I − Σl)PlΘ is symmetric and positive semidefinite for

any l ∈ {1, 2, . . . , g}. Denote the index sets

Ξl := {i ∈ Gl | θi = 1}, l = 1, 2, . . . , g. (3.10)

For simplicity, we write vGl as vl in the following proof.

Case 1: ‖vl‖ < λ2,l. By (3.5), I − Σl = 0.

3.2 Inexact semismooth Newton based augmented Lagrangian method 35

Case 2: ‖vl‖ = λ2,l. By (3.5), there exists some t ∈ [0, 1] such that

P∗l (I − Σl)PlΘ =
t

(λ2,l)2
(P∗l vl)(P∗l vl)TΘ.

By the definition of Pl, we deduce that supp(P∗l vl) ⊆ Ξl. It follows from (3.10) that

(P∗l vl)TΘ = (P∗l vl)T . That is,

P∗l (I − Σl)PlΘ =
t

(λ2,l)2
(P∗l vl)(P∗l vl)T ,

which is symmetric and positive semidefinite.

Case 3: ‖vl‖ > λ2,l. From (3.5) and the proof in case 2, we have

P∗l (I − Σl)PlΘ = P∗l
(
I − λ2,l

‖vl‖
(
I − vlv

T
l

‖vl‖2

))
PlΘ

=
(

1− λ2,l

‖vl‖

)
P∗l PlΘ +

λ2,l

‖vl‖3
(P∗l vl)(P∗l vl)TΘ

=
(

1− λ2,l

‖vl‖

)
P∗l PlΘ +

λ2,l

‖vl‖3
(P∗l vl)(P∗l vl)T .

Since both P∗l Pl and Θ are diagonal, it holds that P∗l (I − Σl)PlΘ is symmetric.

Furthermore, it is obvious that P∗l PlΘ is positive semidefinite. Therefore, the last

equality implies that P∗l (I − Σl)PlΘ is positive semidefinite. In summary, we have

shown that M is symmetric and positive semidefinite.

3.2 Inexact semismooth Newton based augment-

ed Lagrangian method

In this section, we shall design an inexact semismooth Newton based augmented

Lagrangian method for solving problem (D), the dual of the SGLasso problem (1.3).

Compared with the previous work [54], this work adopts the same algorithmic frame-

work of ALM and SSN. As we know, the most important issue in implementing the

algorithm lies in finding the explicit expression of the generalized Jacobian, i.e.,

a matrix M ∈ M(u). This matrix admits a diagonal form (with zero or one in

the diagonal) in the previous paper [54] whereas it has a much more complicated

36
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

structure than a diagonal structure in our current work. In particular, any matrix

M ∈ M(u) in the set of generalized Jacobian will consist of two parts, since the

SGLasso regularizer contains two parts. As the generalized Jacobians here have

more complex structures, the efficient implementation of the algorithm for solving a

SGLasso problem is naturally more difficult than that for solving a Lasso problem

[54].

Here we always assume that λ1 +λ2 > 0. Write (D) equivalently in the following

min 〈b, y〉+ 1
2
‖y‖2 + p∗(z)

s.t. A∗y + z = 0.
(3.11)

For σ > 0, the augmented Lagrangian function associated with (3.11) is given by

Lσ(y, z;x) = 〈b, y〉+
1

2
‖y‖2 + p∗(z) +

σ

2
‖A∗y + z − σ−1x‖2 − 1

2σ
‖x‖2. (3.12)

The k-th iteration of the augmented Lagrangian method is given as follows:
(yk+1, zk+1) ≈ arg miny,z{Lσk(y, z;xk)},

xk+1 = xk − σk(A∗yk+1 + zk+1), k ≥ 0.

In each iteration, the most expensive step is to solve the following subproblem:

min
y,z
{Lσk(y, z;xk)}. (3.13)

Since for any given xk ∈ Rn and σk > 0, Lσk(·, ·;xk) is a strongly convex function,

the subproblem (3.13) admits a unique optimal solution. For any y ∈ Rm, define

ψk(y) := inf
z
Lσk(y, z;xk)

= 〈b, y〉+
1

2
‖y‖2 + p∗(Proxp∗/σk(σ

−1
k xk −A∗y)) +

σk
2
‖Proxp(σ

−1
k xk −A∗y)‖2

− 1

2σk
‖xk‖2.

Then, (yk+1, zk+1) ≈ arg miny,z{Lσk(y, z;xk)} can be computed as follows:

yk+1 ≈ arg min
y
ψk(y) and zk+1 = Proxp∗/σk(σ

−1
k xk −A∗yk+1). (3.14)

3.2 Inexact semismooth Newton based augmented Lagrangian method 37

Now, we propose an inexact augmented Lagrangian method for solving (3.11).

Algorithm 2 An inexact augmented Lagrangian method for solving (3.11)

Let σ0 > 0 be a given parameter. Choose (y0, z0, x0) ∈ Rm × Rn × Rn. Iterate the

following steps for k = 0, 1, . . .

Step 1. Compute the following via (3.14):

(yk+1, zk+1) ≈ arg min
y,z
{Lσk(y, z;xk)}. (3.15)

Step 2. Compute

xk+1 = xk − σk(A∗yk+1 + zk+1) = σkProxp(σ
−1
k xk −A∗yk+1). (3.16)

Step 3. Update σk+1 ↑ σ∞ ≤ ∞.

Given nonnegative summable sequences {εk} and {δk} such that δk < 1 for all

k ≥ 0, we estimate the accuracy of the approximate solution (yk+1, zk+1) of (3.15)

via the standard stopping criteria studied in [75]:

(A1) Lσk(yk+1, zk+1;xk)− infy,z Lσk(y, z;xk) ≤ ε2
k/2σk,

(B1) Lσk(yk+1, zk+1;xk)− infy,z Lσk(y, z;xk) ≤ (δ2
k/2σk)‖xk+1 − xk‖2.

Since ψk(·) is strongly convex with modulus 1, one has the estimate

Lσk(yk+1, zk+1;xk)− infy,z Lσk(y, z;xk) = ψk(y
k+1)− inf ψk ≤

1

2
‖∇ψk(yk+1)‖2.

Therefore, the above stopping criteria (A1) and (B1) can be replaced by the following

easy-to-check criteria, respectively,

(A1′) ‖∇ψk(yk+1)‖ ≤ εk/
√
σk,

(B1′) ‖∇ψk(yk+1)‖ ≤ (δk/
√
σk)‖xk+1 − xk‖.

38
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

3.2.1 Convergence rates for ALM (Algorithm 2)

Note that the superlinear convergence of the primal and dual sequences generated

by the semismooth Newton ALM for solving the Lasso and fused Lasso problems

([54, 55]) heavily relies on the polyhedral properties of the Lasso and fused Lasso

regularizers. However, the SGLasso regularizer is non-polyhedral. Therefore, one

has to modify the convergence analysis in ([54, 55]) to obtain the fast linear con-

vergence property under a suitable error bound assumption. In the following, we

shall analyse the global linear convergence at an arbitrarily fast rate of the inexact

augmented Lagrangian method for solving problem (3.11).

For the nonnegative summable sequence {εk} in the stopping criterion (A1′), we

introduce a scalar α such that
∞∑
k=0

εk ≤ α. (3.17)

Let r be any given positive scalar satisfying r > α. It follows from Proposition 3.2

that there exists a positive scalar κ such that

dist(x,ΩP) ≤ κ dist(0, ∂h(x)), ∀x ∈ Rn satisfying dist(x,ΩP) ≤ r. (3.18)

The next lemma measures the distance of each primal iterate generated by Algorithm

2 to the optimal solution set ΩP . The proof of Lemma 3.5 is mainly based on [16,

Proposition 1(c)], which itself is an extension of [76, Theorem 2] and [63, Theorem

2.1]. Compared to the proof in [16, Proposition 1(c)], the following lemma uses

(3.18) instead of the calmness condition of (∂h)−1 at the origin for some x̄ ∈ ΩP .

Lemma 3.5. Suppose that the initial point x0 ∈ Rn satisfies dist(x0, ΩP) ≤ r − α,

where α is given in (3.17). Let {xk} be any infinite sequence generated by Algorithm

2 under criteria (A1′) and (B1′) simultaneously. Then for all k ≥ 0, one has

dist(xk+1,ΩP) ≤ µk dist(xk,ΩP),

where µk := [δk + (1 + δk)κ/
√
κ2 + σ2

k]/(1− δk) and κ is from (3.18).

3.2 Inexact semismooth Newton based augmented Lagrangian method 39

Proof. Denote the proximal point mapping by Pk := (I + σk∂h)−1. Then, it follows

from [75, Proposition 6] and criterion (A1′) that

‖xk+1 − Pk(xk)‖2/2σk ≤ Lσk(yk+1, zk+1;xk)− infy,z Lσk(y, z;xk) ≤ ε2
k/2σk.

This, together with the fact that ΠΩP (x0) = Pk(ΠΩP (x0)), implies that

‖xk+1−ΠΩP (x0)‖ ≤ ‖xk+1−Pk(xk)‖+ ‖Pk(xk)−ΠΩP (x0)‖ ≤ ‖xk −ΠΩP (x0)‖+ εk.

Therefore, one has

‖xk − ΠΩP (x0)‖ ≤ ‖x0 − ΠΩP (x0)‖+
k−1∑
i=0

εi ≤ ‖x0 − ΠΩP (x0)‖+ α, ∀ k ≥ 0.

Consequently, dist(xk,ΩP) ≤ dist(x0,ΩP) + α ≤ r, ∀ k ≥ 0. Moreover, one has

‖Pk(xk)− ΠΩP (xk)‖ = ‖Pk(xk)− Pk(ΠΩP (xk))‖ ≤ ‖xk − ΠΩP (xk)‖ ≤ r,

which implies that

dist(Pk(x
k),ΩP) ≤ r, ∀ k ≥ 0.

Additionally, it was shown in [76, Proposition 1(a)] that

Pk(x
k) ∈ (∂h)−1((xk − Pk(xk))/σk), ∀ k ≥ 0.

Then it follows from (3.18) that

dist(Pk(x
k),ΩP) ≤ κdist(0, ∂h(Pk(x

k)) ≤ (κ/σk)‖xk − Pk(xk)‖, ∀ k ≥ 0.

Therefore, from the proof in [16, Proposition 1 (c)], for all k ≥ 0, we obtain that

dist(Pk(x
k), ΩP) ≤ (κ/

√
κ2 + σ2

k) dist(xk, ΩP)

and that

‖xk+1 − ΠΩP (Pk(x
k))‖

≤ δk‖xk+1 − ΠΩP (Pk(x
k)‖+

(
δk + (1 + δk)κ/

√
κ2 + σ2

k

)
dist(xk,ΩP).

This, together with the fact that dist(xk+1, ΩP) ≤ ‖xk+1 − ΠΩP (Pk(x
k))‖, ∀ k ≥ 0,

completes the proof.

40
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

While the global convergence of Algorihm 2 follows from [63, 75] directly, the

conditions required in [63, 75] to guarantee the local linear convergence of both

{xk} and {(yk, zk)} may no longer hold for the SGLasso problem due to the non-

polyhedral property of the `2 norm function. Fortunately, the new results established

in [16] on the convergence rates of the ALM allow us to establish the following

theorem, which proves the global Q-linear convergence of the primal sequence {xk}

and the global R-linear convergence of the dual infeasibility and the dual objective

values. Furthermore, the linear rates can be arbitrarily fast if the penalty parameter

σk is chosen sufficiently large.

Theorem 3.6. Let {(yk, zk, xk)} be an infinite sequence generated by Algorithm 2

under stopping criterion (A1′). Then, the sequence {xk} converges to some x̄ ∈ ΩP ,

and the sequence {(yk, zk)} converges to the unique optimal solution of (D).

Furthermore, if criterion (B1′) is also executed in Algorithm 2 and the initial

point x0 ∈ Rn satisfies dist(x0, ΩP) ≤ r − α, then for all k ≥ 0, we have

dist(xk+1,ΩP) ≤ µk dist(xk,ΩP), (3.19a)

‖A∗yk+1 + zk+1‖ ≤ µ′k dist(xk,ΩP), (3.19b)

sup(D)− g(yk+1, zk+1) ≤ µ′′k dist(xk,ΩP), (3.19c)

where

µk :=
[
δk + (1 + δk)κ/

√
κ2 + σ2

k

]
/(1− δk),

µ′k := 1/[(1− δk)σk],

µ′′k := [δ2
k‖xk+1 − xk‖+ ‖xk+1‖+ ‖xk‖]/[2(1− δk)σk],

and κ is from (3.18). Moreover, µk, µ
′
k, and µ′′k go to 0 if σk ↑ σ∞ = +∞.

Proof. The statements on the global convergence just follow from [75, Theorem 5] or

[16, Proposition 2]. Inequality (3.19a) is a direct consequence of Lemma 3.5. From

the updating formula (3.16) of xk+1, we deduce that

‖A∗yk+1 + zk+1‖ = σ−1
k ‖x

k+1 − xk‖,

3.2 Inexact semismooth Newton based augmented Lagrangian method 41

which, together with [16, Lemma 3], i.e.

‖xk+1 − xk‖ ≤ (1− δk)−1dist(xk,Ωp), (3.20)

implies that (3.19b) holds. Finally, it follows from [16, Proposition 2 (5b)] that

sup(D)− g(yk+1, zk+1)

≤ Lσk(yk+1, zk+1;xk)− infy,z Lσk(y, z;xk) + (1/2σk)(‖xk‖2 − ‖xk+1‖2).

This, together with criterion (B1) and (3.20), shows that (3.19c) holds. The proof

of this theorem is completed.

Remark 3.7. Assume that all the conditions in Theorem 3.6 are satisfied. Since the

primal objective function h is Lipschitz continuous on any compact set, there exists a

constant L > 0 such that h is Lipschitz continuous on the set {x ∈ Rn | dist(x,ΩP) ≤

r} with modulus L. Therefore, one can obtain from Theorem 3.6 that for all k ≥ 0,

h(xk+1)− inf(P) ≤ Ldist(xk+1,ΩP) ≤ Lµkdist(xk, ΩP).

This inequality, together with (3.19c) and the strong duality theorem, implies that

h(xk+1)− g(yk+1, zk+1) ≤ (Lµk + µ′′k)dist (xk, ΩP),

which means that the duality gap converges to zero R-linearly at an arbitrary linear

rate if σk is sufficiently large and R-superlinearly if σk ↑ σ∞ = +∞.

3.2.2 Semismooth Newton method for solving subproblem

(3.14)

In this subsection, we propose an efficient semismooth Newton (SSN) method for

solving the subproblem (3.14). As already mentioned earlier, having an efficient

method for solving (3.14) is critical to the efficiency of Algorithm 2. In each iteration,

we have to solve the following problem, for any given σ > 0 and fixed x̃,

min
y
ψ(y), (3.21)

42
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

where ψ(y) := 〈b, y〉+ 1
2
‖y‖2 + p∗(Proxp∗/σ(σ−1x̃−A∗y)) + σ

2
‖Proxp(σ

−1x̃−A∗y)‖2.

Note that ψ(·) is strongly convex and continuously differentiable with

∇ψ(y) = b+ y − σAProxp(σ
−1x̃−A∗y).

Thus, the unique solution ȳ of (3.21) can be obtained by solving the following

nonsmooth equation

∇ψ(y) = 0. (3.22)

We should point out again that characterizing ∂(∇ψ)(·) is a difficult task to

accomplish. In section 3.1, we have constructed a multifunction M, which is used

as a surrogate of the generalized Jacobian ∂Proxp. Besides, it is illustrated in The-

orem 3.4 that Proxp is strongly semismooth with respect to the multifunction M.

Likewise, we define a multifunction V : Rm ⇒ Rm×m as follows:

V(y) :=
{
V |V = I + σAMA∗, M ∈M(σ−1x̃−A∗y)

}
,

whereM(·) is defined in (3.3). It follows from Theorem 3.4 and [25, Theorem 7.5.17]

that (i) V is a nonempty compact valued, upper semicontinuous multifunction; (ii)

∇ψ is strongly semismooth on Rm with respect to the multifunction V ; (iii) every

matrix in the set V(·) is symmetric and positive definite. With the above analysis,

we are ready to design the following SSN method for solving (3.22).

3.2 Inexact semismooth Newton based augmented Lagrangian method 43

Algorithm 3 A semismooth Newton method for solving (3.22)

Given µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], and β ∈ (0, 1). Choose y0 ∈ Rm. Iterate

the following steps for j = 0, 1, . . .

Step 1. (Newton direction) Choose one Mj ∈ M(σ−1x̃ − A∗yj). Let Vj = I +

σAMjA∗. Solve the following linear system

Vjd = −∇ψ(yj) (3.23)

by a direct method or by the conjugate gradient (CG) algorithm to find dj

such that ‖Vjdj +∇ψ(yj)‖ ≤ min(η̄, ‖∇ψ(yj)‖1+τ).

Step 2. (Line search) Set αj = βmj , where mj is the smallest nonnegative integer

m for which

ψ(yj + βmdj) ≤ ψ(yj) + µβm〈∇ψ(yj), dj〉.

Step 3. Set yj+1 = yj + αjd
j.

The following convergence theorem for Algorithm 3 can be obtained directly

from [55, Theorem 3].

Theorem 3.8. Let {yj} be the sequence generated by Algorithm 3. Then {yj}

is well-defined and converges to the unique solution ȳ of (3.21). Moreover, the

convergence rate is at least superlinear:

‖yj+1 − ȳ‖ = O(‖yj − ȳ‖1+τ),

where τ ∈ (0, 1] is the parameter given in Algorithm 3.

3.2.3 Efficient techniques for solving the linear system (3.23)

In this section, we analyse the sparsity structure of the matrix in the linear system

(3.23) and design sophisticated numerical techniques for solving the large-scale linear

systems involved in the SSN method. These techniques were first applied in [54]

44
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

which took full advantage of the second order sparsity of the underlying problem.

The numerical techniques also rely heavily on the sparsity of the primal iterative

sequence.

As can be seen, the most expensive step in each iteration of Algorithm 3 is in

solving the linear system (3.23). Let (x̃, y) ∈ Rn × Rm and σ > 0 be given. The

linear system (3.23) has the following form:

(I + σAMAT)d = −∇ψ(y), (3.24)

where A denotes the matrix representation of the linear operator A, and M ∈M(u)

with u = σ−1x̃−ATy. With the fact that A is an m by n matrix and M is an n by

n matrix, the cost of naively computing AMAT is O(mn(m+n)). Similarly, for any

vector d ∈ Rm, the cost of naively computing the matrix-vector product AMATd is

O(mn). Since the cost of naively computing the coefficient matrix I +σAMAT and

that of multiplying a vector by the coefficient matrix I + σAMAT are excessively

demanding, common linear system solvers, such as the Cholesky decomposition and

the conjugate gradient method, will be extremely slow (if possible at all) in solving

the linear system (3.24) arising from large-scale problems. Therefore, it is critical for

us to extract and exploit any structures present in the matrix AMAT to dramatically

reduce the cost of solving (3.24).

Next, we analyse the proof in Theorem 3.4 in detail in order to find the special

structure of AMAT , thereby reducing the computational cost mentioned above. Let

v := Proxϕ(u). From the proof in Theorem 3.4, case 1 and case 2 (taking t = 0) are

simple since the set M(u) contains a zero matrix. We can choose M = 0 so that

I + σAMAT = I.

The sole challenge lies in case 3. Here, we shall consider(
1− λ2,l

‖vl‖

)
AP∗l PlΘAT +

λ2,l

‖vl‖3
A(P∗l vl)(P∗l vl)TAT .

Note that both P∗l Pl and Θ are diagonal matrices whose diagonal elements are either

0 or 1. Therefore, the product P∗l PlΘ enjoys the same property. Moreover, we have

3.2 Inexact semismooth Newton based augmented Lagrangian method 45

supp(diag(P∗l Pl)) = Gl and supp(diag(Θ)) = supp(v) by the definition of Pl, (3.7),

and (3.8). Therefore,

supp(diag(P∗l PlΘ)) = Ξl,

where Ξl is the index set defined by (3.10) that corresponds to the nonzero elements

of v in the l-th group. In other words, the diagonal matrix P∗l PlΘ is expected to

contain only a few 1’s in the diagonal. Consequently, the computational cost of

AP∗l PlΘAT can be greatly reduced. Next, we observe that supp(P∗l vl) ⊆ Ξl. Thus

to compute A(P∗l vl), one just needs to consider those columns of A corresponding

to the index set Ξl, thereby reducing the cost of computing A(P∗l vl) and that of

A(P∗l vl)(P∗l vl)TAT . The following notations are introduced to express these tech-

niques clearly. Denote the index set Ξ> := {l | ‖vl‖ > λ2,l, l = 1, 2, . . . , g}, which

corresponds to case 3 in Theorem 3.4. For each l = 1, 2, . . . , g, let Al ∈ Rm×|Ξl|

be the sub-matrix of A with those columns in Ξl and sl := (P∗l vl)Ξl ∈ R|Ξl| be the

sub-vector of P∗l vl restricted to Ξl. Then, we deduce that

AMAT =
∑
l∈Ξ>

(
1− λ2,l

‖vl‖

)
AP∗l PlΘAT +

λ2,l

‖vl‖3
A(P∗l vl)(P∗l vl)TAT

=
∑
l∈Ξ>

(
1− λ2,l

‖vl‖

)
AlA

T
l +

λ2,l

‖vl‖3
(Alsl)(Alsl)

T . (3.25)

Therefore, the cost of computing AMAT and that of the matrix-vector product

AMATd for any d ∈ Rm are O(m2(r + r2)) and O(m(r + r2)), respectively, where

r :=
∑

l∈Ξ>
|Ξl| ≤ |supp(v)| and r2 := |Ξ>| ≤ g. We may refer to r as the overall

sparsity and r2 as the group sparsity. In other words, the computational cost depends

on the overall sparsity r, the group sparsity r2, and the number of observations

m. The number r is presumably much smaller than n due to the fact that v =

Proxϕ(u). Besides, the number of observations m is usually smaller than the number

of predictors n in many applications. Even if n happens to be extremely large (say,

larger than 107), one can still solve the linear system (3.24) efficiently via the (sparse)

Cholesky factorization as long as r, r2, and m are moderate (say, less than 104).

In addition, if the optimal solution is so sparse that r + r2 � m, then the cost

46
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

of solving (3.24) can be reduced further. In this case, the coefficient matrix can be

written as follows:

I + σAMAT = I +DDT ,

where D = [B, C] ∈ Rm×(r+r2) with Bl :=

√
σ
(

1− λ2,l
‖vl‖

)
Al ∈ Rm×|Ξl|, B :=

[Bl]l∈Ξ> ∈ Rm×r, cl :=
√
σ

λ2,l
‖vl‖3

(Alsl) ∈ Rm and C = [cl]l∈Ξ> ∈ Rm×r2 . By the

Sherman-Morrison-Woodbury formula, it holds that

(I + σAMAT)−1 = (I +DDT)−1 = I −D(I +DTD)−1DT .

In this case, the main cost is in computing I+DTD at O(m(r+ r2)2) operations, as

well as to factorize the r + r2 by r + r2 matrix I +DTD at the cost of O((r + r2)3)

operations.

Based on the above arguments, one can claim that the linear system (3.23) in each

SSN iteration can be solved efficiently at low costs. In fact based on our experience

gathered from the numerical experiments in the next section, the computational

costs are so low that the time taken to perform indexing operations, such as obtaining

the sub-matrix Al from A and the sub-vector (P∗l vl)Ξl from P∗l vl for l ∈ Ξ>, may

become noticeably higher than the time taken to compute the matrix AMAT itself.

Fortunately, the group sparsity r2 generally limits the number of such indexing

operations needed when computing AMAT .

Note that in the unlikely event that computing the Cholesky factorization of

AMAT or that of I + DTD is expensive, such as when r + r2 and m are both

large (say more than 104), one can employ the preconditioned conjugate gradient

(PCG) method to solve the linear system (3.24) efficiently through exploiting the

fast computation of the matrix-vector product AMATd for any given vector d.

3.3 Numerical experiments

In this section, we compare the performance of our semismooth Newton augmented

Lagrangian (Ssnal) method with the semi-proximal alternating direction method

3.3 Numerical experiments 47

of multipliers (sPADMM) and the state-of-the-art solver SLEP∗[57] for solving the

SGLasso problem. Specifically, the function “sgLeastR” in the solver SLEP is used

for comparison. For the details of “sgLeastR” the reader is referred to the paper [58].

ADMM was first proposed in [32, 34], and the implementation will be illustrated

in section 3.3.1. In addition, we also compare with the block coordinate descent

(BCD) algorithm when testing on the climate data set in section 3.3.5. The BCD

method we used is efficiently implemented in [68] with a gap safe screening rule, and

a Python implementation is available as gl path.py†. Therefore, we can test the

performance of the BCD algorithm by running the Python codes sgl path.py. For

a fair comparison, we directly run the Python codes instead of translating them

into Matlab codes.

Since the primal problem (1.3) is unconstrained, it is reasonable to measure the

accuracy of an approximate optimal solution (y, z, x) for problem (3.11) and problem

(1.3) by the relative duality gap and dual infeasibility. Specifically, let

pobj :=
1

2
‖Ax− b‖2 + λ1‖x‖1 + λ2

g∑
l=1

wl‖xGl‖ and dobj := −〈b, y〉 − 1

2
‖y‖2

be the primal and dual objective function values. Then the relative duality gap and

the relative dual infeasibility are defined by

ηG :=
|pobj− dobj|

1 + |pobj|+ |dobj|
, ηD :=

‖A∗y + z‖
1 + ‖z‖

.

For given error tolerances εD > 0 and εG > 0, our algorithm Ssnal will be

terminated if

ηD < εD and ηG < εG, (3.26)

while the sPADMM will be terminated if the above conditions hold or the maximum

number of 10, 000 iterations is reached. By contrast, since SLEP does not produce

the dual sequences {(yk, zk)}, the relative dual infeasibility cannot be used as a

stopping criterion for SLEP. Therefore, we terminate SLEP if the relative difference

∗http://www.public.asu.edu/˜jye02/Software/SLEP
†The source codes can be found in https://github.com/EugeneNdiaye/GAPSAFE SGL

48
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

of the optimal objective values between SLEP and SSNAL is less than εG, i.e.,

ηP :=
objP − objS

1 + |objP|+ |objS|
< εG,

or the maximum number of 10, 000 iterations is reached. Here objP and objS denote

the objective values obtained by SLEP and Ssnal respectively. Note that the

parameters for SLEP are set to their default values unless otherwise specified. The

BCD is terminated by its default stopping condition.

In our numerical experiments, we choose εD = εG = 10−6 unless otherwise

specified. That is, the condition (3.26) for Ssnal becomes

ηS := max{ηG, ηD} < 10−6.

Similarly, the stopping condition for sPADMM becomes

ηA := max{ηG, ηD} < 10−6.

In addition, we adopt the following weights: wl =
√
|Gl|, ∀ l = 1, 2, . . . , g for the

model (1.3). In the following tables, “S” stands for Ssnal; “P” for SLEP; “A” for

sPADMM; “nnz” denotes the number of nonzero entries in the solution x obtained

by Ssnal using the following estimation:

nnz := min{k |
k∑
i=1

|x̂i| ≥ 0.999‖x‖1},

where x̂ is obtained via sorting x by magnitude in a descending order. We display

the number of outer ALM iterations (in Algorithm 2) and the total number of inner

SSN iterations (in Algorithm 3) of Ssnal in the format of “outer iteration (inner

iteration)” under the iteration column. The computation time is in the format of

“hours:minutes:seconds”, and “00” in the time column means that the elapsed time

is less than 0.5 second.

All our numerical results are obtained by running Matlab (version 9.0) on a

windows workstation (24-core, Intel Xeon E5-2680 @ 2.50GHz, 128 Gigabytes of

RAM) except that the Python code spl path.py is implemented in Anaconda 2.

3.3 Numerical experiments 49

3.3.1 Dual based semi-proximal ADMM

In this section, we study the implementation of the (inexact) semi-proximal alternat-

ing direction method of multipliers (sPADMM), which is an extension of the classic

ADMM [32, 34]. This method is one of the most natural methods for solving (3.11)

due to its separable structure. Generally, the framework of the sPADMM consists

of the following iterations:
yk+1 ≈ arg miny Lσ(y, zk;xk) + 1

2
‖y − yk‖2

S1 ,

zk+1 ≈ arg minz Lσ(yk+1, z;xk) + 1
2
‖z − zk‖2

S2 ,

xk+1 = xk − τσ(A∗yk+1 + zk+1),

(3.27)

where τ ∈ (0, (1 +
√

5)/2), S1 and S2 are self-adjoint positive semidefinite linear

operators, and Lσ is the augmented Lagrangian function defined in (3.12). The

sPADMM is convergent under some mild conditions, and we refer the reader to [12,

28] for the convergence results. However, due to the lack of error bound conditions

for the KKT system (3.1), the linear convergence rate of the sPADMM cannot be

established from existing results.

In each iteration of (3.27), the first step is to minimize a function of y. In

particular, yk+1 can be obtained by solving the following m × m linear system of

equations:

(σ−1I +AA∗ + S1)yk+1 = −σ−1b−A(zk − σ−1xk) + S1y
k.

As the dimension m is a moderate number in many statistical applications. Thus, in

our implementation, equation (3.3.1) was solved via the Cholesky factorization, and

the proximal term S1 was taken to be the zero matrix. In the event that computing

the Cholesky factorization of σ−1I+AA∗ is expensive, one can choose S1 judiciously

to make the coefficient matrix to be a positive definite diagonal matrix plus a low-

rank matrix that one can invert efficiently via the Sherman-Morrison-Woodbury

formula. We refer the reader to [12, section 7.1] for the details on how to choose S1

appropriately.

50
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

The second step in (3.27) is to minimize a function of z. For the SGLasso

problem, one would simply choose S2 = 0. In this case, zk+1 is updated by the

following scheme:

zk+1 = σ−1xk −A∗yk+1 − Proxp(σ
−1xk −A∗yk+1),

where Proxp is computable by Proposition 3.1. In summary, two subproblems of

(3.27) are solvable and consequently the framework (3.27) is easily implementable.

Moreover, in order to improve the convergence speed numerically, we set the step-

length τ in (3.27) to be 1.618 and tune the parameter σ according to the progress

between primal feasibility and dual feasibility in the implementation.

3.3.2 Synthetic data

This section presents the tests of the three algorithms Ssnal, sPADMM, and SLEP

on various synthetic data constructed in the same way as in [78]. The data matrix A

is generated randomly as an m×n matrix of normally distributed random numbers,

and the number of groups g is chosen manually to be 100, 1000, and 10000. Then

we partition {1, 2, . . . , n} into g groups such that the indices of components in each

group are adjacent, for example, G1 = {1, 2, . . . , 25}, G2 = {26, 27, . . . , 53}, etc.

The group sizes {|Gi|, i = 1, 2, . . . , g} are determined randomly such that each |Gi|

is expected to be around the mean value of n
g
. Subsequently, the response vector b

is constructed as

b = Ax+ ε,

where ε is normally distributed random noise, xGl = (1, 2, . . . , 10, 0, . . . , 0)T for

l = 1, 2, . . . , 10, and xGl = 0 for all other groups. That is, the first 10 groups are

the non-trivial groups, and the true number of nonzero elements of the underlying

solution x is 100. The regularization parameters λ1 = λ2 are chosen to make the

number of nonzero elements of the resulting solution close to the true number of

100.

3.3 Numerical experiments 51

Table 3.1 compares the numerical results of the three algorithms Ssnal, sPAD-

MM, and SLEP tested on different synthetic data. As can be seen from the table, the

computational time of Ssnal is less than that of sPADMM and SLEP for most cases.

The overall advantage of computational time suggests that our algorithm Ssnal is

efficient for solving the SGLasso problem with randomly generated data. Moreover,

we observe from the table that sPADMM is inefficient in solving the SGLasso prob-

lem with randomly generated large-scale data. A possible reason is that the first

order method sPADMM requires a large number of iterations to solve the problem

to the required accuracy of 10−6. The table also shows that our algorithm Ssnal

can significantly outperform SLEP on problems with a large number of groups. In

particular, Ssnal is more than 5 times faster than SLEP for the high dimensional

instance with problem size (m,n) = (1e4, 1e6) and group number g = 10, 000. For

this instance, the number of nonzero entries in the solution x is small, and we have

highly conducive second order sparsity which we can fully exploit in the numerical

computations outlined in section 3.2.3.

Table 3.1: The performances of Ssnal, sPADMM, and SLEP on synthetic data. Regu-
larization parameters are set as follows: λ1 = λ2. “S” stands for Ssnal; “P” for SLEP;
“A” for sPADMM.

size g λ1 nnz iteration time

(m,n) S|A|P S|A|P

(1e3,1e5)

100 1338 166 1(3) | 1246 | 1 00 | 01:23 | 00

1000 1736 154 2(13) | 1247 | 26 01 | 01:25 | 01

10000 983 84 4(27) | 1185 | 239 02 | 01:21 | 13

(1e4,1e6)

100 3775 43 1(3) | 2228 | 17 13 | 03:01:49 | 59

1000 7229 167 1(3) | 2232 | 1 11 | 03:05:03 | 08

10000 4000 109 3(28) | 2104 | 148 01:38 | 03:06:31 | 08:37

3.3.3 UCI data sets with random groups

This section presents the performances of the three algorithms Ssnal, sPADMM,

and SLEP on large-scale UCI data sets [56] (A, b) that are originally obtained from

the LIBSVM data sets [11]. In our numerical experiments, we follow [54] and apply

52
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

the method in [42] to expand the original features of the data sets bodyfat, pyrim,

and triazines using polynomial basis functions. For example, a polynomial basis

function of order 7 is used to expand the features of the data set bodyfat, and then

the expanded data set is named as bodyfat7. This naming convention is also used

for pyrim5, triazines4, and housing 7. As noted in [54, Table 1], these data sets

are quite different in terms of the problem dimension and the largest eigenvalue of

AA∗. For example, for a relatively high-dimensional instance log1p.E2006.train, the

dimension of A is 16087× 4272227 and the largest eigenvalue of AA∗ is 5.86× 107.

Next, we describe how the groups in each problem are specified. By reordering

the components of the variable x if necessary, without loss of generality, we assume

that the vector x can be partitioned into g groups where the indices of components

in each group are adjacent. The group sizes {|Gl|, l = 1, 2, . . . , g} are determined

randomly such that each |Gl| is around the mean value of n
g
. In the experiment, the

average group size is about 300.

We tested the SGLasso problems with two different sets of regularization param-

eters which are chosen manually:

(S1) λ1 = λ2 = γ‖A∗b‖∞;

(S2) λ1 = 0.5γ‖A∗b‖∞, λ2 = 9.5γ‖A∗b‖∞.

The parameter γ is chosen to produce a reasonable number of nonzero elements in

the resulting solution x. Three values of γ are used for each UCI data set in our

experiments.

Table 3.2 presents the comparison results of the three algorithms Ssnal, sPAD-

MM, and SLEP on 8 selected UCI data sets with regularization parameters specified

as in (S1). As shown in the table, SSNAL has succeeded in solving all instances within

1 minute, while SLEP failed to solve 10 cases. Although sPADMM has also succeed-

ed in solving all instances, its running time for each case is much longer than that

of Ssnal. In majority of the cases, SSNAL outperformed the first order methods

sPADMM and SLEP by a large margin. For example, for the instance E2006.train

3.3 Numerical experiments 53

with γ = 1e-7, SSNAL solved it to the desired accuracy in 3 seconds, sPADMM

took more than 8 minutes, while SLEP failed to solve it within 10000 steps. The

numerical results show convincingly that our algorithm SSNAL can solve SGLasso

problems highly efficiently and robustly. Again, the superior performance of our

Ssnal algorithm can be attributed to our ability to extract and exploit the second

order sparsity structure (in the SGLasso problem) within the SSN method to solve

each ALM subproblem very efficiently.

Table 3.3 is the same as Table 3.2 but for the regularization parameters specified

as in (S2). This table also shows that the computational time of Ssnal is far

less than that of sPADMM and SLEP for almost all cases. Furthermore, for more

difficult cases, such as those with large problem dimension (m,n) and large number

of nonzero entries (nnz), the superiority of Ssnal is even more striking compared

to sPADMM and SLEP. The results again demonstrate that our algorithm Ssnal

is highly efficient for solving SGLasso problems.

Figure 3.1: Performance profiles of Ssnal, sPADMM, and SLEP on UCI data sets with
randomly generated groups.

54
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

Figure 3.1 presents the performance profiles of Ssnal, sPADMM, and SLEP for

all 48 tested problems, which are presented in Table 3.2 and Table 3.3. The meaning

of the performance profiles is given as follows: a point (x, y) is on the performance

curve of a particular method if and only if this method can solve up to desired

accuracy (100y)% of all the tested instances within at most x times of the fastest

method for each instance. As can be seen, Ssnal outperforms sPADMM and SLEP

by a large margin for all tested UCI data sets with randomly generated groups. In

particular, focusing on y = 40%, we can see from Figure 3.1 that Ssnal is around 30

times faster compared to sPADMM and SLEP for over 60% of the tested instances.

Table 3.2: The performances of Ssnal, sPADMM, and SLEP on 8 selected UCI data sets
with randomly generated groups. The regularization parameters are specified as in (S1).
“S” stands for Ssnal; “P” for SLEP; “A” for sPADMM.

problem name γ nnz iteration time error

(m,n); g S|A|P S|A|P ηS |ηA|ηP
E2006.train

(16087,150360)

501

1e-05 1 3(7) | 44 | 4 01 | 07:50 | 00 1.4e-09 | 7.4e-07 | 6.2e-09

1e-06 1 4(8) | 23 | 11 01 | 07:03 | 01 7.9e-11 | 7.8e-07 | 9.9e-07

1e-07 46 20(40) | 70 | 10000 03 | 08:30 | 08:59 1.2e-07 | 9.3e-07 | 2.5e-04

E2006.test

(3308,150358)

501

1e-05 1 4(8) | 36 | 4 00 | 18 | 00 1.0e-10 | 8.6e-07 | 4.9e-13

1e-06 1 4(9) | 29 | 21 00 | 18 | 00 1.2e-08 | 8.3e-07 | 9.7e-07

1e-07 150 23(48) | 205 | 10000 02 | 28 | 02:17 8.0e-07 | 1.0e-06 | 3.1e-03

log1p.E2006.train

(16087,4272227)

14241

1e-03 2 3(10) | 2360 | 882 09 | 01:01:06 | 04:45 4.9e-09 | 1.0e-06 | 9.7e-07

1e-04 3 3(10) | 2490 | 5260 08 | 01:02:49 | 28:21 7.0e-07 | 1.0e-06 | 9.8e-07

1e-05 1005 5(22) | 876 | 7553 37 | 33:57 | 40:48 3.3e-07 | 9.9e-07 | 1.0e-06

log1p.E2006.test

(3308,4272226)

14241

1e-03 4 4(13) | 1549 | 2107 08 | 10:22 | 05:12 3.5e-07 | 9.9e-07 | 9.8e-07

1e-04 5 4(12) | 1749 | 2693 06 | 11:39 | 06:41 6.2e-07 | 9.9e-07 | 9.9e-07

1e-05 5009 7(34) | 464 | 10000 45 | 03:42 | 25:04 2.1e-07 | 9.7e-07 | 7.5e-06

bodyfat7

(252,116280)

388

1e-04 7 11(29) | 878 | 3246 01 | 28 | 54 7.7e-07 | 9.9e-07 | 9.6e-07

1e-05 13 15(37) | 918 | 10000 03 | 29 | 02:48 7.9e-07 | 9.9e-07 | 2.1e-05

1e-06 237 21(58) | 917 | 10000 07 | 29 | 02:51 6.9e-07 | 1.0e-06 | 2.4e-04

pyrim5

(74,201376)

671

1e-02 279 8(32) | 3074 | 4736 02 | 02:04 | 01:55 1.3e-07 | 1.0e-06 | 1.0e-06

1e-03 606 11(39) | 2003 | 10000 02 | 01:21 | 04:05 3.9e-07 | 1.0e-06 | 8.9e-06

1e-04 937 17(50) | 1969 | 10000 05 | 01:23 | 04:05 6.1e-07 | 1.0e-06 | 1.2e-04

triazines4

(186,635376)

2118

1e-02 406 8(35) | 5038 | 9374 09 | 24:37 | 25:38 8.5e-08 | 1.0e-06 | 1.0e-06

1e-03 1396 9(43) | 4020 | 10000 17 | 19:43 | 27:25 4.2e-07 | 1.0e-06 | 5.8e-04

1e-04 3574 16(58) | 4287 | 10000 55 | 22:33 | 27:23 6.6e-07 | 1.0e-06 | 5.5e-03

housing7

(506,77520)

258

1e-02 220 7(31) | 813 | 3366 01 | 25 | 59 2.5e-07 | 9.9e-07 | 9.9e-07

1e-03 817 9(37) | 816 | 5199 02 | 25 | 01:32 8.9e-08 | 9.9e-07 | 1.0e-06

1e-04 2134 14(47) | 618 | 10000 07 | 19 | 02:56 7.1e-07 | 1.0e-06 | 3.7e-06

3.3 Numerical experiments 55

Table 3.3: The performances of Ssnal, sPADMM, and SLEP on 8 selected UCI data sets
with randomly generated groups. The regularization parameters are specified as in (S2).
“S” stands for Ssnal; “P” for SLEP; “A” for sPADMM.

problem name γ nnz iteration time error

(m,n);g S|A|P S|A|P ηS |ηA|ηP
E2006.train

(16087,150360)

501

1e-05 1 3(7) | 73 | 1 01 | 08:40 | 00 1.6e-10 | 9.7e-07 | 3.0e-08

1e-06 1 3(7) | 44 | 4 01 | 07:49 | 00 1.5e-09 | 7.9e-07 | 7.3e-07

1e-07 16 8(16) | 31 | 13 01 | 07:33 | 01 3.3e-07 | 9.9e-07 | 9.9e-07

E2006.test

(3308,150358)

501

1e-05 1 3(7) | 52 | 16 00 | 20 | 00 3.7e-09 | 7.1e-07 | 3.8e-08

1e-06 1 4(8) | 32 | 16 00 | 18 | 00 4.9e-10 | 9.4e-07 | 4.9e-08

1e-07 15 9(19) | 29 | 25 01 | 18 | 00 4.8e-07 | 6.9e-07 | 8.7e-07

log1p.E2006.train

(16087,4272227)

14241

1e-03 1 2(6) | 2664 | 202 05 | 01:06:05 | 01:06 5.1e-08 | 9.9e-07 | 2.0e-07

1e-04 7 3(11) | 2379 | 1286 10 | 01:00:42 | 06:53 4.2e-09 | 9.9e-07 | 9.6e-07

1e-05 32 3(11) | 2474 | 4375 09 | 01:02:34 | 23:23 6.8e-07 | 1.0e-06 | 9.9e-07

log1p.E2006.test

(3308,4272226)

14241

1e-03 2 2(7) | 1961 | 379 04 | 12:55 | 57 5.5e-07 | 9.9e-07 | 9.0e-07

1e-04 10 4(13) | 1567 | 1459 08 | 10:30 | 03:40 3.9e-07 | 9.9e-07 | 9.6e-07

1e-05 95 5(15) | 1749 | 4800 08 | 11:37 | 12:18 5.6e-08 | 9.9e-07 | 9.9e-07

bodyfat7

(252,116280)

388

1e-04 111 9(20) | 363 | 1711 00 | 12 | 33 1.7e-08 | 9.8e-07 | 1.0e-06

1e-05 208 13(30) | 438 | 8460 01 | 14 | 02:42 2.5e-07 | 9.6e-07 | 1.0e-06

1e-06 264 17(37) | 555 | 10000 05 | 18 | 03:10 7.9e-07 | 9.9e-07 | 2.3e-06

pyrim5

(74,201376)

671

1e-02 230 4(17) | 1258 | 1489 01 | 51 | 37 3.7e-07 | 4.5e-07 | 9.7e-07

1e-03 626 8(34) | 1413 | 6038 02 | 57 | 02:32 9.0e-07 | 1.0e-06 | 1.0e-06

1e-04 1178 13(43) | 1684 | 10000 04 | 01:10 | 04:16 1.1e-07 | 1.0e-06 | 4.8e-05

triazines4

(186,635376)

2118

1e-02 577 6(27) | 10000 | 4422 06 | 48:29 | 12:01 1.1e-07 | 2.7e-06 | 1.0e-06

1e-03 1171 8(36) | 4875 | 10000 10 | 23:49 | 27:19 5.3e-07 | 1.0e-06 | 3.2e-06

1e-04 4346 11(48) | 3343 | 10000 28 | 17:51 | 28:42 9.1e-07 | 1.0e-06 | 2.7e-04

housing7

(506,77520)

258

1e-02 206 3(11) | 1097 | 29 00 | 34 | 01 9.0e-09 | 9.7e-07 | 2.9e-07

1e-03 839 8(30) | 754 | 936 01 | 23 | 17 1.3e-07 | 1.0e-06 | 9.8e-07

1e-04 1689 10(36) | 837 | 5510 03 | 26 | 01:38 1.0e-07 | 1.0e-06 | 1.0e-06

3.3.4 UCI datesets with simulated groups

This section also makes uses of the UCI data sets mentioned in section 5.3. Instead

of specifying the groups randomly, we attempt to generate more meaningful groups

in the following manner. Firstly, the classical Lasso (model (1.3) with λ2 = 0) is

solved with the accuracy of 10−4 to obtain a sparse solution x, and the computed

solution x is sorted in a descending order. Then, the first |G1| largest variables

are allocated to group 1, and the next |G2| variables are allocated to group 2, etc.

56
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

Since this group membership is determined by the magnitude of each variable of

the computed solution from the classical Lasso, we believe that this kind of group

structure is more natural than that constructed randomly in the previous section.

Besides, the group sizes {|Gl|, l = 1, 2, . . . , g} are determined randomly such that

each |Gl| is around the mean value of n
g
. Compared to the last section, a different

value 30 is taken as the average group size for the diversity of experiments.

To generate the solution from the classical Lasso to decide on the group mem-

bership mentioned above, we take the medium value of γ in Table 3.4, e.g., γ = 1e-6

for the instance E2006.train. And the regularization parameters for the classical

Lasso are set as follow: λ1 = γ‖A∗b‖∞, λ2 = 0. For the SGLasso problem, the

regularization parameters follow three different strategies: (S1) and (S2) given in

the previous section, and

(S3) λ1 = γ‖A∗b‖∞, λ2 =
√
λ1 if λ1 > 1 and λ2 = λ2

1 if λ1 ≤ 1.

The comparison results with parameter sets (S1), (S2), and (S3) are presented in

Table 3.4, Table 3.5, and Table 3.6, respectively. As shown in these three tables,

Ssnal has succeeded in solving all the 72 instances highly efficiently, while sPADMM

failed in 5 instances, and SLEP failed in 58 instances. Moreover, for those failed

instances, we observe from the tables that SLEP terminated when the errors are still

relatively large, which is 10−2 for most cases. The results may suggest that using

only first order information is not enough for computing high accuracy solution,

while second order information can contribute to the fast convergence and high

computational efficiency of a well designed second order SSN method. For the vast

majority of the instances, the computational time of Ssnal is far less than that of

sPADMM and SLEP. Again, the results have demonstrated convincingly that our

algorithm Ssnal is capable of solving large-scale SGLasso problems to high accuracy

very efficiently and robustly.

Figure 3.2 presents the performance profiles of Ssnal, sPADMM, and SLEP

for all 72 tested problems, which are presented in Table 3.4, Table 3.5, and Table

3.3 Numerical experiments 57

3.6. From the figure, we find that Ssnal not only solves all the tested instances

to the desired accuracy, but also outperforms sPADMM and SLEP by an obvious

margin for these tested UCI data sets with simulated groups. Within 250 times of

the running time of Ssnal, sPADMM can only solve approximately 80% of all the

tested instances, while SLEP can only solve 20% of all the tested instances. We can

safely claim that our algorithm Ssnal can solve large-scale SGLasso problems to

high accuracy very efficiently and robustly.

Figure 3.2: Performance profiles of Ssnal, sPADMM, and SLEP on UCI data sets with
simulated groups.

58
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

Table 3.4: The performances of Ssnal, sPADMM, and SLEP on 8 selected UCI data sets
with simulated groups. The regularization parameters are specified as in (S1). “S” stands
for Ssnal; “P” for SLEP; “A” for sPADMM.

problem name γ nnz iteration time error

(m,n);g S|A|P S|A|P ηS |ηA|ηP
E2006.train

(16087,150360)

5012

1e-05 1 4(9) | 36 | 16 01 | 07:30 | 01 6.4e-10 | 9.0e-07 | 4.1e-08

1e-06 34 14(28) | 33 | 10000 02 | 07:14 | 08:56 9.2e-07 | 6.9e-07 | 3.7e-05

1e-07 210 25(52) | 110 | 10000 08 | 09:17 | 08:58 5.8e-08 | 7.7e-07 | 1.2e-02

E2006.test

(3308,150358)

5012

1e-05 1 4(9) | 31 | 9 00 | 17 | 00 5.4e-09 | 9.7e-07 | 7.7e-07

1e-06 38 20(41) | 70 | 10000 01 | 20 | 02:35 3.1e-07 | 8.2e-07 | 1.3e-03

1e-07 275 27(56) | 324 | 10000 02 | 33 | 02:38 1.9e-07 | 9.5e-07 | 9.8e-02

log1p.E2006.train

(16087,4272227)

142408

1e-03 15 3(13) | 2249 | 290 09 | 57:09 | 01:37 5.5e-07 | 9.9e-07 | -1.5e-04

1e-04 253 4(25) | 1194 | 10000 29 | 38:34 | 54:46 1.4e-07 | 1.0e-06 | 1.7e-02

1e-05 7821 6(32) | 391 | 10000 03:27 | 24:39 | 54:48 2.4e-07 | 9.8e-07 | 1.5e-02

log1p.E2006.test

(3308,4272226)

142408

1e-03 13 4(14) | 1572 | 284 07 | 10:16 | 47 4.6e-07 | 9.9e-07 | -2.4e-04

1e-04 546 5(21) | 627 | 10000 14 | 04:33 | 26:56 2.1e-07 | 9.9e-07 | 4.0e-02

1e-05 4874 8(33) | 300 | 10000 43 | 02:37 | 27:04 6.2e-07 | 9.8e-07 | 1.1e-01

bodyfat7

(252,116280)

3876

1e-04 11 12(32) | 930 | 10000 01 | 30 | 02:54 8.1e-07 | 9.9e-07 | 6.7e-04

1e-05 26 19(53) | 2394 | 10000 03 | 01:16 | 02:56 4.1e-07 | 1.0e-06 | 2.2e-04

1e-06 166 23(75) | 1201 | 10000 08 | 38 | 02:58 2.5e-08 | 9.9e-07 | 2.0e-04

pyrim5

(74,201376)

6713

1e-02 98 7(27) | 1243 | 10000 02 | 51 | 03:39 3.6e-07 | 9.9e-07 | 9.4e-02

1e-03 201 12(43) | 2080 | 10000 02 | 01:27 | 03:39 2.1e-07 | 1.0e-06 | 4.2e-02

1e-04 644 18(66) | 2351 | 10000 06 | 01:43 | 03:46 3.4e-07 | 1.0e-06 | 1.0e-02

triazines4

(186,635376)

21179

1e-02 261 10(42) | 8439 | 10000 11 | 44:25 | 26:35 4.1e-08 | 9.6e-07 | 6.8e-02

1e-03 737 15(62) | 10000 | 10000 18 | 50:16 | 26:36 3.4e-08 | 1.2e-05 | 6.5e-02

1e-04 1510 20(79) | 9466 | 10000 36 | 01:20:53 | 39:04 4.3e-08 | 1.0e-06 | 5.7e-02

housing7

(506,77520)

2584

1e-02 91 6(25) | 862 | 10000 01 | 30 | 03:00 3.6e-08 | 9.9e-07 | 2.5e-02

1e-03 150 9(34) | 596 | 10000 02 | 21 | 03:01 8.0e-07 | 9.9e-07 | 9.4e-02

1e-04 807 15(49) | 638 | 10000 09 | 23 | 03:01 6.0e-07 | 1.0e-06 | 3.8e-02

3.3 Numerical experiments 59

Table 3.5: The performances of Ssnal, sPADMM, and SLEP on 8 selected UCI data sets
with simulated groups. The regularization parameters are specified as in (S2). “S” stands
for Ssnal; “P” for SLEP; “A” for sPADMM.

problem name γ nnz iteration time error

(m,n);g S|A|P S|A|P ηS |ηA|ηP
E2006.train

(16087,150360)

5012

1e-05 1 3(7) | 54 | 16 01 | 08:02 | 01 6.4e-10 | 7.1e-07 | 3.9e-08

1e-06 11 8(17) | 34 | 10000 01 | 07:28 | 08:46 3.0e-07 | 8.6e-07 | 1.6e-05

1e-07 40 21(47) | 68 | 10000 03 | 08:15 | 08:54 8.7e-08 | 9.9e-07 | 3.3e-03

E2006.test

(3308,150358)

5012

1e-05 2 5(11) | 42 | 10000 00 | 18 | 02:08 2.9e-07 | 7.0e-07 | 1.5e-06

1e-06 22 9(19) | 29 | 10000 01 | 17 | 02:26 3.3e-07 | 7.3e-07 | 6.6e-05

1e-07 66 25(51) | 138 | 10000 01 | 24 | 02:30 5.1e-07 | 8.4e-07 | 1.5e-02

log1p.E2006.train

(16087,4272227)

142408

1e-03 11 2(12) | 2399 | 92 09 | 01:00:29 | 30 6.5e-08 | 1.0e-06 | -2.9e-04

1e-04 39 3(16) | 2088 | 578 13 | 55:02 | 03:14 4.5e-07 | 1.0e-06 | -1.8e-05

1e-05 597 4(22) | 862 | 10000 29 | 33:09 | 55:12 2.7e-07 | 9.9e-07 | 3.2e-02

log1p.E2006.test

(3308,4272226)

142408

1e-03 7 2(12) | 1567 | 60 07 | 10:20 | 10 8.6e-07 | 1.0e-06 | -4.4e-04

1e-04 47 4(17) | 1260 | 327 08 | 08:28 | 53 1.3e-07 | 1.0e-06 | -1.3e-04

1e-05 1079 5(23) | 467 | 10000 17 | 03:37 | 27:49 9.8e-07 | 9.9e-07 | 1.2e-01

bodyfat7

(252,116280)

3876

1e-04 26 10(24) | 748 | 10000 01 | 24 | 03:23 3.7e-07 | 1.0e-06 | 2.1e-02

1e-05 43 15(37) | 1266 | 10000 01 | 41 | 03:22 6.1e-07 | 1.0e-06 | 2.4e-03

1e-06 52 20(53) | 1188 | 10000 04 | 38 | 03:25 2.4e-07 | 1.0e-06 | 3.9e-04

pyrim5

(74,201376)

6713

1e-02 42 6(19) | 1672 | 10000 01 | 01:05 | 04:02 6.4e-08 | 1.0e-06 | 1.1e-01

1e-03 136 8(32) | 1518 | 10000 01 | 59 | 04:24 1.5e-07 | 9.9e-07 | 1.2e-01

1e-04 342 13(50) | 1879 | 10000 04 | 01:49 | 04:27 1.6e-07 | 1.0e-06 | 3.7e-02

triazines4

(186,635376)

21179

1e-02 40 8(20) | 6085 | 10000 04 | 30:37 | 26:40 1.6e-08 | 9.0e-07 | 1.1e-01

1e-03 544 10(43) | 6473 | 10000 11 | 32:06 | 26:29 7.4e-08 | 9.7e-07 | 7.0e-02

1e-04 964 17(63) | 10000 | 10000 18 | 49:47 | 26:52 4.1e-07 | 2.2e-06 | 8.2e-02

housing7

(506,77520)

2584

1e-02 51 4(15) | 1242 | 10000 00 | 38 | 03:36 5.4e-08 | 9.8e-07 | 5.1e-02

1e-03 153 7(26) | 853 | 10000 01 | 26 | 03:36 1.2e-07 | 1.0e-06 | 5.0e-02

1e-04 175 10(34) | 577 | 10000 02 | 18 | 03:34 1.2e-07 | 9.8e-07 | 1.3e-01

60
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

Table 3.6: The performances of Ssnal, sPADMM, and SLEP on 8 selected UCI data sets
with simulated groups. The regularization parameters are specified as in (S3). “S” stands
for Ssnal; “P” for SLEP; “A” for sPADMM.

problem name γ nnz iteration time error

(m,n);g S|A|P S|A|P ηS |ηA|ηP
E2006.train

(16087,150360)

5012

1e-05 1 4(9) | 34 | 16 01 | 06:57 | 01 8.9e-10 | 7.8e-07 | 8.3e-07

1e-06 27 22(45) | 69 | 10000 03 | 07:52 | 10:14 1.7e-07 | 8.7e-07 | 3.8e-03

1e-07 1399 30(79) | 395 | 10000 01:27 | 11:23 | 09:48 8.5e-07 | 9.8e-07 | 8.6e-02

E2006.test

(3308,150358)

5012

1e-05 1 4(10) | 29 | 12 00 | 16 | 00 8.8e-09 | 8.8e-07 | 7.4e-07

1e-06 48 25(51) | 182 | 10000 01 | 25 | 02:26 5.1e-08 | 9.5e-07 | 2.3e-02

1e-07 1325 38(103) | 1432 | 10000 31 | 01:17 | 02:42 8.7e-09 | 8.6e-07 | 3.3e-01

log1p.E2006.train

(16087,4272227)

142408

1e-03 5 4(17) | 2451 | 626 13 | 58:57 | 04:11 7.8e-09 | 9.8e-07 | -7.5e-06

1e-04 510 5(26) | 823 | 10000 29 | 31:05 | 01:01:43 5.5e-07 | 9.9e-07 | 1.1e-02

1e-05 9772 7(33) | 340 | 10000 04:37 | 22:48 | 01:02:05 3.6e-08 | 1.0e-06 | 1.2e-02

log1p.E2006.test

(3308,4272226)

142408

1e-03 8 5(22) | 1688 | 732 12 | 10:22 | 02:09 5.0e-09 | 9.9e-07 | -3.1e-05

1e-04 909 6(27) | 470 | 10000 18 | 03:25 | 29:31 1.0e-07 | 9.8e-07 | 5.4e-02

1e-05 4956 9(35) | 288 | 10000 44 | 02:22 | 30:13 6.6e-08 | 9.6e-07 | 1.2e-01

bodyfat7

(252,116280)

3876

1e-04 3 12(34) | 1101 | 1163 02 | 34 | 28 2.4e-07 | 9.9e-07 | 9.5e-07

1e-05 24 19(58) | 1586 | 10000 05 | 49 | 05:16 8.6e-07 | 1.0e-06 | 2.1e-06

1e-06 106 25(94) | 2231 | 10000 12 | 01:09 | 03:39 5.2e-07 | 1.0e-06 | 4.7e-03

pyrim5

(74,201376)

6713

1e-02 87 9(32) | 1382 | 10000 01 | 55 | 03:51 4.3e-08 | 1.0e-06 | 7.1e-02

1e-03 176 16(56) | 5642 | 10000 04 | 03:42 | 03:46 5.6e-07 | 1.0e-06 | 5.8e-03

1e-04 129 26(95) | 10000 | 10000 09 | 06:31 | 03:52 5.3e-07 | 4.1e-05 | 1.2e-03

triazines4

(186,635376)

21179

1e-02 246 10(37) | 8369 | 10000 09 | 43:00 | 26:58 5.1e-08 | 9.2e-07 | 6.6e-02

1e-03 803 20(72) | 10000 | 10000 23 | 50:09 | 27:06 8.2e-09 | 3.7e-06 | 3.4e-02

1e-04 333 27(115) | 10000 | 10000 01:04 | 46:21 | 27:21 3.9e-07 | 1.4e-04 | 5.5e-02

housing7

(506,77520)

2584

1e-02 50 7(30) | 976 | 10000 01 | 30 | 04:07 1.3e-07 | 1.0e-06 | 1.2e-02

1e-03 157 11(41) | 620 | 10000 03 | 19 | 04:03 1.1e-07 | 9.9e-07 | 6.7e-02

1e-04 838 16(51) | 685 | 10000 08 | 21 | 04:11 8.7e-08 | 1.0e-06 | 3.8e-02

3.3.5 NCEP/NCAR reanalysis 1 dataset

This section evaluates the performance of Ssnal, sPADMM, SLEP and BCD on the

NCEP/NCAR reanalysis 1 dataset [45]. The data set contains the monthly means

of climate data measurements spread across the globe in a grid of 2.5o × 2.5o res-

olutions (longitude and latitude 144 × 73) from 1948/1/1 to 2018/5/31. Each grid

point (location) constitutes a group of 7 predictive variables (Air Temperature, Pre-

cipitable Water, Relative Humidity, Pressure, Sea Level Pressure, Horizontal Wind

3.3 Numerical experiments 61

Speed and Vertical Wind Speed). Such data sets have a natural group structure:

144×73 groups, where each group is of length 7, and the corresponding data matrix

A is of dimension 845× 73584.

Following the numerical experiment in [68], we also consider as target variable

b ∈ R845, the values of Air Temperature in a neighborhood of Dakar. We also take

a decreasing sequence of 100 regularization parameters defined as follows:

λ̄t = λmax10−3(t−1)/(100−1), (λ1, λ2) ∈ {(0.4λ̄t, 0.6λ̄t) | t = 1, 2, . . . , 100},

where λmax = ΩD(AT b), and ΩD is the dual norm of p that is defined by ΩD(y) :=

maxp(x)≤1 x
Ty. In total, there are 100 pairs of decreasing λ1 and λ2 that will lead to

a solution path.

The BCD used in [68] is terminated if

pobj− dobj < ε‖b‖2

or the default maximum number of 29, 999 iterations is reached. In the same way,

we terminate Ssnal if

‖A∗y + z‖
1 + ‖z‖

< ε, pobj− dobj < ε‖b‖2. (3.28)

We terminate sPADMM if (3.28) holds or the maximum number of 10, 000 iterations

is reached. Besides, we terminate SLEP if the difference of the optimal objective

values between SLEP and SSNAL is less than ε, i.e.,

objP − objS < ε‖b‖2

or the maximum number of 10, 000 iterations is reached.

Table 3.7 presents the comparison of Ssnal, sPADMM, SLEP, and BCD on the

climate data along a solution path. As revealed by Table 3.7, for the case ε = 10−4

where the accuracy is relatively low (‖b‖2 ≈ 5 × 105), both BCD and Ssnal have

successfully solve all cases along the path; while sPADMM took more than 3 hours

and solved 85% of all cases, and SLEP took more than 5 hours and merely solved

62
Chapter 3. Augmented Lagrangian method for solving sparse group Lasso

problems

21% of all cases. One might notice that in this case the duality gap is allowed to

be about 50. For low accuracy requirement, the BCD algorithm in [68] is highly

efficient, but our algorithm Ssnal can also make it within 10 minutes. In addition,

for the cases with tolerance 10−6 and 10−8, Ssnal has successfully solved all cases

within 12 minutes; while all the other algorithms failed to solve some cases along the

solution path. We can see that our algorithm Ssnal has a clear advantage over the

other first order algorithms when one wants moderate or high accuracy solutions.

We can safely conclude that Ssnal is efficient and robust on the real climate data

set.

Table 3.7: The performances of Ssnal, ADMM, SLEP, BCD on climate data along a
solution path. “success” denotes the number of cases which are solved successfully among
all the 100 cases along the solution path. “S” stands for Ssnal; “P” for SLEP; “A” for
sPADMM; “B” for BCD.

tolerance time success

ε S|A|P|B S|A|P|B

1e-4 09:02 | 03:34:49 | 05:49:56 | 03:51 100 | 85 | 21 | 100

1e-6 11:27 | 09:42:48 | 06:21:05 | 01:10:54 100 | 21 | 18 | 93

1e-8 11:40 | 10:40:17 | 06:36:49 | 01:39:01 100 | 16 | 16 | 93

Chapter 4
Proximal point algorithm for solving

multiple graphical Lasso problems

This chapter focuses on solving problem (1.6) with two particular choices of regu-

larizer: the GGL regularizer defined by (1.7) and the FGL regularizer defined by

(1.8). By introducing an auxiliary variable Ω = (Ω(1), . . . ,Ω(L)) ∈ Y , we can rewrite

problem (1.6) equivalently as

min
Θ,Ω

L∑
l=1

(
− log det Ω(l) + 〈S(l),Θ(l)〉

)
+ P(Θ),

s.t. Θ− Ω = 0.

(4.1)

The Lagrangian function of the above problem is given by

L(Θ,Ω, X) =
L∑
l=1

(
− log det Ω(l) + 〈S(l),Θ(l)〉

)
+ P(Θ)− 〈Θ− Ω, X〉, (4.2)

(Θ,Ω, X) ∈ X × X × Y . It is easy to write the dual problem of (4.1), which takes

the following form:

max
X

L∑
l=1

(
log det X(l) + n

)
− P∗(X − S). (4.3)

63

64
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

Besides, the Karush-Kuhn-Tucker (KKT) optimality conditions associate with (4.1)

and (4.3) are given as follows:
Θ− ProxP(Θ +X − S) = 0,

Θ− Ω = 0,

Ω(l)X(l) = I, Ω(l) � 0, X(l) � 0, l = 1, 2, . . . , L.

(4.4)

We make the following assumption on the KKT system throughout the thesis.

Assumption 2. The KKT system (4.4) has at least one solution.

4.1 Proximal mapping of the GGL regularizer and

its generalized Jacobian

In this section, we analyse the proximal mapping of the GGL regularizer P defined by

(1.7). For any Θ ∈ Y , one might observe that the GGL penalty term P(Θ) merely

penalizes the off-diagonal elements, and it is the same regularizer (the SGLasso

regularizer) that acts on each vector Θ[ij] ∈ RL, i 6= j. More precisely, it holds that

P(Θ) =
∑
i 6=j

p(Θ[ij]), (4.5)

where

p(x) = λ1‖x‖1 + λ2‖x‖, ∀x ∈ RL.

Note that the function p is actually a special SGLasso regularizer defined in (1.4)

with the number of groups g = 1, G1 = {1, 2, . . . , n}, and the weight w1 = 1.

From this point of view, the GGL regularizer can be regarded as an extension of the

SGLasso regularizer, and all entries in the same position belong to the same group.

With the representation of the GGL regularizer in (4.5), we can study its proxi-

mal mapping. By definition, the proximal mapping of P is given as follows: for any

4.1 Proximal mapping of the GGL regularizer and its generalized Jacobian 65

X ∈ Y ,

ProxP(X)

= arg min
Θ∈Y

{
P(Θ) +

1

2
‖Θ−X‖2

}
= arg min

Θ∈Y

{∑
i 6=j

{
p(Θ[ij]) +

1

2
‖Θ[ij] −X[ij]‖2

}
+

1

2

L∑
i=1

‖Θ[ii] −X[ii]‖2

}
.(4.6)

It is obvious that the problem (4.6) is separable for each vector Θ[ij] ∈ RL. Therefore,

for any i, j ∈ {1, 2, . . . , n}, the vector (ProxP(X))[ij], consisting of all entries of

ProxP(X) in the (i, j)-th position, is given explicitly by

(ProxP(X))[ij] =

Proxp(X[ij]), if i 6= j,

X[ii], if i = j.

By this equation, one can compute ProxP via performing n(n− 1)/2 computations

of Proxp, which can be done in parallel. The generalized Jacobian of ProxP con-

tains the important second order information of the underlying problem. Here, we

can characterise it by using the surrogate generalized Jacobian of Proxp, based on

the relationship between ProxP and Proxp. Fortunately, the surrogate generalized

Jacobian of Proxp has been carefully investigated in section 3.1. Specifically, let the

multifunction Mp : RL ⇒ RL×L be the surrogate generalized Jacobian of Proxp.

Directly from the formula (3.3), the multifunctionMp in this case can be described

as follows: for any u ∈ RL,

Mp(u) :=
{

(I − Σ)Υ ∈ SL+
∣∣Σ ∈ ∂ΠBλ22

(v), v = Proxλ1‖·‖1(u), Υ ∈ ∂Proxλ1‖·‖1(u)
}
,

where Bλ22 := {v ∈ RL | ‖v‖ ≤ λ2}. Next, for any given X ∈ Y , we define a

multifunction Gp(X) : Y ⇒ Y , and show that it can be regarded as the surrogate

generalized Jacobian of ProxP at X: for any Y ∈ Y ,

Gp(X)[Y] :=

Z ∈ Y ∣∣∣ Z[ij] = M (ij)Y[ij], M
(ij) ∈Mp(X[ij]) for 1 ≤ i < j ≤ n;

Z[ii] = Y[ii] for i = 1, 2, . . . , n

 .

(4.7)

66
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

The generalized Jacobian is presented in the form of operators in (4.7). For the

ease of analysis, we shall find its equivalent matrix form next. Actually, in view

of the vectorization operator vec, the equivalent matrix formula of the generalized

Jacobian of ProxP at X is given by

Gp(X) :=

M ∈ SLn(n+1)/2
+

∣∣∣ M = Diag(InL,M
(12),M (13),M (23), . . . ,M (1n), . . . ,M ((n−1)n)),

M (ij) ∈Mp(X[ij]) for 1 ≤ i < j ≤ n

 .

(4.8)

Any matrix in the set Gp(·) is an Ln(n + 1)/2 by Ln(n + 1)/2 symmetric positive

semidefinite matrix, and it can be regarded as a linear operator defined on the vector

space RLn(n+1)/2. Obviously, the equivalent relationship between Gp(·) and Gp(·) is

given by the following expression:

Gp(X) = mat ◦Gp(X) ◦ vec, ∀ X ∈ Y . (4.9)

From Theorem 3.4, one can easily obtain the following theorem, which justifies

why Gp(X) in (4.7) can be used as the surrogate generalized Jacobian of ProxP at

X.

Theorem 4.1. Given any X ∈ Y and the GGL regularizer P defined by (1.7). The

multifunction Gp defined in (4.7) is a nonempty compact valued, upper semicontin-

uous multifunction, and the matrix form of Gp is Gp defined in (4.8) in the sense of

the relationship (4.9). Besides, any matrix belonging to the set Gp(X) is symmetric

and positive semidefinite. Moreover, for any M ∈ Gp(Y) with Y → X, we have that

ProxP(Y)− ProxP(X)−mat(M(vec(Y −X))) = O(‖Y −X‖2).

4.2 Proximal mapping of the FGL regularizer and

its generalized Jacobian

This section follows the analysis in the previous section and investigates the proximal

mapping of the FGL regularizer P defined in (1.8). First of all, one might again

4.2 Proximal mapping of the FGL regularizer and its generalized Jacobian 67

observe that the FGL penalty term P(Θ) penalizes the off-diagonal elements, and

it is the same fused Lasso regularizer that acts on each vector Θ[ij] ∈ RL, i 6= j. It

holds that

P(Θ) =
∑
i 6=j

γ(Θ[ij]).

Here the fused Lasso regularizer is given by

γ(x) = λ1‖x‖1 + λ2‖Bx‖1, ∀x ∈ RL,

where the matrix B ∈ R(L−1)×L is defined by Bx = [x1−x2;x2−x3; . . . ;xL−1−xL],

∀x ∈ RL. The fused Lasso regularizer was first proposed in [82] and is designed

to encourage sparsity in all elements and their successive differences. The formula

for the surrogate generalized Jacobian of Proxγ has been derived in [55] and will

be used in our subsequent algorithmic design. In the following context, we recall

some notations and results that are used in the characterization of the surrogate

generalized Jacobian of Proxγ.

Denote the proximal mapping of λ2‖B · ‖1 by

xλ2(v) := arg min
x

{
λ2‖Bx‖1 +

1

2
‖x− v‖2

}
, ∀ v ∈ RL.

The following lemma provides the “prox-decomposition” property of Proxγ.

Lemma 4.2. [29, Proposition 1] Given λ1, λ2 ≥ 0, it holds that

Proxγ(v) = Proxλ1‖·‖1(xλ2(v)) = sign(xλ2(v))�max(|xλ2(v)| − λ1, 0), ∀ v ∈ RL.

The next lemma provides an alternative way of computing xλ2(·) through the

dual solution zλ2(·),

Lemma 4.3. [55, Lemma 1] Given λ2 ≥ 0, it holds that

xλ2(v) = v −BT zλ2(Bv), ∀ v ∈ RL,

where zλ2(u) := arg min
z

{
1
2
‖BT z‖2 − 〈z, u〉 | ‖z‖∞ ≤ λ2

}
, ∀u ∈ RL−1.

68
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

Given v ∈ RL, consider the following sets:

Iz(v) := {i | |(zλ2(Bv))i| = λ2, i = 1, 2, . . . , L− 1} ,

Kz(v) := {K ⊆ {1, 2, . . . , L− 1} | supp(Bxλ2(v)) ⊆ K ⊆ Iz(v)} .

Define the multifunction Qz : RL ⇒ R(L−1)×(L−1) by

Qz(v) :=
{
Q̂ ∈ R(L−1)×(L−1) | Q̂ = (ΣKBB

TΣK)†, K ∈ Kz(v)
}
,

where ΣK = Diag(σK) ∈ R(L−1)×(L−1) with

(σK)i =

 0, if i ∈ K,

1, otherwise,

Define also the multifunction Qx : RL ⇒ RL×L by

Qx(v) :=
{
Q ∈ RL×L |Q = I −BT Q̂B, Q̂ ∈ Qz(v)

}
.

In [55], it has been shown that the surrogate generalized Jacobian of Proxγ at v is

the multifunction Mγ : RL ⇒ RL×L defined by

Mγ(v) :=
{
M ∈ SL+ |M = ΥQ, Υ ∈ ∂BProxλ1‖·‖1(xλ2(v)), Q ∈ Qx(v)

}
.

With the above preparation, for any given X ∈ Y , we can define a multifunction

Gγ(X) : Y ⇒ Y , and show that it can be regarded as the surrogate generalized

Jacobian of ProxP at X, i.e.,

Gγ(X)[Y] :=

Z ∈ Y ∣∣∣ Z[ij] = M (ij)Y[ij], M
(ij) ∈Mγ(X[ij]) for 1 ≤ i < j ≤ n;

Z[ii] = Y[ii] for i = 1, 2, . . . , n

 .

(4.10)

Besides, the equivalent matrix formula of the generalized Jacobian of ProxP at X is

Gγ(X) :=

M ∈ SLn(n+1)/2
+

∣∣∣ M = Diag(InL,M
(12),M (13),M (23), . . . ,M (1n), . . . ,M ((n−1)n)),

M (ij) ∈Mγ(X[ij]) for 1 ≤ i < j ≤ n

 ,

(4.11)

4.3 Inexact semismooth Newton based proximal point algorithm 69

and the equivalent relationship between Gγ(·) and Gγ(·) is given by the expression:

Gγ(X) = mat ◦Gγ(X) ◦ vec, ∀X ∈ Y . (4.12)

From [55, Theorem 1], one can easily obtain the following theorem, which justifies

why Gγ(X) in (4.10) can be used as the surrogate generalized Jacobian of ProxP at

X.

Theorem 4.4. Given any X ∈ Y and the FGL regularizer P defined by (1.8). The

multifunction Gγ defined in (4.10) is a nonempty compact valued, upper semicontin-

uous multifunction, and the matrix form of Gγ is Gγ defined in (4.11) in the sense of

the relationship (4.12). Besides, any matrix belonging to the set Gγ(X) is symmetric

and positive semidefinite. Moreover, there exists a neighborhood UX of X such that

for all Y ∈ UX ,

ProxP(Y)− ProxP(X)−mat(M(vec(Y −X))) = 0, ∀ M ∈ Gγ(Y).

4.3 Inexact semismooth Newton based proximal

point algorithm

In this section, we present a proximal point algorithm (PPA) for solving the problem

(4.1) with the GGL regularizer defined in (1.7) and the FGL regularizer defined in

(1.8). The k-th iteration of the PPA is

(Θk+1,Ωk+1) ≈ arg min
Θ,Ω

{
sup
X
L(Θ,Ω, X) +

1

2σk
(‖Θ−Θk‖2 + ‖Ω− Ωk‖2)

}
, k ≥ 0,

where the Lagrangian function L is defined in (4.2). As we can see, the key step

is analysing the Moreau-Yosida envelope of the objective function or the essential

objective function supX L(Θ,Ω, X) of the problem (4.1). For any σ > 0, the Moreau-

Yosida envelope of the essential objective function supX L(Θ,Ω, X) of the problem

(4.1) is defined by

Fσ(Θ,Ω) := min
Θ,Ω

{
sup
X
L(Θ,Ω, X) +

1

2σ
(‖Θ−Θ‖2 + ‖Ω− Ω‖2)

}
, ∀Θ ∈ Y , Ω ∈ Y .

70
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

From [74, Theorem 37.3], one can change the order of min and sup. As a result,

Fσ(Θ,Ω) can be rewritten as

Fσ(Θ,Ω) = max
X

{ L∑
l=1

min
Ω(l)

(
− log det Ω(l) + 〈Ω(l), X(l)〉+

1

2σ
‖Ω(l) − Ω

(l)‖2
)

+ min
Θ

(
P(Θ) + 〈Θ, S −X〉+

1

2σ
‖Θ−Θ‖2

)}
= max

X

{ L∑
l=1

min
Ω(l)

(
− log det Ω(l) +

1

2σ
‖Ω(l) −W (l)

σ ‖2 − 1

2σ
‖W (l)

σ ‖2 +
1

2σ
‖Ω(l)‖2

)
+ min

Θ

(
P(Θ) +

1

2σ
‖Θ− Vσ‖2 − 1

2σ
‖Vσ‖2 +

1

2σ
‖Θ‖2

)}
,

where W
(l)
σ = Ω

(l) − σX(l), l = 1, 2, . . . , L, and Vσ = Θ + σ(X − S). For simplicity,

we express the Moreau envelope Fσ(Θ,Ω) in the following simple form:

Fσ(Θ,Ω) = max
X

{
− ψ(X,Θ,Ω)

}
,

by defining the following functions, for l = 1, 2, . . . , L,

hl(X
(l),Ω

(l)
) = min

Ω(l)

{
− log det Ω(l) +

1

2σ
‖Ω(l) −W (l)

σ ‖2 − 1

2σ
‖W (l)

σ ‖2 +
1

2σ
‖Ω(l)‖2

}
,

g(X,Θ) = min
Θ

{
P(Θ) +

1

2σ
‖Θ− Vσ‖2 − 1

2σ
‖Vσ‖2 +

1

2σ
‖Θ‖2

}
,

ψ(X,Θ,Ω) = −
L∑
l=1

hl(X
(l),Ω

(l)
)− g(X,Θ). (4.13)

By Proposition 2.4, the minimal values of the minimization problems involved in

the functions hl, l = 1, 2, . . . , L and g are attained at

Ω(l) = φ+
σ (W (l)

σ), l = 1, 2, . . . , L, and Θ = ProxσP(Vσ).

The PPA for solving (4.1) can be described as below.

4.3 Inexact semismooth Newton based proximal point algorithm 71

Algorithm 4 A proximal point algorithm for solving (4.1)

Choose Θ0 ∈ X , Ω0 ∈ X . Iterate the following steps for k = 0, 1, 2,

Step 1. Compute

Xk+1 ≈ arg max
X
− ψ(X,Θk,Ωk), (4.14)

where ψ is defined by (4.13).

Step 2. Compute

(Ω(l))k+1 = φ+
σk

((Ω(l))k − σk(X(l))k+1), l = 1, 2, . . . , L,

Θk+1 = ProxσkP(Θk + σk(X
k+1 − S)).

Step 3. Update σk+1 ↑ σ∞ ≤ ∞.

Since in practice the inner subproblem (4.14) is usually not solved exactly, we

will use the following standard stopping criteria studied in [75, 76] for estimating

the accuracy of the approximate solution Xk+1 of (4.14):

(A2) ψ(Xk+1,Θk,Ωk)− infX ψ(X,Θk,Ωk) ≤ ε2
k/2σk, εk ≥ 0,

∑∞
k=0 εk <∞;

(B2) ψ(Xk+1,Θk,Ωk)− infX ψ(X,Θk,Ωk) ≤ (δ2
k/2σk)‖(Θk+1,Ωk+1)− (Θk,Ωk)‖2,

δk ≥ 0,
∑∞

k=0 δk <∞;

Following the analysis of the convergence rate of the ALM for solving the SGLasso

problem, i.e., Theorem 3.6, we can obtain a similar theorem from [16, 96, 100].

Theorem 4.5. Let {(Θk,Ωk, Xk)} be an infinite sequence generated by Algorithm

4 under stopping criterion (A2). Then the sequence {(Θk,Ωk)} converges to the

unique solution (Θ∗,Ω∗) of (4.1), and the sequence {Xk} converges to the unique

solution of (4.3). Furthermore, if the criterion (B2) is also executed in Algorithm 4,

then there exist a positive integer k̄ and a positive scalar κ such that for all k ≥ k̄,

72
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

we have

‖(Θk+1,Ωk+1)− (Θ∗,Ω∗)‖ ≤ µk‖Θk,Ωk)− (Θ∗,Ω∗)‖,

supX fd(X)− fd(Xk+1) ≤ µ′k‖Θk,Ωk)− (Θ∗,Ω∗)‖,

where fd(X) is the objective function of the dual problem (4.3),

µk :=
[
δk + (1 + δk)κ/

√
κ2 + σ2

k

]
/(1− δk),

µ′k := [δ2
k‖Θk+1 −Θk‖+ ‖Θk+1‖+ ‖Θk‖]/[2(1− δk)σk].

Moreover, µk and µ′k go to 0 if σk ↑ σ∞ = +∞.

4.3.1 Semismooth Newton method for solving subproblem

(4.14)

In what follows, we design a semismooth Newton method (SSN) for solving the inner

subproblem (4.14). Basically, we aim at solving the following problem for any given

Θ̃ ∈ Y , Ω̃ ∈ Y ,

min
X

Ψ(X) := ψ(X, Θ̃, Ω̃). (4.15)

Since Ψ is continuously differentiable and strictly convex, the unique optimal solu-

tion of the problem (4.15) is the solution of the following linear system

∇Ψ(X) = 0. (4.16)

Note that hl, l = 1, 2, . . . , L and g are smooth in the variable X with gradients:

∇X(l)hl(X
(l), Ω̃(l)) = φ+

σ (W (l)
σ), l = 1, 2, . . . , L, ∇Xg(X, Θ̃) = −ProxσP (Vσ).

Together with (4.13), one has

∇Ψ(X) = −
(
φ+
σ (W (1)

σ), . . . , φ+
σ (W (L)

σ)
)

+ ProxσP(Vσ).

Recall that φ+
σ is differentiable and its Jacobian (φ+

σ)′ is given by Proposition 2.5.

When P is the GGL regularizer given by (1.7), the surrogate generalized Jacobian

of ProxP is the multifunction Gp defined in (4.7). When P is the FGL regularizer

4.3 Inexact semismooth Newton based proximal point algorithm 73

given by (1.8), the surrogate generalized Jacobian of ProxP is the multifunction Gγ
defined in (4.10). Therefore, the surrogate generalized Jacobian of ∇Ψ at X is the

multifunction V(X) : Y ⇒ Y such that for any D ∈ Y ,

V(X)[D] = σ
(
(φ+

σ)′(W (1)
σ)[D(1)], . . . , (φ+

σ)′(W (L)
σ)[D(L)]

)
+ σG(Vσ/σ)[D],

with G = Gp for the GGL regularizer P and G = Gγ for the FGL regularizer P .

With the generalized Jacobian of ∇Ψ, we are ready to solve the equation (4.16) by

the following SSN method, where the Newton systems are solved inexactly by the

conjugate gradient (CG) method.

Algorithm 5 A semismooth Newton method for solving (4.16)

Given µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], and δ ∈ (0, 1). ChooseX0 ∈ Sn++×· · ·×Sn++.

Iterate the following steps for j = 0, 1,

Step 1. (Newton direction) Choose one specific map Vj ∈ V(Xj). Apply the CG

method to find an approximate solution Dj to

Vj[D] = −∇Ψ(Xj)

such that

‖Vj[Dj] +∇Ψ(Xj)‖ ≤ min(η̄, ‖∇Ψ(Xj)‖1+τ).

Step 2. (Line search) Set αj = δmj , where mj is the smallest nonnegative integer

m for which

Ψ(Xj + δmDj) ≤ Ψ(Xj) + µδm〈∇Ψ(Xj), Dj〉.

Step 3. Set Xj+1 = Xj + αjD
j.

74
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

4.4 Numerical experiments

In this section, we compare the performance of our algorithm PPA with the alter-

nating direction method of multipliers (ADMM) for which the implementation will

be presented in section 4.4.1. The performance of PPA is also compared with the

proximal Newton-type method implemented in the work [88] (referred to as MGL

here) for which the solver can be downloaded from the site http://senyang.info/.

The following paragraph describes the measurement of the accuracy of an ap-

proximate optimal solution and the stopping criteria of the three methods. Since

both PPA and ADMM can generate primal and dual approximate solutions, we can

assess the accuracy of their solutions by the relative KKT residuals. Unlike the

primal-dual method, MGL merely gives the primal solution and the KKT residual

of a solution generated by MGL is not available. Instead, we measure the relative

error of the objective value obtained by MGL with respect to that computed by P-

PA. The accuracy of an approximate optimal solution (Θ,Ω, X) generated by PPA

(Algorithm 4) is measured by the relative KKT residual:

ηP := max

{
‖Θ− ProxP(Θ +X − S)‖

1 + ‖Θ‖
,
‖Θ− Ω‖
1 + ‖Θ‖

, max
1≤l≤L

{‖Ω(l)X(l) − I‖
1 +
√
n

}}
.

Likewise, the accuracy of an approximate optimal solution (Θ, X, Z) generated by

ADMM (section (4.4.1)) is measured by the relative KKT residual:

ηA := max

{
‖Θ− ProxP(Θ + Z)‖

1 + ‖Θ‖
,
‖X − Z − S‖

1 + ‖S‖
, max

1≤l≤L

{‖Θ(l)X(l) − I‖
1 +
√
n

}}
.

In our numerical experiments, we terminate the PPA if is satisfies the condition

ηP < ε for a given accuracy tolerance ε; similarly for ADMM with the stopping

condition ηA < ε. Note that the terminating condition for MGL is different. As

mentioned before, MGL only generates a primal solution, and thus we evaluate its

accuracy by the objective function value. Let

pobjP :=
∑L

l=1

(
− log det Θ(l) + 〈S(l),Θ(l)〉

)
+ P(Θ) and

dobjP :=
∑L

l=1

(
log det X(l) + n

)

4.4 Numerical experiments 75

be the primal and dual objective function values computed by PPA. Note that we

omit the term P∗(X−S) in the dual objective value since P∗(X−S) is an indicator

function when P is a positive homogeneous function [74]. MGL will be terminated

when the relative difference of its objective value with respect to the primal objective

value obtained by PPA is smaller than the relative duality gap achieved by PPA or

the given tolerance ε, i.e.,

∆M :=
pobjM − pobjP

1 + |pobjM |+ |pobjP |
< max {relgapP , ε} ,

where pobjM is the primal objective value obtained by MGL, and relgapP = |pobjP−

dobjP |/(1 + |pobjP |+ |dobjP |).

In our implementation of the PPA, we adopt a warm-start strategy to initialize

the algorithm. That is, we first run ADMM (with identity matrices as starting

point) for a fixed number of iterations to generate a good initial point to warm-

start the PPA. We also stop the ADMM as soon as the relative KKT residual of

the computed iterate is less than 100ε. Note that such a warm-starting strategy

is sound since in the initial phase of the PPA where the iterates are not close to

the optimal solution (as measured by the associated relative KKT residual), it is

computationally wasteful to use the more expensive PPA iteration when the fast

local linear convergence behavior of the algorithm has yet to kick in. Under such a

scenario, naturally one would use cheaper iterations such as those of the ADMM to

generate the approximate solution points until the relative KKT residual has been

sufficiently reduced.

For the tuning parameters λ1 and λ2, we select three pairs of them for each

instance that produce reasonable sparsity. In the following tables, “P” stands for

PPA; “A” stands for ADMM; “M” stands for MGL; “nnz” denotes the number of

nonzero entries in the solution Θ obtained by PPA using the following estimation:

nnz := min{k |
∑k

i=1 |x̂i| ≥ 0.999‖x̂‖1}, where x̂ ∈ Rn2L is the vector obtained via

sorting all elements in Θ by magnitude in a descending order; “density” denotes the

quantity nnz/(n2L). The time is displayed in the format of “hours:minutes:seconds”,

76
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

and the fastest method in terms of running time is highlighted in red. Since MGL

is measured by the relative gap while PPA and ADMM are measured by the KKT

residual, we present errors involving both the KKT residual and the relative duality

gap. The errors of PPA and ADMM presented in the tables are the relative KKT

residual or the relative duality gap, whichever is larger, i.e., max{ηP , relgapP} for

PPA and max{ηA, relgapA} for ADMM; while the error of MGL is ∆M , the relative

difference of its objective value with respect to the primal objective value obtained

by PPA.

4.4.1 Dual based ADMM

In this section, we briefly describe the ADMM for solving the problem (4.3), which

is written equivalently as follows:

min
X,Z

{
L∑
l=1

(
−log detX(l)

)
+ P∗(Z)

∣∣∣X − Z = S

}
. (4.17)

Due to its separable structure in terms of the variables X and Z, ADMM is always

considered as a natural choice for solving (4.17). The classic ADMM was first

proposed in [32, 34], and later extended in [12, 28]. We note that the paper [17]

has implemented an ADMM for solving the primal problem (1.6). Here we adopt

the ADMM for solving the dual problem (4.17). There are two reasons for us to

implement our own ADMM. First, we failed to obtain the Matlab codes of the

algorithm in [17]. Second, in our implementation, we tune the parameter σ wisely

according to the progress of primal and dual feasibilities (see e.g. [50, Section 4.4]).

We also use a larger step-length τ of 1.618, which has been demonstrated in various

works to improve the performance of ADMM. The augmented Lagrangian function

associated with (4.17), given parameter σ > 0, is defined by

L̂σ(X,Z,Θ) =
∑L

l=1

(
−log detX(l)

)
+ P∗(Z) + 〈X − Z − S, Θ〉+

σ

2
‖X − Z − S‖2.

The iteration scheme of ADMM for (4.17) can be described as follows: given τ ∈

(0, (1 +
√

5)/2), and initial point (X,Z,Θ) = (X0, Z0,Θ0), the (k + 1)-th iteration

4.4 Numerical experiments 77

is given by 
Xk+1 = arg minX L̂σ(X,Zk,Θk),

Zk+1 = arg minZ L̂σ(Xk+1, Z,Θk),

Θk+1 = Θk + τσ(Xk+1 − Zk+1 − S).

In particular, Xk+1 = ((X(1))k+1, . . . , (X(L))k+1) can be updated by

(X(l))k+1 = arg min
X(l)�0

{
− log det X(l) + σ

2
‖X(l) − (Z(l))k − S(l) + 1

σ
(Θ(l))k‖2

}
= φ+

σ−1

(
(Z(l))k − 1

σ
(Θ(l))k + S(l)

)
, l = 1, 2, . . . , L.

And Zk+1 can be updated by

Zk+1 = arg min
Z∈Y

{
P∗(Z) +

σ

2
‖Z + S −Xk+1 − 1

σ
Θk‖2

}
= ProxP∗/σ(Xk+1 +

1

σ
Θk − S)

= (Xk+1 +
1

σ
Θk − S)− ProxP(Xk+1 +

1

σ
Θk − S).

Besides, the accuracy of an approximate solution generated by ADMM can be eval-

uated by the following KKT optimality conditions, which is slightly different from

but essentially the same as the KKT system (4.4):

Θ−ProxP(Θ+Z) = 0, X−Z−S = 0, Θ(l)X(l) = I, Θ(l) � 0, X(l) � 0, l = 1, 2, . . . , L.

Thus far, we have provided an easily implementable framework of ADMM for

which each iteration requires the computation of the proximal mapping of the log-

determinant function and that of the GGL or FGL regularizer P .

4.4.2 Nearest-neighbour networks

In this section, we assess the performance of PPA in comparison with ADMM and

MGL on a simulated network: nearest-neighbour network. The nearest-neighbour

network is generated by modifying the data generating mechanism described in [52].

We set n = 500 and L = 3. For each l = 1, 2, . . . , L, we generate 10000 independently

and identically distributed observations from a multivariate Gaussian distribution

78
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

Nn(0, (Ω(l))−1), where Ω(l) is the precision matrix of the l-th class. The details of

the generation of Ω(l) are as follows. First of all, n points are randomly generated

on a unit square, their pairwise distances are calculated, and m-nearest neighbours

of each point in terms of distance are found. The nearest neighbour network is

obtained by linking any two points that are m-nearest neighbours of each other.

The integer m controls the degree of sparsity of the network, and we set m = 5

in our simulation. Subsequently, we add heterogeneity to the common structure by

further creating individual links as follows: for each Ω(l), a pair of symmetric zero

elements is randomly selected and replaced with a value uniformly drawn from the

interval [−1,−0.5]∪ [0.5, 1]. This procedure is repeated M/4 times, where M is the

number of edges in the nearest-neighbour graph. In our simulation, the true number

of edges in the three networks is 3690.

There is a pair of tuning parameters λ1 and λ2 which must be specified. Following

[17], we also reparameterize the GGL penalty parameters for the nearest neighbour

networks in order to separate the regularization for “sparsity” and for “similarity”.

In the FGL model, λ1 drives sparsity and λ2 drives similarity, and we say that λ1

and λ2 are the sparsity and similarity control parameters respectively. By contrast,

in the GGL model, both parameters contribute to sparsity: λ1 drives individual

network edges to zero whereas λ2 drives network edges to zero across all L network

estimates at the same time. We reparameterize the tuning parameters for the GGL

model in terms of

w1 = λ1 +
1√
2
λ2, w2 =

1√
2
λ2/(λ1 +

1√
2
λ2),

which was found in [17] to reflect the levels of sparsity and similarity regularization.

Likewise, we say that w1 and w2 are the sparsity and similarity control parameters

of the GGL model, respectively. In order to show the diversity of sparsity in our

experiments, we choose a series of λ1 for the FGL model with λ2 fixed. For the GGL

model, we first fix w2, then choose a series of w1 for diversity. (We can obtain the

corresponding (λ1, λ2) from (w1, w2).) Figure 4.1 characterizers the relative abilities

4.4 Numerical experiments 79

of the FGL and GGL models to recover the network structures and to detect change-

points.

Figure 4.1a and Figure 4.1d display the number of true positive edges selected

(i.e., TP edges) against the number of false edges selected (i.e., FP edges) for the

FGL and GGL models respectively. We say that an edge (i, j) in the l-th network

is selected in the estimate Θ̂(l) if Θ̂
(l)
ij 6= 0, and we say that the edge is true in

the precision matrix (Σ(l))−1 if ((Σ(l))−1)ij 6= 0 and false if ((Σ(l))−1)ij = 0. We

can see from the two figures that the FGL model with λ2 = 0.005 and the GGL

model with w2 = 0.2 can recover almost all of the true positive edges without false

positive edges. Figure 4.1a also indicates that for the FGL model the similarity

control parameter λ2 = 0.005 is much better than λ2 = 0.05 in terms of the ability

of true edges detection. When λ2 = 0.05, the FGL model can merely detect about

3000 true positive edges while the the number of false positive edges is increased

to over 600. One possible reason is that λ2 = 0.05 is too large compared with the

underlying optimal one in this case.

Figure 4.1b and Figure 4.1e illustrate the sum of squared errors between esti-

mated edge values and true edge values, i.e.,
∑L

l=1

∑
i<j

(
Θ̂

(l)
ij −((Σ(l))−1)ij

)2
, for the

FGL and GGL models respectively. When the number of the total edges selected is

increasing (i.e., the sparsity control parameter is decreasing), the error is decreasing

and finally reaches a fairly low value.

Figure 4.1c and Figure 4.1e plot the number of true positive differential edges

against false positive differential edges for the FGL and GGL models respectively.

A differential edge is an edge that differs between classes and thus corresponds to a

change-point. We say that the (i, j) edge is estimated to be differential between the

l-th and the (l + 1)-th networks if |Θ̂(l)
ij − Θ̂

(l+1)
ij | > 10−6, and we say that it is truly

differential if |((Σ(l))−1)ij − ((Σ(l+1))−1)ij| > 10−6. The number of differential edges

is computed for all successive pairs of networks. The best point in Figure 4.1c is the

red one which has approximately 2700 true positive differential edges and almost

no false ones. While one satisfactory point in Figure 4.1f is the red one which has

80
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

approximately 3000 true positive differential edges and almost no false ones. It is

likely that the GGL model performances better in the change-point detection task

of the nearest-neighbour networks in comparison with the FGL model. We can also

see from Figure 4.1c that all the blue points have no false positive differential edge

and small numbers of true positive differential edges. This might caused by the

similarity control parameter λ2 = 0.05 which compels excessively edges across L

networks to be similar.

0 200 400 600
FP Edges

0

500

1000

1500

2000

2500

3000

3500
3690

T
P

 E
dg

es

FGL

6
2
 = 0.005

6
2
 = 0.05

(a)

0 1000 2000 3000 4000
Total Edges Selected

0

5

10

15

20

25

30

35

40

S
um

 o
f S

qu
ar

ed
 E

rr
or

s

FGL

6
2
 = 0.005

6
2
 = 0.05

(b)

0 100 200 300 400
FP Differential Edges

0

500

1000

1500

2000

2500

3000

T
P

 D
iff

er
en

tia
l E

dg
es

FGL

6
2
 = 0.005

6
2
 = 0.05

(c)

0 200 400 600 800 1000
FP Edges

0

500

1000

1500

2000

2500

3000

3500
3690

T
P

 E
dg

es

GGL

w
2
 = 0.2

w
2
 = 0.5

(d)

0 1000 2000 3000 4000 5000
Total Edges Selected

0

5

10

15

20

25

30

35

40

S
um

 o
f S

qu
ar

ed
 E

rr
or

s

GGL

w
2
 = 0.2

w
2
 = 0.5

(e)

0 200 400 600 800 1000
FP Differential Edges

0

500

1000

1500

2000

2500

3000

T
P

 D
iff

er
en

tia
l E

dg
es

GGL

w
2
 = 0.2

w
2
 = 0.5

(f)

Figure 4.1: Performances of the GGL and FGL models on nearest-neighbour networks
with n = 500 and L = 3. (a)(d) number of edges correctly identified to be nonzero
(true positive edges) versus number of edges incorrectly identified to be nonzero (false
positive edges); (b)(e) sum of squared errors in edge values versus the total number of
edges estimated to be nonzero; (c)(f) number of edges correctly found to have values
differing between successive classes (true positive differential edges) versus the number of
edges incorrectly found to have values differing between successive classes (false positive
differential edges).

4.4 Numerical experiments 81

4.4.3 Standard & Poor’s 500 stock price

In this section, we compare PPA, ADMM, and MGL on the Standard & Poor’s

500 stock price data sets. The stock price data sets contain daily returns of 500

stocks in a long period, and can be downloaded from the link www.yahoo.com. The

dependency structures of different stocks vary along time. But it appears that the

dependency networks change smoothly along time. Therefore, the GGL and FGL

models might be able to find the interactions among these stocks and how they

evolve over time.

The way of processing a data set will be described in the following paragraph.

Once we have obtained a data set in the form of a matrix H ∈ Rd×n, where d is

the number of days and n is the number of stocks, the data set is processed in

the following way: (i) Split the matrix H into L small matrices by rows: H =

[H1;H2; . . . ;HL]. Each Hl records the prices of n stocks over a certain period. (ii)

For l = 1, 2, . . . , L, generate the sample covariance matrix S(l) = cov(Hl).

We first consider a relatively short 3-year time period from January 2004 to

December 2006. During this period, there are totally 755 days’ returns of 370 stocks.

We call this data set SPX3a. For each year, it contains approximately 250 days’

returns of each stock. Considering the limited number of observations in each year

and the interpretation of the results, we choose to analyse random smaller subsets

of all involved stocks, whose sizes are chosen to be n = 100 and n = 200, over L = 3

periods.

In addition to the above data set over three years, a relatively long period from

January 2004 to December 2014 is also considered in the numerical experiments,

which is referred to as SPX11b. Since the time period is longer than the previous

one, the number of stocks becomes smaller as some stocks might no longer exist.

During the 11-year time period, there are 2769 daily closing prices of 272 stocks. We

can set a relatively large parameter L = 11 according to years from January 2004

to December 2014. Again, we choose to analyse two random subsets of all existing

82
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

stocks, of which the sizes are selected to be n = 100 and n = 200.

Table 4.1 shows the comparison of PPA, ADMM, and MGL on Standard & Poor’s

500 stock price data sets SPX3a and SPX11b with 100 and 200 selected stocks. One

outstanding observation from the table is that PPA is faster than ADMM and MGL

for all instances in application of the GGL model and outperforms ADMM and

MGL by an obvious margin for a large majority of all cases. In addition, we find

that both PPA and ADMM succeeded in solving all instance; while MGL failed to

solve two of them within 3 hours. This might imply that MGL is not robust for

solving the models applied to stock price data sets. The numerical results show

convincingly that our algorithm PPA can solve the GGL and FGL problems highly

efficiently and robustly. The superior performance of our PPA algorithm can mainly

be attributed to our ability to extract and exploit the sparsity structure (in the

surrogate generalized Jacobian of ProxP) within the SSN method to solve each PPA

subproblem very efficiently.

Figure 4.2 displays the sparse patterns of 11 estimated precision matrices from

year 2004 to year 2014 on the data set SPX11b with (λ1, λ2) = (1e-4,1e-5). Note that

this period covers the 2008 financial crisis. We manually split the time points into

three stages (one stage corresponds to one row in Figure 4.2) to aid interpretation of

the results. Each red pattern in the left panel presents the common structure across

the estimated precision matrices in its stage. And each blue pattern visualizes the

individual edges specific to its own precision matrix. Generally, one can hardly

expect a meaningful common structure across all the 11 time points, and thus we

provide here the common structure across parts of nearby precision matrices. The

term “nnz” denotes the number of nonzero elements in the corresponding estimated

precision matrix. One can clearly see that more edges are detected in the middle

stage, and the number of the common edges across year 2007, 2008, 2009, 2010

is correspondingly larger than that in the earlier and later stages. The increased

amount of interactions among the stocks over this period is likely due to the global

financial crisis starting from 2007. Another observation is that the number of edges

4.4 Numerical experiments 83

peaked in 2008, and then went down to a level still higher than that of the pre-

crisis period (year 2004, 2005, 2006). The peak reflects the impact of the financial

crisis, which is usually deemed fairly severe in 2008. The increased amount of

interactions among stocks after the financial crisis compared to the pre-crisis period

might indicate some essential changes of the financial landscape. To some degree,

the observations coincide with those in a recent paper [86, Figure 1(a)].

Table 4.1: The performances of PPA, ADMM, and MGL on stock price data sets. Toler-
ance ε = 1e-6.

Model Problem (λ1, λ2) Density Iteration Time Error

(n,L) P A M P A M P A M

GGL

(1e-04,1e-05) 0.039 25 3701 6 06 33 31 6.0e-06 8.1e-06 1.1e-06

SPX3a (5e-05,5e-06) 0.138 24 3701 8 08 34 25 1.1e-05 8.2e-06 9.1e-06

(100,3) (2e-05,2e-06) 0.238 26 5216 20 12 49 15 1.2e-05 9.4e-06 1.1e-05

(1e-04,1e-05) 0.025 24 3301 9 15 01:14 01:25 6.4e-06 5.1e-06 2.9e-06

SPX3a (5e-05,5e-06) 0.084 24 3301 16 22 01:20 02:31 5.1e-06 5.4e-06 4.8e-06

(200,3) (2e-05,2e-06) 0.150 26 6091 39 34 02:27 04:27 8.3e-06 1.1e-05 8.2e-06

(5e-04,5e-05) 0.030 24 3701 12 18 01:26 02:36 5.2e-06 4.5e-06 8.4e-07

SPX11b (1e-04,1e-05) 0.127 24 3701 110 26 01:59 03:12 5.1e-06 4.4e-06 5.0e-06

(100,11) (5e-05,5e-06) 0.206 24 3709 450 29 02:01 13:46 5.7e-06 4.6e-06 5.7e-06

(5e-04,5e-05) 0.018 22 3501 31 57 04:23 43:14 2.0e-06 2.8e-06 1.5e-06

SPX11b (1e-04,1e-05) 0.082 24 3601 501 01:13 05:20 01:29:32 3.5e-06 2.3e-06 3.5e-06

(200,11) (5e-05,5e-06) 0.140 24 3568 1271 01:33 05:24 03:00:00 4.5e-06 2.9e-06 1.8e-05

FGL

(1e-04,1e-05) 0.039 25 3701 6 06 33 33 6.0e-06 8.1e-06 1.1e-06

SPX3a (5e-05,5e-06) 0.144 24 3701 9 08 33 43 1.1e-05 8.3e-06 4.0e-06

(100,3) (2e-05,2e-06) 0.241 26 5359 19 11 49 09 1.3e-05 8.5e-06 1.2e-05

(1e-04,1e-05) 0.025 24 3301 9 15 01:14 01:26 6.4e-06 5.1e-06 2.3e-06

SPX3a (5e-05,5e-06) 0.086 24 3301 17 22 01:15 03:22 5.1e-06 5.4e-06 4.7e-06

(200,3) (2e-05,2e-06) 0.150 26 5920 44 30 02:17 03:59 8.4e-06 1.1e-05 8.0e-06

(5e-04,5e-05) 0.028 24 3701 8 18 01:23 02:40 5.2e-06 4.5e-06 3.2e-06

SPX11b (1e-04,1e-05) 0.126 24 3701 111 27 01:55 04:59 5.1e-06 4.4e-06 4.9e-06

(100,11) (5e-05,5e-06) 0.206 24 3710 388 30 01:59 13:16 5.6e-06 4.5e-06 5.6e-06

(5e-04,5e-05) 0.017 22 3501 28 54 03:58 46:47 2.0e-06 2.8e-06 1.7e-06

SPX11b (1e-04,1e-05) 0.081 24 3601 477 01:19 05:13 01:34:40 3.5e-06 2.3e-06 3.5e-06

(200,11) (5e-05,5e-06) 0.134 24 3573 1076 01:38 05:21 03:00:00 4.5e-06 2.8e-06 4.0e-05

4.4.4 University webpages

We evaluate in this section the numerical performances of PPA, ADMM, and MGL

on a data set about university webpages, which is provided by a thesis [10] and can

84
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

0 50 100

nnz = 700

0

50

100
0 50 100

nnz = 18

0

50

100
Ye

ar
 2

00
4

0 50 100

nnz = 8

0

50

100

Ye
ar

 2
00

5

0 50 100

nnz = 0

0

50

100

Ye
ar

 2
00

6

0 50 100

nnz = 858

0

50

100

Ye
ar

 2
00

7

0 10050

nnz = 1844

0

50

100
0 50 100

nnz = 362

0

50

100

Ye
ar

 2
00

8

0 50 100

nnz = 352

0

50

100

Ye
ar

 2
00

9

0 50 100

nnz = 562

0

50

100

Ye
ar

 2
01

0

0 50 100

nnz = 596

0

50

100

Ye
ar

 2
01

1

0 10050

nnz = 1556

0

50

100
0 50 100

nnz = 34

0

50

100

Ye
ar

 2
01

2

0 50 100

nnz = 4

0

50

100

Ye
ar

 2
01

3

0 50 100

nnz = 0

0

50

100

Ye
ar

 2
01

4

Figure 4.2: Patterns of estimated precision matrices over 11 years on the Standard &
Poor’s 500 stock price data sets. “nnz” denotes the number of nonzero elements, namely
the number of dots in each pattern. The red pattern extracts the common structure
of those in the same row. The blue pattern reflects individual edges specific to its own
network.

be downloaded from the link

http://ana.cachopo.org/datasets-for-single-label-text-categorization.

These original pages were collected from computer science departments of various

universities in 1997, manually classified into seven different classes: Student, Fac-

ulty, Staff, Department, Course, Project, and Other. For each class, the collection

contains pages from four universities: Cornell, Texas, Washington, Wisconsin, and

other miscellaneous pages collected from other universities. The classes Staff and

Department were discarded because their pages were not enough for analysis. The

class Other was also discarded because pages were very different among this class.

That is, we selected four largest and meaningful classes in our numerical experi-

ment. Furthermore, the original text data have been pre-processed by stemming

techniques, that is, reducing words to their morphological root. The pre-processed

data sets downloaded from the link above contain two files: two thirds of the pages

4.4 Numerical experiments 85

were randomly chosen for training and the remaining third for testing. Table 4.2

presents the distribution of documents per class. In summary, we have a training

data set, named by Webtrain, and a testing data set, named by Webtest.

Table 4.2: The distribution of documents of classes Student, Faculty, Course, and Project.

Class #train docs #test docs

Student 1097 544

Faculty 750 374

Course 620 310

Project 336 168

Total 2803 1396

The procedure of processing data and generating sample covariance matrices is

described next, similar to the process used in [35]. Actually, previous work [35] on

the data set Webtest applied a different penalty term to estimate multiple graphical

models jointly. For given integer n, the sample covariance matrices S(l), l = 1, 2, 3, 4

were constructed from the data set Webtest in the following way: (i) Choose n

words with highest frequency which appear in each class at least once. Namely, the

words we analyse are a subset of all involved words. (ii) Obtain X(1) ∈ R544×n from

class Student, where the (i, j)-th element X
(1)
ij denotes the number of times the j-th

term appears in the i-th page of class Student. In the same way, X(2) ∈ R374×n,

X(3) ∈ R310×n, and X(4) ∈ R168×n can be obtained from class Faculty, Course,

and Project, respectively. Denote their vertical concatenation by a new matrix

X = [X(1);X(2);X(3);X(4)] ∈ R1396×n. (iii) The matrix P is obtained by normalizing

X along each column: Pij =
Xij∑
iXij

. Then, the log-entropy weight of the j-th word is

defined as ej = 1+
∑
i Pij(lnPij)

ln 1396
. (iv) Compute X as follows: X ij = ej ln(1+Xij), and

split X by columns accordingly: X = [X
(1)

;X
(2)

;X
(3)

;X
(4)

]. (v) Finally, generate

sample covariance matrices S(l) from X
(l)

: S(1) = cov(X
(1)

), l = 1, 2, 3, 4. Following

the procedure described above, we can also generate sample covariance matrices

from the data set Webtrain. Due to the limited number of observations in each

class, we conduct the numerical experiments on small subsets of all terms involved:

86
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

n = 100, n = 200, and n = 300.

First of all, we apply the FGL model to the Webtest data set for the purpose of

the interpretation of the data. Due to the limited space, we merely analyse a subset

of n = 50 words and do not show the results of the GGL model here. We choose

tuning parameters that enforce high sparsity and similarity. In our experiment, we

set λ1 = 0.005 and λ2 = 0.003.

The resulting common structure of four classes is displayed in Figure 4.3. The

thickness of an edge is proportional to the magnitude of the average weight of that

edge. Figure 4.3 shows that some standard phrases in computer science, like oper-

system, distribut-system, softwar-engin, program-languag, possess high partial cor-

relations among their constituent words in all four classes. It successfully demon-

strates the effectiveness of the FGL model for exploring the similarity across related

classes. On the other hand, we believe that the model can also detect the hetero-

geneity among different classes. As an example, Figure 4.4 illustrates the difference

between the Course (Figure 4.4a) and Project (Figure 4.4b) classes. One can see that

some course related terms, such as class and assign, are of high degree in Figure 4.4a;

whereas they are not even connected in Figure 4.4b. Besides, some teaching related

terms are linked only in the Course class, such as class-assign, assign-problem, class-

project. Overall, it is likely that the FGL or GGL model is capable of identifying

the common and individual structures of the webpages among related classes.

Table 4.3 shows the comparison of three methods PPA, ADMM, and MGL on

the webpages data sets with data dimensionality n = 100, n = 200, and n =

300. Furthermore, Figures 4.5a and 4.5b present the performance profiles of PPA,

ADMM, and MGL for all tested problems using GGL and FGL models respectively,

which are presented in Table 4.3. The meaning of the performance profiles is given as

follows: a point (x, y) is on the performance curve of a particular method if and only

if this method can solve up to desired accuracy (100y)% of all the tested instances

within at most x times of the fastest method for each instance. As can be seen,

for both GGL and FGL problems, PPA outperforms ADMM and MGL by a large

4.4 Numerical experiments 87

comput

system

scienc

research

univers

program

page

project

inform

home
depart

interest

work

parallel

student

engin

languag

offic

design softwar

time

assign

network

class

problem

algorithm

professor

distribut

group

develop

data

model

applic

paper

link

perform

postscript

includ

gener

web

mail

learn

confer

oper

process

publicemail

phone

architectur

graduat

Figure 4.3: Common structure in the Webtest data. The nodes represent 50 words with
highest frequencies. The width of an edge is proportional to the magnitude of the partial
correlation.

margin for all tested webpages data sets. In particular, focusing on y = 40%, we can

see that PPA is around 3 ∼ 5 times faster in comparison with ADMM and MGL

for over 60% of the tested instances. The results indicate again that our algorithm

is efficient for solving the GGL and FGL problems.

88
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

comput

system

scienc

research

univers

program

page

project

inform

home
depart

interest

work

parallel

student

engin

languag

offic

design softwar

time

assign

network

class

problem

algorithm

professor

distribut

group

develop

data

model

applic

paper

link

perform

postscript

includ

gener

web

mail

learn

confer

oper

process

publicemail

phone

architectur

graduat

(a)

comput

system

scienc

research

univers

program

page

project

inform

home
depart

interest

work

parallel

student

engin

languag

offic

design softwar

time

assign

network

class

problem

algorithm

professor

distribut

group

develop

data

model

applic

paper

link

perform

postscript

includ

gener

web

mail

learn

confer

oper

process

publicemail

phone

architectur

graduat

(b)

Figure 4.4: Dependency structures for class (a) Course (b) Project. The thin black lines
are the edges appearing in both classes, and the thick red lines are the edges only appearing
in one class.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

at most x times of the best

0

0.2

0.4

0.6

0.8

1

(1
00

y)
%

 o
f t

he
 p

ro
bl

em
s

Performance profile: time

PPA
ADMM
MGL

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

at most x times of the best

0

0.2

0.4

0.6

0.8

1

(1
00

y)
%

 o
f t

he
 p

ro
bl

em
s

Performance profile: time

PPA
ADMM
MGL

(b)

Figure 4.5: Performance profiles of PPA, ADMM, and MGL on university webpages data
sets for (a) the GGL problems and (b) the FGL problems.

4.4 Numerical experiments 89

Table 4.3: Performances of PPA, ADMM, and MGL on webpages data sets. Tolerance
ε = 1e-6.

Model Problem (λ1, λ2) Density Iteration Time Error

(n,L) P A M P A M P A M

GGL

(1e-02,1e-03) 0.016 16 2401 4 07 25 11 5.8e-07 9.9e-07 2.9e-07

Webtest (5e-03,5e-04) 0.048 16 2401 6 08 31 15 5.6e-07 9.9e-07 1.1e-07

(100,4) (1e-03,1e-04) 0.225 15 701 33 05 09 01:10 5.7e-07 6.1e-07 9.6e-07

(1e-02,1e-03) 0.008 18 2101 5 12 01:05 45 7.3e-07 9.4e-07 6.6e-08

Webtest (5e-03,5e-04) 0.026 18 2101 8 12 01:08 01:00 6.7e-07 9.4e-07 6.5e-07

(200,4) (1e-03,1e-04) 0.163 18 2101 89 13 01:13 07:25 5.5e-07 7.4e-07 9.5e-07

(5e-03,5e-04) 0.016 18 2101 8 25 02:17 02:53 5.9e-07 9.4e-07 7.3e-08

Webtest (1e-03,1e-04) 0.125 17 2101 305 56 02:25 32:25 9.2e-07 1.0e-06 1.0e-06

(300,4) (5e-04,5e-05) 0.256 19 2901 1500 01:22 03:06 02:27:35 7.1e-07 1.1e-06 1.2e-06

(1e-02,1e-03) 0.012 24 20000 4 12 03:27 10 4.4e-06 4.1e-05 -7.9e-08

Webtrain (5e-03,5e-04) 0.033 24 20000 5 14 03:43 04 4.4e-06 4.1e-05 7.2e-07

(100,4) (1e-03,1e-04) 0.165 24 20000 27 14 04:02 39 4.2e-06 3.9e-05 3.6e-06

(5e-03,5e-04) 0.016 24 20000 7 47 11:06 38 2.9e-06 3.0e-05 3.0e-08

Webtrain (1e-03,1e-04) 0.108 24 15226 39 44 08:26 03:38 2.9e-06 3.9e-06 2.7e-06

(200,4) (5e-04,5e-05) 0.219 24 20000 100 53 11:06 07:07 2.8e-06 2.9e-05 2.7e-06

(5e-03,5e-04) 0.011 24 20000 9 01:32 21:56 06:39 1.9e-06 2.0e-05 1.1e-06

Webtrain (1e-03,1e-04) 0.080 24 20000 65 01:40 22:28 16:35 1.9e-06 2.0e-05 1.7e-06

(300,4) (5e-04,5e-05) 0.177 24 20000 194 01:59 22:35 22:46 1.8e-06 1.9e-05 1.8e-06

FGL

(1e-02,1e-03) 0.015 16 2401 4 06 25 05 5.8e-07 9.9e-07 1.2e-07

Webtest (5e-03,5e-04) 0.047 16 2401 6 07 27 10 5.6e-07 9.9e-07 3.1e-07

(100,4) (1e-03,1e-04) 0.219 15 701 38 05 09 49 5.7e-07 6.1e-07 9.0e-07

(1e-02,1e-03) 0.008 18 2101 7 11 01:03 59 7.3e-07 9.4e-07 8.6e-07

Webtest (5e-03,5e-04) 0.025 18 2101 8 12 01:04 01:05 6.8e-07 9.4e-07 4.7e-07

(200,4) (1e-03,1e-04) 0.156 18 2101 72 12 01:12 07:31 5.5e-07 7.4e-07 9.3e-07

(5e-03,5e-04) 0.016 18 2101 9 25 02:12 03:44 5.9e-07 9.4e-07 3.7e-07

Webtest (1e-03,1e-04) 0.119 17 2101 258 49 02:16 39:58 8.7e-07 9.6e-07 1.0e-06

(300,4) (5e-04,5e-05) 0.244 19 2901 1393 01:18 03:07 02:22:23 6.8e-07 9.0e-07 1.0e-06

(1e-02,1e-03) 0.011 24 20000 3 12 03:11 04 4.4e-06 4.1e-05 3.4e-06

Webtrain (5e-03,5e-04) 0.030 24 20000 5 13 03:35 08 4.4e-06 4.1e-05 8.9e-07

(100,4) (1e-03,1e-04) 0.162 24 20000 22 14 03:52 01:06 4.2e-06 3.9e-05 3.5e-06

(5e-03,5e-04) 0.015 24 20000 5 46 10:53 17 2.9e-06 3.0e-05 1.2e-06

Webtrain (1e-03,1e-04) 0.105 24 15227 33 44 08:23 03:02 2.9e-06 3.9e-06 2.6e-06

(200,4) (5e-04,5e-05) 0.210 24 20000 95 52 10:41 06:34 2.8e-06 2.9e-05 2.7e-06

(5e-03,5e-04) 0.010 24 20000 7 01:31 21:31 02:07 1.9e-06 2.0e-05 -1.2e-08

Webtrain (1e-03,1e-04) 0.077 24 20000 52 01:33 22:06 20:47 1.9e-06 2.0e-05 1.8e-06

(300,4) (5e-04,5e-05) 0.168 24 20000 155 01:51 21:56 18:09 1.8e-06 1.9e-05 1.8e-06

4.4.5 20 Newsgroups

This section compares PPA, ADMM, and MGL on newsgroups data set, which is

a popular text data set. The 20 newsgroups data set is a collection of newsgroup

90
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

documents, partitioned nearly evenly across 20 different newsgroups. Different news-

groups correspond to different topics, and some of the newsgroups are closely related

to each other (e.g., comp.sys.ibm.pc.hardware/comp.sys.mac.hardware), while oth-

ers are highly unrelated (e.g., misc.forsale/soc.religion.christian). Table 4.4 lists the

20 newsgroups, partitioned according to subject matter ∗. According to the topics,

our numerical experiments were conducted on the four sub-groups, which are like-

ly to possess common semantic structures. The four sub-groups are highlighted in

Table 4.4 and named as NGcomp, NGrec, NGsci, and NGtalk accordingly.

There are several classes in each sub-group, and we apply the GGL and FGL

models to estimating jointly the precision matrices of different classes in each sub-

group.

Table 4.4: Partition of 20 newsgroups by topics

comp.graphics rec.autos sci.crypt

comp.os.ms-windows.misc rec.motorcycles sci.electronics

comp.sys.ibm.pc.hardware rec.sport.baseball sci.med

comp.sys.mac.hardware rec.sport.hockey sci.space

comp.windows.x

talk.politics.misc talk.religion.misc

misc.forsale talk.politics.guns alt.atheism

talk.politics.mideast soc.religion.christian

A processed version of the 20 newsgroups data set can be downloaded from Ja-

son’s page http://qwone.com/∼jason/20Newsgroups/, and the downloaded data

contains a training data set and a testing data set. We also adopted the procedure of

generating sample covariance matrices described in the previous section 4.4.4 with

a series of problem dimensionality n = 100, n = 200, and n = 300.

Table 4.5 shows the comparison of PPA, ADMM, and MGL on the testing and

training data sets of four sub-groups with n = 300. The results for n = 200 and

n = 100 are shown in Table 4.6 and Table 4.7, respectively. Furthermore, we

summarize in Figure 4.6 all conducted instances in Table 4.5, Table 4.6, and Table

∗The table is from the website: http://qwone.com/∼jason/20Newsgroups/

4.4 Numerical experiments 91

4.7. One can clearly see from Figure 4.6 that for both GGL and FGL problems,

PPA outperforms greatly ADMM and MGL. It truly suggests that our proposed

algorithm is efficient for solving the GGL and FGL problems.

0 20 40 60 80 100 120 140 160

at most x times of the best

0

0.2

0.4

0.6

0.8

1

(1
00

y)
%

 o
f t

he
 p

ro
bl

em
s

Performance profile: time

PPA
ADMM
MGL

(a)

0 20 40 60 80 100 120 140 160

at most x times of the best

0

0.2

0.4

0.6

0.8

1

(1
00

y)
%

 o
f t

he
 p

ro
bl

em
s

Performance profile: time

PPA
ADMM
MGL

(b)

Figure 4.6: Performance profiles of PPA, ADMM, and MGL on newsgroups data sets
with n = 100, n = 200, and n = 300 for (a) the GGL problems and (b) the FGL problems.

92
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

Table 4.5: The performances of PPA, ADMM, and MGL on newsgroups data sets. n =
300. Tolerance ε = 1e-6.

Model Problem (λ1, λ2) Density Iteration Time Error

(n,L) P A M P A M P A M

GGL

NGcomp (5e-03,5e-04) 0.021 19 4201 41 51 05:17 42:31 5.9e-07 1.0e-06 7.6e-07

test (1e-03,1e-04) 0.099 15 1501 711 01:15 02:02 01:32:52 6.4e-07 5.3e-07 1.0e-06

(300,5) (5e-04,5e-05) 0.210 16 1342 1240 57 01:48 03:00:00 1.1e-06 1.0e-06 7.4e-06

NGrec (5e-03,5e-04) 0.004 25 20000 5 01:12 19:51 04:59 1.2e-06 1.8e-05 4.9e-07

test (1e-03,1e-04) 0.063 25 20000 14 01:19 21:43 04:49 1.2e-06 1.8e-05 7.6e-07

(300,4) (5e-04,5e-05) 0.143 24 20000 46 01:22 21:37 07:58 2.0e-06 1.8e-05 1.9e-06

NGsci (5e-03,5e-04) 0.006 22 16244 7 56 15:26 07:47 8.9e-07 2.1e-06 4.4e-07

test (1e-03,1e-04) 0.075 21 16230 23 01:06 17:30 11:51 1.5e-06 2.1e-06 1.4e-06

(300,4) (5e-04,5e-05) 0.167 21 16230 116 01:16 17:33 20:41 1.5e-06 2.0e-06 1.5e-06

NGtalk (5e-03,5e-04) 0.026 17 4179 16 51 04:19 23:10 7.3e-07 1.0e-06 6.9e-07

test (1e-03,1e-04) 0.115 17 1101 81 33 01:12 17:16 5.0e-07 6.1e-07 9.8e-07

(300,3) (5e-04,5e-05) 0.240 16 1101 482 35 01:12 58:44 9.7e-07 4.7e-07 1.0e-06

NGcomp (5e-03,5e-04) 0.016 20 6023 13 36 07:32 18:53 8.6e-07 1.0e-06 6.4e-07

train (1e-03,1e-04) 0.080 20 6393 213 41 08:38 36:32 7.7e-07 1.3e-06 9.9e-07

(300,5) (5e-04,5e-05) 0.153 19 5856 743 56 07:52 01:52:17 1.1e-06 1.0e-06 1.1e-06

NGrec (5e-03,5e-04) 0.005 26 8842 5 01:29 07:08 02:30 1.5e-06 1.0e-06 4.0e-07

train (1e-03,1e-04) 0.068 24 8737 18 01:57 09:22 10:17 2.2e-06 1.0e-06 2.2e-06

(300,4) (5e-04,5e-05) 0.124 24 8623 68 02:06 09:20 11:47 2.2e-06 1.0e-06 2.1e-06

NGsci (5e-03,5e-04) 0.011 21 11166 10 41 11:12 11:44 1.0e-06 2.0e-06 1.6e-08

train (1e-03,1e-04) 0.086 20 11137 40 54 12:02 10:01 1.6e-06 1.9e-06 1.6e-06

(300,4) (5e-04,5e-05) 0.152 20 11505 273 01:07 12:31 27:14 1.7e-06 1.9e-06 1.7e-06

NGtalk (5e-03,5e-04) 0.026 22 20000 14 01:28 21:19 13:17 1.7e-06 5.9e-06 3.6e-07

train (1e-03,1e-04) 0.103 22 20000 59 43 21:40 10:38 1.7e-06 4.7e-06 1.6e-06

(300,3) (5e-04,5e-05) 0.204 22 20000 367 45 21:55 40:47 1.7e-06 4.4e-06 1.7e-06

FGL

NGcomp (5e-03,5e-04) 0.020 19 4201 35 53 05:27 41:26 5.9e-07 1.0e-06 6.2e-07

test (1e-03,1e-04) 0.094 16 1543 720 01:20 02:08 01:54:03 9.7e-07 1.0e-06 1.0e-06

(300,5) (5e-04,5e-05) 0.194 17 1391 1240 59 01:56 03:00:05 7.9e-07 1.0e-06 9.6e-06

NGrec (5e-03,5e-04) 0.004 25 20000 4 01:16 21:18 04:43 1.2e-06 1.8e-05 8.3e-07

test (1e-03,1e-04) 0.061 25 20000 13 01:20 22:10 04:38 1.2e-06 1.8e-05 4.6e-07

(300,4) (5e-04,5e-05) 0.134 24 20000 37 01:23 22:05 07:55 2.0e-06 1.8e-05 1.9e-06

NGsci (5e-03,5e-04) 0.006 22 16244 6 57 15:42 06:00 8.9e-07 2.1e-06 2.7e-07

test (1e-03,1e-04) 0.074 21 16230 25 01:06 17:54 10:22 1.5e-06 2.1e-06 1.3e-06

(300,4) (5e-04,5e-05) 0.156 21 16230 100 01:06 17:52 20:37 1.5e-06 2.0e-06 1.5e-06

NGtalk (5e-03,5e-04) 0.026 17 4179 14 52 04:23 14:33 7.4e-07 1.0e-06 2.7e-07

test (1e-03,1e-04) 0.111 17 1018 79 35 01:08 16:52 4.9e-07 1.0e-06 9.8e-07

(300,3) (5e-04,5e-05) 0.228 17 922 434 37 01:00 52:12 6.8e-07 1.0e-06 9.9e-07

NGcomp (5e-03,5e-04) 0.016 20 6023 13 36 07:36 26:32 8.6e-07 1.0e-06 5.2e-07

train (1e-03,1e-04) 0.077 20 6393 153 40 08:59 36:18 7.7e-07 1.3e-06 9.7e-07

(300,5) (5e-04,5e-05) 0.142 19 5861 662 52 07:58 01:52:34 1.1e-06 1.0e-06 1.1e-06

NGrec (5e-03,5e-04) 0.004 26 8842 5 01:30 07:17 03:34 1.5e-06 1.0e-06 4.7e-07

train (1e-03,1e-04) 0.067 24 8737 17 01:58 09:31 06:32 2.2e-06 1.0e-06 1.7e-06

(300,4) (5e-04,5e-05) 0.119 24 8625 66 02:05 09:30 14:16 2.2e-06 1.0e-06 2.1e-06

NGsci (5e-03,5e-04) 0.011 21 11166 10 41 11:15 11:32 1.0e-06 2.0e-06 2.1e-08

train (1e-03,1e-04) 0.085 20 11137 41 01:03 12:17 13:45 1.6e-06 1.9e-06 1.5e-06

(300,4) (5e-04,5e-05) 0.146 20 11405 226 01:02 12:41 28:27 1.7e-06 1.9e-06 1.6e-06

NGtalk (5e-03,5e-04) 0.026 22 20000 12 01:29 21:04 13:18 1.7e-06 5.9e-06 1.4e-06

train (1e-03,1e-04) 0.101 22 20000 74 41 22:10 12:00 1.7e-06 4.8e-06 1.6e-06

(300,3) (5e-04,5e-05) 0.193 22 20000 402 40 23:15 45:12 1.7e-06 4.4e-06 1.6e-06

4.4 Numerical experiments 93

Table 4.6: The performances of PPA, ADMM, and MGL on newsgroups data sets. n =
200. Tolerance ε = 1e-6.

Model Problem (λ1, λ2) Density Iteration Time Error

(n,L) P A M P A M P A M

GGL

NGcomp (5e-03,5e-04) 0.034 17 1401 25 16 53 13:49 1.0e-06 9.5e-07 9.6e-07

test (1e-03,1e-04) 0.136 18 1580 369 26 01:05 39:09 6.5e-07 1.0e-06 1.0e-06

(200,5) (5e-04,5e-05) 0.258 15 2549 1492 33 01:44 01:30:52 9.6e-07 1.0e-06 1.0e-06

NGrec (5e-03,5e-04) 0.005 25 20000 5 35 09:09 36 1.9e-06 2.8e-05 1.4e-06

test (1e-03,1e-04) 0.097 25 20000 15 39 10:35 02:33 1.8e-06 2.7e-05 1.0e-06

(200,4) (5e-04,5e-05) 0.178 25 20000 37 39 10:41 02:53 1.8e-06 2.7e-05 1.7e-06

NGsci (5e-03,5e-04) 0.010 22 7720 5 23 03:22 01:27 1.2e-06 1.7e-06 3.3e-08

test (1e-03,1e-04) 0.112 21 16890 15 25 09:09 01:38 2.2e-06 2.8e-06 2.1e-06

(200,4) (5e-04,5e-05) 0.199 21 16890 62 26 08:58 04:07 2.2e-06 2.7e-06 2.0e-06

NGtalk (5e-03,5e-04) 0.047 19 4401 9 23 02:14 04:18 9.0e-07 8.6e-07 5.8e-07

test (1e-03,1e-04) 0.151 19 4301 72 28 02:18 03:30 6.2e-07 4.5e-07 9.5e-07

(200,3) (5e-04,5e-05) 0.277 17 1101 352 21 35 14:49 6.4e-07 9.5e-07 9.9e-07

NGcomp (5e-03,5e-04) 0.026 20 7552 14 21 04:36 09:53 9.2e-07 1.8e-06 4.8e-07

train (1e-03,1e-04) 0.118 19 7236 115 20 04:50 08:17 1.5e-06 1.7e-06 1.5e-06

(200,5) (5e-04,5e-05) 0.197 19 7207 479 25 04:40 32:01 1.5e-06 1.6e-06 1.5e-06

NGrec (5e-03,5e-04) 0.007 26 20000 4 38 07:36 01:19 2.4e-06 6.5e-05 5.8e-07

train (1e-03,1e-04) 0.111 25 10021 13 53 05:17 01:20 4.0e-06 1.0e-06 3.4e-06

(200,4) (5e-04,5e-05) 0.163 25 9911 42 51 05:14 02:14 3.9e-06 1.0e-06 3.8e-06

NGsci (5e-03,5e-04) 0.018 21 9149 8 18 04:20 03:52 7.5e-07 1.8e-06 1.4e-08

train (1e-03,1e-04) 0.128 20 9005 36 16 04:44 02:46 1.3e-06 1.7e-06 1.1e-06

(200,4) (5e-04,5e-05) 0.191 20 8977 217 20 04:44 11:58 1.2e-06 1.7e-06 1.2e-06

NGtalk (5e-03,5e-04) 0.048 25 20000 11 48 10:14 04:18 2.4e-06 1.1e-05 6.3e-07

train (1e-03,1e-04) 0.144 22 20000 52 32 10:42 04:45 2.5e-06 7.8e-06 2.3e-06

(200,3) (5e-04,5e-05) 0.240 22 11808 241 28 06:16 12:10 2.4e-06 1.4e-06 2.4e-06

FGL

NGcomp (5e-03,5e-04) 0.033 17 1401 26 16 54 14:47 1.0e-06 9.5e-07 7.0e-07

test (1e-03,1e-04) 0.131 18 1551 377 23 01:04 32:28 8.4e-07 1.0e-06 1.0e-06

(200,5) (5e-04,5e-05) 0.242 18 2346 1288 29 01:33 01:33:40 5.4e-07 1.0e-06 1.0e-06

NGrec (5e-03,5e-04) 0.005 25 20000 4 35 09:25 58 1.9e-06 2.8e-05 1.5e-06

test (1e-03,1e-04) 0.096 25 20000 13 39 11:00 03:23 1.8e-06 2.7e-05 1.5e-06

(200,4) (5e-04,5e-05) 0.169 25 20000 37 39 10:49 03:13 1.8e-06 2.7e-05 1.6e-06

NGsci (5e-03,5e-04) 0.009 22 7720 6 24 03:30 01:46 1.2e-06 1.7e-06 1.0e-08

test (1e-03,1e-04) 0.110 21 16890 15 26 09:09 02:50 2.2e-06 2.8e-06 1.9e-06

(200,4) (5e-04,5e-05) 0.189 21 16890 64 26 09:04 04:59 2.2e-06 2.7e-06 2.1e-06

NGtalk (5e-03,5e-04) 0.046 19 4401 9 24 02:16 04:16 9.1e-07 8.6e-07 7.6e-07

test (1e-03,1e-04) 0.148 19 4314 59 26 02:22 03:30 6.2e-07 1.0e-06 9.9e-07

(200,3) (5e-04,5e-05) 0.265 17 1101 328 19 36 14:59 7.0e-07 7.1e-07 9.9e-07

NGcomp (5e-03,5e-04) 0.025 20 7552 15 22 04:42 11:53 9.2e-07 1.8e-06 1.9e-08

train (1e-03,1e-04) 0.116 19 7236 101 20 04:50 10:01 1.5e-06 1.7e-06 1.5e-06

(200,5) (5e-04,5e-05) 0.186 19 7207 413 23 04:50 26:59 1.5e-06 1.6e-06 1.5e-06

NGrec (5e-03,5e-04) 0.007 26 20000 4 39 07:48 01:25 2.4e-06 6.5e-05 5.6e-07

train (1e-03,1e-04) 0.110 25 10021 15 53 05:22 01:17 4.0e-06 1.0e-06 3.0e-06

(200,4) (5e-04,5e-05) 0.160 25 9912 41 53 05:27 02:09 3.9e-06 1.0e-06 3.7e-06

NGsci (5e-03,5e-04) 0.017 21 9149 8 17 04:11 05:01 7.5e-07 1.8e-06 2.4e-08

train (1e-03,1e-04) 0.129 20 9005 42 16 04:51 04:02 1.3e-06 1.7e-06 1.2e-06

(200,4) (5e-04,5e-05) 0.185 20 8977 158 18 04:52 09:18 1.2e-06 1.7e-06 9.1e-07

NGtalk (5e-03,5e-04) 0.048 25 20000 13 48 10:39 07:41 2.4e-06 1.1e-05 2.3e-07

train (1e-03,1e-04) 0.143 22 20000 54 33 10:47 03:34 2.5e-06 7.8e-06 2.5e-06

(200,3) (5e-04,5e-05) 0.230 22 20000 265 29 10:45 12:57 2.4e-06 7.0e-06 2.4e-06

94
Chapter 4. Proximal point algorithm for solving multiple graphical Lasso

problems

Table 4.7: The performances of PPA, ADMM, and MGL on newsgroups data sets. n =
100. Tolerance ε = 1e-6.

Model Problem (λ1, λ2) Density Iteration Time Error

(n,L) P A M P A M P A M

GGL

NGcomp (5e-03,5e-04) 0.076 15 547 12 03 08 01:11 9.4e-07 1.0e-06 1.6e-07

test (2e-03,2e-04) 0.186 15 569 42 04 09 01:24 6.9e-07 9.9e-07 9.1e-07

(200,5) (1e-03,1e-04) 0.228 16 763 101 04 11 01:40 8.2e-07 1.0e-06 8.3e-07

NGrec (5e-03,5e-04) 0.011 25 20000 4 14 03:16 10 3.7e-06 5.6e-05 7.0e-07

test (2e-03,2e-04) 0.079 25 20000 6 15 03:42 19 3.6e-06 5.5e-05 -5.8e-08

(200,4) (1e-03,1e-04) 0.194 25 20000 8 17 03:55 20 3.5e-06 5.4e-05 2.2e-06

NGsci (5e-03,5e-04) 0.022 21 16832 4 08 02:50 15 2.3e-06 3.2e-06 1.9e-06

test (2e-03,2e-04) 0.156 21 16510 9 07 03:06 07 2.4e-06 3.1e-06 1.3e-07

(200,4) (1e-03,1e-04) 0.216 21 16366 11 07 03:07 14 2.3e-06 3.0e-06 2.0e-06

NGtalk (5e-03,5e-04) 0.119 18 2801 10 07 32 36 1.2e-06 1.2e-06 1.9e-09

test (2e-03,2e-04) 0.218 18 2771 15 08 32 32 1.1e-06 1.2e-06 4.9e-07

(200,3) (1e-03,1e-04) 0.237 15 2741 27 08 31 43 1.1e-06 1.3e-06 8.1e-07

NGcomp (5e-03,5e-04) 0.050 20 5547 8 12 01:17 58 6.2e-07 1.3e-06 2.3e-07

train (2e-03,2e-04) 0.161 19 2701 12 12 38 32 1.0e-06 9.5e-07 3.5e-07

(200,5) (1e-03,1e-04) 0.216 17 1701 33 05 24 01:02 9.7e-07 1.2e-06 9.0e-07

NGrec (5e-03,5e-04) 0.016 26 20000 4 13 03:01 23 4.2e-06 8.6e-05 1.4e-07

train (2e-03,2e-04) 0.117 26 20000 9 15 03:43 42 4.2e-06 8.5e-05 1.2e-06

(200,4) (1e-03,1e-04) 0.226 26 20000 12 16 04:02 17 4.1e-06 8.3e-05 3.8e-06

NGsci (5e-03,5e-04) 0.045 15 1093 7 04 12 47 7.6e-07 1.0e-06 1.2e-07

train (2e-03,2e-04) 0.185 15 1093 10 05 13 16 7.2e-07 1.0e-06 8.2e-07

(200,4) (1e-03,1e-04) 0.237 15 322 19 04 04 20 6.3e-07 1.0e-06 6.1e-07

NGtalk (5e-03,5e-04) 0.121 23 20000 8 22 03:48 27 3.0e-06 2.3e-05 8.5e-07

train (2e-03,2e-04) 0.230 22 20000 14 21 03:49 08 5.2e-06 1.9e-05 2.8e-06

(200,3) (1e-03,1e-04) 0.239 22 20000 25 13 03:51 24 4.9e-06 1.6e-05 4.2e-06

FGL

NGcomp (5e-03,5e-04) 0.033 17 1401 26 16 54 14:47 1.0e-06 9.5e-07 7.0e-07

test (1e-03,1e-04) 0.131 18 1551 377 23 01:04 32:28 8.4e-07 1.0e-06 1.0e-06

(200,5) (5e-04,5e-05) 0.242 18 2346 1288 29 01:33 01:33:40 5.4e-07 1.0e-06 1.0e-06

NGrec (5e-03,5e-04) 0.005 25 20000 4 35 09:25 58 1.9e-06 2.8e-05 1.5e-06

test (1e-03,1e-04) 0.096 25 20000 13 39 11:00 03:23 1.8e-06 2.7e-05 1.5e-06

(200,4) (5e-04,5e-05) 0.169 25 20000 37 39 10:49 03:13 1.8e-06 2.7e-05 1.6e-06

NGsci (5e-03,5e-04) 0.009 22 7720 6 24 03:30 01:46 1.2e-06 1.7e-06 1.0e-08

test (1e-03,1e-04) 0.110 21 16890 15 26 09:09 02:50 2.2e-06 2.8e-06 1.9e-06

(200,4) (5e-04,5e-05) 0.189 21 16890 64 26 09:04 04:59 2.2e-06 2.7e-06 2.1e-06

NGtalk (5e-03,5e-04) 0.046 19 4401 9 24 02:16 04:16 9.1e-07 8.6e-07 7.6e-07

test (1e-03,1e-04) 0.148 19 4314 59 26 02:22 03:30 6.2e-07 1.0e-06 9.9e-07

(200,3) (5e-04,5e-05) 0.265 17 1101 328 19 36 14:59 7.0e-07 7.1e-07 9.9e-07

NGcomp (5e-03,5e-04) 0.025 20 7552 15 22 04:42 11:53 9.2e-07 1.8e-06 1.9e-08

train (1e-03,1e-04) 0.116 19 7236 101 20 04:50 10:01 1.5e-06 1.7e-06 1.5e-06

(200,5) (5e-04,5e-05) 0.186 19 7207 413 23 04:50 26:59 1.5e-06 1.6e-06 1.5e-06

NGrec (5e-03,5e-04) 0.007 26 20000 4 39 07:48 01:25 2.4e-06 6.5e-05 5.6e-07

train (1e-03,1e-04) 0.110 25 10021 15 53 05:22 01:17 4.0e-06 1.0e-06 3.0e-06

(200,4) (5e-04,5e-05) 0.160 25 9912 41 53 05:27 02:09 3.9e-06 1.0e-06 3.7e-06

NGsci (5e-03,5e-04) 0.017 21 9149 8 17 04:11 05:01 7.5e-07 1.8e-06 2.4e-08

train (1e-03,1e-04) 0.129 20 9005 42 16 04:51 04:02 1.3e-06 1.7e-06 1.2e-06

(200,4) (5e-04,5e-05) 0.185 20 8977 158 18 04:52 09:18 1.2e-06 1.7e-06 9.1e-07

NGtalk (5e-03,5e-04) 0.048 25 20000 13 48 10:39 07:41 2.4e-06 1.1e-05 2.3e-07

train (1e-03,1e-04) 0.143 22 20000 54 33 10:47 03:34 2.5e-06 7.8e-06 2.5e-06

(200,3) (5e-04,5e-05) 0.230 22 20000 265 29 10:45 12:57 2.4e-06 7.0e-06 2.4e-06

Chapter 5
Conclusions and future works

In this thesis, we have developed a highly efficient semismooth Newton based aug-

mented Lagrangian method Ssnal for solving large-scale non-overlapping sparse

group Lasso problems. The elements in the generalized Jacobian of the proximal

mapping associated with the sparse group Lasso regularizer were first derived, and

the underlying second order sparsity structure was thoroughly analysed and utilised

to achieve superior performance in the numerical implementations of Ssnal. Ex-

tensive numerical experiments have demonstrated that the proposed algorithm is

highly efficient and robust, even on high-dimensional real data sets.

One limitation is that the proposed algorithm does not take into account the

possible overlaps among groups. Future research is therefore needed to develop an

efficient second order information based algorithm for solving overlapping sparse

group Lasso problems. The major difficulty is that we still failed to find the closed

form expression of the proximal mapping associated with the `2 norm for groups (i.e.,

φ(x) :=
∑g

l=1 λ2,l‖xGl‖ in Chapter 4). Because the groups are possibly overlapped,

the optimization problem in the proximal mapping of φ cannot be decoupled into

several solvable problems. Such a closed form expression is not only critical for the

derivation of the generalized Jacobian in our algorithmic framework, but also can

contribute to many first order methods. Moreover, second order information based

algorithms for solving other large-scale convex composite problems may also deserve

95

96 Chapter 5. Conclusions and future works

further explorations.

In the second part of the thesis, we have applied a proximal point algorithm to

the primal formulations of the group graphical Lasso and the fused graphical Lasso

problems. From a theoretical standpoint, we have showed that the proposed method

is globally convergent, the sequence of the primal iterates is Q-linearly convergent,

and the sequence of the dual objective values is R-linearly convergent. Numerically,

we have demonstrated the superior efficiency and robust performance of the proposed

method by comparing it with the extensively used alternating direction method of

multipliers and the proximal Newton-type method on both synthetic and real data

sets. In summary, the proposed semismooth Newton based proximal point algorithm

is a highly efficient method for solving both the group graphical Lasso and fused

graphical Lasso problems.

Base on the superior performance of the PPA for solving the group graphical

Lasso and fused graphical Lasso problems, we can apply our algorithmic framework

for solving multiple graphical Lasso problems with other penalties in future studies.

Bibliography

[1] A. Ahmed and E. P. Xing, Recovering time-varying networks of dependen-

cies in social and biological studies, Proceedings of the National Academy of

Sciences, 106 (2009), pp. 11878–11883.

[2] G. Andrew and J. Gao, Scalable training of L1-regularized log-linear mod-

els, in Proceedings of the 24th International Conference on Machine Learning,

ACM, 2007, pp. 33–40.

[3] A. Argyriou, C. A. Micchelli, M. Pontil, L. Shen, and Y. Xu,

Efficient first order methods for linear composite regularizers, arXiv preprint

arXiv:1104.1436, (2011).

[4] O. Banerjee, L. E. Ghaoui, and A. d’Aspremont, Model selection

through sparse maximum likelihood estimation for multivariate gaussian or

binary data, Journal of Machine learning research, 9 (2008), pp. 485–516.

[5] O. Banerjee, L. E. Ghaoui, A. d’Aspremont, and G. Natsoulis,

Convex optimization techniques for fitting sparse gaussian graphical models,

in Proceedings of the 23rd International Conference on Machine Learning,

ACM, 2006, pp. 89–96.

97

98 Bibliography

[6] J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization prob-

lems, Springer Science & Business Media, 2013.

[7] J. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization:

theory and examples, Springer Science & Business Media, 2010.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed

optimization and statistical learning via the alternating direction method of

multipliers, Foundations and Trends in Machine Learning, 3 (2011), pp. 1–

122.

[9] R. H. Byrd, G. M. Chin, J. Nocedal, and F. Oztoprak, A family

of second-order methods for convex `1-regularized optimization, Mathematical

Programming, 159 (2016), pp. 435–467.

[10] A. Cardoso-Cachopo, Improving methods for single-label text categoriza-

tion. PhD Thesis, Instituto Superior Tecnico, Universidade Tecnica de Lisboa,

2007.

[11] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector ma-

chines, ACM Transactions on Intelligent Systems and Technology, 2 (2011),

pp. 27:1–27:27.

[12] L. Chen, D. F. Sun, and K.-C. Toh, An efficient inexact symmetric

Gauss–Seidel based majorized ADMM for high-dimensional convex composite

conic programming, Mathematical Programming, 161 (2017), pp. 237–270.

[13] X. D. Chen, D. F. Sun, and J. Sun, Complementarity functions and nu-

merical experiments on some smoothing Newton methods for second-order-cone

complementarity problems, Computational Optimization and Applications, 25

(2003), pp. 39–56.

[14] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York,

1983.

Bibliography 99

[15] Y. Cui, D. F. Sun, and K.-C. Toh, On the asymptotic superlinear conver-

gence of the augmented Lagrangian method for semidefinite programming with

multiple solutions, arXiv preprint arXiv:1610.00875, (2016).

[16] , On the R-superlinear convergence of the KKT residues generated by

the augmented Lagrangian method for convex composite conic programming,

Mathematical Programming, (2018), pp. 1–35.

[17] P. Danaher, P. Wang, and D. M. Witten, The joint graphical lasso

for inverse covariance estimation across multiple classes, Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 76 (2014), pp. 373–397.

[18] A. d’Aspremont, O. Banerjee, and L. El Ghaoui, First-order meth-

ods for sparse covariance selection, SIAM Journal on Matrix Analysis and

Applications, 30 (2008), pp. 56–66.

[19] J. C. De Los Reyes, E. Loayza, and P. Merino, Second-order orthant-

based methods with enriched Hessian information for sparse `1-optimization,

Computational Optimization and Applications, 67 (2017), pp. 225–258.

[20] A. P. Dempster, Covariance selection, Biometrics, 28 (1972), pp. 157–175.

[21] Y. Dong, An extension of Luque’s growth condition, Applied Mathematics

Letters, 22 (2009), pp. 1390–1393.

[22] J. Duchi, S. Gould, and D. Koller, Projected subgradient methods for

learning sparse gaussians, in Proceedings of the 24th Conference on Uncer-

tainty in Artificial Intelligence, AUAI Press, 2008, pp. 153–160.

[23] Y. C. Eldar and M. Mishali, Robust recovery of signals from a structured

union of subspaces, IEEE Transactions on Information Theory, 55 (2009),

pp. 5302–5316.

[24] F. Facchinei, Minimization of SC 1 functions and the maratos effect, Oper-

ations Research Letters, 17 (1995), pp. 131–138.

100 Bibliography

[25] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities

and complementarity problems, Springer Science & Business Media, 2007.

[26] J. Fan and J. Lv, A selective overview of variable selection in high dimen-

sional feature space, Statistica Sinica, 20 (2010), pp. 101–148.

[27] Y. Fan and C. Y. Tang, Tuning parameter selection in high dimensional pe-

nalized likelihood, Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 75 (2013), pp. 531–552.

[28] M. Fazel, T. K. Pong, D. F. Sun, and P. Tseng, Hankel matrix rank

minimization with applications to system identification and realization, SIAM

Journal on Matrix Analysis and Applications, 34 (2013), pp. 946–977.

[29] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, Pathwise

coordinate optimization, The Annals of Applied Statistics, 1 (2007), pp. 302–

332.

[30] J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance

estimation with the graphical lasso, Biostatistics, 9 (2008), pp. 432–441.

[31] , A note on the group lasso and a sparse group lasso, arXiv preprint

arXiv:1001.0736, (2010).

[32] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear

variational problems via finite element approximation, Computers and Math-

ematics with Applications, 2 (1976), pp. 17–40.

[33] A. J. Gibberd and J. D. Nelson, Regularized estimation of piecewise

constant gaussian graphical models: The group-fused graphical lasso, Journal

of Computational and Graphical Statistics, 26 (2017), pp. 623–634.

Bibliography 101

[34] R. Glowinski and A. Marroco, Sur l’approximation, par éléments fi-

nis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de prob-

lèmes de Dirichlet non linéaires, Revue française d’automatique, informatique,

recherche opérationnelle. Analyse numérique, 9 (1975), pp. 41–76.

[35] J. Guo, E. Levina, G. Michailidis, and J. Zhu, Joint estimation of

multiple graphical models, Biometrika, 98 (2011), pp. 1–15.

[36] D. Hallac, J. Leskovec, and S. Boyd, Network lasso: Clustering and

optimization in large graphs, in Proceedings of the 21th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, ACM, 2015,

pp. 387–396.

[37] D. Hallac, Y. Park, S. Boyd, and J. Leskovec, Network inference via

the time-varying graphical lasso, in Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ACM,

2017, pp. 205–213.

[38] S. Hara and T. Washio, Learning a common substructure of multiple graph-

ical gaussian models, Neural Networks, 38 (2013), pp. 23–38.

[39] J.-B. Hiriart-Urrutty and C. Lemaréchal, Convex analysis and min-

imization algorithms II: Advanced Theory and Bundle Methods, vol. 306,

Springer-Verlag, 1993.

[40] J. Honorio and D. Samaras, Multi-task learning of gaussian graphical

models, in Proceedings of the 27th International Conference on Machine Learn-

ing, ACM, 2010, pp. 447–454.

[41] C.-J. Hsieh, I. S. Dhillon, P. K. Ravikumar, and M. A. Sustik,

Sparse inverse covariance matrix estimation using quadratic approximation,

in Advances in Neural Information Processing Systems, 2011, pp. 2330–2338.

102 Bibliography

[42] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik,

Predicting execution time of computer programs using sparse polynomial re-

gression, in Advances in Neural Information Processing Systems, 2010, p-

p. 883–891.

[43] L. Jacob, G. Obozinski, and J.-P. Vert, Group lasso with overlap and

graph lasso, in Proceedings of the 26th International Conference on Machine

Learning, ACM, 2009, pp. 433–440.

[44] R. Jenatton, J. Mairal, F. R. Bach, and G. R. Obozinski, Proximal

methods for sparse hierarchical dictionary learning, in Proceedings of the 27th

International Conference on Machine Learning, ACM, 2010, pp. 487–494.

[45] E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven,

L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu,

M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo,

C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and

D. Joseph, The NCEP/NCAR 40-year reanalysis project, Bulletin of the

American Meteorological Society, 77 (1996), pp. 437–472.

[46] J. Kim and H. Park, Fast active-set-type algorithms for l1-regularized linear

regression, in Proceedings of the 13th International Conference on Artificial

Intelligence and Statistics, 2010, pp. 397–404.

[47] D. Kong and C. Ding, Efficient algorithms for selecting features with ar-

bitrary group constraints via group lasso, in 2013 IEEE 13th International

Conference on Data Mining, 2013, pp. 379–388.

[48] B. Kummer, Newton’s method for non-differentiable functions, Advances in

Mathematical Optimization, 45 (1988), pp. 114–125.

[49] , Newton’s method based on generalized derivatives for nonsmooth func-

tions: convergence analysis, in Advances in Optimization, vol. 382, Springer,

1992, pp. 171–194.

Bibliography 103

[50] X. Y. Lam, J. Marron, D. F. Sun, and K.-C. Toh, Fast algorithms for

large-scale generalized distance weighted discrimination, Journal of Computa-

tional and Graphical Statistics, (2018), pp. 1–12.

[51] J. D. Lee, Y. Sun, and M. A. Saunders, Proximal Newton-type methods

for minimizing composite functions, SIAM Journal on Optimization, 24 (2014),

pp. 1420–1443.

[52] H. Li and J. Gui, Gradient directed regularization for sparse gaussian con-

centration graphs, with applications to inference of genetic networks, Biostatis-

tics, 7 (2006), pp. 302–317.

[53] L. Li and K.-C. Toh, An inexact interior point method for `l-regularized

sparse covariance selection, Mathematical Programming Computation, 2

(2010), pp. 291–315.

[54] X. Li, D. F. Sun, and K.-C. Toh, A highly efficient semismooth Newton

augmented Lagrangian method for solving Lasso problems, SIAM Journal on

Optimization, 28 (2018), pp. 433–458.

[55] , On efficiently solving the subproblems of a level-set method for fused

lasso problems, SIAM Journal on Optimization, 28 (2018), pp. 1842–1862.

[56] M. Lichman, UCI machine learning repository, 2013.

[57] J. Liu, S. Ji, and J. Ye, SLEP: Sparse learning with efficient projections,

Arizona State University, (2009).

[58] J. Liu and J. Ye, Moreau-Yosida regularization for grouped tree structure

learning, in Advances in Neural Information Processing Systems, 2010, p-

p. 1459–1467.

[59] Z. Lu, Smooth optimization approach for sparse covariance selection, SIAM

Journal on Optimization, 19 (2009), pp. 1807–1827.

104 Bibliography

[60] , Adaptive first-order methods for general sparse inverse covariance selec-

tion, SIAM Journal on Matrix Analysis and Applications, 31 (2010), pp. 2000–

2016.

[61] Z. Lu and Y. Zhang, An augmented Lagrangian approach for sparse princi-

pal component analysis, Mathematical Programming, 135 (2012), pp. 149–193.

[62] Z.-Q. Luo and P. Tseng, Error bounds and convergence analysis of feasi-

ble descent methods: a general approach, Annals of Operations Research, 46

(1993), pp. 157–178.

[63] F. J. Luque, Asymptotic convergence analysis of the proximal point algorith-

m, SIAM Journal on Control and Optimization, 22 (1984), pp. 277–293.

[64] F. Meng, D. F. Sun, and G. Zhao, Semismoothness of solutions to gen-

eralized equations and the Moreau-Yosida regularization, Mathematical Pro-

gramming, 104 (2005), pp. 561–581.

[65] R. Mifflin, Semismooth and semiconvex functions in constrained optimiza-

tion, SIAM Journal on Control and Optimization, 15 (1977), pp. 959–972.

[66] R. P. Monti, P. Hellyer, D. Sharp, R. Leech, C. Anagnostopou-

los, and G. Montana, Estimating time-varying brain connectivity networks

from functional MRI time series, NeuroImage, 103 (2014), pp. 427–443.

[67] J.-J. Moreau, Proximité et dualité dans un espace hilbertien, Bulletin de la

Société Mathématique de France, 93 (1965), pp. 273–299.

[68] E. Ndiaye, O. Fercoq, A. Gramfort, and J. Salmon, Gap safe screen-

ing rules for sparse-group lasso, in Advances in Neural Information Processing

Systems, 2016, pp. 388–396.

[69] J.-S. Pang and L. Qi, A globally convergent Newton method for convex SC 1

minimization problems, Journal of Optimization Theory and Applications, 85

(1995), pp. 633–648.

Bibliography 105

[70] J. Peng, J. Zhu, A. Bergamaschi, W. Han, D.-Y. Noh, J. R. Pol-

lack, and P. Wang, Regularized multivariate regression for identifying mas-

ter predictors with application to integrative genomics study of breast cancer,

The Annals of Applied Statistics, 4 (2010), pp. 53–77.

[71] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Mathematical

Programming, 58 (1993), pp. 353–367.

[72] Z. Qin, K. Scheinberg, and D. Goldfarb, Efficient block-coordinate

descent algorithms for the group lasso, Mathematical Programming Compu-

tation, 5 (2013), pp. 143–169.

[73] P. Richtárik and M. Takáč, Iteration complexity of randomized block-

coordinate descent methods for minimizing a composite function, Mathemati-

cal Programming, 144 (2014), pp. 1–38.

[74] R. T. Rockafellar, Convex analysis, Princeton University Press, Prince-

ton, NJ, 1970.

[75] R. T. Rockafellar, Augmented Lagrangians and applications of the prox-

imal point algorithm in convex programming, Mathematics of Operations Re-

search, 1 (1976), pp. 97–116.

[76] , Monotone operators and the proximal point algorithm, SIAM Journal on

Control and Optimization, 14 (1976), pp. 877–898.

[77] A. Shapiro, On concepts of directional differentiability, Journal of optimiza-

tion theory and applications, 66 (1990), pp. 477–487.

[78] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, A sparse-group

lasso, Journal of Computational and Graphical Statistics, 22 (2013), pp. 231–

245.

106 Bibliography

[79] D. F. Sun, The strong second-order sufficient condition and constraint nonde-

generacy in nonlinear semidefinite programming and their implications, Math-

ematics of Operations Research, 31 (2006), pp. 761–776.

[80] D. F. Sun and J. Sun, Semismooth matrix-valued functions, Mathematics

of Operations Research, 27 (2002), pp. 150–169.

[81] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of

the Royal Statistical Society. Series B (Methodology), 58 (1996), pp. 267–288.

[82] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight,

Sparsity and smoothness via the fused lasso, Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 67 (2005), pp. 91–108.

[83] P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth

separable minimization, Mathematical Programming, 117 (2009), pp. 387–423.

[84] G. Varoquaux, A. Gramfort, J.-B. Poline, and B. Thirion, Brain co-

variance selection: better individual functional connectivity models using pop-

ulation prior, in Advances in Neural Information Processing Systems, 2010,

pp. 2334–2342.

[85] C. J. Wang, D. F. Sun, and K.-C. Toh, Solving log-determinant opti-

mization problems by a Newton-CG primal proximal point algorithm, SIAM

Journal on Optimization, 20 (2010), pp. 2994–3013.

[86] J. Yang and J. Peng, Estimating time-varying graphical models, arXiv

preprint arXiv:1804.03811, (2018).

[87] J. F. Yang, D. F. Sun, and K.-C. Toh, A proximal point algorithm for

log-determinant optimization with group lasso regularization, SIAM Journal

on Optimization, 23 (2013), pp. 857–893.

[88] S. Yang, Z. Lu, X. Shen, P. Wonka, and J. Ye, Fused multiple graphical

lasso, SIAM Journal on Optimization, 25 (2015), pp. 916–943.

Bibliography 107

[89] K. Yosida, Functional analysis, (1964).

[90] Y.-L. Yu, On decomposing the proximal map, in Advances in Neural Infor-

mation Processing Systems, 2013, pp. 91–99.

[91] L. Yuan, J. Liu, and J. Ye, Efficient methods for overlapping group lasso,

in Advances in Neural Information Processing Systems, 2011, pp. 352–360.

[92] M. Yuan and Y. Lin, Model selection and estimation in regression with

grouped variables, Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 68 (2006), pp. 49–67.

[93] , Model selection and estimation in the Gaussian graphical model,

Biometrika, 94 (2007), pp. 19–35.

[94] X. Yuan, Alternating direction method for covariance selection models, Jour-

nal of Scientific Computing, 51 (2012), pp. 261–273.

[95] S. Yun, P. Tseng, and K.-C. Toh, A block coordinate gradient descent

method for regularized convex separable optimization and covariance selection,

Mathematical programming, 129 (2011), pp. 331–355.

[96] H. Zhang, J. Jiang, and Z.-Q. Luo, On the linear convergence of a prox-

imal gradient method for a class of nonsmooth convex minimization problems,

Journal of the Operations Research Society of China, 1 (2013), pp. 163–186.

[97] Y. Zhang, N. Zhang, D. F. Sun, and K.-C. Toh, An efficient Hessian

based algorithm for solving large-scale sparse group Lasso problems, Mathe-

matical Programming, (2019,(DOI:10.1007/s10107-018-1329-6)).

[98] X.-Y. Zhao, D. F. Sun, and K.-C. Toh, A Newton-CG augmented la-

grangian method for semidefinite programming, SIAM Journal on Optimiza-

tion, 20 (2010), pp. 1737–1765.

108 Bibliography

[99] Y. Zhou, J. Han, X. Yuan, Z. Wei, and R. Hong, Inverse sparse group

lasso model for robust object tracking, IEEE Transactions on Multimedia, 19

(2017), pp. 1798–1810.

[100] Z. Zhou and A. M.-C. So, A unified approach to error bounds for struc-

tured convex optimization problems, Mathematical Programming, 165 (2017),

pp. 689–728.

EFFICIENT HESSIAN BASED ALGORITHMS

FOR SOLVING SPARSE GROUP LASSO AND

MULTIPLE GRAPHICAL LASSO PROBLEMS

ZHANG YANGJING

NATIONAL UNIVERSITY OF SINGAPORE

2019

E
ffi

c
ie

n
t

H
e
ss

ia
n

b
a
se

d
a
lg

o
ri

th
m

s
fo

r
so

lv
in

g
sp

a
rs

e
g
ro

u
p

L
a
ss

o
a
n

d
m

u
lt

ip
le

g
ra

p
h

ic
a
l

L
a
ss

o
p

ro
b

le
m

s
Z

h
a
n

g
Y

a
n

g
ji

n
g

2
0
1
9

	Acknowledgements
	Summary
	Introduction
	Literature review
	Sparse group Lasso models
	Multiple graphical Lasso models

	Contributions
	Thesis organization

	Preliminaries
	Notations
	Moreau-Yosida regularization
	Semismooth Newton methods

	Augmented Lagrangian method for solving sparse group Lasso problems
	Generalized Jacobian of Proxp()
	Inexact semismooth Newton based augmented Lagrangian method
	Convergence rates for ALM (Algorithm 2)
	Semismooth Newton method for solving subproblem (3.14)
	Efficient techniques for solving the linear system (3.23)

	Numerical experiments
	Dual based semi-proximal ADMM
	Synthetic data
	UCI data sets with random groups
	UCI datesets with simulated groups
	NCEP/NCAR reanalysis 1 dataset

	Proximal point algorithm for solving multiple graphical Lasso problems
	Proximal mapping of the GGL regularizer and its generalized Jacobian
	Proximal mapping of the FGL regularizer and its generalized Jacobian
	Inexact semismooth Newton based proximal point algorithm
	Semismooth Newton method for solving subproblem (4.14)

	Numerical experiments
	Dual based ADMM
	Nearest-neighbour networks
	Standard & Poor's 500 stock price
	University webpages
	20 Newsgroups

	Conclusions and future works
	Bibliography

