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Summary

In this thesis, we focus on developing an algorithmic framework to perform clus-

tering and intra-group feature selection simultaneously. In order to achieve this goal,

we first study the convex clustering model and the exclusive lasso model in Chapter

3 and Chapter 4, respectively. Then, we study the new sparse convex clustering

model in Chapter 5, which can achieve the goal of performing clustering and data

point wise feature selection simultaneously.

In Chapter 3, we first analyze the recovery property of the general convex clus-

tering model. More specifically, we propose a new mild sufficient condition which

can guarantee the perfect recovery of the weighted convex clustering model. Our

new theoretical results also include and improve the existing results for the convex

clustering model. Then, we propose a highly efficient and robust semismooth smooth

Newton based augmented Lagrangian method (Ssnal) to solve the weighted convex

clustering model, which has been demonstrated to out-perform some existing state-

of-art algorithms numerically, like the alternating direction method of multipliers

(ADMM) and the alternating minimization algorithm (AMA).

In Chapter 4, we study the exclusive lasso regularizer which could enforce the

intra-group level structured sparsity. We provide a rigorous proof for the closed-form

solution to the proximal mapping Proxρ∥·∥21(·) and we derive an explicit form of the

xi



xii Summary

corresponding Han-Sun (HS) generalized Jacobian ∂HSProxρ∥·∥21(·). Based on these

results, we propose a dual Newton based preconditioned proximal point algorithm

(PPDNA) to solve machine learning models with the exclusive lasso regularizer. The

new proposed algorithm is more efficient and robust comparing to some popular

first order methods, like ADMM, accelerated proximal gradient method (APG) and

iterative least-square algorithm (ILSA).

Lastly, we focus on the sparse convex clustering model in Chapter 5. We demon-

strate numerically that the new sparse convex clustering model is able to do the

clustering and feature selection simultaneously on the high dimensional datasets. In

order to solve the sparse convex clustering model efficiently, we propose the Ssnal

algorithm to solve the 3-block convex composite programming, which can include

the sparse convex clustering model as a special case.

In summary, this thesis contributes to the topic of clustering and intra-group

level feature selection from both the model analysis and numerical optimization

algorithm perspectives.



Chapter 1
Introduction

This thesis focuses on developing a systematic model and efficient numerical

algorithms to perform clustering and intra-group level feature selections simulta-

neously. In order to achieve this goal, we first investigate the convex clustering

model in Chapter 3. We develop a highly efficient and scalable numerical algorithm,

called a semismooth Newton CG based augmented Lagrangian method (Ssnal),

to solve the general weighted convex clustering model. Furthermore, we study the

theoretical recovery guarantee of the weighted convex clustering model and propose

a mild sufficient condition to guarantee the perfect recovery property of the model

for a given collection of a finite number of data points. We study the exclusive lasso

regularizer, which could enforce intra-group sparsity in Chapter 4. We revisit the

closed-form solution to the proximal mapping of the exclusive lasso regularizer and

provide a rigorous proof, we also derive the corresponding HS Jacobian of the proxi-

mal mapping. Based on these theoretical analysis, we develop a dual Newton based

preconditioned proximal point algorithm (PPDNA) to solve the machine learning

model with the exclusive lasso regularization. Lastly, in Chapter 5, we design an

efficient Ssnal for three-block convex composite programing problems, then we ap-

ply it to solve the sparse convex clustering model which could perform clustering

and intra-group feature selection simultaneously.

1



2 Chapter 1. Introduction

1.1 Literature review

Clustering is a fundamental topic in unsupervised learning. Given a collection of

n data points and an integer k, clustering is to assign these n data points to k clusters

based on some kinds of metrics. One of the most popular metric that is based on

the Euclidean distance is called minimal sum-of-squares (MSSC). Specifically, for n

given data points in d-dimensional Euclidean space

S = {s1, s2, . . . , sn|si ∈ ℜd},

the idea of MSSC is trying to find k centroids c1, c2, . . . , ck and k corresponding

clusters S = (S1,S2, . . . ,Sk) based on the sum-of-squares:

min
c1,c2,...,ck

n∑
i=1

min{∥si − c1∥22, ∥si − c2∥22, . . . , ∥si − ck∥22}. (1.1)

Note that finding the optimal solution of the above bi-level programming problem

is NP-hard.

On the other hand, if the points in each cluster Si are fixed, then the minimal

of the function

f(S,S) :=
k∑

i=1

(
1

|Si|
∑
j∈Si

∥sj − ci∥22)

is achieved by

ci :=
1

|Si|
∑
j∈Si

sj.

Based on the discussions, we can now introduce the popular and efficient algo-

rithm in clustering: K-means clustering algorithm [4, 43] in Algorithm 1. Roughly

speaking, the idea of K-means algorithm is to first randomly generate k cluster

centers, then updating the membership of the data points and the center of each

clusters alternatively, until the cluster memberships are stable.

1.1.1 Convex clustering

Although traditional clustering models, such as K-means clustering, hierarchical

clustering are quite popular and scalable, they may suffer from poor performance
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Algorithm 1: K-means Algorithm
For a given collection of data points s1, s2, . . . , sn in ℜn and an integer k for

the number of clusters. The K-means algorithm performs the following

steps:

Initialization . Choose k cluster centers {c1, c2, . . . , ck} randomly in a domain

containing all the points.

Repeat :

Step 1 Assign each point to the closest cluster center, i.e., for each data point si,

assign si to the cluster Sj if

∥si − cj∥2 ≤ ∥si − cl∥, ∀l ∈ {1, 2, . . . , k}.

Step 2 Update the cluster centers based on current cluster memberships,

ci :=
1

|Si|
∑
j∈Si

sj.

Until convergence criterion is satisfied.

because of the non-convexity of the models and the difficulties in finding global

optimal solutions for such models. The clustering results are generally highly de-

pendent on the initializations and the results could differ significantly with different

initializations. Moreover, these clustering models require the prior knowledge about

the number of clusters which is not available in many real applications. Therefore,

in practice, K-means is typically tried with different cluster numbers and the user

will then decide a suitable value based on his judgment on which computed result

agrees best with his domain knowledge. Obviously, such a process could make the

clustering results subjective.

To address these difficulties, a new convex clustering model was proposed recently

in [31, 41, 55], which has been demonstrated to be more robust compared to those
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traditional ones.

Let A ∈ Rd×n = [a1, a2, · · · , an] be a given data matrix with n observations and

d features. The convex clustering model for these n observations solves the following

convex optimization problem:

min
X∈ℜd×n

1

2

n∑
i=1

∥xi − ai∥2 + γ
∑
i<j

∥xi − xj∥p, (1.2)

where γ > 0 is a tuning parameter, and ∥ · ∥p denotes the p-norm. We denote ∥ · ∥ as

the vector 2-norm or the Frobenius norm of a matrix. The p-norm above with p ≥ 1

ensures the convexity of the model. Typically p is chosen to be 1, 2, or ∞. After

solving (1.2) and obtaining the optimal solution X∗ = [x∗
1, . . . ,x

∗
n], we assign ai and

aj to the same cluster if and only if x∗
i = x∗

j . In other words, x∗
i is the centroid for

observation ai. (Here we used the word “centroid” to mean the approximate one

associated with ai but not the final centroid of the cluster to which ai belongs to.)

The idea behind this model is that if two observations ai and aj belong to the same

cluster, then their corresponding centroids x∗
i and x∗

j should be the same. The first

term in (1.2) is the fidelity term while the second term is the regularization term

to penalize the differences between different centroids so as to enforce the property

that centroids for observations in the same cluster should be identical.

The advantages of convex clustering lie mainly in two aspects. First, since the

clustering model (1.2) is strongly convex, the optimal solution for a given positive

γ is unique and is more easily obtainable than traditional clustering algorithms like

K-means. Second, instead of requiring the prior knowledge of the cluster number,

we can generate a clustering path via solving (1.2) for a sequence of positive values

of γ.

To handle cluster recovery for large-scale data sets, various researchers, e.g.,

[31,41,54,55,67,89] have suggested the following weighted clustering model modified

from (1.2):

min
X∈ℜd×n

1

2

n∑
i=1

∥xi − ai∥2 + γ
∑
i<j

wij∥xi − xj∥p, (1.3)
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where wij = wji ≥ 0 are given weights that are generally chosen based on the given

input data A. One can regard the original convex clustering model (1.2) as a special

case if we take wij = 1 for all i < j. To make the computational cost cheaper when

evaluating the regularization term, one would generally put a non-zero weight only

for a pair of points which are nearby each other, and a typical choice of the weights

is

wij =


exp(−ϕ∥ai − aj∥2) if (i, j) ∈ E ,

0 otherwise,

where E = ∪n
i=1{(i, j) | j is among i’s k-nearest neighbors, i < j ≤ n}, and ϕ is a

given positive constant. Although we need to compute the pair-wise distance among

all the data points and sort them by distance (whose computational complexity is

O(n2)), but we only need to do it once.

The advantages just mentioned and the success of the convex model (1.2) in

recovering clusters in many examples with well selected values of γ have motivated

researchers to provide theoretical guarantees on the cluster recovery property of

(1.2). The first theoretical result on cluster recovery established in [89] is valid

for only two clusters. It showed that the model (1.2) can recover the two clusters

perfectly if the data points are drawn from two cubes that are well separated. The

paper [67] further analyzed the statistical properties of (1.2). Recently, [54] provided

theoretical recovery results in the general case of k clusters under relatively mild

sufficient conditions for the fully uniformly weighted convex model (1.2).

In the practical aspect, various researchers have observed that better empirical

performance can be achieved by (1.3) with well chosen weights when comparing

to the original model (1.2) [16, 31, 41]. However, to the best of our knowledge, no

theoretical recovery guarantee has been established for the general weighted convex

clustering model (1.3). As a step forward in this direction, in Chapter 3 of this thesis,

we propose mild sufficient conditions for (1.3) to attain perfect recovery guarantee,

which also include and improve the theoretical results in [54, 89] as special cases.

Our theoretical results thus definitively strengthened the theoretical foundation of
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convex clustering model.

As expected, the conditions provided in the theoretical analysis are usually not

checkable before one finds the right clusters and thus the range of parameter values

for γ to achieve perfect recovery is an unknown priori. In practice, this difficulty is

mitigated by choosing a sequence of values of γ to generate a clustering path.

The challenges for the convex model to obtain meaningful cluster recovery is

then to solve the model efficiently for a range of values of γ. In [41], the authors

used the off-the-shelf solver, CVX, to generate the solution path. However, Hocking

et. al. [31] realized that CVX is competitive only for small-scale problems and it

does not scale well when the number of data points increases. Thus the paper

[31] introduced three algorithms based on the subgradient methods for different

regularizers corresponding to p = 1, 2,∞. Recently, some new algorithms have been

proposed to solve this problem. In particular, Eric Chi et al. [16] adapted the ADMM

and AMA to solve (1.2). However, as we will see in Chapter 3, both algorithms may

still encounter scalability issues, albeit less severely than CVX. Furthermore, the

efficiency of these two algorithms are sensitive to the parameter value γ. This is

not a favorable phenomenon since we need to solve (1.2) with γ in a relative large

range to generate the clustering path. In [54], the authors proposed a stochastic

splitting algorithm for (1.2) in an attempt to resolve the aforementioned scalability

issues. Although this stochastic approach scales well with the problem scale (n in

(1.2)), the convergence rate shown in [54] is rather weak in that it requires at least

l ≥ n4/ε iterations to generate a solution X l such that ∥X l −X∗∥2 ≤ ε is satisfied

with high probability. Moreover, because the error estimate is given in the sense of

high probability, it is difficult to design an appropriate stopping condition for the

algorithm in practice.

As the readers may observe, all the existing algorithms are purely first-order
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methods that do not use any second-order information underlying the convex cluster-

ing model. In contrast, in Chapter 3, we design and analyse a deterministic second-

order algorithm, the semismooth Newton based augmented Lagrangian method (Ss-

nal), to solve the convex clustering model. Our algorithm is motivated by the recent

work [39] in which the authors have proposed a semismooth Newton augmented La-

grangian method (ALM) to solve Lasso and fused Lasso problems, and the algorithm

has been demonstrated to be highly efficient for solving large, or even huge scale

problems accurately. We are thus inspired to adapt this ALM framework for solving

the convex clustering model (1.3) in Chapter 3.

1.1.2 Regularizers for structure sparsity

Structured sparsity is very important in feature learning, not only for avoiding

over-fitting, but also in making the model more interpretable. Many regulariz-

ers and their combinations have been proposed to enforce sparsity for parameter-

ized machine learning models [68, 69, 78, 79]. The most popular regularizers among

them are probably the standard lasso [68] and the group lasso [78, 79] regulariz-

ers. Lasso, group lasso and their variants have been intensively studied in terms

of both their statistical properties [12,14,68,79,85,90] and efficient numerical com-

putations [8, 24, 39, 52, 74, 78, 84]. The classical lasso model has been important in

enforcing sparsity on variables while performing feature selection. However, there

is no structure enforced in the sparsity pattern. Instead, the group lasso is known

to enforce the sparsity at an inter-group level, where variables from different groups

compete to be selected. The idea behind the group lasso is that if a few features in

one group are important, then most of the features in the same group should also

be important.

However, in some real applications, instead of the unstructured sparsity (e.g.

lasso) or the inter-group level structured sparsity (e.g. group lasso), we also need the

intra-group level sparsity. That is, not only features from different groups, but also

features in a seemingly cohesive group are competing to survive. A realistic example
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comes from building an index exchange-traded fund (index ETF) to track a specific

index in the stock market. To diversify the risk across different sectors, we need to

do portfolio selection both across and within sectors, which indeed means that we

also need the intra-group level sparsity. To achieve this, a new regularizer called

the exclusive lasso has been proposed in [34,87] (also named as elitist lasso [35,36]).

Given a positive weight vector w ∈ ℜn
++, and a partition of variable index groups

G := {g|g ⊆ {1, 2, . . . , n}} such that
⋃

g∈G g = {1, 2, . . . , n} and gi
⋂
gj = ∅ for any

gi, gj ∈ G. For x ∈ ℜn, the weighted exclusive lasso regularizer is defined as

ΩG,w(x) :=
∑

g∈G∥wg ◦ xg∥21, (1.4)

where “◦” denotes the Hadamard product, and xg denotes the sub-vector of x with

those elements not in g removed from x. As indicated in the above expression, an ℓ2
norm square is applied to combine different groups, and a weighted ℓ1 norm is used

to enforce sparsity within each group. Naturally, when solving machine learning

problems which involves a loss function and the exclusive lasso regularizer, we can

expect that each xg is nonzero. Under some strict assumptions, this statistical

property is carefully studied in [11].

The exclusive lasso regularizer was first proposed for multi-task learning [87],

and has been widely applied in applications such as image processing [15,82], sparse

feature clustering [76] and NMR spectroscopy [11]. Some numerical optimization

algorithms have been proposed for solving models involving the exclusive lasso

regularizer, such as the smooth minimization via APG [15, 82], the iterative least

squares algorithm (ILSA) [34,76], and the coordinate descent method [11]. However,

some popular algorithmic frameworks like the accelerated proximal gradient (APG)

[52,80], FISTA [8] and alternating direction method of multipliers (ADMM) [23,28]

have not been used to solve these kind of problems. The main reason could be due

to the fact that the closed-form solution to Proxρ∥w◦·∥21(·) is not well known in the

community. In order to adopt a proximal gradient method to solve the exclusive

lasso model, Campbell et.al [11] used an iterative subroutine to compute Proxρ∥·∥21(·)

without the weights.
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In this thesis, we recap the closed-form solution to the proximal mapping of

the exclusive lasso regularizer reported in [35], Then we provide a rigorous proof in

Chapter 4 based on a quadratic programming reformulation and the corresponding

Karush-Kuhn-Tucker (KKT) conditions. As mentioned above, such a closed-form

solution will be directly used in some popular algorithmic framework such as the

APG and ADMM for solving the exclusive lasso models. However, based on our

numerical experiments, these first-order algorithms are still not efficient enough in

solving the large scale exclusive lasso problems.

To overcome the challenges in solving large scale cases, we design a highly effi-

cient second-order type algorithm, the dual Newton based preconditioned proximal

point algorithm (PPDNA), to solve the exclusive lasso model. As a key ingredient

for PPDNA, we derive the Han-Sun (HS) Jacobian of Proxρ∥w◦·∥21(·). The numeri-

cal experiments shown in later section will demonstrate the superior performance

of PPDNA for solving popular machine learning models with the exclusive lasso

regularizer, comparing to other state-of-art algorithms mentioned previously.

1.1.3 Sparse convex clustering

Although the performance of the convex clustering model (1.3) is attractive, it’s

easy to realize that the convex clustering model could perform well only under the

scenarios when the features of the input data are meaningful for clustering. The

performance of convex clustering model could be severely deteriorated when clus-

tering high-dimensional data, especially for the scenario where a number of features

contain no information about the clustering structure.

To overcome the difficulties coming from uninformative features, we hope to

have a new model that could do clustering and feature selection at the same time.

Binhuan Wang et. al. [73] proposed a sparse convex clustering model by adding a

group lasso regularization term for the features. For a given input data A ∈ ℜp×n

with n data points and p features, the sparse convex clustering model proposed
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in [73] has the following form:

min
X∈ℜp×n

1

2

n∑
i=1

∥X·,i − A·,i∥22 + Γ(X; γ1, γ2), (1.5)

where

Γ(X; γ1, γ2) = γ1
∑

(i,j)∈E

wij∥X·,i −X·,j∥2 + γ2

p∑
j=1

uj∥Xj,·∥2.

Here A·,i and X·,i are the i-th column of A and X, respectively, and Xj,· is the j-th

row of X.

The feature-wise group regularization term (the second term in Γ(X; γ1, γ2)) will

help to enforce the sparsity of the features, which will be helpful in feature selection.

The sparse convex clustering model (1.5) has been proven to be useful for clus-

tering on high dimensional data [73]. However, it’s not very effective in selecting

local feature sets, especially in the scenario when there are overlapping features in

different clusters.

To capture better local hidden features, Yamada et al. [76] proposed a new model

including a sample-wise regularization term for the features, which is

min
X∈ℜp×n

1

2

n∑
i=1

∥X·,i − A·,i∥22 + Λ(X; γ1, γ2), (1.6)

where

Λ(X; γ1, γ2) = γ1
∑

(i,j)∈E

wij∥X·,i −X·,j∥2 + γ2

n∑
i=1

∥X·,i∥21.

By imposing the sample-wise ℓ1,2 norm in the regularization terms, the model can

select a small number of elements within each X·,i [34,76,87]. As mentioned in [76],

taking the square of ℓ1 norm will enforce X·,i to be sparse but still remain nonzero1,

which will make the results more interpretable.

The authors in [76] proposed an iterative least square algorithm to solve (1.6)

that involves the computation of the inverse of a large matrix. The computational

cost is expensive for large datasets. As mentioned in [76], we can adopt the ADMM
1For this claim, no rigorous mathematical proof could be found to the best of our knowledge.
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to solve (1.6), where each iteration of the algorithm requires the efficient computation

of proximal mapping of ∥ · ∥21.

Inspired by [81], we will design a semismooth Newton based augmented La-

grangian method (Ssnal) to solve a more general case of (1.6), given as

min
X∈ℜp×n

1

2

n∑
i=1

∥X·,i − A·,i∥22 + ΛH(X; γ1, γ2), (1.7)

where

ΛH(X; γ1, γ2) = γ1
∑

(i,j)∈E

wij∥X·,i −X·,j∥2 + γ2

n∑
i=1

∥H·,i ◦X·,i∥21,

and H ∈ ℜp×n is a given weight matrix.

With the theoretical results of the proximal mapping and corresponding Jacobian

derived in chapter 3 and chapter 4, we will derive a semismooth Newton CG based

augmented Lagrangian method of multipliers (Ssnal) to solve the 3-block convex

composite programming reformulation of (1.7) in chapter 5, which will include the

model (1.7) as a special case.

1.2 Thesis organization

The rest of the thesis is organized as follows. In Chapter 2, we present some

preliminaries that will be repeatedly used in the subsequent discussions. In Chapter

3, we first show the theoretical recovery guarantee of the general weighted convex

clustering model, then we introduce the highly efficient and robust algorithm Ssnal

for solving the convex clustering model. At the end, we present numerical results to

demonstrate that Ssnal achieves the state-of-art results comparing to other popu-

lar numerical algorithms. In Chapter 4, we study the exclusive lasso regularizer for

intra-group feature selections. We proposed the dual Newton based preconditioned

proximal point algorithm (PPDNA) for solving a two-block convex composite pro-

graming problem, which includes the exclusive lasso model and the logistic regression

model with the exclusive lasso regularizer as special cases. In order to perform the
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algorithm PPNDA practically, we study the closed form solution to the proximal

mapping of the exclusive lasso regularizer and derive the corresponding HS Jaco-

bian. The numerical experiments on randomly generated data demonstrate the high

efficiency and scalability of PPDNA in solving the models with the exclusive lasso

regularizer. The numerical results on a realistic example also demonstrate the power

of the exclusive lasso regularizer in intra-group feature selections. Lastly, we study

the sparse convex clustering model in Chapter 5, which could perform clustering and

intra-group feature selection simultaneously. We propose the Ssnal algorithm for

3-block convex composite programming and applies it in solving the sparse convex

clustering model. We summarize the thesis and discuss about the future research

plans in Chapter 6.



Chapter 2
Preliminaries

In this chapter, we provide some important preliminary knowledge which will be

frequently used in the remaining parts of this thesis.

2.1 Moreau-Yosida regularization

In this section, we will discuss Moreau-Yosida regularization, a very important

tool that will be frequently used in this thesis. Moreau-Yosida regularization is com-

monly used in nonsmooth optimization algorithm since it could smooth a nonsmooth

function.

Let X be a real finite dimensional Euclidean space equipped with an inner prod-

uct ⟨·, ·⟩ and its induced norm ∥ · ∥. Let f : X → ℜ be a proper closed convex

function. The Moreau-Yosida regularization of f at point x ∈ X is defined as

ϕf (x) := min
y∈X

{f(y) + 1

2
∥y − x∥2}, ∀x ∈ X . (2.1)

The function ϕf is also known as the Moreau envelope of f . The following proposi-

tion shows that (2.1) is well defined [49].

Proposition 1. For any x ∈ X , the problem (2.1) has a unique optimal solution.

Definition 1 (Proximal mapping). The unique optimal solution of (2.1), denotes

by Proxf(x), is called the proximal mapping of x associated with f .

13
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Many popular numerical optimization algorithms, especially first-order algo-

rithms, highly depend on the efficient computation of the proximal mapping of

some given functionals. Here, we list some closed form formulas of the proximal

mappings for some popular functions in Table 2.1.

Table 2.1: Proximal maps for selected functions

p(·) Proxtp(x) Comment

∥ · ∥1
[
1− t

|xl|

]
+
xl Elementwise soft-thresholding

∥ · ∥2
[
1− t

∥x∥2

]
+
x Blockwise soft-thresholding

∥ · ∥∞ x−ΠtS(x) S is the unit ℓ1-ball

Proposition 2. Let f : X → ℜ be a closed proper convex function, ϕf be the

Moreau-Yosida regularization of f , and Proxf be the associated proximal mapping.

Then the following properties hold.

(i) argminx∈X f(x) = argminx∈X ϕf (x).

(ii) Both Proxf and I − Proxf are firmly non-expansive, i.e., for any x, y ∈ X ,

∥Proxf (x)− Proxf (y)∥2 ≤ ⟨Proxf (x)− Proxf (y), x− y⟩,

∥(x−Proxf (x))− (y−Proxf (y))∥2 ≤ ⟨(x−Proxf (x))− (y−Proxf (y)), x− y⟩.

(iii) The Moreau envelope ϕf is continuously differentiable, and its gradient can be

computed by

∇ϕf (x) = x− Proxf (x), x ∈ X .

Next, we introduce an important ingradient in algorithm design, Moreau decom-

position.

Proposition 3 (Moreau decomposition). Let f : X → (−∞,+∞] be a closed proper

convex function and σ be a positive scalar. Then the following Moreau identity holds:

Proxσf (x) + σProxσ−1f∗(σ−1x) = x, ∀x ∈ X ,



2.2 Proximal ADMM for convex composite programming 15

where f ∗ is the conjugate function of f defined as

f ∗(y) := sup
x∈X

{⟨x, y⟩ − f(x)}.

2.2 Proximal ADMM for convex composite pro-

gramming

In this section, we recap the proximal alternating direction method of multipliers

(PADMM), which will be used as one of the benchmark algorithms in our numerical

experiments.

Let X , Y and Z be finite dimensional real Euclidian spaces. Let f : Y →

(−∞,+∞] and g : Z → (−∞,+∞] be closed proper convex functions, A : X → Y

and B : X → Z be linear maps. Let ∂f and ∂g be the subdifferential mappings of

f and g, respectively. Since both ∂f and ∂g are maximally monotone [64, Theo-

rem12.17]. By [26], there exists two self-adjoint and positive semidefinite operators

Σf and Σg such that for all y, ỹ ∈ dom(f), ξ ∈ ∂f(y) and ξ̃ ∈ ∂f(ỹ),

⟨y − ỹ, ξ − ξ̃⟩ ≥ ∥y − ỹ∥2Σf
, (2.2)

and for all z, z̃ ∈ dom(g), η ∈ ∂g(z) and η̃ ∈ ∂g(z̃),

⟨z − z̃, η − η̃⟩ ≥ ∥z − z̃∥2Σg
. (2.3)

Now, we review the semi-proximal ADMM algorithm proposed in [26] for solving

a generic two blocks convex composite programming problem. Consider the convex

optimization problem with the following 2-block separable structure

min f(y) + g(z)

s.t. A∗y + B∗z = c.
(2.4)

The dual problem of (2.4) is given by

min ⟨c, x⟩+ f ∗u+ g∗(v)

s.t. Ax+ u = 0,

Bx+ v = 0.

(2.5)
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Let σ > 0 be a given scalar, the augmented Lagrangian function associated with

(2.4) is given as follows:

Lσ(y, z;x) := f(y) + g(z) + ⟨x,A∗y + B∗z − c⟩+ σ

2
∥A∗y + B∗z − c∥2.

The semi-proximal ADMM proposed in [26], when applied to (2.4), has the

template given in Algorithm 2. Since the proximal terms added here are allowed

to be positive, the corresponding method is referred to as semi-proximal ADMM

instead of proximal ADMM as in [26].

Algorithm 2: sPADMM: A generic 2-block semi-proximal ADMM for solv-

ing (2.4).
Let σ > 0 and τ ∈ (0,∞) be given parameters. Let Tf and Tg be given

self-adjoint positive semidefinite, not necessarily positive definite, linear

operators defined on Y and Z, respectively. Choose

(y0, z0;x0) ∈ dom(f)× dom(g)×X . For k = 0, 1, 2, . . . , perform the kth

iteration as follows:

Step 1 . Compute

yk+1 = argmin
y

Lσ(y, z
k;xk) +

σ

2
∥y − yk∥2Tf . (2.6)

Step 2 . Compute

zk+1 = argmin
z

Lσ(y
k+1, z;xk) +

σ

2
∥z − zk∥2Tg . (2.7)

Step 3 .

xk+1 = xk + τσ(A∗yk+1 + B∗zk+1 − c). (2.8)

In Algorithm 2, the presence of Tf and Tg is to guarantee the existence of solutions

for the subproblems (2.6) and (2.7). However, the choice of Tf and Tg are problem

dependent. When we choose Tf = 0 and Tg = 0, the Algorithm 2 becomes the

classical ADMM for a two-block convex composite programming problem.
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For the convergence of the 2-block semi-proximal ADMM, we need the following

assumption.

Assumption 2.1. There exists (ŷ, ẑ) ∈ ri(domf × domg) such that A∗ŷ+B∗ẑ = c.

Theorem 2.1. [26, Theorem B.1] Let Σf and Σg be the self-adjoint and positive

semidefinite operators defined by (2.2) and (2.2), respectively. Suppose that the

solution set of problem (2.4) is nonempty and Assumption 2.1 holds. Assume that

Tf and Tg are chosen such that the sequence {(yk, zk, xk)} generated by Algorithm

sPADMM is well defined. Then, under the condition either (a) τ ∈ (0, (1 +
√
5)/2)

or (b) τ ≥ (1+
√
5)/2 but

∑∞
k=0(∥B∗(zk+1−zk)∥2+τ−1∥A∗yk+1+B∗zk+1−c∥2) <∞,

the following results hold:

(i) If (y∞, z∞, x∞) is an accumulation point of {(yk, zk, xk)}, then (y∞, z∞) solves

problem (2.4) and x∞ solves (2.5), respectively.

(ii) If both σ−1Σf + Tf + AA∗ and σ−1Σg + Tg + BB∗ are positive definite, then

the sequence {(yk, zk, xk)}, which is automatically well defined, converges to

a unique limit, say, (y∞, z∞, x∞) with (y∞, z∞) solving problem (2.4) and x∞

solving (2.5), respectively.

(iii) When the y-part disappears, the corresponding results in parts (i) and (ii) hold

for (2.4) under the condition either τ ∈ (0, 2) or τ ≥ 2 but
∑∞

k=0 ∥B∗zk+1 −

c∥2 <∞.

2.3 Accelerated proximal gradient algorithm (APG)

In this section, we will discuss another popular first order algorithm, accelerated

proximal gradient algorithm for solving the general unconstrained nonsmooth con-

vex minimization problem which will include the convex clustering model and the

exclusive lasso model as special cases. Consider

minF (x) := f(x) + p(x), (2.9)
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where p : ℜn → ℜ is a proper, convex, lower semicontinuous (lsc) [61] function

and f is convex smooth (i.e., continuously differentiable) on an open subset of ℜn

containing dom p = {x ∈ ℜn | p(x) <∞}. We assume that dom p is closed and ∇f

is Lipschitz continuous on dom p, i.e.,

∥∇f(x)−∇f(y)∥2 ≤ Lf∥x− y∥2, ∀x, y ∈ domf, (2.10)

for some positive scalar Lf .

Now, we introduce the proximal gradients method and some accelerated version

to solve (2.9).

For any y ∈ dom p and a given positive scalar L, consider the following quadratic

approximation of F (·) at y as

QL(x, y) := f(y) +
L

2
∥x− u∥2 + p(x)− 1

2L
∥∇f(y)∥2, (2.11)

where u = y − 1
L
∇f(y). Since QL(x, y) is strongly convex, if admits a unique

minimizer. We denote the unique minimizer by

SL(u) : argmin{QL(x, y) | x ∈ dom p}. (2.12)

We introduce a general proximal gradient algorithmic framework shown in [70]

for solving (2.9) in Algorithm 3.

Note that Algorithm 3 is a more general algorithmic framework, Fukushima and

Mine [27] studied a proximal gradient descent method with tk = 1 for all k and step

size αk chosen by an Armijo-type rule. We first establish the convergence result for

the proximal gradient descent method in Theorem 2.2.

Theorem 2.2. [70, Theorem 2.1] Assume the optimal solution of problem (2.9) Ω∗

is nonempty. Let {xk} be the sequence generated by the Algorithm 3 with Lk = Lf ,

tk = 1, and αk = 1 for all k. Then, for any k ≥ 1, we have

F (xk)− F (x∗) ≤ Lf∥x0 − x∗∥2

2k
, ∀x∗ ∈ Ω∗.
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Algorithm 3: A general proximal gradient algorithmic framework for solv-

ing (2.9).
Choose x0 = x−1 ∈ dom(p), t0 = t−1 ∈ [1,∞). For k = 0, 1, 2, . . . , generate

xk+1 from xk according to the following iteration:

Step 1 . Set

yk = xk +
tk−1 − 1

tk
(xk − xk−1).

Step 2 . Set

uk = yk − (Lk)−1∇f(yk),

where Lk > 0 and compute

SLk(uk).

Step 3 . Choose a step size αk > 0 and set

xk+1 = xk + αk(SLk(uk)− xk).

Step 4 . Choose tk+1 ∈ [1,∞) satisfying

(tk+1)2 − tk+1 ≤ (tk)2. (2.13)

As a direct corollary of Theorem 2.2, we have

F (xk)− inf
x∈ℜn

F (x) ≤ O(Lf/k) ∀k.

So for any ϵ > 0, the algorithm terminates in O(Lf/ϵ) iterations with an ϵ −

optimal solution. So the sequence {xk} converges relatively slowly.

In the smooth setting, Nesterov [51] proposed an algorithm using only interpola-

tion strategy to achieve O(1/k2) iteration complexity. Later, Beck and Teboulle [8]

extend the results in [51] to solve the nonsmooth problem (2.9).

The condition (2.13) allows tk to increase, but cannot increase too rapidly. Since

larger tk will improve the convergence rate of the algorithm, we alternatively solve
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(2.13) with equality instead of inequality, which yields

tk+1 =
1 +

√
1 + 4(tk)2

2
.

The accelerated version of the proximal gradient based on the interpolation is shown

in Algorithm 4.

Algorithm 4: APG for solving (2.9).
Choose x0 = x−1 ∈ dom(p), t0 = t−1 = 1. For k = 0, 1, 2, . . . , generate xk+1

from xk according to the following iterations:

Step 1 . Set

yk = xk +
tk−1 − 1

tk
(xk − xk−1).

Step 2 . Set

uk = yk − (Lk)−1∇f(yk),

where Lk = Lf and compute

SLk(uk).

Step 3 . Set

xk+1 = SLk(uk).

Step 4 . Compute

tk+1 =
1 +

√
1 + 4(tk)2

2
.

We end this section by showing the convergence result of the APG algorithm in

Theorem 2.3, detailed proof could be found in [8].

Theorem 2.3. [8, Theorem 4.4] Let {xk} be generated by Algorithm 4. Then for

any k ≥ 1

F (xk)− F (x∗) ≤ 2Lf∥x0 − x∗∥2

(k + 1)2
, ∀x∗ ∈ Ω∗. (2.14)
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2.4 Semismooth Newton method

In this section, we will discuss a semismooth Newton method, which will be an

important sub-routine in our proposed algorithmic framework. Before that, we first

give some preliminaries.

Definition 2 (Directional differentiability). [10, Definition 2.44] We say that F :

ℜn → ℜm is directionally differentiable at a point x ∈ ℜn in the direction h ∈ ℜn if

the limit

F ′(x, h) := lim
t↓0

F (x+ th)− F (x)

t

exists. If F is differentiable at x in every direction h ∈ ℜn, we say that F is

directionally differentiable at x.

Next, we define the differentiability in the sense of Fréchet.

Definition 3 (Fréchet Differentiability). [10, Definition 2.48] We say that F :

ℜn → ℜm is directionally differentiable at a point x ∈ ℜn in the direction h ∈ ℜn in

the Fréchet sense if F is directionally differentiable at x and

F (x+ h) = F (x) + F ′(x, h) + o(∥h∥), h ∈ ℜn.

If, in addition, F ′(x, ·) is linear and continuous, it is said that F is Fréchet differ-

entiable at x.

We now introduce the important Rademacher’s theorem which will lead to the

definition of the generalized Jacobian in Clark’s sense.

Theorem 2.4 (Rademacher’s theorem). Suppose that F : ℜn → ℜm is locally

Lipschitz continuous on an open set O ⊆ ℜn. Then F is almost everywhere (Fréchet)

differentiable in O.

Let F : ℜn → ℜm be a locally Lipschitz continuous function, then it’s almost

everywhere (Fréchet) differentiable. Denote DF to be the set of points in ℜn where F

is differentiable and F ′(x) be the Jacobian of F at x ∈ DF . We define the Bouligand

subdifferential and the Clark generalized Jacobian of F at any x ∈ ℜn below.
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Definition 4. For a locally Lipschitz continuous function F and the corresponding

differentiable set DF defined above, the Boulingand subdifferential (B-subdifferential)

of F at any x ∈ ℜn is defined as

∂BF (x) = { lim
xk→x

F ′(xk) | xk ∈ DF},

and the Clark generalized Jacobian of F at x ∈ ℜn is defined as the convex hull of

∂BF (x), i.e.,

∂F (x) = conv{∂BF (x)}.

The following proposition about the B-subdifferential and the Clark generalized

Jacobian is from [18].

Proposition 4. Let O ⊆ ℜn be an open set and F : O → ℜm be a locally Lipschitz

continuous function. Then the following properties hold:

(i) ∂BF (x) is a nonempty compact subset of ℜm×n for any x ∈ O.

(ii) ∂BF (x) is upper semicontinuous at x ∈ O, i.e., for any ϵ > 0, there exists

δ > 0 such that

∂BF (y) ⊆ ∂BF (x) + ϵB, ∀y satisfying ∥y − x∥ < δ,

where B ⊆ ℜm×n is the open unit ball centered at the origin.

The properties above are also true for ∂F (·).

With all the preparations above, we now introduce the definitions of semismooth-

ness, which are mainly adopted from [37, 46, 57].

Definition 5. Let O ⊆ ℜn be an open set and F : O → ℜm be a locally Lipschitz

continuous function. F is said to be G-semismooth at x ∈ O if for any V ∈

∂F (x+∆x) with ∆x→ 0,

F (x+∆x)− F (x)− V∆x = o(∥∆x∥).
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F is said to be strongly G-semismooth at x ∈ O if for any V ∈ ∂F (x + ∆x) with

∆x→ 0,

F (x+∆x)− F (x)− V∆x = O(∥∆x∥2).

If, in addition, F is directionally differentiable at x, then it’s said that F is semis-

mooth and strongly semismooth at x, respectively.

Definition 6. Let O ⊆ ℜn be an open set, K : O ⇒ ℜm×n be a nonempty compact

valued, upper semicontinuous multifunction, and F : O → ℜm be a locally Lipschitz

continuous function. F is said to be semismooth at x ∈ O with respect to the

multifunction K if F is directionally differentiable at x and for any V ∈ K(x+∆x)

with ∆x→ 0,

F (x+∆x)− F (x)− V∆x = o(∥∆x∥).

Let α be a positive constant, F is said to be α−order (strongly if α = 1) semismooth

at x ∈ O with respect to K if F is directionally differentiable at x and for any

V ∈ K(x+∆x) with ∆x→ 0,

F (x+∆x)− F (x)− V∆x = O(∥∆x∥1+α).

F is said to be a semismooth (respectively, α-order semismooth, strongly semismooth)

function on O with respect to K if it is semismooth (respectively, α-order semismooth,

strongly semismooth) everywhere in O with respect to K.

We usually regard Definition 5 as the classic and standard definition of semis-

moothness, whereas Definition 6 is more general as it involves a multifunction which

could be but not limited to the Clark generalized Jacobian.

Before we introduce the semismooth Newton method, we note that, the class of

semismooth functions includes many nonsmooth functions that we are interested in.

In particular, the convex functions are examples of semismooth functions [46].

Now, we introduce the semismooth Newton (SSN) method [57] to solve un-

constrained convex optimization problems with SC1 objective functions, which are



24 Chapter 2. Preliminaries

essentially the subproblem in our algorithmic framework. Consider the SSN method

for solving the following optimization problem

min
x∈ℜn

f(x), (2.15)

where f : ℜn → ℜ is a convex LC1 function. A function is said to be SC1 if it is a

continuously differentiable function with locally Lipschitz continuous gradient, and

the gradient is semismooth.

Since the objective function f of the unconstrained convex optimization problem

(2.15) is differentiable, solving (2.15) is equivalent to solving the following nons-

mooth equation

∇f(x) = 0. (2.16)

Since f is SC1, then, ∇f(x) is semismooth. We can adopt the semismooth New-

ton method to solve the nonsmooth equation (2.16) with the appealing superlinear

convergence (even quadratic convergence) rate. The SSN method for solving (2.16)

is shown in Algorithm 5.

Note that the Jacobian used in Algorithm 5 is not limited to Clark generalized

Jacobian, whether we use the Clark generalized Jacobian or not is problem depen-

dent. In some cases, the Clark generalized Jacobian is not easy to compute and we

need to work with other computationally available generalized Jacobians. This will

be seen in details when we apply the SSN1 method in solving some specific models

in the following chapters.

To close this section, we present the convergence result for the SSN method in

Theorem 2.5, the proof could be found in [86].

Theorem 2.5. Suppose that the equation (2.16) admits a unique solution x̄, K

is a nonempty compact valued, upper semicontinuous multifunction, with respect to

which ∇f is semismooth, and every V ∈ K(x̄) is nonsingular. Let {xj} be the infinite

sequence generated by Algorithm 5. Then {xj} converges to the unique solution x̄ of
1If the conjugate gradient method is used to solve (5), we denote the algorithm by Ssncg.
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Algorithm 5: A semismooth Newton method for solving (2.16).
Given µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1] and δ ∈ (0, 1). Let K be a

nonempty compact valued, upper semicontinuous multifunction, with

respect to which ∇f is semismooth. Choose x0 ∈ ℜn. Do the following

steps for j = 0, 1, . . .

Step 1 . (Newton direction) Choose Vj ∈ K(xj). Solve the following linear system

Vjd = −∇f(xj) (2.17)

by a direct method or by the conjugate gradient (CG) algorithm to find dj

such that ∥Vjdj +∇f(xj)∥ ≤ min(η̄, ∥∇f(xj)∥1+τ ).

Step 2 . (Line search) Set αj = δmj , where mj is the smallest nonnegative integer

m for which

f(yj + δmdj) ≤ f(yj) + µδm⟨∇f(yj), dj⟩. (2.18)

Step 3 . Set xj+1 = xj + αjd
j.

equation (2.16). Moreover, the convergence rate is at least superlinear:

∥xj+1 − x̄∥ = O(∥xj − x̄∥1+τ ),

where τ ∈ (0, 1] is the parameter given in Algorithm 5.

2.5 Error bounds

To close this chapter, we introduce an important concept, the so called the error

bound, which is critical for establishing the convergence rate results of an algorithm.

Here, we just recap some important results, for more details about the error bounds,

readers can refer to [20, 44, 71, 88] and the references therein.

Consider the following problem

min
x∈E

F (x) := h(Ax) + ⟨c, x⟩+ p(x), (2.19)
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where E and O are finite-dimensional Euclidean spaces, A : E → O is a linear map.

In this section, we also assume that the following assumptions hold for problem

(2.19).

Assumption 2.2. (a) p : E → (−∞,∞] is a proper, closed and convex function.

(b) h : O → (−∞,∞] is convex smooth (i.e., continuously differentiable) function

on int(dom(h)). In addition, we also assume that h is strongly convex and its

gradient ∇h is Lipschitz continuous on any conpact convex set V ⊆ dom(h).

(c) The optimal solution set X of problem (2.19) is nonempty and compact.

2.5.1 Some preliminaries from set-valued analysis

Before we discuss the error bounds for problem (2.19), we first introduce some

necessary concepts and results in set-valued analysis [20, 64, 88].

Definition 7. Let E1 and E2 be finite-dimensional Euclidean spaces, we say a map-

ping Γ : E1 ⇒ E2 is a multi-function (or set-valued mapping) if it assigns a subset

Γ(u) of E2 to each vector u ∈ E1.

For a multi-function Γ : E1 ⇒ E2, we define its graph and domain by

gph(Γ) := {(u, v) ∈ E1 × E2 | v ∈ Γ(u)},

dom(Γ) := {u ∈ E1 | Γ(u) ̸= ∅},

respectively. Furthermore, we define the inverse mapping of Γ, denote by Γ−1, as a

multi-function from E2 to E1 defined by

Γ−1(v) := {u ∈ E1 | v ∈ Γ(u)}.

Next, we introduce the definition of calmness and metric sub-regularity of the

multi-function, which are high related to the error bounds.

Definition 8. (i) A multi-function Γ : E1 ⇒ E2 is said to be calm at ū ∈ E1 for

v̄ ∈ E2 if (ū, v̄) ∈ gph(Γ) and there exist constants κ, ϵ > 0 such that

Γ(u) ∩ BE2(v̄, ϵ) ⊆ Γ(ū) + κ∥u− ū∥BE2 ∀u ∈ E1. (2.20)
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Furthermore, we say Γ is isolated calm at ū ∈ E1 for v̄ ∈ E2 if (ū, v̄) ∈ gph(Γ)

and there exist constants κ1, ϵ1 > 0 such that

Γ(u) ∩ BE2(v̄, ϵ1) ⊆ {v̄}+ κ1∥u− ū∥BE2 ∀u ∈ E1. (2.21)

(ii) A multi-function Γ : E1 ⇒ E2 is said to be metrically sub-regular at ū ∈ E1 for

v̄ ∈ E2 if (ū, v̄) ∈ gph(Γ) and there exist constants κ, ϵ > 0 such that

dist(u,Γ−1(v̄)) ≤ κdist(v̄,Γ(u)) ∀u ∈ BE1(ū, ϵ). (2.22)

The calmness and the metric subregularity of a given multi-function are not easy

to check directly from the definitions. Fortunately, we have the following result [3] for

a special class of multi-valued mappings, i.e., the sub-differential of convex functions.

Theorem 2.6. [3, Theorem 3.3] Let H be a real Hilbert space endowed with the

inner product ⟨·, ·⟩ and f : H → (−∞,+∞] be a proper lower semicontinuous convex

function. Let v̄, x̄ ∈ H satisfy v̄ ∈ ∂f(x̄). Then ∂f is metric subregular at x̄ for v̄

if and only if there exists a neighborhood N (x̄) of x̄ and a positive constant c such

that

f(x) ≥ f(x̄) + ⟨v̄, x− x̄⟩+ c(dist(x, (∂f)−1(v̄)))2, ∀x ∈ N (x̄). (2.23)

The next proposition shows the equivalence between the calmness of a multi-

function and the metric subregularity of its inverse.

Proposition 5. [22, Theorem 3H.3] For a multi-function Γ : E1 ⇒ E2, let (ū, v̄) ∈

gph(Γ). Then Γ is calm at ū for v̄ if and only if its inverse Γ−1 is metrically

subregular at v̄ for ū.

2.5.2 Error bounds

We now discuss the error bound conditions for (2.19) based on the preliminaries

above. In general, the error bound condition gives us a handle of the structure on
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the objective function near the optimal solution to deduce some useful quantitative

controls.

Let X be the nonempty optimal solution set of problem (2.19). Let T ⊆ E be a

set satisfying X ⊆ T and r : E → ℜ+ be a function satisfying r(x) = 0 if and only if

x ∈ X . We say that problem (2.19) satisfies the error bound condition for X with

test set T and residual function r if there exists a constant κ > 0 such that

dist(x,X ) ≤ κ · r(x), ∀x ∈ T, (2.24)

where dist(x,X ) = infz∈X ∥z − x∥2 denotes the Euclidean distance from a vector

x ∈ E to the set X .

One popular and practical choice of the residual function r(x) is rprox(x) :=

∥R(x)∥2 where R : E → E is the residual map defined by

R(x) := Proxp(x− (A∗∇h(Ax) + c)).

This popular choice of the residual function induces the following specific error

bound property with the proximal map based residual function.

Definition 9 (EBP). For any α ≥ v∗ := minx∈E F (x), there exist constants κ > 0

and ϵ > 0 such that

dist(x,X ) ≤ κ∥R(x)∥2, ∀x ∈ E with F (x) ≤ α, ∥R(x)∥2 ≤ ϵ.

The error bound property is important for the analysis of the convergence rate

of first order algorithms. If the error bound condition holds for (2.19), then popular

first order algorithms like proximal gradient (PG), proximal points algorithm (PPA)

can be shown to converge linearly [63, 71].

The known results for the error bound property to hold relied on the polyhedral

property of multi-valued mappings. Recently, Zhou Zirui et al. [88] and Cui Ying

et al. [19] established the error bound property for an important non-polyhedral

function, the nuclear norm regularizer. Here, we recap some important results.
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Theorem 2.7. [72, Theorem 4] Consider the general two-block convex optimization

problem

min
x∈ℜn

f(x) + p(x),

where f is strongly convex and differentiable with Lipschitz continuous gradient ∇f ,

and p is a closed, proper convex function, then the EBP holds.

Theorem 2.8. ( [72, Lemma 7], [71, Theorem 2]) Consider the following problem

min
x∈ℜn

F (x) := h(Ax) + ⟨c, x⟩+ p(x),

where A : ℜn → ℜm is a linear map, h : ℜm → (−∞,∞] is convex smooth (i.e.,

continuously differentiable) function on int(dom(h)). In addition, h is strongly

convex and its gradient ∇h is Lipschitz continuous on any compact convex set V ⊆

dom(h).

(i) If p : ℜm → (−∞,∞] is a proper, convex, closed function with a polyhedral

epigraph. Then the EBP holds.

(ii) If p is the group lasso regularizer, i.e., p(x) =
∑
J ∈ JwJ∥xJ∥2, where J is

a partition of the index set {1, 2, . . . , n}, xJ ∈ ℜ|J | is the vector obtained by

restricting x ∈ ℜn to the entries in J ∈ J , and wJ ≥ 0 is a given parameter.

Then the EBP holds.

Next, we show the relationships between the error bound property and the calm-

ness property of the solution mapping for the convex composite programming prob-

lem (2.19).

The following proposition shows that we can replace the test set in (EBP) by

the neighborhood of the solution set X .

Proposition 6. [88, Proposition 3] Consider the optimization problem (2.19), under

the Assumption 2.2, the error bound (EBP) holds if there exists constants κ, ρ > 0

such that

(EBN) dist(x,X ) ≤ κ∥R(x)∥2, ∀x ∈ O with dist(x,X ) ≤ ρ. (2.25)
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The following results from [88] build the bridge between the calmness of the

solution mapping and the error bound properties.

Theorem 2.9. [88, Proposition 1, Proposition 4, Theorem 1] Consider the opti-

mization problem (2.19), under the Assumption 2.2, there exist a ȳ = Ax for all

x ∈ X such that

X = {x ∈ E | Ax = ȳ,−A∗∇h(ȳ)− c ∈ ∂p(x)}. (2.26)

Then the error bound condition (EBN) holds if and only if the solution map Γ :

T × E ⇒ E is calm at (ȳ,A∗∇h(ȳ) + c) for any x̄ ∈ Γ(ȳ,A∗∇h(ȳ) + c).



Chapter 3
Convex Clustering

In this chapter, we will focus on the general weighted convex clustering model.

Specifically, for a given data matrix A ∈ ℜd×n = [a1, a2, . . . , an], we consider the

following general weighted convex clustering model

min
X∈ℜd×n

1

2

n∑
i=1

∥xi − ai∥2 + γ
∑
i<j

wij∥xi − xj∥p, (3.1)

where p ≥ 1 and wij = wji ≥ 0 are given weights that are generally chosen based on

the given input data A.

As discussed in Chapter 1, the general weighted convex clustering model includes

the following uniform weighted convex clustering model as a special case:

min
X∈ℜd×n

1

2

n∑
i=1

∥xi − ai∥2 + γ
∑
i<j

∥xi − xj∥p. (3.2)

This chapter will be organized as follows. We first discuss some related work

in section 3.1, some preliminaries could be found in section 3.2. The theoretical

recovery guarantee will be shown in section 3.3. In section 3.4, we will present the

semismooth Newton-CG based augmented Lagrangian method (Ssnal) for solving

(3.1). Convergence analysis of the algorithm Ssnal will also be included. Then, we

present all the numerical experiments in section 3.5.

31
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3.1 Related work

In this section, we discuss some additional related work to the convex clustering

model. In addition to the papers [17,31,41,54,55,67,89] on the convex models (3.2)

and (3.1), other convex models have been proposed to deal with the non-convexity

of the K-means clustering model. One such model is the convex relaxation of the

K-means model via semidefinite programming (SDP) [5, 47, 56].

As discussed in Chapter 1, for a given data matrix A ∈ Rd×n = [a1, a2, . . . , an],

the classical K-means model solves the following non-convex optimization problem

min
∑k

t=1

∑
i∈It ∥ai − 1

|It|
∑

j∈It aj∥2

s.t. I1, . . . , Ik is a partition of {1, 2, . . . , n}.
(3.3)

Now, if we define the n× n matrix D by Dij = ∥ai − aj∥2, then by taking

X :=
k∑

t=1

1

|It|
1It1

T
It ,

where 1It ∈ Rn is the indicator vector of the index set It. We can express the

objective function in (3.3) as 1
2
Tr(DX). Based on this, [56] proposed the following

SDP relaxation of the K-means model

min
{
Tr(DX) | Tr(X) = k, Xe = e, X ≥ 0, X ∈ S+

n

}
, (3.4)

where X ≥ 0 means that all the elements in X are nonnegative, Sn
+ is the cone of

n×n symmetric and positive semidefinite matrices, and e ∈ Rn is the column vector

of all ones.

Recently, [47] proved that the K-means SDP relaxation approach can achieve

perfect cluster recovery with high probability when the data A is sampled from the

stochastic unit-ball model in Rd, provided that the cluster centriods {a(1), . . . , a(k)}

satisfy the condition that min{∥a(α) − a(β)∥ | 1 ≤ α < β ≤ k} > 2
√
2(1 + 1/

√
d).

However, the computational efficiency of SDP based relaxations highly depends on

the efficiency of the available SDP solvers. While recent progress [65,77,86] in solving

large-scale SDPs allows one to solve the SDP relaxation problem for clustering 2–3
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thousand points, it is however prohibitively expensive to solve the problem when n

goes beyond 3000.

The work in [16] has implicitly demonstrated that it is generally much cheaper

to solve the model (3.1) instead of the SDP relaxation model. However, based on

our numerical experiments, the algorithms ADMM and AMA proposed in [16] for

solving (3.1) only work efficiently when the number of data points is not too large

(several thousands depending on the feature dimension of the data). Also, it is not

easy for the proposed algorithms in [16] to achieve relatively high accuracy. This

also explains why we need to design a new algorithm in this paper to overcome the

aforementioned difficulties.

3.2 Preliminaries and notation

In this section, we first introduce some preliminaries and notation which will be

used later in this chapter. For theoretical analysis, we adopt some definitions and

notation from [54, 89].

Definition 10. For a given finite set A = {a1, a2, . . . , an} ⊂ Rd and its partitioning

V = {V1, V2, . . . , VK}, where each Vi is a subset of A.

(a) We say that a map ψ on A perfectly recovers V when ψ(ai) = ψ(aj) is equivalent

to ai and aj belonging to the same cluster. In other words, there exist distinct vectors

v1,v2, . . . ,vK such that ψ(ai) = vα holds whenever ai ∈ Vα.

(b) We call a partitioning W = {W1,W2, . . . ,WL} of A a coarsening of V if each

partition Wl is obtained by taking the union of a number of partitions in V. Further-

more, W is called the trivial coarsening of V if W = {A}. Otherwise, it is called a

non-trivial coarsening.

Definition 11. For any finite set S ⊂ ℜd, its diameter with respect to the q-norm

for q ≥ 1 is defined as

Dq(S) := max{∥x− y∥q | x,y ∈ S}.
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Moreover, we define its separation and centroid, respectively, as

dq(S) := min{∥x− y∥q | x,y ∈ S,x ̸= y}, c(S) =

∑
x∈S x

|S|
.

For convenience, for any family of mutually disjoint finite sets F = {Fi ⊂ Rd}, we

define C(F) = {c(Fi)}.

Later in this chapter, we will establish the theoretical recovery guarantee based

on the above definitions. Next, we introduce some preliminaries and notations for

the design and analysis of the numerical optimization algorithms.

For a given simple undirected graph G = ({1, . . . , n}, E) with n vertices and edges

defined in E , we define the symmetric adjacency matrix G ∈ ℜn×n with entries

Gji = Gij =

 1 if (i, j) ∈ E ,

0 otherwise.

Based on an enumeration of the index pairs in E (say in the lexicographic order),

which we denote by l(i, j) for the pair (i, j), we define the node-arc incidence matrix

J ∈ ℜn×|E| as

J l(i,j)
k =


1 if k = i,

−1 if k = j,

0 otherwise,

(3.5)

where J l(i,j)
k is the k-th entry of the l(i, j)-th column of Jk.

Proposition 7. With matrices G, J defined above, we have the following results

JJ T = diag(Ge)−G =: LG, (3.6)

where e ∈ ℜn is the column vector of all ones, and LG is the Laplacian matrix

associated with the adjacency matrix G.

Now, for given variables X ∈ ℜd×n, Z ∈ ℜd×|E| and the graph G, we define the

linear map B : ℜd×n → ℜd×|E| and its adjoint B∗ : ℜd×|E| → ℜd×n, respectively, by

B(X) = [(xi − xj)](i,j)∈E = XJ , (3.7)

B∗(Z) = ZJ T . (3.8)
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Thus, by Proposition 7, we have

B∗(B(X)) = XJJ T = XLG. (3.9)

For a given proper and closed convex function p : X → (−∞,+∞], its proximal

mapping Proxtp(x) for p at any x ∈ X with t > 0 is defined by

Proxtp(x) = argmin
u∈X

{tp(u) + 1

2
∥u− x∥2}. (3.10)

In this chapter, we will often make use of the following Moreau identity (See [7,

Theorem 14.3(ii)])

Proxtp(x) + tProxp∗/t(x/t) = x,

where t > 0 and p∗ is the conjugate function of p. In particular, if p(x) = ρ∥x∥2,

it’s not difficult to show that, p∗(y) is the indicator function defined as follows:

p∗(y) =

 0 if ∥y∥2 ≤ ρ,

+∞ if ∥y∥2 > ρ.

It is well known that proximal mappings are important for designing optimization

algorithms and they have been well studied. The proximal mappings for many

commonly used functions have closed form formulas. Here, we summarize those that

are related to this chapter in Table 2.1. In the table, δC(·) denotes the indicator

function of a given closed convex set C, which is

δC(x) =

 0 if x ∈ C,

+∞ if x ̸∈ C.

ΠC denotes the projection onto C.

3.3 Theoretical recovery guarantee of convex clus-

tering models

The empirical success of the convex clustering model (3.2) has strongly motivated

researchers to investigate its theoretical clustering recovery guarantee. The perfect
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Table 3.1: Proximal maps for selected functions

p(·) Proxtp(x) Comment

∥ · ∥1
[
1− t

|xl|

]
+
xl Elementwise soft-thresholding

∥ · ∥2
[
1− t

∥x∥2

]
+
x Blockwise soft-thresholding

∥ · ∥∞ x−ΠtS(x) S is the unit ℓ1-ball

δC(·) ΠC(x) Projection

recovery results for convex clustering model (3.2), where all pairwise differences

are considered with equal weights, have been proved by [89] for the 2-clusters case

and later by [54] for the k-clusters case. [67] analyzed the statistical properties of

model (3.2) and [58] analyzed the statistical properties of model (3.2) with the ℓ1-

regularization term. In practice, many researchers (e.g. [16, 67]) have suggested the

use of the model (3.1), which is not only computationally more attractive but also

lead to more robust clustering results. However, so far no theoretical guarantee has

been provided for the convex clustering model with general weights. In this section,

we first review the nice theoretical results proved by [89] and [54] for (3.2), and then

we will present our new theoretical guarantee for the more challenging case of the

general weighted convex clustering model (3.1).

3.3.1 Theoretical recovery guarantee of convex clustering

model (3.2)

The first theoretical result by [89] guarantees the perfect recovery of (3.2) for

the two-clusters case when the data in each cluster are contained in a cube and the

two cubes are sufficiently well separated.

More recently, much stronger theoretical results have been established by [54]

wherein the authors proved the theoretical recovery guarantee of the fully uniformly

weighted model (3.2) for the general case of k-clusters.
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Theorem 3.1 ( [54]). Consider a finite set A = {ai ∈ Rd | i = 1, 2, . . . , n} of vectors

and its partitioning V = {V1, V2, . . . , VK}. For the SON model in (3.2), denote its

optimal solution by {x̄i} and define the map ϕ(ai) = x̄i, i = 1, . . . , n.

(i) If γ is chosen such that

max
V ∈V

D2(V )

|V |
≤ γ ≤ d2(C(V))

2n
√
K

,

then the map ϕ perfectly recovers V.

(ii) If γ satisfies the following inequalities,

max
V ∈V

D2(V )

|V |
≤ γ ≤ max

V ∈V

∥c(A)− c(V )∥2
|A| − |V |

,

then the map ϕ perfectly recovers a non-trivial coarsening of V.

It was shown in [54] that one can treat the theoretical results in [89] as a special

case of Theorem 3.1.

We shall see in the next subsection that we can improve the upper bound in part

(i) of Theorem 3.1 to γ ≤ d2(C(V))
2n

, as a special case of our new theoretical results.

3.3.2 Theoretical recovery guarantee of the weighted convex

clustering model (3.1)

Although the convex clustering model (3.2) with the fully uniformly weighted

regularization has the nice theoretical recovery guarantee, it is usually computation-

ally too expensive to solve since the number of terms in the regularization grows

quadratically with the number of data points n. In order to reduce the compu-

tational burden, in practice many researchers have proposed to use the partially

weighted convex clustering model (3.1) described in the Introduction. Moreover,

they have observed better empirical performance of (3.1) with well chosen weights,

comparing to the original model (3.2) [16, 31, 41]. However, to the best of our

knowledge, so far no theoretical recovery results have been established for the gen-

eral weighted convex clustering model (3.1). Here we will prove that under rather
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mild conditions, perfect recovery can be guarantee for the weighted model (3.1). In

additional, our theoretical results subsume the known results for the fully uniformly

weighted model (3.2) as special cases.

Next, we will establish the main theoretical results for (3.1). Our results and part

of the proof have been inspired by the ideas used in [54]. For convenience, we define

the index sets

Iα := {i | ai ∈ Vα}, for α = 1, 2, . . . , K.

Let nα = |Iα|,

a(α) =
1

nα

∑
i∈Iα

ai, w(α,β) =
∑
i∈Iα

∑
j∈Iβ

wij, ∀ α, β = 1, . . . , K

w
(β)
i =

∑
j∈Iβ

wij, ∀ i = 1, . . . , n, β = 1, . . . , K.

Here we will interpret w(β)
i as the coupling between point ai and the β-th cluster,

and w(α,β) as the coupling between the α-th and β-th clusters. We also define for

p ≥ 1,

h(v) := ∥v∥p =
( d∑

i=1

|vi|p
) 1

p
, v = (v1, v2, . . . , vd) ∈ Rd,

and note that the subdifferential of h(v) is given by

∂h(v) =


{y ∈ ℜd | ∥y∥q ≤ 1, ⟨y,v⟩ = ∥v∥p} if v ̸= 0,

{y ∈ ℜd | ∥y∥q ≤ 1} if v = 0,

where q ≥ 1 is the conjugate index of p such that 1
p
+ 1

q
= 1. Observe that for any

y ∈ ∂h(v), we have ∥y∥q ≤ 1.

Theorem 3.2. Consider an input data A = [a1, a2, . . . , an] ∈ ℜd×n and its parti-

tioning V = {V1, V2, . . . , VK}. Assume that all the centroids {a(1), a(2), . . . , a(K)} are

distinct. Let q ≥ 1 be the conjugate index of p such that 1
p
+ 1

q
= 1. Denote the

optimal solution of (3.1) by {x∗
i } and define the map ϕ(ai) = x∗

i for i = 1, . . . , n.
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1. Let

µ
(α)
ij :=

K∑
β=1,β ̸=α

∣∣∣w(β)
i − w

(β)
j

∣∣∣, i, j ∈ Iα, α = 1, 2, . . . , K.

Assume that wij > 0 and nαwij > µ
(α)
ij for all i, j ∈ Iα, α = 1, . . . , K. Let

γmin := max1≤α≤K maxi,j∈Iα

{
∥ai−aj∥q

nαwij−µ
(α)
ij

}
,

γmax := min1≤α<β≤K

{
∥a(α)−a(β)∥q

1
nα

∑
1≤l≤K,l ̸=α w(α,l)+ 1

nβ

∑
1≤l≤K,l ̸=β w(β,l)

}
.

(3.11)

If γmin < γmax and γ is chosen such that γ ∈ [γmin, γmax), then the map ϕ

perfectly recovers V.

2. If γ is chosen such that

γmin ≤ γ < max
1≤α≤K

nα∥c− a(α)∥q∑
1≤β≤K,β ̸=αw

(α,β)
,

where c = 1
n

∑n
i=1 ai, then the map ϕ perfectly recovers a non-trivial coarsening

of V.

Proof. First we introduce the following centroid optimization problem corresponding

to (3.1):

min
{1
2

K∑
α=1

nα∥x(α) − a(α)∥2 + γ
K∑

α=1

K∑
β=α+1

w(α,β)∥x(α) − x(β)∥p | x(1), . . . ,x(K) ∈ ℜd
}
. (3.12)

Denote the optimal solution of (3.12) by {x̄(α) | α = 1, 2, . . . , K}. The proof will

rely on the relationships between (3.1) and (3.12).

(1a) First we show that, if γ < γmax, then x̄(α) ̸= x̄(β) for all α ̸= β. From the

optimality condition of (3.12), we have that

nα(x̄
(α) − a(α)) + γ

K∑
β=1,β ̸=α

w(α,β)z̄(α,β) = 0, ∀ α = 1, . . . , K, (3.13)
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where z̄(α,β) ∈ ∂h(x̄(α) − x̄(β)), α ̸= β. Now from (3.13), we get for α ̸= β,

x̄(α) − x̄(β) = a(α) − a(β) − γ
nα

∑K
l=1,l ̸=αw

(α,l)z̄(α,l) + γ
nβ

∑K
l=1,l ̸=β w

(β,l)z̄(β,l)

⇒ ∥x̄(α) − x̄(β)∥q ≥ ∥a(α) − a(β)∥q − γ
nα

∑K
l=1,l ̸=αw

(α,l)∥z̄(α,l)∥q − γ
nβ

∑K
l=1,l ̸=β w

(β,l)∥z̄(β,l)∥q

≥ ∥a(α) − a(β)∥q − γ
(

1
nα

∑K
l=1,l ̸=αw

(α,l) + 1
nβ

∑K
l=1,l ̸=β w

(β,l)
)

≥ ∥a(α) − a(β)∥q
(
1− γ

γmax

)
> 0.

Thus x̄(α) ̸= x̄(β) for all α ̸= β.

(1b) Suppose that γ < γmax. Then from (a), x̄(α) ̸= x̄(β) for all α ̸= β. Next we

prove that, if γ ≥ γmin, then

x∗
i = x̄(α), ∀ i ∈ Iα, α = 1, . . . , K

is the unique optimal solution of (3.1).

To do so, we start with the optimality condition for (3.1), which is given as follows:

xi − ai + γ
n∑

j=1,j ̸=i

wijzij = 0, i = 1, 2, . . . , n, (3.14)

where zij ∈ ∂h(xi − xj). Consider

z∗ij =


z̄(α,β) if i ∈ Iα, j ∈ Iβ, 1 ≤ α, β ≤ K, α ̸= β,

1
nαwij

[
1
γ
(ai − aj)− (p

(α)
i − p

(α)
j )
]

if i, j ∈ Iα, i ̸= j, α = 1, . . . , K,

where

p
(α)
i =

K∑
β=1,β ̸=α

[
w

(β)
i − 1

nα

w(α,β)

]
z̄(α,β).

We can readily prove that

∥p(α)
i − p

(α)
j ∥q ≤ µ

(α)
ij

and ∑
j∈Iα

p
(α)
j =

∑
j∈Iα

(
K∑

β=1,β ̸=α

[
w

(β)
j − 1

nα

w(α,β)

]
z̄(α,β)

)

=
K∑

β=1,β ̸=α

(∑
j∈Iα

[
w

(β)
j − 1

nα

w(α,β)

])
z̄(α,β) = 0.
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For convenience, we set z∗ii = 0 for i = 1, 2, . . . , n. Now, we show that z∗ij ∈

∂h(x∗
i − x∗

j).

If i ∈ Iα and j ∈ Iβ for α ̸= β, then we have that

z∗ij = z̄(α,β) ∈ ∂h(x̄(α) − x̄(β)) = ∂h(x∗
i − x∗

j).

It remains to show that ∥z∗ij∥q ≤ 1 for all i, j ∈ Iα, α = 1, 2, . . . , K. By direct

calculations, we have that for γ ≥ γmin,

∥z∗ij∥q =
1

nαwij

∥∥∥1
γ
(ai − aj)− (p

(α)
i − p

(α)
j )
∥∥∥
q
≤ 1

γnαwij

∥ai − aj∥q +
1

nαwij

µ
(α)
ij

≤ 1

nαwij

(nαwij − µ
(α)
ij ) +

1

nαwij

µ
(α)
ij = 1,

which implies that z∗ij ∈ ∂h(x∗
i − x∗

j) = ∂h(0) for all i, j ∈ Iα.

Finally, we show that the optimality condition (3.14) holds for (x∗
1, . . . ,x

∗
n). We

have that for i ∈ Iα,

x∗
i − ai + γ

n∑
j=1,j ̸=i

wijz
∗
ij = x̄(α) − ai + γ

K∑
β=1

∑
j∈Iβ

wijz
∗
ij

= x̄(α) − a(α) + γ
K∑

β=1,β ̸=α

(∑
j∈Iβ

wij

)
z̄(α,β) + a(α) − ai + γ

∑
j∈Iα

wijz
∗
ij

= γ
K∑

β=1,β ̸=α

[
w

(β)
i − 1

nα

w(α,β)
]
z̄(α,β) + a(α) − ai + γ

∑
j∈Iα

wijz
∗
ij

= γp
(α)
i + a(α) − ai +

γ

nα

∑
j∈Iα

[1
γ
(ai − aj)− (p

(α)
i − p

(α)
j )
]

= 0.

Thus (x∗
1, . . . ,x

∗
n) is the optimal solution of (3.1). Since ϕ(ai) = x∗

i = x̄(α) for all

i ∈ Iα, α = 1, . . . , K, we see that the mapping ϕ perfectly recovers the clusters in

V .

(2) Suppose on the contrary that x̄(1) = x̄(2) = · · · = x̄(K). In this case, the

second term of (3.1) disappears, so x̄ is the solution of minx
1
2

∑n
i=1 ∥x−ai∥2. Which

means the optimal solution for (3.12) degenerates to

x̄ =
1

n

n∑
i=1

ai = c.
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Thus, the optimality condition (3.13) gives

nα∥c− aα∥q ≤ γ
K∑

β=1,β ̸=α

w(α,β), ∀ α ∈ {1, 2, . . . , K}.

This implies that

γ ≥ max
1≤α≤K

nα∥c− a(α)∥q∑K
β=1,β ̸=αw

(α,β)
,

which is a contradiction. Thus {x̄(1), . . . , x̄(K)} must have a distinct pair.

The above theorem has established the theoretical recovery guarantee for the

general weighted convex clustering model (3.1). Later, we will demonstrate that the

sufficient conditions that γ must satisfy is practically meaningful in the numerical

experiments section. Now, we explain the derived sufficient conditions intuitively.

For unsupervised learning, intuitively, we can get meaningful clustering results

when the given dataset has the properties that the elements within the same cluster

are “tight” (in other words, the diameter should be small) and the centroids for

different clusters are well separated. Indeed, the conditions we have established

are consistent with the intuition just discussed. First, the left-hand side in (3.11)

characterizes the maximum weighted distance between the elements in the same

cluster. On the other hand, the right-hand side in (3.11) characterizes the minimum

weighted distance between different centroids. Thus based on our discussion, we can

expect perfect recovery to be practically possible for the weighted convex clustering

model if the right-hand side is larger than the left-hand side in (3.11).

Remark 3.1. (a) Note that the assumption that wij > 0 is only needed for all the

pairs (i, j) belonging to the same cluster Iα for all 1 ≤ α ≤ K. Thus the weights

wij can be chosen to be zero if i and j belong to different clusters. As a result, the

number of pairwise differences in the regularization term can be much fewer than the

total of n(n− 1)/2 terms. This implies that we can gain substantial computational

efficiency when dealing with the sparse weighted regularization term.

(b) The quantity µ
(α)
ij =

∑K
β=1,β ̸=α |w

(β)
i − w

(β)
j |, for i, j ∈ Iα, measures the total

difference in the couplings between ai and aj with the β-th cluster for all β ̸= α.
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Next, we show that the results in Theorem 3.1 are special cases of our results.

Therefore, we also include the result in [89] as a special case.

Corollary 3.1. In (3.1), if we take wij = 1 for all 1 ≤ i < j ≤ n, then the results

in Theorem 3.2 reduce to the following.

(i) If

max
1≤α≤K

Dq(Vα)

|Vα|
≤ γ < min

1≤α,β≤K,α ̸=β

{∥a(α) − a(β)∥q
2n− nα − nβ

}
,

then the map ϕ perfectly recovers V.

(ii) If

max
1≤α≤K

Dq(Vα)

|Vα|
≤ γ ≤ max

V ∈V

∥c(A)− c(V )∥q
|A| − |V |

,

then the map ϕ perfectly recovers a non-trivial coarsening of V.

Proof. The results for this corollary follow directly from Theorem 3.2 by noting that

Dq(Vα) = maxi,j∈Iα ∥ai − aj∥q/nα, and using the following facts for the special case:

(1) µ(α)
ij =

∑K
β=1,β ̸=α |w

(β)
i − w

(β)
j | =

∑K
β=1,β ̸=α |nβ − nβ| = 0, for all i, j ∈ Iα,

1 ≤ α ≤ K.

(2) 1
nα

∑K
β=1,β ̸=αw

(α,β) = 1
nα

∑K
β=1,β ̸=α nαnβ = n− nα, for all 1 ≤ α ≤ K.

We omit the details here.

If we compare the upper bound we obtained for γ in part (i) of Corollary 3.1 to

that obtained in Theorem 3.1 of [54] for the case p = 2 (and hence q = 2), we can

see that our upper bound is more relax in the sense that

min
1≤α,β≤K,α ̸=β

{∥a(α) − a(β)∥2
2n− nα − nβ

}
> min

1≤α,β≤K,α ̸=β

{∥a(α) − a(β)∥2
2n

}
=
d2(C(V))

2n
≥ d2(C(V))

2n
√
K

.

Remark 3.2. (i) More recently, Xu et al. [75] investigated the theoretical guar-

antee for perfect recovery for the following weighted convex clustering model

based on ℓ1 norm and guassian kernel weights:

min
X∈ℜd×n

1

2

n∑
i=1

∥xi − ai∥2 + γ
∑
i<j

e−ϕ∥ai−aj∥∥xi − xj∥1, (3.15)
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where ϕ > 0 is a given constant. It’s not difficult to realize that, model (3.15)

is component-wise separable. This makes the model difficult to do the cluster-

ing task well in some scenario since each component may result in different

membership. Of course, on the other hand, since the model is component-wise

seperable, solving model (3.15) is relatively easier.

(ii) Recently, Jiang et al. [33] analyzed the recovery property of (3.2) for the mixture

gaussian model. They provide the theoretical guarantee for convex clustering

model on the mixture gaussian model when the number of data points increases

to infinity.

3.4 A semismooth Newton-CG augmented Lagrangian

method

In this section, we introduce a fast convergent ALM for solving the weighted

convex clustering model (3.1). For simplicity, we will first focus on designing a

highly efficient algorithm to solve (3.1) with p = 2. The other cases can be done in

a similar way. In particular, the same algorithmic design and implementation can

be applied to the case p = 1 or p = ∞ without much difficulty.

3.4.1 Duality and optimality conditions

In this chapter, we will focus on the following weighted convex clustering model

with the 2-norm:

min
X∈Rd×n

1

2

n∑
i=1

∥xi − ai∥2 + γ
∑
i<j

wij∥xi − xj∥2.

By ignoring the terms with wij = 0, we consider the following problem:

min
X∈Rd×n

1

2

n∑
i=1

∥xi − ai∥2 + γ
∑

(i,j)∈E

wij∥xi − xj∥2, (3.16)
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where E := {(i, j) | wij > 0}.

Now, we present the dual problem of (3.16) and its Karush-Kuhn-Tucker (KKT)

conditions. First, we write (3.16) equivalently in the following compact form

(P ) min
X,U

{1
2
∥X − A∥2 + p(U) | B(X)− U = 0

}
,

where p(U) = γ
∑

(i,j)∈E wij∥U l(i,j)∥ and B is the linear map defined in (3.7). Here

U l(i,j) denotes the l(i, j)-th column of U ∈ Rd×|E|. The dual problem for (P ) is given

by

(D) max
V,Z

{
⟨A, V ⟩ − 1

2
∥V ∥2 | B∗(Z)− V = 0, Z ∈ Ω

}
,

where Ω = {Z ∈ Rd× | E| | ∥Z l(i,j)∥ ≤ γwij, (i, j) ∈ E}. The KKT conditions for (P )

and (D) are given by

(KKT )



V +X − A = 0,

U − Proxp(U + Z) = 0,

B(X)− U = 0,

B∗(Z)− V = 0.

3.4.2 A semismooth Newton-CG augmented Lagrangian method

for Solving (P)

In this section, we will design an inexact ALM for solving the primal problem

(P ) but it will also solve (D) as a byproduct.

We begin by defining the following Lagrangian function for (P ):

l(X,U ;Z) =
1

2
∥X − A∥2 + p(U) + ⟨Z,B(X)− U⟩. (3.17)

For a given parameter σ > 0, the augmented Lagrangian function associated with

(P ) is given by

Lσ(X,U ;Z) = l(X,U ;Z) +
σ

2
∥B(X)− U∥2.

The algorithm for solving (P ) is described in Algorithm 6. To ensure the conver-

gence of the inexact ALM in Algorithm 6, we need the following stopping criterion
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for solving the subproblem (3.19) in each iteration:

(A) dist(0, ∂Φk(X
k+1, Uk+1)) ≤ ϵk/max{1,

√
σk}, (3.18)

where {ϵk} is a given summable sequence of nonnegative numbers.

Algorithm 6: Ssnal for (P )
Input: Choose (X0, U0) ∈ Rd×n × Rd×|E|, Z0 ∈ Rd×|E|, σ0 > 0 and a

summable nonnegative sequence {ϵk}.

Iterate until convergence,

Step 1 . Compute

(Xk+1, Uk+1) ≈ argmin{Φk(X,U) = Lσk
(X,U ;Zk) | X ∈ ℜd×n, U ∈ ℜd×|E|}

(3.19)

to satisfy the condition (A) with the tolerance ϵk.

Step 2 . Compute

Zk+1 = Zk + σk(B(Xk+1)− Uk+1).

Step 3 . Update σk+1 ↑ σ∞ ≤ ∞.

Since a semismooth Newton-CG method will be used to solve the subproblems

involved in the above ALM method, we call our algorithm a semismooth Newton-CG

augmented Lagrangian method (Ssnal in short).

3.4.3 Solving the subproblem (3.19)

The inexact ALM is a well studied algorithmic framework for solving convex

composite optimization problems. The key challenge in making the ALM efficient

numerically is in solving the subproblem (3.19) in each iteration efficiently to the

required accuracy. Next, we will design a semismooth Newton-CG method to solve

(3.19). We will establish its quadratic convergence and develop sophisticated numer-

ical techniques to solve the associated semismooth Newton equations very efficiently
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by exploiting the underlying second-order structured sparsity in the subproblems.

For a given σ and Z̃, the subproblem (3.19) in each iteration has the following form:

min
X∈ℜd×n,U∈ℜd×|E|

Φ(X,U) := Lσ(X,U ; Z̃). (3.20)

Since Φ(·, ·) is a strongly convex function, the level set {(X,U)|Φ(X,U) ≤ α} is a

closed and bounded convex set for any α ∈ ℜ and problem (3.20) admits a unique

optimal solution which we denote as (X̄, Ū). Now, for any X, denote

ϕ(X) := infU Φ(X,U) = 1
2
∥X − A∥2 + infU

{
p(U) + σ

2
∥U − B(X)− σ−1Z̃∥2

}
− 1

2σ
∥Z̃∥2

= 1
2
∥X − A∥2 + p(Proxp/σ(B(X) + σ−1Z̃)) + 1

2σ
∥Proxσp∗(σB(X) + Z̃)∥2 − 1

2σ
∥Z̃∥2.

Therefore, we can compute (X̄, Ū) = argminΦ(X,U) by first computing

X̄ = argmin
X

ϕ(X),

and then compute Ū = Proxp/σ(B(X̄) + σ−1Z̃). Since ϕ(·) is strongly convex and

continuously differentiable on ℜd×n with

∇ϕ(X) = X − A+ B∗(Proxσp∗(σB(X) + Z̃)), (3.21)

we know that X̄ can be obtained by solving the following nonsmooth equation

∇ϕ(X) = 0. (3.22)

It is well known that for solving smooth nonlinear equations, the quadratically

convergent Newton’s method is usually the first choice if it can be implemented

efficiently. However, the usually required smoothness condition on ∇ϕ(·) is not

satisfied in our problem. This motivates us to develop a semismooth Newton method

to solve the nonsmooth equation (3.22). Before we present our semismooth Newton

method, we introduce the following definition of semismoothness, adopted from

[37, 46, 57], which will be useful for analysis.

Definition 12. (Semismoothness). For a given open set O ⊆ Rn, let F : O → Rm

be a locally Lipschitz continuous function and G : O ⇒ Rm×n be a nonempty compact
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valued upper-semicontinuous multifunction. F is said to be semismooth at x ∈ O

with respect to the multifunction G if F is directionally differentiable at x and for

any V ∈ G(x+∆x) with ∆x→ 0,

F (x+∆x)− F (x)− V∆x = o(∥∆x∥).

F is said to be strongly semismooth at x ∈ O with respect to G if it is semismooth

at x with respect to G and

F (x+∆x)− F (x)− V∆x = O(∥∆x∥2).

F is said to be a semismooth (respectively, strongly semismooth) function on O with

respect to G if it is semismooth (respectively, strongly semismooth) everywhere in O

with respect to G.

The following lemma shows that the proximal mapping of the 2-norm is strongly

semismooth with respect to its Clarke generalized Jacobian (See [18] [Definition

2.6.1] for the definition of the Clarke generalized Jacobian).

Lemma 3.1 ( [83], Lemma 2.1). For any t > 0, the proximal mapping Proxt∥·∥2 is

strongly semismooth with respect to the Clarke generalized Jacobian ∂Proxt∥·∥2(·).

Next we derive the generalized Jacobian of the locally Lipschitz continuous func-

tion ∇ϕ(·). For any given X ∈ ℜd×n, the following set-valued map is well defined:

∂̂2ϕ(X) := {I + σB∗VB | V ∈ ∂Proxσp∗(Z̃ + σBX)}

= {I + σB∗(I − P)B | P ∈ ∂Proxp/σ(
1
σ
Z̃ + BX)}, (3.23)

where ∂Proxσp∗(Z̃ + σBX) and ∂Proxp/σ( 1σ Z̃ + B(X)) are the Clarke generalized

Jacobians of the Lipschitz continuous mappings Proxσp∗(·) and Proxp/σ(·) at Z̃ +

σBX and 1
σ
Z̃ +BX, respectively. Note that from [18] [p.75] and [30] [Example 2.5],

we have that

∂2ϕ(X)(d) = ∂̂2ϕ(X)(d), ∀d ∈ ℜd×n,
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where ∂2ϕ(X) is the generalized Hessian of ϕ at X. Thus, we may use ∂̂2ϕ(X)

as the surrogate for ∂2ϕ(X). Since I − P = V ∈ ∂Proxσp∗(·) is symmetric and

positive semidefinite, the elements in ∂̂2ϕ(X) are positive definite, which guarantees

that (3.24) in Algorithm 7 is well defined. Now, we can present our semismooth

Newton-CG (Ssncg) method for solving (3.22) and we could expect to get a fast

superlinear or even quadratic convergence.

Algorithm 7: Ssncg for (3.22)
Given X0 ∈ ℜd×n, µ ∈ (0, 1/2), τ ∈ (0, 1], and η̄, δ ∈ (0, 1). For j = 0, 1, . . . ,

repeats until convergence,

Step 1 . Pick an element Hj in ∂̂2ϕ(Xj) that is defined in (3.23). Apply the

conjugate gradient (CG) method to find an approximate solution dj ∈ Rd×n

to

Hj(d) ≈ −∇ϕ(Xj) (3.24)

such that ∥Hj(d
j) +∇ϕ(Xj)∥ ≤ min(η̄, ∥∇ϕ(Xj)∥1+τ ).

Step 2 . (Line Search) Set αj = δmj , where mj is the first nonnegative integer m

for which

ϕ(Xj + δmdj) ≤ ϕ(Xj) + µδm⟨∇ϕ(Xj), dj⟩.

Step 3 . Set Xj+1 = Xj + αjd
j.

To close this section, we discuss an implementable stopping criteria for (3.22)

in the algorithm Ssnal. Note that if the algorithm Ssncg is applied to solve the

optimization problem given by

Xk+1 = argmin
X

ϕk(X) and Uk+1 = Proxp/σ(B(Xk+1 + σ−1Zk)),

where ϕk(·) := infU Φk(X,U), we have

(∇ϕk(X
k+1), 0) ∈ ∂Φk(X

k+1, Uk+1).
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Therefore, the stopping criteria (A) in (3.18) could be achieved by the following

implementable stopping criteria

(A’) ∥∇ϕk(X
k+1)∥ ≤ ϵk/max(1,

√
σk),

∞∑
k=0

<∞. (3.25)

3.4.4 Using the conjugate gradient method to solve (3.24)

In this section, we will discuss how to solve the very large (of dimension dn×dn)

symmetric positive definite linear system (3.24) to compute the Newton direction

efficiently. As the matrix representation of the coefficient linear operatorHj in (3.24)

is expensive to compute and factorize, we will adopt the conjugate gradient (CG)

method to solve it. It is well known that the convergence rate of the CG method

depends critically on the condition number of the coefficient matrix. Fortunately

for our linear system (3.24), the coefficient linear operator typically has a moderate

condition number since it satisfies the following condition:

I ⪯ Vj ⪯ I + σB∗B ⪯ (1 + σλmax(LG))I,

where λmax(LG) denotes the maximum eigenvalue of the Laplacian matrix LG of

the graph G, and the notation “A ⪯ B” means that B − A is symmetric positive

semidefinite. It is known from [2] that λmax(G) is at most 2 times the maximum

degree of the graph. In the numerical experiments, the maximum degree of the

graph is roughly equal to the number of k nearest neighbors. In those cases, the

condition number of Vj is bounded independent of dn, and provided that σ is not

too large, we can expect the CG method to converge rapidly even when n and/or d

are large.

The computational cost for each CG step is highly dependent on the cost for

computing the matrix-vector product Hj(d̃) for any given d̃ ∈ Rd×n. Thus we will

need to analyze how this product can be computed efficiently. LetD := BXj+σ−1Z̃.

For (i, j) ∈ E , define

αij =


σ−1γwij

∥Dl(i,j)∥ if ∥Dl(i,j)∥ > 0,

∞ otherwise.
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Note that for the given D ∈ Rd×|E|, the cost for computing α is O(d|E|) arithmetic

operations. For later convenience, denote

Ê = {(i, j) ∈ E | αij < 1}.

Now we choose P ∈ ∂Proxp/σ(D) explicitly. We can take P : Rd×|E| → Rd×|E| that

is defined by

(P(U))l(i,j) =


αij

⟨Dl(i,j), U l(i,j)⟩
∥Dl(i,j)∥2 Dl(i,j) + (1− αij)U

l(i,j) if (i, j) ∈ Ê ,

0 otherwise.

Thus to compute Hj(X) = X+σB∗B(X)−σB∗PB(X) = X(In+σLG)−σB∗PB(X)

efficiently for a given X ∈ Rd×n, we need the efficient computation of B∗PB(X) by

using the following proposition.

Proposition 8. Let X ∈ Rd×n be given.

(a) Consider the symmetric matrix M ∈ Rn×n defined by Mij = 1− αij if (i, j) ∈ Ê

and Mij = 0 otherwise. Let Y = [Mij(xi − xj)](i,j)∈E = XM, where M is defined

similarly as in (3.5) for the matrix M . Then we have

B∗(Y ) = XLM ,

where LM is the Laplacian matrix associated with M . The cost of computing the

result B∗(Y ) is O(d|Ê |) arithmetic operations.

(b) Define ρ ∈ R|E| by

ρl(i,j) :=


αij

∥Dl(i,j)∥2 ⟨D
l(i,j),xi − xj⟩, if (i, j) ∈ Ê ,

0, otherwise.

For the given D ∈ Rd×|E|, the cost for computing ρ is O(d|Ê |) arithmetic operations.

Let W l(i,j) = ρl(i,j)D
l(i,j). Then,

B∗(W ) = WJ T = Ddiag(ρ)J T .

(c) The computing cost for B∗PB(X) = B∗(Y ) + B∗(W ) in total is O(d|Ê |).
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With the above proposition, we can readily see that Vj(X) can be computed in

O(d|E|)+O(d|Ê |) operations, where the first term comes from computingX(I+σLG)

and the second term comes from computing σBPB∗(X) based on Proposition 8.

Besides the algorithmic aspect, the next remark shows that the second-order

information gathered in the semismooth Newton method can capture data points

which are near to the boundary of a cluster if we wisely choose the weights wij.

We believe this is a very useful result since boundary points detection is a challeng-

ing problem in practice, especially in the high dimensional setting where locating

boundary points is challenging even if we know the labels of all the data points.

Remark 3.3. If we choose the weights based on the k-nearest neighbors, for example,

set

wij =


exp(−ϕ∥ai − aj∥2) if (i, j) ∈ E ,

0 otherwise,

where E = ∪n
i=1{(i, j) | j is among i’s k-nearest neighbors, i < j ≤ n}. Then,

αij < 1 means that j is among i’s k-nearest neighbors but do not belong to the

same cluster as i. Naturally we expect there will only be a small number of such

occurrences if γ is properly chosen. Hence, |Ê | is expected to be much smaller than

|E|. On the other hand, for αij ≥ 1, it means that points i and j are in the same

cluster. This result implies that after we have solved the optimization problem (3.1)

with a properly selected γ, αij < 1 indicates that point i is near to the boundary of

its cluster. Also, we can expect most of the columns of the matrix P(B(X)) to be

zero since its number of non-zero columns is at most |Ê |. We call such a property

inherited from the generalized Hessian of ϕ(·) at X as the second-order sparsity.

This also explains why we are able to compute B∗PB(X) at a very low cost.

3.4.5 Convergence results

In this section, we will establish the convergence results for both Ssnal and

Ssncg under mild assumptions. First, we present the following global convergence

result of our proposed Algorithm Ssnal.
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Theorem 3.3. Let {(Xk, Uk, Zk)} be the sequence generated by Algorithm 6 with

stopping criterion (A). Then the sequence {Xk} converges to the unique optimal

solution of (P ), and ∥B(Xk) − Uk∥ converges to 0. In addition, {Zk} is converges

to an optimal solution Z∗ ∈ Ω of (D).

The above convergence theorem can be obtained from [62, 63] without much

difficulties. Next, we state the convergence property for the semismooth Newton

algorithm Ssncg used to solve the subproblems in Algorithm 6.

Theorem 3.4. Let the sequence {Xj} be generated by Algorithm Ssncg. Then {Xj}

converges to the unique solution X̄ of the problem in (3.22), and for j sufficiently

large,

∥Xj+1 − X̄∥ = O(∥Xj − X̄∥1+τ ),

where τ ∈ (0, 1] is a given constant in the algorithm, which is typically chosen to be

0.5.

Proof. From Lemma 3.1, we know that Proxt∥·∥2 is strongly semismooth for any

t > 0, together with the Moreau identity Proxtp(x) + tProxp∗/t(x/t) = x, we know

that

∇ϕ(X) = X − A+ B∗(Proxσp∗(σB(X) + Z̃)),

is strongly semismooth. By [86] [Proposition 3.3], we know that dj obtained in

Ssncg is a descent direction, which guarantees that the Algorithm Ssncg is well

defined. From [86] [Theorem 3.4, 3.5], we can get the desired convergence results.

3.4.6 Generating an initial point

In our implementation, we use the inexact alternating direction method of mul-

tipliers in Algorithm 8, which is developed in [13], to generate an initial point to

warm-start Ssnal. Note that with the global convergence result stated in Theorem

3.3, the performance of Ssnal does not sensitively depend on the initial points, but

it is still helpful if we can choose a good one.
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Algorithm 8: iadmm for (P )
Choose σ > 0, (X0, U0, Z0) ∈ Rd×n × Rd×|E| × Rd×|E|, and a summable

nonnegative sequence {ϵk}. For k = 0, 1, . . . , repeat until converges:

Step 1 . Let Rk = A+ σB∗(Uk − σ−1Zk). Compute

Xk+1 ≈ argmin
X

{Lσ(X,U
k;Zk)},

Uk+1 = argmin
U

{Lσ(X
k+1, U ;Zk)},

where Xk+1 is an inexact solution satisfying the accuracy requirement that

∥(In + σB∗B)Xk+1 −Rk∥ ≤ ϵk.

Step 2 . Compute

Zk+1 = Zk + τσ(B(Xk+1)− Uk+1),

where τ ∈ (0, 1+
√
5

2
) is typically chosen to be 1.618.

Observe that in Step 1, Xk+1 is a computed solution for the following large linear

system of equations:

(In + σB∗B)X = Rk ⇐⇒ (In + σLG)X
T = (Rk)T .

To compute Xk+1, we can adopt a direct approach if the sparse Cholesky factoriza-

tion of In+σLG (which only needs to be done once) can be computed at a moderate

cost; otherwise we can adopt an iterative approach by applying the conjugate gra-

dient method to solve the above fairly well-conditioned linear system.

3.5 Numerical experiments

In this section, we will first demonstrate that the sufficient conditions we derived

for perfect recovery in Theorem 3.2 is practical via a simulated example. Then,

we will show the superior performance of our proposed algorithm Ssnal on both

simulated and real datasets, comparing to the popular algorithms such as ADMM
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and AMA which are proposed in [16]. In particular, we will focus on the efficiency,

scalability, and robustness of our algorithm for different values of γ. Also, we will

show the performance of our algorithm on large datasets and unbalanced data.

Previous numerical demonstration on the scalability and performance of (3.1) on

large datasets is limited. The problem sizes of the instances tested in [16] and other

related papers are at most several hundreds (n ≤ 500 in [16], n ≤ 600 in [54]), which

are not large enough to conclusively demonstrate the scalability of the algorithms.

In this paper, we will present numerical results for n up to 200,000. We will also

analyze the sensitivity of the computational efficiency of Ssnal and AMA, with

respect to different choices of the parameters in (3.1), such as k (the number of

nearest neighbors) and γ.

We focus on solving (3.1) with p = 2 since the rotational invariance of the 2-norm

makes it a robust choice in practice. Also, this case is more challenging than p = 1 or

p = ∞.1 As the results reported in [16] have been regarded as the benchmark for the

convex clustering model (3.1), we will compare our algorithm with the open source

software cvxclustr2 in [16], which is an R package with key functions written

in C. We write our code in Matlab without any dedicated C functions. All our

computational results are obtained from a desktop having 16 cores with 32 Intel

Xeon E5-2650 processors at 2.6 GHz and 64 GB memory.

In our implementation, we stop our algorithm based on the following relative

KKT residual:

max{ηP , ηD, η} ≤ ϵ,

where

ηP =
∥BX − U∥
1 + ∥U∥

, ηD =

∑
(i,j)∈E max{0, ∥Z l(i,j)∥2 − γwij}

1 + ∥A∥
,

η =
∥B∗(Z) +X − A∥+ ∥U − Proxp(U + Z)∥

1 + ∥A∥+ ∥U∥
,

1Our algorithm can be generalized to solve (3.1) with p = 1 and p = ∞ without much difficulty.
2https://cran.r-project.org/web/packages/cvxclustr/index.html
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and ϵ > 0 is a given tolerance. In our experiments, we set ϵ = 10−6 unless speci-

fied otherwise. Since the numerical results reported in [16] have demonstrated the

superior performance of AMA over ADMM, we will mainly compare our proposed

algorithm with AMA. We note that cvxclustr does not use the relative KKT resid-

ual as its stopping criterion but used the duality gap in AMA and max{ηP , ηD} ≤ ϵ

in ADMM. To make a fair comparison, we first solve (3.1) using Ssnal with a given

tolerance ϵ, and denote the primal objective value obtained as PSsnal. Then, we run

AMA in cvxclustr and stop it as soon as the computed primal objective function

value (PAMA) is close enough to PSsnal, i.e.,

PAMA − PSsnal ≤ 10−6PSsnal. (3.26)

We note that since (3.1) is an unconstrained problem, the quality of the computed

solutions can directly be compared based on the objective function values. We also

stop AMA if the maximum of 105 iterations is reached.

When we generate the clustering path for the first parameter value of γ, we first

run the Iadmm introduced in Algorithm 3 for 100 iterations to generate an initial

point, then we use Ssnal to solve (3.1). After that, we use the previously computed

optimal solution for the lastest γ as the initial point to warm-start Ssnal for solving

the problem corresponding to the next γ. The same strategy is used in cvxclustr.

3.5.1 Numerical verification of Theorem 3.2

In this section, we demonstrate that the theoretical results we obtained in The-

orem 3.2 are practically meaningful by conducting numerical experiments on a sim-

ulated dataset with five clusters. We generate the five clusters randomly via a 2D

Gaussian kernel. Each of the cluster has 100 data points, as shown in Figure 3.1.

Since we know the cluster assignment for each data point, we can construct the

corresponding centroid problem given in (3.12). Then, we can solve the weighted

convex clustering model (3.1) and the corresponding centroid problem (3.12) sep-

arately to compare the results. In our experiments, we choose the weight wij as
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Figure 3.1: Visualization of the generated data.

follows

wij =


exp(−0.5∥ai − aj∥2) if (i, j) ∈ E ,

0 otherwise.

where E = ∪n
i=1{(i, j) | j is among i’s 30-nearest neighbors, i < j ≤ n} ∪5

α=1 {(i, j) |

i, j ∈ Iα, i < j}.

First, we solve (3.1) and (3.12) separately to find their optimal solutions, denoted

as X∗ = [x∗
1,x

∗
2, . . . ,x

∗
n] and X̄ = [x̄(1), x̄(2), . . . , x̄(K)], respectively. Then, we can

construct the new solution X̂ for (3.1) based on X̄ as

x̂i = x̄(α) ∀ i ∈ Iα, α = 1, . . . , 5.

We also compute the theoretical lower bound γmin and upper bound γmax based on

the formula given in Theorem 3.2, and they are given by

γmin = 1.56× 10−3, γmax = 0.485

in this example.
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Figure 3.2: Left panel: ∥X∗ − X̂∥ vs γ; Right panel: number of clusters vs γ.

Based on the computed results shown in the left panel of Figure 3.2, we can

observe the phenomenon that for very small γ, X∗ and X̂ are different. However,

when γ becomes larger, X∗ and X̂ coincide with each other in that ∥X∗ − X̂∥ is

almost 0 (up to the accuracy level we solve the problems (3.1) and (3.12)). In fact,

we see that for γ larger than the theoretical lower bound γmin but less than γmax, we

have perfect recovery of the clusters by solving (3.1), and when γ is slightly smaller

than γmin, we lose the perfect recovery property.

Furthermore, from our results in Theorem 3.2, we know that when γ is smaller

than γmax but larger than γmin, we should recover the correct number of clusters.

This is indeed observed in the result shown in the right panel of Figure 3.2 where

we track the number of clusters for different values of γ. Moreover, when γ is about

two times larger than γmax, we get a coarsening of the clusters. The results shown

above demonstrate that the theoretical results we have established in Theorem 3.2

are meaningful in practice.

Remark 3.4. Actually, if we consider the convex clustering model with equal weights

for the above example, then, based on the results in part (i) of Corollary 3.1, we can

get the following lower and upper bound for γ:

γ̂min = 1.53× 10−3, γ̂max = 2.00× 10−4,

which is actually not feasible. This example also demonstrates the importance of the

weighted convex clustering model and the new theoretical bounds obtained in Theorem
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3.2.

Next, we show the numerical performance of our proposed optimization algo-

rithm for solving (3.1) via (3.16).

3.5.2 Simulated data

In this section, we show the performance of our algorithm Ssnal on three simu-

lated datasets: Two Half-Moon, Unbalanced Gaussian [59] and semi-spherical shells

data. We compare our Ssnal with the AMA in [16] on different problem scales.

The numerical results in Table 3.2 show the superior performance of Ssnal. We

also visualize some selected recovery results for Two Half-moon and Unbalanced

Gaussian in Figure 3.3.
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Figure 3.3: Selected recovery results by model (3.1) with 2-norm. Left: Two Half-

Moon data with n = 1000, k = 20, γ = 5. Middle: Unbalanced Gaussian data with

n = 6500, k = 10, γ = 1. Right: a subset of MNIST with n = 1000, γ = 1.

Two half-moon data

The simulated data of two interlocking half-moons in R2 is one of the most pop-

ular test examples in clustering. Here we compare the computational time between

our proposed Ssnal and AMA on this dataset with different problem scales. We

note that AMA could not satisfy the stopping criteria (3.26) within 100000 iterations

when n is large. In the experiments, we choose k = 10, ϕ = 0.5 (for the weights
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wij) and γ ∈ [0.2 : 0.2 : 10] (in Matlab notation) to generate the clustering path.

After generating the clustering path with Ssnal, we repeat the experiments using

the same pre-stored primal objective values and stop the AMA using the criterion

(3.26). We report the average time for solving each problem (50 in total) in Table

3.2. Observe that our Ssnal can be more than 50 times faster than AMA.

Table 3.2: Computation time (in seconds) comparison on the Two Half-Moon data.

(— means that the maximum number of 100,000 iterations is reached)

n 200 500 1000 2000 5000 10000

AMA 0.41 4.43 28.27 78.36 — —

Ssnal 0.11 0.19 0.49 0.91 3.82 9.15

We also compare the recovery performance between the convex clustering model

(3.1) and K-means (3.3). We choose the Rand Index [32] as the metric to evaluate

the performance of these two clustering algorithms. In Figure 3.4, we can see that

comparing to the K-means model, the convex clustering model is able to achieve a

much better Rand Index, even when the number of clusters is not correctly identified.

Unbalanced Gaussian and semi-spherical shells data

Next, we show the performance of Ssnal and AMA on the Unbalanced Gaussian

data points in R2 [59]. In this experiment, we solve (3.1) with k = 10, ϕ = 0.5 and

γ ∈ [0.2 : 0.2 : 2]. For this dataset, we have scaled it so that each entry is in the

interval [0, 1]. We can see from Figure 3.3 that the convex clustering model (3.1)

can recover the cluster assignments perfectly with well chosen parameters.

In the experiments, we find that AMA has difficulties in reaching the stopping

criterion (3.26). We summarize some selected results in Table 3.3, wherein we report

the computation times and iteration counts for both AMA and Ssncg. Note that

we report the number of Ssncg iterations because each of these iterations constitute

the main cost for Ssnal. In Figure 3.5, we show the recovery performance between

the convex clustering model and K-means on this dataset.
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Figure 3.4: Clustering performance (in terms of the Rand Index) of the convex

clustering and K-means models on the Two Half Moon dataset.
Table 3.3: Numerical results on Unbalanced Gaussian data.

γ 0.2 0.4 0.6 0.8 1.0

tAMA 264.54 256.21 260.06 262.16 263.27

tSsnal 1.15 0.57 0.65 0.64 0.83

IterAMA 100000 97560 97333 100000 100000

IterSsncg 23 21 24 24 27

In order to test the performance of our Ssnal on large data set, we also generate

a data set with 200,000 points in R3 such that 50% of the points are uniformly

distributed in a semi-spherical shell whose inner and outer surfaces have radii equal

to 1.0 and 1.4, respectively. The other 50% of the points are uniformly distributed

in a concentric semi-spherical shell whose inner and outer surfaces have radii equal

to 1.6 and 2.0, respectively. Figure 3.6 depicts the recovery result when we use only
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Figure 3.5: Clustering performance (in terms of the Rand Index) of the convex

clustering and K-means models on the Unbalanced Gaussian dataset.

6,000 points. For the data set with n = 200,000, our algorithm takes only 374

seconds to solve the model (3.1) when we choose γ = 50, ϕ = 0.5 and k = 10. In

solving the problem, our algorithm used 32 Ssncg iterations and the average number

of CG steps needed to solve the large linear system (3.24) is 79.3 only. Thus, we can

see that our algorithm can be very efficient in solving the convex clustering model

(3.1) even when the data set is large. Note that we did not run AMA as it will take

too much time to solve the problem.

3.5.3 Real data

In this section, we compare the performance of our proposed Ssnal with AMA

on some real datasets, namely, MNIST, Fisher Iris, WINE, Yale Face B(10Train

subset). For real datasets, a preprocessing step is sometimes necessary to transform

the data to one whose features are meaningful for clustering. Thus, for a subset of



3.5 Numerical experiments 63

Figure 3.6: Recovery result by model (3.1) for a semi-spherical shells data set with

6, 000 points.

MNIST (we selected a subset because AMA cannot handle the whole dataset), we

first apply the preprocessing method described in [48]. Then we apply the model

(3.1) on the preprocessed data. The comparison results between Ssnal and AMA

on the real datasets are presented in Table 3.4. One can observe that Ssnal can be

much more efficient than AMA.

Table 3.4: Computation time comparison on real data. (*) means that the maximum

of 100000 iterations is reached for all instances.

Dataset d n AMA(s) Ssnal(s)

MNIST 10 1,000 79.48 1.47

MNIST 10 10,000 1753.8∗ 69.3

Fisher Iris 4 150 0.58 0.16

WINE 13 178 2.62 0.19

Yale Face B 1024 760 211.36 35.13

3.5.4 Sensitivity with different γ

In order to generate a clustering path for a given dataset, we need to solve (3.1)

for a sequence of γ > 0. So the stability of the performance of the optimization
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algorithm with different γ is very important. In our experiments, we have found

that the performance of AMA is rather sensitive to the value of γ in that the time

taken to solve problems with different values of γ can vary widely. However, Ssnal

is much more stable. In Figure 3.7, we show the comparison between Ssnal and

AMA on both the Two Half-Moon and MNIST datasets with γ ∈ [0.2 : 0.2 : 10].
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Figure 3.7: Time comparison between Ssnal and AMA on both Two Half-Moon

and MNIST data with γ ∈ [0.2 : 0.2 : 10].

3.5.5 Scalability of our proposed algorithm

In this section, we demonstrate the scalability of our algorithm Ssnal. Before

we show the numerical results, we give some insights as to why our algorithm could

be scalable. Recall that the most computationally expensive step in our framework

is in using the semismooth Newton-CG method to solve (3.22). However, if we

look inside the algorithm, we can see that the key step is to use the CG method

to solve (3.24) efficiently to get the Newton direction. According to our complexity

analysis in Section 3.4.4, the computational cost for one step of the CG method is

O(d|E|+ d|Ê |). By the specific choice of E , |E| and |Ê | should only grow slowly with

n. The low computational cost for the matrix-vector product in our CG method,

the rapid convergence of the CG method, and the fast convergence of the Ssncg

are the key reasons behind why our algorithm can be scalable and efficient.
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In our experiments, we set ϕ = 0.5, k = 10 (the number of nearest neighbors).

Then we solve (3.1) with γ ∈ [0.4 : 0.4 : 20]. After generating the clustering path,

we compute the average time for solving a single instance of (3.1) for each problem

scale. Another factor related to the scalability is the number of neighbors k used

to generate E in (3.1). So, we also show the performance of Ssnal with different

values of k. For each k ∈ [5 : 5 : 50], we generate the clustering path for the Two

Half-Moon data with n = 2000. Then we report the average time for solving a single

instance of (3.1) for each k. We summarize our numerical results in Figure 3.8. We

can observe that the computation time grows almost linearly with n and k.
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Figure 3.8: Numerical results to demonstrate the scalability of our proposed algo-

rithm Ssnal with respect to n and k.

Comparing to the numerical results reported in [16] and [54] with n ≤ 500 and

n ≤ 600, respectively, in our experiments, we apply our algorithm on the Half-Moon

data with n ranging from 100 to 20000. Together with the semi-spherical shells with

200,000 data points, our results have convincingly demonstrated the scalability of

Ssnal.

3.6 Summary of the chapter

In this chapter, we mainly focus on the convex clustering model. We first es-

tablish the theoretical perfect recovery guarantee for the general weighted convex



66 Chapter 3. Convex Clustering

clustering model (3.1) under some mild sufficient conditions. Then, we propose

a semismooth Newton CG based augmented Lagrangian method (Ssnal) to solve

the convex clustering model efficiently. We numerically validate the feasibility of

our proposed sufficient condition for the recovery properties of the weighted convex

clustering model via a randomly generated example from a mixture of Gaussian

distributions. Also, we demonstrate the efficiency and robustness of the algorithm

Ssnal for solving the general convex clustering model.



Chapter 4
Intra-group Level Feature Selection

In this chapter, we focus on the topic of the intra-group level feature selection.

As we discussed in section 1.1.2, the exclusive lasso regularizer can enforce this kind

of desired structured sparsity. Consider a given positive weight vector w ∈ ℜn
++, and

a partition of variable index groups G := {g|g ⊆ {1, 2, . . . , n}} such that
⋃

g∈G g =

{1, 2, . . . , n} and gi
⋂
gj = ∅ for any gi, gj ∈ G. For x ∈ ℜn, the weighted exclusive

lasso regularizer is defined as

ΩG,w(x) :=
∑

g∈G∥wg ◦ xg∥21, (4.1)

where “◦” denotes the Hadamard product, and xg denotes the sub-vector of x with

those elements not in g removed from x.

In order to demonstrate the power of the exclusive lasso regularizer in intra-group

level feature selection, in this chapter, we consider the machine learning model with

the exclusive lasso regularizer.

For given data A ∈ ℜm×n, y ∈ ℜm, a partition of variable index groups G :=

{g|g ⊆ {1, 2, . . . , n}} and weights {wg|g ∈ G}, we consider the following machine

learning model:

min
x
l(A, y;x) + λ

∑
g∈G

∥wg ◦ xg∥21, (4.2)

where l(A, y;x) is the loss function.

In this chapter, we will mainly focus on the following points.

67
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(1) Inspired by [38], we propose a dual Newton based preconditioned proximal

point algorithm (PPDNA) to solve the machine learning models with the ex-

clusive lasso regularizer.

(2) We provide a rigorous proof for the closed-form solution to the proximal map-

ping of ∥w ◦ ·∥21 and derive the corresponding generalized Jacobian. These re-

sults are critical for the computational efficiency of various algorithmic frame-

works for solving (4.2).

(3) We demonstrate numerically that PPDNA is highly efficient and robust com-

paring to ILSA, APG and ADMM, even with the availability of the closed-form

proximal mapping of the exclusive lasso regularizer. Furthermore, we apply

the exclusive lasso model in index ETF and achieve better out-of-sample re-

sults, comparing to the lasso and group lasso model.

The remaining parts of the paper are organized as follows. In section 4.1, we pro-

pose the preconditioned proximal point algorithm (preconditioned PPA) for solving

a general 2-block convex composite programming problem. And the dual Newton

algorithm (DNA) for solving the PPA subproblem is introduced in section 4.2. In

section 4.3, we provide a rigorous proof for the closed-form solution to Proxρ∥w◦·∥21(·),

followed by the derivation of the corresponding HS-Jacobian. In section 4.4, we

present our numerical results when solving regression problems and classification

problems, on both synthetic data and real applications. In the end, we conclude the

chapter and discuss some possible future work.

Notations and preliminaries: For any z ∈ ℜ, sign(z) is defined to be 1 if z ≥ 0,

−1 otherwise. For x ∈ ℜn, denote x+ := max{x, 0} and x− := −min{x, 0}. Denote

In as the identity matrix in ℜn×n. We use “diag(X)” to denote the vector consisting

of the diagonal entries of the matrix X and “Diag(x)” to denote the diagonal matrix

whose diagonal is given by the vector x. For given matrix C, we also use C† to

represent its Moore-Penrose inverse. For any self-adjoint semidefinite linear operator

M : ℜn → ℜn, we define ⟨x, x′⟩M := ⟨x,Mx′⟩, and ∥x∥M :=
√

⟨x, x⟩M for all
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x, x′ ∈ ℜn. Let C be a given subset of ℜn, denote the weighted distance of x ∈ ℜn

to C as distM(x, C) := infx′∈C ∥x− x′∥M. The largest eigenvalue of M is denoted as

λmax(M).

For any closed proper convex funtion p : ℜn → (−∞,∞], the conjugate function

is defined as p∗(z) := supx∈ℜn{⟨x, z⟩ − p(x)}. The Moreau envelope of p at x is

defined by

Ep(x) := min
y∈ℜn

{p(y) + 1

2
∥y − x∥2},

and the associated proximal mapping is

Proxp(x) := arg min
y∈ℜn

{p(y) + 1

2
∥y − x∥2}.

It is known that ∇Ep(x) = x− Proxp(x) and Proxp(x) is Lipschitz continuous with

modulus 1 [49, 53, 63].

4.1 A preconditioned proximal point algorithm for

solving the exclusive lasso problem

The exclusive lasso problem is a special case of the following general 2-block

convex composite programming problem, which is given as

min
x

{f(x) := h(Ax)− ⟨c, x⟩+ p(x)}, (4.3)

where A : ℜn → ℜm is a linear mapping, c ∈ ℜn, h : ℜm → ℜ is a smooth

convex function, and p : ℜn → (−∞,+∞] is a closed, proper, convex function. In

particular, if p(·) = λΩG,w(·), where ΩG,w(·) is the exclusive lasso regularizer defined

in (4.1) and λ > 0 is a parameter, then (4.3) is reduced to the so-called exclusive

lasso model.

Define the proximal residual function R : ℜn → ℜn by

R(x) = x− Proxp(x−A∗∇h(Ax) + c), ∀x ∈ ℜn, (4.4)
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and the set-valued map Tf (x) := ∂f(x). Assume that the solution set Ω to (4.3) is

nonempty. The first order optimality condition of (4.3) implies that x̄ ∈ Ω if and

only if R(x̄) = 0.

The proximal point algorithm (PPA) [62, 63] is a well established algorithmic

framework for solving the minimization problems. Under mild conditions, the PPA is

proved to have an asymptotic superlinear convergence rate. Recently, Li et.al extend

the classical PPA to the preconditioned proximal point algorithm (preconditioned

PPA) in [38]. In this section, we apply the preconditioned PPA to solve the general

2-block convex composite programming problem.

4.1.1 Preconditioned PPA for 2-block convex composite pro-

gramming problem

For any starting point x0 ∈ ℜn, the preconditioned PPA generates a sequence

{xk} ⊆ ℜn by the following approximate rule:

xk+1 ≈ Pk(x
k) := arg min

x∈ℜn
{f(x) + 1

2σk
∥x− xk∥2Mk

}

= arg min
x∈ℜn

{h(Ax)− ⟨c, x⟩+ p(x) +
1

2σk
∥x− xk∥2Mk

}, (4.5)

where {σk} is a sequence of nondecreasing positive real numbers (σk ↑ σ∞ ≤ ∞)

and {Mk} is a sequence of self-adjoint positive definite linear operators satisfying

the following conditions:

Mk ⪰ Mk+1, Mk ⪰ λminIn, ∀k ≥ 0,

with some constant λmin > 0. When Mk ≡ In for all k ≥ 0, the preconditioned

PPA reduces to the classical PPA.

To ensure the convergence of the preconditioned PPA, we need the following
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stopping criteria as proposed in [38]:

∥xk+1 − Pk(x
k)∥Mk

≤ ϵk, ϵk ≥ 0,
∞∑
k=0

ϵk <∞, (A)

∥xk+1 − Pk(x
k)∥Mk

≤ δk∥xk+1 − xk∥Mk
, 0 ≤ δk < 1,

∞∑
k=0

δk <∞. (B)

4.1.2 Convergence of the preconditioned PPA

We adopt the convergence results of the preconditioned PPA here for the con-

venience of the readers, which can be found in [38].

Theorem 4.1. (1) Let {xk} be the sequence generated by the preconditioned PPA

(4.5) with the stopping criterion (A). Then {xk} is bounded and

distMk+1
(xk+1,Ω) ≤ distMk

(xk,Ω) + ϵk, ∀k ≥ 0.

In addition, {xk} converges to some x∗ ∈ Ω.

(2) Let r :=
∑∞

i=0 ϵk + distM0(x
0,Ω). Assume that for this r > 0, there exists

a κ > 0 such that the monotone multifunction Tf (x) associated with (4.3)

satisfies the following error bound assumption

dist(x,Ω) ≤ κdist(0, Tf (x)), ∀x ∈ ℜn satisfying dist(x,Ω) ≤ r. (4.6)

Suppose that {xk} is generated by the preconditioned PPA with the stopping

criteria (A) and (B). Then it holds for all k ≥ 0 that

distMk+1
(xk+1,Ω) ≤ µkdistMk

(xk,Ω), (4.7)

where

µk =
1

1− δk

δk + (1 + δk)κλmax(Mk)√
σ2
k + κ2λ2max(Mk)

→ µ∞ =
κλ∞√

κ2λ2∞ + σ2
∞
< 1, k → ∞,

where λ∞ = limk→∞ λmax(Mk). In addition, it holds that for all k ≥ 0,

dist(xk+1,Ω) ≤ µk√
λmin(Mk+1)

distMk
(xk,Ω).
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The following proposition, which is an application of [88, Theorem 2], can be

used to establish error bound conditions for many commonly used loss function plus

piecewise linear-quadratic regularizer.

Proposition 9. Assume that Ω is non-empty and compact. Suppose that (1) h

is continuously differentiable on ℜm and strongly convex on any compact convex

set in ℜm; (2) p(·) is a piecewise linear-quadratic convex function. Then for any

ξ ≥ infx∈ℜn f(x), there exist constants κ, ε > 0 such that

dist(x,Ω) ≤ κ∥R(x)∥ for all x ∈ ℜn with f(x) ≤ ξ, ∥R(x)∥ ≤ ε.

Proof. From [88, Proposition 1], we know that that there exists a ȳ ∈ ℜm such that

Ax = ȳ, A∗∇h(Ax)− c = ḡ, ∀x ∈ Ω,

where ḡ = A∗∇h(ȳ)− c. Consider the collection C := {Γh(ȳ),Γp(ḡ)}, where

Γh(y) := {x ∈ ℜn | Ax = y}, Γp(g) := {x ∈ ℜn | −g ∈ ∂p(x)}.

Since Γh(ȳ) is the set of solutions to a linear system, it is a polyhedral closed convex

set. According to [61, Corollary 23.5.1],

Γp(ḡ) := {x ∈ ℜn | −ḡ ∈ ∂p(x)} = {x ∈ ℜn | x ∈ ∂p∗(−ḡ)} = ∂p∗(−ḡ).

Since p is piecewise linear-quadratic, p∗ is also piecewise linear-quadratic by [64, The-

orem 11.14(b)]. Then ∂p and ∂p∗ are both polyhedral due to [64, Proposition 10.21].

Therefore, Γh(ȳ) and Γp(ḡ) are closed convex polyhedral sets. Due to [6, Corollary

3], we can see that C is boundedly linearly regular. Since ∂p∗ is a polyhedral multi-

function, we can see from [22, Proposition 3H.1] that ∂p∗ is calm at−ḡ for any x̄ ∈ Ω,

thus ∂p = (∂p∗)−1 is metrically subregular at x̄ for −ḡ [22, Theorem 3H.3]. There-

fore, by [88, Theorem 2], the solution map Γ(y, g) := {x ∈ ℜn | Ax = y,−g ∈ ∂p(x)}

is calm at (ȳ, ḡ) for any x̄ ∈ Ω. Then the desired conclusion holds by [88, Corollary

1].
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For the exclusive lasso regularized models, we can see from the next proposition

that the error bound assumption (4.6) holds for the linear regression problem and the

logistic regression problem, which means the preconditioned PPA can be expected

to have fast linear convergence.

Proposition 10. Assume that in (4.3), p(·) = λΩG,w(·). Then the error bound

assumption (4.6) holds in the following two cases:

(1) h(y) =
∑m

i=1(yi − bi)
2/2, for some given vector b ∈ ℜm;

(2) h(y) =
∑m

i=1 log(1 + exp(−biyi)), for some given vector b ∈ ℜm and bi = 1 or

−1.

Proof. (1) When h(y) =
∑m

i=1(yi−bi)2/2, f(·) is a piecewise linear-quadratic convex

function, from [66], Tf (·) is piecewise polyhedral, thus it satisfies the error bound

assumption (4.6) [38, 60].

(2) When h(y) =
∑m

i=1 log(1+exp(−biyi)), since f(·) is nonnegative, and f(x) →

+∞ as ∥x∥ → +∞, Ω is non-empty and compact. Given r > 0, define Ωr := {x ∈

ℜn | dist(x,Ω) ≤ r}. Due to the fact that Ω is compact, Ωr is compact and thus

ξ := maxx∈Ωr f(x) is finite. From Proposition 9, we know that for this ξ, there exist

constants κ, ε > 0 such that

dist(x,Ω) ≤ κ∥R(x)∥ for all x ∈ ℜn with f(x) ≤ ξ, ∥R(x)∥ ≤ ε, (4.8)

where R(x) is defined as in (4.4). We consider two cases:

Case 1: x ∈ Ωr and ∥R(x)∥ ≤ ε. From (4.8), we have dist(x,Ω) ≤ κ∥R(x)∥;

Case 2: x ∈ Ωr and ∥R(x)∥ > ε. Then dist(x,Ω) ≤ (r/ε)ε ≤ (r/ε)∥R(x)∥.

Therefore, it holds that

dist(x,Ω) ≤ max{κ, (r/ε)}∥R(x)∥, ∀x ∈ Ωr = {x ∈ ℜn | dist(x,Ω) ≤ r}.

We follow the ideas in [21, Theorem 3.1] and [20, Proposition 2.4]. Let y ∈ Tf (x),

which means y ∈ A∗∇h(Ax)−c+∂p(x), we have that x = Proxp(x+y−A∗∇h(Ax)+
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c). Thus

∥R(x)∥ = ∥Proxp(x−A∗∇h(Ax) + c)− Proxp(x+ y −A∗∇h(Ax) + c)∥ ≤ ∥y∥.

As a result,

dist(x,Ω) ≤ max{κ, (r/ε)}dist(0, Tf (x)), ∀x ∈ Ωr = {x ∈ ℜn | dist(x,Ω) ≤ r}.

Note that the key challenge in executing the preconditioned PPA is whether the

nonsmooth problem (4.5) can be solved efficiently. We consider two special cases:

one is Mk ≡ In for all k ≥ 0, the other is Mk ≡ In + τA∗A, where τ > 0 is a given

positive number. In order to get a superlinear (or even quadratic) convergence rate

in the subroutines, we design a dual Newton algorithm (DNA) to solve (4.5) for

these two cases.

4.2 A dual Newton algorithm for solving the sub-

problem

For all k ≥ 0, we aim to solve the preconditioned PPA subproblem

min
x∈ℜn

{fk(x) := h(Ax)− ⟨c, x⟩+ p(x) +
1

2σk
∥x− xk∥2Mk

}. (4.9)

Obviously, fk(·) is a strongly convex function, albeit nonsmooth or non-Lipschitian.

Thus the above minimization problem admits a unique solution x̄k+1. The main

point is how one can solve (4.9) in a fast and robust way. Our choice is the dual

Newton algorithm (DNA).

4.2.1 The case when Mk ≡ In

In this case, one can write (4.9) equivalently as

min
x,z∈ℜn,y∈ℜm

{h(y)− ⟨c, x⟩+ p(x) +
1

2σk
∥x− xk∥2 | Ax− y = 0}. (4.10)
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The dual of the above problem, after ignoring the constant term, is

max
u∈ℜn

{ϕk(u) := −h∗(u)− 1

2σk
∥xk + σk(c−A∗u)∥2 + 1

σk
Eσkp(x

k + σk(c−A∗u))}.

(4.11)

Suppose that the following assumption holds for h∗.

Assumption 4.1. h∗(·) is twice continuously differentiable and strongly convex with

modulus αh in int(dom(h∗)).

It needs to be mentioned that when we consider the least squares loss function

h(y) =
∑m

i=1(yi−bi)2/2, Assumption 4.1 holds with αh = 1. Under Assumption 4.1,

we can see that ϕk(·) is strongly concave, thus (4.11) has a unique optimal solution

ūk+1, and x̄k+1 can be obtained by

x̄k+1 = Proxσkp(x
k + σk(c−A∗ūk+1)).

Since ϕk(·) is continuously differentiable, ūk+1 can be obtained by solving the fol-

lowing nonlinear and nonsmooth equation

∇ϕk(u) = −∇h∗(u) +AProxσkp(x
k + σk(c−A∗u)) = 0.

Now we can give the full expression of the preconditioned PPA with subproblems

solved by the DNA, which is given in Algorithm 9.

As one can see in the algorithm, we need the implementations of the stopping

criteria (A) and (B) associated with uk+1 and xk+1. By the discussions in [39,45,62],

the stopping criteria (A) and (B) can be achieved by the following implementable

criteria:

∥∇ϕk(u
k+1)∥ ≤

√
αh/σkϵk, ϵk ≥ 0,

∞∑
k=0

ϵk <∞, (A’)

∥∇ϕk(u
k+1)∥ ≤

√
αh/σkδk∥xk+1 − xk∥, 0 ≤ δk < 1,

∞∑
k=0

δk <∞. (B’)

Then we need to discuss how to solve (4.12) in Algorithm 9. For a fixed σ > 0,

x̃ ∈ ℜn, we aim to solve

min
u∈ℜn

{ϕ(u) := −h∗(u)− 1

2σ
∥x̃+ σ(c−A∗u)∥2 + 1

σ
Eσp(x̃+ σ(c−A∗u))},
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Algorithm 9: PPDNA for (4.3)
Initialization: Choose x0 ∈ ℜn, σ0 > 0. For k = 0, 1, 2, . . . . Repeat

Step 1 . Compute

uk+1 ≈ argmax{ϕk(u)}, (4.12)

xk+1 = Proxσkp(x
k + σk(c−A∗uk+1)), (4.13)

where ϕk(·) is defined as in (4.11), to satisfy the stopping conditions (A) and (B).

Step 2 . Update σk+1 ↑ σ∞ ≤ ∞.

Until stopping criterion is satisfied.

which is equivalently to solve the nonsmooth equation

∇ϕ(u) = −∇h∗(u) +AProxσp(x̃+ σc− σA∗u). (4.14)

Note that ∇ϕ(·) is Lipschitz continuous, but not differentiable. Due to the quadratic

convergence of Newton’s method, it is usually the first choice for solving a nonlinear

equation if it can be efficiently implemented. However, the direct application of

Newton’s method to (4.14) is infeasible since the function ∇ϕ(·) is nonsmooth.

Fortunately, the semismooth version of the Newton’s method has been established

in [37, 57]. This allows us to solve (4.14) by a semismooth Newton method (SSN),

which has at least the superlinear convergence property.

We now derive the generalized Jacobian of the Lipschitz continuous function

∇ϕ(·). For given u, the following set-valued map is well defined:

∂̂2ϕ(u) := −∇2h∗(u)− σA∂Proxσp(x̃+ σc− σA∗u)A∗,

where ∂Proxσp(x̃+σc−σA∗u) is the generalized Jacobian of the Lipschitz continuous

mapping Proxσp(·) at x̃ + σc − σA∗u. Then we can treat ∂̂2ϕ(u) as the surrogate

generalized Jacobian of ∇ϕ(·) at point u.

Next we present our semismooth Newton (SSN) method in Algorithm 10 for

solving (4.14), which can be expected to get a fast superlinear (or even quadratic)

convergence rate.
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Algorithm 10: SSN for (4.14)
Initialization: Given u0 ∈ int(dom(h∗)), µ ∈ (0, 1/2), τ ∈ (0, 1], and

γ̄, δ ∈ (0, 1). For j = 0, 1, 2, . . . . Repeat

Step 1 . Select an element Hj ∈ ∂̂2ϕ(uj). Apply the conjugate gradient (CG) method

to find an approximate solution dj ∈ ℜm to

Hj(d
j) ≈ −∇ϕ(uj) (4.15)

such that ∥Hj(d
j) +∇ϕ(uj)∥ ≤ min(η̄, ∥∇ϕ(uj)∥1+τ ).

Step 2 . Set αj = δmj , where mj is the first nonnegative integer m for which

ϕ(uj + δmdj) ≤ ϕ(uj) + µδm⟨∇ϕ(uj), dj⟩.

Step 3 . Set uj+1 = uj + αjd
j .

Until stopping criteria (A’) and (B’) based on uj+1 are satisfied.

The convergence result of the SSN can be found in Theorem 4.2.

Theorem 4.2. Assume that for any σ > 0, Proxσp(·) is strongly semismooth with

respect to ∂Proxσp(·). Let the sequence {uj} be generated by Algorithm 10. Then

{uj} converges to the unique solution ū of the problem in (4.14), and for j sufficiently

large,

∥uj+1 − ū∥ = O(∥uj − ū∥1+τ ),

where τ ∈ (0, 1] is a given constant in the algorithm, which is typically chosen to be

0.5 in our experiments.

Proof. By [86, Proposition 3.3 and Theorem 3.4], we can see that {uj} converges to

the unique solution ū. Then by mimicking the proof of [40, Theorem 3], we can get

the convergence rate of {uj}.

Remark 4.1. Note that all finite-valued convex functions are semismooth [46]. In

particular, we consider the case for p(·) = λΩG,w(·). It can be proved in the next
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section that Proxσp(·) is strongly semismooth with respect to ∂HSProxσp(·), where

∂HSProxσp(·) is the HS Jacobian of Proxσp(·).

We should emphasize that the efficiency in computing the Newton direction in

(4.15) depends critically on exploiting the sparse structure of the generalized Hessian

of the underlying nonsmooth function, which in turns relies on the structure of the

generalized Jacobian of Proxσp(·). The case of p(·) = λΩG,w(·) will be discussed in

the next section, where an important property called the second-order sparsity is

carefully treated in the implementation.

4.2.2 The case when Mk ≡ In + τA∗A

In some cases, Assumption 4.1 may not hold, e.g. when h(y) = ∥y − b∥2 for a

given vector b ∈ ℜm. Then we can choose Mk ≡ In + τA∗A, where τ is a given

positive number. The reason why we add the A∗A term is to deal with the function

h∗.

To be specific, (4.9) can be equivalently written as

min
x

{h(y)− ⟨c, x⟩+ p(x) +
1

2σk
∥x− xk∥2 + τ

2σk
∥y −Axk∥2 | Ax− y = 0}. (4.16)

As discussed before, we can solve (4.16) by the dual Newton algorithm. The dual

of (4.16) is given as

max
u

{ψk(u) := − τ

2σk
∥Axk + σk

τ
u∥2 + τ

σk
Eσkh/τ (Ax

k +
σk
τ
u) +

τ

2σk
∥Axk∥2

− 1

2σk
∥xk + σk(c−A∗u)∥2 + 1

σk
Eσkp(x

k + σk(c−A∗u)) +
1

2σk
∥xk∥2}.

(4.17)

As long as we can obtain ūk+1 ∈ argmaxψk(u), the update of x in the preconditioned

PPA will be obtained by

x̄k+1 = Proxσkp(x
k + σkc− σkA∗ūk+1).

Therefore, one can still apply the general algorithmic framework Algorithm 9 to

solve (4.3) in this case by replacing ϕk(·) in (4.12) by ψk(·) in (4.17). The following
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proposition shows that the stopping criteria (A) and (B) can be achieved by using

uk+1 and xk+1. The result is adapted from [42].

Proposition 11. Suppose we use the preconditioned PPA to solve (4.3) with Mk ≡

In + τA∗A, where τ is a given positive number. The stopping criteria (A) and (B)

can be achieved by the following two implementable ones:

fk(x
k+1)− ψk(u

k+1) ≤ ϵ2k
2σk

, ϵk ≥ 0,
∞∑
k=0

ϵk <∞, (A”)

fk(x
k+1)− ψk(u

k+1) ≤ δ2k
2σk

∥xk+1 − xk∥2Mk
, 0 ≤ δk < 1,

∞∑
k=0

δk <∞, (B”)

where fk(·) is defined in (4.9) and ψk(·) is defined in (4.17).

Proof. By noting that

fk(x) = f(x) +
1

2σk
∥x− xk∥2Mk

,

we know from [64, Exercise 8.8] that

∂fk(x) = ∂f(x) +
1

σk
Mk(x− xk).

Since Pk(x
k) = argmin fk(x), we have that 0 ∈ ∂fk(Pk(x

k)), which means there

exists v ∈ ∂f(Pk(x
k)) such that

0 = v +
1

σk
Mk(Pk(x

k)− xk).

Since fk(Pk(x
k)) = inf fk, it holds that

fk(x
k+1)− inf fk ≥ f(xk+1)− inf fk +

1

2σk
∥xk+1 − xk∥2Mk

− 1

2σk
∥Pk(x

k)− xk∥2Mk

= f(xk+1)− inf fk +
1

2σk
⟨xk+1 + Pk(x

k)− 2xk, x
k+1 − Pk(x

k)⟩Mk

≥ ⟨v, xk+1 − Pk(x
k)⟩+ 1

2σk
⟨xk+1 + Pk(x

k)− 2xk, x
k+1 − Pk(x

k)⟩Mk

=
1

2σk
∥xk+1 − Pk(x

k)∥2Mk
.

By the strongly duality, we know that inf fk = supψk, thus

1

2σk
∥xk+1−Pk(x

k)∥2Mk
≤ fk(x

k+1)−inf fk = fk(x
k+1)−supψk ≤ fk(x

k+1)−ψk(u
k+1).
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Therefore, the stopping criteria (A) and (B) can be achieved by:

fk(x
k+1)− ψk(u

k+1) ≤ ϵ2k
2σk

, ϵk ≥ 0,
∞∑
k=0

ϵk <∞, (A”)

fk(x
k+1)− ψk(u

k+1) ≤ δ2k
2σk

, 0 ≤ δk < 1,
∞∑
k=0

δk <∞. (B”)

Now we discuss how to solve (4.17). As one can see, ψk is continuously differen-

tiable with

∇ψk(u) = −Proxσkh/τ (Ax
k +

σk
τ
u) +AProxσkp(x

k + σk(c−A∗u)).

The surrogate generalized Jacobian of the Lipschitz continuous function ∇ψk(·) at

the point u can be defined as

∂̂2ψk(u) := −σk
τ
∂Proxσkh/τ (Ax

k +
σk
τ
u)− σkA∂Proxσkp(x̃+ σkc− σkA∗u)A∗.

Under some conditions on h, e.g. the elements in ∂Proxνh(·) are positive definite

for any ν > 0, one can still apply the SSN algorithm to solve (4.17) just as in the

previous subsection.

Remark 4.2. Consider the logistic regression problem, i.e. h(y) =
∑m

i=1 log(1 +

exp(−biyi)), for some given vector b ∈ {−1, 1}m. Since it can be proved that h∗(·)

satisfies Assumption 4.1, it is natural for us to apply the classical PPA (precondi-

tioned PPA with Mk ≡ In). Besides, we can also apply the preconditioned PPA

with Mk ≡ In+τA∗A, and the motivation is that the condition number of the linear

system in the SSN will be better. For the proximal mapping of h, it can be computed

coordinate-wise via Newton’s method efficiently.

4.3 Closed-form solution to the proximal mapping

of ρ∥w ◦ ·∥21 and its generalized Jacobian

Due to the discussion in the previous section, when we want to solve the exclusive

lasso model with the PPDNA algorithm, we need the proximal mapping Proxp(·)
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and its generalized Jacobian. In this section, for a given weight vector w ∈ ℜn
++

and ρ > 0, we derive the closed-form solution to Proxρ∥w◦·∥21(·) and its generalized

Jacobian. From there, the results for Proxp(·) can be obtained readily.

4.3.1 Closed-form solution to Proxρ∥w◦·∥21(·)

We first consider the case when a ≥ 0, then it is easy to see that Proxρ∥w◦·∥21(a)

could be equivalently computed via

x(a) := arg min
x∈ℜn

{1
2
∥x− a∥2 + ρ∥w ◦ x∥21 | x ≥ 0}

= arg min
x∈ℜn

{1
2
∥x− a∥2 + ρxT (wwT )x | x ≥ 0}. (4.18)

Note that since the objective function is strongly convex, the above minimization

problem obtains a unique solution, which can be computed as in the following propo-

sition.

Proposition 12. Given ρ > 0 and a ∈ ℜn
+. Let aw ∈ ℜn be defined as (aw)i := ai/wi,

for i = 1, · · · , n (here, we assume w > 0). There exists a permutation matrix Πaw

such that Πawaw is sorted in a non-increasing order. Denote ã = Πawa, w̃ = Πaww,

and

si =
i∑

j=1

w̃j ãj, Li =
i∑

j=1

w̃2
j , αi =

si
1 + 2ρLi

, i = 1, 2, . . . , n.

Let ᾱ = max1≤i≤n αi. Then, x(a) defined in (4.18) can be computed as x(a) =

(a− 2ρᾱw)+.

Proof. The Karush-Kuhn-Tucker (KKT) conditions for (4.18) are given by

x− a+ 2ρwwTx+ µ = 0, µ ◦ x = 0, µ ≤ 0, x ≥ 0, (4.19)

where µ ∈ ℜn is the dual multiplier. If (x∗, µ∗) satisfies the KKT conditions (4.19),

by denoting β = wTx∗, we can see that

x∗ + µ∗ = a− 2ρβw, µ∗ ◦ x∗ = 0, µ∗ ≤ 0, x∗ ≥ 0.
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Therefore, (x∗, µ∗) have the representations:

x∗ = (a− 2ρβw)+, µ∗ = −(a− 2ρβw)−.

Then our aim is to find the value of β. By the definition of β, we can see that

β =
n∑

i=1

wix
∗
i =

n∑
i=1

wi(ai − 2ρβwi)
+ =

n∑
i=1

w2
i ((aw)i − 2ρβ)+ =

n∑
i=1

w̃2
i ((Πawaw)i − 2ρβ)+.

Note that there must exist j such that (Πawaw)j > 2ρβ, otherwise, we have β = 0,

which contradicts the above formula. Since Πawaw is sorted in a non-increasing

order, there exists k such that (Πawaw)i = ãi/w̃i ≥ 2ρβ, for all i = 1, . . . , k, and

(Πawaw)i = ãi/w̃i < 2ρβ, for all i = k + 1, . . . , n. Therefore,

β =
k∑

i=1

w̃2
i ((Πawaw)i − 2ρβ) =

k∑
i=1

w̃iãi − 2ρβ
k∑

i=1

w̃2
i = sk − 2ρβLk,

which means

β =
sk

1 + 2ρLk

.

Claim that β = ᾱ, where ᾱ is defined as in the statement of the proposition. Since

0 ≤ αk − αk−1 =
sk

1 + 2ρLk

− sk−1

1 + 2ρLk−1

=
(1 + 2ρLk−1)sk − (1 + 2ρLk)sk−1

(1 + 2ρLk)(1 + 2ρLk−1)

=
w̃2

k(1 + 2ρLk)(ãk/w̃k − 2ραk)

(1 + 2ρLk)(1 + 2ρLk−1)
,

then, ãk/w̃k ≥ 2ραk. Furthermore,

0 < αk − αk+1 =
sk

1 + 2ρLk

− sk+1

1 + 2ρLk+1

=
(1 + 2ρLk+1)sk − (1 + 2ρLk)sk+1

(1 + 2ρLk)(1 + 2ρLk+1)

=
w̃2

k+1(1 + 2ρLk)(2ραk − ãk+1/w̃k+1)

(1 + 2ρLk)(1 + 2ρLk−1)
,

which implies that 2ραk > ãk+1/w̃k+1. As a result, ã1/w̃1 ≥ · · · ≥ ãk/w̃k ≥ 2ραk >

ãk+1/w̃k+1 ≥ · · · ≥ ãn/w̃n. By the definition of κ, we can see that β = ᾱ.

Therefore, since the solution to (4.18) is unique, we have

x(a) = x∗ = (a− 2ρβw)+ = (a− 2ρᾱw)+.
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With the results above, we now give the closed-form solution to Proxρ∥w◦·∥21(a)

for any a ∈ ℜn.

Proposition 13. For given ρ > 0 and a ∈ ℜn, we have

Proxρ∥w◦·∥21(a) = sign(a) ◦ Proxρ∥w◦·∥21(|a|) = sign(a) ◦ x(|a|),

where x(|a|) is defined in (4.18) and can be computed by Proposition 12. Conse-

quently, Proxρ∥w◦·∥21(a) can be computed in O(n log n) operations.

Proof. Since ∥w ◦ x∥21 is invariant to the changes of signs, the conclusions of this

proposition hold.

Remark 4.3. The closed form solution to the proximal mapping of ρ∥w ◦ ·∥21 is

consistent with the result in [35, Proposition 4]. However, in section 4.1 of [35], after

a change of variables, the author try to find the optimal solution of a constrained

optimization problem by directly setting the gradient to zero (equations (23) and

(24) in [35]). Although the obtained closed-form solution formula is correct, but this

heuristic proof is not mathematically rigorous.

4.3.2 The generalized Jacobian of Proxρ∥w◦·∥21(·)

In order to design the SSN method to solve the nonsmooth equations involving

Proxρ∥w◦·∥21(·), it is critical for us to derive an explicit formula for some form of the

generalized Jacobian of Proxρ∥w◦·∥21(·). Here, we derive a specific element in the set

of the so-called HS-Jacobian of Proxρ∥w◦·∥21(·) based on the quadratic programming

(QP) reformulation of Proxρ∥w◦·∥21(·).

By Proposition 13, we know that in order to get the generalized Jacobian of

Proxρ∥w◦·∥21(·), we need to study the generalized Jacobian of x(a) first. For any

a ∈ ℜn
+, if we denote

Q = In + 2ρwwT ∈ ℜn×n,

(4.18) can be equivalently written as

x(a) = arg min
x∈ℜn

{1
2
⟨x,Qx⟩ − ⟨x, a⟩ | x ≥ 0

}
. (4.20)
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Based on the above strongly convex QP, we can derive the HS-Jacobian of x(a) by

applying the general results established in [29, 40], which will be described in the

following paragraphs.

As one can see from (4.19) and the fact that x(a) admits a unique solution, the

corresponding dual multiplier µ also has a unique solution, which can be denoted as

µ(a). The optimality of x(a) given in (4.19) can be equivalently given as

Qx(a)− a+ µ(a) = 0, µ(a)Tx(a) = 0, µ(a) ≤ 0, x(a) ≥ 0. (4.21)

Denote the active set

I(a) := {i ∈ {1, . . . , n} | x(a) = 0}. (4.22)

Now, we define a collection of index sets:

K(a) := { K ⊆ {1, . . . , n} | K ⊆ I(a), supp(µ(a)) ⊆ K, IK is of full row rank},

where supp(µ(a)) denotes the set of indices i such that µ(a)i ̸= 0 and IK is the

matrix obtained from the rows of In, indexed by K. Note that the set K(a) is non-

empty [29]. Since the B-subdifferential ∂Bx(a) is usually very difficult to compute,

in [40], generalizing the concept in [29], we define the following multi-valued mapping

∂HSx(a): ℜn ⇒ ℜn×n:

∂HSx(a) :=
{
P ∈ ℜn×n | P = Q−1 −Q−1ITK

(
IKQ

−1ITK
)−1

IKQ
−1, K ∈ K(a)

}
(4.23)

as a computational replacement for ∂Bx(a). The set ∂HSx(a) is known as the HS-

Jacobian of x(·) at a. The following proposition from [40] provides a computationally

efficient way to get an element in ∂HSx(a) without the need to compute µ(a).

Proposition 14. ( [40, Proposition 2]) For a ∈ ℜn
+, there exists a neighborhood U

of a such that for any a′ ∈ U , it holds that K(a′) ⊆ K(a), ∂HSx(a
′) ⊆ ∂HSx(a). If

K(a′) ⊆ K(a), then

x(a′) = x(a) + P (a′ − a), ∀P ∈ ∂HSx(a
′).
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Furthermore, let I(a) be given in (4.22), then

Ω := Q−1 −Q−1ITI(a)(II(a)Q
−1ITI(a))

†II(a)Q
−1 ∈ ∂HSx(a).

Based on the results in Proposition 13 and Proposition 14, we can now compute

a specific element in ∂HSProxρ∥w◦·∥21(·) at any a ∈ ℜn as follows.

Theorem 4.3. Given a ∈ ℜn, ρ > 0, the HS-Jacobian ∂HSProxρ∥w◦·∥21(a) can be

given as

∂HSProxρ∥w◦·∥21(a) =
{

ΘPΘ | P ∈ ∂HSx(|a|)
}
,

where ∂HSx(·) is defined as in (4.23) and Θ = Diag(sign(a)). Moreover, M0 ∈ ℜn×n

given by

M0 := ΘP0Θ, with P0 = Q−1 −Q−1ITI(|a|)
(
II(|a|)Q

−1ITI(|a|)
)†
II(|a|)Q

−1. (4.24)

is an element in the HS-Jacobian ∂HSProxρ∥w◦·∥21(a).

For efficient implementation, we can use the result in the following proposition

to compute M0 in (4.24).

Proposition 15. Define ξ ∈ ℜn with ξi = 1 if i ∈ I(|a|), and ξi = 0 otherwise, and

Ξ = Diag(ξ). Then denoting w̃ = Θ(In−Ξ)w, M0 defined in (4.24) can be computed

as

M0 = In − Ξ− 2ρ

1 + 2ρ(w̃T w̃)
w̃w̃T .

Proof. It can be proved that

ITI(|a|)
(
II(|a|)Q

−1ITI(|a|)
)†
II(|a|) = (ΞQ−1Ξ)† = Ξ(ΞQ−1Ξ)†Ξ,

where the last inequality follows from the fact that Ξ is a 0-1 diagonal matrix. Then

by [40, Proposition 3], we can see that

P0 = Q−1 −Q−1ITI(|a|)
(
II(|a|)Q

−1ITI(|a|)
)†
II(|a|)Q

−1

= Q−1 −Q−1Ξ(ΞQ−1Ξ)†ΞQ−1

= (ΣQΣ)†,
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where Σ = In − Ξ, is also a 0-1 diagonal matrix. Since Q = In + 2ρwwT ∈ ℜn×n,

denoting ŵ = Σw, we have that

P0 = (ΣQΣ)† = (Σ + 2ρŵŵT )† = Σ− 2ρ

1 + 2ρ(ŵT ŵ)
ŵŵT .

Note that Θ = Diag(sign(a)) is a diagonal matrix with its diagonal elements being

1 or −1. Thus

M0 = ΘΩΘ = Θ(Σ− 2ρ

1 + 2ρ(ŵT ŵ)
ŵŵT )Θ = Σ− 2ρ

1 + 2ρ(ŵT ŵ)
w̃w̃T = Σ− 2ρ

1 + 2ρ(w̃T w̃)
w̃w̃T ,

where w̃ = Θŵ = Θ(In − Ξ)w.

As one can see, Proxρ∥w◦·∥21(·) is piecewise linear and Lipschitz continuous, thus

it is directionally differentiable [25]. And from Proposition 14, we can obtain that

there exists a neighborhood U of a such that for all a′ ∈ U ,

Proxρ∥w◦·∥21(a
′)− Proxρ∥w◦·∥21(a)−M(a′ − a) = 0, ∀M ∈ ∂HSProxρ∥w◦·∥21(a

′).

Therefore, Proxρ∥w◦·∥21(·) is strongly semismooth with respect to ∂HSProxρ∥w◦·∥21(·).

4.4 Numerical experiments

In this section, we perform some numerical experiments to test our proposed

algorithm PPDNA to solve the commonly used exclusive lasso model. For simplicity,

we take the weight vector w to be all ones. The exclusive lasso model can be

described as

min
x∈Rn

{
h(Ax) + λ

∑
g∈G

∥xg∥21
}
, (4.25)

where G = {g | g ⊆ {1, 2, . . . , n}} is a disjoint partition of {1, 2, . . . , n}, A ∈ Rm×n

and λ > 0. By taking c = 0, and p(x) = λ
∑

g∈G ∥xg∥21, we can reformulate (4.25) in

the form of (4.3). Thus, all the analyses in previous sections are applicable for the

above model. All our computational results are obtained by running Matlab on a

windows workstation (12-core, Intel Xeon E5-2680 @ 2.50GHz, 128G RAM).
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In the numerical experiments, we mainly focus on two aspects. (1) We compare

our proposed PPDNA for solving (4.25) to three popular state-of-the-art first-order

methods, ILSA [34], ADMM with step length κ = 1.618 [26] and APG with restart

under the setting described in [9]. To demonstrate the efficiency and scalability

of PPDNA, we perform the time comparison on synthetic datasets over a range of

problem dimensions. (2) We apply the exclusive lasso model (4.25) with least squares

loss function to ETF index tracking in finance. The out-of-sample results show the

superior performance of the exclusive lasso model in index tracking, comparing to

the lasso model and the group lasso model.

We stop all the four algorithms by the following criterion based on the relative

KKT residual:

ηKKT :=
∥x− Proxp(x− AT∇h(Ax)∥
1 + ∥x∥+ ∥AT∇h(Ax)∥

≤ ϵ,

where ϵ > 0 is a given tolerance, which is set to 1e-6 in our experiments. We

also terminate PPDNA when it reaches the maximum iteration count of 1e2 and

terminate ILSA, ADMM and APG when they reach the maximum iteration count

of 5e5. In addition, we set the maximum computation time as 1 hour.

4.4.1 The regularized linear regression problem with syn-

thetic data

In this subsection, we test the efficiency of PPDNA for solving (4.25) with h(y) :=∑m
i=1(yi − bi)

2/2, and compare it against ILSA, ADMM and APG on simulated

datasets. In this case, we apply the classical PPDNA, which means Mk ≡ In.

Here we focus on the time comparison among the algorithms. For the comparison of

prediction errors among the exclusive lasso, lasso and other linear regression models,

we refer the readers to [11] for more details.

In the experiments, we adopt the design of synthetic datasets described in [11].

We generate the synthetic data using the model b = Ax∗ + ϵ, where x∗ is the

predefined true solution and ϵ ∼ N (0, Im) is a random noise vector. Given the
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number of observations m, the number of groups s and the number of features p

in each group, for the matrix A ∈ Rm×sp, we generate each row of A by sampling

a vector from a multivariate normal distribution N (0,Σ), where Σ is a Toeplitz

covariance matrix with entries Σij = 0.9|i−j| for features in the same group, and

Σij = 0.3|i−j| for features in different groups. For the ground-truth x∗, we randomly

generate 10 nonzero elements in each group with values drawn i.i.d from the uniform

distribution over the interval [0, 10].

Here we mainly focus on feature selection by the exclusive lasso model in the

high-dimensional settings. Hence, we fix m to be 200 and s to be 20, but vary

the number of features p in each group from 50 to 1000. That is, we vary the

total number of features n = sp from 1000 to 20000. To compare the robustness

of different algorithms with respect to the hyperparameter λ, we test all the algo-

rithms under two widely different values of λ. The results are shown in Figure 4.1,

which demonstrate the superior performance of PPDNA, especially for large-scale

instances, comparing to ILSA, ADMM and APG.
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Figure 4.1: Time comparison among PPDNA, ILSA, ADMM and APG for linear

regression on synthetic datasets. The black dash line with ′×′ represents that the

algorithm fails to solve the instance.

More results on higher dimensional cases are shown in Table 4.1. As one can

see from Figure 4.1, APG and ILSA are not efficient enough to solve large-scale
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instances, thus we only compare PPDNA with ADMM in these cases.

Table 4.1: Time comparison between PPDNA and ADMM for linear regression on

synthetic datasets. Time is in the format of (hours:minutes:seconds). Bold fonts

mean that the algorithm fails to solve the instance.

iter ηKKT time

Data (m, s, p) λ PPDNA | ADMM PPDNA | ADMM PPDNA | ADMM

(500, 20, 2000) 1e-1 23 | 23332 8.5e-7 | 1.0e-6 00:00:37 | 00:08:08

1e-3 30 | 167472 6.3e-7 | 1.5e-6 00:00:33 | 01:00:00

(500, 20, 3000) 1e-1 23 | 46226 3.9e-7 | 2.1e-6 00:00:48 | 01:00:00

1e-3 29 | 50402 7.9e-7 | 9.0e-6 00:00:49 | 01:00:01

(1000, 20, 2000) 1e-1 21 | 16208 5.0e-7 | 1.0e-6 00:01:27 | 00:09:03

1e-3 28 | 89242 7.8e-7 | 1.0e-6 00:01:48 | 00:50:41

(1000, 20, 4000) 1e-1 22 | 15644 7.1e-7 | 1.2e-5 00:02:03 | 01:00:00

1e-3 29 | 15680 9.7e-7 | 3.6e-3 00:02:28 | 01:00:01

4.4.2 The regularized logistic regression problem with syn-

thetic data

In this subsection, we show the performance of PPDNA for solving the logistic

regression model with the exclusive lasso regularizer. The logistic regression model

could be formulated by taking

h(y) =
m∑
i=1

log(1 + exp(−biyi))

in (4.25), where b ∈ {−1, 1}m is given. For robustness, we apply the precon-

ditioned PPA with Mk ≡ In + τA∗A to solve this exclusive lasso model with

τ = 1/λmax(AA
T ).

We use the same synthetic datasets described in the previous subsection, except

for letting bi = 1 if Ax∗ + ϵ ≥ 0, and bi = −1 if otherwise. As one can see

in the previous subsection, APG and ILSA are very time-consuming when solving
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large-scale exclusive lasso problems compared to PPDNA and ADMM. Thus for

logistic regression problems, we only compare PPDNA with ADMM (we describe

the ADMM for solving the regularized logistic regression problem in Remark 4.4).

The numerical results are shown in Table 4.2.

Table 4.2: Time comparison between PPDNA and ADMM for logistic regression on

synthetic datasets. Time is in the format of (hours:minutes:seconds). Bold fonts

mean that the algorithm fails to solve the instance.

iter ηKKT time

Data (m, s, p) λ PPDNA | ADMM PPDNA | ADMM PPDNA | ADMM

(500, 20, 3000) 1e-1 13 | 1689 5.2e-7 | 1.0e-6 00:00:19 | 00:02:27

1e-3 48 | 5850 9.4e-7 | 1.0e-6 00:00:27 | 00:06:38

1e-5 73 | 17208 9.3e-7 | 1.0e-6 00:00:37 | 00:16:52

(500, 20, 5000) 1e-1 12 | 2167 2.6e-7 | 1.0e-6 00:00:32 | 00:04:45

1e-3 37 | 6187 2.1e-7 | 1.0e-6 00:00:38 | 00:10:17

1e-5 67 | 21584 8.9e-7 | 1.0e-6 00:00:52 | 00:33:54

(1000, 20, 5000) 1e-1 13 | 1186 2.9e-7 | 1.0e-6 00:01:09 | 00:06:12

1e-3 47 | 5593 6.6e-7 | 1.0e-6 00:01:35 | 00:22:45

1e-5 66 | 17829 9.9e-7 | 2.2e-6 00:01:45 | 01:00:00

(1000, 20, 8000) 1e-1 13 | 1947 9.1e-8 | 1.0e-6 00:01:58 | 00:14:02

1e-3 57 | 6991 9.2e-7 | 1.0e-6 00:02:41 | 00:39:01

1e-5 89 | 10519 9.7e-7 | 1.4e-5 00:03:40 | 01:00:00

(2000, 20, 10000) 1e-1 11 | 1625 7.3e-7 | 1.0e-6 00:04:32 | 00:33:02

1e-3 62 | 3522 6.0e-7 | 5.8e-5 00:07:16 | 01:00:05

1e-5 79 | 4415 9.9e-7 | 2.5e-4 00:08:32 | 01:00:05

Remark 4.4. The minimization form of the dual of (4.3) is given as

min
w,u∈ℜm,v∈ℜn

{h∗(w) + p∗(v) | A∗u+ v − c = 0, w − u = 0}. (4.26)



4.4 Numerical experiments 91

The augmented Lagrangian function associated with (4.26) is

Lσ(w, u, v;x, y) =h
∗(w) + p∗(v)− ⟨x,A∗u+ v − c⟩ − ⟨y, w − u⟩

+
σ

2
∥A∗u+ v − c∥2 + σ

2
∥w − u∥2.

The alternating direction method of multipliers (ADMM) for solving (4.3) and (4.26)

could be described as follows:

uk+1 = argmin
u

Lσ(w
k, u, vk;xk, yk), (4.27a)

(wk+1, vk+1) = argmin
w,v

Lσ(w, u
k+1, v;xk, yk), (4.27b)

xk+1 = xk − κσ(A∗uk+1 + vk+1 − c), yk+1 = yk − κσ(wk+1 − uk+1), (4.27c)

where the step length κ = 1.618 and σ > 0 is a given parameter. For the subproblem

(4.27b), we have that

wk+1 = Proxh∗/σ(u
k+1 + yk/σ)

= (uk+1 + yk/σ)− 1

σ
Proxσh(σu

k+1 + yk),

vk+1 = Proxp∗/σ(−A∗uk+1 + c+ xk/σ)

= (−A∗uk+1 + c+ xk/σ)− 1

σ
Proxσp(−σA∗uk+1 + σc+ xk),

where the Moreau identity Proxtp(x)+tProxf∗/t(x/t) = x is used. For the subproblem

(4.27a), the optimality condition is

(Im +AA∗)u = A(c+ xk/σ − vk) + (wk − yk/σ).

One can solve this linear system by a direct solver or use an iterative solver such as

the preconditioned conjugate gradient method.

4.4.3 Application: index exchange-traded fund (index ETF)

In this subsection, we apply the exclusive lasso model in a realistic application

in finance. Consider the portfolio selection problem where a fund manager wants to

select a small subset of stocks (to minimize transaction costs and business analyses)
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to track a target time series such as the S&P 500 index. Furthermore, in order to

diversify the risks, the portfolio is required to span across all sectors. Such a problem

naturally leads us to consider the exclusive lasso model for this application.

In our experiments, we download all stock price data in the US market between

2018-01-01 and 2018-12-31 (251 trading days) from Yahoo finance [1]. We drop the

stock if more than 10% of its price data is missing. After that, we get 3074 stocks

in our stock universe. For the remaining stocks, we handle the missing data via

the common practice of forward interpolation. We then compute the daily return

and get the historical return matrix R ∈ R250×3074. We try to build a portfolio

to track the popular S&P 500 index. Let y ∈ R250 be the daily return of the

S&P 500 index in 2018. Since there are 12 sectors in the US market (e.g., finance,

healthcare, technology, etc.), we have a natural group partition for our stock universe

as GUS = {g1, g2, . . . , g12}, where gi is the index set for stocks in the i-th sector.

To test the performance of the exclusive lasso model in index tracking, we use the

rolling window method to test the in-sample and out-of-sample performance of the

model. We use the historical data in the last 90 trading days to estimate a portfolio

vector via the model for the future 10 days. More specifically, at day T, we solve

the following optimization problem (we explain why we could drop the constraints:

x ≥ 0 and
∑

i xi = 1 in Remark 4.5.):

x∗T = argmin
x

1

2
∥RTx− yT∥22 + λT

∑
g∈GUS

∥xg∥21,

where RT , yT are the daily return matrix of all stocks in our stock universe and

S&P 500 index in the last 90 trading days prior to day T, respectively. We select

the hyperparameter λT using 9-folds cross validation. After we get the estimated

portfolio vector x∗T , we invest in the market based on it for the next 10 trading days.

The in-sample and out-of-sample performance of the exclusive lasso model, the lasso

model and the group lasso model are shown in Figure 4.2.

Remark 4.5. Here we explain why we can drop the simplex constraint x ≥ 0,∑
i xi = 1 in the index ETF application. We assume that we can short stocks in the
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Figure 4.2: In-sample and out-of-sample performance of the exclusive lasso, the

group lasso and the lasso model for index tracking of S&P 500.

market, which means we can drop the nonnegative constraint x ≥ 0. Furthermore,

we assume the interest rate is rC. Then, for a given return vector r ∈ ℜn of n stocks

and a weight vector x∗, the return of the whole investment is given by

rTx∗ + (1−
n∑

i=1

x∗i )rC =
n∑

i=1

(ri − rC)x
∗
i + rC .

Then, if we assume rC = 0, or we set

r = r − rC , y = y − rC .

We could drop the constraint
∑n

i=1 xi = 1 in the index ETF model.

For in-sample performance, we just show the selected results of one rolling win-

dow. The performance demonstrates the viability of using the exclusive lasso model

in index tracking by selecting a small subset of about 80 stocks from the large uni-

verse of 3074 stocks. For comparison, the lasso model selects about 70 stocks and

the group lasso model selects about 2000 since the group lasso could only enforce

sparsity on the sector level.

We plot the percentage of stocks from each sector in the portfolio obtained from

the three previously mentioned models in Figure 4.3. The result shows that our

exclusive lasso model can select stocks from all the 12 sectors, but the lasso model
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Figure 4.3: Percentage of selected stocks by sectors. Top left: exclusive lasso model.

Top right: lasso model. Bottom: group lasso model.

selects stocks only from 10 sectors and the group lasso model selects stocks only

from 6 sectors in the universe.

4.5 Summary of the chapter

In this chapter, we provide a rigorous proof for the closed-form solution to

Proxρ∥w◦·∥21(·) and derive its corresponding HS-Jacobian. Based on these theoretical

results, we design an efficient and scalable second-order based algorithm PPDNA

to solve the exclusive lasso model. We also apply the exclusive lasso model in in-

dex ETF, which achieves better out-of-sample performance comparing to the lasso

model and group lasso model.



Chapter 5
Simultaneous Clustering and Feature

Selection

In this section we focus on the sparse convex clustering model which can do

clustering and intra-group level feature selection simultaneously for high dimensional

data. We consider the following sparse convex clustering model:

min
X∈ℜp×n

1

2
∥X − A∥2F + γ1

∑
i<j

wij∥X·,i −X·,j∥2 + γ2

n∑
i=1

∥X·,i∥21, (5.1)

where γ1, γ2 are two positive hyper-parameters, wij ≥ 0 are given weights, A =

[a1, a2, . . . , an] ∈ ℜp×n and X = [x1, x2, . . . , xn] ∈ ℜp×n are the concatenations of

{a1, a2, . . . , an} and {x1, x2, . . . , xn}, respectively. Here X·,i = xi ∈ ℜp is the i-th

column of X.

By ignoring the terms with wij = 0, we consider the following problem

min
X∈ℜp×n

1

2
∥X − A∥2F + γ1

∑
(i,j)∈E

wij∥X·,i −X·,j∥2 + γ2

n∑
i=1

∥X·,i∥21, (5.2)

where E := {(i, j)|wij > 0}.

As discussed in section 1.1.3, the exclusive lasso regularization term
∑n

i=1 ∥xi∥21
in the model (5.2) can help the convex clustering model also to perform the data

point-wise feature selections simultaneously.

95
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The remaining parts of this chapter will be organized as follows: we will introduce

a semismooth Newton based augmented Lagrangian method (Ssnal) for solving

three-blocks convex composite programming problem in section 5.1. In section 5.2,

we will introduce a semismooth Newton method to solve the subproblem involved in

the Ssnal framework. As necessary ingredients for applying Ssnal in solving the

sparse convex clustering model (5.2), we will recap some results derived in Chapter 3

and Chapter 4 in section 5.3. In section 5.4, we will present some numerical results.

5.1 A semismooth Newton based augmented La-

grangian method

In this section, we will introduce a semismooth Newton based augmented La-

grangian method (Ssnal) for solving a class of three-blocks convex composite pro-

gramming problem, which will include the sparse convex clustering model as a spe-

cial case.

5.1.1 Ssnal for three-blocks convex composite programming

problem

Consider the following three-blocks convex composite programming problem

min
X∈X

f(X) + g(AX) + h(X), (5.3)

where f : X → ℜ is a strongly convex and twice continuously differentiable function,

g : Y → ℜ, h : X → ℜ are convex, closed and proper functions, which could be

nonsmooth. A : X → Y is a linear mapping and X ,Y are finite dimensional

Euclidean spaces. Furthermore, we assume that the proximal mappings Proxρg(·)

and Proxρh(·) could be computed efficiently for any ρ > 0.
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Note that (5.2) is a special case of (5.3) by taking

X = ℜp×n, Y = ℜp×|E|,

f(X) =
1

2

n∑
i=1

∥X·,i − A·,i∥22, g(Y ) = γ1
∑

(i,j)∈E

wij∥Yij∥2, h(X) = γ2

n∑
i=1

∥X·,i∥21,

where

AX = [(X·,i −X·,j)](i,j)∈E ∈ ℜp×|E|.

Next, we derive the dual problem of (5.3). First, we write (5.3) equivalently as

min
X,Y,Z

{f(X) + g(Y ) + h(Z) | AX − Y = 0, X − Z = 0}, (P)

Denote the Lagrangian function of (P) as

l(X,Y, Z;V,W ) = f(X) + g(Y ) + h(Z) + ⟨V,AX − Y ⟩+ ⟨W,X − Z⟩.

The minimization form of the dual problem for (P ) is given by

min
V,W

{f ∗(−A∗V −W ) + g∗(V ) + h∗(W )}, (D)

where f ∗(·), g∗(·) and h∗(·) are the conjugate functions of f(·), g(·) and h(·), respec-

tively. The KKT condition for (P) and (D) is as follows:

(KKT )



∇f(X) +A∗V +W = 0,

Y − Proxg(V + Y ) = 0,

Z − Proxh(W + Z) = 0,

AX − Y = 0,

X − Z = 0.

Now, we introduce the augmented Lagrangian method (Alm) for solving (P),

which will also solve the dual problem (D) as a byproduct. For a given parameter

σ > 0, the augmented Lagrangian function associated with (P) is given by

Lσ(X,Y, Z;V,W ) = l(X,Y, Z;V,W ) +
σ

2
(∥AX − Y ∥22 + ∥X − Z∥22).

We describe the Ssnal algorithm for solving (P) in Algorithm 11.
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Algorithm 11: Ssnal for (P)
Initialization: Choose (X0, Y 0, Z0) ∈ X × Y × X and (V 0,W 0) ∈ Y × X ,

σ0 > 0. For k = 0, 1, . . . , repeat

Step 1 . Compute

(Xk+1, Y k+1, Zk+1) ≈ argmin{Φk(X,Y, Z) = Lσk
(X,Y, Z;V k,W k)} (5.4)

to satisfy the conditions (A), (B1) and (B2).

Step 2 . Compute

V k+1 = V k + σk(AXk+1 − Y k+1),

W k+1 = W k + σk(X
k+1 − Zk+1).

Step 3 . Update σk+1 ↑ σ∞ ≤ ∞.

Until stopping criteria is satisfied.

To ensure the convergence of the algorithm, we need the following stopping

criteria

Φk(X
k+1, Y k+1, Zk+1)− inf Φk ≤ ϵ2k/2σk,

∞∑
k=0

ϵk < +∞, (A)

Φk(X
k+1, Y k+1, Zk+1)− inf Φk ≤ (δ2k/2σk)∥(V k+1,W k+1)− (V k,W k)∥2,

∞∑
k=0

δk < +∞,

(B1)

dist(0, ∂Φk(X
k+1, Y k+1, Zk+1)) ≤ (δ′k/σk)∥(V k+1,W k+1)− (V k,W k)∥, 0 ≤ δ′k → 0,

(B2)

where {ϵk}, {δk} and {δ′k} are given sequences of nonnegative numbers.

The inexact augmented Lagrangian method is a well established algorithmic

framework for solving convex programming problems [62, 63], which is proved to

have an asymptotically superlinear convergence rate. The challenges for the inexact

Alm is to solve (5.4) efficiently. In the next section, we will introduce the semis-

mooth Newton method (Ssn) to solve (5.4), which could achieve superlinear (even



5.2 Semismooth Newton-CG method for the subproblem (5.4) 99

quadratic) convergence rate.

5.2 Semismooth Newton-CG method for the sub-

problem (5.4)

In this section, we will design a semismooth Newton-CG algorithm to solve

(5.4). For a given σ > 0, and (Ṽ , W̃ ) ∈ Y × X , the subproblem in each iteration of

Algorithm 11 is given by

min
X,Y,Z

Φ(X,Y, Z) = Lσ(X,Y, Z; Ṽ , W̃ ). (5.5)

Since Φ(X,Y, Z) is strongly convex, the optimization problem (5.5) admits a unique

optimal solution, which we denote as (X̄, Ȳ , Z̄). Now, for any X ∈ X , denote

ϕ(X) := inf
Y,Z

Φ(X,Y, Z)

= f(X) + g(Proxg/σ(AX + Ṽ /σ)) +
σ

2
∥(AX + Ṽ /σ)− Proxg/σ(AX + Ṽ /σ)∥2

+ h(Proxh/σ(X + W̃/σ)) +
σ

2
∥(X + W̃/σ)− Proxh/σ(X + W̃/σ)∥2 − 1

2σ
(∥Ṽ ∥22 + ∥W̃∥22).

(5.6)

Then, we can solve for (X̄, Ȳ , Z̄) as follows:

X̄ = argmin
X

ϕ(X), Ȳ = Proxg/σ(AX̄ + Ṽ /σ), Z̄ = Proxh/σ(X̄ + W̃/σ).

It’s not difficult to see that ϕ(X) is strongly convex and continuously differentiable.

The gradient ∇ϕ(X) of ϕ(X) is given by

∇ϕ(X) = ∇f(X) + σA∗(AX + Ṽ /σ)− σA∗Proxg/σ(AX + Ṽ /σ)

+ σ(X + W̃/σ)− σProxh/σ(X + W̃/σ).

We know that X̄ can be obtained by solving the following nonlinear equation

∇ϕ(X) = 0. (5.7)
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As one can see, since Proxg/σ(·) and Proxh/σ(·) are Lipschitz continuous, ∇ϕ(·) is

locally Lipschitz continuous. However, ∇ϕ(X) is not differentiable.

As discussed in Chapter 3 and Chapter 4, Proxρ∥·∥2(·) and Proxρ∥·∥21(·) are strongly

semismooth. Hence ∇ϕ(·) is strongly semismooth. This allows us to solve (5.7) by

the semismooth Newton method, which enjoys the quadratic convergence rate [46].

In order to apply the semismooth Newton method, we now derive the generalized

Jacobian of the locally Lipschitz function ∇ϕ(·). For a given X ∈ X , the following

set-valued map is well defined:

∂̂2ϕ(X) =

∇2f(X) + σA∗(I − P)A+ σ(I − Q)

∣∣∣∣∣∣ P ∈ ∂Proxg/σ(AX + Ṽ /σ)

Q ∈ ∂Proxh/σ(X + W̃/σ)

 ,

(5.8)

where ∂Proxg/σ(AX + Ṽ /σ) and ∂Proxh/σ(X + W̃/σ) are the generalized Jacobians

of the Lipschitz continuous mappings Proxg/σ(·) and Proxh/σ(·) at AX + Ṽ /σ and

X + W̃/σ, respectively.

Now, we present our semismooth Newton-CG (Ssncg) method for solving (5.4),

which can be expected to have a fast superlinear or even quadratic convergence.

Next, we give the implementable stopping criteria of the stopping criteria (A),

(B1) and (B2) for Algorithm Ssncg to solve the subproblem of Algorithm Ssnal.

When we apply the Ssncg algorithm to solve (5.4), we have that

Xk+1 = SSNCG(V k,W k, σk),

Y k+1 = Proxg/σk
(AXk+1 + V k/σk), Zk+1 = Proxh/σk

(Xk+1 +W k/σk).

Denote ϕk(X) = infY,Z Φk(X,Y, Z), then

Φk(X
k+1, Y k+1, Zk+1)− inf Φk = ϕk(X

k+1)− inf ϕk.

Suppose that f is strongly convex with modulus αf , then we have that

Φk(X
k+1, Y k+1, Zk+1)− inf Φk = ϕk(X

k+1)− inf ϕk ≤ (1/(2αf ))∥∇ϕk(X
k+1)∥2

and

(∇ϕk(X
k+1), 0, 0) ∈ ∂Φk(X

k+1, Y k+1, Zk+1).
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Algorithm 12: Ssncg(Ṽ , W̃ , σ) for (5.5)
Initialization: Given X0 ∈ X , µ ∈ (0, 1/2), τ ∈ (0, 1], and γ̄, δ ∈ (0, 1).

For j = 0, 1, 2, . . . , repeat

Step 1 . Select an element Hj ∈ ∂̂2ϕ(Xj) that is defined in (5.8). Apply the

conjugate gradient (CG) method to find an approximate solution dj ∈ X to

Hj(d) ≈ −∇ϕ(Xj) (5.9)

such that

∥Hj(d
j) +∇ϕ(Xj)∥ ≤ min(η̄, ∥∇ϕ(Xj)∥1+τ ).

Step 2 . (Line search) Set αj = δmj , where mj is the first nonnegative integer m

for which

ϕ(Xj + δmdj) ≤ ϕ(Xj) + µδm⟨∇ϕ(Xj), dj⟩.

Step 3 . Set Xj+1 = Xj + αjd
j.

Until stopping criterion based on ∥∇ϕ(Xj+1)∥ is satisfied.

In this way, we can achieve the stopping criteria (A), (B1) and (B2) with the fol-

lowing implementable stopping criteria

∥∇ϕk(X
k+1)∥ ≤

√
αf/σkϵk,

∞∑
k=0

ϵk < +∞, (A’)

∥∇ϕk(X
k+1)∥ ≤

√
αf/σkδk∥(V k+1,W k+1)− (V k,W k)∥2,

∞∑
k=0

δk < +∞, (B1’)

∥∇ϕk(X
k+1)∥ ≤ (δ′k/σk)∥(V k+1,W k+1)− (V k,W k)∥. 0 ≤ δ′k → 0, (B2’)

Therefore, as long as ∇ϕk(X
k+1) is sufficiently small, the stopping criteria (A), (B1)

and (B2) will be satisfied.
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5.3 Proximal mappings and generalized Jacobian

In this section, we will recap some necessary ingredients for applying the Ssnal

to solve the problem (5.2), which have been derived in Chapter 3 and Chapter 4.

As one can see, in order to update Y k and Zk in Algorithm 11, we need the

computation of the proximal mappings of the function g(·) and h(·). In particular,

the function g(·) and h(·) in the sparse convex clustering model (5.2) have the

following form:

g(Y ) = γ1
∑

(i,j)∈E

wij∥Yij∥2, h(X) = γ2

n∑
i=1

∥X·,i∥21.

Since the function g(·) and h(·) are separable, we only need to know how to

compute the proximal mapping of ∥ · ∥2 and ∥ · ∥21, respectively.

For a given function p(·) = ∥ · ∥2, it’s well known that the proximal mapping

Proxtp(x) has the following form:

Proxtp(x) =

[
1− t

∥x∥2

]
+

x.

The proximal mapping of the function ∥ · ∥21 is given by the following proposition

from Chapter 4.

Proposition 16 (Proposition 12, Proposition 13). (a) Given ρ > 0, w ∈ ℜn
++

and a ∈ ℜn
+. Let aw ∈ ℜn be defined as (aw)i := ai/wi, for i = 1, · · · , n. There

exists a permutation matrix Πaw such that Πawaw is sorted in a non-increasing

order. Denote ã = Πawa, w̃ = Πaww, and

si =
i∑

j=1

w̃j ãj, Li =
i∑

j=1

w̃2
j , αi =

si
1 + 2ρLi

, i = 1, 2, . . . , n.

Let ᾱ = max1≤i≤n αi. Then, Proxρ∥w◦·∥(a) can be computed as: Proxρ∥w◦·∥(a) =

(a− 2ρᾱw)+.

(b) For given ρ > 0 and a ∈ ℜn, we have

Proxρ∥w◦·∥21(a) = sign(a) ◦ Proxρ∥w◦·∥21(|a|),
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where Proxρ∥w◦·∥(|a|) can be computed by the result in part (a), and sign(·) is

computed coordinate-wise.

Next, we discuss how to solve the linear system (5.9) for the sparse convex

clustering model (5.2). In the Algorithm 12, we apply the conjugate gradient method

to solve the linear system (5.9). To do so, we need to know how to compute the

matrix vector product Hj(d) efficiently, where Hj ∈ ∂̂2ϕ(Xj) is defined as follows:

∂̂2ϕ(Xj) = {(1 + σ)I + σA∗A− σA∗PA− σQ} ,

where

P ∈ ∂Proxg/σ(AXj + V j/σ), Q ∈ ∂Proxh/σ(X
j +W j/σ).

Thus, the key point is to compute the following two matrix vector product effi-

ciently for a given d ∈ X := ℜp×n.

A∗PA(d) and Q(d).

We know that P has a block diagonal structure, and from the analysis in Chapter

3, we know that we can compute A∗PA(d) efficiently. Now, we recap the important

results.

Let D := AXj + σ−1V j. For (i, j) ∈ E , define

αij =


σ−1γ1wij

∥Dl(i,j)∥ if ∥Dl(i,j)∥ > 0,

∞ otherwise.

Where l(i, j) is the index pair in E (in the lexicographic order) for the pair (i, j).

Note that for the givenD ∈ ℜp×|E|, the cost for computing α is O(p|E|) arithmetic

operations. For later convenience, denote

Ê = {(i, j) ∈ E | αij < 1}.

Now we choose P ∈ ∂Proxg/σ(D) explicitly. We can take P : ℜp×|E| → ℜp×|E|

that is defined by

(P(U))l(i,j) =


αij

⟨Dl(i,j), U l(i,j)⟩
∥Dl(i,j)∥2 Dl(i,j) + (1− αij)U

l(i,j) if (i, j) ∈ Ê ,

0 otherwise,
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for any U ∈ ℜp×|E|.

Based on those notations, we can compute A∗PA(d) efficiently by using the

following proposition.

Proposition 17 (Proposition 8). Let d ∈ ℜp×n be given.

(a) Consider the symmetric matrix M ∈ ℜn×n defined by Mij = 1− αij if (i, j) ∈ Ê

and Mij = 0 otherwise. Let Y = [Mij(d·,i − d·,j)](i,j)∈E = XM, where M is defined

similarly as in (3.5) for the matrix M and di is the i-th column of matrix d. Then

we have

A∗(Y ) = dLM ,

where LM is the Laplacian matrix associated with M . The cost of computing the

result A∗(Y ) is O(d|Ê |) arithmetic operations.

(b) Define ρ ∈ ℜ|E| by

ρl(i,j) :=


αij

∥Dl(i,j)∥2 ⟨D
l(i,j), d·,i − d·,j⟩, if (i, j) ∈ Ê ,

0, otherwise.

For the given D ∈ ℜp×|E|, the cost for computing ρ is O(p|Ê |) arithmetic operations.

Let W l(i,j) = ρl(i,j)D
l(i,j). Then,

A∗(W ) = WJ T = Ddiag(ρ)J T .

(c) The computing cost for A∗PA(d) = A∗(Y ) +A∗(W ) in total is O(p|Ê |).

Next, we show how to compute Q(d) efficiently. Let K = Xj +W j/σ, we know

(Q(d))·,i = Qid·,i,

whereQi ∈ ∂Prox γ2
σ
∥·∥21(K·,i). This motivates us to focus on the efficient computation

of Qi(d·,i). From the results shown in section 4.3.2 of Chapter 4, we know that we

can compute Qi(d·,i) very efficiently.

Based on the discussions above, we know that we can compute the matrix vector

product Hj(d) efficiently, which means the computational cost for each step of the
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conjugate gradient is not expensive. This is the main reason why the proposed

algorithm Ssnal is efficient for solving problem (5.2), especially when the condition

number of Hj is not very bad.

5.4 Numerical experiments

In this section, we will demonstrate that the sparse convex clustering model

(5.2) can do the clustering and feature selection simultaneously for high dimensional

data. Also, we will show the efficiency and scalability of Ssnal for solving (5.2).

We compare the performance of Ssnal with two popular algorithms, iterative least-

squares algorithm (ILSA) 1 [76] and alternating direction method of multipliers

(ADMM).

In order to show the scalability of Ssnal for both the number of data points n

and the dimension of data p, we show two sets of numerical results on simulated

datasets. First, we fix the data dimension p to be 500, and scale the number of

data points n from 1000 to 15000. Then, we fix the number of data points n to be

1000 and scale p from 1000 to 10000. The results show that our proposed algorithm

Ssnal scales linearly on both n and p, which is thus a practically scalable algorithm

for solving (5.2). Although ILSA is popular for solving models involving the ∥ · ∥21
regularizer [34,76], based on our experiments, it’s very challenging for ILSA to solve

(5.2) to moderate accuracy for large scale problems.

We write our code in Matlab. All our experiment results shown in this chapter

are obtained from a desktop having 16 cores with 32 Intel Xeon E5-2650 processors

at 2.6 GHz and 64 GB memory.

In our implementation, we stop our algorithm and ADMM based on the following

criteria:

η = max{ηP , ηD, ηgap} < 10−6,

1We adopt the code provided by the authors at: http://www.makotoyamada-

ml.com/localizedlasso.html
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where

ηP =
∥AX − Y ∥+ ∥X − Z∥
1 + ∥X∥+ ∥Y ∥+ ∥Z∥

, ηD =
∥X − A+A∗V +W∥

∥A∥
, ηgap =

|primobj − dualobj|
1 + |primobj|+ |dualobj|

.

Here, primobj and dualobj are the objective function values of the primal problem

(P) and the dual problem (D), respectively.

In our experiments, we set ϵ = 10−6 unless specified otherwise. We realize that

the stopping criteria of ILSA is different from our mentioned criteria. Moreover, the

dual feasibility is not available since it’s not a primal-dual algorithm. To make a fair

comparison, we stop ILSA based on the objective function value. Since (5.2) is a

unconstrained optimization problem, this criteria is reasonable. More specifically, we

first solve (5.2) via Ssnal with tolerance ϵ = 10−6, and denote the primal objective

function value by PSsnal. Then, we run ILSA and stop it as soon as the computed

objective function value PILSA is close enough to PSsnal, i.e.,

PILSA − PSsnal ≤ 10−6PSsnal. (5.10)

This is a reasonably fair criteria for ILSA since the quality of solutions to an

unconstrained problem could be compared directly based on the objective function

values. Furthermore, we also stop ILSA if the maximum iteration number 1e4 is

reached.

5.4.1 Synthetic datasets

In this section, we show the efficiency and scalability of Ssnal on synthetic data.

In our experiments, we show the scalability of Ssnal for n and p separately. First,

we fix p = 500 and test n from 1000 to 15000. Then, we fix n = 1000 and test p

from 1000 to 10000. For each pair of (p, n), we test Ssnal, ADMM and ILSA for

hyperparameters (γ1, γ2) in (5.2) with values γ1 ∈ [1 : 1 : 10] and γ2 ∈ [0.2 : 0.2 : 1].

Furthermore, we pick the weight wij as follows

wij =

 exp(−0.5∥A·,i − A·,j∥2), if (i, j) ∈ E ,

0, otherwise,
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Figure 5.1: performance of (5.2) on a synthetic high dimensional dataset with un-

informative features.

where E =
⋃
{(i, j) | j is in i’s 10 nearest neighbors}. For each pair of (p, n), we

compute the average running time of each algorithm over 50 runs. We compare the

three algorithms on the average running time.

Similar to [76], we generate the random data A ∈ ℜp×n as follows:

Aij =



Unif(7, 8) if (i, j) ∈ [1 : p/10]× [1 : n/4],

Unif(3, 4) if (i, j) ∈ [1 + p/10 : 2p/10]× [1 + n/4 : n/2],

Unif(−1, 0) if (i, j) ∈ [1 + 2 ∗ p/10 : 3p/10]× [1 + n/2 : 3n/4],

Unif(−5,−4) if (i, j) ∈ [1 + 3p/10 : 4p/10]× [1 + 3n/4 : n],

Unif(−1, 1) Otherwise.

Before we show the efficiency and robustness of Ssnal for solving (5.2), we show

a simple example in Figure 5.1 to demonstrate the power of model (5.2) in high

dimensional clustering with uninformative features.

In the example, we generate the synthetic data A ∈ ℜ30×15 with the following

settings:

Aij =



Unif(5, 6) if (i, j) ∈ [1 : 3]× [1 : 5],

Unif(1, 2) if (i, j) ∈ [4 : 6]× [6 : 10],

Unif(−2,−3) if (i, j) ∈ [7 : 9]× [11 : 15],

Unif(−1, 1) Otherwise.
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Figure 5.2: Time comparison among three algorithms on the synthetic data. Left:

run time for the three algorithms with p = 500 and n varies from 1000 to 15000.

Right: run time for the three algorithms with n = 1000 and p varies from 1000 to

10000.

We can see that model (5.2) could do clustering and feature selection at the same

time, which is important and meaningful in clustering high dimensional data with

uninformative features.

Now, we demonstrate the scalability of our proposed algorithm Ssnal for solving

(5.2) in Figure 5.2. From the graph, we can see that our algorithm scales very well

on the number of data points n. However, for the Ssnal, it’s a little bit challenging

for the algorithm to scale well on the dimension of the data p. One reason why

the algorithm does not scale very well on p is because of the difficulties come from

the regularizer
∑

(i,j)∈E wi,j∥X·,i − X·,j∥2 in the model (5.2). As a future research

direction, we will investigate on how to design an algorithm that can scale well both

on p and n. In addition, we will conduct in deep analysis on how to implement

Ssnal more efficient to make it scale well with respect to p.
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5.4.2 COIL 20 image dataset

In this section, we will apply the sparse convex clustering model on the Columbia

object image library (COIL 20) [50]. COIL 20 dataset contains images for 20 objects

from 72 different angels. The size for each gray image is 32 × 32. Some example

images in the dataset could be found in Figure 5.3.

Figure 5.3: Sample images in the COIL 20 dataset.

We will apply the sparse convex clustering model (5.2) to do the clustering on

this dataset. In the experiment, we reshape each image as a vector in ℜ1024 and

concatenate all the 1440 images together to form the input matrix A ∈ ℜ1024×1440

in the model (5.2). After we solve the optimization problem and obtain the optimal

solution X̄, we apply the agglomerative hierarchical clustering algorithm on X̄ to

obtain the clusters.

We compare the performance of the sparse convex clustering model with the

convex clustering model (by taking γ2 = 0 in (5.2)) and K-means algorithm based

on the adjusted rand index introduced in [32].
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In the experiments of the sparse convex clustering model (5.2) and convex clus-

tering model (by taking γ2 = 0 in (5.2) ) we pick the weight wij as follows

wij =

 exp(−0.5∥A·,i − A·,j∥2), if (i, j) ∈ E ,

0, otherwise,

where E =
⋃
{(i, j) | j is in i’s 10 nearest neighbors}. We run the sparse convex

clustering model (5.2) with γ1 ∈ {1, 2, . . . , 15}, γ2 ∈ {0.1, 0.5, 1} and the convex

clustering model with γ1 ∈ {1, 2, . . . , 15}, γ2 = 0. The best ARI for both models are

shown in Table 5.1.

Table 5.1: Adjusted Rand Index (ARI) results on the COIL20 dataset. Larger ARI

means better performance. p is the dimension of the dataset, n is the number of

data points and K is the number of clusters.

p n K Sparse Convex Clustering Convex Clustering K-means

(γ1 = 3, γ2 = 0.5) (γ1 = 6, γ2 = 0)

1024 1440 20 0.7352 0.7014 0.4974

From the ARI results in Table 5.1, we can see that the convex clustering model

performs better on the high dimensional dataset than the convex clustering model.

5.4.3 LIBRAS movement dataset

In this section, we apply the sparse convex clustering model on the LIBRAS

movement dataset2 from the UCI Machine Learning Repository. The dataset con-

tains 15 classes (each class represents a kind of hand movement) and each class

contains 24 observations. Each observation is a vector with 90 features.

As discussed in [73], some of the original 15 clusters indicate similar hand move-

ments, such as curved/vertical swing and horizontal/vertical straight-line. In this

section, similar to the setting in [73], we evaluate the performance on 6 out of 15
2https://archive.ics.uci.edu/ml/datasets/Libras+Movement
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classes including vertical swing (labeled as 3), anti-clockwise arc (labeled as 4),

clockwise arc (labeled as 5), horizontal straight-line (labeled as 7), horizontal wavy

(labeled as 11), and vertical wavy (labeled as 12) in the original dataset. The data

is visualized in Figure 5.4.

Figure 5.4: Visualization of selected data point from the LIBRAS movement dataset.

We compare the performance on this real dataset among three models: the

sparse convex clustering model (5.2), the convex clustering model (by taking γ2 = 0

in (5.2)) and the clustering model introduced in [73]. In the experiments, for the

model introduced in [73] we follow the settings of the paper. However, for the sparse

convex clustering model and the convex clustering model, we pick the weight wij as

follows

wij =

 exp(−0.5∥A·,i − A·,j∥2), if (i, j) ∈ E ,

0, otherwise,

where E =
⋃
{(i, j) | j is in i’s 10 nearest neighbors}. We run the experiments with

γ1 ∈ {1, 2, . . . , 10} and γ2 ∈ {0, 0.05, 0.1, 0.5, 1}. The comparison among the three

models based on the adjusted Rand Index is shown in Table 5.2.

We visualize the clustering result of the sparse convex clustering model (5.2) in

Figure 5.5.

From the results in Table 5.2, we can see that the performance of the sparse

convex clustering model is comparable with the model in [73]. However, we should

mention that instead of do the feature selection on the whole dataset, the sparse
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Table 5.2: Adjusted Rand Index (ARI) results on the LIBRAS movement dataset.

Larger ARI means better performance. p is the dimension of the dataset, n is the

number of data points and K is the number of clusters.

p n K Sparse Convex Clustering Convex Clustering Model in [73]

(γ1 = 2, γ2 = 0.1) (γ1 = 3, γ2 = 0)

90 144 3 0.455 0.309 0.445

Figure 5.5: Visualization of the clustering results on the LIBRAS movement dataset

by the sparse convex clustering model.

convex clustering model can achieve data point wise feature selection. This is very

important since we can then explain the clustering results better by capturing the

common features shared by the data points in the same cluster. We show the number

of selected features by the sparse convex clustering model for each cluster in Table

5.3.

Table 5.3: Number of selected features for each cluster by different models.

Cluster Sparse Convex Clustering Convex Clustering Model in [73]

1 39 90 13

2 40 90 13

3 24 90 13
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5.5 Summary of the chapter

In this chapter, we design an efficient semismooth Newton-CG based augmented

Lagrangian method to solve the three blocks convex composite programming which

includes the sparse convex clustering model (5.2) as a special case. Also, in the

numerical experiment section, we demonstrate that the sparse convex clustering

model can perform the clustering and feature selection at the same time.





Chapter 6
Conclusion

In this thesis, we first analyze the theoretical guarantee for the perfect recov-

ery of the clustering with general weighted convex clustering model. Our results

improve the existing results shown in [54, 89]. We also propose a highly efficient

semismooth Newton based augmented Lagrangian method (Ssnal) to solve the

large scale convex clustering problem, which achieves the state-of-art performance.

The numerical results shown in Chapter 3 demonstrate that the new theoretical

guarantee provided in this thesis is more practically meaningful than those shown

in [54,89]. Furthermore, we also show the scalability and efficiency of our proposed

numerical algorithm Ssnal for solving the convex clustering model.

In order to obtain the intra-group level sparsity for machine learning model,

we focus on the exclusive lasso regularizer in Chapter 4. We propose a dual New-

ton based preconditioned proximal point algorithm (PPDNA) to solve the two-

blocks machine learning models which include the exclusive lasso regularization

term. As important ingredients, we derive the closed-form solution to the proxi-

mal mapping Proxρ∥w◦·∥21(·) and the explicit formula for the corresponding HS Ja-

cobian ∂HSProxρ∥w◦·∥21(·). The numerical experiment results in Chapter 4 show the

superior performance of the PPDNA for solving the linear regression and logistic

regression models with the exclusive lasso regularizer, comparing to some popular

algorithmic frameworks, like alternating direction method of multipliers (ADMM)

115
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and accelerated proximal gradient (APG).

In Chapter 5, we focus on the sparse convex clustering model, which could simul-

taneously perform clustering and feature selections. We design a Ssnal for 3-block

convex composite programming problem which includes the sparse convex cluster-

ing model as a special case. In the numerical experiment section, we demonstrate

the scalability and efficiency of the Ssnal for solving the convex clustering model

on high dimensional datasets. More importantly, we demonstrate the power of the

sparse convex clustering model on high dimensional datasets which containing a lot

of uninformative features.



Appendix A
Solving the SDP Relaxation of K-means

with SDPNAL+

In this appendix, we show how to solve the SDP relaxation of K-means clustering

using the state-of-art SDP solver SDPNAL+ [77, 86] with a newly developed user-

friendly interface [65].

SDPNAL+ is a Matlab software package that implements an augmented La-

grangian based method to solve large scale semidefinite programming problems with

bound constraints. The implementation is based on an inexact symmetric Gauss-

Seidel based semi-proximal ADMM/ALM (alternating direction method of multipli-

ers/augmented Lagrangian method) framework for the purpose of deriving simpler

stopping conditions and closing the gap between the practical implementation of

the algorithm and the theoretical algorithm. The basic code is written in Matlab,

but some subroutines in C language are incorporated via Mex files.

A.1 SDP with Bounded Constraints

Let Sn be the space of n × n real symmetric matrices and Sn
+ be the cone of

positive semidefinite matrices in Sn. For any X ∈ Sn, we may sometimes write

X ⪰ 0 to indicate that X ∈ Sn
+. Let P = {X ∈ Sn : L ≤ X ≤ U}, where L,U are

117
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given n× n symmetric matrices whose elements are allowed to take the values −∞

and +∞, respectively. Consider the semidefinite programming (SDP) problem:

(SDP) min
{
⟨C,X⟩ | A(X) = b, l ≤ B(X) ≤ u, X ∈ Sn

+, X ∈ P
}
,

where b ∈ ℜm, and C ∈ Sn are given data, A : Sn → ℜm and B : Sn → ℜp are

two given linear maps whose adjoints are denoted as A∗ and B∗, respectively. The

vectors l, u are given p-dimensional vectors whose elements are allowed to take the

values −∞ and ∞, respectively. Note that P = Sn is allowed, in which case there

are no additional bound constraints imposed on X. We assume that the m × m

symmetric matrix AA∗ is invertible, i.e., A is surjective.

Note that (SDP) is equivalent to

(P) min
{
⟨C, X⟩ | A(X) = b, B(X)− s = 0, X ∈ Sn

+, X ∈ P , s ∈ Q
}
,

where Q = {s ∈ ℜp : l ≤ s ≤ u}. The dual of (P), ignoring the minus sign in front

of the minimization, is given by

(D) min

δ∗P(−Z) + δ∗Q(−v) + ⟨−b, y⟩
∣∣∣ A∗(y) + B∗(ȳ) + S + Z = C, −ȳ + v = 0,

S ∈ Sn
+, Z ∈ Sn, y ∈ ℜm, ȳ ∈ ℜp, v ∈ ℜp

 ,

where for any Z ∈ Sn, δ∗P(−Z) is defined by

δ∗P(−Z) = sup{⟨−Z, W ⟩ | W ∈ P}

and δ∗Q(·) is defined similarly. We note that our solver is designed based on the

assumption that (P) and (D) are feasible.

Actually, the solver SDPNAL+ is capable of solving the following more general

problem with N blocks of variables:

min
∑N

j=1⟨C(j), X(j)⟩

s.t.
∑N

j=1A(j)(X(j)) = b, l ≤
∑N

j=1 B(j)(X(j)) ≤ u,

X(j) ∈ K(j), X(j) ∈ P (j), j = 1, . . . , N,

(A.1)
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where A(j) : X (j) → ℜm, and B(j) : X (j) → ℜp are given linear maps, P(j) := {X(j) ∈

X (j) | L(j) ≤ X(j) ≤ U (j)} and L(j), U (j) ∈ X (j) are given symmetric matrices where

the elements are allowed to take the values−∞ and∞, respectively. Here X (j) = Snj

(ℜnj), and K(j) = X (j) or K(j) = Snj

+ (ℜnj

+ ). For later expositions, we should note

that when X (j) = Snj , the linear map A(j) : Snj → ℜm can be expressed in the form

of

A(j)(X(j)) =
[
⟨A(j)

1 , X(j)⟩, . . . , ⟨A(j)
m , X(j)⟩

]T
, (A.2)

where A(j)
1 , . . . , A

(j)
m ∈ Snj are given constraint matrices. The corresponding adjoint

(A(j))∗ : ℜm → Snj is then given by

(A(j))∗y =
∑m

k=1 ykA
(j)
k .

SDPNAL+ is designed for solving (SDP) or more generally (A.1), where the

maximum matrix dimension is assumed to be moderate (say less than 5000) but the

number of linear constraints m+ p can be large (say more than a million).

The purpose of this appendix is to show how to solve the SDP relaxation of

the K-means problem using SDPNAL+, so we omit the details about the algorithm

behind the solver. Readers can refer to [65, 77, 86] for details.

A.2 A User-friendly Interface for SDPNAL+

SDPNAL+ is one of the best solvers for solving general SDP problems, however,

some users feel that the defined data structures of the solver is not very easy to

understand. Thus, we developed a basic user-friendly interface to help users use the

solver more conveniently [65].

Now, we describe the design of the interface. First, we show how to use it via a
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small SDP example given as follows:

min trace(X(1)) + trace(X(2)) + sum(X(3))

s.t. −X(1)
12 + 2X

(2)
33 + 2X

(3)
2 = 4,

2X
(1)
23 +X

(2)
42 −X

(3)
4 = 3,

2 ≤ −X(1)
12 − 2X

(2)
33 + 2X

(3)
2 ≤ 7,

X(1) ∈ S6
+, X

(2) ∈ ℜ5×5, X(3) ∈ ℜ7
+,

0 ≤ X(1) ≤ 10E6, 0 ≤ X(2) ≤ 8E5,

(A.3)

where En denotes the n×n matrix of all ones. In the notation of (A.1), the problem

(A.3) has three blocks of variablesX(1),X(2),X(3). The first linear mapA(1) contains

two constraint matrices A(1)
1 , A

(1)
2 ∈ S6 whose nonzero elements are given by

(A
(1)
1 )12 = (A

(1)
1 )21 = −0.5, (A

(1)
2 )23 = (A

(1)
2 )32 = 1.

With the above constraint matrices, we get ⟨A(1)
1 , X(1)⟩ = −X(1)

12 and ⟨A(1)
2 , X(1)⟩ =

2X
(1)
23 .

The second linear map A(2) contains two constraint matrices A(2)
1 , A

(2)
2 ∈ ℜ5×5 whose

nonzero elements are given by

(A
(2)
1 )33 = 2, (A

(2)
2 )42 = 1.

Since the third variable X(3) is a vector, the third linear map A(3) is a constraint

matrix A(3) ∈ ℜ2×7 whose nonzero elements are given by

(A(3))12 = 2, (A(3))24 = −1.

In a similar fashion, one can identify the matrices for the linear maps B(1),B(2), and

B(3).
The example (A.3) can be coded using our interface as follows:

n1 = 6; n2 = 5; n3 = 7;

model = ccp_model('Example_simple');

X1 = var_sdp(n1,n1);
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X2 = var_nn(n2,n2);

X3 = var_nn(n3);

model.add_variable(X1,X2,X3);

model.minimize(trace(X1)+trace(X2)+sum(X3));

model.add_affine_constraint(-X1(1,2)+2*X2(3,3)+2*X3(2)==4);

model.add_affine_constraint(2*X1(2,3)+X2(4,2)-X3(4)==3);

model.add_affine_constraint(2<=-X1(1,2)-2*X2(3,3)+2*X3(2)<=7);

model.add_affine_constraint(0 <= X1 <= 10);

model.add_affine_constraint(X2 <= 8);

model.solve;

Note that although the commands

model.add_affine_constraint(-X1(1,2)+2*X2(3,3)+2*X3(2)==4);

model.add_affine_constraint(2*X1(2,3)+X2(4,2)-X3(4)==3);

are convenient to use for a small example, it may become tedious if there are many
such constraints. In general, it is more economical to encode numerous such con-
straints by using the constraint matrices of the linear maps A(1), A(2), A(3), which
we illustrate below:

Listing A.1: Example (A.3) with constraints specified via linear maps as cell arrays.
A1 = {sparse(n1,n1); sparse(n1,n1)};

A2 = {sparse(n2,n2); sparse(n2,n2)};

A3 = sparse(2,n3);

A1{1}(1,2) = -1; A2{1}(3,3) = 2; A3(1,2) = 2;

A1{2}(2,3) = 2; A2{2}(4,2) = 1; A3(2,4) = -1;

b = [4;3];

mymodel.add_affine_constraint(A1*X1 + A2*X2 + A3*X3 == b);

As the reader may have noticed, in constructing the matrix A1{1} corresponding

to the constraint matrix A
(1)
1 , we set A1{1}(1,2) = -1 instead of A1{1}(1,2) =

-0.5; A1{1}(2,1) = -0.5. Both ways of inputing A1{1} are acceptable as inter-

nally, we will symmetrize the matrix A1{1}.

In following subsections, we will discuss the details of the interface.
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A.2.1 Creating a ccp model

Before declaring variables, constraints and setting parameters, we need to

create a ccp_model class first. This is done via the command:

mymodel = ccp_model(model_name);

The string model_name is the name of the created ccp_model. If no model name is

specified, the default name is `Default'.

After solving the created mymodel, we save all the relevant information in the file

`model_name.mat'. It contains two structure arrays, input_data and solution,

which store all the input data and solution information, respectively.

A.2.2 Delcaring variables

Variables in SDPNAL+ can be real vectors or matrices. Currently, our interface

supports four types of variables: free variables, variables in SDP cones, nonnegative

variables and variables which are symmetric matrices. Next, we introduce them in

details.

1. Free variables. One can declare a free variable X ∈ ℜm×n via the command:

X = var_free(m,n);

where the parameters m and n specify the dimensions of X. One can also declare

a column vector variable Y ∈ ℜn simply via the command:

Y = var_free(n);

2. Variables in SDP cones. A variable X ∈ Sn
+ can be declared via the command:

X = var_sdp(n,n);

In this case, the variable must be a square matrix, so X = var_sdp(m,n) with

m ̸= n is invalid.
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3. Variables in nonnegative orthants. To declare a nonnegative variable X ∈

ℜm×n
+ , one can use the command:

X = var_nn(m,n);

We can also use Y = var_nn(n) to declare a vector variable Y ∈ ℜn
+.

4. Variables which are symmetric matrices. To declare a symmetric matrix

variable X ∈ Sn, one can use the command:

X = var_symm(n,n);

In this case, the variable must be a square matrix.

5. Adding declared variables into a model. Before one can start to specify

the objective function and constraints in a model, the variables, say X and Y,

that we have declared must be added to the ccp_model class mymodel that we

have created before. This step is simply done via the command:

mymodel.add_variable(X,Y);

Here mymodel is a class object and add_variable is a method in the class.

A.2.3 Declaring the objective function

After creating the model mymodel, declaring variables (say X and Y) and adding

them into mymodel, we can proceed to specify the objective function. Declaring an

objective function requires the use of the functions (methods) minimize or maxi-

mize. There must be one and only one objective function in a model specification.

In general, the objective function is specified through the sum or difference of the

inprod function (inner product of two vectors or two matrices) which must have two

input arguments in the form: inprod(C,X) where X must be a declared variable, and

C must be a constant vector or matrix which is already available in the workspace
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and having the same dimension as X. The input C can also be a constant vector or

matrix generated by some Matlab built-in functions such as speye(n,n).

Although we encourage users to specify an optimization problem in the standard

form given in (A.1), as a user-friendly interface, we also provide some extra functions

to help users to specify the objective function in a more natural way. We summarize

these functions and their usages in Table A.1.

Function Description

inprod(C, X) The inner product of a constant vector or matrix C and vari-

able X of the same dimension.

trace(X) The trace of a square matrix variable X.

sum(X) The sum of all elements of a vector or matrix variable X.

l1_norm(X) The ℓ1 norm of a variable X.

l1_norm(A∗X +b) The ℓ1 norm of an affine expression. For the exact meaning

of the expression “A∗X”, the reader can refer to (A.5).

Table A.1: Supported functions for specifying the objective function in a model.

For the class mymodel created above, we can see that the objective function of

(A.3) is specified via the command:

mymodel.minimize(trace(X1) + trace(X2) + sum(X3));

A.2.4 Adding affine constraints into the model

Affine constraints can be specified and added into mymodel after the relevant vari-

ables have been declared. This is done via the function (method) add_affine_constraint.

The following constraint types are supported in the interface:

• Equality constraints ==

• Less-or-equal inequality constraints <=

• Greater-or-equal inequality constraints >=
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where the expressions on both the left and right-hand sides of the operands must

be affine expressions. Strict inequalities < and > are not accepted. Inequality and

equality constraints are applied in an elementwise fashion, matching the behavior

of Matlab itself. For instance, if U and X are m × n matrices, then X <= U is

interpreted as mn (scalar) inequalities X(i,j) <= U(i,j) for all i = 1, . . . ,m, j =

1, . . . , n. When one side is a scalar and the other side is a variable, that value is

replicated; for instance, X >= 0 is interpreted as X(i,j) >= 0 for all i = 1, . . . ,m,

j = 1, . . . , n.

In general, affine constraints have the following form

A1 ∗ X1 +A2 ∗ X2 + · · ·+Ak ∗ Xk <= (>= or ==) b, (A.4)

where X1, X2, . . . , Xk are declared variables, b is a constant matrix or vector, and

A1,A2, . . . ,Ak are linear maps whose descriptions will be given shortly.

Next, we illustrate how to add affine constraints into the model object mymodel

in detail.

General affine constraints

In this section, we show users how to initialize the linear maps A1, A2, . . . , Ak

in (A.4).

• If Ai = ai, is a scalar, then ai ∗ Xi has the same dimension as the variable Xi.

• If Xi is an n-dimensional vector, then Ai must be a p×n constant matrix, and

Ai ∗ Xi is in ℜp.

• If Xi is an m × n (n > 1) matrix, then Ai ∗ Xi is interpreted as a linear map

such that

Ai ∗ Xi =


⟨A(i)

1 , Xi⟩
...

⟨A(i)
p , Xi⟩

 ∈ ℜp, (A.5)
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where A(i)
1 , . . . , A

(i)
p are given m × n constant matrices. In this case, Ai is a

p× 1 constant cell array such that

Ai{j} = A
(i)
j , j = 1, . . . , p.

Coordinate-wise affine constraints

Although users can model coordinate-wise affine constraints in the general form

given in (A.4), we allow users to declare them in a more direct way as follows:

a1 ∗ X1(i1, j1) + a2 ∗ X2(i2, j2) + · · ·+ ak ∗ Xk(ik, jk) <= (>= or ==) b, (A.6)

where a1, a2, . . . , ak, b are scalars and X1, X2, . . . , Xk are declared variables. The index

pairs (i1, j1), (i2, j2), . . . , (ik, jk) extract the corresponding elements in the variables.

From Listing ??, we can see how a constraint of the form (A.6) is added, i.e.,

mymodel.add_affine_constraint(2 ∗ X1(2, 3) + X2(4, 2)− X3(4) == 3)

Our interface also allows users to handle multiple index pairs. For example, if

we have a declared variable X ∈ ℜm×n and two index arrays

I = [i1, i2, . . . , ik], J = [j1, j2, . . . , jk],

where max{i1, i2, . . . , ik} ≤ m and max{j1, j2, . . . , jk} ≤ n, then X(I, J) is inter-

preted as

X(I, J) =


X(i1, j1)

X(i2, j2)
...

X(ik, jk)

 ∈ ℜk.

An example of such a usage can be found in Listing ??.
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Element-wise multiplication

In our interface, we also support element-wise multiplication (.∗) between a

declared variable X and a constant matrix A with the same dimension. Suppose

X =


X11 · · · X1n
... . . . ...

Xm1 · · · Xmn

 , A =


A11 · · · A1n

... . . . ...

Am1 · · · Amn

 .
Then A. ∗ X is interpreted as

A. ∗ X =


A11 ∗ X11 · · · A1n ∗ X1n

... . . . ...

A11 ∗ Xm1 · · · Amn ∗ Xmn

 .
Specifying affine constraints using predefined maps

For convenience, we also provide some predefined maps to help users to specify

constraints in a more direct way. We summarize these maps and their usages in

Table A.2.

Chained constraints

In our interface, one can add chained inequalities into the created ccp_model

mymodel. In general, chained affine constraints have the form

L <= A1 ∗ X1 +A2 ∗ X2 + · · ·+Ak ∗ Xk <= U,

where L and U are scalars or constant matrices with having the same dimensions as

the affine expression in the middle. As an example, one can add bound constraints

for a declared variable X via the command:

mymodel.add_affine_constraint(L <= X <= U);

It is important to note that in chained inequality constraints, the affine expression

in the middle should only contain declared variables but not constants.
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Function Description Dimension

inprod(C, X) The inner product of a constant vector or

matrix C and a variable X of the same dimen-

sion.

1× 1

trace(X) The trace of a square matrix variable X. 1× 1

sum(X) The sum of all elements of a vector or matrix

variable X.

1× 1

l1_norm(X) The ℓ1 norm of a variable X. 1× 1

l1_norm(A*X + b) The ℓ1 norm of an affine expression. 1× 1

map_diag(X) Extract the main diagonal of an n×n matrix

variable X.

n× 1

map_svec(X) For an n×n symmetric variable X, it returns

the corresponding symmetric vectorization of

X, as defined in (??).

n(n+1)
2

× 1

map_vec(X) For a m×n matrix variable X, it returns the

vectorization of X.

mn× 1

Table A.2: Supported predefined maps.

A.2.5 Adding positive semidefinite constraints into the model

Positive semidefinite constraints can be added into a previously created object

mymodel using the function (method) add_psd_constraint. Such a constraint is

valid only for a declared symmetric variable or positive semidefinite variable. In

general, a positive semidefinite constraint has the form

a1 ∗ X1 + a2 ∗ X2 + · · ·+ ak ∗ Xk ⪰ G, (A.7)

where a1, a2, . . . , ak are scalars, and X1, X2, . . . , Xk are declared variables in symmetric

matrix spaces or PSD cones, and G is a constant symmetric matrix. Note that one

can also have the version “⪯” in (A.7). We can add (A.7) into mymodel as follows:

mymodel.add_psd_constraint(a1 ∗ X1 + · · ·+ ak ∗ Xk >= G)



A.2 A User-friendly Interface for SDPNAL+ 129

Specially,

• For a variable X ∈ Sn, one can use mymodel.add_psd_constraint(X>=0) to

specify the constraint X ⪰ 0 or X ∈ Sn
+.

• For a variable X ∈ Sn and a constant matrix G ∈ Sn. One can use

mymodel.add_psd_constraint(X >= G)

and

mymodel.add_psd_constraint(X <= G)

to specify the constraint X ⪰ G and X ⪯ G, respectively.

Similar to affine constraints, one can also use chained positive semidefinite con-

straints together. For example, for a variable X ∈ Sn and two constant matrices

G1, G2 ∈ Sn (G1 ⪯ G2), one can specify G1 ⪯ X ⪯ G2 as

mymodel.add_psd_constraint(G1 <= X <= G2);

A.2.6 Setting parameters for SDPNAL+

As described previously, there are mainly nine parameters in the parameter

structure array OPTIONS. To allow users to set these parameters freely, we provide

the function (method) setparameter for such a purpose. Now, we describe the

usage of setparameter in details.

Assume that we have created a ccp_model class called mymodel. Since setparameter

is a method in the ccp_model class, so the usage of setparameter is simply

mymodel.setparameter(`para_name',value)

In Table A.3, we summarize the parameters which can be set in setparameter.

Note that users can set more than one parameters at a time. For example, one can

use

mymodel.setparameter(`tol', 1e-4, `maxiter', 2000);

to set the parameters tol = 1e-4 and maxiter = 2000.
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Parameter Name Usage Default Value

tol mymodel.setparameter(`tol', value) 1e-6

maxiter mymodel.setparameter(`maxiter', value) 20000

maxtime mymodel.setparameter(`maxtime', value) 10000

tolADM mymodel.setparameter(`tolADM', value) 1e-4

maxiterADM mymodel.setparameter(`maxiterADM', value) 200

printlevel mymodel.setparameter(`printlevel', value) 1

stopoption mymodel.setparameter(`stopoption', value) 1

AATsolve.method mymodel.setparameter(`AATsolve.method', value) ‘direct’

BBTsolve.method mymodel.setparameter(`BBTsolve.method', value) ‘iterative’

Table A.3: Usage of setparameter.

A.2.7 Solving a model and extracting solutions

After creating and initializing the class mymodel, one can call the method solve

to solve the model as follow:

mymodel.solve

After solving the SDP problem, one can extract the optimal solutions using the

function get_value. For example, if X1 is a declared variable, then one can extract

the optimal value of X1 by setting

get_value(X1)

Note that the input of the function get_value should be a declared variable.

A.2.8 Further remarks on the interface

Here we give some remarks to help users to input an SDP problem into our

interface more efficiently.
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• If a variable must satisfy a conic constraint, it would be more efficient to

specify the conic constraint when declaring the variable rather than declaring

the variable and imposing the constraint separately. For example, it is better

to use X = var_nn(m,n) to indicate that the variable X ∈ ℜm×n must be in

the cone ℜm×n
+ rather than separately declaring X = var_free(m,n) followed

by setting

mymodel.add_affine_constraint(X >= 0);

Similarly, if a square matrix variable Y ∈ Sn must satisfy the conic constraint

that Y ∈ Sn
+, then it is better to declare it as Y = var_sdp(n,n) rather than

separately declaring Y = var_free(n,n) followed by setting

mymodel.add_psd_constraint(Y >= 0);

The latter option is not preferred because we have to introduce extra con-

straints.

• When there is a large number of affine constraints, specifying them using a

loop in Matlab is generally time consuming. To make the task more efficient,

if possible, always try to model the problem using our predefined functions

A.3 Solving the SDP Relaxation of K-means

In this section, we will solve the SDP Relaxation of K-means with the intro-

duced interface of the solver SDPNAL+. For a given collection of n data points

{a1, a2, . . . , an}, we define D ∈ ℜn×n by Dij = aT
i aj, then the SDP relaxation of the

K-means clustering model for a given integer k > 0 has the following form:

min
{
Tr(DX) | Tr(X) = k, Xe = e, X ≥ 0, X ∈ S+

n

}
, (A.8)

where X ≥ 0 means that all the elements in X are nonnegative, Sn
+ is the cone of

n×n symmetric and positive semidefinite matrices, and e ∈ ℜn is the column vector

of all ones.
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Now, we show how to solve (A.8) using the software SDPNAL+ with the interface
introduced in section A.2. We take the famous two half moon dataset for example.

Listing A.2: Sample Code: SDP Kmeans.
clear all;

load('Half_Moon_Balance_100.mat');

D = X'*X;

K = 2;

n = length(W);

e = ones(n,1);

model = ccp_model('Clustering_HM_100 ');

X = var_sdp(n,n);

model.add_variable(X);

model.maximize(inprod(D,X));

model.add_affine_constraint(trace(X) == K);

%% add the constraints X*e = e

for k=1:n

ek = zeros(n,1); ek(k)=1;

Ak = e*ek';

model.add_affine_constraint(inprod(Ak,X) == 1);

end

model.add_affine_constraint(X >= 0);

model.solve;

Xsol = get_value(X);

In the experiments, we generate the two half moons data X with 100 or 1000

data points. We set k = 2 since there are two clusters. We visualize the heat maps

of the input matrix D and the solution of (A.8) in Figure A.1.
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Figure A.1: Visualization of the Kmeans SDP model on the two half moon data set

with n = 100 and n = 1000. First row: the results for n = 100. Second row: the

results for n = 1000.
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