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Summary

In order to solve a convex non-differentiable optimization problem, one may

introduce a smoothing convex function to approximate the non-differentiable ob-

jective function and solve the smoothing convex optimization problem to get an

approximate solution. Nesterov showed that if the gradient of the smoothing func-

tion is Lipschitz continuous, one may get an ε-approximation solution with the

number of iterations bounded by O(1
ε
) [9]. In [11], Nesterov discussed the problem

of minimizing the maximal eigenvalue and the problem of minimizing the spectral

radius. Recently, Shi [12] presented a smoothing function for the sum of the κ

largest components of a vector. This smoothing function is highly advantageous

because the composition of this function and eigenvalue functions allows one to

compute smoothing functions to approximate all eigenvalue functions of a real

symmetric matrix.

In this thesis, we further study the properties of the smoothing functions to

approximate the eigenvalue functions. In particular, we obtain an estimation of

the Lipschitz constant of the gradient of these smoothing functions.
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Summary iv

We then consider the problem of minimizing the sum of the κ largest eigenvalues

by applying Nesterov’s smoothing method [9]. Finally, we extend this algorithm

to solve the problem of minimizing the sum of the κ largest absolute values of

eigenvalues. These two problems are general forms of the problem of minimizing the

maximal eigenvalue and the problem of minimizing the spectral radius, considered

respectively in [11]. We also report some numerical results for both problems.

The organization of this thesis is as follows. In Chapter 1 we first describe the

problems discussed in [11] by Nesterov and then extend them to general cases. In

Chapters 2 and 3 we discuss some important properties of smoothing functions for

approximating the sum of the κ largest eigenvalues and the sum of the κth largest

absolute values of eigenvalues of a parametric affine operator, respectively. The

smoothing algorithm and computational results are given in Chapter 4.



List of Notation

• A,B, . . . denote matrices; Mn,m denotes the n-by-m matrix.

• Sm is the set of all m×m real symmetric matrices; Om is the set of all m×m

orthogonal matrices.

• A superscript “T” represents the transpose of matrices and vectors.

• For a matrix M , Mi· and M·j represent the ith row and j th column of M ,

respectively. Mij denotes the (i, j)th entry of M .

• A diagonal matrix is written as Diag(β1, . . . , βn).

• We use ◦ to denote the Hadamard product between matrices, i.e.

X ◦ Y = [XijYij]
m
i,j=1.

• Let A1, . . . , An ∈ Sm be given, we define the linear operator A : Rn → Sm by

A(x) :=
n∑

i=1

xiAi, ∀x ∈ Rn. (1)
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List of Notation vi

• Let A∗ : Sm → Rn be the adjoint of the linear operator A : Rn → Sm defined

by (1):

〈d,A∗D〉 = 〈D,Ad〉, ∀(d,D) ∈ Rn × Sm.

Hence, for all D ∈ Sm,

A∗D = (〈A1, D〉, . . . , 〈An, D〉)T .

Denote G ∈ Sm as (G)ij = 〈Ai, Aj〉.

• The eigenvalues of X ∈ Sm are designated by λi(X), i = 1, . . . , m, and

λ1(X) ≥ λ2(X) ≥ · · · ≥ λm(X).

• We write X = O(α) (respectively, o(α)) if ‖X‖/|α| is uniformly bounded

(respectively, tends to zero) as α → 0.

• For B ∈Mn,m, the operator Ξ : Mn,m → Sm+n is defined as

Ξ(B) =


 0 B

BT 0


 .

• We define the linear operator Γ : Rn → S2m as

Γ(x) = Ξ(A(x)). (2)

• Let Γ∗ : S2m → Rn be the adjoint operator of the linear operator Γ, for any

Y ∈ S2m,

Γ∗(Y ) = (2〈A1, Y2〉, · · · , 2〈An, Y2〉)T ,

where

Y =


 Y1 Y2

Y T
2 Y3


 , and Y1, Y2, Y3 ∈ Sm.
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Chapter 1
Introduction

Let Sm be the set of real m-by-m symmetric matrices. For X ∈ Sm, let {λi(X)}m
i=1

be the eigenvalues of X which are sorted in nonincreasing order, i.e.

λ1(X) ≥ λ2(X) ≥ · · · ≥ λκ(X) ≥ · · · ≥ λm(X).

Let A1, . . . , An ∈ Sm be given. Define the operator A : Rn → Sm by

A(x) =
n∑

i=1

xiAi, x ∈ Rn. (1.1)

Let Q be a bounded closed convex set in Rn and C ∈ Sm. In [11], Nesterov

considered the following nonsmooth problem:

min
x∈Q

λ1(C +A(x)). (1.2)

Nesterov’s approach is to replace the above nonsmooth function λ1(C +A(x)) by

the following smooth function:

Sµ(C +A(x)), (1.3)

where the tolerance parameter µ > 0, and Sµ(X) is the product of the entropy

function and µ, i.e.

Sµ(X) = µ ln[
n∑

i=1

eλi(X)/µ]. (1.4)

3



4

The function Sµ(X) approximates λ1(X) as µ ↓ 0. Now, let us consider the

following smoothed optimization problem:

min
x∈Q

{Sµ(C +A(x))}. (1.5)

Note that for any µ > 0, the gradient mapping ∇Sµ(·) is globally Lipschitz con-

tinuous. Nesterov suggested to use a gradient based numerical method [9] to solve

problem (1.5).

For a given matrix X ∈ Sm, we define its spectral radius by:

ρ(X) := max
1≤i≤m

|λi(X)| = max{λ1(X),−λm(X)}. (1.6)

Let

ϕ(x) := ρ(C +A(x)).

Another problem discussed in Nesterov’s paper [11] is

min
x∈Q

ϕ(x) (1.7)

with C ≡ 0. Nesterov constructed the smoothing function as

ϕp(x) = Fp(A(x)), ∀x ∈ Q,

where Fp(·) is:

Fp(X) =
1

2
〈X2p, In〉

1
p . (1.8)

Nesterov considered the smoothing problem

min
x∈Q

{ϕp(x)} (1.9)

and used method [8] to solve the smoothing problem (1.9).

In this thesis, we shall extend Nesterov’s approach to the following two problems.

Let φ(x) be the sum of κth largest eigenvalues of C +A(x), i.e.

φ(x) =
κ∑

i=1

λi(C +A(x)). (1.10)
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We shall first consider in this thesis the following nonsmooth problem:

min
x∈Q

φ(x). (1.11)

Clearly, if κ = 1, (1.11) turns to be problem (1.2).

Let |λ|[κ](X) be the κth largest absolute value of eigenvalues of X, sorted in the

nonincreasing order, i.e.

|λ|[1](X) ≥ |λ|[2](X) ≥ · · · ≥ |λ|[κ](X) ≥ · · · ≥ |λ|[n](X).

We define the following function:

ψ(x) =
κ∑

i=1

|λ|[i](C +A(x)). (1.12)

The second problem that we shall consider in this thesis is

min
x∈Q

ψ(x), (1.13)

which is a general case of (1.7).

We shall construct smoothing functions for problem (1.11) and (1.13) respectively.

The gradients of the smoothing functions must satisfy the global Lipschitz condi-

tion, which makes it possible for us to apply Nesterov’s algorithm [9] to solve the

smoothing problems.

Nesterov’s method is to solve the optimization problem:

min
x∈Q

θ(x), (1.14)

where θ(·) is a nonsmooth convex function. Our goal is to find an ε−solution

x̄ ∈ Q, i.e.

θ(x̄)− θ∗ ≤ ε, (1.15)

where θ∗ = min
x∈Q

θ(x). We denote θµ(·) as a smoothing function for θ(·). The smooth-

ing function θµ(·) satisfies the following inequality:

θµ(x) ≤ θ(x) ≤ θµ(x) + µR, (1.16)
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where R is a constant for a specified smoothing function θµ(x) (We will give its

definition in Chapter 2). Nesterov proved the following inequality [9, Theorem 2]

θ(x̄)− θ∗ ≤ θµ(x̄)− θµ
∗ + µR,

where θ∗µ = min
x∈Q

θµ(x). Let µ = µ(ε) = ε
2R

and

θµ(x̄)− θ∗µ ≤
1

2
ε. (1.17)

We have

θ(x̄)− θ∗ ≤ ε.

Nesterov’s algorithm can improve the bound on the number of iterations to O(1
ε
),

while the traditional algorithms need O( 1
ε2

) iterations.

The remaing part of this thesis is as follows. We discuss the properties of smoothing

functions for approximating the sum of the κ largest eigenvalues of a parametric

affine operator in Chapter 2 and the sum of the κ largest absolute values in Chapter

3. Computational results are given in Chapter 4.



Chapter 2
Properties of the Smoothing Function for

the Sum of the κ Largest Eigenvalues

2.1 The Smoothing Function for the Sum of κ

Largest Components

In her thesis [12], Shi discussed the smoothing function for the κ largest components

of a vector. For x ∈ Rn we denote by x[κ] the κth largest component of x, i.e.,

x[1] ≥ x[2] ≥ · · · ≥ x[κ] ≥ · · · ≥ x[n]

sorted in the nonincreasing order. Define

fκ(x) =
κ∑

i=1

x[i]. (2.1)

Denote by Qκ the convex set in Rn:

Qκ = {v ∈ Rn :
n∑

i=1

vi = κ, 0 ≤ vi ≤ 1, i = 1, 2, . . . , n}, (2.2)

and

7
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p(z) =





z ln z, z ∈ (0, 1],

0, z = 0.
(2.3)

Let

r(v) =
n∑

i=1

p(vi) +
n∑

i=1

p(1− vi) + R, ∀v ∈ Qκ, (2.4)

where

R := n ln n− κ ln κ− (n− κ) ln(n− κ), (2.5)

which is the maximal value of r(v).

The smoothing function for fκ(·) is fµ
κ (·) : Rn → R, which is defined by:

fµ
κ (x) := max xT v − µr(v)

s.t.
n∑

i=1

vi = κ

0 ≤ vi ≤ 1, i = 1, . . . , n.

(2.6)

Shi has also provided the optimal solution to fµ
κ (·) in (2.6):

vi(µ, x) =
1

1 + e
α(µ,x)−xi

µ

(2.7)

where α satisfies
n∑

i=1

1

1 + e
α(µ,x)−xi

µ

= κ. (2.8)

In order to introduce Lemma 2.1 in [12], we need the definition of the γ function:

γi(µ, x) :=
e

α(µ,x)−xi
µ

µ(1 + e
α(µ,x)−xi

µ )2
, i = 1, · · · , n. (2.9)

Without causing any confusion, let γi := γi(µ, x), for i = 1, . . . , n, and γ =

(γ1, . . . , γn)T .
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Lemma 2.1. The optimal solution to problem (2.6), v(µ, x), is continuously dif-

ferentiable on R++ × Rn, with

∇xv(µ, x) =




γ1

. . .

γn


− 1

n∑
k=1

(γk)
γ(γ)T . (2.10)

Proof. From (2.7), for each i = 1, · · · , n,

vi(µ, x)(1 + e
α(µ,x)−xi

µ ) = 1. (2.11)

Taking derivatives of x on both side of (2.11), we have

(∇xv(µ, x))i =
1

µ(1 + e
α(µ,x)−xi

µ )2
e

α(µ,x)−xi
µ (ei −∇xα(µ, x))

= γi(ei −∇xα(µ, x)).

(2.12)

From (2.8), we have

∇xα(µ, x) =
1

n∑
k=1

(γk)

n∑
i=1

(γiei)

=
1

n∑
k=1

(γk)
(γ1, · · · , γn)T ,

(2.13)

where ei ∈ Rn, its ith entry is 1 and others are all zeros. From (2.12) and (2.13),

we obtain:

(∇xv(µ, x))i = eiγi − γi
n∑

k=1

(γk)
(γ1, · · · , γn)T . (2.14)

Lemma 2.2. For γi, i = 1, . . . , n given by (2.9), has bounds:

0 ≤ γi ≤ 1

4µ
. (2.15)
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Proof. Denote

pi(µ, x) = e
α(µ,x)−xi

µ , i = 1, . . . , n.

Thus we have

γi =
1

µ
· pi

(1 + pi)2

=
1

µ
(

1

1 + pi

− 1

(1 + pi)2
)

=
1

µ
(−(

1

1 + pi

− 1

2
)2 +

1

4
)

≤ 1

4µ
.

(2.16)

The following theorem from [12] describes some properties of fµ
κ (x).

Theorem 2.3. For µ > 0,∀x ∈ Rn, the function fµ
κ (x) has the following properties:

1. fµ
κ (x) is convex;

2. fµ
κ (x) is continuously differentiable;

3. fµ
κ (x) ≤ fκ(x) ≤ fµ

κ (x) + µR.

From the above theorem, for each µ > 0, fµ
κ (x) is continuously differentiable.

According to [12], the gradient of fµ
κ (x) is the optimal solution to problem (2.6),

i.e., v(µ, x). Therefore the gradient and Hessian of fµ
κ (x) for any µ > 0 are given

by

∇fµ
κ (x) = v(µ, x); (2.17)

∇2fµ
κ (x) = ∇xv(µ, x). (2.18)

Up to now we have reviewed some of Shi’s results. Based on these results, we

provide an estimate to ∇2fµ
κ (x) in the following theorem.
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Theorem 2.4. For µ > 0, we have the following conclusions on ∇2fµ
κ (x):

1. For h ∈ Rn,

0 ≤ 〈h,∇2(fµ
κ (x))h〉 ≤ 1

4µ
‖h‖2

2. (2.19)

2. ((∇2(fµ
κ (x)))ij is the (i, j)th entry of (∇2(fµ

κ (x))), for i 6= j

0 ≤ (∇2(fµ
κ (x)))ii ≤ 1

4µ
; (2.20)

− 1

4µ
≤ (∇2(fµ

κ (x)))ij ≤ 0. (2.21)

Proof. First we prove part 1. Since fµ
κ (x) is convex, its Hessian ∇2fµ

κ (x) is positive

semidefinite, i.e.,

〈h,∇xf
µ
κ (x)h〉 ≥ 0.

By Lemma 2.1,

〈h,∇2fµ
κ (x)h〉 = 〈h,∇xv(µ, x)h〉

=
n∑

i=1

γih
2
i −

1
n∑

k=1

γk

(γT h)2

≤
n∑

i=1

γih
2
i

≤
n∑

i=1

1

4µ
h2

i

=
1

4µ
‖h‖2

2.

(2.22)

Now let us prove part 2. For any 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j,

(∇2(fµ
κ (x)))ii = (∇xv(µ, x))ii

= γi − (γi)
2

n∑
k=1

γk

= γi


1− γi

n∑
k=1

γk


 .

(2.23)
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According to Lemma 2.2, we have

0 ≤ γi ≤ 1

4µ
,

and

0 ≤


1− γi

n∑
k=1

γk


 ≤ 1.

Therefore,

0 ≤ (∇2(fµ
κ (x)))ii ≤ 1

4µ
. (2.24)

On the other hand,

(∇2(fµ
κ (x)))ij = (∇xv(µ, x))ij

= − γiγj
n∑

k=1

γk

= −γi
γj

n∑
j=1

γj

.

(2.25)

Since

0 ≤ γj
n∑

j=1

γj

≤ 1, (2.26)

we have

− 1

4µ
≤ (∇2(fµ

κ (x)))ij ≤ 0, i 6= j. (2.27)

Remark. Nesterov proved in [9, Theorem 1] that for problem (1.14), if the function

θµ(·) (µ > 0) is continuously differentiable, then its gradient

∇θµ(x) = A∗vµ(x)

is Lipschitz continuous with its Lipschitz constant

Lµ =
1

µσ2

‖A‖2
1,2.
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As to the smoothing function fµ
κ (·), σ2 = 4 and A is an identity operator. So

Theorem 2.4 may also be derived from [9, Theorem 1]. Here we provide a direct

proof.

2.2 Spectral Functions

A function F on the space of m-by-m real symmetric matrices is called spectral

if it depends only on the eigenvalues of its argument. Spectral functions are just

symmetric functions of the eigenvalues. A symmetric function is a function that is

unchanged by any permutation of its variables. In this thesis, we are interested in

functions F of a symmetric matrix argument that are invariant under orthogonal

similarity transformations [6]:

F (UT AU) = F (A), ∀U ∈ O, A ∈ Sm, (2.28)

where O is the set of orthogonal matrices. Every such function can be decomposed

as F (A) = (f ◦λ)(A), where λ is the map that gives the eigenvalues of the matrix A

and f is a symmetric function. We call such functions F spectral functions because

they depend only on the spectrum of the operator A. Therefore, we can regard

a spectral function as a composition of a symmetric function and the eigenvalue

function.

In order to show some preliminary results, we give the following definition. For

each X ∈ Sm, define the set of orthonormal eigenvectors of X by

OX := {P ∈ O : P T XP = Diag[λ(X)]}.

Now we refer to the formula for the gradient of a differential spectral function [6].

Proposition 2.5. Let f be a symmetric function from Rn to R and X ∈ Sn. Then

the following holds:
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(a) (f ◦ λ) is differentiable at point X if and only if f is differentiable at point

λ(X). In the case the gradient of (f ◦ λ) at X is given by

∇(f ◦ λ)(X) = UDiag[∇f(λ(X))]UT , ∀U ∈ OX . (2.29)

(b) (f ◦λ) is continuously differentiable at point X if and only if f is continuously

differentiable at point λ(X).

Lewis and Sendov [7, Theorems 3.3 and 4.2] proved the following proposition, which

gives the formula for calculating the Hessian of the spectral function.

Proposition 2.6. Let f : Rn → R be symmetric. Then for any X ∈ Sn, it holds

that (f ◦ λ) is twice (continuously) differentiable at X if and only if f is twice

(continuously) differentiable at λ(X). Moreover, in this case the Hessian of the

spectral function at X is

∇2(f ◦ λ)(X)[H] = U(Diag[∇2f(λ(X))diag[H̃]] + C(λ(X)) ◦ H̃)UT , ∀H ∈ Sn,

(2.30)

where U is any orthogonal matrix in OX and H̃ = UT HU .

The matrix C in Proposition 2.6 is defined as follows: C(ω) ∈ Rn×n:

(C(ω))ij :=





0, if i = j

(∇2f(ω))ii − (∇2f(ω))ij , if i 6= j and ωi = ωj

(∇f(ω))i − (∇f(ω))j

ωi − ωj

, else.

(2.31)

2.3 Smoothing Functions for φ(x)

Consider the φ(x) in (1.10), clearly, it is a composition function:

φ(x) = (fκ ◦ λ)(C +A(x)), (2.32)
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where fκ(x) is given in (2.1). In [12], Shi investigated the smoothing function

fµ
κ (x) as a approximation for fκ(x). So it is natural for us to think of the below

composition function:

φµ(x) = (fµ
κ ◦ λ)(C +A(x)), (2.33)

According to the properties of fµ
κ (·), for µ > 0,

φµ(x) ≤ φ(x) ≤ φµ(x) + µR, ∀x ∈ Q. (2.34)

Since the function fµ
κ (·) is a symmetric function, (fµ

κ ◦λ) is a composition function of

a symmetric function fµ
κ (·) : Rm → R and the eigenvalue function λ(·) : Sm → Rm.

Hence the function (fµ
κ ◦ λ) is a spectral function. Consequently, (fµ

κ ◦ λ) is twice

continuously differentiable. We will prove that the composition φµ(x) is twice

continuously differentiable and provide an estimation of the Lipschitz constant of

the gradient of φµ(x) as follows.

First, we will derive the gradient of φµ(x). For µ > 0, for any h ∈ Rn and h → 0,

φµ(x + h)− φµ(x) = fµ
κ (λ(C +A(x + h)))− fµ

κ (λ(C +A(x)))

= fµ
κ (λ(C +A(x) +A(h)))− fµ

κ (λ(C +A(x)))

= 〈∇(fµ
κ ◦ λ)(C +A(x)),A(h)〉+ O(‖h‖2)

= 〈A∗(∇(fµ
κ ◦ λ)(C +A(x))), h〉+ O(‖h‖2),

(2.35)

where A∗D = (〈A1, D〉, . . . , 〈Am, D〉)T .

Thus we have the following proposition.

Proposition 2.7. For µ > 0, φµ(·) is continuously differentiable with its gradient

given by:

∇φµ(x) = A∗(∇(fµ
κ ◦ λ)(C +A(x))). (2.36)
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Next, we shall consider the Hessian of φµ(x). First we define Cµ(ω) ∈ Rn×n as

(Cµ(ω))ij :=





0, if i = j

(∇2fµ
κ (ω))ii − (∇2fµ

κ (ω))ij , if i 6= j and ωi = ωj

(∇fµ
κ (ω))i − (∇fµ

κ (ω))j

ωi − ωj

, else.

(2.37)

Proposition 2.8. For µ > 0, for any h ∈ Rn and h → 0, φ(x) is twice continuously

differentiable with its Hessian given by:

∇2φµ(x)[h] = A∗(∇2(fµ
κ ◦ λ)(C +A(x))[H]), (2.38)

where H := A(h).

Proof. For µ > 0, for any h ∈ Rn and h → 0,,

〈∇φµ(x + h)−∇φµ(x), h〉
= 〈A∗(∇(fµ

κ ◦ λ)(C +A(x + h)))−A∗(∇(fµ
κ ◦ λ)(C +A(x))), h〉

= 〈A∗(∇(fµ
κ ◦ λ)(C +A(x + h))−∇(fµ

κ ◦ λ)(C +A(x))), h〉
= 〈∇(fµ

κ ◦ λ)(C +A(x + h))−∇(fµ
κ ◦ λ)(C +A(x)),A(h)〉

= 〈∇(fµ
κ ◦ λ)(C +A(x) +A(h))−∇(fµ

κ ◦ λ)(C +A(x)),A(h)〉
= 〈∇2(fµ

κ ◦ λ)(C +A(x))A(h),A(h)〉+ O(‖h‖2)

= 〈A∗(∇2(fµ
κ ◦ λ)(C +A(x)))H, h〉+ O(‖h‖2),

(2.39)

which shows that (2.50) holds.

In order to estimate ∇2φµ(x), we need the estimation of Cµ(ω) given in (2.31). The

following lemma is motivated by Lewis and Sendov [7].

Lemma 2.9. For ω ∈ Rn with ωi 6= ωj, i 6= j, i, j = 1, · · · , n, there exists

ξ, η ∈ Rn, such that

(∇fµ
κ (ω))i − (∇fµ

κ (ω))j

ωi − ωj

= (∇2fµ
κ (ξ))ii − (∇2fµ

κ (η))ij. (2.40)
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Proof. For each ω ∈ Rn, we define the two vectors ω̇ and ω̈ ∈ Rn coordinatewise

as follows:

ω̇ =





ωp, p 6= i,

ωj, p = i.
ω̈ =





ωp, p 6= i, j,

ωj, p = i.

ωi, p = j.

(2.41)

By the mean value theorem,

(∇fµ
κ (ω))i − (∇fµ

κ (ω))j

ωi − ωj

=
(∇fµ

κ (ω))i − (∇fµ
κ (ω̇))i + (∇fµ

κ (ω̇))i − (∇fµ
κ (ω))j

ωi − ωj

=
(ωi − ωj)(∇2fµ

κ (ξ))ii + (∇fµ
κ (ω̇))i − (∇fµ

κ (ω))j

ωi − ωj

=(∇2fµ
κ (ξ))ii +

(∇fµ
κ (ω̇))i − (∇fµ

κ (ω̈))i + (∇fµ
κ (ω̈))i − (∇fµ

κ (ω))j

ωi − ωj

=(∇2fµ
κ (ξ))ii +

(ωj − ωi)(∇2fµ
κ (η))ij + (∇fµ

κ (ω̈))i − (∇fµ
κ (ω))j

ωi − ωj

=(∇2fµ
κ (ξ))ii − (∇2fµ

κ (η))ij +
(∇fµ

κ (ω̈))i − (∇fµ
κ (ω))j

ωi − ωj

,

(2.42)

where ξ is a vector between ω and ω̇, and η is a vector between ω̇ and ω̈. We next

consider the term
(∇fµ

κ (ω̈))i−(∇fµ
κ (ω))j

ωi−ωj
. By the definitions, we know

(∇fµ
κ (ω))j =

∂

∂ωj

fµ
κ (ω) (2.43)

and

(∇fµ
κ (ω̈))i =

∂

∂ω̈i

fµ
κ (ω̈) =

∂

∂ωj

fµ
κ (ω̈). (2.44)

Since fµ
κ (·) is a symmetric function,

(∇fµ
κ (ω̈))i =

∂

∂ωj

fµ
κ (ω) = (∇fµ

κ (ω))j.

Consequently,
(∇fµ

κ (ω̈))i − (∇fµ
κ (ω))j

ωi − ωj

= 0.

Therefore (2.40) holds.
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Lemma 2.10. For any 1 ≤ i, j ≤ m, each entry of (Cµ(ω))ij has the following

bound:

0 ≤ (Cµ(ω))ij ≤ 1

2µ
. (2.45)

Proof.

(Cµ(ω))ij =





(∇2fµ
κ (ω))ii − (∇2fµ

κ (ω))ij , i = j

(∇2fµ
κ (ξ))ii − (∇2fµ

κ (η))ij , i 6= j.
(2.46)

For any x, y ∈ Rn, by Theorem 2.4,

(∇2fµ
κ (x))ii − (∇2fµ

κ (y))ij ≤ max (∇2fµ
κ (x))ii −min (∇2fµ

κ (y))ij =
1

2µ
; (2.47)

(∇2fµ
κ (x))ii − (∇2fµ

κ (y))ij ≥ min (∇2fµ
κ (x))ii −max (∇2fµ

κ (y))ij = 0. (2.48)

Let i = j, x = ω, y = ω, then

0 ≤ (Cµ(ω))ij ≤ 1

2µ
;

Let i 6= j, x = ξ, y = η, then

0 ≤ (Cµ(ω))ij ≤ 1

2µ
.

Next, we estimate the Lipschitz constant of ∇φµ(x). For any h ∈ Rn, we have

〈h,∇2φµ(x)[h]〉
=〈h,A∗(∇2(fµ

κ ◦ λ)(C +A(x))[H])〉
=〈H,∇2(fµ

κ ◦ λ)(C +A(x))[H]〉,

(2.49)

with H = A(h), and

∇2(fµ
κ ◦ λ)(C +A(x))[H]

=U(Diag[∇2fµ
κ (λ(C +A(x)))diag[H̃]] + Cµ(λ(C +A(x))) ◦ H̃)UT ,

(2.50)
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where U ∈ OC+A(x), and H̃ = UT HU . Therefore

〈h,∇2φµ(x)[h]〉 =
n∑

i=1

(∇2(fµ
κ ◦ λ)(C +A(x)))iiH̃ii +

n∑

i,j=1 i6=j

Cµ
ij(λ(C +A(x)))H̃ij

≤ 1

4µ

n∑
i=1

H̃ii +
1

2µ

n∑

i,j=1 i6=j

H̃ij

≤ 1

2µ
〈H̃, H̃〉

=
1

2µ
〈A(h),A(h)〉

=
1

2µ

m∑
i,j=1

hihj〈Ai, Aj〉

=
1

2µ
hT Gh

≤ 1

2µ
‖G‖‖h‖2,

(2.51)

where G ∈ Sm, (G)ij = 〈Ai, Aj〉, and ‖G‖ := max
1≤i≤m

|λi(G)| = max{λ1(G),−λm(G)}.
Thus the Lipschitz constant for the gradient of the smoothing function φµ(x) is:

L =
1

2µ
‖G‖. (2.52)

In particular, if we take µ := µ(ε) = ε
2R

, where R = 2m ln(2m) − κ ln κ − (2m −
κ) ln(2m− κ), then we have

L =
R

ε
‖G‖. (2.53)



Chapter 3
Smoothing Functions for the Sum of the

κ Largest Absolute Values of Eigenvalues

In order to solve problem (1.13), we need the concept of singular values. Accord-

ing to some properties of singular values, we can obtain a computable smoothing

function for problem ψ(x).

3.1 Preliminaries

Similar to the eigenvalue decomposition of a symmetric matrix, a non-symmetric

matrix has singular value decomposition. Let A ∈ Mn,m, and without generality

we assume n ≤ m. Then there exist orthogonal matrices U ∈Mn,n and V ∈Mm,m

such that A has the following singular value decomposition (SVD):

UT AV = [Σ(A) 0], (3.1)

where Σ(A) = diag(σ1(A), . . . , σn(A)) and σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) ≥ 0 are

the singular values of A [5].

20
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The singular value has the following property:

√
AAT =

√
UΣ2(A)UT = Udiag[σ1(A), . . . , σn(A)]UT . (3.2)

In particular, if A is symmetric, we have

AAT = A2 = Pdiag[λ1(A)2, . . . , λn(A)2]P T , (3.3)

where λ1(A), . . . , λn(A) are the eigenvalues of A. Comparing (3.2) and (3.3), the

singular values are the square root of respective eigenvalues of AAT , which means

σi(A) = |λi(A)|, i = 1, . . . , n for all symmetric matrix A.

For any W ∈ Sn+m, we define:

Λ(W ) = diag(λ(1)(W ), . . . , λ(n)(W ), λ(n+m)(W ), . . . , λ(n+1)(W )), (3.4)

where {λi(W ) : i = 1, · · · , n + m} are the eigenvalues of W arrange in decreasing

order. Noted that the first n diagonal entries of Λ(W ) are just the n largest

eigenvalues of W , arranged in deceasing order, while the last m diagonal entries

of Λ(W ) are the m smallest eigenvalues of W , arranged in increasing order. This

arrangement will show convenience shortly afterwards.

Define the linear operator: Ξ : Mn,m → Sm+n by

Ξ(B) =


 0 B

BT 0


 , B ∈Mn,m. (3.5)

For A ∈ Sm, let it have the following eigenvalue decomposition:

V T AV = Σ(A), V ∈ OA. (3.6)

The following result is derived from Golub and Van Loan [5, Section 8.6].

Proposition 3.1. Suppose that A ∈ Sm has the eigenvalue decomposition (3.6).

Then the matrix Ξ(A) has the following spectral decomposition:

Ξ(A) = Q(Λ(Ξ(A)))QT = Q


 Σ(A) 0

0 −Σ(A)


QT , (3.7)
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where Q ∈ O2m,2m is defined by:

Q =
1√
2


 V V

V −V


 , (3.8)

i.e. the eigenvalues of Ξ(A) are ±σi(A).

3.2 Smoothing Functions for ψ(x)

From Proposition 3.1, we know that

ψ(x) =
κ∑

i=1

λi(Ξ(C +A(x))). (3.9)

Similar to Chapter 2, we define the smoothing function for ψ(x) by

ψµ(x) = (fµ
κ ◦ λ)(Ξ(C +A(x))), (3.10)

where the fµ
κ (·) is the smoothing function defined in Chapter 2 and κ ≤ m.

For x ∈ Rn, we define a linear operator Γ : Rn → S2m as follows:

Γ(x) = Ξ(A(x)). (3.11)

Let us consider the adjoint of Γ(x). For Y ∈ S2m,

〈Γ(x), Y 〉 = 〈Ξ(A(x)), Y 〉

=

〈
 0 A(x)

(A(x))T 0


 ,


 Y1 Y2

Y T
2 Y3




〉

= 〈A(x), Y2〉+ 〈(A(x))T , Y T
2 〉

= 2〈A(x), Y2〉

=
n∑

i=1

2xi〈Ai, Y2〉.

(3.12)

Thus, Γ∗(Y ) = (2〈A1, Y2〉, · · · , 2〈An, Y2〉)T .
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The smoothing function ψµ(x) takes the following form:

ψµ(x) = (fµ
κ ◦ λ)(Ξ(C) + Γ(x))). (3.13)

Since we have already known that, for any µ > 0, (fµ
κ ◦ λ) is twice continuously

differentiable, ψµ(·) is also twice continuously differentiable. Now we discuss its

gradient and Hessian.

Proposition 3.2. For µ > 0, ψµ(·) is continuously differentiable with its gradient

given by

∇ψµ(x) = Γ∗(∇(fµ
κ ◦ λ)(Ξ(C) + Γ(x))). (3.14)

Proof. For µ > 0, for any h ∈ Rn and h → 0,

ψµ(x + h)− ψµ(x) = fµ
κ (λ(Ξ(C) + Γ(x + h)))− fµ

κ (λ(Ξ(C) + Γ(x)))

= fµ
κ (λ(Ξ(C) + Γ(x) + Γ(h)))− fµ

κ (λ(Ξ(C) + Γ(x)))

= 〈∇(fµ
κ ◦ λ)(Ξ(C) + Γ(x)), Γ(h)〉+ O(‖h‖2)

= 〈Γ∗(∇(fµ
κ ◦ λ)(Ξ(C) + Γ(x))), h〉+ O(‖h‖2),

(3.15)

which agrees with (3.14).

Proposition 3.3. For µ > 0, ψµ(·) is twice continuously differentiable with its

Hessian given by

∇2ψµ(x)[h] = Γ∗(∇2(fµ
κ ◦ λ)(Ξ(C) + Γ(x))[H]), h ∈ Rn, (3.16)

where H := Γ(h).
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Proof. For µ > 0, for any h ∈ Rn and h → 0,

〈∇ψµ(x + h)−∇ψµ(x), h〉
= 〈Γ∗(∇(fµ

κ ◦ λ)(Ξ(C) + Γ(x + h)))− Γ∗(∇(fµ
κ ◦ λ)(Ξ(C) + Γ(x))), h〉

= 〈Γ∗(∇(fµ
κ ◦ λ)(Ξ(C) + Γ(x + h))−∇(fµ

κ ◦ λ)(Ξ(C) + Γ(x))), h〉
= 〈∇(fµ

κ ◦ λ)(Ξ(C) + Γ(x + h))−∇(fµ
κ ◦ λ)(Ξ(C) + Γ(x)), Γ(h)〉

= 〈∇(fµ
κ ◦ λ)(Ξ(C) + Γ(x) + Γ(h))−∇(fµ

κ ◦ λ)(Ξ(C) + Γ(x)), Γ(h)〉
= 〈∇2(fµ

κ ◦ λ)(Ξ(C) + Γ(x))Γ(h), Γ(h)〉+ O(‖h‖2)

= 〈Γ∗(∇2(fµ
κ ◦ λ)(Ξ(C) + Γ(x)))H, h〉+ O(‖h‖2),

(3.17)

which shows that (3.16) holds.

Next, we estimate the Lipschitz constant of ∇ψµ(x). For any h ∈ Rn, we have

〈∇h,∇2ψµ(x)[h]〉 =〈h, Γ∗(∇2(fµ
κ ◦ λ)(Ξ(C) + Γ(x))[H])〉

=〈H, (∇2fµ
κ ◦ λ)(Ξ(C) + Γ(x))H〉,

(3.18)

with

∇2(fµ
κ ◦ λ)(Ξ(C) + Γ(x))[H]

=U(Diag[∇2fµ
κ (λ(Ξ(C) + Γ(x)))diag[H̃]] + Cµ(λ(Ξ(C) + Γ(x))) ◦ H̃)UT ,

(3.19)
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where U ∈ OΞ(C)+Γ(x) and H̃ = UT HU . Therefore

〈h,∇2ψµ(x)[h]〉

=
n∑

i=1

(∇2(fµ
κ ◦ λ)(Ξ(C) + Γ(x)))iiH̃

2
ii +

n∑

i,j=1 i6=j

Cµ
ij(λ(Ξ(C) + Γ(x)))H̃2

ij

≤ 1

4µ

n∑
i=1

H̃2
ii +

1

2µ

n∑

i,j=1 i6=j

H̃2
ij

≤ 1

2µ
〈H̃, H̃〉

≤ 1

2µ
〈Γ(h), Γ(h)〉

≤ 1

µ
〈A(h),A(h)〉

≤ 1

µ
‖G‖‖h‖2.

(3.20)

Thus, the Lipschitz constant for the gradient of the smoothing function ψµ(cot) is

L =
1

µ
‖G‖. (3.21)

In particular, if we take µ := µ(ε) = ε
2R

, whereR := m ln m−κ ln κ−(m−κ) ln(m−
κ) then we have

L =
2R

ε
‖G‖. (3.22)



Chapter 4
Numerical Experiments

Nesterov’s method is to solve the following optimization problem:

min
x∈Q

{f(x)}, (4.1)

where f is a convex function with its gradient of f(x) satisfied the Lipschitz con-

dition:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn. (4.2)

where L > 0 is a constant.

Consider a prox-function d(x) in Q. We assume that d(x) is continuous and

strongly convex on Q with convexity parameter σ > 0. Denote x0 by

x0 = min
x∈Q

d(x). (4.3)

Without loss of generality we assume d(x0) = 0. Thus, for any x ∈ Q, we have

d(x) ≥ 1

2
σ‖x− x0‖2. (4.4)

Define

TQ(x) = min
y
{〈∇f(x), y − x〉+

1

2
L‖y − x‖2 : y ∈ Q}. (4.5)

Now we are ready to give Nesterov’s smoothing algorithm [9]:

For k ≥ 0 do

26
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1. Compute f(xk) and ∇f(xk).

2. Find yk = TQ(xk).

3. Find zk = arg min
x
{L

σ
d(x) +

k∑
i=0

i+1
2

[f(xi) + 〈∇f(xi), x− xi〉] : x ∈ Q}.

4. Set xk+1 = 2
k+3

zk + k+1
k+3

yk.

Nesterov prove the following Theorem [9, Theorem 3]:

Theorem 4.1. Let the sequences {xk}∞k=0 and {yk}∞k=0 be generated by the above

algorithm. Then for any k ≥ 0, we have

(k + 1)(k + 2)

4
f(yk) ≤ min

x

{
L

σ
d(x) +

k∑
i=0

i + 1

2
[f(xi) + 〈∇f(xi), x− xi〉] : x ∈ Q

}
.

(4.6)

Therefore,

f(yk)− f(x∗) ≤ 4Ld(x∗)
σ(k + 1)(k + 2)

. (4.7)

where x∗ is an optimal solution to the problem. (4.1).

By applying Bregman’s distance, Nesterov provided a modified algorithm, which

gives a way to compute TQ(xk). In the new algorithm, we compute the VQ instead

of TQ. Bregman’s distance was introduced in [3], as an extension to the usual

metric discrepancy measure (x, y) → ‖x − y‖2. If f(·) is a real convex function,

then the Bregman distance between two parameters z and x is defined as

ξ(z, x) = f(x)− f(z)− 〈∇f(z), x− z〉, x, z ∈ Q. (4.8)

The Bregman distance satisfies

ξ(z, x) ≥ 1

2
σ‖x− z‖2. (4.9)

Define the Bregman projection of h as follows:

VQ(z, h) = argmin{hT (x− z) + ξ(z, x) : x ∈ Q}. (4.10)
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The following algorithm is Nesterov’s algorithm via the Bregman distance [9]:

1. Choose y0 = z0 = arg min
x
{L

σ
d(x) + 1

2
[f(x0) + 〈∇f(x0), x− x0〉] : x ∈ Q}.

2. For k ≥ 0 iterate:

a. Find zk = arg min
x
{L

σ
d(x) +

k∑
i=0

i+1
2

[f(xi) + 〈∇f(xi), x− xi〉] : x ∈ Q}.

b. Set τk = 2
k+3

and xk+1 = τkzk + (1− τk)yk.

c. Find x̂k+1 = VQ(zk,
σ
L
τk∇f(xk+1)).

d. Set yk+1 = τkx̂k+1 + (1− τk)yk.

Nesterov pointed out for the above method, Theorem 4.1 holds. The computational

results shown in the next section are achieved by applying the above algorithm.

4.1 Computational Results

First, we solve the smoothing problem:

min
x∈Q

φµ(x),

where the closed convex set Q is given by

Q = {x ∈ Rn :
n∑

i=1

xi = 1, 0 ≤ xi ≤ 1, i = 1, 2, . . . , n}.

Let Pi be a m-by-m random matrix with its entries in [-1,1], define C, A1, A2, · · · , An

as C = 1
2
(P0 + P T

0 ) and Ai = i× 1
2
(Pi + P T

i ), i = 1, · · · , n.

Let ε be the desired accuracy, i.e., φ(x̄) − φ∗ ≤ ε. R is defined by 2.5 and

d(x) = lnn +
n∑

i=1

xi. According to Theorem 4.1, we have the iteration bound

N := [2
√

2R ln n
ε

√
‖G‖]. We composed the matlab codes for this problem. Tables

4.1, 4.2 and 4.3 are the numerical results for this problem.
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Table 4.1: for m = 10, n = 4 and different κ

κ ε N time starting value optimal value

3 0.01 12186 21” 18.26 12.74

3 0.001 123668 197” 21.328 16.184

4 0.01 17835 34” 23.14 14.23

4 0.001 175299 376” 21.965 12.172

5 0.01 18830 39” 19.83 12.71

5 0.001 188304 377” 21.159 11.974

Table 4.2: for m = 30, n = 4 and different κ

κ ε N time starting value optimal value

3 0.01 62906 374” 59.08 35.43

3 0.001 653111 4230” 60.952 36.184

4 0.01 71845 393” 62.51 37.57

4 0.001 742312 4505” 61.253 35.942

5 0.01 73390 408” 84.81 39.52

5 0.001 753401 4669” 86.695 40.994

Table 4.3: for n = 4, κ = 4, ε = 0.01 and different m

m N time starting value optimal value

10 17835 34” 23.13 14.23

30 71845 393” 62.51 37.57

50 136471 1568” 60.952 36.184
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Next, we solve the smoothing problem :

min
x∈Q

ψµ(x).

The parameters Q, C, Ai, i = 1, · · · , n are defined as for φµ(x). The maximal

number of iterations is N = [4
√

R ln n
ε

√
‖G‖]. We composed the matlab codes for

this problem. Tables 4.4 contains the computational results.

Table 4.4: for n = 4, κ = 3 and different m

m ε N time starting value optimal value

10 0.01 29529 162” 21.45 13.37

10 0.001 268361 15562” 21.623 13.405

20 0.01 64050 306” 39.71 25.80

20 0.001 684150 2958” 41.125 25.867

30 0.01 107190 744” 59.73 36.67

30 0.001 1050400 7230” 62.452 37.336

4.2 Conclusions

Note that the two problems we have discussed can both be converted into

semidefinite programming problems. One may then consider second order ap-

proaches like Newton’s method to solve these problems. However, for high dimen-

sional problems, the efficiency of such approaches are not satisfactory.

In this chapter, we have done some experiments, but our final goal is to solve

high dimension problems. In our experiments, the number of iterations is very high.

In order to achieve the required accuracy with efficiency, we make the following

observation on the improvement of the smoothing algorithm.
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Firstly, we can reduce the time of eigenvalue decomposition in each iteration. In

our algorithm, we only need the first κ eigenvalues. In many cases, κ ¿ m, we

can try to do the partial eigenvalue decomposition. In each decomposition steps,

we only decompose the first l largest eigenvalues, where l is a heuristic parameter,

and κ < l ≤ m. For instance, let l be κ+3, κ+5, or 2κ, 3κ. Then we compare the

lth largest eigenvalue and the κth eigenvalue. If the lth eigenvalue is far less than

the κth eigenvalue, the eigenvalues less than the lth have little contribution to the

optimal value vT λ in each iteration, which means that the correspondence vis are

very small for i > l. When we apply (2.29) to compute the gradient of φµ(x) or

ψµ(x), vis also have little contribution to the gradient matrix for i > l. From the

above discussion, the partial eigenvalues decomposition will not cause great loss

in the process. How to find a proper l in each decomposition step, and how to

estimate the loss need to be taken into consideration in further research.

Secondly, Nesterov has provided an excessive gap algorithm [10], which is based

on the upper bound and lower bound of the optimal value. In further research, we

may try to apply this algorithm to our problems and reduce the number of total

iterations.

Finally, in our analysis, we prove that the gradients of the two classes of problems

are Lipschitz continuous, and derive the Lipschitz constant. The maximal iteration

number depends on the Lipschitz constant, which depends on the norm of the

matrix G. If ‖G‖ becomes larger, the Lipschitz constant becomes larger, thereby

the iteration number becomes larger. In Nesterov’s analysis, ‖A‖ is the infinity

norm, while in our result, ‖G‖ is the normal matrix norm, its property still needs

investigation.
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