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APPROXIMATION METHOD FOR 
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Abstract A successive approximation method for nonsmooth equations was provided. In 

this pape r ,by  i n t r o d u c ~ n ~  a positive number sequence. T h e  methud for computing the upper 

bound of a n o ~ \ ~ n m t h  equations.wh~ch 19 very difficult to implernents 1s avorded,and the global 

convergence 1s also proved. 
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1 Introduction C 

Let F:Rn-+R" be a continuous function. We consider the system of nonlinear equations , 

i ' (x )=O,  r € X n .  

T o  solve such nonsmooth equations caused marly authors' a t t rnt~on.for  example.see([i 

-141). Qi and Chen proposed a globally convergent successive approx~mation method fo:' 

nonsmooth equations in [I]. At  the bth s tep ,  they approxlrnate F by a smooth func t~on  fi-' 
such that F= fk+gk ,where 

II g~ II =SUP( I1 g ~ ( r )  I1 : r € R " ) < a  II F ( J A )  II , 
and a €  ( 0 , 1 >  is a f ~ x e d  constant. Such a decomposition is called a normal decompositio 

L 0 " 
, F. Their method can be described as follows. 

Let 

1 
B(r) = - F ( Z ) ~ F ( Z )  2 

and 
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The successive approximation method (SAM) 

Given p.aE ( 0 . 1 )  .an initial vetor xoE R" and a normal decomposition F = f o + g o  with )I 

go 11 <: 11 F(x.1 11 .let O<o<l--a. For k>O: 
2 

1 Solve F ( ~ , ) + f k '  ( ~ r ) d = O  to  get dk .  

2 Set ~ ~ + ~ = x 4 + p " ~ d k ~  

where mk is the smallest nonnegative integer m  such that 

O k ( ~ k + p l d r ) - 8 r ( ~ k ) < - 2 ~ p " 8 ( 1 4 ) .  

3 If F(xk+, )=Ors top .  If 11 g4 11 <a I l ~ F ( x ~ + l )  I( ,we let 1 ; + ~ = f 4  and g ~ + , = g , .  Otherwise,we 

construct a new normal decomposition 

F=f,+l+gk+, 9 

a  1 
with 11  g h + ~  11 <miniT 11 F(xk+l) 11 3 y 11 g ~  11 1- 

The most outstanding advantage of the abope algorithm over existing method is that it 

keeps feature of linearization at each step such that the subproblem is a system of linear e- 

quations. This feature is not possessed by known globally convergent methods for solving 

nonsmooth equations. In the above algorithm they need to compute the  value of 11 g k  11 in k 

th s tep,  which is not a easy, especially for the nonsm&th functions. However, we can easily 

compute an upper bound of 1) gk I( to  implement. In this paper, our mcin attention is con- 

centrated on avoiding computing 11 g r  (( - 
We use fk l  ( x 4 )  in the algorithm, wherever a derivative of F  a t  xk is needed. In the 

whole paper, we denote 11 11 by 11 11 : 

2 Method and Global convergence , . I s  . 

For convenience, we also call the following decomposition of F  a Aormal decomposition. 

Definition 1 Let a€ (0,1) , /% be a constant. A t  the k th  step of the iteration methods 

described in this section and the next section,we call 

F=fr+gr : 
a normal decomposition of F ,  if fk  is smooth and 

11 gk(xk) 11 <a 11 F(xk) 11 7 

II g4 II <PA 9 

whenever F(xh)#O. 

Our method can be described as  follows: 



/ 

The modified successive approximation method (MSAM) Lr 

G~ven  p,a ,  G E ( 0 . 1  1. an initial vector xo E R' and a normal decomposition F = f , ~ ~ , : .  i -1 

wltn 

a 
I1 go I1 <Pozy I1 F ( x o )  I1 * a T 

let O<a<l--a. For  k>O: $ I ,  - 1  
1  Solve F ( x 4 )  + f k l  ( x k ) d = O  to get dk. . I  k 

2 Set Xk+l=~k+p"'dkr . 
where mk is t h e  smallest nonnegative integer m suvh that , 

O k < ~ k + p " d k ) - O k ( ~ k ) < - 2 a p " O ( ~ k ) .  

3 If F ( x k + I , = O ,  stop. If (I gk(xk+,> II <a I1 F ( X , + ~ )  I1 . we let f i+ ,  = f k  and gk+~=gr. , . F 

Otherwise, let  /Ik+, = h ' P I .  we construct a new normal decompositipon 

F = f r + ~  + g ~ + i  7 

1 

with 

a 
11 gk+l (xk+l) 11 <y 11 F(xk+l )  11 

11 gk+l 11 <Pk+l. 

Assumption 1  T h e  level se t  

Do= { X E R " : O ( X ) < ( ~ + ~ ) ~ O ( X ~ ) )  

is bounded. 

Assumption 2 fkl (xr)  are n o n s ~ n ~ u l a r  for all k. 

Lemma 1  Suppose that F(xk)#O and F=fk+gh  is a normal decornpositlon of F. T 

there exists a scalar t kE  (0.11 such that for all t  E  (O.tk] 

O r ( ~ , + t d k ) - O k ( ~ ~ ) < - 2 ~ t O ( ~ k ) .  

Proof Notice Or1 ( I , )  =fk l  f k ( x h )  and f k l  (xh)dk= - F ( z k > .  W e  have 

1  
Ok<~h+td~)-Oh(~h)=~(f~(x~+tdk)~fh(xh+tdk)-fk(x~)~f~(xh)) 

-t&fh' ( ~ k ) ~ f k ( ~ k ) + o ( t )  

= ~ F ( X , ) ~ F ( X ~ ) + L F ( X ~ ) ~ ~ ~  ( x ~ ) + o ( ~ ) .  

Since a<l-a ,  there exists thE ( 0 , 1 ]  such that for all t E  (O.tr]. ( 3 )  holds. 

Lemma 1  indicates that the SAM is well-defined under Assumption 2. 

Theorem 1  Suppose that Assumption 1  and 2 hold. Then  the SAM is well-deflned 

for all k ,  

I ,  E Do- 
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Let {.=A) be a sequence produced by rhe SAM. If furthermore for an accumulation point I' of 

{ zk )  ,f,' (x' 1 is nonsingular for large K ,  then 

and 

F ( ~ ) = o  

for all accumulation points 2: of (r,}. 

Proof Without loss of generality, we may assume that F is not smooth. Hence 11 g, 11 
> O  for any k .  

By Lemma 1,  the S A M  is well-defined. We now prove ( 3 ) .  Without loss of generality, 

we assume that F  (x, )#O for all k.  Let K =  ( 0 )  U ( k :  (1 g k - ,  ( I , )  11 > a  11 F ( z k >  1) 1. Assume 

that K conslsts of k,=O<k,<k2<--- Let k  be an arbitrary nonegative integer. Let k, be the 

largest number in K such that k,<k. Then  

f k = f k , .  g,=gk, 

and 

11 F(Xk) 11 = 11 fk(Xh)+gk(~k)  11 - 11 fk , (~k)+gk , (xk)  11 

a 
If j = O ,  then 11 F ( x k )  II < I[ F ( x , )  u + a  11 F ( x o )  (1 . since 11 PO 11 =- 11 F ( r o )  11 

2 

If 1 3 1 ,  then . , 

In both cases it follows that B ( x ~ ) < ( ~ + ~ ) ~ B ( x ~ ) .  This implies that ( 3 )  holds. 

We now prove the second part of the theorem. If K is infinite, then for any k>O, there 

exists k , C K  being the largest number in K such that kj<k and (5) holds. The  limit in the 

right-hand side of (5) is zero.  his proves (4).  

Hence. to prove (41, it suffices to  prove that K is infinite. Suppose K' is finite and as- 

sume k>k for all k € K .  Then 11 g r - l ( ~ r )  11 <a 11 FL,) I! for all  k 2 g .  Hence for all k > k ,  

' f k s f r .  gksgr f 6 )  



.h 4 

$11 
' : 

18 @@lifi%P;k+?%#(fi %%%m ' 

and 
' I  

1 1 
e ( ~ ~ ) = ~  11 FW 11 2>9 11 gk-l 11 z=i>~- 

Suppose that KO is a subsequence of (0 .1 ,  --• ) such that ( r r  : k E KO ) converges to x' . 
(6) and the condition of this theorem. f k '  ( z ' )  is nonsingular. Since lin1rk = r' and 

&-m 

)€KO 

( is a continuous function, { 1 1  f k '  (xk)-' 11 : k c K O )  is uniformly bounded. Theref 

there exists'L>O such that I ]  dk ( 1  = ) (  f k '  ( x & ) - l F ( r k )  11 <L for all R > L , R €  K , .  Sinc 

- -.. ,- 
( is continuous, we have 6>0 such that for all z satisfying 11 x - x .  11 <a. ? 

l -a-a- lokt (x)-8k1 ( z a  )I<- L. E- 

Since  l imxk=x' ,we have k>k such that for.all k>R, k E  K O ,  
k-e- 
1.E KO 

6 1 1  x k - ~ .  11 GT* 

Let t' E (0.1) be such that 

B - ,  

t' L<-. 
2 

By, (9) and (10) .  for all O R ,  k E K o .  t E  (O,.t'] and vE(O.1). we have 

11 xk+7tdk-Zg 11 
Now by (8) and ( l l ) ,  for all R > R , ~ E K ,  and t E  (O, t ' ] ,  we have 

- i 

I o~ (~~+ tdr ) -8k (~&) - tc i fOk '  (z' )I ' 

<t1 ldk  1 1  ~ ' I o & '  + w k )  - okt ( Z * ) I ~ V  

<t(l-a-a);. 

Therefore, for all k>E, RE KO and t E  (0.t :I, 
e&(~k+tdk)-Ok(~k) 

<tdrrB~~ (x' ) +t(l-a-a12 

<t&okl ( ~ ~ ) + t  11 dk 11 lek1 (=-)-okf cxk) I + ~ ( I - U - ~ ) ~  

1-;-a- 
~ + t ( l  -a-a); C t B L '  (IA) + t L  
. , , 

=tBfkt  ( x ~ ) ~ ~ A ( z & )  +~ t ( l -a -a )E  

= - t F ! ~ ~ ) ~ f k ( z & ) + 2 t ( l - a - a ) ;  r: 

= -2t~(rk)+tF(zk)Tg~(rk)+2t(l-a-a)~ . , . . 

<-2tB(xk)+t ( 1  F ( z & )  I( )I gk(xr) (1 + 2 t ( l - 0 - - ~ ) 8 ( ~ ~ )  

<-- 2rB(rk)+2taB(xk)+2t( l -a-a)B(xk) 



This implies that for all k > i ,  RE KO, we have ,om*-'>tm , i. e. , 

gk,,pt' - 
BY ( 7 ) ,  (13) and the construction of our algorithm, for all k > , & , k E K , ,  

B L ( X ~ + ~ ) - ~ ~ ( Z ~ ) < - Z U ~ " ~ O ( I ~ ) < - ~ ~ ~ ' U ; < O .  

However. by ( 6 )  and the construction of ou r  algorithm, 8L(xk)  is nonincreasing for k>X. 

This implies Bi(x,)+-m as k tends to infinity. This contradicts the facts that 8 L ( ~ k ) > ~  for 

all k .  Hence, K cannot be finite. This proves (4). The  final conclusion of this theorem sirn- 

ply follows (4)  and the continuity of F. 

3 Some Discussions 

1 The  approxin~atc fu~lction f b  can be constructed via convolution (see[l]) for nonsmooth 

equations arising from the variational inequality problem, the maximal monotone operator 

problem, the nonlinear complementarity problem and nonsmooth partial differential equa- 

tions. There are already several superlinearly convergent methods [7-8.12- 141 and a su- 

perlinear convergence theory [9- 101 for solving nonsmooth equations. One  may construct a 

hybrid globally and superlinearly convergent algorithm by the new algorithm and a known 

superlinearly convergent algorithm with the methodology proposed in [ lo  1. We do not go in- 

to details for such a corlstructio;. 

The  authers are qa te fu l  to  our  supervisor professor Jiye Han for his constant helpfulness and guidance. 

The sccond author is indebted to  professor Liqun Qi for his valuble suggestions on this subject. 
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