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Let 8™ be the set of all real symmetric matrices and &%
be the cone of all positive semidefinite matrices in S".

We consider the least squares SDP:

1
min { JJACX) ~ bl + p(I, X) + B(X) =d, X €81},

where A : §" — R™ and B : 8" — R* are linear maps

and p is a given positive scalar.
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An example — the regularized kernel estimation
(RKE) problem in statistics:

we are given a set of n objects and dissimilarity
measures d;; for certain object pairs (7,7) € £.

The goal is to estimate a positive semidefinite kernel
matrix X € 8! such that the fitted squared distances
between objects induced by X satisty

Xii+Xj; —2X;; = (A, X) = d&; V(i,j) €€,

where A;; = (e; — €;)(e; —e;)?.
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One version of the RKE problem is to solve the
following SDP:

min{ Z Wi ((Aij, X) —di;)* + p(I, X) :

(1,7)€€

(E, X) =0, Xzo},

where W € §" is a given weight matrix with positive
entries.
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Analogously, we consider the least squares problem with
the nuclear norm regularization:

1
min { S|ACX) = bl + pl| X[, = B(X) = d, X € %=1 },
where

X[ = Y ai(X)

and o;(X) are the singular values of X.
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The matrix completion example:

min {rank(X) Xy~ M;; ¥V (i,75) €€ },

where

Qed{l,....,p} x{1,...,q}:
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get a relaxed convex problem:

min{HXH* Xy~ M, V(z’,j)eﬂ}.

Further

, 1
min {5 3 (X5 — My)* + ol Xl |-

(4,7)€0

The Netflix Prize problem: the convex relaxation is
pretty good.

http: //www.netflixprize.com/index
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For a random example:
e p =g =10° rank(X) = 10, noise level =0.1.
e | ~1.2x 107,

e Proximal point method framework + gradient
projection method.

e Need 416 seconds to achieve a relative accuracy
0.0453.
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Consider the Moreau-Yosida regularization:

1 1
F (X)= min —|ul? Vi, +—I|Y — X|I?
(X) = min flul® +pl| Y] + o [Y — X|
st. AY)+u = b 1)
B(Y) — d
Y e RP*4, 1y e R™.
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yeR™, zeRS

The Lagrangian dual problem of (1) is

max {9§(y, 2; X) = inf L2(Y, u;y, 2, X)

ueR™ Y eRpxq

1
= > lyl*+ (bw) + (d, 2

~

1 1
—IX|? = —ID,, X 2} 2
o X~ oD (W, 2 X)) (2

where W(y,z; X) = X 4+ o(A*y + B*z2).
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For any Y € >, D,(Y) is the unique optimal solution
to the following strongly convex function

1
in | X, + —|X — Y||?
m)gnH | +2PH I

It is well known that D,(-) is globally Lispchitz
continuous with modulus 1.
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Let Y € RP*7 admit the following singular value
decomposition:

Y =U[Z 0|V?,
where U € P*P and V € R?*? are orthogonal matrices,
> = diag(oy, -+ ,05),and 0y > 09 > --- > 0, > 0 are

singular values of Y. For each p > 0, the operator D, is
given by:
D,(Y)=U[E, 0]V,

where X, = diag((o1 — p)+, .-, (0p — p)+).
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Good news is: ||D,(Y)]||? is continuously differentiable
and

V(S1D,(1)I) = D,(v)

S0 we have a smooth convex optimization problem:

min { — Hg(y,z;X)}.

yeR™ zeRS
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Even better: D,(-) is strongly semismooth
everywhere.

A Lipschitz function F' : X — ) is said to be strongly
semismooth at r € X if

1) it is directionally differentiable at x; and 2)
F(z+ Azx) — F(z) — F'(x + Az)Ax = O(]|Ax||?)

for all x + Az such that F' is Fréchet differentiable at
r + Ax.
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One key issue:

95(’7 g X) §§ CQ'

This property allows 62(-,-; X) to possess nonsingular
(generalized) Hessian, which is vital for an inexact
second order method to be efficient.
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We apply the proximal point method to solve the
following unconstrained problem:

Xmg%n OL(X) :=max{0°(y,z; X) : y e ", z € R°}.
ERPX4q
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PPA. Input X" € ®P*4 g, > 0, iterate:

1. Compute an approximate maximizer

~

(y", 2") ~ argmax{0” (y,z; X") : y € R", 2 € R},

2. XK = Dy, (W(yh, 28 XF), 241 =

1
_(ngk(w(yka Zka Xk)) - W(yka Zka Xk))a
Of

3. If |RE == A*y* 4+ B*z" + Z8Y | < &) stop; else,

update oy.
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For the inner subproblem, the optimality condition is
given by

vV, 00 (y, z; Xk) =b—y—AD,,(W(y, 2; Xk)) =0 3)
V.00 (y,2; X") =d — BD,,(W(y, 2 X")) =0

We solve (3) by a semismooth Newton-CG method.
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The inner problems can be solved by a (fast)
semismooth Newton-CG method. The outer
1teration

X = Dy (W (y", 2% X))
only satisfies
X =XV — 0, VO (X5,

a gradient descent step. The good news is that it
can also be seen as an approximate semismooth
Newton method, at least for the least squares SDP
case.
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Selected examples:

1. For each pair (n,r), we generate a positive
semidefinite matrix M € §" of rank r by setting

M = MlMlT where M7 € R"*" is a random matrix with
1.1.d Gaussian entries. Then we sample a subset €2 of m
entries uniformly at random from the upper triangular
part of M. The observed data is set to be

Mg = Mg + aNg||[Mal|r/||Na||, where the random
matrix Ng € 8" is generated that has sparsity pattern €2
and i.i.d Gaussian entries and « is the noise level.
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The minimization problem we solve is given by

1 —
min { > | Xo = Molft+p(1, X) : X =0} (4

Numerical results: n = 2000, » = 100,

— for a = 0, we need 15:00 and 8 (27) iterations; and
— for a = 0.05, we need 39:15 and 18(63) iterations
— The relative accuracy is below 107°.

— The averaged CGs each step < 10.

— |2 &= 975, 000.
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The averaged CGs each step < 5.

n

T'he relative accuracy is below 1079,

— Q| = 487, 500.

2. The nonsymmtric problem: similarly generated as in
Example 1.

Numerical results: p = ¢ = 1000, r = 50,
— for a = 0, we need 4:07 and 12 (24) iterations; and
— for a = 0.05, we need 16:01 and 26 (73) iterations.
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