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Given A ∈ Sn (the space of real symmetric matrices of order n),
how can we find a positive semidefinite (PSD) matrix X ∈ Sn

+ such
that ‖X −A‖F is minimized?

Mathematically,

X ∈ argmin 1
2 〈X −A,X −A〉F

s.t. X º 0 .
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The answer is straightforward. Let On denote the set of all
orthonormal matrices in Rn×n. Let P ∈ On be such that

A = Pdiag(σ1(A), σ2(A), · · · , σn(A))PT .

Then the unique solution, A+, which is actually the metric
projection of A onto Sn

+, is given by [Higham’88, Tseng’98]

Pdiag((σ1(A))+, (σ2(A))+, · · · , (σn(A))+)PT .
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For given M, C, K ∈ Rn×n, let

Q(λ) := λ2M + λC + K.

Then the quadratic eigenvalue problem (QEP) is to find scalars
λ ∈ C and nonzero vectors x such that

Q(λ)x = 0.

where λ and x are called the eigenvalue and the eigenvector,
respectively.



National University of Singapore Tianjin University–July 16, 2006 5

'

&

$

%

The general Inverse QEP (IQEP) can be defined as follows:

• Given a measured partial eigenpair (Λ, X) ∈ Rk×k ×Rn×k with
1 ≤ k ≤ n, rank(X) = k,

Λ = diag{Λ1, . . . , Λµ,Λµ+1, . . . , Λν},

Λi = diag{
si︷ ︸︸ ︷

λ
[2]
i , . . . , λ

[2]
i } for 1 ≤ i ≤ µ,

Λi = λiIsi
for µ + 1 ≤ i ≤ ν,
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λ
[2]
i =


 αi βi

−βi αi


 ∈ R2×2, βi 6= 0,

σ(Λi) ∩ σ(Λj) = ∅, ∀ 1 ≤ i 6= j ≤ µ,

λi ∈ R, λi 6= λj , ∀µ + 1 ≤ i 6= j ≤ ν,
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• find M, C, K ∈ Sn with M Â 0 and K º 0 such that

MXΛ2 + CXΛ + KX = 0.

M. Chu, Kuo, and Lin (2004) showed that the general IQEP admits
a nontrivial solution, i.e, there exist

M Â 0, C = CT ,K º 0 satisfying

MXΛ2 + CXΛ + KX = 0.
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For given Ma, Ca,Ka ∈ Sn, which are called the estimated analytic
mass, damping, and stiffness matrix, the IQEP is

inf c1
2 ‖M −Ma‖2 + c2

2 ‖C − Ca‖2 + 1
2‖K −Ka‖2

s.t. MXΛ2 + CXΛ + KX = 0,

M Â 0(M º 0), C = CT , K º 0,

where c1 > 0 and c2 > 0.
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Let the QR factorization of X be given by

X = Q


 R

0


 ,

where Q ∈ Rn×n is orthogonal and R ∈ Rk×k is nonsingular and
upper triangular.

By doing variables substitution,

M :=
√

c1Q
T MQ, Ma :=

√
c1Q

T MaQ, etc.
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The IQEP becomes

min 1
2‖M −Ma‖2 + 1

2‖C − Ca‖2 + 1
2‖K −Ka‖2

s.t. 1√
c1

M


 R

0


 Λ2 + 1√

c2
C


 R

0


 Λ + K


 R

0


 = 0,

(M, C, K) ∈ Ω,

where

Ω0 := Sn × Sn × Sn

Ω := {(M, C,K) ∈ Ω0 : M º 0, K º 0}.
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Theorem 1. The IQEP has a strictly feasible solutuion iff

Det(Λ) 6= 0.

Remark: If Det(Λ) = 0, we do not lose generality as we can reduce
the IQEP to another problem with a strictly feasible solution.
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The IQEP is a special case of

min 1
2 〈x− x0, x− x0〉

s.t. Ax = b,

x ∈ Q,

where x0 ∈ X , A : X → Y is a linear operator, b ∈ Y, Q is a closed
convex cone in X , and X and Y are finite dimensional real vector
spaces each equipped with a scalar inner product 〈·, ·〉 and its
induced norm ‖ · ‖. Let A∗ : Y → X be the adjoint of A.
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Let D ⊆ X be a closed convex set. For any x ∈ X , let ΠD(x)
denote the metric projection of x onto D,

min 1
2 〈z − x, z − x〉

s.t. z ∈ D.
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The dual problem is

min θ(y)

s.t. y ∈ Y,

where

θ(y) : = 1
2‖x0 +A∗y‖2
− 1

2‖x0 +A∗y −ΠQ(x0 +A∗y)‖2
−〈b, y〉 − 1

2 ||x0‖2
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and if Q is a closed convex cone

θ(y) =
1
2
‖ΠQ(x0 +A∗y)‖2 − 〈b, y〉 − 1

2
||x0‖2.

Consider the following equation:

F (y) := ∇θ(y) = AΠQ(x0 +A∗y)− b = 0, y ∈ Y.
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Under Slater’s condition




A : X → Y is onto,

∃ x̄ ∈ X such that Ax̄ = b, x̄ ∈ int (Q) ,

where “int” denotes the topological interior, the classical duality
theorem [Rockafellar’74] says that

x∗ := ΠQ(x0 + A∗y∗) solves the original problem if y∗ solves
F (y∗) = 0.
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Let Z be an arbitrary finite dimensional real vector space.

Let O be an open set in Y and Ξ : O ⊆ Y → Z be a locally
Lipschitz continuous function on the open set O.

Rademacher’s theorem says that Ξ is almost everywhere Fréchet
differentiable in O.

We denote by OΞ the set of points in O where Ξ is Fréchet
differentiable.
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Let Ξ′(y) denote the Jacobian of Ξ at y ∈ OΞ.

Then Clarke’s generalized Jacobian of Ξ at y ∈ O is defined by
[Clarke’83]

∂Ξ(y) := conv{∂BΞ(y)},
where “conv” denotes the convex hull and

∂BΞ(y) :=
{

V : V = lim
j→∞

Ξ′(yj) , yj → y , yj ∈ OΞ

}
.
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When F : O ⊆ Y → Y is continuously differentiable (smooth), the
most effective approach for solving

F (y) = 0

is probably Newton’s method. For example, in 1987, S. Smale wrote

If any algorithm has proved itself for the problem of non-
linear systems, it is Newton’s method and its many modifi-
cations. ... Thus a relation between the simplex method of
linear programming and Newton’s method, is no surprise.
...”
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The extension of Newton’s methods to Lipschitz systems:

• Friedland, Nocedal, and Overton [87] for inverse eigenvalue
problems.

• Kojima and Shindoh [86] for piecewise smooth equations.

• Kummer [88] proposed a condition

(ii) for any x → y and V ∈ ∂Ξ(x),

Ξ(x)− Ξ(y)− V (x− y) = o(||x− y||) .

• Finally, Qi and J. Sun [93] showed what needed is
semismoothness.
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The function Ξ is (strongly) semismooth at a point y ∈ O if

(i) Ξ is directionally differentiable at y; and

(ii) for any x → y and V ∈ ∂Ξ(x),

Ξ(x)− Ξ(y)− V (x− y) = o(||x− y||) (O(||x− y||2)).

Condition (ii) can be replaced by

(ii)’ for any x → y and x ∈ OΞ,

Ξ(x)− Ξ(y)− Ξ′(x)(x− y) = o(||x− y||) (O(||x− y||2)).
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Let A ∈ Sn. Then A admits the following spectral decomposition

A = PΣPT ,

where Σ is the diagonal matrix of eigenvalues of A and P is a
corresponding orthogonal matrix of orthonormal eigenvectors.

Define three index sets of positive, zero, and negative eigenvalues of
A, respectively, as

α := {i : σi > 0},
β := {i : σi = 0},
γ := {i : σi < 0}.
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Write

Σ =




Σα 0 0

0 0 0

0 0 Σγ




and P = [ Pα Pβ Pγ ]

with Pα ∈ Rn×|α|, Pβ ∈ Rn×|β|, and Pγ ∈ Rn×|γ|.

Define the matrix U ∈ Sn with entries

Uij :=
max{σi, 0}+ max{σj , 0}

|σi|+ |σj | , i, j = 1, . . . , n,

where 0/0 is defined to be 1.
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Sun and J. Sun [02] showed ΠSn
+
(·) is strongly semismooth

everywhere and the directional derivative Π′Sn
+
(A; H) is given by

P

2
666664

P T
α HPα P T

α HPβ Uαγ ◦ P T
α HPγ

P T
β HPα ΠS|β|+

`
P T

β HPβ

´
0

P T
γ HPα ◦ UT

αγ 0 0

3
777775

P T ,

where ◦ denotes the Hadamard product.

When A is nonsingular, i.e., |β| = 0, ΠSn
+
(·) is continuously

differentiable around A and the above formula reduces to the
classical result of Löwner [34].
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The tangent cone of Sn
+ at A+ = ΠSn

+
(A):

TSn
+
(A+) = {B ∈ SP : PT

ᾱ BPᾱ º 0}

and the lineality space of TSn
+
(A+), i,e, the largest linear space in

TSn
+
(A+),

lin
(
TSn

+
(A+)

)
= {B ∈ Sn : PT

ᾱ BPᾱ = 0},

where ᾱ := {1, . . . , n}\α and Pᾱ := [Pβ Pγ ].
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Let W (H) be defined by

P




PT
α HPα PT

α HPβ Uαγ ◦ PT
α HPγ

PT
β HPT

α 0 0

PT
γ HPα ◦ UT

αγ 0 0




PT

for all H ∈ Sn. Then W is an element in ∂BΠSn
+
(A).
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Let us come back to the IEQP. Denote

M =:


 M1 M2

MT
2 M4


 , C :=


 C1 C2

CT
2 C4


 ,

K :=


 K1 K2

KT
2 K4


 ,

where M1, C1,K1 ∈ Sk, M2, C2, K2 ∈ Rk×(n−k), and
M4, C4,K4 ∈ S(n−k). Let S := RΛR−1.
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For (M, C,K) ∈ Ω0, let H(M, C,K) be given by

1√
c1

(Λ2)T
(
RT M1R

)
+

1√
c2

ΛT
(
RT C1R

)
+

(
RT K1R

)

and G(M, C,K) be given by

1√
c1

(S2)T M2 +
1√
c2

ST C2 + K2.

While G : Ω0 → Rk×(n−k) is onto, H : Ω0 → Rk×k is not. Let

Range(H) := {H(M, C,K) : (M, C, K) ∈ Ω0}.
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H : Ω0 → Range(H) is surjective. The dimension of Range(H) is
given by

k2 −
µ∑

i=1

si(si − 1)− 1
2

ν∑

i=µ+1

si(si − 1).

In particular, if s1 = · · · = sµ = sµ+1 = · · · = sν = 1, it is equal to
k2.

Define the linear operator A : Ω0 → Range(H)× Rk×(n−k) by

A(M, C,K) := (H(M, C,K),G(M,C, K)) .
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The IQEP takes the following compact form

min 1
2‖(M,C, K)− (Ma, Ca,Ka)‖2

s.t. A(M,C, K) = 0,

(M, C, K) ∈ Ω.

Define θ : Range(H)× Rk×(n−k) → R by

θ(Y,Z) : = 1
2‖ΠΩ((Ma, Ca,Ka) +A∗(Y, Z))‖2
− 1

2‖(Ma, Ca,Ka)‖2,
(1)

where (Y, Z) ∈ Range(H)× Rk×(n−k).
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The dual problem is

min θ(Y, Z)

s.t. (Y, Z) ∈ Range(H)× Rk×(n−k).
(2)

Define F : Range(H)× Rk×(n−k) → Range(H)× Rk×(n−k) by

F (Y, Z) : = ∇θ(Y, Z)

= AΠΩ ((Ma, Ca,Ka) +A∗(Y, Z)) ,
(3)

where (Y, Z) ∈ Range(H)× Rk×(n−k).
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(Newton’s Method)

[Step 0.] Given (Y 0, Z0) ∈ Range(H)× Rk×(n−k), η ∈ (0, 1),
ρ, δ ∈ (0, 1/2). j := 0.

[Step 1.] Select an element

Wj ∈ ∂ΠΩ

(
(Ma, Ca,Ka) +A∗(Y j , Zj)

)

and let
Vj := AWjA∗.
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Apply the conjugate gradient method to find an approximate
solution

(∆Y j ,∆Zj) ∈ Range(H)× Rk×(n−k)

to the linear system

F (Y j , Zj) + Vj(∆Y, ∆Z) = 0 (4)

such that

‖F (Y j , Zj) + Vj(∆Y j , ∆Zj)‖ ≤ ηj‖F (Y j , Zj)‖ (5)

and 〈
F (Y j , Zj), (∆Y j , ∆Zj)

〉

≤ −ηj

〈
(∆Y j ,∆Zj), (∆Y j ,∆Zj)

〉
,

(6)

where ηj := min{η, ‖F (Y j , Zj)‖}.
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If (5) and (6) are not achievable, let

(∆Y j , ∆Zj) := −F (Y j , Zj)

= −AΠΩ

(
(Ma, Ca,Ka) +A∗(Y j , Zj)

)
.

[Step 2.] Let mj be the smallest nonnegative integer m such that

θ
(
(Y j , Zj) + ρm(∆Y j ,∆Zj)

)− θ(Y j , Zj)

≤ δρm
〈
F (Y j , Zj), (∆Y j , ∆Zj)

〉
.

Set
(Y j+1, Zj+1) := (Y j , Zj) + ρmj (∆Y j , ∆Zj).

[Step 3.] Replace j by j + 1 and go to Step 1.
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Theorem 2. The algorithm generates an infinite sequence
{(Y j , Zj)} with the properties that for each j ≥ 0, (Y j , Zj) ∈
Range(H)× Rk×(n−k), {(Y j , Zj)} is bounded, and any accumula-
tion point of {(Y j , Zj)} is a solution to the dual problem.
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For discussions on the rate of convergence, we need the constraint
nondegenerate condition (“LICQ”)

A
(
lin

(
TSn

+
(M)

)
,Sn, lin

(
TSn

+
(K)

))

= Range(H)× Rk×(n−k),

where (M, C, K) ∈ Ω0 is a feasible solution to the original problem.

Theorem 3. Let (Y , Z) be an accumulation point of the infinite
sequence {(Y j , Zj)} generated by the algorithm. Let

(M, C,K) := ΠΩ

(
(Ma, Ca,Ka) +A∗(Y , Z)

)
.

Assume that the constraint nondegenerate condition holds at
(M, C, K). Then the whole sequence {(Y j , Zj)} converges to
(Ȳ , Z̄) quadratically.
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The stopping criterion is

Tol. :=
‖∇θ(Yk, Zk)‖

max
{

1,
∥∥( 1√

c1
Ma, 1√

c2
Ca,Ka)

∥∥
} ≤ 10−7 .

We set other parameters used in our algorithm as η = 10−6,
ρ = 0.5, and δ = 10−4.

k = 30, c1 = c2 = 1.0

n cputime It. Func. Tol.

100 01 m 26 s 18 24 3.9× 10−11

200 04 m 39 s 14 15 3.9× 10−11

500 21 m 16 s 11 12 1.3× 10−10

1,000 44 m 13 s 9 10 1.1× 10−9

1,500 08 h 49 m 11 s 7 8 1.6× 10−8

2,000 05 h 24 m 37 s 9 10 3.3× 10−8
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k ≈ n/3, c1 = 10.0, c2 = 0.10

n k cputime It. Func. Tol.

100 33 46.1 s 9 11 1.4× 10−9

200 66 42 m 42 s 13 15 5.8× 10−8

300 100 02 h 24 m 23 s 17 20 6.5× 10−9

400 133 04 h 38 m 42 s 10 11 4.0× 10−8

450 150 12 h 23 m 44 s 13 14 8.8× 10−9
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The largest numerical examples that we tested in this paper are: (i)
n = 2, 000 and k = 30 and (ii) n = 450 and k = 150.

For case (i), there are roughly 6, 000, 000 unknowns in the primal
problem and 60, 000 unknowns in the dual problem while for case
(ii), these numbers are roughly 300, 000 and 67, 000, respectively.
In consideration of the scales of problems solved, our algorithm is
very effective.


