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Summary

In this thesis, we conduct high-dimensional analysis on the problem of low-rank

and sparse matrix decomposition with fixed and sampled basis coefficients. This

problem is strongly motivated by high-dimensional correlation matrix estimation

coming from a factor model used in economic and financial studies, in which the

underlying correlation matrix is assumed to be the sum of a low-rank matrix and

a sparse matrix respectively due to the common factors and the idiosyncratic com-

ponents, and the fixed basis coefficients are the diagonal entries.

We consider both of the noiseless and noisy versions of this problem. For the

noiseless version, we develop exact recovery guarantees provided that certain stan-

dard identifiability conditions for the low-rank and sparse components are assumed

to be satisfied. These probabilistic recovery results are especially in accordance

with the high-dimensional setting because only a vanishingly small fraction of

samples is already sufficient when the intrinsic dimension increases. For the noisy

version, inspired by the successful recent development on the adaptive nuclear

semi-norm penalization technique for noisy low-rank matrix completion [98, 99],

we propose a two-stage rank-sparsity-correction procedure and then examine its

xii



Summary xiii

recovery performance by establishing, for the first time up to our knowledge, a

non-asymptotic probabilistic error bound under the high-dimensional scaling.

As a main application of our theoretical analysis, we specialize the aforemen-

tioned two-stage correction procedure to deal with the correlation matrix estima-

tion problem with missing observations in strict factor models where the sparse

component is known to be diagonal. By virtue of this application, the specialized

recovery error bound and the convincing numerical results show the superiority of

the two-stage correction approach over the nuclear norm penalization.



List of Notations

• Let IRn be the linear space of all n-dimensional real vectors and IRn
+ be the

n-dimensional positive orthant. For any x and y ∈ IRn, the notation x ≥ 0

means that x ∈ IRn
+, and the notation x ≥ y means that x− y ≥ 0.

• Let IRn1×n2 be the linear space of all n1 × n2 real matrices and Sn be the

linear space of all n× n real symmetric matrices.

• Let Vn1×n2 represent the finite dimensional real Euclidean space IRn1×n2 or

Sn with n := min{n1, n2}. Suppose that Vn1×n2 is equipped with the trace

inner product 〈X, Y 〉 := Tr(XTY ) for X and Y in Vn1×n2 , where “Tr” stands

for the trace of a squared matrix.

• Let Sn+ denote the cone of all n× n real symmetric and positive semidefinite

matrices. For any X and Y ∈ Sn, the notation X � 0 means that X ∈ Sn+,

and the notation X � Y means that X − Y � 0.

• Let On×r (where n ≥ r) represent the set of all n × r real matrices with

orthonormal columns. When n = r, we write On×r as On for short.
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use |J | to represent the cardinality of J , i.e., the number of elements in J .

Moreover, we use xJ ∈ IR|J | to denote the sub-vector of x indexed by J .

• Let X and Y be two finite dimensional real Euclidean spaces with Euclidean

norms ‖ · ‖X and ‖ · ‖Y , respectively, and A : X → Y be a linear operator.

Define the spectral (or operator) norm of A by ‖A‖ := sup‖x‖X=1 ‖A(x)‖Y .
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Chapter 1
Introduction

High-dimensional structured recovery problems have attracted much attention in

diverse fields such as statistics, machine learning, economics and finance. As its

name suggests, the high-dimensional setting requires that the number of unknown

parameters is comparable to or even much larger than the number of observations.

Without any further assumption, statistical inference in this setting is faced with

overwhelming difficulties – it is usually impossible to obtain a consistent estimate

since the estimation error may not converge to zero with the dimension increas-

ing, and what is worse, the relevant estimation problem is often underdetermined

and thus ill-posed. The statistical challenges with high-dimensionality have been

realized in different areas of sciences and humanities, ranging from computational

biology and biomedical studies to data mining, financial engineering and risk man-

agement. For a comprehensive overview, one may refer to [52]. In order to make

the relevant estimation problem meaningful and well-posed, various types of em-

bedded low-dimensional structures, including sparse vectors, sparse and structured

matrices, low-rank matrices, and their combinations, are imposed on the model.

Thanks to these simple structures, we are able to treat high-dimensional problems

in low-dimensional parameter spaces.

1
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1.1 Problem and motivation

This thesis studies the problem of high-dimensional low-rank and sparse matrix

decomposition with fixed and sampled basis coefficients. Specifically, this problem

aims to recover an unknown low-rank matrix and an unknown sparse matrix from a

small number of noiseless or noisy observations of the basis coefficients of their sum.

In some circumstances, the sum of the unknown low-rank and sparse components

may also have a certain structure so that some of its basis coefficients are known

exactly in advance, which should be taken into consideration as well.

Such a matrix decomposition problem appears frequently in a lot of prac-

tical settings, with the low-rank and sparse components having different inter-

pretations depending on the concrete applications, see, for example, [32, 21, 1]

and references therein. In this thesis, we are particularly interested in the high-

dimensional correlation matrix estimation problem with missing observations in

factor models. As a tool for dimensionality reduction, factor models have been

widely used both theoretically and empirically in economics and finance. See, e.g.,

[108, 109, 46, 29, 30, 39, 47, 48, 5]. In a factor model, the correlation matrix

can be decomposed into a low-rank component corresponding to several common

factors and a sparse component resulting from the idiosyncratic errors. Since any

correlation matrix is a real symmetric and positive semidefinite matrix with all

the diagonal entries being ones, the setting of fixed basis coefficients naturally oc-

curs. Moreover, extra reliable prior information on certain off-diagonal entries or

basis coefficients of the correlation matrix may also be available. For example, in a

correlation matrix of exchange rates, the correlation coefficient between the Hong

Kong dollar and the United States dollar can be fixed to one because of the linked

exchange rate system implemented in Hong Kong for the stabilization purpose,

which yields additional fixed basis coefficients.

Recently, there are plenty of theoretical researches focused on high-dimensional
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low-rank and sparse matrix decomposition in both of the noiseless [32, 21, 61, 73,

89, 33, 124] and noisy [135, 73, 1] cases. To the best of our knowledge, however, the

recovery performance under the setting of simultaneously having fixed and sampled

basis coefficients remains unclear. Thus, we will go one step further to fill this gap

by providing both exact and approximate recovery guarantees in this thesis.

1.2 Literature review

In the last decade, we have witnessed a lot of exciting and extraordinary progress

in theoretical guarantees of high-dimensional structured recovery problems, such

as compressed sensing for exact recovery of sparse vectors [27, 26, 43, 42], sparse

linear regression using the LASSO for exact support recovery [95, 133, 121] and

analysis of estimation error bound [96, 13, 102], low-rank matrix recovery for the

noiseless case [105, 106] and the noisy case [24, 100] under different assumptions,

like restricted isometry property (RIP), null space conditions, and restricted strong

convexity (RSC), on the mapping of linear measurements, exact low-rank matrix

completion [25, 28, 104, 68] with the incoherence conditions, and noisy low-rank

matrix completion [101, 79] based on the notion of RSC. The establishment of these

theoretical guarantees depends heavily on the convex nature of the corresponding

formulations of the above problems, or specifically, the utilization of the `1-norm

and the nuclear norm as the surrogates respectively for the sparsity of a vector and

the rank of a matrix.

Given some information on a matrix that is formed by adding an unknown

low-rank matrix to an unknown sparse matrix, the problem of retrieving the low-

rank and sparse components can be viewed as a natural extension of the afore-

mentioned sparse or low-rank structured recovery problems. Enlightened by the

previous tremendous success of the convex approaches in using the `1-norm and



4 Chapter 1. Introduction

the nuclear norm, the “nuclear norm plus `1-norm” approach was first studied by

Chandrasekaran et al. [32] for the case that the entries of the sum matrix are

fully observed without noise. Their analysis is built on the notion of rank-sparsity

incoherence, which is useful to characterize both fundamental identifiability and

deterministic sufficient conditions for exact decomposition. Slightly later than the

pioneered work [32] was released, Candès et al. [21] considered a more general

setting with missing observations, and made use of the previous results and anal-

ysis techniques for the exact matrix completion problem [25, 104, 68] to provide

probabilistic guarantees for exact recovery when the observation pattern is chosen

uniformly at random. However, a non-vanishing fraction of entries is still required

to be observed according to the recovery results in [21], which is almost meaning-

less in high-dimensional setting. Recently, Chen et al. [33] sharpened the analysis

used in [21] to further the related research along this line. They established the

first probabilistic exact decomposition guarantees that allow a vanishingly small

fraction of observations. Nevertheless, as far as we know, there is no existing liter-

ature that concerns about recovery guarantees for this exact matrix decomposition

problem with both fixed and sampled entries. In addition, it is worthwhile to

mention that the problem of exact low-rank and diagonal matrix decomposition

without any missing observation was investigated by Saunderson et al. [112], with

interesting connections to the elliptope facial structure problem and the ellipsoid

fitting problem, but the fully-observed model is too restricted.

All the recovery results reviewed above focus on the noiseless case. In a more

realistic setting, the observed entries of the sum matrix are corrupted by a small

amount of noise. This noisy low-rank and sparse matrix decomposition problem

was first addressed by Zhou et al. [135] with a constrained formulation and later

studied by Hsu et al. [73] in both of the constrained and penalized formulations.

Very recently, Agarwal et al. [1] adopted the “nuclear norm plus `1-norm” penalized
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least squares formulation and analyzed this problem based on the unified framework

with the notion of RSC introduced in [102]. However, a full observation of the sum

matrix is necessary for the recovery results obtained in [135, 73, 1], which may not

be practical and useful in many applications.

Meanwhile, the nuclear norm penalization approach for noisy matrix com-

pletion was noticed to be significantly inefficient in some circumstances, see, e.g.,

[98, 99] and references therein. The similar challenges may yet be expected in the

“nuclear norm plus `1-norm” penalization approach for noisy matrix decomposi-

tion. Therefore, how to go beyond the limitation of the nuclear norm in the noisy

matrix decomposition problem also deserves our researches.

1.3 Contributions

From both of the theoretical and practical points of view, the main contributions

of this thesis consist of three parts, which are summarized as follows.

Firstly, we study the problem of exact low-rank and sparse matrix decomposi-

tion with fixed and sampled basis coefficients. Based on the well-accepted “nuclear

norm plus `1-norm” approach, we formulate this problem into convex programs,

and then make use of their convex nature to establish exact recovery guarantees

under the assumption of certain standard identifiability conditions for the low-

rank and sparse components. Since only a vanishingly small fraction of samples

is required as the intrinsic dimension increases, these probabilistic recovery results

are particularly desirable in the high-dimensional setting. Although the analysis

involved follows from the existing framework of dual certification, such recovery

guarantees can still serve as the noiseless counterparts of those for the noisy case.

Secondly, we focus on the problem of noisy low-rank and sparse matrix de-

composition with fixed and sampled basis coefficients. Inspired by the successful
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recent development on the adaptive nuclear semi-norm penalization technique for

noisy low-rank matrix completion [98, 99], we propose a two-stage rank-sparsity-

correction procedure, and then examine its recovery performance by deriving, for

the first time up to our knowledge, a non-asymptotic probabilistic error bound

under the high-dimensional scaling. Moreover, as a by-product, we explore and

prove a novel form of restricted strong convexity for the random sampling operator

in the context of noisy low-rank and sparse matrix decomposition, which plays an

essential and profound role in the recovery error analysis.

Thirdly, we specialize the aforementioned two-stage correction procedure to

deal with the correlation matrix estimation problem with missing observations in

strict factor models where the sparse component turns out to be diagonal. In this

application, we provide a specialized recovery error bound and point out that this

bound coincides with the optimal one in the best cases when the rank-correction

function is constructed appropriately and the initial estimator is good enough,

where by “optimal” we mean the circumstance that the true rank is known in

advance. This fascinating finding together with the convincing numerical results

indicates the superiority of the two-stage correction approach over the nuclear norm

penalization.

1.4 Thesis organization

The remaining parts of this thesis are organized as follows. In Chapter 2, we in-

troduce some preliminaries that are fundamental in the subsequent discussions,

especially including a brief introduction on Bernstein-type inequalities for inde-

pendent random variables and random matrices. In Chapter 3, we summarize the

performance in terms of estimation error for the Lasso and related estimators in

the context of high-dimensional sparse linear regression. In particular, we propose
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a new Lasso-related estimator called the corrected Lasso. We then present non-

asymptotic estimation error bounds for the Lasso-related estimators followed by a

quantitative comparison. This study sheds light on the usage of the two-stage cor-

rection procedure in Chapter 5 and Chapter 6. In Chapter 4, we study the problem

of exact low-rank and sparse matrix decomposition with fixed and sampled basis

coefficients. After formulating this problem into concrete convex programs based

on the “nuclear norm plus `1-norm” approach, we establish probabilistic exact re-

covery guarantees in the high-dimensional setting if certain standard identifiability

conditions for the low-rank and sparse components are satisfied. In Chapter 5, we

focus on the problem of noisy low-rank and sparse matrix decomposition with fixed

and sampled basis coefficients. We propose a two-stage rank-sparsity-correction

procedure via convex optimization, and then examine its recovery performance

by developing a novel non-asymptotic probabilistic error bound under the high-

dimensional scaling with the notion of restricted strong convexity. Chapter 6 is

devoted to applying the specialized two-stage correction procedure, in both of the

theoretical and computational aspects, to correlation matrix estimation with miss-

ing observations in strict factor models. Finally, we make the conclusions and point

out several future research directions in Chapter 7.



Chapter 2
Preliminaries

In this chapter, we introduce some preliminary results that are fundamental in the

subsequent discussions.

2.1 Basics in matrix analysis

This section collects some elementary but useful results in matrix analysis.

Lemma 2.1. For any X, Y ∈ Sn+, it holds that

‖X − Y ‖ ≤ max{‖X‖, ‖Y ‖}.

Proof. Since X � 0 and Y � 0, we have X − Y � X and Y −X � Y . The proof

then follows.

Lemma 2.2. Assume that Z ∈ Vn1×n2 has at most k1 nonzero entries in each

row and at most k2 nonzero entries in each column, where k1 and k2 are integers

satisfying 0 ≤ k1 ≤ n1 and 0 ≤ k2 ≤ n2. Then we have

‖Z‖ ≤
√
k1k2‖Z‖∞.

8
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Proof. Notice that the spectral norm has the following variational characterization

‖Z‖ = sup
{
xTZy

∣∣ ‖x‖2 = ‖y‖2 = 1, x ∈ IRn1 , y ∈ IRn2
}
.

Then by using the Cauchy-Schwarz inequality, we obtain that

‖Z‖ = sup
‖x‖2=1, ‖y‖2=1

n1∑
i=1

n2∑
j=1

Zijxiyj

≤ sup
‖x‖2=1

( n1∑
i=1

∑
j:Zij 6=0

x2
i

) 1
2

sup
‖y‖2=1

( n1∑
i=1

n2∑
j=1

Z2
ijy

2
j

) 1
2

≤ sup
‖x‖2=1

( n1∑
i=1

∑
j:Zij 6=0

x2
i

) 1
2

sup
‖y‖2=1

( ∑
i:Zij 6=0

n2∑
j=1

y2
j

) 1
2

‖Z‖∞ =
√
k1k2‖Z‖∞,

where the last equality is due to the assumption. This completes the proof.

2.2 Bernstein-type inequalities

In probability theory, the laws of large numbers state that the sample average of

independent and identically distributed (i.i.d.) random variables is, under certain

mild conditions, close to the expected value with high probability. As an exten-

sion, concentration inequalities provide probability bounds to measure how much

a function of independent random variables deviates from its expectation. Among

these inequalities, the Bernstein-type inequalities on sums of independent random

variables or random matrices are the most basic and useful ones. We first start

with the classical Bernstein’s inequality [11].

Lemma 2.3. Let z1, . . . , zm be independent random variables with mean zero.

Assume that |zi| ≤ K almost surely for all i = 1, . . . ,m. Let ς2
i := E[z2

i ] and

ς2 := 1
m

∑m
i=1 ς

2
i . Then for any t > 0, we have

P

[∣∣∣∣∣
m∑
i=1

zi

∣∣∣∣∣ > t

]
≤ 2 exp

(
− t2/2

mς2 +Kt/3

)
.
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Consequently, it holds that

P

[∣∣∣∣∣
m∑
i=1

zi

∣∣∣∣∣ > t

]
≤


2 exp

(
−3

8

t2

mς2

)
, if t ≤ mς2

K
,

2 exp

(
−3

8

t

K

)
, if t >

mς2

K
.

The assumption of boundedness in Lemma 2.3 is so restricted that many

interesting cases are excluded, for example, the case when random variables are

Gaussian. In fact, this assumption can be relaxed to include random variables with

at least exponential tail decay. Such random variables are called sub-exponential.

Given any s ≥ 1, let ψs(x) := exp(xs)−1, for x ≥ 0. The Orlicz ψs-norm (see,

e.g., [118, pp. 95] and [81, Appendix A.1]) of any random variable z is defined as

‖z‖ψs := inf {t > 0 |Eψs(|z|/t) ≤ 1} = inf {t > 0 |E exp(|z|s/ts) ≤ 2} . (2.1)

It is known that there are several equivalent definitions to define a sub-exponential

random variable (cf. [120, Subsection 5.2.4]). One of these equivalent definitions

is based on the Orlicz ψ1-norm, which is also called the sub-exponential norm.

Definition 2.1. A random variable z is called sub-exponential if there exists a

constant K > 0 such that ‖z‖ψ1 ≤ K.

The Orlicz norms are useful to characterize the tail behavior of random vari-

ables. Below we state a Bernstein-type inequality for sub-exponential random

variables [120, Proposition 5.16].

Lemma 2.4. Let z1, . . . , zm be independent sub-exponential random variables with

mean zero. Suppose that ‖zi‖ψ1 ≤ K for all i = 1, . . . ,m. Then there exists a

constant C > 0 such that for every w = (w1, . . . , wm)T ∈ IRm and every t > 0, we

have

P

[∣∣∣∣∣
m∑
i=1

wizi

∣∣∣∣∣ > t

]
≤ 2 exp

{
−C min

(
t2

K2‖w‖2
2

,
t

K‖w‖∞

)}
.
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Next, we introduce the powerful noncommutative Bernstein-type inequalities

on random matrices, which play important roles in studying low-rank matrix re-

covery problems [104, 68, 115, 81, 83, 82, 101, 79]. The goal of these inequalities

is to bound the tail probability on the spectral norm of the sum of independent

zero-mean random matrices. The origin of these results can be traced back to the

noncommutative version of the Chernoff bound developed by Ahlswede and Winter

[2, Theorem 18] based on the Golden–Thompson inequality [64, 113]. Within the

Ahlswede–Winter framework [2], different matrix extensions of the classical Bern-

stein’s inequality were independently derived in [104, 68, 115] for random matrices

with bounded spectral norm. The following standard noncommutative Bernstein

inequality with slightly tighter constants is taken from [104, Theorem 4] .

Lemma 2.5. Let Z1, . . . , Zm ∈ IRn1×n2 be independent random matrices with mean

zero. Denote ς2
i := max{‖E[ZiZ

T
i ]‖, ‖E[ZT

i Zi]‖} and ς2 := 1
m

∑m
i=1 ς

2
i . Suppose

that ‖Zi‖ ≤ K almost surely for all i = 1, . . . ,m. Then for every t > 0, we have

P

[∥∥∥∥∥
m∑
i=1

Zi

∥∥∥∥∥ > t

]
≤ (n1 + n2) exp

(
− t2/2

mς2 +Kt/3

)
.

As a consequence, it holds that

P

[∥∥∥∥∥
m∑
i=1

Zi

∥∥∥∥∥ > t

]
≤


(n1 + n2) exp

(
−3

8

t2

mς2

)
, if t ≤ mς2

K
,

(n1 + n2) exp

(
−3

8

t

K

)
, if t >

mς2

K
.

Very recently, the noncommutative Bernstein-type inequalities were extended

by replacing the assumption of bounded spectral norm with bounded Orlicz ψs-

norm [81, 83, 82, 101, 79]. The next lemma is tailored from [81, pp. 30].

Lemma 2.6. Let Z1, . . . , Zm ∈ IRn1×n2 be independent random matrices with mean

zero. Suppose that max
{∥∥‖Zi‖∥∥ψs , 2E 1

2 [‖Zi‖2]
}
≤ Ks for some constant Ks > 0
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and for all i = 1, . . . ,m. Define

ς := max


∥∥∥∥∥ 1

m

m∑
i=1

E
[
ZiZ

T
i

]∥∥∥∥∥
1
2

,

∥∥∥∥∥ 1

m

m∑
i=1

E
[
ZT
i Zi
]∥∥∥∥∥

1
2

 .

Then there exists a constant C > 0 such that for all t > 0, with probability at least

1− exp(−t),∥∥∥∥∥ 1

m

m∑
i=1

Zi

∥∥∥∥∥ ≤ C max

{
ς

√
t+ log(n1 + n2)

m
, Ks

(
log

Ks

ς

) 1
s t+ log(n1 + n2)

m

}
.

As noted by Vershynin [119], the following slightly weaker but simpler noncom-

mutative Bernstein-type inequality can be established under the bounded Orlicz

ψ1-norm assumption. Its proof depends on a noncommutative Chernoff bound

[104, Theorem 10] and an upper bound of the moment generating function of sub-

exponential random variables [120, Lemma 5.15].

Lemma 2.7. Let Z1, . . . , Zm ∈ IRn1×n2 be independent random matrices with mean

zero. Suppose that
∥∥‖Zi‖∥∥ψ1

≤ K for some constant K > 0 and for all i =

1, . . . ,m. Then there exists a constant C > 0 such that for any t > 0, we have

P

[∥∥∥∥∥
m∑
i=1

Zi

∥∥∥∥∥ > t

]
≤ (n1 + n2) exp

{
−C min

(
t2

mK2
,
t

K

)}
.

Proof. Define the independent symmetric random matrices by

Wi :=

 0 Zi

ZT
i 0

 , i = 1, . . . ,m.

Since ‖Zi‖ ≡ ‖Wi‖, it holds that
∥∥‖Zi‖∥∥ψ1

=
∥∥‖Wi‖

∥∥
ψ1

, for all i = 1, . . . ,m.

Moreover, the spectral norm of
∑m

i=1 Zi is equal to the maximum eigenvalue of∑m
i=1Wi. By using [104, Theorem 10], we have that for all τ > 0,

P

[∥∥∥∥∥
m∑
i=1

Zi

∥∥∥∥∥ > t

]
= P

[
m∑
i=1

Wi � tIn1+n2

]
≤ (n1+n2) exp(−τt)

m∏
i=1

‖E [exp(τWi)]‖ .
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Since 0 � exp(τWi) � exp(τ‖Wi‖)In1+n2 , we know that

‖E [exp(τWi)]‖ ≤ E exp(τ‖Wi‖).

According to [120, Lemma 5.15], there exists some constants c1, c2 > 0 such that

for |τ | ≤ c1/K, it holds that

E exp(τ‖Wi‖) ≤ exp
(
c2τ

2
∥∥‖Wi‖

∥∥2

ψ1

)
≤ exp

(
c2τ

2K2
)
, i = 1, . . . ,m.

Putting all these together gives that

P

[∥∥∥∥∥
m∑
i=1

Zi

∥∥∥∥∥ > t

]
≤ (n1 + n2) exp

(
−tτ + c2mτ

2K2
)
.

The optimal choice of the parameter τ is obtained by minimizing −tτ + c2mτ
2K2

as a function of τ subject to the bound constraint 0 ≤ τ ≤ c1/K, yielding that

τ ∗ = min{t/(2c2mK
2), c1/K} and

P

[∥∥∥∥∥
m∑
i=1

Zi

∥∥∥∥∥ > t

]
≤ (n1 + n2) exp

{
−min

(
t2

4c2mK2
,
c1t

2K

)}
.

The proof is then completed by choosing the constant C = min{1/(4c2), c1/2}.

2.3 Random sampling model

In the problem of low-rank matrix recovery from randomly sampled entries, the

model of uniform sampling without replacement is a commonly-used assumption

for the recovery results established in [25, 28, 23, 76, 77, 104, 68, 21]. As its

name suggests, sampling is called without replacement if each sample is selected at

random from the population set and it is not put back. Moreover, a subset of size

m obtained by sampling uniformly at random without replacement from the set of

size d (assuming that m ≤ d) means that this sample subset is chosen uniformly

at random from all the size-m subsets of the population set.
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Evidently, samples selected from the model of sampling without replacement

are not independent of each other, which could make the relevant analysis compli-

cated. Therefore, in the proof of recovery results given in [25, 28, 23, 76, 77, 21], a

Bernoulli sampling model, where each element from the population set is selected

independently with probability equal to p, was studied as a proxy for the model

of uniform sampling without replacement. The theoretical guarantee for doing so

relies heavily on the equivalence between these two sampling models – the failure

probability of recovery under the uniform sampling model without replacement

is closely approximated by the failure probability of recovery under the Bernoulli

sampling model with p = m
d

(see, e.g., [26, Section II.C]). Due to this equivalence,

Bernoulli sampling was also directly assumed in some recent work related to the

problem of low-rank matrix recovery from randomly sampled entries [89, 33].

Another popular proxy is the model of uniform sampling with replacement,

where a sample chosen uniformly at random from the population set is put back

and then a second sample is chosen uniformly at random from the unchanged pop-

ulation set. In this sampling model, samples are independent, and any element

of the population set may be chosen more than once in general. Just similar to

Bernoulli sampling, with the same sample size, the failure probability of recovery

under uniform sampling without replacement is upper bounded by the failure prob-

ability of recovery under uniform sampling with replacement (cf. [104, Proposition

3] and [68, Section II.A]). This makes the novel techniques for analyzing the matrix

completion problem in [104, 68] via the powerful noncommutative Bernstein-type

inequalities possible. In addition, it is worth mentioning that sampling with re-

placement is also widely used for the problem of noisy low-rank matrix recovery in

the statistics community [107, 83, 82, 101, 79].

Lastly, it is interesting to note that a noncommutative Bernstein-type inequal-

ity was established by [70] in the context of sampling without replacement.
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2.4 Tangent space to the set of rank-constrained

matrices

Let X ∈ Vn1×n2 be given and admit a reduced singular value decomposition (SVD)

given by X = U1ΣV T
1 , where r is the rank of X, U1 ∈ On1×r, V1 ∈ On2×r, and Σ ∈

IRr×r is the diagonal matrix with the non-zero singular values of X being arranged

in the non-increasing order. The tangent space to the set of rank-constrained

matrices {Z ∈ Vn1×n2 | rank(Z) ≤ r} at X is the linear span of all matrices with

either the same row-space as X or the same column-space as X (cf. [32, Section

3.2] and [31, Section 2.3]). Specifically, the tangent space T and its orthogonal

complement T ⊥ can be expressed as

T =


{
U1B

T + AV T
1 |A ∈ IRn1×r, B ∈ IRn2×r

}
, if Vn1×n2 = IRn1×n2 ,{

U1A
T + AUT

1 |A ∈ IRn×r}, if Vn1×n2 = Sn,
(2.2)

and

T ⊥ =


{
C ∈ Vn1×n2 |UT

1 C = 0, CV1 = 0
}
, if Vn1×n2 = IRn1×n2 ,{

C ∈ Vn1×n2 |UT
1 C = 0

}
, if Vn1×n2 = Sn.

(2.3)

Moreover, choose U2 and V2 such that U = [U1, U2] and V = [V1, V2] are both

orthogonal matrices. Notice that U = V when X ∈ Sn+. For any Z ∈ Vn1×n2 ,

Z = [U1, U2][U1, U2]TZ[V1, V2][V1, V2]T

= [U1, U2]

 UT
1 ZV1 UT

1 ZV2

UT
2 ZV1 0

 [V1, V2]T + [U1, U2]

 0 0

0 UT
2 ZV2

 [V1, V2]T

=
(
U1U

T
1 Z + ZV1V

T
1 − U1U

T
1 ZV1V

T
1

)
+ U2U

T
2 ZV2V

T
2 .

Then the orthogonal projections of any Z ∈ Vn1×n2 onto T and T ⊥ are given by

PT (Z) = U1U
T
1 Z + ZV1V

T
1 − U1U

T
1 ZV1V

T
1 (2.4)
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and

PT ⊥(Z) = U2U
T
2 ZV2V

T
2 . (2.5)

This directly implies that for any Z ∈ Vn1×n2 ,

‖PT (Z)‖ ≤ 2‖Z‖ and ‖PT ⊥(Z)‖ ≤ ‖Z‖. (2.6)

Note that PT and PT ⊥ are both self-adjoint, and ‖PT ‖ = ‖PT ⊥‖ = 1. With these

definitions, the subdifferential of the nuclear norm ‖ · ‖∗ at the given X (see, e.g.,

[122]) can be characterized as follows

∂‖X‖∗ =
{
Z ∈ Vn1×n2 | PT (Z) = U1V

T
1 and ‖PT ⊥(Z)‖ ≤ 1

}
.



Chapter 3
The Lasso and related estimators for

high-dimensional sparse linear regression

This chapter is devoted to summarizing the performance in terms of estimation

error for the Lasso and related estimators in the context of high-dimensional sparse

linear regression. In particular, we propose a new Lasso-related estimator called

the corrected Lasso, which is enlightened by a two-step majorization technique for

nonconvex regularizers. We then present non-asymptotic estimation error bounds

for the Lasso-related estimators under different assumptions on the design matrix.

Finally, we make a quantitative comparison among these error bounds, which sheds

light on the two-stage correction procedure later studied in Chapter 5 and applied

in Chapter 6.

3.1 Problem setup and estimators

In this section, we start with the problem of high-dimensional sparse linear regres-

sion, and then introduce the formulations of the Lasso and related estimators.

17
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3.1.1 The linear model

Suppose that x̄ ∈ IRn is an unknown vector with the supporting index set S :=

{j | x̄j 6= 0, j = 1, . . . , n}. Let s be the cardinality of S, i.e., s := |S|. Suppose

also that x̄ is a sparse vector in the sense that s� n. In this chapter, we consider

the statistical linear model, in which we observe a response vector of m noisy

measurements y = (y1, . . . , ym)T ∈ IRm of the form

y = Ax̄+ ξ, (3.1)

where A ∈ IRm×n is referred to as the design matrix or covariate matrix, and

ξ = (ξ1, . . . , ξm)T ∈ IRm is a vector containing random noises. Given the data y

and A, the problem of high-dimensional sparse linear regression seeks an accurate

and sparse estimate of x̄ based on the observation model (3.1), where there are

much more variables than observations, i.e., n� m.

For convenience of the following discussion, we assume that the noise vector

ξ are of i.i.d. zero-mean sub-Gaussian entries. In particular, the class of sub-

Gaussian random variables contains the centered Gaussian and all bounded random

variables. The definition for a sub-Gaussian random variable is borrowed from [18,

Definition 1.1 in Chapter 1], [62, Section 12.7] and [120, Subsection 5.2.3].

Definition 3.1. A random variable z is called sub-Gaussian if there exists a con-

stant ς ∈ [0,+∞) such that for all t ∈ IR,

E[exp(tz)] ≤ exp

(
ς2t2

2

)
.

The exponent ς(z) of the sub-Gaussian random variable z is defined as

ς(z) := inf
{
ς ≥ 0 |E[exp(tz)] ≤ exp

(
ς2t2/2

)
for all t ∈ IR

}
.

Assumption 3.1. The additive noise vector ξ ∈ IRm has i.i.d. entries that are

zero-mean and sub-Gaussian with exponent ν > 0.
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Since sub-Gaussian random variables are sub-exponential, a tighter version of

the large deviation inequality in Lemma 2.4 is satisfied (cf. [18, Chapter 1], [62,

Section 12.7] and [120, Subsection 5.2.3]).

Lemma 3.1. Under Assumption 3.1, for any fixed w ∈ IRm, it holds that,

P [|〈w, ξ〉| ≥ t] ≤ 2 exp

(
− t2

2ν2‖w‖2
2

)
, ∀ t > 0.

3.1.2 The Lasso and related estimators

In the high-dimensional setting, the classical ordinary least squares (OLS) esti-

mator usually fails, because it may not be well-defined, and most importantly, it

does not take the structural assumption that x̄ is sparse into account. In order to

effectively utilizes the sparsity assumption, the `1-norm penalized least squares es-

timator, also known as the least absolute shrinkage and selection operator (Lasso)

[114], is defined as

x̊ ∈ arg min
x∈IRn

1

2m
‖y − Ax‖2

2 + ρm‖x‖1, (3.2)

where ρm > 0 is a penalization parameter that controls the tradeoff between the

least squares fitting and the sparsity level. The Lasso is very popular and powerful

for sparse linear regression in statistics and machine learning, partially owing to

the superb invention of the efficient LARS algorithm [45]. Under some conditions

[59, 95, 133, 136, 126, 121, 22, 116, 44], the Lasso is capable of exactly recovering

the true supporting index set, which is a favorable property in model selection.

However, it is well-known that the `1-norm penalty can create unnecessary bi-

ases for large coefficients, leading to a remarkable disadvantage that the optimal

estimation accuracy is hardly achieved [4, 51].

For the purpose of reducing or removing biasedness, nonconvex penalization

methods were suggested and studied, see e.g., [49, 4, 51, 56, 91, 127, 131, 55, 129,
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132]. To facilitate the following analysis, we focus on a concise form of nonconvex

penalized least-squares given by

min
x∈IRn

1

2m
‖y − Ax‖2

2 + ρm

n∑
j=1

h(|xj|), (3.3)

where h : IR+ → IR+ is a non-decreasing concave function with h(0) = 0. Let

the left derivative and the right derivative of h be denoted by h′− and h′+, and

set h′−(0) = h′+(0). Clearly, the monotonicity and concavity of h implies that

0 ≤ h′+(t2) ≤ h′−(t2) ≤ h′+(t1) ≤ h′−(t1) for any 0 ≤ t1 < t2. By utilizing the

classical Majorization-Minimization (MM) algorithm [35, 36, 72, 84, 75, 125], the

nonconvex problem (3.3) may be solved iteratively via certain multi-stage convex

relaxations. In particular, a two-stage procedure has been shown to enjoy the

desired asymptotic oracle properties, provided that the initial estimator is good

enough [136, 137]. In this chapter, we consider two majorization techniques using

the Lasso as the initial estimator.

The first one is to majorize the concave penalty function based on a separable

local linear approximation [137]:

n∑
j=1

h(|xj|) ≤
n∑
j=1

[
h(|̊xj|) + w̌j(|xj| − |̊xj|)

]
=

n∑
j=1

h(|̊xj|) + 〈w̌, |x| − |̊x|〉,

where w̌j ∈ [h′+(|̊xj|), h′−(|̊xj|)]. Note that the weight vector w̌ ≥ 0. This ma-

jorization results in a convex relaxation of the nonconvex problem (3.3) given as

x̌ ∈ arg min
x∈IRn

1

2m
‖y − Ax‖2

2 + ρm〈w̌, |x|〉, (3.4)

which we call the weighted Lasso. The weighted Lasso includes the adaptive Lasso

[136] as a special case, where x̌j is automatically set to 0 if w̌j = +∞.

The second one is the two-step majorization initiated by [98], in which the

first step is in accordance with a nonseparable local linear approximation:

n∑
j=1

h(|xj|) ≤
n∑
j=1

[
h(|̊x|↓j) +$j(|x|↓j − |̊x|

↓
j)
]

=
n∑
j=1

h(|̊xj|) + 〈$, |x|↓ − |̊x|↓〉,



3.1 Problem setup and estimators 21

where $j ∈ [h′+(|̊x|↓j), h′−(|̊x|↓j |)] satisfying that $j = $j′ if |̊x|↓j = |̊x|↓j′ . Then

$ = $↑ ≥ 0, and thus 〈$, |x|↓〉 is in general not a convex function about x.

In this case, we further assume that 0 < h′+(0) < +∞. Define µ := h′+(0) and

ω := 1−$/µ ∈ IRn. Observe that

〈$, |x|↓〉 = 〈µ1− (µ1−$), |x|↓〉 = µ(‖x‖1 − ‖x‖ω),

where ‖ · ‖ω is the ω-weighted function defined by ‖x‖ω :=
∑n

j=1 ωj|x|
↓
j for any

x ∈ IRn. The ω-weighted function is indeed a norm because ω = ω↓ ≥ 0. This

shows that 〈$, | · |↓〉 is a difference of two convex functions. Therefore, the second

step is to linearize the ω-weighted function as follows:

‖x‖ω ≥ ‖x̊‖ω + 〈ŵ, x− x̊〉,

for any ŵ ∈ ∂‖x̊‖ω, where ∂‖ · ‖ω is the subdifferential of the convex function ‖ · ‖ω
and its characterization can be found in [98, Theorem 2.5]. A particular choice of

the subgradient ŵ is

ŵ = sign(̊x) ◦ ωπ−1 ,

where π is a permutation of {1, . . . , n} such that |̊x|↓ = |̊x|π, i.e., |̊x|↓j = |̊x|π(j)

for j = 1, . . . , n, and π−1 be the inverse of π. Note that sign(ŵ) = sign(̊x) and

0 ≤ |ŵ| ≤ 1. Finally, the two-step majorization yields another convex relaxation

of the nonconvex problem (3.3) formulated as

x̂ ∈ arg min
x∈IRn

1

2m
‖y − Ax‖2

2 + ρ̂m
(
‖x‖1 − 〈ŵ, x〉

)
, (3.5)

where ρ̂m := ρmµ. Since 0 ≤ |ŵ| ≤ 1, the penalization term ‖x‖1−〈ŵ, x〉 is indeed

a semi-norm. Similar to the terminologies used in [98, 99], we refer to this estimator

as the corrected Lasso, the linear term −〈ŵ, x〉 as the sparsity-correction term, and

the penalization technique as the adaptive `1 semi-norm penalization technique.

To our knowledge, there is not yet any study on the corrected Lasso before.
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Another remedy to deal with the biasedness issue is a simple two-stage proce-

dure: apply the OLS estimator to the model, i.e., the supporting index set, selected

by the Lasso (see, e.g., [22, 134, 117, 10]). This two-stage estimator is called the

thresholded Lasso, which is specifically defined by

x̃J ∈ arg min
xJ∈IR|J |

1

2
‖y − AJxJ ‖2

2 and x̃J c = 0, (3.6)

where J := {j | |̊x|j ≥ T, j = 1, . . . , n} for a given threshold T ≥ 0, and AJ ∈

IRm×|J | is the matrix consisting of the columns of A indexed by J . For the case

when the index set J turns out to be the true supporting index set S, we call

this estimator the oracle thresholded Lasso. Obviously, the estimation error bound

for the oracle thresholded Lasso is the best that can be expected. Other similar

two-stage procedures can be found in [94, 130].

In the rest of this chapter, under different assumptions on the design matrix,

we derive non-asymptotic estimation error bounds for the Lasso (3.2), the weighted

Lasso (3.4), the corrected Lasso (3.5) and the oracle thresholded Lasso (3.6) by

following the unified framework provided in [102] for high-dimensional analysis of

M -estimators with decomposable regularizers. Through a quantitative comparison

among these error bounds, we verify the estimation performance of the weighted

Lasso and the corrected Lasso by revealing that both of them are able to reduce the

estimation error bound significantly compared to that for the Lasso and get very

close to the optimal estimation error bound achieved by the oracle thresholded

Lasso. This comparison sheds light on the two-stage correction procedure later

studied in Chapter 5 and applied in Chapter 6.

3.2 Deterministic design

In this section, we consider estimation error bounds for the aforementioned Lasso-

related estimators when the design matrix is deterministic or non-random.
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In the beginning, we make two assumptions on the design matrix. The first

one is essentially equivalent to the restricted eigenvalue (RE) condition originally

developed in [13]. For a given index subset J ⊆ {1, . . . , n} and a given constant

α ≥ 1, define the set

C(J ;α) := {δ ∈ IRn | ‖δJ c‖1 ≤ α‖δJ ‖1}.

Assumption 3.2. There exists a constant λS,κ > 0 such that

1

m
‖Aδ‖2

2 ≥ λS,κ‖δ‖2
2, ∀ δ ∈ C(S;ακ),

where ακ := (κ+1)/(κ−1) for some given constant κ > 0. In this case, we say that

the design matrix A ∈ IRm×n satisfies the RE condition over the true supporting

index set S with parameters (ακ, λS,κ).

Various conditions, other than the RE condition, for analyzing the recovery or

estimation performance of `1-norm based methods include the restricted isometry

property (RIP) [27], the sparse Riesz condition [128], and the incoherent design

condition [96]. As shown in [13], the RE condition is one of the weakest and hence

the most general conditions in literature imposed on the design matrix to establish

error bounds for the Lasso estimator. One may refer to [116] for an extensive study

of different types of restricted eigenvalue or compatibility conditions.

The second assumption is the column-normalized condition for the design

matrix. This condition does not incur any loss of generality, because the linear

model (3.1) can always be appropriately rescaled to such a normalized setting. For

j = 1, . . . , n, denote the j-th column of A by Aj.

Assumption 3.3. The columns of the design matrix A are normalized such that

‖Aj‖2 ≤
√
m for all j = 1, . . . , n.

Under Assumption 3.1, 3.2 and 3.3, we first derive an estimation error bound

for the Lasso according to the unified framework by [102]. This kind of estimation
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performance analysis has been theoretically considered by the statistics community.

See, e.g., [19, 20, 80, 96, 13, 22, 102].

Lemma 3.2. Consider the linear model (3.1) under Assumption 3.2 with a given

constant κ > 1. If ρm ≥ κ‖ 1
m
AT ξ‖∞, then the Lasso estimator (3.2) satisfies the

bound

‖x̊− x̄‖2 ≤ 2

(
1 +

1

κ

) √
sρm
λS,κ

.

Proof. Let δ̊ := x̊ − x̄. Since x̊ is an optimal solution to problem (3.2) and x̄

satisfies the linear model (3.1), we have that

1

2m
‖Aδ̊‖2

2 ≤
〈 1

m
AT ξ, δ̊

〉
− ρm

(
‖x̄+ δ̊‖1 − ‖x̄‖1

)
. (3.7)

Since ρm ≥ κ‖ 1
m
AT ξ‖∞ with κ > 1, it holds that

〈 1

m
AT ξ, δ̊

〉
≤
∥∥∥ 1

m
AT ξ

∥∥∥
∞
‖̊δ‖1 ≤

ρm
κ
‖̊δ‖1 =

ρm
κ

(
‖̊δS‖1 + ‖̊δSc‖1

)
. (3.8)

From the characterization of ∂‖x̄‖1, we derive that

‖x̄+ δ̊‖1−‖x̄‖1 ≥
〈
sign(x̄S), δ̊S

〉
+ sup
η∈IRn−s, ‖η‖∞≤1

〈
η, δ̊Sc

〉
≥ −‖̊δS‖1 + ‖̊δSc‖1. (3.9)

Then by substituting (3.8) and (3.9) into (3.7), we obtain that

1

2m
‖Aδ̊‖2

2 ≤
ρm
κ

(
‖̊δS‖1 + ‖̊δSc‖1

)
+ ρm

(
‖̊δS‖1 − ‖̊δSc‖1

)
= ρm

(
1 +

1

κ

)
‖̊δS‖1 − ρm

(
1− 1

κ

)
‖̊δSc‖1. (3.10)

Thus, δ̊ ∈ C(S;ακ). Since κ > 1, Assumption 3.2 and (3.10) yield that

1

2
λS,κ‖̊δ‖2

2 ≤ ρm

(
1 +

1

κ

)
‖̊δS‖1 ≤

√
sρm

(
1 +

1

κ

)
‖̊δ‖2,

which completes the proof.



3.2 Deterministic design 25

Proposition 3.3. Let κ > 1 and c > 0 be given constants. Consider the linear

model (3.1) under Assumption 3.1, 3.2 and 3.3. If the penalization parameter

ρm = κν
√

2 + 2c

√
log n

m
,

then with probability at least 1−2n−c, the Lasso estimator (3.2) satisfies the bound

‖x̊− x̄‖2 ≤
√

1 + c(1 + κ)
2
√

2ν

λS,κ

√
s log n

m
.

Proof. In light of Lemma 3.2, it suffices to show that ρm = κν
√

2 + 2c
√

log n/m ≥

κ‖ 1
m
AT ξ‖∞ with probability at least 1− 2n−c. By using Assumption 3.1, Lemma

3.1 and Assumption 3.3, for j = 1, . . . , n, we have the tail bound

P
[
|〈Aj, ξ〉|
m

≥ t

]
≤ 2 exp

(
− m2t2

2ν2‖Aj‖2
2

)
≤ 2 exp

(
−mt

2

2ν2

)
.

Choose t∗ = ν
√

2 + 2c
√

log n/m. Then taking the union bound gives that

P
[∥∥∥∥ 1

m
AT ξ

∥∥∥∥
∞
≥ t∗

]
≤ 2n exp

(
−mt

∗2

2ν2

)
=

2

nc
.

This completes the proof.

We next derive an estimation error bound for the weighted Lasso in a similar

way to that for the Lasso. Analogous results for the adaptive Lasso can be found

in [117]. Define

w̌max
S := max

j∈S
w̌j and w̌min

Sc := min
j∈Sc

w̌j. (3.11)

Lemma 3.4. Consider the linear model (3.1) under Assumption 3.2 with a given

constant κ > 1. Suppose that w̌min
Sc ≥ w̌max

S and ρmw̌
min
Sc ≥ κ‖ 1

m
AT ξ‖∞. Then the

weighted Lasso estimator (3.4) satisfies the bound

‖x̌− x̄‖2 ≤ 2

(
w̌max
S

w̌min
Sc

+
1

κ

) √
sρmw̌

min
Sc

λS,κ
.
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Proof. Let δ̌ := x̌ − x̄. Since x̌ is an optimal solution to problem (3.4) and x̄

satisfies the linear model (3.1), we have that

1

2m
‖Aδ̌‖2

2 ≤
〈 1

m
AT ξ, δ̌

〉
− ρm

(
〈w̌, |x̄+ δ̌|〉 − 〈w̌, |x̄|〉

)
. (3.12)

Since ρmw̌
min
Sc ≥ κ‖ 1

m
AT ξ‖∞ with κ > 1, it holds that〈 1

m
AT ξ, δ̌

〉
≤
∥∥∥ 1

m
AT ξ

∥∥∥
∞
‖δ̌‖1 ≤

ρmw̌
min
Sc

κ
‖δ̌‖1 =

ρmw̌
min
Sc

κ

(
‖δ̌S‖1 + ‖δ̌Sc‖1

)
. (3.13)

From the characterization of ∂〈w̌, |x̄|〉, we derive that

〈w̌, |x̄+ δ̌|〉 − 〈w̌, |x̄|〉 ≥
〈
w̌S ◦ sign(x̄S), δ̌S

〉
+ sup

η∈IRn−s, |η|≤w̌Sc

〈
η, δ̌Sc

〉
≥ −〈w̌S, |δ̌S|〉+ 〈w̌Sc , |δ̌Sc |〉

≥ −w̌max
S ‖δ̌S‖1 + w̌min

Sc ‖δ̌Sc‖1. (3.14)

Then by substituting (3.13) and (3.14) into (3.12), we obtain that

1

2m
‖Aδ̌‖2

2 ≤
ρmw̌

min
Sc

κ

(
‖δ̌S‖1 + ‖δ̌Sc‖1

)
+ ρm

(
w̌max
S ‖δ̌S‖1 − w̌min

Sc ‖δ̌Sc‖1

)
= ρmw̌

min
Sc

(
w̌max
S

w̌min
Sc

+
1

κ

)
‖δ̌S‖1 − ρmw̌min

Sc

(
1− 1

κ

)
‖δ̌Sc‖1, (3.15)

which, together with the assumption that w̌max
S /w̌min

Sc ≤ 1, implies that δ̌ ∈ C(S;ακ).

Since κ > 1, Assumption 3.2 and (3.15) yield that

1

2
λS,κ‖δ̌‖2

2 ≤ ρmw̌
min
Sc

(
w̌max
S

w̌min
Sc

+
1

κ

)
‖δ̌S‖1 ≤

√
sρmw̌

min
Sc

(
w̌max
S

w̌min
Sc

+
1

κ

)
‖δ̌‖2.

This completes the proof.

Proposition 3.5. Let κ > 1 and c > 0 be given constants. Consider the linear

model (3.1) under Assumption 3.1, 3.2 and 3.3. Suppose that w̌min
Sc ≥ w̌max

S and

w̌min
Sc > 0. If the penalization parameter is chosen as

ρmw̌
min
Sc = κν

√
2 + 2c

√
log n

m
,
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then with probability at least 1− 2n−c, the weighted Lasso estimator (3.4) satisfies

the bound

‖x̌− x̄‖2 ≤
√

1 + c

(
1 +

w̌max
S

w̌min
Sc

κ

)
2
√

2ν

λS,κ

√
s log n

m
.

Proof. From Lemma 3.4, it suffices to show that ρmw̌
min
Sc = κν

√
2 + 2c

√
log n/m ≥

κ‖ 1
m
AT ξ‖∞ with probability at least 1 − 2n−c, which has been established in the

proof of Proposition 3.3.

We then turn to derive an estimation error bound for the corrected Lasso in

a similar way to that for the Lasso. Define

aS := ‖sign(x̄S)− ŵS‖∞ and aSc := 1− ‖ŵSc‖∞. (3.16)

Lemma 3.6. Consider the linear model (3.1) under Assumption 3.2 with a given

constant κ > 1. Suppose that âSc ≥ âS and ρ̂mâSc ≥ κ‖ 1
m
AT ξ‖∞. Then the

corrected Lasso estimator (3.5) satisfies the bound

‖x̂− x̄‖2 ≤ 2

(
âS
âSc

+
1

κ

) √
sρmâSc

λS,κ
.

Proof. Let δ̂ := x̂− x̄. From the characterization of ∂‖x̄‖1, we derive that

‖x̄+ δ̂‖1 − ‖x̄‖1 − 〈ŵ, δ̂〉 ≥
〈
sign(x̄S)− ŵS, δ̂S

〉
+ ‖δ̂Sc‖1 −

〈
ŵSc , δ̂Sc

〉
≥ −‖sign(x̄S)− ŵS‖∞‖δ̂S‖1 +

(
1− ‖ŵSc‖∞

)
‖δ̂Sc‖1

= −âS‖δ̂S‖1 + âSc‖δ̂Sc‖1.

Then the proof can be obtained in a similar way to that of Lemma 3.4.

Proposition 3.7. Let κ > 1 and c > 0 be given constants. Consider the linear

model (3.1) under Assumption 3.1, 3.2 and 3.3. Suppose that âSc ≥ âS and âSc > 0.

If the penalization parameter is chosen as

ρ̂mâSc = κν
√

2 + 2c

√
log n

m
,
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then with probability at least 1− 2n−c, the corrected Lasso estimator (3.5) satisfies

the bound

‖x̂− x̄‖2 ≤
√

1 + c

(
1 +

âS
âSc

κ

)
2
√

2ν

λS,κ

√
s log n

m
.

Proof. From Lemma 3.6, it suffices to show that ρ̂mâSc = κν
√

2 + 2c
√

log n/m ≥

κ‖ 1
m
AT ξ‖∞ with probability at least 1 − 2n−c, which has been established in the

proof of Proposition 3.3.

Lastly, we provide an estimation error bound for the oracle thresholded Lasso,

which serves as an evidence to evaluate how well the weighted Lasso and the

corrected Lasso can perform.

Proposition 3.8. Under the assumptions in Proposition 3.3, with probability at

least 1− 2n−c, the oracle thresholded Lasso estimator (3.6) satisfies the bound

‖x̃− x̄‖2 ≤
2
√

2ν

λS,κ

√
s(c log n+ log s)

m
.

Proof. Let δ̃ := x̃− x̄. Since J = S, by following a similar way to (3.7), we have

1

2m
‖AS δ̃S‖2

2 ≤
〈 1

m
ATSξ, δ̃S

〉
≤
∥∥∥ 1

m
ATSξ

∥∥∥
∞
‖δ̃S‖1 ≤

√
s
∥∥∥ 1

m
ATSξ

∥∥∥
∞
‖δ̃S‖2. (3.17)

Note that δ̃Sc = 0. Hence, δ̃ ∈ C(S;ακ). From Assumption 3.2 and (3.17), it

follows that

‖x̃− x̄‖2 = ‖δ̃S‖2 ≤
2
√
s

λS,κ

∥∥∥ 1

m
ATSξ

∥∥∥
∞
.

Then it suffices to show that ‖ 1
m
ATSξ‖∞ ≤

√
2ν
√

(c log n+ log s)/m with proba-

bility at least 1 − 2n−c, which can be established in a similar way to the proof of

Proposition 3.3.

3.3 Gaussian design

In this section, we consider estimation error bounds for the aforementioned Lasso-

related estimators in the case of correlated Gaussian design assumed as follows.



3.3 Gaussian design 29

Assumption 3.4. The design matrix A ∈ IRm×n is formed by independently sam-

pling each row from the n-dimensional multivariate Gaussian distribution N(0,Σ).

The key factor for establishing estimation error bound is the RE condition

of design matrices. Built on the Gordon’s Minimax Lemma from the theory of

Gaussian random processes [66], a slightly stronger version of the RE condition

was shown to hold for such a class of correlated Gaussian design matrices [103,

Theorem 1]. Let Σ
1
2 denote the square root of Σ and define Σmax := maxj=1,...,n Σjj.

Lemma 3.9. Under Assumption 3.4, there exist absolute constants c1 > 0 and

c2 > 0 such that with probability at least 1− c1 exp(−c2m), it holds that

‖Aδ‖2√
m
≥ 1

4
‖Σ

1
2 δ‖2 − 9

√
Σmax

√
log n

m
‖δ‖1, ∀ δ ∈ IRn.

If a similar kind of RE condition is further assumed to hold for the covariance

matrix Σ, then it follows immediately from Lemma 3.9 that the correlated Gaussian

design matrix A satisfies the RE condition in the sense of Assumption 3.2.

Assumption 3.5. There exists a constant λ′S,κ > 0 such that

‖Σ
1
2 δ‖2

2 ≥ λ′S,κ‖δ‖2
2, ∀ δ ∈ C(S;ακ),

where ακ := (κ + 1)/(κ − 1) for some given constant κ > 0. In this case, we

say that the covariance matrix Σ ∈ IRn×n satisfies the RE condition over the true

supporting index set S with parameters (ακ, λ
′
S,κ).

Corollary 3.10. Suppose that Assumption 3.4 and 3.5 hold. Then there exist

absolute constants c1 > 0 and c2 > 0 such that if the sample size meets that

m ≥ [72(1 + ακ)]
2Σmax

λ′S,κ
s log n,

with probability at least 1 − c1 exp(−c2m), the design matrix A satisfies the RE

condition over S with parameters (ακ, λS,κ) where λS,κ := λ′S,κ/64.
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Proof. For any δ ∈ C(S;ακ), we have that

‖δ‖1 = ‖δS‖1 + ‖δSc‖1 ≤ (1 + ακ)‖δS‖1 ≤ (1 + ακ)
√
s‖δ‖2,

Then due to Assumption 3.5 and Lemma 3.9, there exist absolute constants c1 > 0

and c2 > 0 such that with probability at least 1− c1 exp(−c2m), we have

‖Aδ‖2√
m
≥

[
1

4

√
λ′S,κ − 9

√
Σmax(1 + ακ)

√
s log n

m

]
‖δ‖2 ≥

1

8

√
λ′S,κ‖δ‖2,

for all δ ∈ C(S;ακ), provided that m ≥ [72(1 + ακ)]
2(Σmax/λ

′
S,κ)s log n.

Another ingredient in establishing estimation error bound is the column-

normalized condition in the sense of Assumption 3.3, which can be verified by

exploiting an exponential tail inequality for the χ2 random variable modified from

[85, Lemma 1 and Comments] with a suitable change of variables.

Lemma 3.11. Let zm be a centralized χ2 random variable with m degrees of free-

dom. Then for any t > 0,

P
[
zm −m ≥

mt

2
+
mt2

8

]
≤ exp

(
−mt

2

16

)
,

which implies that for any 0 < t ≤ 4,

P [zm ≥ m(1 + t)] ≤ exp

(
−mt

2

16

)
.

Proof. The first part is directly from [85, Lemma 1 and the Comments] with a

suitable change of variables. The second part follows by noting that m(1 + t) ≥

m(1 + t/2 + t2/8) when 0 < t ≤ 4.

Corollary 3.12. Suppose that Assumption 3.4 holds. If the sample size m ≥

(1 + c) log n for a given constant c > 0, then maxj=1,...,n ‖Aj‖2 ≤
√

5Σmaxm with

probability at least 1− n−c.



3.3 Gaussian design 31

Proof. Under Assumption 3.4, Aj ∈ IRm is a random vector of i.i.d. entries from the

univariate Gaussian distribution N(0,Σjj), for all j = 1, . . . , n. Thus, ‖Aj‖2
2/Σjj

follows the χ2-distribution with m degrees of freedom. By using Lemma 3.11, we

obtain that for any 0 < t ≤ 4,

P
[
‖Aj‖2

2

Σmax

≥ m(1 + t)

]
≤ P

[
‖Aj‖2

2

Σjj

≥ m(1 + t)

]
≤ exp

(
−mt

2

16

)
.

Consequently, if m ≥ (1+ c) log n, choosing t∗ = 4
√

1 + c
√

log n/m and taking the

union bound give that

P
[

max
j=1,...,n

‖Aj‖2
2 ≥ 5Σmaxm

]
≤ P

[
max
j=1,...,n

‖Aj‖2
2 ≥ Σmaxm(1 + t∗)

]
≤ n exp

(
−mt

∗2

16

)
=

1

nc
,

which completes the proof.

In the remaining part of this section, we state the specialized estimation error

bounds for the Lasso, the weighted Lasso, the corrected Lasso and the oracle

thresholded Lasso with respect to Gaussian design under Assumption 3.4 and 3.5.

Proposition 3.13. Let κ > 1 and c > 0 be given constants. Consider the lin-

ear model (3.1) under Assumption 3.1, 3.4 and 3.5. Let λS,κ := λ′S,κ/64. If the

penalization parameter is chosen as

ρm = κν
√

1 + c
√

10Σmax

√
log n

m

and the sample size meets that

m ≥ max

{
[72(1 + ακ)]

2Σmax

λ′S,κ
s log n, (1 + c) log n

}
, (3.18)

then there exist absolute constants c1 > 0 and c2 > 0 such that with probability at

least 1− c1 exp(−c2m)− 3n−c, the Lasso estimator (3.2) satisfies the bound

‖x̊− x̄‖2 ≤
√

1 + c(1 + κ)
2
√

10Σmaxν

λS,κ

√
s log n

m
.
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Proof. The proof can be obtained by using Proposition 3.3, Corollary 3.10 and

Corollary 3.12.

Proposition 3.14. Let κ > 1 and c > 0 be given constants. Consider the linear

model (3.1) under Assumption 3.1, 3.4 and 3.5. Suppose that w̌min
Sc ≥ w̌max

S and

w̌min
Sc > 0, where w̌max

S and w̌min
Sc are defined by (3.11). Let λS,κ := λ′S,κ/64. If the

penalization parameter is chosen as

ρmw̌
min
Sc = κν

√
1 + c

√
10Σmax

√
log n

m

and the sample size meets (3.18), then there exist absolute constants c1 > 0 and

c2 > 0 such that with probability at least 1 − c1 exp(−c2m) − 3n−c, the weighted

Lasso estimator (3.4) satisfies the bound

‖x̌− x̄‖2 ≤
√

1 + c

(
1 +

w̌max
S

w̌min
Sc

κ

)
2
√

10Σmaxν

λS,κ

√
s log n

m
.

Proof. The proof can be obtained by using Proposition 3.5, Corollary 3.10 and

Corollary 3.12.

Proposition 3.15. Let κ > 1 and c > 0 be given constants. Consider the linear

model (3.1) under Assumption 3.1, 3.4 and 3.5. Suppose that âSc ≥ âS and âSc > 0,

where âS and âSc are defined by (3.16). Let λS,κ := λ′S,κ/64. If the penalization

parameter is chosen as

ρ̂mâSc = κν
√

1 + c
√

10Σmax

√
log n

m

and the sample size meets (3.18), then there exist absolute constants c1 > 0 and

c2 > 0 such that with probability at least 1 − c1 exp(−c2m) − 3n−c, the corrected

Lasso estimator (3.5) satisfies the bound

‖x̂− x̄‖2 ≤
√

1 + c

(
1 +

âS
âSc

κ

)
2
√

10Σmaxν

λS,κ

√
s log n

m
.
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Proof. The proof can be obtained by using Proposition 3.7, Corollary 3.10 and

Corollary 3.12.

Proposition 3.16. Under the assumptions in Proposition 3.13, if the sample size

meets (3.18), then there exist absolute constants c1 > 0 and c2 > 0 such that with

probability at least 1− c1 exp(−c2m)− 3n−c,the oracle thresholded Lasso estimator

(3.6) satisfies the bound

‖x̃− x̄‖2 ≤
2
√

10Σmaxν

λS,κ

√
s(c log n+ log s)

m
.

Proof. This follows from Proposition 3.8, Corollary 3.10 and Corollary 3.12.

3.4 Sub-Gaussian design

In this section, we consider estimation error bounds for the aforementioned Lasso-

related estimators in the case of correlated sub-Gaussian design. Before providing

the concrete assumption on the design matrix, we need some additional definitions.

The first one is taken from [18, Lemma 1.2 and Definition 2.1 in Chapter 1], while

the rest two are borrowed from [110, Definition 5].

Definition 3.2. A sub-Gaussian random variable z with exponent ς(z) ≥ 0 is

called strictly sub-Gaussian if E[z2] = [ς(z)]2.

Definition 3.3. A random vector Z ∈ IRn is called isotropic if for all w ∈ IRn,

E[〈Z,w〉2] = ‖w‖2
2.

Definition 3.4. A random vector Z ∈ IRn is called ψ2-bounded with an absolute

constant β > 0 if for all w ∈ IRn,

‖〈Z,w〉‖ψ2 ≤ β‖w‖2,

where ‖ · ‖ψ2 is the Orlicz ψ2-norm defined by (2.1). In this case, the absolute

constant β is called a ψ2-constant of the random vector Z.
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The next lemma shows that any strictly sub-Gaussian random matrix consists

of independent, isotropic and ψ2-bounded rows.

Lemma 3.17. Suppose that Γ ∈ IRm×n is a random matrix of i.i.d. strictly sub-

Gaussian entries with exponent 1. Then the rows of Γ are independent, isotropic

and ψ2-bounded random vectors in IRn with a common ψ2-constant β > 0.

Proof. Let Z ∈ IRn be any row of Γ. Then according to [18, Lemma 2.1 in Chapter

1], for any fixed w ∈ IRn, 〈Z,w〉 is a strictly sub-Gaussian random variable with

exponent ‖w‖2. This implies that E[〈Z,w〉2] = ‖w‖2
2. Moreover, it follows from

[120, Lemma 5.5] that ‖〈Z,w〉‖ψ2 ≤ β‖w‖2 for some absolute constant β > 0.

The setting of correlated sub-Gaussian design is stated below, where the RE

condition in the sense of Assumption 3.5 is needed for the “covariance matrix” Σ.

Assumption 3.6. The design matrix A ∈ IRm×n can be expressed as A = ΓΣ
1
2 ,

where Γ ∈ IRm×n is a random matrix of i.i.d. strictly sub-Gaussian entries with

exponent 1, and Σ ∈ IRn×n is a positive semidefinite matrix satisfying the RE condi-

tion over the true supporting index set S with parameters (ακ, λ
′
S,κ) and (3ακ, λ

′′
S,κ)

for some given constant κ > 1 and ακ := (κ+ 1)/(κ− 1).

Remark 3.1. Under Assumption 3.6, it follows from Lemma 3.17 that the rows of

Γ are independent, isotropic and ψ2-bounded random vectors in IRn with a common

ψ2-constant β > 0.

Based on geometric functional analysis, the correlated sub-Gaussian design

matrix A was shown to inherit the RE condition in the sense of Assumption 3.2

from that for the “covariance matrix” Σ [110, Theorem 6].

Lemma 3.18. Suppose that Assumption 3.6 holds. For a given 0 < ϑ < 1, set

d := s+ sΣmax
(12ακ)

2(3ακ + 1)

ϑ2λ′′S,κ
,
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where Σmax := maxj=1,...,n Σjj. Let β > 0 be the ψ2-constant in Remark 3.1. If the

sample size meets that

m ≥ 2000 min{d, n}β4

ϑ2
log

(
180n

min{d, n}ϑ

)
,

then with probability at least 1−2 exp(−ϑ2m/2000β4), the design matrix A satisfies

the RE condition over S with parameters (ακ, λS,κ), where λS,κ ≥ (1− ϑ)2λ′S,κ.

Proof. The proof follows from Remark 3.1 and [110, Theorem 6].

The column-normalized condition in the sense of Assumption 3.3 can be veri-

fied by utilizing an exponential tail bound for positive semidefinite quadratic forms

of sub-Gaussian random vectors developed in [74, Theorem 2.1 and Remark 2.2].

Lemma 3.19. Let Z ∈ IRm be a random vector of i.i.d. sub-Gaussian entries with

exponent 1. Then for any t > 0,

P
[
‖Z‖2

2 ≥ m+
mt

2
+
mt2

8

]
≤ exp

(
−mt

2

16

)
,

which implies that for any 0 < t ≤ 4,

P
[
‖Z‖2

2 ≥ m(1 + t)
]
≤ exp

(
−mt

2

16

)
.

Proof. The first part is directly from [74, Theorem 2.1 and Remark 2.2] with a

suitable change of variables. The second part follows by noting that m(1 + t) ≥

m(1 + t/2 + t2/8) when 0 < t ≤ 4.

Corollary 3.20. Suppose that the design matrix A = ΓΣ
1
2 , where Γ ∈ IRm×n is

a random matrix of i.i.d. sub-Gaussian entries with exponent 1 and Σ ∈ IRn×n

is a positive semidefinite matrix with Σmax := maxj=1,...,n Σjj. If the sample size

m ≥ (1 + c) log n for a given constant c > 0, then maxj=1,...,n ‖Aj‖2 ≤
√

5Σmaxm

with probability at least 1− n−c.
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Proof. From the structure of the design matrixA, we know thatAj = Γ(Σ
1
2 )j ∈ IRm

is a random vector of i.i.d. sub-Gaussian entries with exponent ‖(Σ 1
2 )j‖2 =

√
Σjj,

for all j = 1, . . . , n (cf. [18, Chapter 1] and [62, Section 12.7]). Then the proof can

be obtained in a similar way to that of Corollary 3.12 by using Lemma 3.19.

In the rest of this section, we present the specialized estimation error bounds

for the Lasso, the weighted Lasso, the corrected Lasso and the oracle thresholded

Lasso with respect to sub-Gaussian design under Assumption 3.6. Define Σmax :=

maxj=1,...,n Σjj.

Proposition 3.21. Let κ > 1 and c > 0 be given constants. Consider the linear

model (3.1) under Assumption 3.1 and 3.6. For any given 0 < ϑ < 1, let d, β and

λS,κ be defined in Lemma 3.18. If the penalization parameter is chosen as

ρm = κν
√

1 + c
√

10Σmax

√
log n

m

and the sample size meets that

m ≥ max

{
2000 min{d, n}β4

ϑ2
log

(
180n

min{d, n}ϑ

)
, (1 + c) log n

}
, (3.19)

then the Lasso estimator (3.2) satisfies the bound

‖x̊− x̄‖2 ≤
√

1 + c(1 + κ)
2
√

10Σmaxν

λS,κ

√
s log n

m

with probability at least 1− 2 exp(−ϑ2m/2000β4)− 3n−c.

Proof. The proof can be obtained by applying Proposition 3.3, Lemma 3.18 and

Corollary 3.20.

Proposition 3.22. Let κ > 1 and c > 0 be given constants. Consider the linear

model (3.1) under Assumption 3.1 and 3.6. Suppose that w̌min
Sc ≥ w̌max

S and w̌min
Sc >
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0, where w̌max
S and w̌min

Sc are defined by (3.11). For any given 0 < ϑ < 1, let d, β

and λS,κ be defined in Lemma 3.18. If the penalization parameter is chosen as

ρmw̌
min
Sc = κν

√
1 + c

√
10Σmax

√
log n

m

and the sample size meets (3.19), then the weighted Lasso estimator (3.4) satisfies

the bound

‖x̌− x̄‖2 ≤
√

1 + c

(
1 +

w̌max
S

w̌min
Sc

κ

)
2
√

10Σmaxν

λS,κ

√
s log n

m

with probability at least 1− 2 exp(−ϑ2m/2000β4)− 3n−c.

Proof. The proof can be obtained by applying Proposition 3.5, Lemma 3.18 and

Corollary 3.20.

Proposition 3.23. Let κ > 1 and c > 0 be given constants. Consider the linear

model (3.1) under Assumption 3.1 and 3.6. Suppose that âSc ≥ âS and âSc > 0,

where âS and âSc are defined by (3.16). For any given 0 < ϑ < 1, let d, β and λS,κ

be defined in Lemma 3.18. If the penalization parameter is chosen as

ρ̂mâSc = κν
√

1 + c
√

10Σmax

√
log n

m

and the sample size meets (3.19), then the corrected Lasso estimator (3.5) satisfies

the bound

‖x̂− x̄‖2 ≤
√

1 + c

(
1 +

âS
âSc

κ

)
2
√

10Σmaxν

λS,κ

√
s log n

m

with probability at least 1− 2 exp(−ϑ2m/2000β4)− 3n−c.

Proof. The proof can be obtained by applying Proposition 3.7, Lemma 3.18 and

Corollary 3.20.

Proposition 3.24. Under the assumptions in Proposition 3.21, if the sample size

meets (3.19), then the oracle thresholded Lasso estimator (3.6) satisfies the bound

‖x̃− x̄‖2 ≤
2
√

10Σmaxν

λS,κ

√
s(c log n+ log s)

m
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with probability at least 1− 2 exp(−ϑ2m/2000β4)− 3n−c.

Proof. This follows from Proposition 3.8, Lemma 3.18 and Corollary 3.20.

3.5 Comparison among the error bounds

In this section, we make a quantitative comparison among the estimation error

bounds for the aforementioned Lasso-related estimators. For simplicity, we only

focus on the case when the design matrix is deterministic.

Evidently, when the weight vector w̌ for the weighted Lasso (3.4) is chosen

such that w̌max
S � w̌min

Sc , the corresponding estimation error bound provided in

Proposition 3.5 will at best become

‖x̌− x̄‖2 ≤
√

1 + c

(
1 +

w̌max
S

w̌min
Sc

κ

)
2
√

2ν

λS,κ

√
s log n

m
→
√

1 + c
2
√

2ν

λS,κ

√
s log n

m
.

In comparison with the estimation error bounds for the Lasso (3.2) and the oracle

thresholded Lasso (3.6) provided in Proposition 3.3 and Proposition 3.8, respec-

tively, this best possible error bound for the weighted Lasso enjoys a significant

reduction from the error bound for the Lasso in light of

the best possible error bound for the weighted Lasso

the error bound for the Lasso
=

1

1 + κ
with κ > 1,

while at the same time it is very close to the optimal estimation error bound

achieved by the oracle thresholded Lasso since

the best possible error bound for the weighted Lasso

the error bound for the oracle thresholded Lasso
=

√
log n+ c log n

log s+ c log n
≈ 1,

as long as the probability-controlling parameter c is not too small. The same

conclusions also hold for the estimation error bound of the corrected Lasso (3.5)

provided in Proposition 3.7.
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Finally, we take the two-stage adaptive Lasso procedure [136] as an illustration.

Recall that the adaptive Lasso is equipped with the weight vector w̌ = 1/|̊x|γ,

where γ > 0 is a given parameter. In detail, w̌j = 1/|̊xj|γ for j = 1, . . . , n, while

we set w̌j = +∞ and thus x̌j = 0 if x̊j = 0. With the most common choice of the

parameter γ = 1, we have

w̌max
S =

1

minj∈S |̊x|j
, w̌min

Sc =
1

maxj∈Sc |̊x|j
, and

w̌max
S

w̌min
Sc

=
maxj∈Sc |̊x|j
minj∈S |̊x|j

.

Roughly speaking, when the Lasso estimator performs good enough in the sense

that maxj∈Sc |̊x|j � minj∈S |̊x|j, then the two-stage adaptive Lasso estimator is

able to imitate the ideal behavior of the oracle thresholded Lasso estimator as if

the true supporting index set S were known in advance.



Chapter 4
Exact matrix decomposition from fixed

and sampled basis coefficients

In this chapter, we study the problem of exact low-rank and sparse matrix decom-

position with fixed and sampled basis coefficients. We begin with the model setting

and assumption, and then formulate this problem into concrete convex programs

based on the “nuclear norm plus `1-norm” approach. Owing to the convex nature

of the proposed optimization problems, we provide exact recovery guarantees if

certain standard identifiability conditions for the low-rank and sparse components

are satisfied. Lastly, we establish the probabilistic recovery results via a standard

dual certification procedure. Although the analysis involved follows from the ex-

isting framework, these recovery guarantees can still be considered as the noiseless

counterparts of those for the noisy case addressed in Chapter 5.

4.1 Problem background and formulation

In this section, we introduce the background on the problem of exact low-rank and

sparse matrix decomposition with fixed and sampled basis coefficients, and then

40
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propose convex optimization formulations that we study in this chapter.

Let the set of the standard orthonormal basis of the finite dimensional real

Euclidean space Vn1×n2 be denoted by Θ := {Θ1, . . . ,Θd}, where d is the dimension

of Vn1×n2 . Specifically, when Vn1×n2 = IRn1×n2 , we have d = n1n2 and

Θ =
{
eie

T
j

∣∣∣ 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

}
; (4.1)

when Vn1×n2 = Sn, we have d = n(n+ 1)/2 and

Θ =
{
eie

T
i

∣∣∣ 1 ≤ i ≤ n
}⋃{

1√
2

(
eie

T
j + eje

T
i

) ∣∣∣∣ 1 ≤ i < j ≤ n

}
. (4.2)

Then any matrix Z ∈ Vn1×n2 can be uniquely represented as

Z =
d∑
j=1

〈Θj, Z〉Θj, (4.3)

where 〈Θj, Z〉 is called the basis coefficient of Z with respect to Θj.

Suppose that an unknown matrix X ∈ Vn1×n2 can be decomposed into the

sum of an unknown low-rank matrix L ∈ Vn1×n2 and an unknown sparse matrix

S ∈ Vn1×n2 , that is,

X = L+ S,

where both of the components may be of arbitrary magnitude, and by “sparse” we

mean that a few basis coefficients of the matrix S are nonzero. In this chapter, we

assume that a number of basis coefficients of the unknown matrix X are fixed and

the nonzero basis coefficients of the sparse component S only come from these fixed

basis coefficients. Due to a certain structure or some reliable prior information,

these assumptions are actually of practical interest. For example, the unknown

matrix X is a correlation matrix with strict factor structure where the sparse

component S is a diagonal matrix (see, e.g., [3, 123, 16]). Under these assumptions,

we focus on the problem on how and when we are able to exactly recover the low-

rank component L and the sparse component S by uniformly sampling a few basis

coefficients with replacement from the unfixed ones of the unknown matrix X.
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Throughout this chapter, for the unknown matrix X, we define F ⊆ {1, . . . , d}

to be the fixed index set corresponding to the fixed basis coefficients and F c :=

{1, . . . , d} \ F to be the unfixed index set associated with the unfixed basis coef-

ficients, respectively. Denote by ds the cardinality of F c, that is, ds := |F c|. Let

Γ be the supporting index set of the sparse component S, i.e., Γ := {j | 〈Θj, S〉 6=

0, j = 1, . . . , d}. Denote Γ0 := {j | 〈Θj, S〉 = 0, j ∈ F} = F \ Γ. Below we

summarize the model assumption adopted in this chapter.

Assumption 4.1. The supporting index set Γ of the sparse component S is con-

tained in the fixed index set F , i.e., Γ ⊆ F . The sampled indices are drawn

uniformly at random with replacement from the unfixed index set F c.

Under Assumption 4.1, it holds that F = Γ ∪ Γ0 with Γ ∩ Γ0 = ∅ and Γc :=

{1, . . . , d} \ Γ = Γ0 ∪ F c with Γ0 ∩ F c = ∅. In addition, it is worthwhile to note

that S cannot be exactly recovered if the basis coefficients of X with respect to Γ

are not entirely known after the sampling procedure. This is the reason why we

require Γ ⊆ F in Assumption 4.1.

4.1.1 Uniform sampling with replacement

When the fixed basis coefficients are not sufficient, we need to observe some of the

rest for recovering the low-rank component L and the sparse component S.

Let Ω := {ωl}ml=1 be the multiset of indices sampled uniformly with replace-

ment1 from the unfixed index set F c of the unknown matrix X. Then the elements

in Ω are i.i.d. copies of a random variable ω following the uniform distribution

over F c, i.e., P[ω = j] = 1/ds for all j ∈ F c, where ds = |F c|. Define the sampling

operator RΩ : Vn1×n2 → Vn1×n2 associated with the multiset Ω by

RΩ(Z) :=
m∑
l=1

〈Θωl , Z〉Θωl , Z ∈ Vn1×n2 . (4.4)

1More details on random sampling model can be found in Section 2.3.
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Note that the j-th basic coefficient 〈Θj,RΩ(Z)〉 of RΩ(Z) is zero unless j ∈ Ω.

For any j ∈ Ω, 〈Θj,RΩ(Z)〉 is equal to 〈Θj, Z〉 times the multiplicity of j in

Ω. Although RΩ is still self-adjoint, it is in general not an orthogonal projection

operator because repeated indices in Ω are likely to exist.

In addition, without causing any ambiguity, for any index subset J ⊆ {1, . . . , d},

we also use J to denote the subspace of the matrices in Vn1×n2 whose supporting

index sets are contained in the index subset J . Let PJ : Vn1×n2 → Vn1×n2 be the

orthogonal projection operator over J , i.e.,

PJ (Z) :=
∑
j∈J

〈Θj, Z〉Θj, Z ∈ Vn1×n2 . (4.5)

Notice that PJ is self-adjoint and ‖PJ ‖ = 1.

With these notations, it follows from Assumption 4.1 that PFc(S) = 0,RΩ(S) =

0 and RΩ(L) = RΩ(X). Then we can formulate the recovery problem considered

in this chapter via convex optimization.

4.1.2 Convex optimization formulation

Suppose that Assumption 4.1 holds. Given the fixed data PF(X) and the sampled

data RΩ(X), we wish to exactly recover the low-rank component L and the sparse

component S by solving the following convex optimization problem

min
L, S∈Vn1×n2

‖L‖∗ + ρ‖S‖1

s.t. PF(L+ S) = PF(X),

PFc(S) = 0,

RΩ(L) = RΩ(X).

(4.6)

Here ρ ≥ 0 is a parameter that controls the tradeoff between the low-rank and

sparse components. If, in addition, the true low-rank component L and the true

sparse component S are known to be symmetric and positive semidefinite (e.g., X
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is a covariance or correlation matrix resulting from a factor model), we consider to

solve the following convex conic optimization problem

min 〈In, L〉+ ρ‖S‖1

s.t. PF(L+ S) = PF(X),

PFc(S) = 0,

RΩ(L) = RΩ(X),

L ∈ Sn+, S ∈ Sn+.

(4.7)

Indeed, the `1-norm has been shown as a successful surrogate for the sparsity

(i.e., the number of nonzero entries) of a vector in compressed sensing [27, 26, 43,

42], while the nuclear norm has been observed and then demonstrated to be an

effective surrogate for the rank of a matrix in low-rank matrix recovery [97, 57,

105, 25]. Based on these results, the “nuclear norm plus `1-norm” approach was

studied recently as a tractable convex relaxation for the “low-rank plus sparse”

matrix decomposition, and a number of theoretical guarantees provide conditions

under which this heuristic is capable of exactly recovering the low-rank and sparse

components from the completely fixed data (i.e., F c = ∅) [32, 21, 61, 73] or the

completely sampled data (i.e., F = ∅) [21, 89, 33]. In the rest of this chapter,

we are interested in establishing characterization when the solution to problem

(4.6) or (4.7) turns out to be the true low-rank component L and the true sparse

component S with both partially fixed and partially sampled data.

4.2 Identifiability conditions

Generally speaking, the low-rank and sparse decomposition problem is ill-posed

in the absent of any further assumptions. Even though the completely fixed data

is given, it is still possible that these two components are not identifiable. For

instance, the low-rank component may be sparse, or the sparse component may
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has low-rank. In these two natural identifiability problems, the decomposition is

usually not unique. Therefore, additional conditions should be imposed on the

low-rank and sparse components in order to enhance their identifiability from the

given data.

For the purpose of avoiding the first identifiability problem, we require that

the low-rank component L should not have too sparse singular vectors. To achieve

this, we borrow the standard notion of incoherence introduced in [25] for matrix

completion problem. Essentially, the incoherence assumptions control the disper-

sion degree of the information contained in the column space and row space of the

matrix L. Suppose that the matrix L of rank r has a reduced SVD

L = U1ΣV T
1 , (4.8)

where U1 ∈ On1×r, V1 ∈ On2×r, and Σ ∈ IRr×r is the diagonal matrix with the

non-zero singular values of L being arranged in the non-increasing order. Notice

that U1 = V1 when L ∈ Sn+. Mathematically, the incoherence of the low-rank

component L can be described as follows.

Assumption 4.2. The low-rank component L of rank r is incoherent with param-

eters µ0 and µ1. That is, there exist some µ0 and µ1 such that

max
1≤i≤n1

∥∥UT
1 ei
∥∥

2
≤
√
µ0

r

n1

, max
1≤j≤n2

∥∥V T
1 ej

∥∥
2
≤
√
µ0

r

n2

,

and ∥∥U1V
T

1

∥∥
∞ ≤ µ1

√
r

n1n2

.

Since ‖UT
1 ‖2

F = ‖V T
1 ‖2

F = r, ‖UT
1 ei‖2 ≤ 1 and ‖V T

1 ei‖2 ≤ 1, we know that

1 ≤ µ0 ≤ max{n1,n2}
r

. Moreover, by using the Cauchy-Schwarz inequality and the

fact that ‖U1V
T

1 ‖2
F = r, we can see that 1 ≤ µ1 ≤ µ0

√
r.

Let T and T ⊥ be the tangent space and its orthogonal complement defined

in the same way as (2.2) and (2.3), respectively. Choose U2 and V2 such that
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U = [U1, U2] and V = [V1, V2] are both orthogonal matrices. Notice that U = V

when L ∈ Sn+. The orthogonal projection PT onto T and the orthogonal projection

PT ⊥ onto T ⊥ are given by (2.4) and (2.5), respectively. Then it follows from

Assumption 4.2 that for any 1 ≤ i ≤ n1 and any 1 ≤ j ≤ n2,

∥∥PT (eieTj )∥∥2

F
=
〈
PT
(
eie

T
j

)
, eie

T
j

〉
=
∥∥UT

1 ei
∥∥2

2
+
∥∥V T

1 ej
∥∥2

2
−
∥∥UT

1 ei
∥∥2

2

∥∥V T
1 ej

∥∥2

2

≤
∥∥UT

1 ei
∥∥2

2
+
∥∥V T

1 ej
∥∥2

2
≤ µ0r

(n1 + n2)

n1n2

,

and for any 1 ≤ i < j ≤ n (where n = n1 = n2),

∥∥PT (eieTj + eje
T
i

)∥∥2

F
=
〈
PT
(
eie

T
j + eje

T
i

)
, eie

T
j + eje

T
i

〉
≤
∥∥UT

1 ei
∥∥2

2
+
∥∥UT

1 ej
∥∥2

2
+
∥∥V T

1 ei
∥∥2

2
+
∥∥V T

1 ej
∥∥2

2
≤ 4µ0r

n
.

Thus in our general setting, for any j ∈ {1, . . . , d}, we have

‖PT (Θj)‖2
F ≤ µ0r

(n1 + n2)

n1n2

. (4.9)

As noted by [32], simply bounding the number of nonzero entries in the sparse

component does not suffice, since the sparsity pattern also plays an important role

in guaranteeing the identifiability. In order to prevent the second identifiability

problem, we require that the sparse component S should not be too dense in each

row and column. This was also called the “bounded degree” (i.e., bounded number

of nonzeros per row/column) assumption used in [32, 31].

Assumption 4.3. The sparse component S has at most k nonzero entries in each

row and column, for some integer 0 ≤ k ≤ max{n1, n2}.

Geometrically, the following lemma states that the angle (cf. [37] and [38,

Chapter 9]) between the tangent space T of the low-rank component L and the

supporting space Γ of the sparse component S is bounded away from zero. As we
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will see later, this is extremely crucial for unique decomposition. An analogous

result can be found from [33, Lemma 10].

Lemma 4.1. Under Assumption 4.2 and 4.3, for any Z ∈ Vn1×n2, we have

‖PT PΓPT (Z)‖F ≤

(√
µ0rk

n1

+

√
µ0rk

n2

)
‖PT (Z)‖F .

Proof. From (2.4) and the choice of U2, for any Z ∈ Vn1×n2 , we can write

PT (Z) = U1U
T
1 Z + U2U

T
2 ZV1V

T
1 .

Then we have

‖PT (Z)‖2
F =

∥∥U1U
T
1 Z
∥∥2

F
+
∥∥U2U

T
2 ZV1V

T
1

∥∥2

F
=
∥∥UT

1 Z
∥∥2

F
+
∥∥UT

2 ZV1

∥∥2

F
. (4.10)

On the one hand, for any 1 ≤ j ≤ n2, by using the Cauchy-Schwarz inequality and

Assumption 4.2, we obtain that∥∥U1U
T
1 Zej

∥∥
∞ = max

1≤i≤n1

∣∣eTi U1U
T
1 Zej

∣∣
≤ max

1≤i≤n1

∥∥UT
1 ei
∥∥

2

∥∥UT
1 Zej

∥∥
2
≤
√
µ0r

n1

∥∥UT
1 Zej

∥∥
2
,

which, together with Assumption 4.3, yields that∥∥PΓ

(
U1U

T
1 Z
)
ej
∥∥

2
≤
√
k
∥∥U1U

T
1 Zej

∥∥
∞ ≤

√
µ0rk

n1

∥∥UT
1 Zej

∥∥
2
.

This gives that

‖PΓ

(
U1U

T
1 Z
)
‖2
F =

∑
1≤j≤n2

∥∥PΓ

(
U1U

T
1 Z
)
ej
∥∥2

2

≤ µ0rk

n1

∑
1≤j≤n2

∥∥UT
1 Zej

∥∥2

2
=
µ0rk

n1

∥∥UT
1 Z
∥∥2

F
. (4.11)

On the other hand, for any 1 ≤ i ≤ n1, from the Cauchy-Schwarz inequality and

Assumption 4.2, we know that∥∥eTi U2U
T
2 ZV1V

T
1

∥∥
∞ = max

1≤j≤n2

∣∣eTi U2U
T
2 ZV1V

T
1 ej

∣∣
≤ max

1≤j≤n2

∥∥V T
1 ej

∥∥
2

∥∥eTi U2U
T
2 ZV1

∥∥
2
≤
√
µ0r

n2

∥∥eTi U2U
T
2 ZV1

∥∥
2
,
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which, together with Assumption 4.3, implies that∥∥eTi PΓ

(
U2U

T
2 ZV1V

T
1

)∥∥
2
≤
√
k
∥∥eTi U2U

T
2 ZV1V

T
1

∥∥
∞ ≤

√
µ0rk

n2

∥∥eTi U2U
T
2 ZV1

∥∥
2
.

It then follows that

‖PΓ

(
(U2U

T
2 ZV1V

T
1

)
‖2
F =

∑
1≤i≤n1

∥∥eTi PΓ

(
U2U

T
2 ZV1V

T
1

)∥∥2

2

≤ µ0rk

n2

∑
1≤i≤n1

∥∥eTi U2U
T
2 ZV1

∥∥2

2

=
µ0rk

n2

∥∥U2U
T
2 ZV1

∥∥2

F
=
µ0rk

n2

∥∥UT
2 ZV1

∥∥2

F
. (4.12)

Thus, by combining (4.10), (4.11) and (4.12), we derive that

‖PT PΓPT (Z)‖F ≤ ‖PΓPT (Z)‖F

≤ ‖PΓ

(
U1U

T
1 Z
)
‖F + ‖PΓ

(
U2U

T
2 ZV1V

T
1

)
‖F

≤
√
µ0rk

n1

∥∥UT
1 Z
∥∥
F

+

√
µ0rk

n2

∥∥UT
2 ZV1

∥∥
F

≤

(√
µ0rk

n1

+

√
µ0rk

n2

)
‖PT (Z)‖F ,

which completes the proof.

The next lemma plays a similar role as Lemma 4.1 in identifying the low-rank

and sparse components. Basically, it says that for any matrix in Γ, the operator

PT does not increase the matrix `∞-norm. This implies that the tangent space T

of the low-rank component L and the supporting space Γ of the sparse component

S has only trivial intersection, i.e., T ∩ Γ = {0}. One may refer to [33, (21)] for

an analogous inequality.

Lemma 4.2. Suppose that Assumption 4.2 and 4.3 hold. Then for any Z ∈ Vn1×n2,

we have

‖PT PΓ(Z)‖∞ ≤

(√
µ0rk

n1

+

√
µ0rk

n2

+
µ0rk√
n1n2

)
‖PΓ(Z)‖∞.
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Proof. For any Z ∈ Vn1×n2 , it follows from (2.4) that

‖PT PΓ(Z)‖∞

≤
∥∥U1U

T
1 PΓ(Z)

∥∥
∞ +

∥∥PΓ(Z)V1V
T

1

∥∥
∞ +

∥∥U1U
T
1 PΓ(Z)V1V

T
1

∥∥
∞

≤ max
1≤i≤n1

∥∥U1U
T
1 ei
∥∥

2
max

1≤j≤n2

∥∥PΓ(Z)ej
∥∥

2
+ max

1≤i≤n1

∥∥eTi PΓ(Z)
∥∥

2
max

1≤j≤n2

∥∥V1V
T

1 ej
∥∥

2

+ max
1≤i≤n1

∥∥U1U
T
1 ei
∥∥

2
‖PΓ(Z)‖ max

1≤j≤n2

∥∥V1V
T

1 ej
∥∥

2

≤
√
µ0r

n1

√
k
∥∥PΓ(Z)

∥∥
∞ +
√
k
∥∥PΓ(Z)

∥∥
∞

√
µ0r

n2

+

√
µ0r

n1

k‖PΓ(Z)‖∞
√
µ0r

n2

=

(√
µ0rk

n1

+

√
µ0rk

n2

+
µ0rk√
n1n2

)
‖PΓ(Z)‖∞,

where the first inequality comes from the triangular inequality, the second in-

equality is due to the Cauchy-Schwarz inequality, and the third inequality is a

consequence of Assumption 4.2, 4.3 and Lemma 2.2. This completes the proof.

4.3 Exact recovery guarantees

Inheriting the success from the nuclear norm and the `1-norm in recovering “simple

object” such as low-rank matrix and sparse vector, the “nuclear norm plus `1-norm”

approach has recently been proved to be able to exactly recover the low-rank and

sparse components in the problem of “low-rank plus sparse” matrix decomposition

from the completely fixed data (i.e., F c = ∅) [32, 21, 61, 73] or the completely

sampled data (i.e., F = ∅) [21, 89, 33]. In this section, we will establish such exact

recovery guarantees when the given data consists of both fixed and sampled basic

coefficients in the sense of Assumption 4.1 with F 6= ∅ and F c 6= ∅, provided,

of course, that the identifiability conditions (i.e., Assumption 4.2 and Assumption

4.3) are satisfied together with the rank of the low-rank component and the sparsity

level of the sparse component being reasonably small. We first present the recovery

theorem for problem (4.6).
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Theorem 4.3. Let X = L+S ∈ Vn1×n2 be an unknown matrix such that Assump-

tion 4.2 holds at the low-rank component L and that Assumption 4.3 holds at the

sparse component S with√
µ0rk

n1

+

√
µ0rk

n2

+
µ0rk√
n1n2

≤ 1

16
.

Under Assumption 4.1 with F 6= ∅ and F c 6= ∅, for any absolute constant c > 0, if

the sample size satisfies

m ≥ 1024(1 + c) max{µ2
1, µ0}rmax

{
(n1 + n2)

n1n2

ds, 1

}
log2(2n1n2),

then with probability at least

1− (2n1n2)−c − 3

2
log(2n1n2)

[
(2n1n2)−c + 2(n1n2)−c + (n1 + n2)−c

]
,

the optimal solution to problem (4.6) with the tradeoff parameter 48
13

µ1
√
r√

n1n2
≤ ρ ≤

4µ1
√
r√

n1n2
is unique and equal to (L, S).

Theorem 4.3 reveals the power of the convex optimization formulation (4.6)

for the problem of exact low-rank and sparse matrix decomposition with fixed and

sampled basis coefficients. Firstly, it is worth pointing out that the restriction

on the rank r of L and the sparsity level k of S is fairly mild. For example, a

more restricted condition µ0rk � min{n1, n2} is quite likely to hold for a strict

factor model in which S is known to be a diagonal matrix and consequently k = 1.

Secondly, when ds, the cardinality of the unfixed index set F c, is significantly

greater than max{n1, n2}, the vanishing fraction of samples, i.e., m
ds

, is already

sufficient for exact recovery, which is particularly desirable in the high-dimensional

setting where m � ds. Lastly, it is interesting to note that the conclusion of the

above theorem holds for a range of values of the tradeoff parameter ρ. From the

computational point of view, this is probably an attractive advantage that may

allow the utilization of simple numerical algorithms, such as the bisection method,

for searching an appropriate ρ when the involved µ1 and r are unknown.
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Analogously, the following theorem provides exact recovery guarantee for prob-

lem (4.7) when the low-rank and sparse components are both assumed to be sym-

metric and positive semidefinite.

Theorem 4.4. Let X = L+ S ∈ Sn be an unknown matrix such that Assumption

4.2 holds at the low-rank component L ∈ Sn+ and that Assumption 4.3 holds at the

sparse component S ∈ Sn+ with

2

√
µ0rk

n
+
µ0rk

n
≤ 1

16
.

Under Assumption 4.1 with F 6= ∅ and F c 6= ∅, for any absolute constant c > 0, if

the sample size satisfies

m ≥ 1024(1 + c) max{µ2
1, µ0}rmax

{
2ds
n
, 1

}
log2

(
2n2
)
,

then the optimal solution to problem (4.7) with the tradeoff parameter 48
13
µ1
√
r

n
≤

ρ ≤ 4µ1
√
r

n
is unique and equal to (L, S) with probability at least

1−
(√

2n
)−2c − 3

2
log
(
2n2
)[(√

2n
)−2c

+ 2n−2c + (2n)−c
]
.

4.3.1 Properties of the sampling operator

Before proceeding to establish the recovery theorems, we need to introduce some

critical properties of the sampling operator RΩ defined in (4.4), where Ω is a mul-

tiset of indices with size m sampled uniformly with replacement from the unfixed

index set F c. Recall that ds = |F c| and that the fixed index set F is partitioned

into Γ = {j | 〈Θj, S〉 6= 0, j = 1, . . . , d} (with the assumption that Γ ⊆ F) and

Γ0 = {j | 〈Θj, S〉 = 0, j ∈ F}.

Intuitively, it is desirable to control the maximum number of repetitions of

any index in Ω so that more information of the true unknown matrix X could be

obtained via sampling. Thanks to the model of sampling with replacement and the
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noncommutative Bernstein inequality for random matrices with bounded spectral

norm, we can show that the maximum duplication in Ω, which is also the spectral

norm of RΩ, is at most of order log(n1n2) with high probability. A analogous result

was proved in [104, Proposition 5] by applying a standard Chernoff bound for the

Bernoulli distribution (cf. [71]).

Proposition 4.5. For any c > 0, if the number of samples satisfies m < 8
3
(1 +

c)ds log(2n1n2), then with probability at least 1− (2n1n2)−c, it holds that∥∥∥∥RΩ −
m

ds
PFc

∥∥∥∥ ≤ 8

3
(1 + c) log(2n1n2).

Consequently, with the same probability, we have∥∥∥∥PΓ0 +
ds
m
RΩ

∥∥∥∥ ≤ ‖PΓ0∪Fc‖+
8

3
(1 + c) log(2n1n2)

ds
m
<

16

3
(1 + c) log(2n1n2)

ds
m
.

Proof. For any uniform random variable ω over F c, define the random operator

Zω : Vn1×n2 → Vn1×n2 associated with ω by

Zω(Z) := 〈Θω, Z〉Θω −
1

ds
PFc(Z), Z ∈ Vn1×n2 .

Note that Zω is self-adjoint, i.e., Z∗ω = Zω. From (4.4), we write that

RΩ −
m

ds
PFc =

m∑
l=l

(
〈Θωl , ·〉Θωl −

1

ds
PFc

)
=

m∑
l=l

Zωl .

By using (4.5), we can verify that

E[Zω] = 0 and ‖Zω‖ ≤ 1 =: K.

Moreover, a direct calculation shows that for any Z ∈ Vn1×n2 ,

Z∗ωZω(Z) = ZωZ∗ω(Z) =

(
1− 2

ds

)
〈Θω, Z〉Θω +

1

d2
s

PFc(Z).

As a consequence, we obtain that

E[Z∗ωZω] = E[ZωZ∗ω] =

(
1

ds
− 1

d2
s

)
PFc ,
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which yields that

‖E[Z∗ωZω]‖ = ‖E[ZωZ∗ω]‖ ≤ 1

ds
− 1

d2
s

≤ 1

ds
=: ς2.

Let t∗ := 8
3
(1 + c) log(2n1n2). If m < 8

3
(1 + c)ds log(2n1n2), then t∗ > mς2

K
. Since

{Zωl}ml=1 are i.i.d. copies of Zω, from Lemma 2.5, we know that

P

[∥∥∥∥∥
m∑
l=1

Zωl

∥∥∥∥∥ > t∗

]
≤ 2n1n2 exp

(
−3

8

t∗

K

)
≤ (2n1n2)−c.

Since ‖PΓ0∪Fc‖ = 1 < 8
3
(1 + c) log(2n1n2)ds

m
, the proof is completed by using the

triangular inequality.

When the fixed index set F = ∅, i.e., Ω is sampled from the whole index set,

it has been shown that the operator d
m
PTRΩPT is very close to its expectation

PT PFcPT with high probability for the Bernoulli sampling [25, Theorem 4.1] and

the uniform sampling with replacement [104, Theorem 6], if the number of samples

is sufficiently large. The next proposition generalizes these results to the case that

F 6= ∅. One may refer to [33, Lemma 2] for an analog in the Bernoulli model.

Proposition 4.6. Under Assumption 4.2, for any c > 0, if the number of samples

satisfies m ≥ 8
3
(1+c) max{µ0r

(n1+n2)
n1n2

ds, 1} log(2n1n2), then with probability at least

1− (2n1n2)−c, it holds that

∥∥∥∥dsmPTRΩPT − PT PFcPT
∥∥∥∥ ≤

√
8

3
(1 + c) max

{
µ0r

(n1 + n2)

n1n2

ds, 1

}
log(2n1n2)

m
.

Furthermore, if Assumption 4.3 also holds, with the same probability, we have∥∥∥∥PT(PΓ0 +
ds
m
RΩ

)
PT − PT

∥∥∥∥
≤

√
8

3
(1 + c) max

{
µ0r

(n1 + n2)

n1n2

ds, 1

}
log(2n1n2)

m
+

√
µ0rk

n1

+

√
µ0rk

n2

.
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Proof. Let ω be a uniform random variable over F c. Define the random operator

Zω : Vn1×n2 → Vn1×n2 associated with ω by

Zω(Z) := 〈PT (Θω), Z〉PT (Θω)− 1

ds
PT PFcPT (Z), Z ∈ Vn1×n2 .

Note that Zω is self-adjoint, that is, Z∗ω = Zω. According to (4.3) and (4.4), we

have the following decomposition

PTRΩPT −
m

ds
PT PFcPT =

m∑
l=1

(
〈PT (Θωl), ·〉PT (Θωl)−

1

ds
PT PFcPT

)
=

m∑
l=l

Zωl .

From (4.5) and the linearity of PT , we derive that

E[Zω] =
∑
j∈Fc

1

ds
〈PT (Θj), ·〉PT (Θj)−

1

ds
PT PFcPT

=
1

ds
PT
(∑
j∈Fc
〈Θj,PT (·)〉Θj

)
− 1

ds
PT PFcPT = 0.

Since 〈PT (Θω), ·〉PT (Θω) and PT PFcPT are both self-adjoint positive semidefinite

linear operators, we know from Lemma 2.1 and (4.9) that

‖Zω‖ ≤ max

{
‖〈PT (Θω), ·〉PT (Θω)‖, 1

ds
‖PT PFcPT ‖

}
= max

{
‖PT (Θω)‖2

F ,
1

ds

}
≤ max

{
µ0r

(n1 + n2)

n1n2

,
1

ds

}
=: K.

Moreover, by using Lemma 2.1 and (4.9) again, we obtain that∥∥E[Z2
ω

]∥∥ =
∥∥∥E[(〈PT (Θω), ·〉PT (Θω)

)2
]
− 1

d2
s

PT PFcPT PFcPT
∥∥∥

=
∥∥∥‖PT (Θω)‖2

F

1

ds
PT PFcPT −

1

d2
s

PT PFcPT PFcPT
∥∥∥

≤ max

{
‖PT (Θω)‖2

F

1

ds
‖PT PFcPT ‖,

1

d2
s

‖PT PFcPT PFcPT ‖
}

≤ 1

ds
max

{
µ0r

(n1 + n2)

n1n2

,
1

ds

}
=: ς2.

Choose t∗ :=
√

8
3
(1 + c) log(2n1n2) max{µ0r

(n1+n2)
n1n2

, 1
ds
}m
ds

. Then we have t∗ ≤ mς2

K

if m ≥ 8
3
(1 + c) log(2n1n2) max{µ0r

(n1+n2)
n1n2

ds, 1}. Since {Zωl}ml=1 are i.i.d. copies of
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Zω, by applying Lemma 2.5, we get that

P

[∥∥∥∥∥
m∑
l=1

Zωl

∥∥∥∥∥ > t∗

]
≤ 2n1n2 exp

(
−3

8

t∗2

mς2

)
≤ (2n1n2)−c,

which completes the first part of the proof.

Furthermore, recall that Γ ⊆ F , Γ0 = F \Γ and Γc = Γ0 ∪F c. Thus, we have

PT = PT PΓPT +PT PΓ0PT +PT PFcPT . Then the second part of the proof follows

by applying the triangular inequality and Lemma 4.1.

The following proposition is an extension of [104, Lemma 8] and [21, Lemma

3.1] to include the case that F 6= ∅. A similar result for the Bernoulli model was

provided in [33, Lemma 13].

Proposition 4.7. Let Z ∈ T be a fixed n1×n2 matrix. Under Assumption 4.2, for

any c > 0, if the number of samples satisfies m ≥ 32
3

(1 + c)µ0r
(n1+n2)
n1n2

ds log(n1n2),

it holds that∥∥∥∥dsmPTRΩ(Z)− PT PFc(Z)

∥∥∥∥
∞
≤

√
16(1 + c)µ0r(n1 + n2)ds log(n1n2)

3n1n2m
‖PFc(Z)‖∞

with probability at least 1 − 2(n1n2)−c. Moreover, if Assumption 4.3 also holds,

with the same probability, we have∥∥∥∥PT(PΓ0 +
ds
m
RΩ

)
(Z)− Z

∥∥∥∥
∞

≤

(√
16(1 + c)µ0r(n1 + n2)ds log(n1n2)

3n1n2m
+

√
µ0rk

n1

+

√
µ0rk

n2

+
µ0rk√
n1n2

)
‖Z‖∞.

Proof. Let j ∈ {1, . . . , d} be a fixed index. For any uniform random variable ω

over F c, let zω be a random variable associated with ω defined by

zω :=

〈
Θj,

ds
m
〈Θω, Z〉PT (Θω)− 1

m
PT PFc(Z)

〉
.

By using (4.4) and the linearity of PT , we have the following decomposition〈
Θj,

ds
m
PTRΩ(Z)− PT PFc(Z)

〉
=

m∑
l=1

zωl .
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From (4.5), we know that E[zω] = 0. Note that

|zω| ≤
ds
m

∣∣〈Θω, Z〉〈Θj,PT (Θω)〉
∣∣+

1

m

∣∣〈Θj,PT PFc(Z)〉
∣∣

=
ds
m

∣∣〈Θω, Z〉〈PT (Θj),PT (Θω)〉
∣∣+

1

m

∣∣∣∣ ∑
j′∈Fc
〈Θj′ , Z〉〈PT (Θj),PT (Θj′)〉

∣∣∣∣
≤ ds
m

max
j′∈Fc

∣∣〈Θj′ , Z〉
∣∣(‖PT (Θj)‖F‖PT (Θω)‖F + ‖PT (Θj)‖F max

j′∈Fc
‖PT (Θj′)‖F

)
≤ 2µ0r

(n1 + n2)

n1n2

ds
m

max
j′∈Fc

∣∣〈Θj′ , Z〉
∣∣ ≤ 2

√
2µ0r

(n1 + n2)

n1n2

ds
m
‖PFc(Z)‖∞ =: K,

where the first equality follows from (4.5) and the linearity of PT , the second

inequality is a consequence of the Cauchy-Schwarz inequality and the triangular

inequality, the third inequality is due to (4.9), and the last inequality is from (4.1)

and (4.2). In addition, a simple calculation gives that

E
[
z2
ω

]
=

d2
s

m2
E
[
〈Θω, Z〉2〈Θj,PT (Θω)〉2

]
− 1

m2
〈Θj,PT PFc(Z)〉2

≤ ds
m2

∑
j′∈Fc
〈Θj′ , Z〉2〈Θj,PT (Θj′)〉2 =

ds
m2

∑
j′∈Fc
〈Θj′ , Z〉2〈PT (Θj),Θj′〉2

≤ ds
m2

max
j′∈Fc
〈Θj′ , Z〉2

∑
j′∈Fc
〈PT (Θj),Θj′〉2 =

ds
m2

max
j′∈Fc
〈Θj′ , Z〉2‖PFcPT (Θj)‖2

F

≤ µ0r
(n1 + n2)

n1n2

ds
m2

max
j′∈Fc
〈Θj′ , Z〉2 ≤ 2µ0r

(n1 + n2)

n1n2

ds
m2
‖PFc(Z)‖2

∞ =: ς2,

where the third equality is owing to (4.5), the third inequality follows from (4.9),

and the last inequality is a consequence of (4.1) and (4.2). With the choice of

t∗ :=
√

16
3

(1 + c) log(n1n2)µ0r
(n1+n2)
n1n2

ds
m
‖PFc(Z)‖∞, we have t∗ ≤ mς2

K
if m ≥ 32

3
(1+

c) log(n1n2)µ0r
(n1+n2)
n1n2

ds. Since {zωl}ml=1 are i.i.d. copies of zω, by applying Lemma

2.3, we obtain that

P

[∣∣∣∣∣
m∑
l=1

zωl

∣∣∣∣∣ > t∗

]
≤ 2 exp

(
−3

8

t∗2

mς2

)
≤ 2(n1n2)−(1+c).

The first part of the proof follows by taking the union bound of d (≤ n1n2) terms.

Moreover, since Z ∈ T and PT = PT PΓ + PT PΓ0 + PT PFc , the second part

of the proof is completed by using the triangular inequality and Lemma 4.2.
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The next proposition is a generalization of [25, Theorem 6.3] and [104, The-

orem 7] to involve the case that F 6= ∅. One may refer to [33, Lemma 12] for an

analogous result based on the Bernoulli model.

Proposition 4.8. Let Z ∈ Vn1×n2 be a fixed matrix. For any c > 0, it holds that∥∥∥∥(dsmRΩ−PFc
)

(Z)

∥∥∥∥ ≤
√

8(1 + c) max{ds(n1 + n2), n1n2} log(n1 + n2)

3m
‖PFc(Z)‖∞

with probability at least 1−(n1 +n2)−c provided that the number of samples satisfies

m ≥ 8
3
(1 + c)

(ds+
√
n1n2)2

max{ds(n1+n2), n1n2} log(n1 + n2). In addition, if Assumption 4.3 also

holds, with the same probability, we have∥∥∥∥(PΓ0 +
ds
m
RΩ − I

)
(Z)

∥∥∥∥
≤
(√

8(1 + c) max{ds(n1 + n2), n1n2} log(n1 + n2)

3m
+ k

)
‖Z‖∞,

where I : Vn1×n2 → Vn1×n2 is the identity operator.

Proof. Let ω be a uniform random variable over F c and Zω ∈ Vn1×n2 be a random

matrix associated with ω defined by

Zω :=
ds
m
〈Θω, Z〉Θω −

1

m
PFc(Z).

By using (4.4), we get that(
ds
m
RΩ − PFc

)
(Z) =

m∑
l=1

(
ds
m
〈Θωl , Z〉Θωl −

1

m
PFc(Z)

)
=

m∑
l=1

Zωl .

From (4.5), we know that E[Zω] = 0. According to Lemma 2.2, we can check that

‖Zω‖ ≤
(
ds
m

+

√
n1n2

m

)
‖PFc(Z)‖∞.

Moreover, from (4.1) and (4.2), we derive that

∥∥E[〈Θω, Z〉2ΘT
ωΘω

]∥∥ ≤


1

ds
max{n1, n2}‖PFc(Z)‖2

∞, if Vn1×n2 = IRn1×n2 ,

1

ds
(n1 + n2)‖PFc(Z)‖2

∞, if Vn1×n2 = Sn,
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which, together with Lemma 2.1 and Lemma 2.2, gives that

∥∥E[ZT
ωZω

]∥∥ =
1

m2

∥∥E[d2
s〈Θω, Z〉2ΘT

ωΘω

]
− PFc(Z)TPFc(Z)

∥∥
≤ 1

m2
max

{∥∥E[d2
s〈Θω, Z〉2ΘT

ωΘω

]∥∥, ∥∥PFc(Z)
∥∥2
}

≤ 1

m2
max

{
ds(n1 + n2), n1n2

}
‖PFc(Z)‖2

∞.

A similar calculation also holds for ‖E[ZωZ
T
ω ]‖. Thus, we have

K :=
ds +

√
n1n2

m
‖PFc(Z)‖∞ and ς2 :=

max{ds(n1 + n2), n1n2}
m2

‖PFc(Z)‖2
∞.

By taking t∗ :=
√

8
3
(1 + c) log(n1 + n2)max{ds(n1+n2), n1n2}

m
‖PFc(Z)‖∞, we have t∗ ≤

mς2

K
if m ≥ 8

3
(1 + c) log(n1 + n2)

(ds+
√
n1n2)2

max{ds(n1+n2), n1n2} . Since {Zωl}ml=1 are i.i.d. copies

of Zω, from Lemma 2.5, we know that

P

[∥∥∥∥∥
m∑
l=1

Zωl

∥∥∥∥∥ > t∗

]
≤ (n1 + n2) exp

(
−3

8

t∗2

mς2

)
≤ (n1 + n2)−c.

This completes the first part of the proof.

In addition, note that I = PΓ +PΓ0 +PFc . By applying Lemma 2.2, we obtain

that‖PΓ(Z)‖ ≤ k‖PΓ(Z)‖∞. Then the second part of the proof follows from the

triangular inequality.

4.3.2 Proof of the recovery theorems

In the literature on the problem of low-rank matrix recovery (see, e.g., [25, 28,

104, 68, 21, 89, 33, 124]), one popular strategy for establishing exact recovery

results is first to provide dual certificates that certify the unique optimality of some

related convex optimization problems, and then to show the existence of such dual

certificates probabilistically by certain interesting but technical constructions. The

proof of the recovery theorems in this chapter is along this line.
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Sufficient optimality conditions

The first step of the proof is to characterize deterministic sufficient conditions,

which are also verifiable with high probability in the assumed model, such that the

convex optimization problems (4.6) and (4.7) have unique optimal solution. Here

the convex nature of these two optimization problems plays a critical role.

Proposition 4.9. Suppose that the tradeoff parameter satisfies 0 < ρ < 1 and

the sample size satisfies m ≤ ds. Suppose also that ‖PΓ0 + ds
m
RΩ‖ ≤ γ1 for some

γ1 > 1 and that ‖PT (PΓ0 + ds
m
RΩ)PT − PT ‖ ≤ 1− γ2 for some 0 < γ2 < 1. Then

under Assumption 4.1, (L, S) is the unique optimal solution to problem (4.6) if

there exist dual certificates A and B ∈ Vn1×n2 such that

(a) A ∈ Range(PΓ0) with ‖A‖∞ ≤
3

4
ρ, and B ∈ Range(RΩ),

(b)
∥∥U1V

T
1 − PT

(
ρ sign(S) + A+B

)∥∥
F
≤ ρ

4

√
γ2

γ1

,

(c)
∥∥PT ⊥(ρ sign(S) + A+B

)∥∥ ≤ 3

4
.

Proof. Note that the constraints of problem (4.6) are all linear. Then any feasible

solution is of the form (L+ ∆L, S + ∆S) with

PF(∆L + ∆S) = 0, PFc(∆S) = 0 and RΩ(∆L) = 0. (4.13)

We will show that the objective function of problem (4.6) at any feasible solution

(L + ∆L, S + ∆S) increases whenever (∆L,∆S) 6= 0, hence proving that (L, S) is

the unique optimal solution. Choose WL ∈ T ⊥ and WS ∈ Γc = Γ0 ∪ F c such that ‖WL‖ = 1, 〈WL,∆L〉 = ‖PT ⊥(∆L)‖∗,

‖WS‖∞ = 1, 〈WS,∆S〉 = ‖PΓc(∆S)‖1.
(4.14)

The existence of such WL and WS is guaranteed by the duality between ‖ · ‖∗ and

‖ · ‖, and that between ‖ · ‖1 and ‖ · ‖∞. Moreover, it holds that

U1V
T

1 +WL ∈ ∂‖L‖∗ and sign(S) +WS ∈ ∂‖S‖1. (4.15)
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Let QL := ρ sign(S) + A + B and QS := ρ sign(S) + A + C for any fixed C ∈

Range(PFc) with ‖C‖∞ ≤ 3
4
ρ. Since ρ sign(S) +A ∈ F = Γ ∪ Γ0, B ∈ Range(RΩ)

and C ∈ Range(PFc), we know from (4.13) that

〈QL,∆L〉+ 〈QS,∆S〉 = 〈ρ sign(S) +A,∆L + ∆S〉+ 〈B,∆L〉+ 〈C,∆S〉 = 0. (4.16)

In addition, observe that A ∈ Γ0 with ‖A‖∞ ≤ 3
4
ρ, C ∈ F c, Γc = Γ0 ∪ F c

and Γ0 ∩ F c = ∅. Consequently, we have PΓc(QS) = A + C and ‖A + C‖∞ ≤

max{‖A‖∞, ‖C‖∞} ≤ 3
4
ρ. Then a direct calculation yields that

‖L+ ∆L‖∗ + ρ‖S + ∆S‖1 − ‖L‖∗ − ρ‖S‖1

≥〈U1V
T

1 +WL,∆L〉+ ρ〈sign(S) +WS,∆S〉

= 〈U1V
T

1 +WL −QL,∆L〉+ 〈ρ sign(S) + ρWS −QS,∆S〉

= 〈U1V
T

1 − PT (QL),PT (∆L)〉+ 〈WL − PT ⊥(QL),PT ⊥(∆L)〉

+ 〈ρ sign(S)− PΓ(QS),PΓ(∆S)〉+ 〈ρWS − PΓc(QS),PΓc(∆S)〉

≥ −
∥∥U1V

T
1 − PT (QL)

∥∥
F
‖PT (∆L)‖F +

(
1− ‖PT ⊥(QL)‖

)
‖PT ⊥(∆L)‖∗

−
∥∥ρ sign(S)− PΓ(QS)

∥∥
F
‖PΓ(∆S)‖F +

(
ρ− ‖PΓc(QS)‖∞

)
‖PΓc(∆S)‖1

≥ − ρ

4

√
γ2

γ1

‖PT (∆L)‖F +
1

4
‖PT ⊥(∆L)‖∗ +

ρ

4
‖PΓc(∆S)‖1, (4.17)

where the first inequality is due to (4.15), the first equality follows from (4.16), the

second inequality uses the Hölder’s inequality and (4.14), and the last inequality is

a consequence of the conditions (b) and (c) and the fact that PΓ(QS) = ρ sign(S)

and PΓc(QS) = A+ C with ‖A+ C‖∞ ≤ 3
4
ρ.

Next, we need to show that ‖PT (∆L)‖F cannot be too large. Recall that Ω is a

multiset sampled from F c. Since PFc(∆S) = 0 according to (4.13), it follows from

(4.4) that RΩ(∆S) = 0. This, together with (4.13) and the fact that Γ0 ⊆ F , gives

that (PΓ0 + ds
m
RΩ)(∆L+∆S) = 0. Since Γc = Γ0∪F c and PFc(∆S) = RΩ(∆S) = 0,
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we have PΓc(∆S) = PΓ0(∆S) = (PΓ0 + ds
m
RΩ)(∆S) and

‖PΓc(∆S)‖1 ≥ ‖PΓc(∆S)‖F =

∥∥∥∥(PΓ0 +
ds
m
RΩ

)
(∆S)

∥∥∥∥
F

=

∥∥∥∥(PΓ0 +
ds
m
RΩ

)
(∆L)

∥∥∥∥
F

≥
∥∥∥∥(PΓ0 +

ds
m
RΩ

)
PT (∆L)

∥∥∥∥
F

−
∥∥∥∥(PΓ0 +

ds
m
RΩ

)
PT ⊥(∆L)

∥∥∥∥
F

. (4.18)

On the one hand, from the assumption on ‖PΓ0 + ds
m
RΩ‖, we get that∥∥∥∥(PΓ0 +

ds
m
RΩ

)
PT ⊥(∆L)

∥∥∥∥
F

≤ γ1‖PT ⊥(∆L)‖F . (4.19)

On the other hand, we notice that∥∥∥∥(PΓ0 +
ds
m
RΩ

)
PT (∆L)

∥∥∥∥2

F

=

〈
PT (∆L),

(
PΓ0 +

d2
s

m2
R2

Ω

)
PT (∆L)

〉
≥
〈
PT (∆L),

(
PΓ0 +

ds
m
RΩ

)
PT (∆L)

〉
=

〈
PT (∆L),PT (∆L) +

[
PT
(
PΓ0 +

ds
m
RΩ

)
PT − PT

]
PT (∆L)

〉
≥‖PT (∆L)‖2

F − (1− γ2)‖PT (∆L)‖2
F = γ2‖PT (∆L)‖2

F , (4.20)

where the first equality follows from the observation that Range(PΓ0)∩Range(RΩ) =

∅, the first inequality is due to the fact that ‖RΩ‖ ≥ 1 and ds/m ≥ 1, and the

last inequality is a consequence of the assumption on ‖PT (PΓ0 + ds
m
RΩ)PT −PT ‖.

Then combining (4.18), (4.19) and (4.20) yields that

‖PΓc(∆S)‖1 ≥
√
γ2‖PT (∆L)‖F − γ1‖PT ⊥(∆L)‖F . (4.21)

Finally, from (4.17) and (4.21), we obtain that

‖L+ ∆L‖∗ + ρ‖S + ∆S‖1 − ‖L‖∗ − ρ‖S‖1

≥ − ρ

4
‖PT ⊥(∆L)‖F −

ρ

4γ1

‖PΓc(∆S)‖1 +
1

4
‖PT ⊥(∆L)‖∗ +

ρ

4
‖PΓc(∆S)‖1

≥
(

1

4
− ρ

4

)
‖PT ⊥(∆L)‖∗ +

ρ

4

(
1− 1

γ1

)
‖PΓc(∆S)‖1,
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which is strictly positive unless PT ⊥(∆L) = 0 and PΓc(∆S) = 0, provided that

ρ < 1 and γ1 > 1. Now assume that PT ⊥(∆L) = PΓc(∆S) = 0, or equivalently

that ∆L ∈ T and ∆S ∈ Γ. Since Γ0 = Γc ∩F and PF(∆L + ∆S) = 0, it holds that

PΓ0(∆L) = PΓ0(∆S) = 0 and thus
(
PΓ0 + ds

m
RΩ

)
(∆L) = 0. From the assumption

on ‖PT (PΓ0 + ds
m
RΩ)PT −PT ‖, we know that the operator PT

(
PΓ0 + ds

m
RΩ

)
PT is

invertible on T . Therefore, it follows from ∆L ∈ T that ∆L = 0. This, together

with (4.13), implies that ∆S = 0. In conclusion, ‖L + ∆L‖∗ + ρ‖S + ∆S‖1 >

‖L‖∗ + ρ‖S‖1 unless ∆L = ∆S = 0. This completes the proof.

It is worth mentioning that Proposition 4.9 could be regarded as a variation

of the first-order sufficient optimality conditions for problem (4.6), which, based

on the subdifferential of the nuclear norm at L and the subdifferential of the `1-

norm at S, require that the restriction of the operator PT
(
PΓ0 + ds

m
RΩ

)
PT to T is

invertible and that there exist dual matrices A, B and C ∈ Vn1×n2 obeying

A ∈ Range(PΓ0), B ∈ Range(RΩ), C ∈ Range(PFc),

PT
(
ρ sign(S) + A+B

)
= U1U

T
1 ,∥∥PT ⊥(ρ sign(S) + A+B

)∥∥ < 1,

‖A‖∞ < ρ, ‖C‖∞ < ρ.

or equivalently that there exist dual matrices A and B ∈ Vn1×n2 satisfying
A ∈ Range(PΓ0) with ‖A‖∞ < ρ, B ∈ Range(RΩ),

PT
(
ρ sign(S) + A+B

)
= U1U

T
1 ,∥∥PT ⊥(ρ sign(S) + A+B

)∥∥ < 1.

Correspondingly, the next proposition provides an analogous variation of the

first-order sufficient optimality conditions for problem (4.7).

Proposition 4.10. Suppose that the assumptions in Proposition 4.9 hold. Then

under Assumption 4.1, (L, S) is the unique optimal solution to problem (4.7) if

there exist dual certificates A and B ∈ Sn such that
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(a) A ∈ Range(PΓ0) with ‖A‖∞ ≤
3

4
ρ, and B ∈ Range(RΩ),

(b)
∥∥U1U

T
1 − PT

(
ρ sign(S) + A+B

)∥∥
F
≤ ρ

4

√
γ2

γ1

,

(c)
∥∥PT ⊥(ρ sign(S) + A+B

)∥∥ ≤ 3

4
.

Proof. For any feasible solution (L, S) to problem (4.7), let (∆L,∆S) := (L −

L, S − S). Notice that (4.13) holds for such (∆L,∆S). Since L ∈ Sn+, the reduced

SVD (4.8) can be rewritten as L = U1ΣUT
1 with U = V , where U = [U1, U2] and

V = [V1, V2] are orthogonal matrices. Then L ∈ Sn+ implies that UT
2 LU2 = UT

2 LU2+

UT
2 ∆LU2 = UT

2 ∆LU2 ∈ Sn−r+ . By taking WL = U2U
T
2 and WS = sign(PΓc(∆S)), we

can easily check that (4.14) holds. Thus, the proof can be obtained in a similar

way to that of Proposition 4.9. We omit it here.

From the similarity between Proposition 4.9 and Proposition 4.10, we can see

that as long as the proof of Theorem 4.3 or Theorem 4.4 is established, then the

other proof will follow in the same way. Therefore, for the sake of simplicity, we

will only focus on the proof of Theorem 4.3 by constructing the dual certificates

for problem (4.6) based on Proposition 4.9 in the following discussion. Below we

state a useful remark for Proposition 4.9.

Remark 4.1. According to Proposition 4.5 and Proposition 4.6, for any c > 0,

if m ≥ 128
3
√

2
(1 + c) max{µ0r

(n1+n2)
n1n2

ds, 1} log(2n1n2) and
√

µ0rk
n1

+
√

µ0rk
n2
≤ 1

16
, then

with probability at least 1− 2(2n1n2)−c, we have∥∥∥∥PΓ0 +
ds
m
RΩ

∥∥∥∥ ≤ √
2n1n2ds

8 max{r(n1 + n2)ds, n1n2}
(4.22)

and ∥∥∥∥PT(PΓ0 +
ds
m
RΩ

)
PT − PT

∥∥∥∥ ≤
√√

2

4
+

1

16
<

1

2
.

Therefore, the condition (b) of Proposition 4.9 can be replaced by∥∥U1V
T

1 − PT
(
ρ sign(S) + A+B

)∥∥
F
≤ ρ

max{r(n1 + n2)ds, n1n2}
n1n2ds

. (4.23)
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Construction of the dual certificates

The second step of the proof of Theorem 4.3 is to demonstrate the existence of

the dual certificates A and B for problem (4.6) that satisfy the conditions listed

in Proposition 4.9. To achieve this goal, we apply the so-called golfing scheme,

an elegant and powerful technique first designed in [69] and later used in [104,

68, 21, 89, 33], to construct such dual certificates. Mathematically, the golfing

scheme could be viewed as a “correct and sample” recursive procedure such that

the desired error decreases exponentially fast (cf. [68, 33]).

Next, we introduce the golfing scheme in details. Let the sampled multiset

Ω be decomposed into p partitions of size q, where the multiset corresponding to

the j-th partition is denoted by Ωj. Then the sample size m = pq. Notice that in

the model of sampling with replacement, these partitions are independent of each

other. Set the matrix Y0 := 0 and define the matrix Yj recursively as follows

Yj := Yj−1 +

(
PΓ0 +

ds
q
RΩj

)[
U1V

T
1 − ρPT

(
sign(S)

)
− PT (Yj−1)

]
,

where j = 1, . . . , p. Let the error in the j-th step be defined by

Ej := U1V
T

1 − ρPT
(
sign(S)

)
− PT (Yj), for j = 0, . . . , p.

Then Ej, for j = 1, . . . , p, takes the recursive form of

Ej =

[
PT − PT

(
PΓ0 +

ds
q
RΩj

)
PT
][
U1V

T
1 − ρPT

(
sign(S)

)
− PT (Yj−1)

]
=

[
PT − PT

(
PΓ0 +

ds
q
RΩj

)
PT
]
(Ej−1), (4.24)

and Yp can be represented as

Yp =

p∑
j=1

(
PΓ0 +

ds
q
RΩj

)
(Ej−1) = Ap +Bp, (4.25)

where Ap and Bp are the dual certificates constructed by

Ap :=

p∑
j=1

PΓ0(Ej−1) and Bp :=
ds
q

p∑
j=1

RΩj(Ej−1). (4.26)
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It can be immediately seen that Ap ∈ Range(PΓ0) and Bp ∈ Range(RΩ).

Verification of the dual certificates

As a consequence of Remark 4.1, it suffices to verify that for problem (4.6), the

dual certificates Ap and Bp constructed in (4.26) satisfy the inequality (4.23) as

well as the conditions (a) and (c) of Proposition 4.9.

First of all, we recall the assumptions below. Suppose that Assumption 4.2

and Assumption 4.3 hold with√
µ0rk

n1

+

√
µ0rk

n2

+
µ0rk√
n1n2

≤ 1

16
. (4.27)

Since 1 ≤ µ1 ≤ µ0

√
r, the assumption (4.27) implies that

k ≤ 1

16

√
n1n2

µ2
1r
. (4.28)

Moreover, the tradeoff parameter is chosen as follows

48

13

√
µ2

1r

n1n2

≤ ρ ≤ 4

√
µ2

1r

n1n2

. (4.29)

Then, we state the following probabilistic inequalities related to the random

sampling operator. Note that these inequalities have already been prepared in the

previous subsection. Let c > 0 be an arbitrarily given absolute constant. If the

size of each partition satisfies

q ≥ q1 :=
128

3
√

2
(1 + c) max

{
µ0r

(n1 + n2)

n1n2

ds, 1

}
log(2n1n2),

with probability at least 1− (2n1n2)−c, it follows from Proposition 4.6 and (4.27)

that ∥∥∥∥PT(PΓ0 +
ds
q
RΩj

)
PT − PT

∥∥∥∥ ≤
√√

2

4
+

1

16
<

1

2
, (4.30)

for all j = 1, . . . , p. In addition, it can be seen from (4.24) that Ej−1 ∈ T and Ej−1

is independent of Ωj, for all j = 1, . . . , p. Then we know that Proposition 4.7 and
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Proposition 4.8 are both applicable to Ej−1 and Ωj. On the one hand, according

to Proposition 4.7 and (4.27), when the size of each partition satisfies

q ≥ q2 :=
256

3
√

2
(1 + c)µ0r

(n1 + n2)

n1n2

ds log(n1n2),

with probability at least 1− 2(n1n2)−c, it holds that∥∥∥∥PT(PΓ0 +
ds
q
RΩj

)
(Ej−1)− Ej−1

∥∥∥∥
∞
≤
(√√

2

4
+

1

16

)
‖Ej−1‖∞

<
1

2
‖Ej−1‖∞. (4.31)

On the other hand, provided that the size of each partition satisfies

q ≥ q′3 :=
512

3
(1 + c)µ2

1r
(
√
n1n2 + ds)

2 max{(n1 + n2)ds, n1n2}
max{√n1n2ds, n1n2}2

log(n1 + n2)

≥ 8

3
(1 + c)

(
√
n1n2 + ds)

2

max{(n1 + n2)ds, n1n2}
log(n1 + n2),

by applying Proposition 4.8, we obtain that with probability at least 1−(n1+n2)−c,∥∥∥∥(PΓ0 +
ds
q
RΩj − I

)
(Ej−1)

∥∥∥∥ ≤ ( 1

8
√
µ2

1r

max{√n1n2ds, n1n2}√
n1n2 + ds

+ k

)
‖Ej−1‖∞

≤
(

1

8

√
n1n2

µ2
1r

+ k

)
‖Ej−1‖∞. (4.32)

Since
√
n1n2 + ds ≤ 2 max{√n1n2, ds}, we further have

q3 :=
2048

3
(1 + c)µ2

1rmax

{
(n1 + n2)

n1n2

ds, 1

}
log(n1 + n2) ≥ q′3.

Before proceeding to the verification, we introduce the following notation.

That is, for any j′ = 1, . . . , p, denote

j′∏
j=1

[
PT − PT

(
PΓ0 +

ds
q
RΩj

)
PT
]

:=

[
PT − PT

(
PΓ0 +

ds
q
RΩj′

)
PT
]
. . .

[
PT − PT

(
PΓ0 +

ds
q
RΩ1

)
PT
]
,
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where the order of the above multiplications is important because of the non-

commutativity of these operators.

For the inequality (4.23): Observe that E0 = U1V
T

1 − ρPT (sign(S)). Since

rank(L) = r, we have ‖U1V
T

1 ‖F =
√
r. Moreover, it follows from the non-

expansivity of the metric projection PT and Assumption 4.3 that ‖PT (sign(S))‖F ≤

‖sign(S)‖F ≤ k. Hence, we know that

∥∥E0

∥∥
F
≤
∥∥U1V

T
1

∥∥
F

+ ρ
∥∥PT (sign(S)

)∥∥
F
≤
√
r + ρk. (4.33)

Due to the golfing scheme, we have the following exponential convergence

∥∥U1V
T

1 − PT
(
ρ sign(S) + Ap +Bp

)∥∥
F

=
∥∥Ep∥∥F =

∥∥∥∥∥
{

p∏
j=1

[
PT − PT

(
PΓ0 +

ds
q
RΩj

)
PT
]}

(E0)

∥∥∥∥∥
F

≤

[
p∏
j=1

∥∥∥∥PT − PT(PΓ0 +
ds
q
RΩj

)
PT
∥∥∥∥
]∥∥E0

∥∥
F
≤ 2−p(

√
r + ρk) < 2−p(

√
r + 1),

where the first equality is from the definition of Ep, the second equality is from

(4.24), the second inequality is from (4.30) and (4.33), and the last inequality is

from (4.28) and (4.29). By taking

p :=
3

2
log(2n1n2) > log2(2n1n2),

and using (4.29) (together with the fact that µ1 ≥ 1) and the inequality of arith-

metic and geometric means, we have

2−p(
√
r + 1) <

2
√
r

2n1n2

< ρ
2r
√
n1n2

≤ ρ
max{r(n1 + n2)ds, n1n2}

n1n2ds
.

This verifies the inequality (4.23).

For the condition (a): Notice that ‖U1V
T

1 ‖∞ ≤
√

µ21r

n1n2
under Assumption

4.2 and that ‖PT (sign(S))‖∞ = ‖PT PΓ(sign(S))‖∞ ≤
√

µ0rk
n1

+
√

µ0rk
n2

+ µ0rk√
n1n2
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according to Lemma 4.2. Since E0 = U1V
T

1 − ρPT (sign(S)), we get that∥∥E0

∥∥
∞ ≤

∥∥U1V
T

1

∥∥
∞ + ρ

∥∥PT (sign(S)
)∥∥
∞

≤

√
µ2

1r

n1n2

+ ρ

(√
µ0rk

n1

+

√
µ0rk

n2

+
µ0rk√
n1n2

)
≤ 1

3
ρ, (4.34)

where the last inequality is from (4.27) and (4.29). According to the golfing scheme,

we derive that

‖Ap‖∞ ≤
p∑
j=1

∥∥PΓ0(Ej−1)
∥∥
∞ ≤

p∑
j=1

∥∥Ej−1

∥∥
∞

=

p∑
j=1

∥∥∥∥∥
{

j−1∏
i=1

[
PT − PT

(
PΓ0 +

ds
q
RΩi

)
PT
]}

(E0)

∥∥∥∥∥
∞

≤
p∑
j=1

2−(j−1)
∥∥E0

∥∥
∞ <

2

3
ρ <

3

4
ρ, (4.35)

where the first inequality is from (4.26), the first equality is from (4.24), the third

inequality is from (4.31) and the fact that Ej−1 ∈ T for all j = 1, . . . , p, and the

fourth inequality is from (4.34). This verifies the condition (a).

For the condition (c): Firstly, as a consequence of (2.6), Assumption 4.3,

Lemma 2.2, (4.28) and (4.29), it holds that∥∥PT ⊥(ρ sign(S)
)∥∥ ≤ ρ

∥∥sign(S)
∥∥ ≤ ρk

∥∥sign(S)
∥∥
∞ ≤

1

4
.

Secondly, by applying the golfing scheme, we obtain that∥∥PT ⊥(Ap +Bp

)∥∥ ≤ p∑
j=1

∥∥∥∥PT ⊥(PΓ0 +
ds
q
RΩj

)
(Ej−1)

∥∥∥∥
=

p∑
j=1

∥∥∥∥PT ⊥(PΓ0 +
ds
q
RΩj − I

)
(Ej−1)

∥∥∥∥
≤

p∑
j=1

∥∥∥∥(PΓ0 +
ds
q
RΩj − I

)
(Ej−1)

∥∥∥∥
≤

p∑
j=1

(
1

8

√
n1n2

µ2
1r

+ k

)
‖Ej−1‖∞ ≤

(
1

8

√
n1n2

µ2
1r

+ k

)
2

3
ρ ≤ 1

2
,
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where the first inequality is from (4.25) and the triangular inequality, the first

equality is from the fact that Ej−1 ∈ T for all j = 1, . . . , p, the second inequality is

from (2.6), the third inequality is from (4.32), the fourth inequality is from (4.35),

and the fifth inequality is from (4.28) and (4.29). Then we have

∥∥PT ⊥(ρ sign(S) + Ap +Bp

)∥∥ ≤ ∥∥PT ⊥(ρ sign(S)
)∥∥+

∥∥PT ⊥(Ap +Bp

)∥∥ ≤ 3

4
,

which verifies the condition (c).

In conclusion, for any absolute constant c > 0, if the total sample size m is

large enough such that

m ≥ 1024(1 + c) max{µ2
1, µ0}rmax

{
(n1 + n2)

n1n2

ds, 1

}
log2(2n1n2),

then it follows that m ≥ pmax{q1, q2, q3}, and thus all of the inequalities (4.22),

(4.30), (4.31) and (4.32) hold with probability at least

1− (2n1n2)−c − 3

2
log(2n1n2)

[
(2n1n2)−c + 2(n1n2)−c + (n1 + n2)−c

]
,

by the union bound. This completes the proof of Theorem 4.3. Due to the similarity

between Proposition 4.9 and Proposition 4.10, the proof of Theorem 4.4 can be

obtained in the same way.



Chapter 5
Noisy matrix decomposition from fixed

and sampled basis coefficients

In this chapter, we focus on the problem of noisy low-rank and sparse matrix de-

composition with fixed and sampled basis coefficients. We first introduce some

problem background mainly on the observation model, and then propose a two-

stage rank-sparsity-correction procedure via convex optimization, which is inspired

by the successful recent development on the adaptive nuclear semi-norm penaliza-

tion technique. By exploiting the notion of restricted strong convexity, a novel

non-asymptotic probabilistic error bound under the high-dimensional scaling is

established to examine the recovery performance of the proposed procedure.

5.1 Problem background and formulation

In this section, we present the model of the problem of noisy low-rank and sparse

matrix decomposition with fixed and sampled basis coefficients, and formulate this

problem into convex programs by applying the adaptive nuclear semi-norm penal-

ization technique developed in [98, 99] and the adaptive `1 semi-norm penalization

70
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technique used in (3.5).

Suppose that we want to estimate an unknown matrix X ∈ Vn1×n2 of low-

dimensional structure in the sense that it is equal to the sum of an unknown low-

rank matrix L ∈ Vn1×n2 and an unknown sparse matrix S ∈ Vn1×n2 . As motivated

by the high-dimensional correlation matrix estimation problem coming from a strict

or approximate factor model used in economic and financial studies (see, e.g.,

[3, 50, 8, 53, 6, 34, 54, 90, 7]), we further assume that some basis coefficients of the

unknown matrix X are fixed. Throughout this chapter, for the unknown matrix

X, we let F ⊆ {1, . . . , d} denote the fixed index set corresponding to the fixed

basis coefficients and F c = {1, . . . , d} \ F denote the unfixed index set associated

with the unfixed basis coefficients, respectively. We define ds := |F c|.

5.1.1 Observation model

When the fixed basis coefficients are too few to draw any meaningful statistical in-

ference, we need to observe some of the rest for accurately estimating the unknown

matrix X as well as the low-rank component L and the sparse component S.

We now describe the noisy observation model under a general weighted scheme

for non-uniform sampling with replacement that we consider in this chapter. Recall

that Θ = {Θ1, . . . ,Θd} represents the set of the standard orthonormal basis of the

finite dimensional real Euclidean space Vn1×n2 . In detail, Θ is given by (4.1) with

d = n1n2 when Vn1×n2 = IRn1×n2 , and Θ is given by (4.2) with d = n(n + 1)/2

when Vn1×n2 = Sn. Suppose that we are given a collection of m noisy observations

{(ωl, yl)}ml=1 of the basis coefficients of the unknown matrix X with respect to the

unfixed basis {Θj | j ∈ F c} of the following form

yl = 〈Θωl , X〉+ νξl, l = 1, . . . ,m, (5.1)
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where Ω := {ωl}ml=1 is the multiset of indices sampled with replacement1 from the

unfixed index set F c, {ξl}ml=1 are i.i.d. additive noises with E[ξl] = 0 and E[ξ2
l ] = 1,

and ν > 0 is the noise magnitude. For notational simplicity, we define the sampling

operator RΩ : Vn1×n2 → IRm associated with the multiset Ω by

RΩ(Z) := (〈Θω1 , Z〉, . . . , 〈Θωm , Z〉)
T , Z ∈ Vn1×n2 . (5.2)

Then the observation model (5.1) can be rewritten in the following vector form

y = RΩ(X) + νξ, (5.3)

where y = (y1, . . . , ym)T ∈ IRm is the observation vector and ξ = (ξ1, . . . , ξm)T ∈

IRm is the additive noise vector.

Suppose further that the elements of the index set Ω are i.i.d. copies of a

random variable ω with the probability distribution Π over F c being defined by

P[ω = j] := πj > 0 for all j ∈ F c. In particular, this general weighted sampling

scheme is called uniform if Π is a uniform distribution, i.e., πj = 1/ds for all j ∈ F c.

Let the linear operator QFc : Vn1×n2 → Vn1×n2 associated with the unfixed index

set F c and the sampling probability distribution Π be defined by

QFc(Z) :=
∑
j∈Fc

πj〈Θj, Z〉Θj, Z ∈ Vn1×n2 . (5.4)

Notice that QFc is self-adjoint and ‖QFc‖ = maxj∈Fc πj.

In addition, for any index subset J ⊆ {1, . . . , d}, we define two linear operators

RJ : Vn1×n2 → IR|J | and PJ : Vn1×n2 → Vn1×n2 by

RJ (Z) := (〈Θj, Z〉)Tj∈J , and PJ (Z) :=
∑
j∈J

〈Θj, Z〉Θj, Z ∈ Vn1×n2 .

1One may refer to Section 2.3 for more details on random sampling model.



5.1 Problem background and formulation 73

5.1.2 Convex optimization formulation

The proposed convex formulation for the problem of noisy low-rank and sparse

matrix decomposition with fixed and sampled basis coefficients is inspired by the

successful recent development on the adaptive nuclear semi-norm penalization tech-

nique for noisy low-rank matrix completion [98, 99].

Let (L̊, S̊) be a pair of initial estimators of the true low-rank and sparse com-

ponents (L, S). For instance, (L̊, S̊) can be obtained from the nuclear and `1 norms

penalized least squares (NLPLS) problem

min
L, S∈Vn1×n2

1

2m
‖y −RΩ(L+ S)‖2

2 + ρL0‖L‖∗ + ρS0‖S‖1

s.t. RF(L+ S) = RF(X), ‖L‖∞ ≤ bL, ‖S‖∞ ≤ bS,

(5.5)

where ρL0 ≥ 0 and ρS0 ≥ 0 are the penalization parameters that control the rank

of the low-rank component and the sparsity level of the sparse component, and

the upper bounds bL > 0 and bS > 0 are two priori estimates of the entry-wise

magnitude of the true low-rank and sparse components. We then aim to estimate

(L, S) by solving the following convex optimization problem

min
L, S∈Vn1×n2

1

2m
‖y −RΩ(L+ S)‖2

2 + ρL
(
‖L‖∗ − 〈F (L̊), L〉

)
+ ρS

(
‖S‖1 − 〈G(S̊), S〉

)
s.t. RF(L+ S) = RF(X), ‖L‖∞ ≤ bL, ‖S‖∞ ≤ bS, (5.6)

where ρL ≥ 0 and ρS ≥ 0 are the penalization parameters that play the same

roles as ρL0 and ρS0 , F : Vn1×n2 → Vn1×n2 is a spectral operator associated with

a symmetric function f : IRn → IRn, and G : Vn1×n2 → Vn1×n2 is an operator

generated from a symmetric function g : IRd → IRd. The detailed constructions

of the operators F and G as well as the related functions f and g are deferred

to Section 5.3. If, in addition, the true low-rank and sparse components (L, S)

are known to be symmetric and positive semidefinite (e.g., X is a covariance or

correlation matrix with factor structure), we consider to solve the following convex
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conic optimization problem

min
1

2m
‖y −RΩ(L+ S)‖2

2 + ρL〈In − F (L̊), L〉+ ρS
(
‖S‖1 − 〈G(S̊), S〉

)
s.t. RF(L+ S) = RF(X), ‖L‖∞ ≤ bL, ‖S‖∞ ≤ bS, L ∈ Sn+, S ∈ Sn+.

(5.7)

Intuitively, the bound constraints that control the “spikiness” of the low-rank

and sparse components serve as a noisy version of identifiability conditions2 in noisy

observation models, where approximate recovery is the best possible outcome that

can be expected. In fact, this type of spikiness control has recently been shown

to be critical in the analysis of the nuclear norm penalization approach for noisy

matrix completion [101, 79] and noisy matrix decomposition [1]. In some practical

applications, such entry-wise bounds are often available from the assumed structure

or prior estimation. For instance, when the true unknown matrix X is a correlation

matrix originating from a factor model, both of the prescribed bounds bL and bS

can be at most set to 1.

As coined by [98, 99], the spectral operator F is called the rank-correction

function and the linear term −〈F (L̊), L〉 is called the rank-correction term. Ac-

cordingly, we call the operator G the sparsity-correction function and the linear

term −〈G(S̊), S〉 the sparsity-correction term. Hence, problem (5.6) or (5.7) is

referred to as the rank-sparsity-correction step. Moreover, if F and G are chosen

such that ‖L‖∗−〈F (L̊), L〉
)

and ‖S‖1−〈G(S̊), S〉 are both semi-norms, we call the

solution (L̂, Ŝ) to problem (5.6) or (5.7) the adaptive nuclear and `1 semi-norms

penalized least squares (ANLPLS) estimator. Obviously, the ANLPLS estima-

tor (5.6) includes the NLPLS estimator (5.5) as a special case when F ≡ 0 and

G ≡ 0. With the NLPLS estimator being selected as the initial estimator (L̊, S̊),

it is plausible that the ANLPLS estimator obtained from this two-stage procedure

may produce a better recovery performance as long as the correction functions F

and G are constructed suitably. In the next section, we derive a recovery error

2A noiseless version of identifiability conditions is introduced in Section 4.2.
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bound for the ANLPLS estimator, which provides some important guidelines on

the construction of F and G so that the prospective recovery improvement may

become possible.

5.2 Recovery error bound

In this section, we examine the recovery performance of the proposed rank-sparsity-

correction step by establishing a non-asymptotic recovery error bound in Frobenius

norm for the ANLPLS estimator. The derivation follows the arguments in [101, 79,

98, 99] for noisy matrix completion, which are in line with the unified framework

depicted in [102] for high-dimensional analysis of M -estimators with decomposable

regularizers. For the sake of simplicity, we only focus on studying problem (5.6) in

the following discussion. All the analysis involved in this section is also applicable

to problem (5.7) because the additional positive semidefinite constraints would

only lead to better recoverability.

Now we suppose that the true low-rank component L is of rank r and admits

a reduced SVD

L = U1ΣV
T

1 ,

where U1 ∈ On1×r, V 1 ∈ On2×r, and Σ ∈ IRr×r is the diagonal matrix with the

non-zero singular values of L being arranged in the non-increasing order. Choose

U2 and V 2 such that U =
[
U1, U2

]
and V =

[
V 1, V 2

]
are both orthogonal matrices.

Notice that U = V when L ∈ Sn+. Then the tangent space T (to the set {L ∈

Vn1×n2 | rank(L) ≤ r} at L) and its orthogonal complement T ⊥ are defined in the

same way as (2.2) and (2.3). Moreover, the orthogonal projection PT onto T and

the orthogonal projection PT ⊥ onto T ⊥ are given by (2.4) and (2.5).

Suppose also that S has k nonzero entries, i.e., ‖S‖0 = k. Let Γ be the tangent

space to the set {S ∈ Vn1×n2 | ‖S‖0 ≤ k} at S. Then Γ = {S ∈ Vn1×n2 | suppS ⊆
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suppS}, where suppS := {j | 〈Θj, S〉 6= 0, j = 1, . . . , d} for all S ∈ Vn1×n2 . (cf.

[32, Section 3.2] and [31, Section 2.3]). Denote the orthogonal complement of Γ by

Γ⊥. Note that the orthogonal projection onto Γ is given by PΓ = PsuppS
and the

orthogonal projection PΓ⊥ onto Γ⊥ is given by PΓ⊥ = PsuppS
c .

We first introduce the parameters aL and aS, respectively, by

aL :=
1√
r

∥∥U1V
T

1 − F (L̊)
∥∥
F

and aS :=
1√
k

∥∥sign(S)−G(S̊)
∥∥
F
. (5.8)

Note that aL = 1 and aS = 1 for the NLPLS estimator where F ≡ 0 and G ≡ 0.

As can be seen later, these two parameters are very important in the subsequent

analysis since they embody the effect of the correction terms on the resultant

recovery error bound.

Being an optimal solution to problem (5.6), the ANLPLS estimator (L̂, Ŝ)

satisfies the following preliminary error estimation.

Proposition 5.1. Let (L̂, Ŝ) be an optimal solution to problem (5.6). Denote

∆̂L := L̂−L, ∆̂S := Ŝ −S and ∆̂ := ∆̂L + ∆̂S. For any given κL > 1 and κS > 1,

if ρL and ρS satisfy

ρL ≥ κLν

∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥ and ρS ≥ κSν

∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥
∞
, (5.9)

then we have

1

2m

∥∥RΩ(∆̂)
∥∥2

2
≤ ρL

√
r
(
aL +

√
2

κL

)∥∥∆̂L

∥∥
F

+ ρS
√
k
(
aS +

1

κS

)∥∥∆̂S

∥∥
F
.

Proof. Since (L̂, Ŝ) is optimal and (L, S) is feasible to problem (5.6), it follows

from (5.3) that

1

2m

∥∥RΩ(∆̂)
∥∥2

2
≤
〈 ν
m
R∗Ω(ξ), ∆̂

〉
− ρL

(∥∥L̂∥∥∗ − ∥∥L∥∥∗ − 〈F (L̊), ∆̂L

〉)
− ρS

(∥∥Ŝ∥∥
1
−
∥∥S∥∥

1
−
〈
G(S̊), ∆̂S

〉)
.

(5.10)
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According to the Hölder’s inequality and (5.9), we obtain that〈 ν
m
R∗Ω(ξ), ∆̂

〉
≤ ν

∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥∥∆̂L

∥∥
∗ + ν

∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥
∞

∥∥∆̂S

∥∥
1

≤ ρL
κL

(∥∥PT (∆̂L)
∥∥
∗ +

∥∥PT ⊥(∆̂L)
∥∥
∗

)
+
ρS
κS

(∥∥PΓ(∆̂S)
∥∥

1
+
∥∥PΓ⊥(∆̂S)

∥∥
1

)
. (5.11)

From the directional derivative of the nuclear norm at L (see, e.g., [122]) and the

directional derivative of the `1-norm at S, we know that
∥∥L̂∥∥∗ − ∥∥L∥∥∗ ≥ 〈P 1P

T

1 , ∆̂L

〉
+
∥∥PT ⊥(∆̂L)

∥∥
∗,∥∥Ŝ∥∥

1
−
∥∥S∥∥

1
≥
〈
sign(S), ∆̂S

〉
+
∥∥PΓ⊥(∆̂S)

∥∥
1
.

This, together with the definitions of aL and aS in (5.8), implies that∥∥L̂∥∥∗ − ∥∥L∥∥∗ − 〈F (L̊), ∆̂L

〉
≥
〈
P 1P

T

1 , ∆̂L

〉
+
∥∥PT ⊥(∆̂L)

∥∥
∗ −

〈
F (L̊), ∆̂L

〉
≥ −

∥∥P 1P
T

1 − F (L̊)
∥∥
F

∥∥∆̂L

∥∥
F

+
∥∥PT ⊥(∆̂L)

∥∥
∗

= −aL
√
r
∥∥∆̂L

∥∥
F

+
∥∥PT ⊥(∆̂L)

∥∥
∗, (5.12)

and∥∥Ŝ∥∥
1
−
∥∥S∥∥

1
−
〈
G(S̊), ∆̂S

〉
≥
〈
sign(S), ∆̂S

〉
+
∥∥PΓ⊥(∆̂S)

∥∥
1
−
〈
G(S̊), ∆̂S

〉
≥ −

∥∥sign(S)−G(S̊)
∥∥
F

∥∥∆̂S

∥∥
F

+
∥∥PΓ⊥(∆̂S)

∥∥
1

= −aS
√
k
∥∥∆̂S

∥∥
F

+
∥∥PΓ⊥(∆̂S)

∥∥
1
. (5.13)

By substituting (5.11), (5.12) and (5.13) into (5.10), we get that

1

2m

∥∥RΩ(∆̂)
∥∥2

2
≤ ρL

[
aL
√
r
∥∥∆̂L

∥∥
F

+
1

κL

∥∥PT (∆̂L)
∥∥
∗ −

(
1− 1

κL

)∥∥PT ⊥(∆̂L)
∥∥
∗

]
+ ρS

[
aS
√
k
∥∥∆̂S

∥∥
F

+
1

κS

∥∥PΓ(∆̂S)
∥∥

1
−
(

1− 1

κS

)∥∥PΓ⊥(∆̂S)
∥∥

1

]
. (5.14)

Since rank(PT (∆̂L)) ≤ 2r and ‖PΓ(∆̂S)‖0 ≤ k, we have that∥∥PT (∆̂L)
∥∥
∗ ≤
√

2r
∥∥∆̂L

∥∥
F

and
∥∥PΓ(∆̂S)

∥∥
1
≤
√
k
∥∥∆̂S

∥∥
F
. (5.15)

By combining (5.14) and (5.15) together with the assumptions that κL > 1 and

κS > 1, we complete the proof.
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As pointed out in [111], the nuclear norm penalization approach for noisy ma-

trix completion can be significantly inefficient under a general non-uniform sam-

pling scheme, especially when certain rows or columns are sampled with very high

probability. This unsatisfactory recovery performance may still exist for the pro-

posed rank-sparsity-correction step. To avoid such a situation, we need to impose

additional assumptions on the sampling distribution for the observations from F c.

The first one is to control the smallest sampling probability.

Assumption 5.1. There exists an absolute constant µ1 ≥ 1 such that

πj ≥
1

µ1ds
, ∀ j ∈ F c.

Notice that µ1 ≥ 1 is due to
∑

j∈Fc πj = 1 and ds = |F c|. In particular, µ1 = 1

for the uniform sampling. Moreover, the magnitude of µ1 does not depend on ds

or the matrix dimension. From (5.4) and Assumption 5.1, we derive that

〈QFc(∆),∆〉 ≥ (µ1ds)
−1‖∆‖2

F , ∀∆ ∈ {∆ ∈ Vn1×n2 |RF(∆) = 0}. (5.16)

For the purpose of deriving a recovery error bound from Proposition 5.1, it is

necessary to build a bridge that connects the term 1
m
‖RΩ(∆̂)‖2

2 and its expectation

〈QFc(∆̂), ∆̂〉. The most essential ingredient for building such a bridge is the no-

tion of restricted strong convexity (RSC) proposed in [102], which stems from the

restricted eigenvalue (RE) condition formulated in [13] in the context of sparse lin-

ear regression. Fundamentally, the RSC condition says that the sampling operator

RΩ is almost strongly convex when restricted to a certain subset. So far, several

different forms of RSC have been proven to hold for the noisy matrix completion

problem in [101, Theorem 1], [79, Lemma 12] and [98, Lemma 3.2]. However,

whether or not an appropriate form of RSC holds for the problem of noisy matrix

decomposition with fixed and sampled basic coefficients remains an open question.

We give an affirmative answer to this question in the next theorem, whose proof

follows the lines of the proofs of [79, Lemma 12] and [98, Lemma 3.2].
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Let ε := {ε1, . . . , εm} be a Rademacher sequence, that is, an i.i.d. sequence

of Bernoulli random variables taking the values 1 and −1 with probability 1/2.

Define

ϑL := E
∥∥∥∥ 1

m
R∗Ω(ε)

∥∥∥∥ and ϑS := E
∥∥∥∥ 1

m
R∗Ω(ε)

∥∥∥∥
∞
. (5.17)

Theorem 5.2. Suppose that Assumption 5.1 holds. Given any positive numbers

p1, p2, q1, q2 and t, define

K(p, q, t) :=

∆ = ∆L + ∆S

∣∣∣∣∣∣∣∣∣∣
‖∆L‖∗ ≤ p1‖∆L‖F + p2‖∆S‖F , ∆L ∈ Vn1×n2 ,

‖∆S‖1 ≤ q1‖∆L‖F + q2‖∆S‖F , ∆S ∈ Vn1×n2 ,

RF(∆) = 0, ‖∆‖∞ = 1, ‖∆L‖2
F + ‖∆S‖2

F ≥ tµ1ds

 ,

where p := (p1, p2) and q := (q1, q2). Denote ϑm :=
(
ϑ2
Lp

2
1 + ϑ2

Lp
2
2 + ϑ2

Sq
2
1 + ϑ2

Sq
2
2

) 1
2 ,

where ϑL and ϑS are defined in (5.17). Then for any θ, τ1 and τ2 satisfying

θ > 1, 0 < τ1 < 1 and 0 < τ2 <
τ1

θ
, (5.18)

it holds that for all ∆ ∈ K(p, q, t),

1

m
‖RΩ(∆)‖2

2 ≥ 〈QFc(∆),∆〉 − τ1

µ1ds

(
‖∆L‖2

F + ‖∆S‖2
F

)
− 32

τ2

µ1dsϑ
2
m (5.19)

with probability at least 1 − exp[−(τ1−θτ2)2mt2/32]
1−exp[−(θ2−1)(τ1−θτ2)2mt2/32]

. In particular, given any

constant c > 0, the inequality (5.19) holds with probability at least 1− (n1+n2)−c

1−2−(θ2−1)c
if

taking t =
√

32c log(n1+n2)
(τ1−θτ2)2m

.

Proof. Let p1, p2, q1, q2 and t be any given positive numbers. For any θ, τ1 and τ2

satisfying (5.18), we will show that the event

E :=

∃ ∆ ∈ K(p, q, t) such that

∣∣∣ 1

m
‖RΩ(∆)‖2

2 − 〈QFc(∆),∆〉
∣∣∣

≥ τ1

µ1ds

(
‖∆L‖2

F + ‖∆S‖2
F

)
+

32

τ2

µ1dsϑ
2
m


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happens with probability less than exp[−(τ1−θτ2)2mt2/32]
1−exp[−(θ2−1)(τ1−θτ2)2mt2/32]

. We first decompose

the set K(p, q, t) into

K(p, q, t) =
∞⋃
j=1

{
∆ ∈ K(p, q, t)

∣∣∣∣ θj−1t ≤ 1

µ1ds

(
‖∆L‖2

F + ‖∆S‖2
F

)
≤ θjt

}
.

For any s ≥ t, we further define

K(p, q, t, s) :=

{
∆ ∈ K(p, q, t)

∣∣∣∣ 1

µ1ds

(
‖∆L‖2

F + ‖∆S‖2
F

)
≤ s

}
.

Then it is not difficult to see that E ⊆
⋃∞
j=1 Ej with

Ej :=


∃ ∆ ∈ K(p, q, t, θjt) such that∣∣∣∣ 1

m
‖RΩ(∆)‖2

2 − 〈QFc(∆),∆〉
∣∣∣∣ ≥ τ1θ

j−1t+
32

τ2

µ1dsϑ
2
m


Thus, it suffices to estimate the probability of each simpler event Ej and then

apply the union bound. Let

Zs := sup
∆∈K(p,q,t,s)

∣∣∣∣ 1

m
‖RΩ(∆)‖2

2 − 〈QFc(∆),∆〉
∣∣∣∣ .

For any ∆ ∈ Vn1×n2 , the strong laws of large numbers and (5.4) yield that

1

m
‖RΩ(∆)‖2

2 =
1

m

m∑
l=1

〈Θωl ,∆〉2
a.s.−→ E

[
〈Θωl ,∆〉2

]
= 〈QFc(∆),∆〉

as m → ∞. Since ‖∆‖∞ = 1 for all ∆ ∈ K(p, q, t), it follows from (5.4) that for

all 1 ≤ l ≤ m and ∆ ∈ K(p, q, t),

∣∣〈Θωl ,∆〉2 − E
[
〈Θωl ,∆〉2

]∣∣ ≤ max
{
〈Θωl ,∆〉2, E

[
〈Θωl ,∆〉2

]}
≤ 2.

Then according to Massart’s Hoeffding-type concentration inequality [17, Theorem

14.2] (see also [92, Theorem 9]), we know that

P
[
Zs ≥ E[Zs] + ε

]
≤ exp

(
−mε

2

32

)
, ∀ ε > 0. (5.20)
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Next, we estimate an upper bound of E[Zs] by using the standard Rademacher sym-

metrization in the theory of empirical processes. Let {ε1, . . . , εm} be a Rademacher

sequence. Then we have

E[Zs] = E

[
sup

∆∈K(p,q,t,s)

∣∣∣∣ 1

m

m∑
l=1

〈Θωl ,∆〉2 − E
[
〈Θωl ,∆〉2

]∣∣∣∣
]

≤ 2E

[
sup

∆∈K(p,q,t,s)

∣∣∣∣ 1

m

m∑
l=1

εl〈Θωl ,∆〉2
∣∣∣∣
]

≤ 8E

[
sup

∆∈K(p,q,t,s)

∣∣∣∣ 1

m

m∑
l=1

εl〈Θωl ,∆〉
∣∣∣∣
]

= 8E

[
sup

∆∈K(p,q,t,s)

∣∣∣∣〈 1

m
R∗Ω(ε),∆

〉∣∣∣∣
]

≤ 8E

[
sup

∆∈K(p,q,t,s)

(∥∥∥∥ 1

m
R∗Ω(ε)

∥∥∥∥‖∆L‖∗ +

∥∥∥∥ 1

m
R∗Ω(ε)

∥∥∥∥
∞
‖∆S‖1

)]

≤ 8E

[
sup

∆∈K(p,q,t,s)

∥∥∥∥ 1

m
R∗Ω(ε)

∥∥∥∥‖∆L‖∗ + sup
∆∈K(p,q,t,s)

∥∥∥∥ 1

m
R∗Ω(ε)

∥∥∥∥
∞
‖∆S‖1

]

≤ 8E
∥∥∥∥ 1

m
R∗Ω(ε)

∥∥∥∥
(

sup
∆∈K(p,q,t,s)

‖∆L‖∗

)
+ 8E

∥∥∥∥ 1

m
R∗Ω(ε)

∥∥∥∥
∞

(
sup

∆∈K(p,q,t,s)

‖∆S‖1

)
,

(5.21)

where the first inequality is due to the symmetrization theorem (see, e.g., [118,

Lemma 2.3.1] and [17, Theorem 14.3]) and the second inequality follows from the

contraction theorem (see, e.g., [87, Theorem 4.12] and [17, Theorem 14.4]). Notice

that for any u ≥ 0, v ≥ 0 and ∆ ∈ K(p, q, t, s),

u‖∆L‖F + v‖∆S‖F ≤
1

2

8µ1ds
τ2

(
u2 + v2

)
+

1

2

τ2

8µ1ds

(
‖∆L‖2

F + ‖∆S‖2
F

)
≤ 4µ1ds

τ2

(
u2 + v2

)
+

1

16
τ2s,

where the first inequality is due to the inequality of arithmetic and geometric

means. From (5.21), (5.17), the definition of K(p, q, t) and the above inequality,
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we derive that

E[Zs] ≤ 8

[
sup

∆∈K(p,q,t,s)

ϑL
(
p1‖∆L‖F + p2‖∆S‖F

)
+ sup

∆∈K(p,q,t,s)

ϑS
(
q1‖∆L‖F + q2‖∆S‖F

)]
≤ 32

τ2

µ1ds
(
ϑ2
Lp

2
1 + ϑ2

Lp
2
2 + ϑ2

Sq
2
1 + ϑ2

Sq
2
2

)
+ τ2s =

32

τ2

µ1dsϑ
2
m + τ2s. (5.22)

Then it follows from (5.22) and (5.20) that

P
[
Zs ≥

τ1

θ
s+

32

τ2

µ1dsϑ
2
m

]
≤ P

[
Zs ≥ E[Zs]+

(τ1

θ
−τ2

)
s

]
≤ exp

[
−
(τ1

θ
− τ2

)2ms2

32

]
.

This, together with the choice of s = θjt, implies that

P[Ej] ≤ exp

[
− 1

32
θ2(j−1)(τ1 − θτ2)2mt2

]
.

Since θ > 1, by using the simple fact that θj ≥ 1 + j(θ − 1) for any j ≥ 1, we

obtain that

P[E] ≤
∞∑
j=1

P[Ej] ≤
∞∑
j=1

exp

[
− 1

32
θ2(j−1)(τ1 − θτ2)2mt2

]

≤ exp

[
− 1

32
(τ1 − θτ2)2mt2

] ∞∑
j=1

exp

[
− 1

32

(
θ2(j−1) − 1

)
(τ1 − θτ2)2mt2

]

≤ exp

[
− 1

32
(τ1 − θτ2)2mt2

] ∞∑
j=1

exp

[
− 1

32
(j − 1)

(
θ2 − 1

)
(τ1 − θτ2)2mt2

]
=

exp [−(τ1 − θτ2)2mt2/32]

1− exp [−(θ2 − 1)(τ1 − θτ2)2mt2/32]
.

In particular, for any given constant c > 0, taking t =
√

32c log(n1+n2)
(τ1−θτ2)2m

yields that

exp [−(τ1 − θτ2)2mt2/32]

1− exp [−(θ2 − 1)(τ1 − θτ2)2mt2/32]
=

(n1 + n2)−c

1− (n1 + n2)−(θ2−1)c
≤ (n1 + n2)−c

1− 2−(θ2−1)c
.

The proof is completed.

Thanks to Theorem 5.2, we are able to derive a further error estimation from

Proposition 5.1. Here we measure the recovery error using the joint squared Frobe-

nius norm with respective to the low-rank and sparse components. The derivation

is inspired by the proofs of [79, Theorem 3] and [98, Theorem 3.3].
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Proposition 5.3. Suppose that (L̂, Ŝ) is an optimal solution to problem (5.6). Let

∆̂L := L̂−L, ∆̂S := Ŝ−S and ∆̂ := ∆̂L + ∆̂S. Then under Assumption 5.1, there

exist some positive absolute constants c0, c1, c2 and C0 such that if ρL and ρS are

chosen according to (5.9) for any given κL > 1 and κS > 1, it holds that either∥∥∆̂L

∥∥2

F
+
∥∥∆̂S

∥∥2

F

ds
≤ C0µ1(bL + bS)2

√
log(n1 + n2)

m

or∥∥∆̂L

∥∥2

F
+
∥∥∆̂S

∥∥2

F

ds
≤ C0µ

2
1ds

{
c2

0

[
ρ2
Lr
(
aL +

√
2

κL

)2

+ ρ2
Sk
(
aS +

1

κS

)2
]

+ ϑ2
L(bL + bS)2

( κL
κL − 1

)2
[
r
(
aL +

√
2
)2

+ k
(ρS
ρL

)2(
aS +

1

κS

)2
]

+ max

{
ϑ2
S(bL + bS)2,

b2
L

µ2
1d

2
s

}( κS
κS − 1

)2
[
r
(ρL
ρS

)2(
aL +

√
2

κL

)2

+ k
(
aS + 1

)2

]}

with probability at least 1− c1(n1 + n2)−c2, where ϑL and ϑS are defined in (5.17).

Proof. With the choices of ρL and ρS in (5.9), we get from (5.14) that

max

{
ρL

(
1− 1

κL

)∥∥PT ⊥(∆̂L)
∥∥
∗ , ρS

(
1− 1

κS

)∥∥PΓ⊥(∆̂S)
∥∥

1

}
≤ ρL

(
aL
√
r
∥∥∆̂L

∥∥
F

+
1

κL

∥∥PT (∆̂L)
∥∥
∗

)
+ ρS

(
aS
√
k
∥∥∆̂S

∥∥
F

+
1

κS

∥∥PΓ(∆̂S)
∥∥

1

)
,

which, together with (5.15), implies that
∥∥∆̂L

∥∥
∗ ≤

κL
κL − 1

[√
r
(
aL +

√
2
)∥∥∆̂L

∥∥
F

+
√
k
ρS
ρL

(
aS +

1

κS

)∥∥∆̂S

∥∥
F

]
,

∥∥∆̂S

∥∥
1
≤ κS
κS − 1

[√
r
ρL
ρS

(
aL +

√
2

κL

)∥∥∆̂L

∥∥
F

+
√
k
(
aS + 1

)∥∥∆̂S

∥∥
F

]
.

(5.23)

Let b̂ := ‖∆̂‖∞. Then it follows from the bound constraints on the low-rank and

sparse components that

b̂ ≤ ‖∆̂L‖∞ + ‖∆̂S‖∞ ≤ 2(bL + bS).
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For any fixed constants c > 0 and θ, τ1, τ2 satisfying (5.18), it suffices to consider

the case that

‖∆̂L‖2
F + ‖∆̂S‖2

F ≥ b̂2µ1ds

√
32c log(n1 + n2)

(τ1 − θτ2)2m
.

In this case, we know from (5.23) that ∆̂/b̂ ∈ K(p, q, t), where t =
√

32c log(n1+n2)
(τ1−θτ2)2m

,

and p = (p1, p2) and q = (q1, q2) are respectively given by
p1 :=

√
r
(
aL +

√
2
) κL
κL − 1

, p2 :=
√
k
ρS
ρL

(
aS +

1

κS

) κL
κL − 1

,

q1 :=
√
r
ρL
ρS

(
aL +

√
2

κL

) κS
κS − 1

, q2 :=
√
k
(
aS + 1

) κS
κS − 1

.

(5.24)

Let ϑm :=
(
ϑ2
Lp

2
1+ϑ2

Lp
2
2+ϑ2

Sq
2
1 +ϑ2

Sq
2
2

) 1
2 , where ϑL and ϑS are defined in (5.17). Due

to (5.16) and Theorem 5.2, we obtain that with probability at least 1− (n1+n2)−c

1−2−(θ2−1)c
,

∥∥∆̂
∥∥2

F

ds
≤ µ1

m

∥∥RΩ(∆̂)
∥∥2

2
+
τ1

ds

(∥∥∆̂L

∥∥2

F
+
∥∥∆̂S

∥∥2

F

)
+

32

τ2

µ2
1dsϑ

2
mb̂

2. (5.25)

According to Proposition 5.1, we have that

µ1

m

∥∥RΩ(∆̂)
∥∥2

2
≤ 2µ1ρL

√
r
(
aL +

√
2

κL

)∥∥∆̂L

∥∥
F

+ 2µ1ρS
√
k
(
aS +

1

κS

)∥∥∆̂S

∥∥
F

≤ µ
2
1ds
τ3

[
ρ2
Lr
(
aL +

√
2

κL

)2

+ ρ2
Sk
(
aS +

1

κS

)2
]

+
τ3

ds

(∥∥∆̂L

∥∥2

F
+
∥∥∆̂S

∥∥2

F

)
. (5.26)

where the second inequality results from the inequality of arithmetic and geometric

means, and τ3 is an arbitrarily given constant that satisfies 0 < τ3 < (1− τ1)/2. In

addition, since ‖∆̂L

∥∥
∞ ≤ 2bL, we then derive from (5.23) that

∥∥∆̂
∥∥2

F
≥
∥∥∆̂L

∥∥2

F
+
∥∥∆̂S

∥∥2

F
− 2
∥∥∆̂L

∥∥
∞

∥∥∆̂S

∥∥
1

≥
∥∥∆̂L

∥∥2

F
+
∥∥∆̂S

∥∥2

F
− 4bL

(
q1

∥∥∆̂L

∥∥
F

+ q2

∥∥∆̂S

∥∥
F

)
≥
∥∥∆̂L

∥∥2

F
+
∥∥∆̂S

∥∥2

F
− 4

τ3

b2
L

(
q2

1 + q2
2

)
− τ3

(∥∥∆̂L

∥∥2

F
+
∥∥∆̂S

∥∥2

F

)
. (5.27)

where the third inequality is a consequence of the inequality of arithmetic and
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geometric means. Combining (5.25), (5.26) and (5.27) gives that∥∥∆̂L

∥∥2

F
+
∥∥∆̂S

∥∥2

F

ds
≤ µ2

1ds
1− (τ1 + 2τ3)

{
1

τ3

[
ρ2
Lr
(
aL +

√
2

κL

)2

+ ρ2
Sk
(
aS +

1

κS

)2
]

+
32

τ2

ϑ2
mb̂

2 +
4

τ3µ2
1d

2
s

b2
L

(
q2

1 + q2
2

)}
.

Recall that ϑ2
m = ϑ2

Lp
2
1 +ϑ2

Lp
2
2 +ϑ2

Sq
2
1 +ϑ2

Sq
2
2. By plugging this together with (5.24)

into the above inequality and choosing τ1, τ2, τ3 and θ to be absolute constants, we

complete the proof.

Next, we need the second assumption on the sampling distribution, which

controls the largest sampling probability for the observations from F c.

Assumption 5.2. There exists an absolute constant µ2 ≥ 1 such that

πj ≤
µ2

ds
, ∀ j ∈ F c.

Observe that µ2 ≥ 1 is a consequence of
∑

j∈Fc πj = 1 and ds = |F c|. In

particular, µ2 = 1 for the uniform sampling. Moreover, the magnitude of µ2 is

independent of ds or the matrix dimension. By using (5.4) and the orthogonality

of the basis Θ, we obtain that for any Z ∈ Vn1×n2 ,

‖QFc(Z)‖2
F =

∑
j∈Fc

π2
j 〈Θj, Z〉2‖Θj‖2

F

≤ max
j∈Fc

π2
j

∑
j∈Fc
〈Θj, Z〉2 = max

j∈Fc
π2
j‖PFc(Z)‖2

F ≤ max
j∈Fc

π2
j‖Z‖2

F ,

which, together with Assumption 5.2, gives that

‖QFc‖ ≤ max
j∈Fc

πj ≤
µ2

ds
. (5.28)

In order to obtain probabilistic upper bounds on ‖ 1
m
R∗Ω(ξ)‖ and ‖ 1

m
R∗Ω(ξ)‖∞

so that the penalization parameters ρL and ρS can be chosen explicitly according to
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(5.9), we assume that the noise vector ξ are of i.i.d. sub-exponential3 entries. This

will facilitate us to apply the Bernstein-type inequalities introduced in Section 2.2.

Assumption 5.3. The i.i.d. entries ξl of the noise vector ξ are sub-exponential,

i.e., there exists a constant M > 0 such that ‖ξl‖ψ1 ≤ M for all l = 1, . . . ,m,

where ‖ · ‖ψ1 is the Orlicz ψ1-norm defined by (2.1).

Let e denote the exponential constant. We first provide probabilistic upper

bounds on ‖ 1
m
R∗Ω(ξ)‖ and its expectation, which extend [79, Lemma 5 and Lemma

6] to allow the existence of fixed basis. Similar results can be found in [83, Lemma

2], [101, Lemma 6] and [98, Lemma 3.5].

Lemma 5.4. Under Assumption 5.2 and 5.3, there exists a positive constant C1

that depends only on the Orlicz ψ1-norm of ξl, such that for every t > 0,∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥ ≤ C1 max


√
µ2N [t+ log(n1 + n2)]

mds
,

log(n)[t+ log(n1 + n2)]

m


with probability at least 1−exp(−t), where N := max{n1, n2} and n := min{n1, n2}.

Moreover, when m ≥
(
ds log2(n) log(n1 + n2)

)
/(µ2N), we also have that

E
∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥ ≤ C1

√
2eµ2N log(n1 + n2)

mds
.

Proof. Recall that Ω = {ωl}ml=1 are i.i.d. copies of the random variable ω with

probability distribution Π over F c. For l = 1, . . . ,m, define the random matrix

Zωl associated with ωl by

Zωl := ξlΘωl .

Then Zω1 , . . . , Zωm are i.i.d. random matrices, and we have the following decom-

position
1

m
R∗Ω(ξ) =

1

m

m∑
l=1

ξlΘωl =
1

m

m∑
l=1

Zωl .

3See Definition 2.1 for the definition of a sub-exponential random variable.
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Notice that ξl and Θωl are independent. Since E[ξl] = 0, we get that E[Zωl ] =

E[ξl]E[Θωl ] = 0. Moreover, ‖Θωl‖F = 1 implies that

‖Zωl‖ ≤ ‖Zωl‖F = |ξl|‖Θωl‖F = |ξl|,

which, together with Assumption 5.3, yields that

∥∥‖Zωl‖∥∥ψ1
≤ ‖ξl‖ψ1 ≤M.

In addition, it follows from E[ξ2
l ] = 1 that

E
1
2

[
‖Zωl‖2

]
≤ E

1
2

[
ξ2
l

]
= 1.

Furthermore, using E[ξ2
l ] = 1 and the independence between ξl and Θωl gives that

∥∥E[ZωlZT
ωl

]∥∥ =
∥∥E[ξ2

l ΘωlΘ
T
ωl

]∥∥ =
∥∥E[ΘωlΘ

T
ωl

]∥∥ =

∥∥∥∥∑
j∈Fc

πjΘjΘ
T
j

∥∥∥∥
≤ max

j∈Fc
πj

∥∥∥∥∑
j∈Fc

ΘjΘ
T
j

∥∥∥∥ ≤ µ2 max{n1, n2}
ds

,

where the first inequality results from the positive semidefiniteness of ΘjΘ
T
j , and

the second inequality is a consequence of (4.1), (4.2) and Assumption 5.2. A similar

calculation also holds for ‖E[ZT
ωl
Zωl ]‖. Meanwhile, since Tr(

∑
j∈Fc πjΘjΘ

T
j ) =

Tr(
∑

j∈Fc πjΘ
T
j Θj) = 1 due to

∑
j∈Fc πj = 1 and ‖Θj‖F = 1, we have

max
{∥∥E[ZωlZT

ωl

]∥∥, ∥∥E[ZT
ωl
Zωl
]∥∥} = max

{∥∥∥∥∑
j∈Fc

πjΘjΘ
T
j

∥∥∥∥, ∥∥∥∥∑
j∈Fc

πjΘ
T
j Θj

∥∥∥∥
}

≥ 1

min{n1, n2}
.

Therefore, we know that
√

1/min{n1, n2} ≤ ς ≤
√
µ2 max{n1, n2}/ds and K1 =

max{M, 2}. By applying Lemma 2.6, we complete the first part of the proof.

The second part of the proof exploits the formula E[z] =
∫ +∞

0
P(z > x)dx for

any nonnegative continuous random variable z. From the first part of Lemma 5.4
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together with a suitable change of variables, we can easily derive that

P
[∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥ > τ

]
≤


(n1 + n2) exp

(
− mds
C2

1µ2N
τ 2

)
, if τ ≤ τ ∗,

(n1 + n2) exp

(
− m

C1 log(n)
τ

)
, if τ > τ ∗,

(5.29)

where τ ∗ := C1µ2N
ds log(n)

. By using the Hölder’s inequality, we get that

E
∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥ ≤
[
E
∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥2 log(n1+n2)
] 1

2 log(n1+n2)

. (5.30)

Denote φ1 := mds
C2

1µ2N
and φ2 := m

C1 log(n)
. Combining (5.29) and (5.30) yields that

E
∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥ ≤ {∫ +∞

0

P
[∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥> τ
1

2 log(n1+n2)

]
dτ

} 1
2 log(n1+n2)

≤
√
e

[∫ +∞

0

exp
(
−φ1τ

1
log(n1+n2)

)
dτ +

∫ +∞

0

exp
(
−φ2τ

1
2 log(n1+n2)

)
dτ

] 1
2 log(n1+n2)

=
√
e
[

log(n1 + n2)φ
− log(n1+n2)
1 Γ(log(n1 + n2))

+ 2 log(n1 + n2)φ
−2 log(n1+n2)
2 Γ(2 log(n1 + n2))

] 1
2 log(n1+n2) . (5.31)

Since the gamma function satisfies the inequality (see, e.g. [78, Proposition 12]):

Γ(x) ≤
(x

2

)x−1

, ∀ x ≥ 2,

we then obtain from (5.31) that

E
∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥ ≤ √e [ log(n1 + n2)log(n1+n2)φ
− log(n1+n2)
1 21−log(n1+n2)

+ 2 log(n1 + n2)2 log(n1+n2)φ
−2 log(n1+n2)
2

] 1
2 log(n1+n2) .

Observe that m ≥
(
ds log2(n) log(n1+n2)

)
/(µ2N) implies that φ1 log(n1+n2) ≤ φ2

2.

Thus, we have

E
∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥ ≤
√

2e log(n1 + n2)

φ1

= C1

√
2eµ2N log(n1 + n2)

mds
,

provided that log(n1 + n2) ≥ 1. This completes the second part of the proof.
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By choosing t = c2 log(n1 + n2) in the first part of Lemma 5.4 with the same

c2 in Proposition 5.3, we achieve the following order-optimal bound∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥ ≤ C1 max


√

(1 + c2)µ2N log(n1 + n2)

mds
,

(1 + c2) log(n) log(n1 + n2)

m


with probability at least 1− (n1 + n2)−c2 . When the sample size satisfies

m ≥ (1 + c2)ds log2(n) log(n1 + n2)

µ2N
,

the first term of the above maximum dominates the second term. Hence, for any

given κL > 1, we may choose

ρL = C1κLν

√
(1 + c2)µ2N log(n1 + n2)

mds
.

In addition, note that Bernoulli random variables are sub-exponential. Thus, the

second part of Lemma 5.4 also gives an upper bound of ϑL defined in (5.17).

We then turn to consider probabilistic upper bounds on ‖ 1
m
R∗Ω(ξ)‖∞ and its

expectation. As a preparation, the next lemma bounds the maximum number

of repetitions of any index in Ω, which is an extension of Proposition 4.5 to the

non-uniform sampling model under Assumption 5.2.

Lemma 5.5. Under Assumption 5.2, for all c > 0, if the sample size satisfies

m < 8
3
(1 + c)ds log(2n1n2)/µ2, we have

‖R∗ΩRΩ −mQFc‖ ≤
8

3
(1 + c) log(2n1n2)

with probability at least 1− (2n1n2)−c. Consequently,

‖R∗ΩRΩ‖ ≤ m‖QFc‖+
8

3
(1 + c) log(2n1n2) ≤ 16

3
(1 + c) log(2n1n2).

Proof. Let ω be a random variable with probability distribution Π over F c. Define

the random operator Zω : Vn1×n2 → Vn1×n2 associated ω by

Zω(Z) := 〈Θω, Z〉Θω −QFc(Z), Z ∈ Vn1×n2 .
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According to (5.2), we have the following decomposition

R∗ΩRΩ −mQFc =
m∑
l=l

(
〈Θωl , ·〉Θωl −QFc

)
=

m∑
l=l

Zωl .

By using (5.4), we can check that

E[Zω] = 0 and ‖Zω‖ ≤ 1 =: K.

Observe that Zω is self-adjoint, i.e., Z∗ω = Zω. Then a direct calculation shows

that for any Z ∈ Vn1×n2 ,

Z∗ωZω(Z) = ZωZ∗ω(Z) = (1− 2πω)〈Θω, Z〉Θω +
∑
j∈Fc

π2
j 〈Θj, Z〉Θj.

Therefore, we obtain that

E[Z∗ωZω] = E[ZωZ∗ω] =
∑
j∈Fc

πj(1− πj)〈Θj, ·〉Θj,

which, together with Assumption 5.2, yields that

‖E[Z∗ωZω]‖ = ‖E[ZωZ∗ω]‖ ≤ max
j∈Fc

πj(1− πj) ≤
µ2

ds
=: ς2.

Let t∗ := 8
3
(1+c) log(2n1n2). If m < 8

3
(1+c)ds log(2n1n2)/µ2, then t∗ > mς2

K
. From

Lemma 2.5, we know that

P

[∥∥∥∥∥
m∑
l=1

Zωl

∥∥∥∥∥ > t∗

]
≤ 2n1n2 exp

(
−3

8

t∗

K

)
≤ (2n1n2)−c.

Since m‖QFc‖ ≤ mµ2
ds
≤ 8

3
(1+c) log(2n1n2) from (5.28), the proof is completed.

By using Assumption 5.3 and Lemma 5.5, we derive probabilistic upper bounds

on ‖ 1
m
R∗Ω(ξ)‖∞ and its expectation in the following lemma.

Lemma 5.6. Under Assumption 5.3 and the assumptions in Lemma 5.5, there

exists a positive constant C2 that depends only on the Orlicz ψ1-norm of ξl, such

that for every t > 0 and every c > 0,∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥
∞
≤ C2 max

{√
(1 + c) log(2n1n2)[t+ log(n1n2)]

m2
,
t+ log(n1n2)

m

}
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with probability at least 1− 2 exp(−t)− (2n1n2)−c. Moreover, it also holds that

E
∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥
∞
≤ C2

log(3e) + log(2n1n2)

m
.

Proof. For any index (i, j) such that 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 and (Θl)ij 6= 0 for

some l ∈ F c, let wij := ((Θω1)ij, . . . , (Θωm)ij)
T ∈ IRm. From Lemma 2.4, we know

that there exists a constant C > 0 such that for any τ > 0,

P

[∣∣∣∣∣ 1

m

m∑
l=1

wijl ξl

∣∣∣∣∣ > τ

]
≤ 2 exp

[
−C min

(
m2τ 2

M2‖wij‖2
2

,
mτ

M‖wij‖∞

)]
.

Recall that Ω is the multiset of indices sampled with replacement from the unfixed

index set F c with ds = |F c|. By taking a union bound, we get that

P
[∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥
∞
> τ

]
≤ 2ds exp

[
−C min

(
m2τ 2

M2 max ‖wij‖2
2

,
mτ

M max ‖wij‖∞

)]
,

where both of the maximums are taken over all such indices (i, j). Denote the

maximum number of repetitions of any index in Ω by mmax. Evidently, mmax ≤

‖R∗ΩRΩ‖. According to Lemma 5.5, for every c > 0, it holds that

max ‖wij‖2
2 ≤ mmax ≤ ‖R∗ΩRΩ‖ ≤

16

3
(1 + c) log(2n1n2)

with probability at least 1−(2n1n2)−c. Also note that max ‖wij‖∞ ≤ 1. By letting

−t := −C min

(
3

16M2

m2τ 2

(1 + c) log(2n1n2)
,
mτ

M

)
+ log(n1n2)

≥ −C min

(
m2τ 2

M2 max ‖wij‖2
2

,
mτ

M max ‖wij‖∞

)
+ log(ds),

we obtain that with probability at least 1− 2 exp(−t)− (2n1n2)−c,∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥
∞
≤M max

{√
16(1 + c)

3C

log(2n1n2)[t+ log(n1n2)]

m2
,

1

C

t+ log(n1n2)

m

}
.

Then choosing a new constant C2 (only depending on the Orlicz ψ1-norm of ξl) in

the above inequality completes the first part of the proof.
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Next, we proceed to prove the second part. By taking c = t/ log(2n1n2) and

τ = C2[t+ log(2n1n2)]/m in the first part of Lemma 5.6, we get that

P
[∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥
∞
> τ

]
≤


1, if τ ≤ τ ∗,

3 exp

[
−m
C2

τ + log(2n1n2)

]
, if τ > τ ∗,

where τ ∗ := C2[log(3)+log(2n1n2)]/m. Recall that for any nonnegative continuous

random variable z, we have E[z] =
∫ +∞

0
P(z > x)dx. Then it follows that

E
∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥
∞
≤
∫ τ∗

0

dτ +

∫ +∞

τ∗
3 exp

[
−m
C2

τ + log(2n1n2)

]
dτ

=
C2[log(3) + log(2n1n2)]

m
+
C2

m
= C2

log(3e) + log(2n1n2)

m
,

which completes the second part of the proof.

To achieve an order-optimal upper bound for ‖ 1
m
R∗Ω(ξ)‖∞, we may take t =

c2 log(2n1n2) and c = c2 in the first part of Lemma 5.6, where c2 is the same as

that in Proposition 5.3. With this choice, it follows that∥∥∥∥ 1

m
R∗Ω(ξ)

∥∥∥∥
∞
≤ C2(1 + c2)

log(2n1n2)

m

with probability at least 1− 3(2n1n2)−c2 . Thus, for any given κS > 0, we may set

ρS = C2(1 + c2)κSν
log(2n1n2)

m
.

Furthermore, since Bernoulli random variables are sub-exponential, the second part

of Lemma 5.6 also gives an upper bound of ϑS defined in (5.17).

Now, we are ready to present a non-asymptotic recovery error bound, mea-

sured in the joint squared Frobenius norm, of the ANLPLS estimator for the prob-

lem of noisy low-rank and sparse matrix decomposition with fixed and sampled

basis coefficients under the high-dimensional scaling. Compared to the exact re-

covery guarantees, i.e., Theorem 4.3 and Theorem 4.4, in the noiseless setting, this
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error bound severs as an approximate recovery guarantee for the noisy case. Let aL

and aS be the parameters defined in (5.8). Below we first define three fundamental

terms that compose the recovery error bound

Υ1 := µ2

(√
2 + aLκL

)2 rN log(n1 + n2)

m
+
(
1 + aSκS

)2 kds log2(2n1n2)

m2
,

Υ2 := µ2

(√
2 + aL

)2 rN log(n1 + n2)

m
+

(
1 + aSκS

κL

)2
kds log2(2n1n2)

m2
,

Υ3 := µ2

(√
2 + aLκL
κS

)2
rN log(n1 + n2)

m
+ (1 + aS)2 kds log2(2n1n2)

m2
.

(5.32)

Theorem 5.7. Let (L̂, Ŝ) be an optimal solution to problem (5.6). Denote ∆̂L :=

L̂−L and ∆̂S := Ŝ−S. Define ds := |F c|, N := max{n1, n2} and n := min{n1, n2}.

Under Assumption 5.1, 5.2 and 5.3, there exist some positive absolute constants

c′0, c′1, c′2, c′3 and some positive constants C ′0, C ′L, C ′S (only depending on the Orlicz

ψ1-norm of ξl) such that when the sample size satisfies

m ≥ c′3
ds log2(n) log(n1 + n2)

µ2N
,

if for any given κL > 1 and κS > 1, the penalization parameters ρL and ρS are

chosen as

ρL = C ′LκLν

√
µ2N log(n1 + n2)

mds
and ρS = C ′SκSν

log(2n1n2)

m
,

then with probability at least 1− c′1(n1 + n2)−c
′
2, it holds that either∥∥∆̂L

∥∥2

F
+
∥∥∆̂S

∥∥2

F

ds
≤ C ′0µ1(bL + bS)2

√
log(n1 + n2)

m

or∥∥∆̂L

∥∥2

F
+
∥∥∆̂S

∥∥2

F

ds
≤ C ′0µ

2
1

{
c′

2
0ν

2 Υ1 + (bL + bS)2

[(
κL

κL − 1

)2

Υ2 +

(
κS

κS − 1

)2

Υ3

]}
,

where Υ1, Υ2 and Υ3 are defined in (5.32).
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Proof. From Lemma 5.6, we know that ϑS = O(log(2n1n2)/m), whose order dom-

inates the order of 1/ds in the high-dimensional setting. Then the proof can be

completed by applying Proposition 5.3, Lemma 5.4 and Lemma 5.6.

As can be seen from Theorem 5.7, if the parameters aL and aS defined in (5.8)

are both less than 1, we will have a reduced recovery error bound for the ANLPLS

estimator (5.6) compared to that for the NLPLS estimator (5.5).

5.3 Choices of the correction functions

In this section, we discuss the choices of the rank-correction function F and the

sparsity-correction function G in order to make the parameters aL and aS defined

in (5.8) both as small as possible.

The construction of the rank-correction function F is suggested by [98, 99].

First we define the scalar function φ : IR→ IR as

φ(t) := sign(t)(1 + ετ )
|t|τ

|t|τ + ετ
, t ∈ IR,

for some τ > 0 and ε > 0. Then we let F : Vn1×n2 → Vn1×n2 be a spectral

operator4 defined by

F (Z) := UDiag
(
f(σ(Z))

)
V T , ∀ Z ∈ Vn1×n2

associated with the symmetric function f : IRn → IRn given by

fj(z) :=

 φ

(
zj
‖z‖∞

)
, if z ∈ IRn \ {0},

0, if z = 0,

where Z admits a singular value decomposition of the form Z = UDiag
(
σ(Z)

)
V T ,

σ(Z) :=
(
σ1(Z), . . . , σn(Z)

)T
is the vector of singular values of Z arranged in the

4We refer the reader to [40, 41] for the extensive studies on spectral operators of matrices.
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non-increasing order, U ∈ On1 and V ∈ On2 are orthogonal matrices respectively

corresponding to the left and right singular vectors, Diag(z) ∈ Vn1×n2 represents

the diagonal matrix with the j-th main diagonal entry being zj for j = 1, . . . , n,

and n := min{n1, n2}. In particular, when the initial estimator is the NLPLS

estimator (5.5), we may adopt the recommendation of the choices ε ≈ 0.05 (within

0.01 ∼ 0.1) and τ = 2 (within 1 ∼ 3) from [99]. With this rank-correction function

F , the parameter aL was shown to be less than 1 under certain conditions in [99].

Enlightened by the above construction of the rank-correction function F , we

may construct the sparsity-correction function G as follows. First we define the

operator Rd : Vn1×n2 → IRd as

Rd(Z) := (〈Θ1, Z〉, . . . , 〈Θd, Z〉)T , Z ∈ Vn1×n2 .

Then we let G : Vn1×n2 → Vn1×n2 be the operator

G(Z) := R∗d
(
g
(
Rd(Z)

))
, Z ∈ Vn1×n2

generated from the symmetric function g : IRd → IRd given by

gj(z) :=

 φ

(
zj
‖z‖∞

)
, if z ∈ IRd \ {0},

0, if z = 0,

where R∗d : IRd → Vn1×n2 is the adjoint of Rd. However, so far we have not

established any theoretical guarantee such that the parameter aS < 1.



Chapter 6
Correlation matrix estimation in strict

factor models

In this chapter, we apply the correction procedure proposed in Chapter 5 to cor-

relation matrix estimation with missing observations in strict factor models where

the sparse component is diagonal. By virtue of this application, the specialized

recovery error bound and the convincing numerical results validate the superiority

of the two-stage correction approach over the nuclear norm penalization.

6.1 The strict factor model

We start with introducing the strict factor model in this section. Assume that an

observable random vector z ∈ IRn has the following linear structure

z = Bf + e, (6.1)

where B ∈ IRn×r is a deterministic matrix, f ∈ IRr and e ∈ IRn are unknown

random vectors uncorrelated with each other. In the terminology of factor analysis

(see, e.g., [86, 93]), the matrix B is called the loading matrix, and the components

96
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of the random vectors f and e are referred to as the common factors and the

idiosyncratic components, respectively. For the purpose of simplifying the model

(6.1), the number of the hidden common factors is usually assumed to be far less

than that of the observed variables, i.e., r � n. In a strict factor model, we

assume further that the components of e are uncorrelated. This, together with the

uncorrelation between f and e, implies that the covariance matrix of z satisfies

cov[z] = Bcov[f]BT + cov[e],

where Bcov[f]BT ∈ Sn+ is of rank r and cov[e] ∈ Sn+ is diagonal. Therefore, such a

“low-rank plus diagonal” structure should be taken into account when estimating

correlation matrices in strict factor models.

6.2 Recovery error bounds

Let X ∈ Sn+ be the correlation matrix of a certain observable random vector z ∈ IRn

obeying the strict factor model (6.1), with the low-rank component L ∈ Sn+ and

the diagonal component S ∈ Sn+.

Based on the observation model (5.1), we aim to estimate the unknown corre-

lation matrix X and its low-rank and diagonal components (L, S) via solving the

following convex conic optimization problem

min
1

2m
‖y −RΩ(L+ S)‖2

2 + ρL〈In − F (L̊), L〉

s.t. diag(L+ S) = 1, L ∈ Sn+, S ∈ Sn+ ∩ Dn,
(6.2)

where F : Sn → Sn is a given rank-correction function, L̊ ∈ Sn is an initial

estimator of the true low-rank component L, diag : Sn → IRn is the linear operator

taking the main diagonal of any given symmetric matrix, and Dn ⊂ Sn is set of

all diagonal matrices. Clearly, problem (6.2) can be considered as a specialized

version of problem (5.7) for strict factor models with the penalization parameter
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ρS being chosen as 0, because the true sparse component S is known to be diagonal.

In addition, as a result of the diagonal dominance of matrices in Sn+, the bound

constraints in problem (5.7) for establishing recovery error bounds are no longer

needed in problem (6.2).

Notice that the fixed index set F and the unfixed index set F c are now corre-

sponding to the diagonal and the off-diagonal basis coefficients, respectively. Thus,

ds := |F c| = n(n−1)/2. Since the multiset of indices Ω is sampled from the unfixed

index set F c, we can equivalently reformulate problem (6.2) as

min
1

2m
‖y −RΩ(L)‖2

2 + ρL〈In − F (L̊), L〉

s.t. diag(L) ≤ 1, L ∈ Sn+,
(6.3)

in the sense that L̂ solves problem (6.3) if and only if (L̂, Ŝ) solves problem (6.2)

with diag(Ŝ) = 1 − diag(L̂). As coined by [98, 99], any optimal solution L̂ to

problem (6.3) is called the adaptive nuclear semi-norm penalized least squares

(ANPLS) estimator. By following the unified framework discussed in [102], the

specialized recovery error bound for problem (6.3) can be derived in a similar

but simpler way to that in Theorem 5.7. It is worth mentioning that analogous

recovery results have also been established in [101, 79, 98, 99] in the context of

high-dimensional noisy matrix completion.

Theorem 6.1. Let L̂ be an optimal solution to problem (6.3). Denote ds := |F c| =

n(n− 1)/2. Under Assumption 5.1, 5.2 and 5.3, there exist some positive absolute

constants c′0, c′1, c′2, c′3 and some positive constants C ′0, C ′L (only depending on the

Orlicz ψ1-norm of ξl) such that when the sample size satisfies

m ≥ c′3
ds log2(n) log(2n)

µ2n
,

if for any given κL > 1, the penalization parameter ρL is chosen as

ρL = C ′LκLν

√
µ2n log(2n)

mds
,
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then with probability at least 1− c′1(2n)−c
′
2, it holds that∥∥L̂− L∥∥2

F

ds
≤ C ′0µ

2
1µ2

[
c′

2
0ν

2
(√

2 + aLκL
)2

+

(
κL

κL − 1

)2(√
2 + aL

)2]nr log(2n)

m
,

where aL is the rank-correction parameter defined in (5.8).

As pointed out in [99, Section 3], if aL � 1, the optimal choice of κL to

minimize the constant part of the recovery error bound for problem (6.3) satisfies

κL = O(1/
√
aL). Suppose that L̊ is chosen to be the nuclear norm penalized

least squares (NPLS) estimator on the first stage, where F ≡ 0. According to

the relevant analysis given in [99, Section 3], with this optimal choice of κL, the

resultant recovery error bound for the ANPLS estimator on the second stage can

be reduced by around half. This reveals the superiority of the ANPLS estimator

over the NPLS estimator. Furthermore, when κL = 1/
√
aL and aL → 0, it follows

from Theorem 6.1 that the recovery error bound for problem (6.3) becomes∥∥L̂− L∥∥2

F

ds
≤ 2C ′0µ

2
1µ2

(
c′

2
0ν

2 + 1
)nr log(2n)

m
. (6.4)

On the other hand, if the rank of the true low-rank component L is known

or well-estimated, we may incorporate this useful information and consider the

rank-constrained problem

min
1

2
‖y −RΩ(L)‖2

2

s.t. diag(L) ≤ 1, rank(L) ≤ r, L ∈ Sn+.
(6.5)

By means of the unified framework studied in [102], the following recovery result

for problem (6.5) can be shown in a similar but simpler way to Theorem 5.7.

Theorem 6.2. Under Assumption 5.1, 5.2 and 5.3, any optimal solution to the

rank-constrained problem (6.5) satisfies the recovery error bound (6.4) with the

same constants and probability.
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This interesting connection demonstrates the power of the rank-correction

term – the ANPLS estimator is able to meet the best possible recovery error bound

as if the true rank were known in advance, provided that the rank-correction func-

tion F and the initial estimator L̊ are chosen suitably so that F (L̊) is close to

U1V
T

1 and thus aL � 1. In view of this finding, the recovery error bound (6.4) can

be regarded as the optimal recovery error bound for problem (6.3).

Next, we consider the specialized recovery error bound for problem (6.2), which

is an immediate consequence of Theorem 6.1.

Corollary 6.3. Let (L̂, Ŝ) be an optimal solution to problem (6.2). With the same

assumptions, constants and probability in Theorem 6.1, it holds that

∥∥L̂− L∥∥2

F
+ ‖Ŝ − S‖2

F

ds

≤C ′0µ2
1µ2

[
c′

2
0ν

2
(√

2 + aLκL
)2

+

(
κL

κL − 1

)2(√
2 + aL

)2]nr log(2n)

m
+

4n

ds
.

Proof. From the diagonal dominance of matrices in Sn+, we know that ‖Ŝ−S‖F ≤

‖Ŝ‖F + ‖S‖F ≤ 2
√
n. Due to the equivalence between problem (6.2) and problem

(6.3), the proof follows from Theorem 6.1.

6.3 Numerical algorithms

Before proceeding to the testing problems, we first describe the numerical algo-

rithms that we use to solve problem (6.3) and problem (6.5). Specifically, we apply

the proximal alternating direction method of multipliers to problem (6.3) where

the true rank is unknown, and the spectral projected gradient method to problem

(6.5) where the true rank is known.
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6.3.1 Proximal alternating direction method of multipliers

To facilitate the following discussion, we consider a more general formulation of

problem (6.3) given by

min
1

2
‖A(Y )− b‖2

2 + 〈C, Y 〉

s.t. B(Y )− d ∈ Q, Y ∈ Sn+,
(6.6)

where A : Sn → IRm and B : Sn → IRl are linear mappings, b ∈ IRm and d ∈ IRl

are given vectors, C ∈ Sn is a given matrix, and Q := {0}l1 × IRl2
+ with l1 + l2 = l.

Notice that problem (6.6) can be equivalently reformulated as

min
1

2
‖x‖2

2 + 〈C, Y 〉

s.t.

A
B

 (Y )−

x
z

 =

b
d

 ,

Y ∈ Sn+, x ∈ IRm, z ∈ Q,

(6.7)

where x ∈ IRm and z ∈ Q are two auxiliary variables. By a simple calculation, the

dual problem of problem (6.7) can be written as

max 〈b, η〉+ 〈d, ζ〉 − 1

2
‖η‖2

2

s.t. C −A∗(η)− B∗(ζ)− Λ = 0,

Λ ∈ Sn+, η ∈ IRm, ζ ∈ Q∗,

(6.8)

where Q∗ = IRl1 × IRl2
+ is the dual cone of Q.

We next introduce the proximal alternating direction method of multipliers

(proximal ADMM) as follows. The interested readers may refer to [58, Appendix B]

and references therein for more details on the proximal ADMM and its convergence

analysis. Given a penalty parameter β > 0, the augmented Lagrangian function
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of problem (6.7) is defined by

Lβ(Y, x, z; η, ζ) :=
1

2
‖x‖2

2 + 〈C, Y 〉 − 〈A(Y )− x− b, η〉 − 〈B(Y )− z − d, ζ〉

+
β

2
‖A(Y )− x− b‖2

2 +
β

2
‖B(Y )− z − d‖2

2.

The basic idea of the classical ADMM [63, 60] is to minimize Lβ with respect to

(x, z) and then with respect to Y , followed by an update of the multiplier (η, ζ).

While minimizing with respect to (x, z) admits a simple closed-form solution, min-

imizing with respect to Y does not have an easy solution due to the complicated

quadratic terms. For the purpose of eliminating these complicated terms, the prox-

imal ADMM introduces a proximal term when minimizing with respect to Y . In

detail, the proximal ADMM for solving problem (6.7) consists of the iterations

(
xj+1, zj+1

)
:= arg min

x∈IRm, z∈Q
Lβ(Y j, x, z; ηj, ζj),

Y j+1 := arg min
Y ∈Sn+

Lβ(Y, xj+1, zj+1; ηj, ζj) +
1

2
‖Y − Y j‖2

S ,

ηj+1 := ηj − γβ
(
A(Y j+1)− xj+1 − b

)
,

ζj+1 := ζj − γβ
(
B(Y j+1)− zj+1 − d

)
,

where γ ∈ (0, (1+
√

5)/2) is the step length, S is a self-adjoint positive semidefinite

(not necessarily positive definite) operator on Sn, and ‖ · ‖S := 〈·,S(·)〉. In order

to “cancel out” the complicated term β(A∗A+B∗B) so that the update for Y can

be implemented easily, we may choose

S :=
1

δ
I − β

(
A∗A+ B∗B

)
with

1

δ
≥ β‖A∗A+ B∗B‖ > 0,

where ‖ · ‖ denotes the spectral norm of operators. With such choices of γ and

S, we know from [58, Theorem B.1] that {(Y j, xj, zj)} converges to an optimal

solution to the primal problem (6.7) and (ηj, ζj) converges to an optimal solution

to the dual problem (6.8). It is easy to see that (x, z) can be directly computed by

xj+1 =
1

1 + β

[
β
(
A(Y j)− b

)
− ηj

]
and zj+1 = ΠQ

(
B(Y j)− d− 1

β
ζj
)
,
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where ΠQ is the metric projector over Q. Then Y can be explicitly updated by

Y j+1 = δΠSn+(Gj),

where ΠSn+ is the metric projector over Sn+ and

Gj := A∗(ηj) + βA∗(xj+1 + b) + B∗(ζj) + βB∗(zj+1 + d)− C + S(Y j).

For the purpose of deriving a reasonable stopping criterion, we construct the dual

variable Λj at the j-th iteration as

Λj :=
1

δ
Y j+1 −Gj.

Then Λj = ΠSn+(Gj)−Gj � 0. Moreover, a direct calculation yields that

∆j := C −A∗(ηj)− B∗(ζj)− Λj

=
1

δ

(
Y j − Y j+1

)
+ βA∗

(
b+ xj+1 −A(Y j)

)
+ βB∗

(
d+ zj+1 − B(Y j)

)
.

In our implementation, we terminate the proximal ADMM when

max{Rj
P , R

j
D/2, R

j
O} ≤ tol,

where tol > 0 is a pre-specified accuracy tolerance and

Rj
P :=

√
‖A(Y j)− xj − b‖2

2 + ‖B(Y j)− zj − d‖2
2

max {1, ‖b‖2
2 + ‖d‖2

2}

Rj
D :=

‖∆j‖F
max {1, ‖[A∗(b), B∗(d)]‖F}

+
dist(ζj,Q∗)

max {1, ‖d‖2}

Rj
O :=

dist(B(Y j)− d,Q)

max {1, ‖d‖2}

respectively measure the relative feasibility of the primal problem (6.7), the dual

problem (6.8) and the original problem (6.6) at the j-th iteration, and dist(·, ·)

denotes the point-to-set Euclidean distance. It is well-known that the efficiency
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of the proximal ADMM depends heavily on the choice of the penalty parameter

β. At each iteration, we adjust β according to the ratio Rj
P/R

j
D in order that Rj

P

and Rj
D decrease almost simultaneously. Specifically, we double β if Rj

P/R
j
D > 3

(meaning that Rj
P converges too slowly), halve β if Rj

P/R
j
D < 0.1 (meaning that

Rj
D converges too slowly), and keep β unchanged otherwise.

6.3.2 Spectral projected gradient method

By using a change of variable L = Y TY with Y ∈ IRr×n, we can equivalently

reformulate the rank-constrained problem (6.5) as

min h(Y ) :=
1

2
‖H ◦ (Y TY − C)‖2

F

s.t. Y ∈ IRr×n, ‖Yj‖2 ≤ 1, j = 1, . . . , n,

(6.9)

where H ∈ Sn is the weight matrix such that H ◦H ◦Z = R∗ΩRΩ(Z) for all Z ∈ Sn,

C ∈ Sn is any matrix satisfying H ◦H ◦ C = R∗Ω(y), and Yj is the j-th column of

Y for j = 1, . . . , n. Denote Br×n := {Y ∈ IRr×n | ‖Yj‖2 ≤ 1, j = 1, . . . , n}. From

the definition of the weight matrix H, we can see that diag(H) = 0. Therefore, we

may assume diag(C) = 1 without loss of generality.

The spectral projected gradient methods (SPGMs) were developed by [14]

for the minimization of continuously differentiable functions on nonempty closed

and convex sets. This kind of methods extends the classical projected gradient

method [65, 88, 12] with two simple but powerful techniques, i.e., the Barzilai-

Borwein spectral step length introduced in [9] and the Grippo-Lampariello-Lucidi

nonmonotone line search scheme proposed in [67], to speed up the convergence. It

was also proven in [14] that the SPGMs are well-defined and any accumulation point

of the iterates generated by the SPGMs is a stationary point. For an interesting

review of the SPGMs, one may refer to [15].
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When using the SPGMs to solve problem (6.9), there are two main com-

putational steps. One is the evaluation of the objective function h(Y ) and its

gradient ∇h(Y ) = 2Y [H ◦ H ◦ (Y TY − C)]. The other is the projection onto

the multiple ball-constrained set Br×n. Since these two steps are both of low

computational cost per iteration, the SPGMs are generally very efficient for prob-

lem (6.9). This explains why, as recommended by [16], the SPGMs are among

the best choices for problem (6.9). The code for the SPGM (Algorithm 2.2 in

[14]) implemented in our numerical experiments is downloaded from the website

http://www.di.ens.fr/~mschmidt/Software/thesis.html.

6.4 Numerical experiments

In this section, we conduct numerical experiments to test the performance of the

specialized two-stage correction procedure when applied to the correlation ma-

trix estimation problem with missing observations in strict factor models. In our

numerical experiments, we refer to the NPLS estimator and the ANPLS estima-

tor as the nuclear norm penalized and the adaptive nuclear semi-norm penalized

least squares estimators, respectively. Both of these two estimators are obtained

by solving problem (6.3) via the proximal ADMM with different choices of the

rank-correction function F , the initial point L̊, and the accuracy tolerance tol.

For the NPLS estimator, we have F ≡ 0 and take tol = 10−5. For the ANPLS

estimator, we construct F according to Section 5.3 with ε = 0.05 and τ = 2,

and take tol = 10−6. Moreover, we refer to the ORACLE estimator as the so-

lution produced by the SPGM for problem (6.5), or equivalently, problem (6.9),

because the true rank is assumed to be known in advance for this case. All the

experiments were run in MATLAB R2012a on the Atlas5 cluster under RHEL 5

Update 9 operating system with two Intel(R) Xeon(R) X5550 2.66GHz quad-core

http://www.di.ens.fr/~mschmidt/Software/thesis.html
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CPUs and 48GB RAM from the High Performance Computing (HPC) service in

the Computer Centre, National University of Singapore.

Throughout the reported numerical results, RelErrZ stands for the relative

recovery error between an estimator Ẑ and the true matrix Z, i.e.,

RelErrZ :=
‖Ẑ − Z‖F

max
{

10−10, ‖Z‖F
} ,

which serves as a standard measurement of the recovery ability of different estima-

tors. Hence in our numerical experiments, RelErrX , RelErrL and RelErrS represent

the relative recovery errors of X̂, L̂ and Ŝ, respectively, where X̂ = L̂+ Ŝ. In order

to tune the penalization parameter ρL in problem (6.3), we define RelDevZ to be

the relative deviation from the observations at any given matrix Z, i.e.,

RelDevZ :=
‖y −RΩ(Z)‖

max
{

10−10, ‖y‖2

} .
We next validate the efficiency of the two-stage ANPLS estimator in terms of

relative recovery error by comparing it with the NPLS estimator and the ORACLE

estimator via numerical experiments using random data. Throughout this section,

the dimension n = 1000 and the starting point of the SPGM for the ORACLE

estimator is randomly generated by randn(r,n). For reference, we also report the

total computing time for each estimator.

6.4.1 Missing observations from correlations

The first testing example is for the circumstance that the missing observations are

from the correlation coefficients.

Example 1. The true low-rank component L and the true diagonal component S

are randomly generated by the following commands

B = randn(n,r); B(:,1:nl) = eigw*B(:,1:nl);
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L_temp = B*B’; L_weight = trace(L_temp);

randvec = rand(n,1); S_weight = sum(randvec);

S_temp = SL*(L_weight/S_weight)*diag(randvec);

DD = diag(1./sqrt(diag(L_temp + S_temp)));

L_bar = DD*L_temp*DD; S_bar = DD*S_temp*DD;

X_bar = L_bar + S_bar;

where the parameter eigw = 3 is used to control the relative magnitude between

the first nl largest eigenvalues and the other nonzero eigenvalues of L, and the

parameter SL is used to control the relative magnitude between S and L. The

observation vector y in (5.3) is formed by uniformly sampling from the off-diagonal

basic coefficients of X with i.i.d. Gaussian noise at the noise level 10%.

When solving problem (6.3), we begin with a reasonably small ρL chosen based

on the same order given in Theorem 6.1, and then search a largest ρL such that

the relative deviation is less than the noise level and at the same time the rank

of L is as small as possible. This tuning strategy for ρL is heuristic but usually

results in a relatively smaller recovery error according to our experience.

The numerical results for Example 1 with different r, SL and nl are presented

in Table 6.1, 6.2, 6.3, 6.4, 6.5 and 6.6. In these tables, “Sample Ratio” denotes

the ratio between the number of the sampled off-diagonal basic coefficients and the

number of the off-diagonal basic coefficients, i.e.,

Sample Ratio :=
m

n(n− 1)/2
.

Intuitively, a higher “Sample Ratio” will lead to a lower recovery error and vice

versa. The ANPLS1 estimator is the ANPLS estimator using the NPLS estimator

as the initial estimator L̊, and the ANPLS2 (ANPLS3) estimator is the ANPLS

estimator using the ANPLS1 (ANPLS2) estimator as the initial estimator L̊.
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As can be seen from these six tables, when the sample ratio is not extremely

small, the ANPLS1 estimator is already remarkable – it reduces the recovery error

by more than half compared to the NPLS estimator, and what is more, it performs

as well as the ORACLE estimator by achieving the true rank and a quite compa-

rable recovery error. Meanwhile, when the sample ratio is very low, the ANPLS1

estimator is still able to significantly improve the quality of estimation. Besides,

we would like to point out that the NPLS estimator with a larger ρL could yield a

matrix with rank lower than what we reported. However, the corresponding recov-

ery error will inevitably and greatly increase. In addition, it is worthwhile to note

that the SPGM for problem (6.5) is highly efficient in terms of solution quality

and computational speed for most of the tested cases, while in fact the true rank is

generally unknown or even very difficult to be identified, which prohibits its usage

in practice. Also, we observe that for a few cases, the SPGM is not stable enough

to return an acceptable solution from a randomly generated starting point, which

is understandable due to the nonconvex nature of problem (6.5).

6.4.2 Missing observations from data

The second testing example is for the circumstances that the missing observations

are from the data generated by a strict factor model.

Suppose that at time t = 1, . . . , T , we are given the observable data zt ∈ IRn

of the random vector z ∈ IRn that satisfies the strict factor model (6.1), i.e.,

zt = Bft + et,

where B ∈ IRn×r is the loading matrix, ft ∈ IRr and et ∈ IRn are the unobservable

data of the factor vector f ∈ IRr and the idiosyncratic vector e ∈ IRn at time t,

respectively. By putting into a matrix form, we have

Z = BF + E,
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Table 6.1: Recovery performance for Example 1 with n = 1000, r = 1 and nl = 1

SL
Sample

Ratio

NPLS ANPLS1 ANPLS3 ORACLE

RelErr
Time

RelErr
Time

RelErr
Time

RelErr
Time

X L (Rank) S X L (Rank) S X L (Rank) S X L S

1

1% 13.38%13.42% (26) 8.79% 1668.4 5.86% 5.88% (8) 5.11%2385.85.27% 5.29% (8) 4.38%3062.4 5.21% 5.23% 4.17% 2.5

3% 5.17% 5.20% (51) 7.88% 597.7 2.72% 2.73% (1) 2.23%1000.72.72% 2.73% (1) 2.22%1065.1 2.72% 2.73% 2.22% 1.7

5% 4.15% 4.20% (66) 10.00% 439.6 2.00% 2.01% (1) 1.63% 676.8 2.00% 2.01% (1) 1.63% 705.1 2.00% 2.01% 1.63% 1.6

10% 3.20% 3.26% (82) 9.68% 224.4 1.44% 1.45% (1) 1.17% 360.4 1.44% 1.45% (1) 1.17% 389.1 1.44% 1.45% 1.17% 1.6

15% 2.95% 3.02% (99) 11.25% 178.6 1.19% 1.19% (1) 0.96% 360.8 1.19% 1.19% (1) 0.96% 390.1 1.19% 1.19% 0.96% 1.3

10

1% 24.98%25.79% (27) 5.18% 2033.9 8.92% 9.22% (4) 2.76%3241.85.96% 6.15% (1) 1.38%4276.8128.86%132.93%15.33% 8.1

3% 5.94% 6.14% (51) 2.29% 562.7 2.68% 2.76% (1) 0.59%1027.42.69% 2.77% (1) 0.60%1134.9 2.69% 2.77% 0.60% 1.8

5% 4.61% 4.79% (66) 2.45% 443.3 2.04% 2.10% (1) 0.40% 674.5 2.03% 2.10% (1) 0.40% 715.4 2.03% 2.10% 0.40% 1.7

10% 3.50% 3.70% (97) 3.20% 215.8 1.39% 1.44% (1) 0.26% 307.1 1.39% 1.44% (1) 0.26% 319.4 1.39% 1.44% 0.26% 1.7

15% 3.48% 3.71% (125) 4.33% 169.1 1.13% 1.16% (1) 0.23% 238.6 1.13% 1.16% (1) 0.23% 245.4 1.13% 1.16% 0.23% 1.6

100

1% 35.41%61.21% (19) 3.23% 710.9 20.15%34.92% (3)2.67%1639.07.93%13.82% (1)1.43%2546.8112.22%194.06%11.30% 48.0

3% 14.32%21.56% (41) 2.10% 787.0 3.08% 4.67% (1) 0.63%1043.92.13% 3.20% (1) 0.19%1211.7 72.00% 107.82% 2.15% 7.2

5% 6.69% 11.88% (11) 1.24% 469.6 1.52% 2.71% (1) 0.33% 601.0 1.21% 2.13% (1) 0.07% 686.4 1.21% 2.13% 0.07% 2.4

10% 1.37% 2.60% (24) 0.11% 143.8 0.74% 1.41% (1) 0.04% 171.1 0.74% 1.41% (1) 0.04% 181.7 0.74% 1.41% 0.04% 2.0

15% 1.37% 2.21% (6) 0.18% 145.9 0.74% 1.19% (1) 0.05% 167.6 0.74% 1.19% (1) 0.05% 175.9 0.74% 1.19% 0.05% 2.2
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Table 6.2: Recovery performance for Example 1 with n = 1000, r = 2 and nl = 1

SL
Sample

Ratio

NPLS ANPLS1 ANPLS3 ORACLE

RelErr
Time

RelErr
Time

RelErr
Time

RelErr
Time

X L (Rank) S X L (Rank) S X L (Rank) S X L S

1

3% 7.28% 7.31% (48) 6.43% 646.7 3.87% 3.88% (2) 3.09% 1038.7 3.83% 3.84% (2) 3.02% 1214.1 3.86% 3.88% 3.06% 4.5

5% 5.33% 5.37% (62) 7.98% 450.9 2.94% 2.95% (2) 2.32% 656.3 2.93% 2.94% (2) 2.30% 721.9 2.93% 2.94% 2.30% 3.7

10% 3.85% 3.89% (78) 8.68% 226.5 2.03% 2.04% (2) 1.72% 338.2 2.03% 2.04% (2) 1.70% 374.0 2.04% 2.05% 1.70% 3.6

15% 3.18% 3.23% (89) 8.84% 164.2 1.63% 1.63% (2) 1.31% 230.9 1.63% 1.63% (2) 1.31% 243.7 1.63% 1.64% 1.32% 3.2

10

3% 9.48% 9.87% (46) 2.53% 563.7 4.37% 4.56% (2) 1.40% 936.5 4.08% 4.24% (2) 0.94% 1138.0 4.11% 4.28% 0.76% 6.1

5% 6.05% 6.29% (64) 2.14% 451.0 3.01% 3.13% (2) 0.65% 692.7 2.95% 3.06% (2) 0.54% 796.7 2.98% 3.09% 0.56% 4.3

10% 4.24% 4.44% (97) 3.05% 200.4 2.00% 2.07% (2) 0.42% 315.3 1.98% 2.05% (2) 0.38% 349.5 1.99% 2.05% 0.38% 3.7

15% 3.67% 3.88% (116) 3.29% 160.8 1.61% 1.67% (2) 0.33% 222.2 1.61% 1.66% (2) 0.32% 241.8 1.60% 1.66% 0.30% 3.6

100

3% 11.51% 21.55% (24) 1.75% 687.7 4.12% 7.76% (2) 0.80% 862.1 3.20% 5.99% (2) 0.47% 997.5 8.06% 15.61% 2.88% 16.1

5% 6.37% 12.64% (25) 1.72% 335.7 3.07% 6.26% (2) 1.21% 411.1 2.23% 4.49% (2) 0.75% 489.2 1.87% 3.63% 0.20% 8.6

10% 2.53% 5.00% (20) 0.49% 173.0 1.22% 2.39% (2) 0.19% 206.8 1.15% 2.24% (2) 0.11% 235.0 1.13% 2.20% 0.07% 3.9

15% 1.87% 3.32% (16) 0.28% 175.7 1.07% 1.89% (2) 0.11% 207.1 1.03% 1.82% (2) 0.08% 227.9 0.99% 1.74% 0.05% 7.6
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Table 6.3: Recovery performance for Example 1 with n = 1000, r = 2 and nl = 2

SL
Sample

Ratio

NPLS ANPLS1 ANPLS3 ORACLE

RelErr
Time

RelErr
Time

RelErr
Time

RelErr
Time

X L (Rank) S X L (Rank) S X L (Rank) S X L S

1

3% 7.51% 7.54% (44) 5.48% 639.1 3.94% 3.96% (2) 2.98% 875.1 3.94% 3.96% (2) 2.99% 1016.5 3.94% 3.96% 2.99% 2.3

5% 5.39% 5.42% (59) 6.75% 345.9 2.87% 2.88% (2) 2.20% 473.7 2.87% 2.88% (2) 2.20% 519.7 2.87% 2.89% 2.20% 2.2

10% 3.62% 3.65% (64) 4.95% 206.6 2.04% 2.05% (2) 1.48% 258.3 2.04% 2.04% (2) 1.48% 273.8 2.04% 2.04% 1.48% 1.8

15% 3.08% 3.11% (79) 6.77% 153.8 1.62% 1.63% (2) 1.23% 243.5 1.62% 1.63% (2) 1.23% 268.1 1.62% 1.63% 1.23% 1.7

10

3% 12.03% 12.72% (40) 2.72% 850.5 3.97% 4.19% (2) 0.81% 1114.9 3.83% 4.05% (2) 0.67% 1350.1 3.83% 4.05% 0.67% 2.6

5% 6.46% 6.81% (54) 1.58% 462.5 2.91% 3.06% (2) 0.52% 600.5 2.89% 3.04% (2) 0.50% 683.8 2.89% 3.04% 0.50% 3.0

10% 3.45% 3.66% (51) 0.78% 177.0 1.94% 2.06% (2) 0.30% 216.2 1.94% 2.06% (2) 0.30% 238.4 1.94% 2.06% 0.30% 1.6

15% 2.74% 2.90% (61) 0.80% 150.8 1.54% 1.62% (2) 0.24% 172.3 1.54% 1.62% (2) 0.24% 182.6 1.54% 1.62% 0.24% 2.3

100

3% 9.94% 25.63% (25) 1.29% 355.6 3.44% 8.97% (2) 0.71% 485.9 1.86% 4.79% (2) 0.20% 623.6 1.74% 4.46% 0.09% 8.0

5% 6.2% 14.11% (23) 0.96% 298.9 1.83% 4.12% (2) 0.30% 388.3 1.42% 3.17% (2) 0.08% 474.2 1.42% 3.17% 0.08% 3.1

10% 3.02% 5.95% (30) 0.54% 200.5 1.20% 2.35% (2) 0.10% 271.9 1.18% 2.30% (2) 0.07% 322.5 1.18% 2.30% 0.07% 2.8

15% 1.71% 3.65% (33) 0.29% 151.2 0.79% 1.66% (2) 0.05% 184.7 0.78% 1.65% (2) 0.04% 205.2 0.78% 1.65% 0.04% 1.8
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Table 6.4: Recovery performance for Example 1 with n = 1000, r = 3 and nl = 1

SL
Sample

Ratio

NPLS ANPLS1 ANPLS3 ORACLE

RelErr
Time

RelErr
Time

RelErr
Time

RelErr
Time

X L (Rank) S X L (Rank) S X L (Rank) S X L S

1

3% 10.35% 10.39% (45) 7.74% 663.5 5.38% 5.40% (3) 4.52% 964.7 5.16% 5.18% (3) 3.76% 1198.3 5.22% 5.25% 3.82% 5.7

5% 6.70% 6.73% (62) 6.62% 357.1 3.57% 3.59% (3) 2.93% 529.4 3.55% 3.56% (3) 2.83% 618.2 3.56% 3.58% 2.84% 4.4

10% 4.46% 4.49% (71) 6.17% 221.4 2.57% 2.59% (3) 2.11% 306.0 2.56% 2.57% (3) 2.07% 343.0 2.56% 2.57% 2.06% 3.7

15% 3.53% 3.56% (82) 6.51% 167.8 2.05% 2.05% (3) 1.53% 305.5 2.04% 2.05% (3) 1.53% 349.3 2.05% 2.06% 1.54% 3.5

10

3% 13.48% 14.13% (45) 3.51% 551.9 6.78% 7.12% (3) 2.39% 887.7 5.61% 5.88% (3) 1.46% 1140.4 10.13% 10.62% 2.81% 8.9

5% 8.37% 8.80% (58) 2.44% 435.9 4.05% 4.26% (3) 1.14% 612.9 3.77% 3.96% (3) 0.72% 743.5 3.80% 3.99% 0.71% 5.6

10% 4.91% 5.17% (83) 2.00% 189.5 2.56% 2.69% (3) 0.60% 263.1 2.51% 2.63% (3) 0.48% 310.7 2.50% 2.62% 0.44% 4.6

15% 3.58% 3.76% (80) 1.44% 158.7 2.04% 2.13% (3) 0.39% 209.0 2.02% 2.11% (3) 0.36% 230.6 2.00% 2.09% 0.33% 4.2

100

3% 16.63% 30.15% (30) 2.87% 625.8 7.70% 14.10% (4) 1.90% 887.1 5.32% 9.71% (3) 1.16% 1129.5 19.72% 36.82% 6.94% 128.6

5% 7.45% 13.69% (24) 1.23% 434.1 3.97% 7.31% (3) 0.78% 520.7 3.23% 5.93% (3) 0.56% 596.2 2.69% 4.90% 0.19% 21.8

10% 3.26% 6.47% (25) 0.59% 184.0 1.70% 3.36% (3) 0.27% 215.9 1.49% 2.93% (3) 0.17% 243.7 1.37% 2.69% 0.10% 5.8

15% 2.12% 3.98% (34) 0.32% 154.9 1.24% 2.33% (3) 0.14% 187.4 1.19% 2.22% (3) 0.11% 211.0 1.12% 2.10% 0.06% 5.3
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Table 6.5: Recovery performance for Example 1 with n = 1000, r = 3 and nl = 2

SL
Sample

Ratio

NPLS ANPLS1 ANPLS3 ORACLE

RelErr
Time

RelErr
Time

RelErr
Time

RelErr
Time

X L (Rank) S X L (Rank) S X L (Rank) S X L S

1

3% 9.79% 9.83% (45) 6.53% 689.3 5.18% 5.20% (3) 4.34% 1005.9 4.95% 4.97% (3) 3.88% 1218.1 5.01% 5.04% 3.97% 5.9

5% 6.55% 6.59% (56) 5.54% 338.5 3.86% 3.87% (3) 2.90% 481.2 3.82% 3.84% (3) 2.78% 566.2 3.83% 3.85% 2.76% 3.8

10% 4.22% 4.24% (64) 4.30% 213.5 2.50% 2.51% (3) 1.92% 267.6 2.49% 2.50% (3) 1.89% 296.6 2.49% 2.50% 1.86% 3.4

15% 3.45% 3.47% (71) 4.41% 155.6 2.03% 2.04% (3) 1.49% 226.0 2.02% 2.03% (3) 1.48% 252.1 2.01% 2.02% 1.49% 3.3

10

3% 13.53% 14.40% (40) 2.78% 773.6 6.25% 6.66% (3) 1.56% 1050.7 5.44% 5.79% (3) 1.14% 1305.9 13.69% 14.66% 5.63% 24.8

5% 8.35% 8.88% (51) 2.26% 411.2 4.22% 4.49% (3) 1.40% 553.8 3.87% 4.12% (3) 1.05% 673.7 3.72% 3.95% 0.63% 7.9

10% 4.33% 4.60% (49) 1.00% 179.9 2.53% 2.69% (3) 0.49% 231.8 2.48% 2.63% (3) 0.42% 268.3 2.45% 2.60% 0.37% 4.7

15% 3.30% 3.49% (63) 0.91% 155.3 1.91% 2.02% (3) 0.35% 184.2 1.90% 2.01% (3) 0.34% 204.4 1.90% 2.00% 0.32% 4.1

100

3% 17.34% 36.84% (31) 2.83% 469.8 7.13% 15.30% (4) 1.66% 697.2 5.20% 11.04% (3) 0.77% 934.1 13.15% 28.92% 4.65% 99.6

5% 10.46% 22.43% (31) 2.12% 306.4 3.60% 7.78% (3) 0.91% 414.6 3.08% 6.57% (3) 0.48% 515.8 2.57% 5.44% 0.22% 10.7

10% 4.62% 9.20% (24) 1.21% 200.4 2.14% 4.28% (3) 0.64% 245.1 1.79% 3.54% (3) 0.43% 286.2 6.65% 13.16% 1.50% 16.3

15% 1.88% 4.31% (19) 0.34% 129.4 1.15% 2.63% (3) 0.16% 164.4 1.11% 2.53% (3) 0.13% 186.5 0.93% 2.11% 0.05% 4.6
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Table 6.6: Recovery performance for Example 1 with n = 1000, r = 3 and nl = 3

SL
Sample

Ratio

NPLS ANPLS1 ANPLS3 ORACLE

RelErr
Time

RelErr
Time

RelErr
Time

RelErr
Time

X L (Rank) S X L (Rank) S X L (Rank) S X L S

1

3% 10.76% 10.81% (40) 6.45% 747.8 5.17% 5.20% (3) 3.66% 989.3 5.09% 5.12% (3) 3.54% 1201.5 5.09% 5.12% 3.54% 2.8

5% 6.61% 6.65% (51) 4.46% 325.1 3.76% 3.78% (3) 2.65% 422.8 3.77% 3.79% (3) 2.66% 493.7 3.77% 3.79% 2.66% 2.1

10% 4.27% 4.29% (51) 2.67% 202.6 2.46% 2.48% (3) 1.69% 241.4 2.46% 2.48% (3) 1.69% 261.8 2.46% 2.48% 1.69% 1.7

15% 3.31% 3.33% (57) 2.63% 139.8 2.03% 2.05% (3) 1.43% 184.2 2.03% 2.05% (3) 1.43% 202.7 2.03% 2.05% 1.43% 2.1

10

3% 20.15% 21.52% (39) 4.45% 934.9 6.27% 6.70% (3) 1.69% 1294.4 5.20% 5.54% (3) 0.83% 1673.4 5.18% 5.53% 0.79% 5.4

5% 7.72% 8.26% (47) 1.35% 406.8 3.65% 3.91% (3) 0.51% 524.1 3.63% 3.88% (3) 0.50% 622.4 3.63% 3.88% 0.50% 3.2

10% 4.35% 4.66% (41) 0.84% 179.0 2.37% 2.54% (3) 0.34% 231.2 2.37% 2.54% (3) 0.33% 262.7 2.37% 2.54% 0.34% 2.3

15% 3.24% 3.48% (40) 0.61% 144.0 1.91% 2.05% (3) 0.25% 171.5 1.91% 2.05% (3) 0.25% 186.5 1.91% 2.05% 0.25% 2.1

100

3% 23.39% 51.79% (35) 4.01% 397.9 10.77% 24.15% (5) 2.74% 664.9 4.57% 10.20% (3) 1.04% 937.3 2.94% 6.45% 0.22% 7.7

5% 12.67% 30.58% (34) 2.27% 283.0 3.84% 9.43% (3) 1.07% 406.5 1.92% 4.61% (3) 0.28% 521.5 1.77% 4.24% 0.15% 5.2

10% 3.47% 8.68% (33) 0.70% 231.4 1.20% 2.99% (3) 0.18% 301.8 1.09% 2.70% (3) 0.06% 361.6 1.09% 2.70% 0.06% 2.7

15% 1.88% 5.04% (20) 0.42% 137.4 0.82% 2.17% (3) 0.08% 174.2 0.81% 2.12% (3) 0.04% 202.4 0.81% 2.12% 0.04% 2.3
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where Z ∈ IRn×T , F ∈ IRr×T and E ∈ IRn×T consist of zt, ft and et as their columns.

In the following example, we randomly simulate the case that cov[f] = Ir and cov[e]

is diagonal. After an appropriate rescaling, we have L = BBT and S = cov[e] with

diag(L+ S) = 1. To reach this setting, we may assume that the factor vector f is

of uncorrelated standard normal entries and the idiosyncratic vector e follows the

centered multivariate normal distribution with covariance matrix S.

Example 2. The true low-rank component L and the true diagonal component S

are obtained in the same way as that in Example 1. By following the same com-

mands in Example 1, the loading matrix B, the factor matrix F, the idiosyncratic

matrix E, the data matrix Z are generated as follows

B = DD*B; F = randn(r,T);

E = mvnrnd(zeros(n,1),S_bar,T)’;

Z = B*F + E;

where T is the length of the time series, DD and the original B are inherited from

Example 1. We then generate the data matrix with missing observations Z missing

and its pairwise correlation matrix M by

Z_missing = Z; nm = missing_rate*n*T; Ind_missing = randperm(n*T);

Z_missing(Ind_missing(1:nm)) = NaN;

M = nancov(Z_missing’,’pairwise’); M = M - diag(diag(M)) + eye(n);

where missing rate represents the missing rate of data. Lastly, we identify the

missing correlation coefficients from M if the length of the overlapping remain-

ing data between any two rows of Z missing is less than trust par*n, where

trust par is a parameter introduced to determine when a pairwise correlation cal-

culated from Z missing is reliable.

The numerical results for Example 2 are listed in Table 6.7 and 6.8 with

different T, trust par, SL and missing rate. We can observe from these two tables
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that our correction procedure loses its effectiveness in general. This is not surprising

because all the theoretical guarantees established for the ANPLS estimator are

built on the observation model (5.1), where the missing observations are from

the correlation coefficients other than from the data generated by a factor model.

Moreover, it is interesting to see that the performance of the NPLS estimator is

unexpectedly satisfactory in most cases.
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Table 6.7: Recovery performance for Example 2 with n = 1000, r = 5, T = 6 ∗ n and trust par = 3.5

SL

Missing NPLS ANPLS1 ANPLS3 ORACLE

RelErr
Time

RelErr
Time

RelErr
Time

RelErr
Time

Rate X L (Rank) S X L (Rank) S X L (Rank) S X L S

1

0% 3.78% 3.80% (5) 2.36% 90.8 3.76% 3.78% (5) 2.33% 188.5 3.76% 3.78% (5) 2.33% 192.9 3.77% 3.79% 2.33% 3.2

5% 3.60% 3.62% (5) 2.38% 89.6 3.66% 3.68% (5) 2.52% 209.8 3.66% 3.68% (5) 2.52% 214.2 3.67% 3.69% 2.54% 2.5

10% 4.16% 4.18% (5) 2.67% 184.3 4.14% 4.17% (5) 2.69% 329.0 4.15% 4.17% (5) 2.69% 333.4 4.15% 4.17% 2.70% 2.8

15% 4.24% 4.26% (5) 2.91% 138.6 4.21% 4.23% (5) 2.78% 262.2 4.21% 4.23% (5) 2.78% 267.2 4.21% 4.23% 2.78% 3.0

20% 4.83% 4.85% (5) 3.13% 270.1 4.93% 4.96% (5) 3.24% 448.4 4.93% 4.96% (5) 3.24% 452.7 4.93% 4.96% 3.25% 2.5

5

0% 6.69% 6.85% (5) 1.94% 62.0 6.29% 6.44% (5) 1.49% 73.0 6.29% 6.44% (5) 1.49% 80.1 6.29% 6.44% 1.47% 3.3

5% 5.83% 5.97% (5) 1.40% 63.1 5.87% 6.01% (5) 1.33% 96.0 5.87% 6.01% (5) 1.33% 103.4 5.87% 6.01% 1.34% 3.1

10% 5.90% 6.05% (5) 1.49% 94.1 5.77% 5.92% (5) 1.25% 153.0 5.77% 5.92% (5) 1.25% 162.3 5.78% 5.92% 1.25% 3.1

15% 7.29% 7.45% (5) 1.94% 188.7 7.61% 7.78% (5) 1.99% 293.4 7.61% 7.78% (5) 1.99% 302.2 7.61% 7.78% 2.01% 3.9

20% 6.31% 6.46% (5) 1.70% 72.4 6.27% 6.42% (5) 1.51% 83.7 6.27% 6.42% (5) 1.51% 92.8 6.28% 6.43% 1.52% 3.1

10

0% 7.41% 7.83% (5) 1.43% 65.8 7.10% 7.49% (5) 0.97% 77.9 7.10% 7.49% (5) 0.96% 87.2 7.11% 7.51% 0.95% 3.8

5% 7.38% 7.81% (5) 1.38% 66.8 7.06% 7.47% (5) 1.01% 77.6 7.06% 7.47% (5) 1.01% 87.8 7.08% 7.48% 1.00% 4.3

10% 7.49% 7.96% (5) 1.29% 75.0 7.37% 7.82% (5) 1.04% 87.4 7.37% 7.83% (5) 1.04% 98.4 7.39% 7.85% 1.05% 4.3

15% 8.53% 9.00% (5) 1.83% 76.3 7.97% 8.40% (5) 1.26% 87.4 7.97% 8.41% (5) 1.25% 98.2 7.99% 8.42% 1.23% 4.0

20% 7.63% 8.07% (5) 1.33% 75.8 7.62% 8.05% (5) 1.09% 104.5 7.62% 8.06% (5) 1.09% 115.9 7.67% 8.10% 1.11% 2.6
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Table 6.8: Recovery performance for Example 2 with n = 1000, r = 5, T = n and trust par = 0.8

SL

Missing NPLS ANPLS1 ANPLS3 ORACLE

RelErr
Time

RelErr
Time

RelErr
Time

RelErr
Time

Rate X L (Rank) S X L (Rank) S X L (Rank) S X L S

1

0% 8.94% 8.99% (5) 5.79% 232.3 9.01% 9.05% (5) 5.65% 397.9 9.01% 9.05% (5) 5.65% 415.9 9.01% 9.05% 5.65% 2.9

3% 8.59% 8.63% (5) 5.63% 238.9 8.93% 8.97% (5) 6.28% 405.9 8.93% 8.97% (5) 6.28% 422.7 8.94% 8.99% 6.34% 2.6

5% 9.17% 9.22% (5) 6.12% 106.7 9.11% 9.16% (5) 5.83% 171.4 9.11% 9.16% (5) 5.83% 180.9 9.12% 9.16% 5.83% 2.4

8% 10.65% 10.71% (5) 7.59% 178.9 10.29% 10.34% (5) 6.66% 303.2 10.29% 10.34% (5) 6.66% 317.0 10.28% 10.33% 6.62% 2.6

10% 10.69% 10.75% (5) 8.45% 297.5 10.49% 10.54% (5) 6.90% 474.9 10.45% 10.50% (5) 6.77% 534.3 10.41% 10.46% 6.69% 11.7

5

0% 14.65% 15.01% (5) 4.43% 86.2 14.00% 14.33% (5) 3.37% 98.0 14.00% 14.34% (5) 3.36% 109.5 14.04% 14.37% 3.33% 2.8

3% 13.85% 14.18% (5) 3.12% 153.9 14.65% 15.00% (5) 3.40% 242.8 14.66% 15.01% (5) 3.42% 272.2 14.75% 15.10% 3.51% 3.8

5% 13.96% 14.31% (5) 3.21% 265.8 14.69% 15.06% (5) 3.37% 377.9 14.70% 15.07% (5) 3.39% 416.4 14.78% 15.15% 3.47% 2.9

8% 14.34% 14.66% (5) 4.17% 302.8 14.72% 15.05% (5) 3.65% 428.8 14.72% 15.05% (5) 3.64% 465.9 14.74% 15.07% 3.64% 3.4

10% 15.85% 16.24% (5) 5.43% 248.5 15.85% 16.23% (5) 4.14% 356.5 15.83% 16.20% (5) 3.91% 426.1 15.91% 16.29% 3.92% 14.7

10

0% 16.91% 17.87% (5) 3.20% 147.1 17.45% 18.43% (5) 2.54% 210.0 17.47% 18.45% (5) 2.54% 245.5 17.55% 18.54% 2.56% 3.7

3% 17.07% 18.06% (5) 3.07% 198.0 17.94% 18.97% (5) 2.65% 279.5 17.99% 19.03% (5) 2.68% 320.5 18.16% 19.21% 2.78% 4.8

5% 20.13% 21.40% (5) 4.21% 92.2 18.85% 20.02% (5) 2.74% 104.2 18.89% 20.06% (5) 2.72% 120.3 19.01% 20.19% 2.69% 2.7

8% 19.73% 20.83% (5) 4.68% 90.9 18.38% 19.39% (5) 3.04% 103.7 18.42% 19.42% (5) 3.01% 120.0 18.52% 19.53% 2.96% 4.3

10% 19.34% 20.48% (5) 5.02% 142.9 17.48% 18.48% (5) 3.33% 164.6 17.22% 18.20% (5) 2.87% 201.4 17.35% 18.33% 2.59% 24.6



Chapter 7
Conclusions

This thesis aimed to study the problem of high-dimensional low-rank and sparse

matrix decomposition with fixed and sampled basis coefficients in both of the noise-

less and noisy settings. For the noiseless case, we provided exact recovery guaran-

tees via the well-accepted “nuclear norm plus `1-norm” approach, as long as certain

standard identifiability conditions for the low-rank and sparse components are as-

sumed to be satisfied. These probabilistic recovery results are significant in the

high-dimensional regime since they reveal that only a vanishingly small fraction of

observations is already sufficient as the intrinsic dimension increases. Although the

involved analysis followed from the existing framework of dual certification, such

recovery guarantees can still be regarded as the noiseless counterparts of those in

the noisy setting. For the noisy case, enlightened by the successful recent develop-

ment on the adaptive nuclear semi-norm penalization technique for noisy low-rank

matrix completion [98, 99], we proposed a two-stage rank-sparsity-correction pro-

cedure and then examined its recovery performance by deriving a non-asymptotic

probabilistic error bound under the high-dimensional scaling. This error bound,

which has not been obtained until this research, suggests that the improvement on
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recovery error could be expected. Finally, we specialized the aforementioned two-

stage correction procedure to deal with the correlation matrix estimation problem

with missing observations in strict factor models where the sparse component is

diagonal. We pointed out that the specialized recovery error bound matches with

the optimal one if the rank-correction function is constructed appropriately and

the initial estimator is good enough. This fascinating finding as well as the con-

vincing numerical results demonstrates the superiority of the two-stage correction

approach over the nuclear norm penalization.

It should be noticed that the work done in this thesis is far from comprehensive.

Below we briefly list some research directions that deserve further explorations.

• Is it possible to establish better exact recovery guarantees when applying the

adaptive semi-norm techniques for the noisy case to the noiseless case?

• Regarding the non-asymptotic recovery error bound for the ANLPLS estima-

tor provided in Theorem 5.7, the quantitative analysis on how to optimally

choose the parameters κL and κS such that the constant parts of the error

bound are minimized is of considerable importance in practice.

• From the computational point of view, how to efficiently tune the penalization

parameters ρL and ρS for the ANLPLS estimator remains a big challenge.

• Whether or not there exist certain suitable forms of rank consistency, support

consistiency, or both, for the ANLPLS estimator in the high-dimensional

setting is still an open question.
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Abstract

In this thesis, we conduct high-dimensional analysis on the problem of low-

rank and sparse matrix decomposition with fixed and sampled basis coefficients.

This problem is strongly motivated by high-dimensional correlation matrix esti-

mation coming from a factor model used in economic and financial studies, in

which the underlying correlation matrix is assumed to be the sum of a low-rank

matrix and a sparse matrix respectively due to the common factors and the id-

iosyncratic components. For the noiseless version, we provide exact recovery guar-

antees if certain identifiability conditions for the low-rank and sparse components

are satisfied. These probabilistic recovery results are in accordance with the high-

dimensional setting because only a vanishingly small fraction of samples is required.

For the noisy version, inspired by the successful recent development on the adaptive

nuclear semi-norm penalization technique, we propose a two-stage rank-sparsity-

correction procedure and examine its recovery performance by establishing a novel

non-asymptotic probabilistic error bound under the high-dimensional scaling. We

then specialize this two-stage correction procedure to deal with the correlation

matrix estimation problem with missing observations in strict factor models where

the sparse component is diagonal. In this application, the specialized recovery

error bound and the convincing numerical results validate the superiority of the

proposed approach.
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