3
TF
d
B
\&é\

UDC

A5 3 L
R— %
46 1 SE R0 i
1.4 8y S AR ok

(R & An | A2 24 )

4 5
(FEh %)

FHITLEL, RS, BAR, P, A AARA BT A K%, IMESE I, 3
AT AT HFE

W 17 4% LR A i+ + b % AR HHHKF

WXRZBHAA2012F6 A 17 B LE#HBHA 201257 A2 H

FALAL T F A2 Ao B HA

P

~E
A

Pl

2012 % 6 A 17 H






(Fiatdt542)

# XL M B KB RESERKEAFAGEAT X

# F B & % % 4
FA FLhFH i+

#HoF KO ATRAE KR, EHE IR, FER HR

o A ™ mREAE LS H &

2012 F 6 A



5 % . DG0921001
WX E#HFAH : 20257 H28
¥ F o IFo: (£5)



Numerical Algorithms for a Class of Matrix

Norm Approximation Problems
by
Caihua Chen

Directed by

Professor Bingsheng He ~ (Nanjing University)
Professor Defeng Sun (National University of Singapore)

Professor Kim-Chuan Toh (National University of Singapore)

Department of Mathematics

Nanjing University

June 2012

Submitted in partial fulfilment of the requirements
for the degree of PhD in Computational Mathematics






ARAFARLAEFEL L P LHE A ALK

Wi AR . KR — £ 4B 50 M@ A P A A H ok
1t H s 9 2009 BIEFA L. i
FFHIT (L. BBAR): kA %, FMESE Hig, TR #HIR
g =

AR BB SR R O r) e R AT Ao B E SR BRI S
L Y RO T R AE — R4 R R P Sk — N R R M S A E L
RI&MEH S, IFHiZAE S BisERAE R T B A RIE e, X8
) U FORYR T HUAACE, Mg, fill, TRESEAUER, BT JAERF DIt %
R R 22 T LA SR A fo T AT SRR TR 45 B 2% AT R AR A

ARSCE S R H RTRAT BB A28 7 AR SR AR LS ) L, A SRR B
AR, T A ) DA o bR B SR B BRI AT A, O LR
SEHLe PRI, SR 5 109 SRR R Y A T 1) ) U R PR g, X T
SRS AL A 2R R R, L JEIRAE & B A I 18] N SRAS- N R A A

N T SERRIZAS IR, AT G ARG B 1 T30 R 50325 AR AR Y 4
BT A e AERED AT, TR AT DS A i A A, AT LA
G AR BRESKR AR, b AR WU A PSR SRR B R . 247 [
B GG 2R AR IR SR A ISL I, ASKE B~ i 2P W AIE B A e A g Ui S
o BEhh, BATFIZEERC 7RSI, SRR R HUE 45 R R,
G AU RS B B A R AL T A2 B Uy Ak, B AT AR SE e R A 2
R P Y e B ) R A R R A A P PR

AR P SR R R AR Dy [ R, AT LA R e i — A R HERE
A DA AR U 7 VR A R SR AR, L T R R Rt R . 2R KR
A7 R HI 1 J7 Y6 A WK SR A 48 5 B AT Bz sz /N B B i) s P Vs o e
R yitt, FATE R T LR SRS AT RO R, IR HAERA
AN REDBAy Brigoeitt, Ryt —IEA . AL, RiRxt
B LR IR S A AE SR A B R AR S B TE T, At B i S itk Ui sk
Ve WP MBUE RIS R, 2 H00 T R /N AR AR e =L
A DUE AR D IS AD 215 BURG R4 N = Ak

KA JEFREHCELT R, AR AL, AL A, R, Bt
%, PERREE, ARARRLL, PUr e Rk,






AR AFHALAEE LB L X LHE A ALK

THESIS: Numerical Algorithms for a Class of Matrix Norm Approxima-

tion Problems
SPECIALIZATION: Computational Mathematics

POSTGRADUATE: Caihua Chen

MENTOR: Professor Bingsheng He  (Nanjing University)
Professor Defeng Sun (National University of Singapore)

Professor Kim-Chuan Toh (National University of Singapore)

Abstract

This thesis focuses on designing robust and efficient algorithms for a class of ma-
trix norm approximation (MNA) problems that are to find an affine combination of
given matrices having the minimal spectral norm subject to some prescribed linear e-
quality and inequality constraints. These problems arise often in numerical algebra,
network, control, engineering and other areas, such as finding the Chebyshev polyno-

mials of matrices and fastest mixing Markov chain models.

In this thesis, we first apply the popular first-order algorithm alternating direction
method (ADM) to solve such problems. At each iteration of the algorithm, the subprob-
lems involved can either be solved by a fast algorithm or admit closed form solutions,
which allows us to implement the ADM easily and simply. Unfortunately, numerical
experiments on MNA problems reveal that the ADM performs unstably, and it may
fail to achieve satisfactory accuracy in reasonable cpu time for some tested examples,

especially for the constrained cases.

To overcome this difficulty, we also introduce an inexact dual proximal point al-
gorithm (in short SNDPPA) for solving the MNA problems. At each iteration, the

inner problem, rewritten as a system of semismooth equations, is solved by an inexact

iii



semismooth Newton method using the preconditioned conjugate gradient method to
compute the Newton directions. Furthermore, when the primal constraint nondegener-
acy condition holds for the inner problems, our inexact semismooth Newton method is
proven to have a suplinear convergence rate. We also design efficient implementation
for the proposed algorithm to solve a variety of instances and compare its performance
with that of ADM. Numerical results show that the semismooth Newton-CG dual prox-
imal point algorithm substantially outperforms the alternating direction method, and it
is able to solve the matrix norm approximation problems efficiently and stably to a

relatively high accuracy.

When one restricts the matrices to vectors, then the matrix norm approximation
problem can be converted into a second order cone (SOC) problem, which can be
solved by Newton’s method such as IPMs even for large scale problems. Motivated
by this, we also consider a squared smoothing Newton method, to solve the MNA
problems in which the matrix is of much more columns than rows (skinny ones) such
as the vector case. For this purpose, we present an interior smoothing function for
the metric projector over the epigraph cone of spectral norm and establish its v or-
der semismoothness everywhere. Moreover, suplinear convergence of the smoothing
Newton method for solving the MNA problems is also shown to hold under the primal
dual constraint nondegenerate conditions for the MNA problems and their dual at the
primal dual optimal solution pairs. Preliminary numerical result demonstrate that the
smoothing Newton is robust and efficient for the problem of small and moderate scale.
Specifically, we can successfully find the solution with the desired accuracy in a few

iterations.

Keywords: Matrix norm approximation, alternating direction method, proximal point
algorithm, spectral operator, semismooth Newton method, conjugate gradient method,

constraint nondegneracy, squared smoothing Newton method.
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CHAPTER 1 INTRODUCTION

Chapter 1

Introduction

In this thesis, we focus on designing efficient algorithms for solving a special case
of large scale matrix optimization problems. In particular, we are interested in a class of
matrix norm approximation problems with linear equality and inequality constraints.
Let R™*™ be the space of m x n matrices equipped with the standard inner product
(X, Y) =Tr(XTY) for X, Y € R™*". Given a family of matrices { A, Aa, ..., Ay},
define the linear operator A and its adjoint A* by

p
AX) = [(A1, X), o (A, X)), AT (y) == ) ukAs, VX €R™T, y e W
k=1

The matrix norm approximation (abbreviated as MNA) problem we consider in this

thesis takes the following form
min{HAO—A*yHQ | By—bEQ}7 (1.1)

where Ag € R™*" and B € R(™+72)*P are given matrices, b € R "2 is a vector and
Q = {0}" x R'}? is a polyhedral cone. Without loss of generality, we assume that

m < n.

1.1 Motivating examples and related approaches

The MNA problems arise in numerical algebra, network, control, engineering and
many other areas. An illustrative example is the problem of finding the degree ¢ Cheby-
shev polynomial of a given matrix A € RV*V_ In this problem, one is interested in
finding a degree ¢t monic polynomial p; which minimizes the spectral norm of p,(A),
ie.,

min {||p:(A)||2 | p¢ is a monic polynomial of degree ¢}. (1.2)

Problem (1.2) was firstly introduced in [36] under the name ideal Arboldi approxima-
tion problem and then extensively studied in [83] where the ideal Aronoli polynomial
p; is called the degree ¢ Chebyshev polynomial of A, in analogy to the notion Cheby-

shev polynomial in approximation theory [44, 80], which is a monic polynomial that
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attains minimal essential-supremum on that set. Indeed, suppose A is a Hermitan, by
the eigenvalue decomposition, the Chebyshev polynomials of A as defined by (1.2)
collapses to the Chebyshev polynomial of the spectrum of A in the latter sense. Note
that

t—1
pi(A) = A" = "y A (1.3)
1=0

for some y € R, the Chebyshev matrix approximation problem is actually a special
case of (1.1).

Possibly due to its mathematical elegance, the Chebyshev polynomial matrices
problem received much attention of the theoretical researchers, see [25, 26, 53, 96] and
references therein. Nevertheless, with the exception of the early work in [83] concern-
ing with algorithmic and computational results, no attention was paid on the numerical
treatment of the Chebyshev matrix approximation problem. In [83], the model (1.2) is

equivalently reformulated as the following semidefinite program problem

min —A\
t
k=1
Z =0,
where
I 0 0 B 0 B
Appr = , Ay = ") A= "), By = A
0 I BY I BF 1
and B, = A*! for k = 1,2,...,t. Based on the semidefinite reformulation above, a

primal-dual interior point method is proposed to compute the Chebyshev polynomials
of matrices. In the implementation of such algorithm, the search direction is computed
via a dense Schur complement equation even if the data is sparse and each iteration has
a complexity O(tN?3)+ O(t*N?), which is reduced to O (¢t N3) for the Cheyshev matrix
approximation problems since ¢ < N. Obviously, the high complexity may give rise
to great difficulties for applying the interior point algorithms to solve the Chebyshev

matrix norm approximation problems of large scale.

In contrast to the unconstrained example (1.2), some other problems may have
prescribed linear constraints, for example, the fastest mixing Markov chain (FMMC)

problem studied in [7-9]. Let G = (N, ) be an undirected connected graph with n
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nodes. The FMMC problem is to find a symmetric stochastic matrix P with F;; = 0
for (i, j) ¢ £ that minimizes p(P), where

and \;(P) is the ith largest eigenvalue of P in magnitude. Let the vector of transition
probabilities on the edges (labeled by [ = 1,2,...,p) be d, and let the matrix B €
R be defined by

1, if edge [ incident to vertex i,
B = (1.5)
0, otherwise.

Forany ! = 1,2,...,p, write the matrix E) to denote

1, if edge [ incident to vertex iand j, j # @
Ez(jl) = —1, if edge [ incident to vertex i, j =1, (1.6)

0, otherwise.

Then by the analysis in [8, 9], the FMMC problem can be written as a matrix norm

approximation problem in terms of d as follows:
p
min {||1 —(/m1" + > dEY|| [d >0, Bd< 1}. (1.7)
=1

Several simple heuristic methods, including the maximum-degree chain and Metroplis-
Hasting chain, have been proposed to obtain the transition probability giving fast mix-
ing. Let d; be the degree of the vertex i, not counting the self-loop. Denote by d,,.« the

maximum degree of the graph, i.e.,
dmax - I}g}\?{ dz

Then the maximum-degree transition probability matrix P™ is given by

1/dmaxa if (7/,]) € € and i 7é j,
Pil;ld = 1 - di/dmax> ifi = jv
0, otherwise.

Another typical heuristic is the Metropolis-Hasting chain, which is constructed based

on the Metroplis-Hasting algorithm [3, 38, 60] applied to a random walk on a graph.
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In this chain, the transition probability matrix P™" is given in a symmetric form

min{1/d;,1/d;}, if (i,7) € € and @ # 7,
P =0 Y pee max{0,1/d; — 1/d;}, ifi=j,
0, otherwise.

Other than the aforementioned methods, there are many other interesting works aiming
at developing some heuristics to assign transition probabilities obtaining faster mixing
Markov chain. Related materials can be found in [1, 19, 50, 75]. With the help of
the semidefinite programming technique, Boyd et al. [9] proposed a primal-dual inte-
rior point algorithm to compute exactly the fastest mixing chain. In that paper, they

expressed the FMMC problem as a SDP by introducing a scalar variable s:

min s

5.t Diag<P — (/)T + sI, sI — P+ (1/n)117, vec(P)> = 0,
Pl=1,P=P",
Py=0,(i,j) &€,

where Diag(-) forms a block diagonal matrix from its arguments, and vec(P) is a vec-

(1.8)

tor containing the n(n + 1)/2 different coefficients in P. For graphs with up to a
thousand or so edges, the resulting semidefinite programming can be solved efficient-
ly by the standard interior point solvers. For larger problem, the authors suggested a
projected subgradient method to solve the MNA formulation (1.7) of the FMMC prob-
lem. However, as pointed by the authors, the algorithm is relatively slow in terms of
number of iterations and has no simple stopping criterion guaranteeing a certain level

of suboptimality while compared to a primal-dual interior point method.

Another strong motivation for considering the model (1.1) comes from the fastest
distributed linear averaging (FDLA) problem with symmetric weights. Let G = {N, £}
as defined above be a connected graph with n nodes. In this problem, we aim at find-
ing the symmetric weight matrix W, consistent with G, that makes the convergence as
fast as possible. Using [88, Theorem 1], we can formulate the FDLA problem as the

following optimization problem

p
; _ T (0
min p(I — (1/n)11 +;dlE ), (1.9)

where p stands for the spectral radius, p is the weight on the edges with different nodes,

and B and E) are respectively defined by (1.5) and (1.6). Since the spectral radius of
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any symmetric matric coincides with its spectral norm, we know the FDLA problem

can be stated as a MNA problem
p
min |1 - (1/n)11T+lZIdlE(Z)H2. (1.10)

Similar to the FMMC problem, there exist some simple heuristics [88] for choos-
ing the weight matrix W that gives reasonably fast convergence of distributed averag-

ing. Define the Laplacian matrix L by

—1, if(4,j) € € and i # j,
Lij =1« d; ifi=j,
0, otherwise,
where d; is the degree of node ¢ not counting the self-loop. The simplest approach is
to set all the edge (with different nodes) weights to be a constant «; the self-weights
are decided by the constraint W1 = 1. In the best constant weight graph, « is set to be
2/ (M (L) +Ap—1(L)) where A; and \,,_; stand respectively for the largest and n — 1-th

eigenvalues of L. Additionally, one can also use the maximum-degree weight
1

md

?
dmax

provided that the graph is not bipartite. Another method is to assign the weight on an

edge based on the larger degree of its two incident nodes:
1
Wy = ———, L,y €€
7 max(d;, d)) i, g}

and then determine W;; using W1 = 1, which yields the so-called local-degree weights.
By reformulating the FDLA equivalently as a SDP

min s

s.t. Diag(W — (/)17 + sI, T — W + (1/n)11T> = 0,

Wl=1W=WT,

(1.11)

the authors show the interior-point method is able to solve efficiently the FDLA prob-
lem, for network with up to a thousand or so edges. A simple subgradient method,
which suffers from slow convergence is also described in [88] to handle far larger
problem.

The above examples serve to motivate the study of numerical algorithms for solv-

ing MNA problems.
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1.2 Contributions of the thesis

By introducing a scalar variable ¢ to bound the spectral norm ||Ay — A*y||2, the

MNA problem (1.1) can be equivalently formulated as:

min ¢
st. Byeb+Q, (1.12)
t>1[]Ag — A*yll2,

which is a natural generalization of the second order cone programming. It is well
known that the matrix norm constraint ¢t > || Ao — A*y||5 is equivalent to a linear matrix

inequality with block-arrow structure:

(1.13)

t[m Ao - .A Yy t 0.
(AO — A*y>T t[n

Therefore, the problem (1.12) can be expressed as a semidefinite programming prob-

lem:
min ¢
tl Ay — A*
St m oAy (1.14)
(A() — A*y)T t]n
Byeb+Q,

which falls into the applicable scope of standard SDP packages such as SDPT3 [82],
SeDuMi [76], or SDPNAL [95]. When morn = 1, the constraint ¢ > ||Ag — A*y||>
reduces to a second order cone constraint. In this case, it is certainly not wise to solve
the MNA problem (1.1) via (1.14). Instead one should deal with (1.1) or (1.12) directly
since it is just a second-order cone problem, which requires far lower computational
cost to solve compared to the SDP reformulation (1.14). In the case that n > 1, the
block-arrow constraint ¢ > ||Ag — A*y||, is often handled via its SDP reformulation
[2] because it can not be reduced to a second order cone constraint. This of course
makes the MNA problem potentially very computationally expensive since one has
to deal with (m + n) x (m + n) matrix variables instead of m x n matrices. The
computational cost and memory requirement are especially high when we have large
m + n, but m < n. For example, while applied the SDP (1.14) without linear equality
and inequality constraints, the standard interior point methods require O (p(m +n)3+

p?(m+n)*+p3+ (m—l—n)3) flops at each iteration to solve the dense Schur complement
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equation and compute the search directions. The total memory requirement should be
more than 8p* + O(m + n)?.

Realizing the difficulties mentioned above, in this thesis we consider three differ-
ent approaches to solve the MNA problem directly instead of via its SDP reformula-
tion. The first idea to solve the matrix norm approximation problems is built on the
classical alternating direction method [30, 34]. In the past several years, we have wit-
nessed explosively increasing interests in ADM because of its effectiveness in diverse
areas, such as image processing [90], compressive sensing [89], matrix completion
[14], robust principle component analysis [81] and sparse matrix separation [74]. This
provides an initial impetus for us to apply ADM to solve MNA problems by its variant

which has a separable structure:

min || X2
st. Ay + X = Ay, (1.15)
By—b=z 2z€Q.

At each iteration of the ADM, the subproblem involved can either be solved by a fast

algorithm or it has a closed form solution, due to recent advances in [21].

Recently, Zhao, Sun and Toh [95] designed a Newton-CG augmented Lagrangian
(NAL) method to solve the standard SDP problems, which is essentially a proximal
point algorithm applied to primal problem where the inner problems are solved by an
inexact semi-smooth Newton method using a preconditioned conjugate gradient (PCG)
solver. Their numerical results demonstrated the high efficiency and stability of the
NAL method whenever the primal and dual constraint nondegeneracy conditions hold.
This phenomenon can be partially explained by the theoretical results in [13, 77, 78]
where it is shown that under the constraint nondegenerate conditions the augmented
Lagrangian method can be locally regarded as an approximate generalized Newton’s
method applied to a semismooth equation. Shortly after, Wang, Sun and Toh extended
this idea to solve a class of log-det problems, i.e., applying the proximal point algo-
rithm to solve the primal problem where the innear problem is solved by a Newton-CG
method. Extensive numerical experiments show that the resulting algorithm is shown
to be approximately 2~20 times faster than the adaptive Nesterov’s smoothing method
[57]. Motivated by the stability and the effectiveness of the Newton-CG based PPA, we
adopt the essential idea of the NAL method to propose a semismooth Newton-CG dual
proximal point algorithm (SNDPPA) to solve the problem (1.1). As a starting point,
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we first derive an inexact dual proximal point algorithmic framework with checkable
stopping criterions for the MNA problem. Based on the classical result of the proximal
point algorithm in [72, 73], we analyze the global and local convergence of the PPA
for solving (1.1). We note that the subproblem of the dual PPA in each iteration is an
unconstrained minimization problem whose objective function is convex continuously
differentiable though not twice continuously differentiable. However, since the corre-
sponding gradient is strongly semismooth, we are able to apply the inexact semismooth
Newton method to solve the unconstrained minimization subproblem with a fast con-
vergence where at each iteration a preconditioned conjugate gradient method is used to
compute approximately the Newton directions. Using the results of nonsmooth anal-
ysis in [16], we also clearly characterize the tangent cone and then the linearity space
of the unit nuclear norm ball, and therefore introduce a constraint nondegeneracy con-
dition for the subproblem. It turns out that the constraint nondegeneracy condition is
equivalent to the nonsingularity of the generalized hessians of the subproblems and
then ensures the quadratic convergence of our inexact semismooth Newton method.
We also designed efficient implementation for our proposed algorithm to solve a va-
riety of instances and compare its performance with the popular first order alternating
direction method. The results show that our algorithm substantially outperforms the al-
ternating direction method, especially for the constrained cases, and it is able to solve

the matrix norm approximation problems efficiently to a relatively high accuracy.

In the last part of this thesis, we study a squared smoothing Newton method [47,
68, 79] for solving MNA problem (1.1), or equivalently (1.12). Assuming the strong
duality holds for the problem (1.12) and its dual and there exists at least one saddle
point. Then solving the MNA problem is equivalent to the following KKT syestem:

(

(t,X) =Tg(t —1,X + Z)

AZ 4+ BTw =0,

A*y 4+ X = Ay, (1.16)
By = by,

wy = Hgra (wy — Bay + by),

\
where K is the epigraph cone of spectral norm, and ; and , represent the indexes of
equality and inequality constraints, respectively. In order to apply the smoothing New-
ton method to (6.5), we adopt the essential idea of [67, section 4] to provide a com-
putable smoothing function for the metric projection onto the epigraph of /; norm,

which, together with the recent developments of spectral operator [20], furnishs us a
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smoothing function G of IIx. It can be shown that G(-,-,-) is v order semismooth
at (0,t,z) for any given ¢t € R and x € R™. The search direction is computed by
solving the Schur complement of the Newton system. Moreover, based on Clark’s
classical results on the tangent cone of convex sets [16], we also characterize the pri-
mal and dual constraint nondegeneracy and derive some equivalent conditions for the
nondegeneracy. We are able to show when the primal and dual constraint nondegen-
eracy conditions of (1.12) and its dual hold, the proposed smoothing Newton method
solves the MNA problem with a suplinear convergence rate. Preliminary numerical
experiments demonstrate that the smoothing Newton is very robust and efficient for
moderate and small scale problem. Specifically, we can successfully find the solution

with the desired accuracy in a few iterations.

1.3 Organization of the thesis

The remaining parts of this thesis are organized as follows. In chapter 2, we
list some preliminaries on the semismoothness mapping, spectral operator for non-
symmetric matrices, Moreau- Yosida regularization and smoothing functions. We give
the closed form solution of the proximal point operator associated with the spectral
function and establish its strongly semismoothness everywhere. We also discuss a com-
putable smooth counterpart of the metric projection onto the epigraph of the spectral
norm. With the help of the properties enjoyed by the spectral operator, we are able to
show this smoothing function of II is v order semismooth at (0, ¢, X) for givent € R
and X € R™*". In chapter 3, we briefly review the history of the alternating direction
method, develop some new results on the ADM and the proximal ADM and then dis-
cuss the details on the implementation of ADM for the MNA problem. In chapter 4,
we introduce the framework of the inexact dual PPA for solving the MNA problem and
establish its global and local convergence under certain conditions. The subproblems
reformulated as a system of nonsmooth equations are solved by an inexact semismooth
Newton method where the preconditioned conjugate gradient method is employed to
compute the Newton directions. The suplinear convergence of our inexact semismooth
Newton-CG method is established under the primal constraint nondegeneracy condi-
tion of subproblems, together with the strong semismoothness property of the metric
projection onto the unit nuclear norm ball. In addition, some numerical issues per-
taining to the efficient implementation of the semismooth Newton-CG method are also
addressed in this chapter. In chapter 5, we implement the ADM and the SNDPPA to
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solve a variety of problems, including random matrix norm approximation problems,
Chebyshev polynomial of matrices and FMMC/FDLA problems. Numerical results
demonstrate that our SNDPPA is very efficient and robust to solve the MNA problem
to a relatively high accuracy. In chapter 6, by using the smoothing function of Il
introduced in chapter 2, we introduce the squared smoothing Newton method for the
MNA problem where the Newton directions can be computed by solving the Schur

complement of the Newton system. We conclude the thesis in chapter 7.

Notation. For any given positive integer m and n, we denote by [,,, 1,,,x,, and 0,,,, the
n X n identity matrix, the m x n matrix of ones and zeros, respectively. We also use 1,,
and 0,, to denote the vector of ones and zeros, respectively. We frequently drop m, n
from the above notations when their size can be clear from the context. For any x € R",
diag(z) denotes the diagonal matrix with diagonal entries x;,7 = 1,...,n, while for
any X € R™*", diag(X') denotes the main diagonal of X. Let & C {1,...,n} be an
index set, we use |« to represent the cardinality of o and X, to denote the sub-matrix
of X obtained by removing all the columns of X not in o. Let 5 C {1,...,n} be
another index set, we use X,z to denote the |«| x |3| sub-matrix of X obtained by
removing all the rows of X € R™*" not in « and all the columns of X not in 3. The

Hardamard product between matrices is denoted by “o”, i.e., for any two matrices X
and Y in ™", the (¢, j)-thentry of Z := X o Y is Z;; = X;;V;;.

10
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Chapter 2

Preliminaries

In this chapter, we review and develop some results on the semismooth mappings,
spectral operator, Moreau-Yosida regularization and smoothing functions, which are

useful for our subsequent discussion.

2.1 Semismooth mapping

In this section, we briefly review the basic concepts B-subdifferential, Clark gen-
eralized Jacobian and semismooth functions.

Let &£ be a finite-dimensional real Hilbert space and O be an open set in £. Let
&’ be another finite dimension Hilbert space. Suppose that ® : O — &’ is a locally
Lipschitz continuous function on the open set O. By Rademacher’s theorem, & is
almost everywhere Féchet-differentiable in £. Let {2 be the set of points where & is
differentiable. For any x € &, the B-subdifferential of ® is defined by

Op®(x) :z{ lim @’(xk)}

Qozk -z

and the Clark’s generalized Jacobian [16] of ® at x is the convex hull of 5 ®(z), i.e.,
0P (z) = conv{0pP(x)}.
The concept semismooth was first introduced by Mifflin [61] for functionals and
then extended to vector valued functions by Qi and Sun [69]. See also [27, 59].

Definition 2.1. Let ® : O C £ — &' be a locally Lipschitz continuous function on
the open set £. The function @ is said to be G-semismooth at a point x € O if for any
y—zand V € 00(y),

O(y) — (z) = V(y — =) = ollly — =]).

The function ® is said to be v order G-semismooth at x if for any y — x and V' €
O (y),
O(y) — () = V(y —2) = O([ly — =[|"*).

11
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If v = 1, ® is strongly G-semismooth at z. Furthermore, if the (strongly, + order)
G-semismooth function @ is also directionally differentiable at z, then @ is said to be

(strongly, v order) semismooth at x.

The (strong) semismoothness property plays crucial role in establishing the (quadrat-
ic) suplinear convergence of the semismooth Newton method for solving the nonlinear
equations, as well as SC! unconstrained optimization problems. Many common func-
tions such as convex functions and smooth functions can be verified to be semismooth
everywhere. Piecewise linear functions and twice continuously differentiable functions
are examples of strongly semismooth functions. In what follows, we provide a simple
sufficient (not necessary) criteria to recognize the semismoothness of functions, which
is based on the concept semialgebraic functions originally considered in the field of

algebraic geometry [4].
Definition 2.2. A set in " is semialgebraic if it is a finite union of sets of the form
{r eR" :pi(x) >0,¢i(x)=0, i1=1,2,....m, j=1,2,...,k},

where all p;(z), g;(x) are polynomials. A map F': X C " — ™ is called semialge-

braic if its graph is a semialgebraic subset of ",

The following semismoothness result on semialgebraic functions is a special case
of [5, Theorem 1] on tame functions. More characterizations of tame mappings can be
found in [48].

Proposition 2.1. Let a semialgebraic function F' : R" — R™ be locally Lipschitz.

Then there exists a rational number v > 0 such that F' is y-order semismooth.

2.2 Spectral operator of matrices

In this section, we first list two useful results on the nonsymmetric matrices. The

following inequality is called von Neumann’s trace inequality [63].

Proposition 2.2. Let Y and Z be two matrices in R"™*". Then
(Y, Z) < (o(Y), 0(2)),

where o(Y') and o(Z) are the singular value vectors of Y and Z respectively.

12
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Proposition 2.3. (c.f. [52]) Suppose X € R"™*™ has the SVD
X = UlDiag(c) 0]V, 2.1)
Then the orthogonal matrices P and W satisfy
P[Diag(c) 0] = [Diag(c) 0]W

if and only if there exist three orthogonal matrices Q € R™", Q' € R"=x(m=1) gnd
Q" € R=)x(=7) sych that

p:[@ 0] e W:[Q 0],
OQ/ OQ”

where 1 is the number of positive singular values of X and () is a block diagonal

matrix.
Let X be a Euclidean space which is Cartesian product of S™* and R™*", i.e.,
X = 8™ x R,
For any X := (X, X5), define x(X) € R™ ™ by
K(X) == (MX1),0(X2)).
Let w be a mapping from ™™ to R ™ which can be decomposed into the form
w = (h,g),

where h : R™T™ — R™ and g : R™T™ — R™. Suppose w is symmetric, that is for

any perturbation matrix ¢); and signed perturbation matrix (s,

w(z) = [Q1 Qo) w(Qr1z1 Qoxz), Va € R™T™,
where z; € R™ 1y € R™ and 27 = [27, 2T].

Definition 2.3. [20] Let X; and X, have the following respective eigenvalue and sin-
gular value decomposition
X, = PDiag()\)P7, (2.2)

X, = U[Diag(c) 0]V, (2.3)

13
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The spectral operator GG : X — X with respect to the symmetric function w is defined
by
G(X) = (G1(X), G2(X)), X =[X;, X5] € A,

where

GAX);Z{PDmathPi itk =1,

UlDiag(g(k)) O)VT, ifk =2,
and
k= (AX1),0(Xy)).

Since w is symmetric, [20, Theorem 3.1] implies the spectral operator G : X —
X is well defined. Before moving to introduce the properties of GG, we first give
some notations to simplify the subsequent discussion. Assume that g and h are F-
differentiable (i.e., Féchet-differentiable). For any x € R™*™, rewrite h and g as the

following form
h(z) = (hi(z), ho(x), ..., hm, (2)),
and
9(x) == (91(), g2(x), - .., gm ().
Define the matrices A(k), Q(x), (k) € R™™ and F(r) € R™*(=™) by

[ hi(k) — hy(k)

if A £ A\,
A — A
AR = § (W(8)s — (W(K)y; if A= A0 # 7, (2.4)
0 otherwise,

9i(r) — g;(k) if 01 % o

QR = (g'(6))ii — (g'(K);; if 01 = 05,0 % 7, (25)

0 otherwise,

g\ T 9\ if o, +o; 40,
D(k)]; = vit o, ifoito; 7 (2.6)

(9'(k))ii + (¢'(K))i; otherwise,

and

gi(k) .
[F(K)i; = Oi i os 70, 2.7)

(¢'(0))s otherwise.

14
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Let the linear operators S and 7" be defined by

1 1
S(A) = §(A + AT), T(A) := §(A - AT), VAeR™™
Proposition 2.4. [20] Let X = [X; X5] € X be given. Suppose X, and X5 have the

eigenvalue decomposition (2.2) and the singular value decomposition (2.3), respective-
ly.
(1) The spectral operator G is F-differentiable at X if and only if the symmetric
mapping w is F-differentiable at k.
(ii) If G is F-differentiable at X, then its derivative is given as follows for any H =
(A,B) € X,
P [A o A + Diag(h'(r)diag(H))| P,

G'(X)H = . . 5 N
LﬂQoﬂBQ+roTuiy+DmgymmmgH»,foBZVT

where A = PTAP € 8™; B, € R™™ B, € Rmx(=m) gng [B~1 BQ] =
UTBV, diag(H) = [diag(A); diag(B)].

(iii) Ifw is locally Lipschitz continuous at k, then the spectral operator G is (v order,
strongly) G-semismooth at X if and only w is (y order, strongly) G-semismooth

at K.

2.3 The Moreau-Yosida regularization

Let f : £ = (—o00,+00] be a closed proper convex function, e.g. see [71]. The
Moreau-Yosida regularization [62, 92] of f at x € £ is defined by

1
0f(w) s=min fv) + 55l = ol (2.8)

The unique optimal solution of (2.8), denoted by Pf (x), is called the proximal point

of x associated with f.

Example 2.1. Let C' C & be a closed convex set and dc be its indicator function.
Then, for any = € £, the proximal point of = associated with - reduces to the metric

projection of x onto C' by noting the fact that

. 1 2 1 2
mindc(y) + 5lly —=I° <= minglly — [

15
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For the Moreau-Yosida regularization, the following properties (see, e.g. [45, 46,

51]) are often very useful.

Proposition 2.5. Let f : £ — (—o00,+00| be a closed proper convex function, Lb?
be the Moreau-Yosida regularization of f, and PJ? be the associated proximal point

mapping. Then, the following properties hold:
(1) Pf is firmly non-expansive, i.e., Vx,y € &,
1PE(@) ~ PRI < (PE(@) — PE(y).a ). 2.9)
Consequently, Pf is globally Lipschitz continuous with modulus 1.

(i1) @D? is a continuously differentiable convex function, and

Vil (z) = %(x ~Pl)), €& (2.10)

A particular elegant and useful property on the Moreau-Yosida regularization is

the so-called Moreau decomposition.

Theorem 2.6. Let [ : £ — (—o0, +00] be a closed proper convex function and [* be
its conjugate. Define g : £ — (—o00, +00] by

g(x) = f*(x/B), Vzel.
Then any x € £ has the decomposition
x=Pl(z)+ Pl(x). (2.11)

Below, we state a well know result in convex analysis on the positive homogenous

functions. See [71] for its proof.

Proposition 2.7. Let f : £ — (—o00,+00] be a proper convex function. Then f is

positively homogeneous if and only if f* is the indicator function of
C={a"€&:(x,2") < f(x), Vo e} (2.12)
If f(0) = 0, in particular if f is closed, then C' = 0f(0).

Combining this proposition with Moreau decomposition, we obtain the following
corollary directly, which provides a powerful tool for us to calculate the proximal point

mapping associated with the positive homogenous functions.

16
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Corollary 2.8. Suppose that the closed convex function f : £ — (—o0, +00]| is posi-

tively homogenous. Then for any C, we have

Pfﬁ(:v) =z — [ge(x),
where BC' represnets the set

BC :={fx|z e C},
and C' is defined by (2.12)

In what follows, we use Corollary 2.8 to calculate the proximal point mapping
associated with the spectral norm, which plays a crucial role in the efficient implemen-
tation of the ADM. For notational convenience, we write Bg := {z € ®™ | ||z|; < 5}
and Bg := {X € ™" ||| X||. < S}. If 5 =1, we just use B and B to denote the unit

1 norm ball and nuclear norm ball, respectively.

Proposition 2.9. Let f(X) = || X||, be defined on R™*™ and 3 > 0. Suppose X has

the following singular value decomposition (SVD)

X = UlDiag(c) 0]V7, (2.13)
where o = (01,09, ...,0m)" withoy > 0y > ... > 0,, > 0. Then it holds that
P}(X) = X — T, (X), (2.14)

where 11, is the projection onto B, and it is given by

I3,(X) = U[Diag(Ilg,(0)) 0]V". (2.15)
Proof. By directly computing the subdifferential of f , we have

0f(0) = {X e R™" || X[l <1},

and then (2.14) follows immediately from Corollary 2.8. Note that IIz,(X) is the

unique solution of the following optimization problem:
1
min §HY —X|?
st Y« < 5.

By the Von-Neumann'’s trace inequality [63], we know that

lo(X) —a(V)| <X =Y|lp.

17
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Since the metric projection onto Bg is unique, we have
I13,(X) = U[Diag(o(Ilz,(X))) 0]V".
Therefore, o (Il5,(X)) is the optimal solution of
1 2
min §Hy —a(X)||
st [yl <8,

which implies that
o(lp, (X)) =g, (o).

This completes the proof of this assertion. [

Now, we are ready to give the exact expression of the projection II,. Let x be a

given vector in R”. Define the vector ((x) to be

Gi(x) = %(;x] —B), i=1,2.....m.
Let k1 (x) and k() denote respectively the maximal indexes of the following two sets:
{i:0o;>Gx),1<i<m}, {i:o0;> (), 1<i<m}.
From the breakpoint search algorithm in [41, 42], it follows that

x, if ||z, <1,
g, (7) = (2.16)
max (2 — (g, (2)(2),0), otherwise.
Also see [10, 12, 17] for breakpoint algorithm using medians. Let X have the singular
value decomposition (2.1). According to the analysis above, we are able to express
I, (X) analytically by
X, if [ X[, <5,
s, (X) = (2.17)
U[Diag( max(o — (i () (0),0)) 0]V, otherwise.
Remark 2.1. From (2.17), it follows that Ilg, is differentiable at = if and only if x

satisfies one of the following two conditions:
@ |zl < B

18
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(ll) H.THl > ﬁ and ]{31<Z') = k’g(l’)

Also see [87] for a complete characterization of differentiability of metric projection
onto vector k-norm ball. Let X be a matrix in #”**" which admits the singular value
decomposition (2.1). Combining Proposition 2.4 (iii) with the conditions (i) and (ii),
we can easily deduce that I, is differentiable at X if and only if X satisfies either of

the following two conditions:
@ [ Xl < 5;
(i) [| X« > B and ky(0) = ka(0).

Remark 2.2. Since Ilp, is piecewise linear thus strongly semismooth, by part (iii) of

Proposition 2.4, I1, is strongly G-semismoothn at any X € R™*".

Since the proximal point mapping Pf is Lipschtiz continuous, it is differentiable
almost everywhere on £. Therefore, the B-subdifferential 0p Pfﬁ and the Clarke gener-
alized Jacobian 8Pf of P]’? are well defined.

Proposition 2.10. Let f be a closed proper convex function on £. For any x € €&,

OP¢(x) has the following properties:
(i) Any V € 0Py(x) is self-adjoint.
(i) (Vd, d) > ||Vd|? forany V € P;(x) and d € E.

Proof. (i) Define ¢ : € — R by ¢(y) := 1|lyll* — ¢¥s(y), y € E. It follows from

Proposition 2.5 that ¢ is continuously differentiable with Vo(y) = Pr(y), y € £.
Therefore, (V¢)'(y) is self-adjoint if it exists. It follows that any element in 0 P¢(z),
and thus that in 0Pf(x) = conv 0g Pf(x), is self-adjoint.

(ii) Let d € £ and 2 € Dp, := {y € & : Py is differentiable at y} be arbitrarily
chosen. From Proposition 2.5, for any ¢ > 0, we have (P;(z + td) — Pf(z), td) >
| P(z +td) — Py(2)||?, from which it follows that

(t Py(2)d, td) +o(t?) > ||t Pj(z) d + o(t)" (2.18)
By taking limits for ¢ — 0 in (2.18), we obtain

(Pi(z)d, d) > ||P;(2)d||* Vz € Dp,. (2.19)
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Let V' € 0Pf(x). Then there exists a positive integer m > 0, V; € dgPs(x), \; >
0,i=1,2,...,m,suchthat ) " A, =landV =3" \Vi. Foreachi=1,...,m
and k = 1,2, ..., there exists 2 € Dp, such that ||z — 2%|| < 1/k and

1PF(a"*) = Vil < 1/k.

By (2.19), we have (P}(x™) d, d) > ||P;(2") d||*. By taking limits, we get (V; d, d) >
|V; d||?, from which it follows that
2

(Vd, d) => "X (Vid, d) > > \|[Vid|* > = |Vd|]?, (2:20)
=1 =1

zm: \Vid
i=1

where the second inequality follows from Jensen’s inequality applied to the convex

function 0(y) := |ly||*>, y € €. Since d is arbitrarily chosen, part (i) follows from

(6.40). O

Remark 2.3. Let ' be a closed convex set and f be its indicator function. In this
case, Pf reduces to the metric projector onto C', and thus Proposition 2.10 recovers the

positive semidefiniteness of JIl established in [59].

2.4 Smoothing functions
Let || - ||oo be the [, norm, i.e., for each z € R™,
][ o = max {fa| [1 <7 < mj.

Denote the epigraph of ||- || by epi,. . Forany (¢,z) € RxR™, let [I(t, z) denote the
metric projection of (¢, x) over [, norm, which is the unique solution of the following

optimization problem:

1 1
min éHy—xHQ—I—i(s—t)Q
st Y]l < s,

or equivalently,
1 , 1 ,
Zly = “(s—t
min 2||y x| + 2(5 ) 221)
st. —s<y; <s,1<i<m.
Write H (e, t,z) = (s(e,t,z),y(e, t,x)) to denote the unique optimal solution of the

logarithmic penalty problem associated with (2.21), i.e.,

1 1 m m
H(e,t,x) = argmin {Qlly — P+ 5(s—1)° =€ ;log(s —y;) — & ;log(s +vi)

(22)
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Proposition 2.11. Let (t, z) be a given vector in R x R™. Then the following statements

are valid.

(1) H(-,-,-) is continuously differentiable on R, . x R x R™, and for any ¢ > 0 and
(t,z) x R" x R,
0H (e, t,x)
o(t, x)

where < means symmetric negative definiteness.

0~ <1,
(ii) For any xq € R™ and ty € R,

lim  H(e, t,x) = (o, o).

el0,t—tp,x—x0

(iii) H(-,-,-) is v order semismooth at (0,ty,xo) for some rational number v > 0.

Furthermore, if to > —||x¢||1, then H(-,-,-) is strongly semismooth at (0, ty, zo).

Proof. 1) By the definition of H (¢, ¢, z), we know that

( o 2y .
Yi—x+e 2 0,
i 2s C
2 _ 1=1,2,....m 2.23
s—t—-¢ ZW—O, ( )
i=1 i
s > |yil,
Foreach 1 < ¢ < m, write
1 1
di = 2 2
(i +5) (i — s)
and .
1
b; =

+ :
(i +s)* (i —s)?
Direct computation shows that

1+22) b, e2qT OH(e,ta) | 024)
i=1 Cotx) '
e%a I + £2Diag(b) (t,)

which implies the continuously differentiability of H (e, -, -). Moreover, by simple al-

gebraic computation, one can easily establish that

1+ 82 bz 826LT
; -1, (2.25)
e%a I + £2Diag(b)
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which, together with (2.24), completes the proof of (i).
i) Since the Slater condition of (2.21) holds naturally, by [67, Proposition 4.1], it holds
that

lim  H(e t,x) = Uy (to, 20)

£l0,t—to, 0
for any (to, o) € R

iil) If tg > —||zol1, then I (to, zo) # (0,0), which implies that the linear indepen-
dence constraint qualification (LICQ) of (2.21) holds. By [67, Proposition 4.1], we
can easily obtain that H(-,-,-) is strongly semismooth at (0, to, ). Next, we show
H(-,-,-) is locally Lipshcitz at (0, to, xq) for (¢, zo) satisfying ty < —||x||;. For any
given (e,t, z), we know from (2.23) that

m 2 m 2

Ine? = Z(s—yi) c +Z(S—|—yi) -

i=1 STY T S+ Ui

- pf](i - —61] 218+yz

im0 Yi
= S+ |yl —st—y'w,

| ] ) (2.26)

where e; is the usual ith base vector. Write ¢t = ¢ty + At and © = xg + Az. Then by

direct computation applied to (2.26), we have

2ne? s2 4+ ||ly||* — sto — yTxo — sAt — yT Ax

2+ lylI* + sllzolly — lyllocllzolly — s[A] — [[y]lco | A|[x
s?+ |lylI” — s(|At] + || Azl

s? — s(|At] + /n| Az]]).

(2.27)

AVARAVARLY,

It therefore holds that
lyllee < s < ||AL]| + V/nl|Az| + V2n|e],

which, together with G(0, to, o) = Il (to,z0) = (0,0), implies the local Lipschtiz-
ness of H(-,-,-) at (0,9, zo). Since, for any ¢ # 0, H(e,t,x) is the unique solution
of the fractional system (2.23) and H(0,¢,z) = Il (¢, z) is a semialgebraic function
with respect to (¢, x), it can be checked directly that H (-, -, ) is semialgebraic. There-
fore, by invoking Proposition 2.1, one can easily obtain the v order semismoothness of

H(-,-,-) atany (0, y,zo) for some rational number . O

Proposition 2.12. Let (t,x) be a given vector in & x R
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(i) Forany i = 1,2,....,m, 0 < y;(e,t,2) < ;. In particular, if x; > 0, then
0 <yi(e t,z) <z

(i) Ifz; < xj, then 0 < y;(e,t,x) —yi(e, t,x) < x; — x;.

Proof. i) Note that s(e,t,2)* > y;(e,t,2)? for any 1 < i < m. Then one can easily
deduce from the first equality of(2.23) that y;(e, ¢, z) — x; and y;(e, t, x) have opposite

signs, which implies the first assertion.
2 P . . . .
;EZE are strictly increasing with

respect to y; for any . It therefore follows from the first equality of (2.23) that y; < y;

ii) For fixed (e, z, s), it is easy to check that y; and

when z; < x; and thus y; — x; > y; — x;, which is exactly the second assertion of this

proposition. O

Let Z be any given matrix in R™*". We use 01(Z) > 03(Z) > ... > 0,(2)
to denote the singular values of Z (counting multiplicity). Let Z admit the following

singular value decomposition (SVD)
7 = Uldiag(o(Z))0)V7,

where 0(Z) = [01(Z),05(Z),...,0m(Z)]" and U € R™*™ and V' € R™* are orthog-
onal matrices. Define the spectral operator G(-,-,-) : R x ™" x R — R x g™

with respect to smoothing function H (-, -, -) as follows

s(e, t,0(Z))

CELI =] Ubiagtyte,to(2)), 07

(2.28)

forany Z € R™* t € R and e € R. The next proposition shows that G(-, -, -) is indeed

the smoothing function of the metric projector over the epigraph of the spectral norm.

Proposition 2.13. Let Z € R™ " and t € R.

(i) The spectral operator G(-,-,-) is well-defined and, for any given ¢ > 0, t € R and
Z € R™™ G(-,-,-) is continuously differentiable at (¢, Z, ).

(ii) Forany X° € R™" and t° € R,

lim G(e,t, X) = I, (#°, XV).

€l0,t—t0, X —+ X0

(iii) G(-,-,-) is vy order G-semismooth at (0, ty, Xo) for any (to, Xo) in R x R"™*" for
some rational number v > 0. Furthermore, if to > —||Xol|2, then G(-,-,-) is

strongly G-semismooth at (0, to, X)
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Proof. i) Clearly, for given € and t, H(e, -, t) is absolutely symmetric with respect to
R™. Therefore, G is well defined. Since H(-,-,-) is continuously differentiable on
R\{0} x R x K™, according to Proposition 2.4 (i), G(-,-,-) is continuously differen-
tiable on R\ {0} x R x R™.

ii) For given € # 0 and ¢t € R, it follows from Von Neumann’s trace inequality that
|G(e, 1, X) = G(e,t, Z2)|| < [|H(e, t,0(X)) — H(e, t,0(Z))].

As stated in Proposition 2.11, H (-, -, -) is the smoothing function of II.(+, -). Combin-

ing all these arguments, we deduce that

lim G(e,t, X) = I, (t°, XV).

€l0,t—t0, X —+ X0

i1i1) The last assertion follows directly from Proposition 2.11 (iii) and Proposition 2.4

(ii1). We omit the details. L]

Next, we briefly review the CHKS smoothing functions for plus function. Let
hy(-,-) : R* — R be the CHKS function defined by

Vw? 442 +w
2 M

hy(e,w) = V(w,e) € 12,

One can easily extend these smoothing functions for scalar plus function to vector-
valued plus function. Indeed, define H,(-,-) : R™ x R — R by

hu<€7 xl)

hu(g, o
H,(e,x) = ( )

hy (e, Zm)

for any € ™ and ¢ € R. It is easy to verify that H, is smoothing functions for the
vector plus function max(x, 0), which is continuously differentiable on R, , x R and

enjoy the strongly semismooth property on {0} x R™.
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Chapter 3

An alternating direction method

3.1 Introduction

Roughly speaking, alternating direction method (ADM) is an inexact implemen-
tation of the augmented Lagrangian method using the idea of Gauss-Seidel iteration. It

solves problems of the form

min  f(z) + g(y)

(3.1)
st. Ar+By=1»

with variables z € R" and y € R™, where f : ®* — RU {400} and g : " —
R U {+o00} are proper closed convex functions, A € RP*"™, B € RP*™, and b is vector

in RP. The augmented Lagrangian function of (3.1) is given by
g
Ls(z,y,A) = [ (@) + g(y) = (\, Az + By = b) + S| Az + By = b|]*,

where A € P is a Lagrangian multiplier and 5 > 0 is a penalty parameter. The

classical augmented Lagrangian method [43, 64] consists of the iterations

{ (@1, 41) = argmin £y(r. 5. ),

Lo N V. Akt 1+ Byktl —p (3.2)
VB(Ax"" + By )

where v € (0,2) guarantees the convergence. Seen clearly form (3.2), at each itera-
tion the simple scheme of ALM involves a joint minimization with respect to x and
y and therefore ignores the separable structure of (3.1). In contrast, the idea of ADM
is to decompose the minimization task of Ls(-,-, A) into two easier and smaller sub-
problems such that the involved variables x and y can be minimized separately in the
alternative order. The decomposed subproblems are usually much easier than the join-
t minimization task in (3.2) and even for some applications admit analytic solutions
[14, 40, 54, 89, 93]. Given a couple (y*, \*), the ADM applied to problem (3.2) yields
the following iterative scheme
zF = argmin Lg(x, y*, AF),

Y"1 = argmin Lg(z" 1, y, AF), (3.3)
ARFL = \F — B(Agk+l — Byk+l _p).
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Since its presence [30, 34] in the field of differential equation, ADM and its vari-
ants have been widely studied in many areas, such as convex programming and varia-

tional inequality. In [32, 33], the authors proposed an extension of the ADM (3.3), in

VE+1
2

A. Specifically, the extended ADM iterates as

which a stepsize v € (0, ) is attached to the update of the Lagrangian multiplier

oF = argmin Lg(x, y*, AF),

y = arg min Lg(x" 1y, \F), (3.4)
A+l — Z\k ’Yﬁ(Axk—H _ Byk—i-l _ b)

k+1

Gabay [29] considered the ADM from the perspective of operator splitting and stated
that the classical ADM is the tight Douglas-Rachford splitting method [22, 55] for
finding a zero of the sum of two maximal monotone operators applied to the dual of
(3.1). Sequently, in [24], it is shown that the Douglas-Rachford splitting method is a
special implementation of the proximal point algorithm. Replacing the classical PPA
by the relaxed PPA introduced in [35], Eckstein and Bertsekas obtained the following

generalized alternating direction method:

lo#+* — argmin{f(x) — (¥, Az) + F[| Az + By* — bl*}[| < s,

ly**+* — arg min{g(y) — (X*, By) + §llpe(Az**" = 0) + By — (1 — pe)y")IIPH] < vn,

N = AR B(puArtt — (1 — po) Byt + ByFt),

(3.5)

where p, € (0,2), up > 0, vy > 0, > o2 up < ooand > .~ v, < oo. If p, = 1,
the generalized ADM (3.5) reduces to the original version of ADM. Suggested by
Rockafellar, Eckstein [23] also considered a primal-dual saddle-point application of
the Douglas-Rachford splitting to the separable convex programming. This resulting

algorithm is known as the proximal alternating direction algorithm:

A = argmin{f(x) — (A, Az) + 5| Az + By* —b|]* + 3o — |7},
Y"1t = argmin{g(y) — (\¥, By) + §!\A9«”k+l + By = bl|* + 3lly — v,
Ak+1 — )\k . /8(141,]64’1 + Byk+1 _ b)
(3.6)
By further investigating the contractive property of the proximal ADM, He et al. [39]

k+1 k+1

presented a new variant of ADM in which """ and """ is produced by inexact min-

imizing the subproblems and the parameter 3, s, are replaced by positive definite
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matrices. More specifically,
l2*+ — argmin{ f (z) — (\*, Az) + 3| Az + By* = bll};, + 3lle — 2" [} < w,
ly*** — argmin{g(y) — (\*, By) + 3 Aa"** + By — b7, + 5lly — v 115, < i,
ARHL = \b T (AghHl 4 ByFtl — p).

(3.7)
where up > 0, v, > 0, Y oo up < oo and > oo, vp < oo; {Sk} and {T}} are se-
quences of both lower and upper bounded symmetric positive definite matrices; for a
symmetric positive definite matrix G and a given vector z, ||z||¢ = V2T Gxz; Hy is re-
quired to satisfy some technical condition introduced in [39]. From the perspective of
contraction, Ye and Yuan [91] developed a variant of alternating direction method with

an optimal stepsize. Given a couple of (y*, \¥), the new iterate of Ye-Yuan’s algorithm

is produced by
2F = argmin Lg(x, y*, \F),
"t = argmin Lg(z* Ty, AF), (3.8)
:\k+1 — )\ — ﬂ(Aka + ng+1 _ b),

and

k+1 ok ok (0k _ ok
{y Y =y (Y —7"%), 3.9)

AL = NF — oy (AR — AR)
where v € (0,2) and «* is defined by

., 1 [1 B|| Azt + By* —b||?

a = — = .
20" BBy — B+ S - P

Numerical results demonstrated that an additional computation on the optimal size
would improve the efficiency of the new variant of ADM. More recently, an ADM
based relaxed customized proximal point aiming at accelerating the ADM was pro-
posed by Cai et al. [11] for solving the separable convex programming (3.1). With the

given couple (¥, \¥), this algorithm first generates a prediction point (Z*, 7%, \*) by

* = argmin Ls(x, y*, \¥),
3ok B(Ai’k - Byk’ —b), (3.10)

g* = argmin Ls(3*, y, AR,

and then updates (y**1, \**1) according to the following rules

{ Yt =gk — (k- 7).

AL — \k ,y()\k _ 5\1;) (.11
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where v € (0,2). As we will see later, the ADM based PPA is equivalent to a special

implementation of Eckstein and Bertsekas’ generalized ADM.

3.2 Equivalence of Eckstein-Bertseka’s ADM and ADM based
customized PPA

For ease of discussion and notations, we assume without generality that A = M

and B = —I. Then the separable convex programming collapses to:

min  f(z) + g(y)
st. Mx=y.

and the exact implementation of Eckstein-Bertsekas’s generalized ADM goes as fol-
lows:

/

P = argmin{f(2) + O M~ + HP),

. B
W = argmin{g(y) + 5 [pMa" + (1 - p)y* —y + 0"}, (3.12)

PEFL = b pMyFH 4 (1-— p)yk — gkt

\

where p € (0, 2) is a constant relax factor. Given the couple (x*, p*), the next iteration

of Cai et al.’s relaxed ADM is produced by

(

o = argminfgly) + 5| Ma* —y + ),

ﬁk :pk—FMLEk _gk’

P = argmin{f(x) + O Mo — 5 + 9P, G.13)
bt = (1= p)at + p*,
| P = (1= )"+ et

Next we analyze Cai et al.’s algorithm in detail under the setting (p°,z°) = (0,0).

Using the iterative formula in (3.13), it is easy to check that
Mzt 4t = (1= p)(Ma® + p*) + p(ME* + ),

which means

k
MF+! +pk+1 _ Zp(l _ p)j(M:ik_j +}5k_j)- (3.14)
j=0
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Then by the above equality and an easy manipulation, the iterative scheme (3.13) can

be reformulated as

;

W = argmin{g(w —HZp (1 — p) (M1 4 =177y — a2},
— (3.15)
P =) p(1—p) (M7 4 pH17) — o, '
=0
B = argmin{f(@) + 0| Ma - i+ )

By changing the implementation order of w and p and replacing the notation (z*, p*, ")
by (2%, p*, w"), we have an alternative form of (3.13):

(

o = argmin{f(z) + éHMx—wk—l—pkHQ}
k+1 o = _ pht1=i k—j 2
wt = argmin{g(w “ ZP (1 T =l (5
k
P =) o= p) (MM g pt) —
\ J=0
On the other hand, it follows from a direct computation that
k k—1
Zp (1— e ] +pk ]) — p(Mxk+1 —I—pk) +(1-p) p(1— p)](Mxk_J +pk_1_J)

j=0

=]

j
= p(Mz* +p") + (1= p)(p* + ")
= "+ pMaFT 4 (1— p)wk,

which implies
pk+1 — pk _|_pr143+1 + (1 . p)wk . wk—i—l.

Substituting the above equality into (3.16) yields nothing but Eckstein and Berteskas’
generalized ADM.

3.3 Proximal alternating direction method

For the proximal alternating direction method (3.7), the positive definite matrix
Ry, S, and H,, are allowed to variate according to some particular rules. However,
in many situations, H, is set to be 5] and the sequences {Sy} and {7} are constant
matrices. In this case, we suppress the subindex and write S and 7" for Sy and T}

respectively. The convergence results provided in [39] need both S and T’ to be positive
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semidefinite, nevertheless this assumption may exclude some important applications
(see [89, 94] for example). In [28], by slightly revising the proof in [39], the authors
prove the convergence of the proximal alternating direction method under any of the

following conditions:
(a) f and g are strongly convex;
(b) f is strongly convex and BT B + T is positive definite;
(c) g is strongly convex and AT A + S is positive definite;
(d) S is positive definite and B is injective;
(e) T is positive definite and A is injective;
(f) S and T are positive definite.

However, a moment’s observation reveals that the conditions listed above don’t cover
the basic convergence result of the original ADM in which S = 0,7 = 0 and A, B are
required to be of full column rank. To fill the gap, we provide the following theorem
which summarizes more general convergence results of the proximal ADM. Although
the proof is a trivial extension of that in [39], we still include it here for the purpose of

clarity and completeness.

Theorem 3.1. Assume that problem (3.1) has at least a KKT point. Let (z, yx, \) be
generated by the following proximal ADM:

2 = argmin{f(z) — (\F, Az) + §||Ax + By* — b||? + 3 ||z — 2|3},
P = argminfg(y) — (¥, By) + A2 + By — b + Yy — 13},
AL = \F — B(Az*t + Byt —b).
3.17)
where S and T are positive semidefinite. Then {(xy,yy)} converges to an optimal

solution to (3.5) and {\} converges to an optimal solution to the dual of (3.5) if the

following conditions hold:

A

(a) f is strongly convex or has full column rank;

B

(b) g is strongly convex or has full column rank.
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Proof. We first note that the positive semidefiniteness of AT A+ S (BT B+T) is equiv-
alent to the augmented matrices [A” ST]T ([BT T7]T) has full column rank. Hence,
it suffices to prove the convergence of the proximal ADM (3.17) under the condition
that both [AT ST]T and [BT T7]" are of full column rank since other cases have been

investigated in [28]. Let (z*, y*, \*) be a KKT point of (3.1). Then it holds that

ATX* € Of (z),

BTX* € dg(y*), (3.18)
Ax* + By* =b.
Since o+ and y*+1 solve L(-,4%,3) + ]| - —a*[2 and L(**1,-.8) + 3] - —* 3

respectively, we deduce from the first order optimality conditions that
AN = B(AT + By — )] — S(@H1 — o) € 9f (@),
BTN — B(Ax™*t + By*! — )] = T(y** — o) € dg(y™*), (3.19)
Mo+l — \F 5(A:L’k+1 + Byk+1 _ b).
By (3.19) and the monotonicity of df(-) and dg(-), it is easily seen that
0 < <$k+1 . .CB*, AT[)\kz — A\ — 5(A33k+1 + Byk: . b)] _ S($k+1 o .I‘k)>

_|_<yk:+1 . y*’ BT[)\k . )\* . ﬁ(Axk—i—l + Byk+1 . b)] o T(yk—H o yk)>
)\kz o )\k—i—l

+</\k+1 . >\*7 6 . (Akarl i BykJrl . b)>7
(3.20)
(-, AT 0 = BB(yE — )] - St - a)
+<yk+1 . y*’ BT[)\k—i—l . )\*] . T(yk+1 yk)>
k+1 * )‘k — )‘k+1 k+1 * k+1 *
FATT =N —5 —[A(@™ = 2") + By"™™ —y))),
which implies
<)\k . )\k—i-l7 B(yk . yk—i-l)) + <B(yk+1 ) BB( k+1 k)>
T Sl(xk“ — ")+ W =y, T =) (3.21)
+ <)\k+1 )\*’ E(}\k-i-l _ )\k)) <0

Using the elementary relationship (u, v) = 1(||ul/* + ||v]|* — ||u — v||*), we further
obtain that

ka—&—l k+1

—ZIZ*H%—F |y _y*H%JFBBTB_‘_ H)‘Hl _)‘*H%
< o =25+ 19 = v 17y pprs + N = /\*II% —2(\F = M By — )
k_ “)\k_)\kHHzL

B

—lla® = G = My = v F s —

(3.22)
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By the above inequality, it follows that the sequences {Sz*}, {(T + 8BT B)y"*} and
{\*/3} are bounded. Since T'+ 3BT B and é are positive semidefinite, we deduce that
{y*} and {\*} are also bounded. Recall that

Akttt = \F — \MFL_ Byt 1y, (3.23)

Hence, {(S + BAT A)z*} is bounded and this together with the positive definiteness of
S + BAT A implies the boundedness of {z*}. Moreover, from (3.22), we see immedi-
ately that

Dl = 1y = s+ I = X
=1 (3.24)
+ 2 <)\k _)\k—i-l’ B(ykz _yk-‘rl)) < +o00.

k=1

One the other hand, by the monotonicity of dg(-) combined with (3.19), we have

<yk i yk—o—l7 BT()\k _ )\k—l-l))

> g =y HE+ =T - ) (325)
1 1., .
> v =y = Sly =" — Sy =il
1 _
= Sly" =y T = Sl = I
which , by the boundedness of {y*}, implies that
o
Z<yk . yk—i-l7 BT(}\k _ >\k+1)> > —oo.
k=1
It therefore holds
D et = 2 E < 400, Iy — v lgpraer < +oo
k=1 k=1
and .
DA = XFE < 4o
k=1 ?
This together with (3.23) shows
Jim 2% — 2 =0, lim [ly* =y =0, lim [|A" = A" =0. (3.26)

Since the sequences {z*}, {y/*} and { \*} are bounded, there exists a triple (2°°, y>°, \*°)

and a subsequence ny such that

lim z,, = 2°°, lim =y, lim \,, = \*.
k—oco Tk 7k—>ooynk Y ’k’—>oo Tk
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Then, by taking the limits on the both sides of (3.19), using (3.26) and invoking the

upper semicontinuous of dg(-) [71], one can immediately write

ATX>® € Of (z),
BTX> € dg(y>), (3.27)
Ax>® 4+ By*>® = b,

which means (2°°,y>°, A\*°) is a KKT point of (3.5). Hence, the inequality (3.22) is
also valid if (2, y>°, A*>°) is replaced by (z*, y*, A*). Then it holds that

k= 2 + [+ =y (B gy + A = A1

k o |(2 k o0 ||2 k oo ||2 (3.28)
< ot = a™ls + 1y =y l7s gprp + AT = A%
Since T + 3BT B is positive definite, we deduce from (3.28) that
lim ||z% — 2|4 =0, (3.29)
k—o0

and

lim y* = 3™, lim \F = \*°,
k—o00 k—o0

By the relationship (3.23) and Az> 4+ By™ = b, it is easy to see

lim Az* = Az,
k—00

which together with (3.29) and the positive definiteness of S + 3BT B implies

lim z* = 2>

k—o0

Therefore, we have shown that the whole sequence {(z*, y*, \¥)} converges to (x°°, >, A>)

under the assumption of this theorem. O]

Remark 3.1. Theorem (3.1) provides more general conditions for the convergence of
the proximal ADM. It includes all the conditions in [28, Theorem 8.1] as its special
case. For S = 0 and T' = 0, the proximal alternating direction method reduces to the
original ADM whose convergence can be established under the condition A, B have
full column rank. This basic convergence result is also included in Theorem 3.1 while

not contained in the six conditions provided in [28].
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Corollary 3.2. Assume that problem (3.5) has at least a KKT point. Let (z, i, \i) be

generated by the following linearized alternating direction method:

p = argmin{f(x) — (", Az) + (AT (A" + By* = b), x — 2") + G|z — 2",
yt = argmin{g(y) — (\*, By) + B(B" (Az**" + By* —b), y — ") + 3lly — ",

Netl  — \k ﬁ(AIkJrl + BykJrl _ b),

(3.30)
where r > B||ATA|ls > 0 and s > B||B"B|ly > 0. Then {(zy,yx)} converges to
an optimal solution to (3.5) and {\*} converges to an optimal solution to the dual of
(3.5).

Proof. The linearized ADM (3.30) is a special case of the proximal ADM (3.17)
where S is taken as rI — BATA and T is sI — BBTB. Note that the conditions
r > B||ATA|l; > 0 and s > B||BTB||y > 0 ensure the full column rank property
of [AT ST and [BT T™]". Therefore, this corollary follows immediately from Theo-

rem 3.1. L]

3.4 ADM for the matrix norm approximation problem

In this section, we employ the ADM to solve the matrix norm approximation

problem. Note that problem (1.1) can be expressed in the following equivalent form:

min [| X2
st. Ay + X = A, (3.31)
By—b=2z 2z2¢€Q.

The augmented Lagrangian function associated with (3.31) is given by

Ls(y, X,z Z,w) = || X|2—(Z, Ay+ X — Ay) — (w,By — b — 2)

by X - A+ DBy b2, (32

where Z and w are Lagrangian multipliers, and S > 0 is the penalty parameter. Given
X0 79 ¢ pmn, 20 0 € R™Fm2 and B, > 0, the ADM for problem (3.31) at k-th
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iteration can be described as follows:

' Y = argmin{Ly, (y, X, 25 25, wh)ly € R},
(XFHL M) = argmin{Lg, (v*1!, X, 2; ZF, wh)| (X, 2) € R™" x Q},

2N = ZF — 0B (ATt XM = Ay,

W = wh - BByt — b ),
5k+1 = rﬁka r>1
\
where ¢ € (0, %5) It is easy to see that the minimizer y*! is the solution of the

following linear system of equations:

(AA* + BTB)yf*t = A(Ag — X* + Z%/8,) + BT (b+ 2F +w*/B1).  (3.33)
Since Lg, (y**!, X, z; Z* wk) is separable in X and z, simple algebraic manipulations
then give

XM= Ag — A+ Z8 B — g, (Ag — AP+ 28/ By),
A =Tlo(By* — b —w"/By).
As analyzed in the previous chapter, X**! can be computed analytically. Moreover,
2#*1 is just a simple projection over Q. Specifically, for any given x € "1 +"2,

0 i1 <i<n
max(0,z;) if ng +1<i<ng+ny '

(Ho(x)): = {

Remark 3.2. In the implementation of ADM, the subproblem (3.33) is solved by a di-
rect solver using the Cholesky decomposition where the number of matrices p is small
or medium. For larger p, we employ the conjugate gradient method with a diagonal
preconditioner to obtain an approximate solution of (3.33). In addition, one can com-
pletely avoid solving the linear system by using a linearized technique in the ADM.

Thus, y**! is given by

v = argmin{— (A€} + BELy) + BAY + XM — Aoy — o)+ S ly — o
FB(BT(BY* b=y — oF) + Sy - ). (3.34)

Direct calculation yields the closed form y**! satisfying

Y =yh 4 ﬁ[«‘l*fi‘? + B& — BA(A Y + X — Ay) — BB (By* — b — 2F),

where r > B||AA*|]; > 0 and s > ||BY B||» > 0 guarantee the convergence.
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Remark 3.3. Some more general ADM-based methods in the literature can be easily
extended to solve (1.1). For example, the ADM-based descent method developed in
[91] and the ADM based customized PPA [11]. We here omit details of these general
ADM type methods for succinctness.
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Chapter 4

A semismooth Newton-CG dual proximal point algorithm

4.1 A dual proximal point algorithm framework

In this section, we shall introduce the framework of the inexact dual PPA for

solving the MNA problem and establish its global and local convergence.

4.1.1 Proximal point algorithm

Let H be a real Hilbert space with inner product (-, -). A multifunction 7" : H —

H is a monotone operator if
(z =2, w—w) >0, whenever w e T(z),w € T(Z).
It is said to be maximal monotone if, in addition, the graph
G(T)={(z,w) e Hx H|lweT(z)}

is not strictly contained in the graph of any other monotone operator 7" : H — H. In
various fields of applied mathematics, many problems can be equivalently formulated
as a maximal monotone inclusion problem, that is, given a, possibly multi-valued,

maximal monotone operator 7 : H — H, itis to find a x € X such that
0eT(x).

For example, let f : H — (—o0, 0] be a proper lower semicontinuous convex func-
tions. Then 7" = Of(-) is a maximal operator (see) and 0 € T'(z) means f(z) =
min f(z).

The proximal point method, initiated by [58] and later investigated extensively by
[72, 73]. The PPA [73] applied to the maximal monotone inclusion problem takes the

following scheme

PRy, (2) = (14 MT) ),
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where Ay > 0 is bounded away from zero. In [73], Rockafellar suggested computing

x**! only approximately to satisfy the following accuracy criteria:

k+1

||(E —p,\k($k)|| < €k, Ek > 0, 220:1 Ep < 00, (41)

a5+t = pa (@ < Bl =Ml 6> 0,32 0 <0 (42)

In that paper, he also showed that the sequence generated above converges (in the
weak topology) to a zero point of T, if it exists. Moreover, if A\; T Ao < oo and 7 !
is Lipschitz continuous at 0, then condition (4.2) ensures that the local convergence is
linear and the rate is approximately proportional to 1/A.. If in addition A\, = oo,
then the convergence becomes superlinear. A problem of particular importance is the
convex minimization min f(z) where f is assumed to be proper, lower semicontinuous

and convex. In this case, the above inexact PPA reduces to
. 1 k(2
Tjy1 A~ argmin f(x) + 5“95 —z"||%. 4.3)

The attractive feature of this approach is that the objective function in (4.3) is strongly,
which motivates us to apply an indirect method for solving (4.3) based on the duality

theory for convex programming.

Possibly due to its versatility and effectiveness, the proximal point algorithm re-
ceives continuous attention from numerous researchers and is well accepted as a pow-
erful tool for solving various classes of optimization problems, see, e.g.[37, 56, 72, 84,
95]. In this section, we consider the dual proximal point algorithm, i.e., applying the
idea to the maximal monotone operator associated with the dual problem. By rewriting
(1.1) as

min{||X||2 | Ay + X = Ao, By —be Q}, (4.4)

we can easily derive the following explicit form of its dual

min  —(Ap, Z) — (b, w)
st. AZ+ BTw =0, (4.5)
2]l <1, we Qr,

where || - ||, denotes the nuclear norm of a matrix which is defined as the sum of its

singular values and Q* is the dual cone of Q. For the convergence analysis later, we
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assume that the Slater condition for (4.5) holds, i.e., there exists (Z,w) € R™ ™ x
Ri+m2 guch that

1Z]. <1,
wi>0,i:n1+1,...,n1—|—n2, (46)
AZ + BTw = 0.
Write
a|| X
Ti(X.y) = - ( o ) FOxR(Xoy). VX € RNy e R,
Ao
E(Z,U)) == b + aX]:z(Za w)7 VZ e §Rm><n, w e §Rn1+n2,
and

a(Z,w) = (I + )\’Tg)’l(Z, w),

where J; and JF; are the feasible sets of (4.4) and (4.5) respectively.

For any given Z% € R™" wk € R™*"2 and \, > 0, it is easy to see that

P, (Z%,w*) is the unique solution of the following minimization problem
min —(Ao, Z) — (b,w) + —— || Z = Z¥P + — [[w — w*|?
> ’ 2 2
st. AZ+ BTw =0, 4.7)
1Z]]. <1, we Q.
By attaching a lagrangian y to the equality constraint, the dual of (4.7) is of the follow-

ing form

1 1
— (Ao, Z) — (b —|1Z = Z¥|]? + —|lw — w*|?
ma {40, 2) = () + 2= 2P 4 gt

—(y, AZ + B'w)| | Z]|. < 1,w € Q"}.

Simple calculation shows that the dual of (4.7) can be further expressed as

1
max 0y, (y) == —— (2" — MN(A"y — Ag)) — (2" = Me(A*y — Ap))|I?
yeRP 2
L k2 _ k _ *, 2
o (12417 = 12 = Ay = 40) ) *9)

1 kn2 k o 2
o (1P = 1o = Me(By = D).
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Clearly, the Slater condition (4.6) asserts that the optimal solution set of (4.9) is nonemp-
ty. Let y**! be a minimizer of (4.9). Then from the relationship between the primal

and dual variables, we have

Is( 2" — M(A*yHH — A
pa (2%, 0k) = s =Ml Ay N (4.10)
Mo (! — Ae(By** — b))

Therefore, to implement the proximal point algorithm, one need to solve (4.9) and then

update the variable (Z, w) by

(ZkJrl’ wk+1) ~ p,\k(Zk, wk).

In view of (4.10), we are able to present the inexact dual PPA framework:

Algorithm 4.1 (An inexact dual PPA framework) Given (Z° w?, %) and )y > 0, at
the k-th iteration, do the following steps:

Step 1. For fixed Z*, w* and y*, compute an approximate maximizer

Y"1 ~ arg max 0, (y),

yeRP

where 0, is defined in (4.9).

Step 2. Update the variables Z**!, X*+1 and w**! via

Zk+1 — HBL (Zk . /\k(A*yk+1 o AO))y

A

k
W = Tl (w® — M\ (By* ™ — b)),
Xk+1 — (Zk . )\k(A*ykJrl o AO) . ZkJrl)/)\k

Step 3. If max{||Ay — A*y**! — X*H1| 5, || TIg+ (b — By*™)||} < &, stop; else, update

Ak tO0 Agy1, end.
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4.1.2 Convergence analysis

In Step 1 of the dual PPA, we use the following stopping criteria:

max O (y) — O (yF1) < %, er >0, > 0 e <00 4.11)

max 0, (y) — Op(y**) < %(HZ’LCH — ZF||2 + |whtt — w”]|?), 6 > 0, D207, 0k < 0o (4.12)

5 Zk—l—l _ Zk
Ll 0<d =0 (4.13)

k+1 "k

to terminate our proposed dual PPA. For the constrained minimization (4.4), the aug-

mented Lagrangian is

. A 7
Ls(X,y, Z,w,\) = min{||X|s+ S| Ay + X — A — Z|%
zE\YRﬂ 2 )\

by wkz ,wk 2
By bz -y - 1y,
A2 A 7 A (4.14)
= ||X||2+§||A*?J+X—Ao— X”%
1 lw*|>
— [T (w — A(By — b)) ||* — ———.
+oy ey (w = A(By —0))| 3

For k = 1,2,..., let ¢.(X,y) = Ls(X,y, Z* wk, \¥). By the construction of X* at
each k, we know
X* = arg min (X, ") (4.15)

and
9k<yk+1) — _st(Xk—l-l’ yk-l-l)‘

Combining [72, Theorem 4-5] with the above preparation, we present below two results

on the global and local convergence of the dual PPA.

Theorem 4.1 (Global Convergence). Let the inexact PPA be executed with stopping
criterion (4.11). Suppose that the primal problem (4.4) satisfies the Slater condition.
Then the sequence {(Z*T wh™)} C B x Q* generated by the inexact PPA is bounded
and it converges to an optimal solution of (4.5). Moreover, the sequence {y"*} is also

bounded and any of its accumulation point is an optimal solution of (1.1).

Proof. Observing from the definition 6, (y) and ¢(X, y), we obtain by direct computa-
tion that

min ¢y (X, y) = — max 0, (y).
Xy y
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Therefore, the stopping criterion (4.11) can be written as
2

XF Y min g (X, ) <~ e, >0, S g <
&n( YY) Tgl(gl%( >Z/)_2)\k7 k ,;kz 00,

which is the criterion (A”) in [72]. Then by directly invoking [72, Theorem 4], we can

complete the proof of this theorem. [

Theorem 4.2 (Local Convergence). Let the dual PPA be executed with stopping cri-
teria (4.11) and (4.12). Suppose that the Slater condition holds for (4.4). If ’7;_1 is
Lipschitz continuous at the origin with the modulus a,, then {(Z**', w*™1)} converges
to an optimal solution (Z,w) of (4.5), and

ZH 7 zZk -7

— )

for all k sufficiently large, (4.16)

where vy, = [ag(ag + A7) 7% + 6] (1 — 6x) ™ — ag(a2 + X%) Y2 < 1. Moreover, the
conclusion about {y"*} in Theorem 4.1 is valid.

If in addition to (4.12) and the condition on 7;_1, one also has (4.13) and that 7;’1
is Lipschitz continuous at the origin with modulus a; (> a,), then {y*™'} converges to

the unique optimal solution i of (1.1), and

PG ¢
Yt —y

where X = Ay — A*y, and v}, = a;(1 + 0}) /M — a1/ Ao

Zk+1 _ Zk
<y ., for all k sufficiently large,

Proof. Since

Ox po (X F 1™
DX 1) = [ il ) ] |

Vy¢k(Xk+]"yk+1)
by using the first order optimality condition of (4.15), we deduce that

dist (0, Ox ) G (X, 5" H1)) = [V, o (X1 M),
It can be established by direct computation that
vy¢k<Xk+1, yk+1) — _vye(yk+1>

and therefore the criterion (4.13) is equivalent to

ZkJrl_Z}c
/
- ) , 0<6, —0.

w J—

!
dist (0, a(X,y)ﬁbk(XkH’ka ) < f\—k
k
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Note that
min ¢ (X, y) = — max i (y).
X,y Y

and
9k<yk+1) — —Qbk(XkJrl, ykJrl)'

Then [72, Theorem 5] is applicable to the inexact proximal point algorithm and this

claim follows immediately. ]

Remark 4.1. In practical implementation, a proximal term —35-[ly — y*||* can be
added to the dual objective function 6. This corresponds to the proximal method of
multiplier considered in [72, Section 5] whose convergence analysis can be conducted
in a parallel way for algorithm 4.1. Let 6, (y) be the resulted new dual objetive function,
ie.,

1
Ok (y) = O1(y) — 2—ﬁk||y — "I,

By the strong convexity of the new objective function, it holds that:
. . 1 .
sup O (y) — O (") < %IIVQk(y’““)H?

Therefore, the stopping criterias (4.11) and (4.12) can be modified into the following

practical conditions respectively:

VO (" )| < ek e >0, e < o0
k=0

IVOL(y" I < S/ 1254 = ZH2 + [[wk+t = wk ]2, 6, > 0, ) 6 < oo.
k=1

4.2 A semismooth Newton-CG method for the inner problem

In this section, we will apply the well-known inexact semismooth Newton method
to approximately solve the unconstrained subproblem (4.9). Using Proposition 2.5 (ii),

we know that the first order optimality condition for (4.9) is given by
0= Vb(y) == Allg [Zk — Me(A*y — Ap)] + BTl g+ [w* — M\ (By — b)].

Since I1z(+) and I« (-) are Lipschitz continuous, V6 (-) is also Lipschitz continuous.
Hence the Clarke’s generalized Jacobian of V6, (which is the generalized Hessian of

05 and we denote it by 920, is well defined. Since it is difficult to derive the exact
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characterization of 920, we will slightly modify the classical semismooth Newton
method by selecting elements in a larger differentiable set 529k instead of 020, where

5291: is a set-valued mapping defined by
(§2Hk(y) = —)\k [A@HB(Z’“—)\k(A*y—AO))A*+BT8HQ* (wk—)\k(By—b))B}, Vy € RP.
due to the fact [16, p.75]

0*0(y)H € 0260 (y)H

for any H € R™*",

4.2.1 Characterization of éQQk

To obtain the explicit expression of 926y, it suffices to characterize d1lz(-) and

Ollg«(-). For a given Y € R™*™_ suppose that it has the following SVD:
Y = Uldiag(c) 0]V7,

where 0 = (01,09,...,0,)  withoy >0y >...2>0,>0=0,11=...= 0.

Let {Y'},>; be a sequence converging to Y such that every element Y € &Y,
where £° is defined by

E={Y €Dy, |o1(Y) > (YY) > ... > 0,(Y) >0},

where Dy, is the collection of the points at which I1z(-) is differentiable. This implies
Y|l # 1 for each i > 1. Indeed, the expression (2.17) clearly shows that IIp(-)
is non-differentiable at any = € R with ||z||; = 1. Then, by Proposition 2.4 (i), we
know that I15(+) is also non-differentiable at any point Z € R™*" satisfying || Z|. = 1.
Let

N ; / J
Ogollp(Y) := {goalg}l_)y (Y )}
Let the SVD of Y7 be Y = U'[diag(c*), 0](V*)T. We consider 3 cases.

Case 1: |V, < L.
In this case, 115 is continuously differentiable at Y and its generalized Jacobian is a

singleton set consisting of the identity operator Z from 3" *"™ to J""*".

Case 2: ||V, = 1.

In this case, a quick computation yields that k;(c) = r and k(o) = m.
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Since Y can be approximated by a sequence in the interior of B, it follows that
the identity operator is always an element of JgoII5(Y"). To obtain other elements, we
consider the case in which {Y"} has an infinite subsequence outside B. Without loss
of generality, we assume that ||Y?||, > 1 for all 7. By passing through a subsequence if
necessary, we know that there exists a positive integer N € [r, m] such that N = k(o)
for each i. Therefore, one has
oL — l(Z?{:la; — 1>, 1<k<N,

(g(0'))e = .
0, otherwise

and
. Iy O 1| Iyxn O
(o) = | — | .
0 0 N 0 0
where [y and 1y are the NV x N identity matrix and the m X n matrix respectively.

For notational simplicity, we write IIg(c*) as

HB(O'i)

I
Q@
—~
q@
N—
I
Y
Q
—_
—~
q@
N— )
Q@
=
—~
R)
—
=
(@]
S~—
S

and define the following four index sets

ap :={1,2,...,r}, ag:={r+1,r+2,...,N}, 4.17)
a3 ={N+1,N+2....m}, ag:={m+1,m+2,...,n}.

Let Q¢ and I' be the following m x m symmetric matrices

1 glglag
O = A | (4.18)
(Q0)" (Q0)” 0
Fglal FZIQQ Pglag
D= (Cha)” Thses T |- (19

(Thras)” (Tasey)” 0

o103 203
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where _
Q =% fork€a,jc€as—N
( a1a3> Ukio-]-}—N 1, j 3 ’
_ Tkt :
(s hj = ———, fork€ay—r je€az—N,
k+r 954+ N
gi+ai )
(anlOzl) = O'Z+0'I§.7 for k E O{l, j E Oél,
J
i 9505+
; .
(Fa1a2> = gi+g]i, 9 fOI‘ k € aq, ] S Qo — T,
7 _ !];iC . o
(Falag) = oy fork € ay, j €as— N,

i L — gi+r+g§+7‘ _ . _
(e kg = = forkeay—r, j€ay—r,
7 R glichT _ y _
(Faza:e,)kj = U;‘C+T+g_§_+N7 fork€eas—r, 5 €a3— N.

To simplify notation, we also write

; Ti&l ; glic
T = , with Ty ==, k=12...,N.
T, Tk

Now from Proposition 2.4, we know that for any given H € RR™*",
(YHH =U" Wy W3] (V)T (4.20)
where the matrices W} € R™*™ and Wi € R™*("~™) are defined by
o o Tr(HY) | In 0
Wi =Q" oS(H})+T"oT(H}) — —
i (11}) () - = [ ~ ]

and
, T -
Wi = o I},
0
with Hi € ®Rmm [i ¢ fRmx-m) [Hi i) = (U)THV' and H?, being the matrix
extracted from the first N columns and rows of H i. By simple algebraic computation,

we are able to show

1 _
Zli)rgj Qa1a3 = 1r><(m—N)7

7
7,]i)1110 Falal - 17")(7‘7

i _
’Lli}g Fa1a2 - 17“X(N—7’)7

Zlim QZIO@ 1N><(m—N)a

. i
i T2, =1,
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Let Sy be the set of cluster points of {(€2,, ... T4, 0, Thyass Thy) Fiz1. By taking limits
on both sides of (4.20), we are able to establish the conclusion that V(3 7) is an ele-
ment of Ogol15(Y") if and only if there exist an integer N € [r, m], {(23 ... Tooen: Do You)} €

Q2037 T 202 T ag03)

Sy and singular vector matrices U, V> of Y such that for any H € R"™*",
VH =U®[We W] (V)L (4.21)

where the matrices W° € R™*™ and W5° € R™*("=™) are defined by

W = Q%o S(Hy) + T o T(Hy) —

Tr(Hy) [ Iy O ]

N 0 0
and
Lo (n—m)
W= | 1217, | o Hy,
0

here, H, € %mxm,ﬁg e Rmxn=m) [ﬁl I:&] = (U>*)THV™> and H,, is the matrix

extracted from the first N columns and rows of . 1, and

1 1r><(m—N)
NxN
0* = s 0z,
| Lon-nyxr (250,)" 0
and )
1r><7" 1r><(N—7') 1r><(m—N)
== l(N—T)XT Fg;;az th.;as
L 1(mfN)><r (FZC;QL;)T 0

By taking a convex hull of such V described above and the identity operator Z, we can
obtain the generalized Jacobian of IIz(-) at Y since it is indifference to sets of zero

measure [85].

Case 3: |V, > 1.
In this case, it is easily seen that k(o) < ks(0) < r. By taking a subsequence if
necessary, there exists a positive integer N € [k1(0), ko(c)] such that N = k(o) for

each i. Therefore,

- +(Zoi-1), 1<k<N,

0, otherwise,
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and
w43
0 0 Ni o0 0
For later discussion, we partition the set {1,2,...,m} into the following five subsets:
f1:=A{1,2,...,k(0)}, Po :=A{ki(o) + 1,ki(0)+2,...,N}
By = {N+1,N+2,... . k(0)}, Ba:={ko(0)+1,ks(0)+2,...,7}
Bs:={r+1,r+2,...,m}
and write

Y i=p1U By, 2= F3U L
For each 4, redefine ', ' and T by

_ N _
B1B3 i i
Inxn Q Q’Y154 Q%/D’s
B283
. 7 T 7
O = | Q)" ()" , 4.22)
O 0¢n—N)x (m—
(@, ) (m—N)x(m-N)
i (€2, 5, ]
7171 27172 Ffﬂﬁs
7172 ’
(mfN)X(mfN)
’7155
and o ‘
T = (g—i,g—é, ce @)T,
oy 04 oy
where
(2,8, )k5 = g—k; for k € 81, j € B3 —

gk_UJ+N

(Vs )iy = 2219 for ke By — ky(0), j € B — N,

2 — )
Oktky(o)  9j+N

(Q?Ylﬁzl)kj =5 70%6 ) for k € 71, .] S 64 - k2(0)7
k= "j+kg(o)
(Q?‘YIBS)]CJ' - aifggﬁr’ for k€, j€0s—r,
1—\7; . g;i‘i‘g; f k .
( 7171)’@ T oi4ol? or kK €7, J €M,
i g ‘
(F'}’I’Y?)kj - o'i+o';+N’ for k € ’}/17 j € 72 - N7
i _ __% : B
(F’Ylﬁ5) - Ui+a§+7,’ for k € Y1, J € 65 r.
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Then the equality (4.20) is also valid. Simple calculation shows that

zlgglo<9fi31ﬁ3>kj = = (235, )k, for k€ By, jeBs—N,
ili}r?O(Q‘%&)kj = #}fmm = (35, kg, for k € m1, j € B — ka(0),
Z_li}nog(leﬁf))kj = g—i = (505, ks for k € v, j € B5 —,
ili)rglo(l“?ym)kj = % = (02 ks for k € v1, j € 1,
zhlga@im)kj = UHQO?HN = (02, ks for k € v1, j € 72 — N,
Z-liglo(rznﬁs)kj = f_—’; = (FO?ﬁ’s)’fjv for k € v, j € B5 —,
Zgrilo('f’)k:a—i = (T, for k=1,2,..., N.

Redefine Sy to be the set of limit points of {ng 5, }- By taking limits on both sides of
(4.20), we have the conclusion that V is an element of Jgoll5(Y") if and only if there
exist an integer N € [k1(0), k2(0)], 255, € Sy and singular vector matrices U, V>
of Y such that for any H € R™*",

VH = U [W Wl (V)T (4.23)
where the matrices W° € R7*™ and W € R™*("~™) are defined by

- _ Tr(H In 0
W{’O=9°°05(H1)+F°°OT(H1)—¥[(])V 0]’

’I‘oolg_m ] 7
o H?a

here, H, € R™*™ H, € Rm*(=m) [H, Hy) = (U*)THV®> and Hy; is the matrix
extracted from the first N columns and rows of H 1, and the matrices 2 and I'*° are
defined by

_ - _
p1B 00 00
Inxn QO:J ’ 97154 971,35
B283
Q* = (ngﬁ:s)T (Q%zﬁ:s)T )
(95,7 0(m—N)x (m—)
L (Q‘O/Cl)ﬁz’))T i
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F:?’Yl F%’w sz&
o0 = o0 T
I (F%“/z) (e N)x(m—N)
m— X(m—
(P?l)/ﬁs)T

By taking a convex hull of those )V described above, we can obtain the generalized
Jacobian of TI(+) at Y since it is blind to sets of zero measure [85].
In order to characterize Ollg:(-) at z € R™*"2, we define the following three

index sets:
J={i:2>0,n+1<i<n +n}U{l,2,...,n},
Jo:={i:2,=0,n+1<i<n;+ny},
Js:={i:2,<0,n+1<i<n;+ny}.

By direct calculation, it follows that V is an element of Ollg«(z) if and only if there

exists a vector a € [0, 1]%2/ such that

h‘Jl
Vh=|aohy |, VheRm™. (4.24)

0

Remark 4.2. In the implementation of our inexact semismooth Newton-CG method,
we need to select an element V) € d1I5(Y) and an element VS € 9llg-(2). If ||V ||, <
1, V? is chosen as the identity operator from R™*" to R™*". For the case where Y is
outside of B, we take U> = U, V> =V and N = ky(0) in (4.23). Thus 3 = () and
for any H € R™*",

VIH =U[Wy Wy VT, (4.25)
where the matrices W, € R™*™ and W, € R™*("~™) are defined by

Tr(Hy) [ Iy 0 ]

Wy = Q%o S(H,) + T o T(H,) — v -

Wy =

Toolg_m ] T7
0 o H27

with Efl € %mxm,ﬁg e Rmx(n—m) [ﬁl ﬁg] = UTHV and f[n being the matrix

extracted from the first N columns and rows of H 1, and

INXN Qgcl)w Q%?ﬁz)
S g (o) T
y (i) 00 yx(my |
m— X{m—
<Q?§165)T
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FE?’YI F%?w F%olﬂs
o0 = oo T
L (Fﬁl’}’z) (e N ()
m— X(m—
<F%?/35)T

As to the selection of VY, we take a = 0 in (4.24) and

h
Voh = [ Oj ] , Vh e Rt (4.26)

4.2.2 Constraint nondegeneracy

For the convergence analysis of the semismooth Newton method, we need the
concept of constraint nondegeneracy which is originally introduced by Robinson [70]
and extended by Bonnans and Shapiro [6]. Let X and ) be two finite dimensional
space, ® : X — Y be a continuously differentiable function and C be a closed convex
set. We use 7¢(z) and lin(7¢(z)) to denote the tangent cone of C at x and its linearity
space, respectively. A feasible point  to the feasibility problem {®(z) € C, x € X'}

is constraint nondegenerate if
O'(7)X + 1lin(Tp(®(2))) = V.

Thus the constraint nondegeneracy condition associated with the minimizer (2 ,w) of
(4.7) has the form

BT {0y R
0 ( ai N > | in(Ts(2)) | = | gmxn || 4.27)
lin(To- () o +n2
or equivalently,
Alin(Ts(Z)) + BT lin(To- (b)) = R”. (4.28)

Proposition 4.3. Let (2 , W) be the unique solution pair of (4.7). Let 7 have the fol-
lowing SVD:

Z = Uldiag(0(2)) 0]V" = [Uy Uy][diag(a(2)) 0][Vi Val",

where o (Z) > ... > 0,(2) > 0=0,1(Z) = ... = 0n(Z), 0(2Z) == (01(Z), ..., 0m(2Z))",
and U = [U; Uy] and V = [Vi V] with Uy € R™<7 Uy € R™Xm=7) V€ R7V, €
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R (=1) " Define the following two index sets k1 and ko by

R1 = {1,2,,7’1,1}U{Z|UA)Z>O, n1+1§i§n1+n2},

Ro = {Z’UA)Z :0, TL1+1 S 1 §n1+n2}.
Then it holds that:
() if |Z]|. < 1, the constraint nondegeneracy holds at (Z,w) if and only if

B.y=0
— y = 0. (4.29)
A*y=0

(ii) if ||2 l. = 1, the constraint nondegeneracy holds at (2 , W) if and only if, for any
given k € R,

— =0, (430)

Proof. (i) Under the condition that || Z ||, < 1, it is easy to see that

~

lin(Ts(Z)) = R™"

and

L3
lin(To-()) = [ ?O}I'wl ] .

Thus the constraints nondegeneracy condition (4.28) is reduced to
AR™m 4 BT RIs = g, (4.31)

which, by taking orthogonal complement, is equivalent to (4.29).

(i1) Since

|%1]
fin(To- (1)) = [ oy ] ,

the constraints nondegeneracy condition (4.28) is reduced to

Alin(Tg(Z)) + BLRI= = R, (4.32)
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which is equivalent to

B,y=0
== (4.33)
Ay € lin(Ts(2))*

Since from [86, Example 2] that
O Xl = {h V" + U,TV," | T € RO 00 T, < 13,

it follows that

I-1(X5H) = max (V. H)
o],
= Te((U)"HV1) + max{{U:TV,', H) [ | T, < 1}
Te((U2)" HVA) + max{{UhTV," H) [||T)lo <1} (4.34)
= Tr((U)" HV) + max{(T, Uy HV) || T]l2 < 1}
= Te((U)"HWV1) + ||U; HVA||...

Then by [16, Proposition 2.3.6,Theorem 2.4.9], one can establish that
T(Z) = {H € R™"| Te((U)THV:) + | (Ua)" HVa]l. < 0},

and therefore obtain
lin(Tp(2)) = Ts(Z) N {-Ts(Z)}
={H e R™"| HV, € (U))*, (Uy)THV, = 0}.
This implies

lin(Tp(2))" ={Y e R™"|(Y, H) =0,V H € linTg},

={Y e R | (UTYV, UTHV) =0,V H € linTp},

UTHV, UTHV, (4.35)

UTHV, 0
={Y e R™" |3k € R, (U)'YV] = k., (U)TYV, =0,(Uy)'YV; =0},

—{Y e R | (UTYV, =0, HV, € (Un)*"}

which, together with (6.37), completes the proof. ]

With the above proposition, we next establish a result which exploits the close
relationship between the constraint nondegeneracy of the optimal solution of (4.7) and

the negative definiteness of the elements of 9%0y,.
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Proposition 4.4. Suppose that the problem (4.7) satisfies the Slater condition (4.6). Let
(2 ,w) and y denote, respectively, the optimal solutions of (4.7) and (4.9). Then the

following conditions are equivalent:

(1) The constraint nondegeneracy condition (4.28) holds at (2 ,W).
(i) Every element in 920, (9) is symmetric and negative definite.

(iii) The operator
Vo = —\(AVIA* + BTV B)
is symmetric and negative definite, where V} is the same as VY in (4.25) except

when in the case of ||/V[7||* = 1, the operator is defined by (4.23) with N being
the rank of W, where W := Z¥ — A (A*y — Ag).

Proof. Assume that the SVD of Z and the index sets K1, Ko are given in Proposition
6.2.

“(i) = (ii)”. Let V be an arbitrary element of 926,(§)). Then there exist V; and
Vy in 0115 2% — M\ (A* — Ag)] and Ol o« [w* — A\ (Bg — b)], respectively, such that

V= - \JAVA* + BTV, B

Therefore, V is self-adjoint. Moreover, it follows from [59, Proposition 1] that for any
h € R?,

(h, Vh) = =X\p(h, AVLA*R) — \.(h, BTV, Bh)

= —\o(A*h, VIA*R) — \o(Bh, Vo, Bh)

< =MWV A*h, VIA*R) — N\ (Vo Bh, Vo Bh) (4.36)
0,

IN

which implies that V' is negative semidefinite. To complete the proof of this part, it

suffices to show that V is nonsingular. Consider the following linear system

VI A*h =0,
Vh =0, orequivalently, ! (4.37)
VoBh = 0.

Now we proceed to prove that i = 0 by considering the following two cases.
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Case 1: |[W]|, < 1.
In this case, || Z||, < 1and V; = Z. Then, it follows from (4.37) that

{

which, together with the constraint nondegeneracy assumption (4.29), implies that h =
0.

A*h =0,

4.38
By,h =0, ( :

Case 2: ||W||* > 1and thus | Z||, = 1.

We first show the nonsingularity of ) for the choice that V; = Z. In this situation,
(4.38) still holds and hence by taking £ = 0 in (4.30), we know that V is negative defi-
nite. Next, we turn to the case in which V) is another element selected from Jgoll (/W)

We consider two sub-cases.

Case 2.1: H/VI?H* = 1. Let H = A*h. In view of the analysis in the previous

subsection, we know from V; (H) = 0 that

1 1r><(mfN) 1r><(n7m)

NxN ~ ~
0 = U™ - 0z, o S(H,) Y1l | o Ha
|| Lom-myxr (5a,)" 0 0

lrxr 1r><(N—r) 1r><(m—N) T (j’.j’ ) 7 0
o0 . . 77 {111 N
+ U I(N_T)XT Fazaz . Fazag © T(Hl) - N [ 0 0
LNy (Ta3ay) 0

a3
where V,° € ™™ V2 € RMX(=m) and V> 1= [V° V], the index sets o, a, o
and a4 are defined as in (4.17). This implies that

1

_Ir7

U (Ve =

(Us)" (H)
Uss

az2Uas
By Proposition 2.3, there exist orthogonal matrices Q) € R"*", Q' € R™)*(m=") and
Q" € R=)x(=7) guch that

Ve (4.39)

a2UaszUay

) (H)Viy =0.

=0,

( Ug? = quQa
Ugsuas = Uazuas @', (4.40)
Vao1o = QVaM

\ VaO;UagLJou; = Q//VaQUa3Ua4-

55

(Vo)

(V)"



CHAPTER 4 A SEMISMOOTH NEWTON-CG DUAL PROXIMAL POINT ALGORITHM

Moreover, we know from Voh = 0 that
B, h=0. (4.41)

Combining (4.30), (4.41), (4.39) with (6.56), we deduce h = 0 and hence V is negative
definite.

Case 2.2: ||/V[7||* > 1. The proof of the negative definiteness of V is similar to that
of Case 2.1, with the equality (4.23) replacing (4.21).

o~

By taking the convex hull of OgoI15(1V'), we complete the proof of the first part.
“(ii) = (iii)”. This is trivial since V, € 9260, (7).

“(iii) = (i)”. Assume the contrary that the constraint nondegeneracy condition
fails to hold at (Z, ). Again, we consider two cases.
Case 1: ||/I/I7||* < 1 and hence ||2H* < L

By assumption, there exists a z # 0 such that

A*z =0,

B, ,z=0.
namely,

V()Z =0.

This means that V), is singular, which contradicts to (iii).

Case 2: H/WH* > 1 and hence HEH* =1
By assumption, there exist £ € R and z # 0 such that

( B,z =0,

(4.42)

k
(Ul)T(A*Z)Vz =0,
| (U)T(A*2)V; =0

Using the equalities above, simple computation yields Vyz = 0. This contradicts to the

statement (iii). The proof is completed. ]

4.2.3 A semismooth Newton-CG algorithm

In this subsection, we briefly describe the semismooth Newton-CG algorithm for
solving (4.9). The basic template of the algorithm is given as follows. For simplicity,

we drop the outer iteration index k.
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Algorithm 4.2 (An inexact semismooth Newton-CG method)
Step 0. Givenc € (0,0.5),n € (0,1), 71,7 € (0,1) and p € (0, 1). Choose 3° € R?.
Step 1. Forj =0,1,2,...,

Compute

n; == min{n, |V, 0 ()"

Step 1.1. Apply the PCG method to find an approximation solution d” to
V; — ¢, 1)d = =V, 0k (y), (4.43)

where V; = =\ (AV)A* + BTVIB) and ¢; = 7 min{n, |V, 0k(v/)]|},

such that d’ satisfies the following condition:
1V — & 1)d + V0 ()| < ;.
Step 1.2. Let m; be the smallest nonnegative integer m satisfying
Or(y’ + p"d’) = Ok (y") > <p™ (Vi (y), ).

Set avj := p™ and ¢/ =y + a;d’.

From the structures of V{ and V), we know that V is always negative semidefinite.
Hence V — ¢;1 is always negative definite as long as V,,0x(y?) # 0. So, it is reasonable
for us to apply the PCG method to solve (4.43). Furthermore, by noting the strong
semismoothness of Ilz(+) and IIo«(-), and using a theorem similar to [95, Theorem

3.4], we can easily derive the following convergence result for Algorithm 4.2.

Theorem 4.5. Suppose that the Slater condition holds for (4.7). Then the inexact
semismooth Newton-CG algorithm 4.2 is well defined and any accumulation point i of

{y’} generated by algorithm 4.2 is an optimal solution to the innear subproblem (4.9).

Theorem 4.6. Assume that the Slater condition holds for (4.7). Let 1y be an accumu-
lation point of the infinite sequence {1’} generated by the Newton-CG algorithm for
solving (4.9). Suppose that at each step j > 0, when the PCG algorithm terminates,

the tolerance n); is achieved, i.e.,

1(V; — € 1)d + V,0,(y") || < ;.
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Assume that the constraint nondegeneracy condition (4.28) holds at Z* — \p(A* (7)) —

Ayp). Then the whole sequence {y’} converges to 4 with 1 order convergence rate, i.e.,
ly"** =gl = Olly” — gII"*™).

4.3 Numerical issues

In applying the Newton-CG method to solve the innear problem (4.9), the most
expensive step is to compute the direction from the linear equation (4.43). As is well
known, the basic operation in implementing the PCG method is to calculate the mul-
tiplication Vyy for any given y € RP. With the exception of the trivial case in which
1Z% — Me(A*y — Ap)|l» < 1, we know from the analysis in subsection 4.2.1 that a full
SVD appears to be necessary.

For a problem in which m is moderate but n is large, the full SVD computation
would be expensive and huge memory space is also needed to store the large and dense
matrix V. However, as explained in [49], this can be done indirectly via an economical
SVD and a QR factorization. First, we can compute the economical SVD of Z ko
A (A*y — Ap) as

78 — Ne(A*y — Ap) = ULV

and construct 15, € R"*(»~") by computing the QR factorization of V;
Vi = QR = [Ql %]Ru

where () € R"*" is an orthogonal matrix and R € R"*" is upper triangular. In the
numerical implementation, Householder transformations are used to compute the QR
factorization and only the Householder vectors are stored to compute the matrix-vector
product involving V5. After the SVD is done, one can easily calculate V} H via (4.25)
for any given H € R™*™ in about 4n(mk;(c) + nki (o) + m* — ki(c)?) flops. The
above computational complexity shows that our algorithm is able to utilize any low
rank or flat rectangular structure of a matrix to reduce the computational cost.

In fact, one can completely avoid the computation of V5 by carefully analyzing
the structure of (4.25). The part W5 in (4.25) is given as follows:

WaV iy = (Y1L,,) 0 (UF HVE) )V

= diag(Y*=)Ug, H(V2V5")
= diag(T>) U3, H(I — iVY"). (4.44)
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From the above equation, it is obvious that one need not compute V5 in order to evaluate
W, in (4.25). After the SVD is done, one can easily calculate Vi H via (4.25) for any
given H € R™ ™ in about O(k;(c)mn) flops.

Next, we introduce two diagonal preconditioners to accelerate the convergence of
the CG method applied to solve the linear system (4.43). Let A and V be the matrix
representation of the linear mappings A and VY, respectively. Then the coefficient

matrix in (4.43) has the following form
W = —MAVA" — AB] By, — el.

Note that we have omitted the iteration index for brevity. Let the standard basis in
R be {E;; € R™" 1 <1 <m,1 < n}, where E;; is the matrix whose (i, j)-
th entry is one and zero otherwise. The diagonal element of V) with respect to the

standard basis is given by
Vi = VEy, Ey) !
= (UoU)A®(VoV));; — (o) (W) o (UTVIT) (4.45)

1
+5(Hijo Hjj, % —T),

5

where

AT = %(Qoo +1%) OTOOIgl(U)X(nm) . Hy =U"EyVi,
(m—ki(0))x(n—kz())
and U] and V] are the matrices formed by the first &, (o) columns of U and V/, respec-
tively. To avoid excessive computational cost, we only calculate the first two terms on
the right side of (4.45)
1
~ kilo)

as a good approximation of (4.45). Thus we propose the following diagonal pre-

Diij) g = (U U)AX(V o V))y (U)o (UIVIT)) 5, (4.46)

conditioner for the coefficient matrix
M = ADiag(ADA” + BY, B7,) + €l. (4.47)

Clearly, to use the preconditioner above, we need the explicit form of V', which may
lead to memory difficulty when 7 is large. Thus when 7 is too large for V' to be stored

explicitly, we just use the following simple diagonal preconditioner

M’ = ADiag(AA" + B"B) + el. (4.48)
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Chapter 5

Numerical results of ADM and SNDPPA for matrix norm

approximation problems

In this Chapter, we first employ the alternating direction method (ADM) to solve
the MNA problem and mainly report the numerical performance of the SNDPPA and
the ADM we have implemented to solve four different types of problem. All the codes
are written in MATLAB 7.6 and run an Intel 2.10GHz PC with 4GB memory.

We use R, I?4 and gap to denote respectively the primal infeasibility, dual infea-

sibility and primal-dual relative gap, namely

[[A"y + X — Ag; - (b — By)]|
1+ |[[Ao; 0]

| AZ + BTw]|
s Ra= ————%mm
1+ [|[4; BT]||

R, =

and

|pobj — dobj|
&P =11 |[pobj| + |dobj|’
where pobj and dobj are the primal and dual objective values, respectively.
In our experiments, we start the ADM from the point (X, y, z, Z, w) = (0,0,0,0,0)
and is stopped when
max{R,, Ry} < 107° (5.1)

or the maximum number of iterations exceeds 2000. Furthermore, the penalty param-
eter 3 in the ADM is adjusted according to the following rule dynamically. Starting

from the initial value of 10, we adjust § at every fifth step as follows:

min(103,25;), if RY /RS < 0.1,
Bry1 = max(1072,0.54;), if RE/RE > 10, (5.2)
Bk, otherwise.

For the SNDPPA, we first use the proposed ADM to generate a good starting point
by running ADM for at most 50 iterations. The ADM is stopped when max{R,, R4} <
5 - 1073. The SNDPPA is stopped when the condition

max{R,, Rs} < 107°
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is met. For each outer iteration, we cap the number of Newton iterations for solving an
inner subproblem to 40. In solving the linear system associated with Newton direction,
the maximal number of PCG steps is set as 500. As the parameter A plays a critical
role in the convergence speed of a PPA-based algorithm, we need to tune it carefully.
In our implementation, the parameter A is initialized as 10 and updated according to

the following rule:

3k, R’;H/R’;j > 0.5 and R’;“ > 1074,
Aet1 = 2k, R’;+1/ng > 0.5 and R’;+1 <1074, (5.3)

Ak, otherwise,

where )\ is the kth value of the penalty parameter.

5.1 Random matrix norm approximation

We first consider randomly generated matrix norm approximation problems with/without
constraints. In the experiments, the matrices Ay, Ay, ..., A, are generated indepen-

dently from the multivariate uniform distribution on [0, 1]™*™.

In Table 5.1, we report the numerical performance of the SNDPPA and ADM
for solving different random matrix approximation instances without constraints. The
number of outer iterations (iter), primal infeasibility (12,), dual infeasibility (12;), pri-
mal objective value (pobj), relative gap (gap), and the CPU time (time) taken are listed
in the table. To better understand the performance of the SNDPPA, we also report the
number of Newton systems solved (itersub) and the average number PCG steps (pcg)

taken to solve each of the systems.

‘ plm|n ‘ Algo. ‘ it (itersub | pcg) pobj | gap R, | Ra time
300 | 300 | 300 PPA | 14(15|3.9) 9.44515934 0| 2.8-6  4.4-7| 3.2-8 22.8
ADM | 300 9.44520938 0| 4.2-6  9.7-7| 2.5-7 73.8
500 | 500 | 500 PPA | 17(18|3.9) 1.22905150 1| 3.7-6 ~ 4.3-7| 2.3-8 117.3
ADM | 619 1.22905586 1| 1.9-5  6.8-7] 9.9-7 672.8
100 | 100 | 3000 PPA | 16(18|3.8) 1.83807818 1| 8.3-6  9.4-7| 4.1-8 31.8
ADM | 821 1.83807914 1| 6.5-6  9.9-7| 1.7-7 268.6
100 | 100 | 5000 PPA | 16(17|3.8) 2.31039070 1| 5.6-6  9.3-7| 4.0-8 56.3
ADM | 443 2.310405151]3.2-6  9.9-7|9.7-7 282.3
100 | 100 | 10000 | PPA | 18(19]3.8) 3.16771120 1] 2.8-6  54-7| 1.1-7  127.0
ADM | 740 3.16774836 1| 7.4-6  9.5-7/9.9-7 1096.7
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plm|n Algo. | it(itersub | pcg) pobj | gap Ry | Rq time
100 | 100 | 20000 PPA | 16(17|3.8) 4.37704442 1| 1.2-7  7.3-7|2.7-9 546.1
ADM | 654 437704413 1] 9.9-6  4.6-7/9.9-7 5774.7

Table 5.1: Results for unconstrained random matrix norm approximation prob-

lems.

As can been observed in Table 5.1, both the ADM and SNDPPA are able to solve
the unconstrained random matrix approximation problems to relatively high accuracy.
The SNDPPA substantially outperforms the ADM in terms of the CPU time taken to
solve the problems. For example, the ADM takes about 1.5 hours to solve the last
instance while our SNDPPA solves it in 10 minutes and with a better accuracy. It is
worth noting that for the instances with (p, m) = (100, 100), the CPU time taken by
each iteration of the SNDPPA and ADM increases almost linearly with n. But for a
solver (say the algorithm in [95]) that attempts to solve (1.1) via the SDP reformulation
(1.14), the cost per iteration would grow at least quadratically in n. This observation is
consistent with the fact mentioned in the previous section that our SNDPPA is capable

of exploiting the flat rectangular structure of the matrices involved.

Next, we test the SNDPPA on the MNA problems with constraints. A simple
example is to find a convex combination of given matrices Ay, Ay, ..., A, having the

minimal spectral norm, i.e.,
min [[Ag — A*yl|2

e 5.4
s.t. Z%‘ZL y > 0. >4
i=1

In what follows, we investigate the performance of the SNDPPA and ADM applied to

(6.59) where the matrices Ay, ..., A, are randomly generated as before.
‘ plm|n ‘ Algo. ‘ it (itersub | pcg) pobj | gap Ry | Ra time
300 | 300 | 300 PPA | 17(32]13.0) 9.59409291 0| 2.7-5  8.0-7] 3.2-8 90.2
ADM | 2000 9.59309978 0| 3.8-6  4.2-6| 6.8-6 474.8
500 | 500 | 500 PPA | 19(36|14.7) 1.24537638 1| 5.1-5  7.3-7| 6.0-7 447.7
ADM | 2000 124556407 1| 1.2-4  1.1-5] 1.1-5 88225
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plm|n Algo. | it(itersub | pcg) pobj | gap Ry | Ra time

100 | 100 | 3000 PPA | 21(27|4.7) 1.83873310 1| 3.5-6  5.2-7| 2.4-8 48.4
ADM | 2000 1.83863304 1| 1.6-4  7.1-6] 6.7-6 678.3

100 | 100 | 5000 PPA | 18(24|5.2) 231091411 1| 3.5-6  4.2-7| 2.8-8 78.8
ADM | 2000 2.31077010 1] 1.0-4  8.3-6| 2.8-6 1325.5

100 | 100 [ 10000 | PPA | 19(254.7) 3.16803831 1/ 626  8.7-7]1.68  169.6
ADM | 2000 3.16798808 1| 1.0-5  3.0-6| 9.9-7 2957.5

100 | 100 | 20000 PPA | 21(25|3.9) 437736720 1] 2.2-5 7.8-7|9.3-7 965.3
ADM | 2000 4377165251 6.2-5 4.5-6/2.1-6  17563.7

Table 5.2: Results for the matrix norm approximation problem (6.59).

Table 5.2 lists the numerical results obtained by the SNDPPA and ADM. For
this collection of problems, we can easily see the superiority of the SNDPPA over the
first order algorithm ADM. While our SNDPPA solves all the tested instances to the
accuracy of 10~% within 36 semismooth Newton iterations, the ADM fails to achieve
the required accuracy even after 2000 iterations. For the problem with (m,n,p) =
(100, 20000, 100), the ADM obtains a solution with the the accuracy in the order of
5 % 1075 after running for 4.5 hours while our SNDPPA is able to solve the problem
in about 15 mins. As one may deduce from the results in Table 2, the ADM may
encounter both computational and accuracy difficulties when constraints are imposed

on y.

5.2 Chebyshev polynomials of matrices

In this subsection, we apply the proposed SNDPPA to compute the Chebyshev
polynomials of a given matrix A. Since the power basis I, A, ..., A’ is usually highly

ill conditioned, in [83] the authors suggested replacing this basis by a better-conditioned

alternative ()1, (o, . . . , ;11 and consider the resulting problem
t
; _ Qi 5.5
min [| Qs ;yQ I2 (5.5)

From the solution of (5.5), one can easily compute the coefficients of the Chebyshev

polynomials via Theorem 2 in [83]. In our experiments, the test examples are taken
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from Section 6 in [83] and ()1, Q)o, . . ., Q411 is the orthogonal basis corresponding to

the power basis of A.

‘ problem ‘ Algo. ‘ Nt ‘ it (itersub | pcg) pobj | gap Ry, | Rq time

Rand PPA 500 | 50 | 16(18|7.7) 2.19977200-1] 3.5-7 3.4-7 1.8-7 46.3
1000 | 100 | 14(15|8.7) 1.84595015-1| 1.4-7 2.5-71.8-7 306.1

ADM 500 |50 | 354 2.19977287-1| 6.2-8 3.0-7| 8.7-7 145.0

1000 | 100 | 661 1.84594835-1]| 3.1-7 1.1-7/9.1-7  2490.3

Randtri PPA 500 | 50 | 6(9]10.9) 4.14987173-1| 8.5-8 4.1-8] 2.7-7 27.4
1000 | 100 | 9(12]13.9) 3.56518026-1| 4.8-7 3.0-7| 6.6-7 279.9

ADM 500 | 50 | 663 4.14987166-1| 1.4-6 7.1-8| 8.8-7 252.9

1000 | 100 | 786 3.56517734-1| 1.1-6 7.3-8|9.1-7  2030.6

Diag PPA 500 | 50 | 16(44(9.3) 7.20404744-2| 5.8-8 1.4-9/9.3-8 51.7
1000 | 100 | 15(27/9.1) 4.85090599-2| 1.8-7 3.1-8| 1.1-7 264.4

ADM 500 | 50 | 2000 7.20772064-2| 3.0-4 3.0-5| 3.6-4 308.6

1000 | 100 | 396 4.85093725-2| 2.7-7 4.6-7| 8.7-7 557.5

Bidiag PPA 500 |50 | 11(37]19.1) 1.90877134-1| 6.0-7 2.0-7| 4.1-7 85.6
1000 | 100 | 18(80|38.9) 1.38036105-1| 4.6-7 2.0-712.8-7 22123

ADM 500 |50 | 1482 1.90877146-1| 2.2-7 2.0-7| 8.8-7 364.1

1000 | 100 | 2000 1.38036596-1| 5.4-7 1.0-6/9.1-7 41225

Ellipse PPA 500 |50 | 9(14|3.8) 5.51257423-2| 5.5-10 1.7-7| 1.7-9 14.2
1000 | 100 | 11(20|4.4) 3.90141290-2| 6.7-11 4.7-7| 4.6-10 188.0

ADM 500 |50 | 269 5.51257424-2| 4.4-7 4.7-7| 8.7-7 62.2

1000 | 100 | 370 3.90141292-2| 3.6-7 4.8-7| 5.5-7 771.0

Grcar PPA 500 | 50 | 17(42|8.6) 7.19041068-2| 6.5-8 3.8-7| 3.2-8 57.3
1000 | 100 | 11(25|8.4) 5.07326772-2| 2.5-7 4.0-7| 4.0-7 313.0

ADM 500 | 50 | 2000 7.19051700-2| 2.2-6 2.4-6| 7.3-7 547.6

1000 | 100 | 865 5.07326793-2| 9.0-7 2.6-719.1-7  2056.3

Lemniscatel PPA 500 | 50 | 2(2[1.0) 4.71404521-2| 4.2-15  4.1-10] 6.0-15 3.3
1000 | 100 | 2(2[0.5) 3.33333333-2| 1.0-14  2.5-10| 5.4-15 24.4

ADM 50050 | 17 4.71404521-2| 8.0-6 4.2-7|4.5-14 4.7

1000 | 100 | 17 3.33333333-2| 5.6-6 2.9-7| 1.2-13 45.8

Lemniscate2 PPA 500 |50 | 17(78|9.2) 8.09231049-2| 8.7-8 2.7-7| 3.0-7 116.5
1000 | 100 | 20(76/18.3) 3.33334398-2| 8.9-7 3.6-7| 1.6-7  1231.1

ADM 500|50 | 1104 8.09229960-2| 3.1-8 2.1-7| 8.7-7 315.6

1000 | 100 | 1154 3.33337454-2| 1.8-6 4.9-7|8.6-7 2534.3
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problem ‘ Algo. ‘ N |t ‘ it (itersub | pcg) pobj | gap Ry | Ra time
Wilkinson PPA 500 | 50 | 14(26/6.0) 2.02888114-1| 3.5-8 1.9-7| 6.9-8 27.8
1000 | 100 | 13(29|7.6) 1.92544545-1| 5.8-7 1.5-7| 2.7-7 276.9
ADM 500 |50 | 859 2.02888114-1| 1.2-6 5.0-7| 8.5-7 194.0
1000 | 100 | 1723 1.92544547-1| 9.2-8 5.8-8/9.1-7 3487.7
Chebyshev PPA 500 |50 | 10(15|8.7) 2.24960671-1| 2.8-6 1.5-7| 7.2-7 233
1000 | 100 | 12(18]11.7) 2.06618546-1| 8.8-7 3.8-7| 7.8-7 300.4
ADM 500 | 50 | 788 2.24960549-1| 1.3-6 3.4-7| 8.7-7 209.3
1000 | 100 | 2000 2.06629894-1| 2.7-4 4.8-6/2.4-5 4030.0

Table 5.3: Chebyshev polynomials of matrices.

Table 5.3 shows that for most of the test instances, both the SNDPPA and ADM
are capable of obtaining solutions with an accuracy of less than 1075, However, for
hard examples such as Bidiag(1000), the ADM fails to solve it within 2000 iterations
while the SNDPPA succeeds in achieving the required accuracy for all the instances.
This illustrates that our SNDPPA performs much more stably than the ADM. More-
over, the SNDPPA is much more efficient than the ADM in terms of computing time.
Specifically, the former is about 5 to 10 times faster than the latter. This is not sur-
prising since for most instances, the SNDPPA takes less than 30 semismooth Newton
iterations to generate a highly accurate solution and the average number of PCG steps

needed to solve each of the Newton systems is less than 15.

5.3 FMMC/FDLA Problem

In this subsection, we investigate the numerical performance of the two algorithms
for solving the fastest Markov mixing chain (FMMC) and fastest distributed linear av-
eraging (FDLA) problems. We first generate a family of graphs, all with 1000 vertices
as follows. First we generate a symmetric matrix 8 € R000€1000 whose entries R,

for i < j, are independent and uniformly distributed on the interval [0, 1].

‘ pln ‘ Algo. ‘ it (itersub | pcg) pobj | gap Ry | Ra time ‘
3960| 1000 PPA | 4(4]2.0) 1.00000000 0| 2.1-15  2.0-8] 0.0-16 62.6
FDLA ADM | 34 1.00000000 0| 1.7-6 7.4-7]2.8-8 72.0
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pln Algo. | it(itersub | pcg) pobj | gap Ry | R time
3960| 1000 PPA | 7(7|3.4) 1.00000000 0] 1.5-14  5.2-9] 0.0-16 95.4
FMMC ADM | 2000 1.00000000 0| 4.3-3 1.7-6| 1.6-5  4154.8
8988| 1000 PPA | 12(42|35.1) 4.49231089-1| 3.9-4 4.3-7|6.2-7 838.4
FDLA ADM | 2000 4.49650982-1| 5.8-4 6.9-5]2.0-5 6829.1
8988| 1000 PPA | 16(49|65.7) 4.56475004-1| 3.2-6 7.6-7| 8.7-8  2780.8
FMMC ADM | 2000 4.56682293-1| 3.4-4 5.5-6] 1.7-5  7262.0
13882 1000 PPA | 12(34|44.3) 3.49261397-1| 3.1-4 4.0-7|43-7 1416.1
FDLA ADM | 2000 3.49460210-1| 3.9-4 3.8-5| 1.9-5 7288.6
13882 1000 PPA | 19(44|53.8) 3.51488679-1| 3.1-6 3.7-7| 4.6-8  2161.3
FMMC ADM | 2000 3.53454384-1| 1.8-3 1.9-4/6.1-5 7391.8
19032| 1000 PPA | 10(22|31.8) 2.83598169-1| 1.8-5 4.4-7|1.1-7 767.1
FDLA ADM | 2000 2.84265573-1| 2.8-3 5.4-516.0-5 7726.7
19032| 1000 PPA | 14(42|46.7) 2.84032758-1] 2.2-6 5.8-7]1.5-8 1991.3
FMMC ADM | 2000 2.84198686-1| 1.2-3 9.9-6/3.0-5  7599.6
24094 1000 PPA | 11(18|31.6) 2.45400905-1| 8.7-5 5.0-7| 1.6-7 640.4
FDLA ADM | 2000 2.45475940-1| 6.3-4 4.1-6/2.6-5 7141.7
24094 1000 PPA | 16(36|83.2) 2.45692830-1| 1.9-7 3.7-719.9-9  2892.0
FMMC ADM | 2000 2.85592249-1| 1.4-1 3.5-4|2.7-4  7494.2
29170 1000 PPA | 14(15|15.0) 2.17515735-1| 3.2-6 9.3-7 6.2-8 354.0
FDLA ADM | 2000 2.17595850-1| 4.1-4 1.5-5/2.0-5 7599.6
29170] 1000 PPA | 18(36|54.7) 2.17715035-1| 4.1-7 9.4-7134-9 2116.8
FMMC ADM | 2000 2.17985919-1| 9.2-4 3.4-5/29-5 87057

Table 5.4: Performance of the SNDPPA and ADM for FMMC/FDLA problems

on random connected graphs.

As we can see clearly, our SNDPPA outperforms the ADM both in the sense of
accuracy and CPU time. While our SNDPPA is able to achieve the required accuracy of
less than 10~ for all the test examples, the adm only succeed to achieve this accuracy
for the first instance. Moreover, the relative gap obtained by the ADM is of the order
1073 to 1073, which is substantially lower than that obtained by the SNDPPA.

The following tested graph instances are taken from the University of Florida
sparse matrix collection [18] but some are slightly modified to make them connected.
The data set is available at: http://www2.research.att.com/~gyifanhu/GALLERY/
GRAPHS/search.html.
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problem | pln ‘ Algo. ‘ it (itersub | pcg) pobj | gap Ry | Ry time
FDLA-Cage | 2562|366 | PPA | 4(6|1.7) 4.58554209-119.2-6  6.8-7| 3.0-9 5.5
ADM | 2000 4.75216058-1| 3.4-1 1.1-3] 1.3-3 231.8
FMMC-Cage | 2562|366 | PPA | 5(6|1.7) 4.58545022-1|5.7-7  4.1-8| 7.6-10 4.4
ADM | 2000 5.87384195-1| 4.1-1  7.0-5] 1.5-3 198.0
FDLA-Erdos981 1381|485 | PPA | 6(6|2.7) 1.00000000 0| 2.3-14  0.0-8| 0.0-16 6.6
ADM | 20 1.00000000 0| 3.7-5  7.1-7] 3.0-8 55
FMMC-Erdos981 1381|485 | PPA | 7(9|4.0) 1.00000000 0] 1.1-7  0.0-9| 4.5-9 10.2
ADM | 2000 1.00001117 0| 1.3-3  3.9-5| 1.8-5 777.8
FDLA- | 2203|2114 PPA | 11(15(4.1) 1.00000000 0| 4.6-14  0.0-9] 0.0-16 1395.1
NotreDame_yeast ADM | 97 1.00000000 0] 3.5-13  5.8-7| 1.3-8  2562.1
FMMC- | 2203|2114 | PPA | 8(8|3.0) 1.00000000 0] 2.0-12  0.0-8] 0.0-16 741.1
NotreDame_yeast ADM | 2000 1.00002029 0| 6.7-3 7.5-62.4-5 49781.3
FDLA-G46 | 9990| 1000 | PPA | 10(32|31.1) 4.17341777-1| 6.0-6  4.2-7| 2.8-7 590.0
ADM | 429 4.17346539-1|9.4-5  7.2-7|9.9-7 971.6
FMMC-G46 | 9990| 1000 | PPA | 12(30|38.5) 4.19935830-1| 1.9-6  8.4-7| 4.4-8 629.5
ADM | 2000 4.21142429-1/9.8-4  1.2-4/6.2-5  4228.1
FDLA-G15 4661| 800 PPA | 15(39]36.4) 7.31904357-1| 7.2-5 9.4-7| 4.3-7 484.3
ADM | 1122 7.31899758-1| 4.1-4 3.7-719.9-7 1345.1
FMMC-G15 | 4661|800 | PPA | 14(72(92.0) 7.85245424-1| 8.5-5  6.4-7| 3.8-7 1520.4
ADM | 2000 7.86626977-1| 1.1-3 4.6-6| 3.6-5 2418.5
FDLA-G43 | 9990| 1000 | PPA | 11(51|39.7) 4.21305708-1| 1.5-5  4.7-7| 1.1-7 12793
ADM | 490 4.21308585-1| 1.6-4  5.3-7|9.9-7 1216.9
FMMC-G43 | 9990| 1000 | PPA | 16(49|59.7) 4.25983919-1|4.2-7  4.6-7/2.6-8  1637.9
ADM | 2000 4.26209610-1| 8.5-4  6.3-6/ 3.3-5  4808.9
FDLA-G54 | 5916| 1000 PPA | 13(55/51.3) 7.32246398-1| 1.9-4 5.8-7| 8.0-7 1877.5
ADM | 2000 7.33611791-1| 2.0-4  7.8-5/2.9-5  5402.2
FMMC-G54 | 5916] 1000 | PPA | 15(71|75.6) 7.86520590-1| 2.5-5  7.1-7|1.5-7 28474
ADM | 2000 7.88923019-1| 1.7-3 4.2-6|3.5-5 5227.8
FDLA-G3 | 19176/ 800 | PPA | 11(16|31.8) 2.40597734-1|3.2-4  9.3-7/9.6-7 208.7
ADM | 2000 2.41026286-1|3.9-4  1.1-4]53-6  2407.0
FMMC-G3 | 19176/ 800 | PPA | 16(24]43.7) 2.40914608-1| 2.4-7  5.4-7| 1.0-8 388.9
ADM | 2000 2.41009134-1|8.7-4  5.4-6/3.0-5 24453

Table 5.5: Performance of the SNDPPA and ADM for FMMC/FDLA problems

on connected graphs.
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Table 5.5 shows that our SNDPPA is able to achieve the required accuracy of less
than 1075 for all the test examples. However, by comparing the results for FMM-
C/FDLA with those for random matrix approximation and Chebyshev polynomial
problems, we see that the SNDPPA is slower for the former cases. This behavior is
understandable because for FMMC/FDLA problems, the average PCG steps taken to
compute the Newton directions and the total number of semismooth Newton iterations
are significantly larger. For the FMMC problem, it is also not surprising that the ADM
fails to obtain solutions with the desired accuracy after 2000 iterations for all the in-
stances. In fact, the ADM can only obtain an approximate solution with the accuracy
in the order 10~ to 10~° for about 50% of the instances and the relative gap in the

order 1072 to 10~* for most computed examples.
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Chapter 6

A squared smoothing Newton method

6.1 Introduction

In this section, we briefly review the squared smoothing Newton method for the
nonsmooth equations F'(z) = 0, where F' : R" — R" is a locally Lipschitz continuous
function. Then, we apply this method to solving the equivalent nonsmooth equation

reformulation of the matrix norm approximation problems.

The feature of smoothing methods is to construct a smoothing approximation
function G, : R, x R* — RN" of F such that for ¢ > 0, G, (e, ) is continuously
differentiable on R" and for any x € R",

|Gu(e,x) — F(x)|| = 0, ase ] 0

and then to find a solution of F'(z) = 0 by solving a sequential smooth equations for a

positive sequence {*}, k =0,1,2,...,
Gu(e*, 2) = 0.
With the kth iterate (¥, 2*), a natural idea to generate z**! is via
oM = 2F — 1 [(GL) (8, M) TR (2F), (6.1)

where £F > 0, (G.,). (¥, 2¥) is the derivative of G with respect to x at (¥, z*) and
tr > 0 is the stepsize. The smoothing Newton method (6.1) has attracted much at-
tention from lots of researchers, see [15, 65, 66] and references therein. Under certain
conditions depending strongly on the Jacobian consistency property, they proved that
each accumulation point is a solution of F'(x) = 0. In [68], the authors proposed a class
of squared smoothing Newton method to solve the nonsmooth equation F'(z) = 0 and
established its convergence without the Jacobian consistency property condition. De-
fine the operator £ : } x ™ — R+ by

E.(e,x) =

£
Gule, x)
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for any (¢, z) € R x R™. Let ¢, be the merit function associated with E,, i.e.,
Su(e,7) = || Eule, 2.
Choose r € (0,1). Let
y(e, ) == rmin{l, ¢, (e, z)}.

The the smoothing Newton method [68] can be briefly descried as follows.

Algorithm 6.1 (A squared smoothing Newton method)

Step 0. Choose ¢ € (0,+0o0) such that 6 := ré < 1. Select constants p € (0, 1) and
o € (0,1/2). Lete” := ¢ and 2° € R" be an arbitrary point. k := 0.

Step 1. If £,(c*, 2%) = 0 then stop. Otherwise, compute 3, := 1, (", z").
Step 2. Solving the following equation

Ack

E, (", 2" + B! (¥, 2"
)+ B |

:[ﬁ’“é] , 6.2)

where Ae¥ := —¢F + Bé.
Step 3. Let [;, be the smallest nonnegative integer [ satisfying
Gu(® + pl*A* 2F + pAZF) < [1 = 20(1 — 0)p'|pu(eF, ). (6.3)

Define
(&_k-&-l?xk-&-l) — (gk + plkAgk,xk —l—plkAxk).

Step 4. Replace k£ by k + 1 and go to Step 1.

Let K be the epigraph cone of the spectral norm, i.e., K = {(t, X) |t > || X2}
Introducing an auxiliary scalar t € R, we can rewrite the matrix norm approximation

problem (1.1) as

min t
st. Ay + X = A, (6.4)
Byeb+Q, (t,X) e K.
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Assume the strong duality holds for the problem (6.4) and its dual and there exists at
least one saddle point. Then solving the MNA problem is equivalent to the following
KKT system:

(t,X)=1Ix(t—1,X+2)

AZ + BTw = 0,
Ayt X = Ay, (6.5)
Bly == b17

Wy = H%iz (U)Q — BQy -+ bg),

\

where Z and w are Lagrangian multipliers; w? = [w! wl] with w; € R™ and w, €
Rz, Write WT = [t XTyT ZT w”] and let

(t,X)—G(e,t — 1, X + Z)
AZ + BTw

TE,W)=| Ay+X — A : (6.6)
By — by
wy — Hy(e, w2 — Boy + ba) |

Redefine the operator £ : 3t x R™*™ x ™" x R™ x RP by

E,(e,W) =

€
T(e,W) ] '
Let ¢, be the merit function associated with £, i.e.,
Sule, W) = || Eue, W)
Choose r € (0,1). Let
bu(e, W) := rmin{l, ¢u(e, W)}.

Thus the smoothing Newton algorithm 6.1 can be directly applied to solve the KKT
system (6.5), which byproduct solves the MNA problem (1.1).

Remark 6.1. Up to now, a lot of variants of smoothing Newton methods have been
proposed to solve nonsmooth equations. Most of them can be easily extended to solve
the problem (1.1). For instance, the inexact smoothing Newton method developed in

[31].
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6.2 The Newton systems

For given (g,t, X)) € R xRxR™*", let J; and T, denote the partial derivatives
of G(-,-,-) with respect to the last two variables and the first argument at (e, ¢, X),
respectively. We first claim that the linear system J[t1, Y| = [ty, X] has a unique

solution. Suppose X admits the following singular value decomposition:
X = UlDiag(o) 0]V,

where 0 = [01,09,...,0,]7 and U € R™*™ and V € R™* are orthogonal matrices.
LetY = UTYV and X = UTXV. Lety(-,-,-),s(-,-,-) and H(-, -, ) be defined by
(2.22). Denote by i’ and ¢’ the partial Jacobian of s(-,-,-) and y(-, -, -) with respect to

the last two variables at the point (¢, ¢, o), respectively. For o; # o;, we write

- YUY
9 = ——
g; —O'j
and
+ _ yi+yj
K O'i—FO'j

for o,0; # 0. Letuy > ug > ... > u, > u,+1 = 0 be the distinct singular values of X.
Define ay, := {i| 0; = uy}. By Proposition 2.4 (ii), it holds that

ty = I'[t; diag(Y)],
) A _ ) ) 6.7)
X = [Q o S(Y1) + T o T(Y) + Diag(g' [t1; diag(Y)]), Fo YQ} ,

where Y = [}71 f/g] with Y; € R™*™ and Yy € Rm*(=m): ) T and F are defined by
(2.4)-(2.7). We consider the following five cases.

Case 1: i € ay,,) € ag,, where 1 < k; # ko < r. In this case, it follows from (6.7)
that

I _ - ~ 1 . - -
Xij = 595(Yij + Vi) + 595V — Vi)

%% (6.8)
Xgi = 595 (Y + Yia) + 595 (Ve = Vo)

Then solving the linear equation directly yields that

- gy + 95X — (95— 95 X
Yii = — (6.9)
2gz‘jgij

Case2: i € ai,j € ai, wherei # jand 1 < k < r. Let
Nk = 9§(z’+1) - gz/'(j+1)
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and
+_ Yty _ Y
K o; + 0y g; '
By equation (6.7), it follows that

1 - ~ 1 - -
Xij = §le(Yz’j + Vi) + 59;;(3/@' — Yji),

) 1 ) 1 3 ) (6.10)
Xji = 577k(Yz‘j + V) + 59;;(3/]1 —Yij).
Then solving directly the linear equations above yield that
) b )R — (g — g X
}/;j — (nk gz]) J (nk gzj) J . (611)

21k 935
Case3:i € ay,j € apiU{m+1,m+2,....,n}ori € a,11,j € ap, where 1 <k <r.

In this case, we know from (6.7) that

X, =24y, (6.12)
which implies .
o i Xij
Y, = i (6.13)
Yi

Cased:i € a,41,j € arry U{m+1,m+2,... n}. Similarly, it follows easily from
(6.7) that

. X,

Yij = : (6.14)
Ji(i+1)
Case 5: 1 = j € ag, where 1 < k < r. In this case, by (6.7), it is easy to establish that
t2 tl
XU , Y/ll
~ g ~
Xn | = [ y ] Yoo |, (6.15)
: ad |
Xu Yy
where d = {1,2,...,l+ 1} and | = |a;| + |az| + ... + |a,|. By Proposition 2.11, we
/
know the symmetric matrix g/ is positive definite and thus nonsingular. Hence,
h dd
it holds that
tl t2
}711 , 771 Xll
~ g ~
Yoo | = [ " ] Xoo | . (6.16)
: dd |
Yy Xu
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Remark 6.2. By similar analysis, for given (2, X) € R x R™*", it is not difficult to

SRIBEh

also has a unique solution. To simplify the later discussion, we write this solution as

show the following system

1
Y

P

2

(t1,Y) = (tg, X).

With the above preparation, we are ready to prove the nonsingularity of the New-

ton system (6.2) in Algorithm 6.1.

Proposition 6.1. Suppose A,,--- , A, are linearly independent and B has full row
rank. Then forany W = (e,t, X, y, Z,w) € R x K™ x K™ x R x NP with e # 0,

E! (W) is nonsingular.

Proof. Suppose there exists (Ae, At, AX, Ay, AZ, Aw) € R x R™*™ x M7 x R x
RP such that

El (e, W)(Ae, At, AX, Ay, AZ, Aw) =0,

1.e.,

Ae =0,

(At,AX) = 1 (At,AX + AZ) + JrAe

< AANZ + BTAw =0 7 6.17)
A Ay+AX =0

B1Ay=0

Aws = J3(Awy — BoAy) + JyAe

\
where J3 and 7, are the partial Jacobian of H,(-, -) with respect to the first and second
variable at the point (¢,wy — Boy + by). Since Ae = 0, it follows from the second
equality in (6.17) that

(0,AZ) = (T ' —I)(At, AX).

By the discussion on 7, above and Proposition 2.11 and 2.12, it can be verify easily
that (AX, AZ) > 0; furthermore, AX = AZ = 0 if and only if AX is orthogonal to
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AZ. Using the last equality of (6.17), we know there exists a diagonal matrix M with
nonnegative diagonal entries such that Aw, = —M (ByAy). Hence, it holds

(AX AZ) = —(A"Ay, AZ)
= —(Ay, AAZ)
= (Ay, Bl Aw, + B Aw,)
= (B1Ay, wy) + (B2Ay, Aw,)
= —(B1Ay, M B1Ay)
<0, (6.18)

which implies the orthogonality of AX and AZ. This shows AX = AZ = 0 and
therefore At = 0. Moreover since A;, Ay, - -+, A, are linearly independent and B has
full row rank, we have Ay = 0 and Aw = 0. This means the linear system (6.17) has

only zero solution and the proposition follows. ]

Note that the Newton system (6.2) is equivalent to

(

Ak = —eb 4+ 3¢

(Ath, AXF) — T(AtF, AXF + AZF) = 5,

AAZF + BT Aw® = 6,

A*AyF + AXF = 63

BiAy* =6,

Aws — T3(Awh — By Ay*) = 55

where 6, = JBHAr + G(eF tF — 1, X*F + ZF) — (¢, X¥), 5, = —AZ*F — BTwh,
03 = —Ay* — X*, 6, = —Byy¥ and 65 = JyAe* + H, (e, wh — Byy*) — wh. By
direct computation applied to (6.19) yields

, (6.19)

[ AXF =5y — A" Ay,
k
N ] (@-0 |5
Awh = (I — J35)~1 [ — T3 Bo Ay + 65}
AAZF + BT Auwk = 5,
\ BiAy* =4,

+ 01]

A\

(6.20)

Define the linear operator x1(+) by

0
x2(X) == Pao(J1 — I) [ \ ] ., VX e Rm™,
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Substituting the first three equalities into the last two equalities, we can easily deduce
that
[Ax2A* + B (I — J3) "' T3 Bo) Ay* — B Aw? = 6,

(6.21)
BlAyk = 54a

where
56 = A(Xz(Sg + P251) + Bg([ — ‘73)_1(55 — 52.

Now, we are ready to describe clearly the procedure for solving the Newton system in

the smoothing Newton method.

Algorithm 6.2: Solving Newton system (6.2)
Step 1. Computer Ac® = —cF + &,

Step 2. Compute Ay* and Aw? from (6.21) (in fact this is the Schur complement

equation of the original Newton system).

Step 3. Computer AX* At* AZF and Aw! from the first three equation in (6.20).

6.3 Convergence analysis

In this section, we establish the suplinear convergence of the smoothing Newton
method under the constraint nondegeneracy conditions. Let (, X, %) be a feasible so-
lution of (6.4). Then the primal constraint nondegeneracy of problem (6.4) at (Z, X, )

1S

A* I {O}mxn §Rm><n
%d
+ | lin(Ty(By —b)) | = R* ,  (6.22)
R x g o
lin(Tk(t, X)) R x g
or equivalently
A d K _ | ® , (6.23)
B lin(T(By — b)) Rre

where K is the projection of lin(T (£, X)) onto %", Denote by B the unit nuclear

ball. It is not difficult to see the dual constraint nondegeneracy associated with (6.4) at
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(Z,w) is of the form

A B ()¢ e
Z 0 + | lin(T(2)) | = | ™ |, (6.24)
0 I lin(Tg«(w)) R
or equivalently
Alin(T5(Z)) + BT lin(To-(w)) = R (6.25)

Let 7,701, 792 and 73 denotes, respectively, the index sets identified by the equality
constraints, the strongly active inequality constraints, the weakly active inequality con-

straints and the nonactive constraints. Let 75 = 797 U Ta9.

Proposition 6.2. Let (t, X, 4, Z,w) be a solution of the smoothing system (6.5). Then
the following statements hold.

(i) There exist two orthogonal matrices U € R™* ™ and V' € R"*" such that

X = U[Diag(c(X)) 0]VT and Z = U[Diag(o(2)) 0]V

with 0(X) and 0(Z) arranged in non-increasing order. Moreover, if the multi-

plicity of the largest singular value of X is o and X # 0, then

o(Z)>09(Z)...>204(Z2) > 0=0041(Z) = ... = 0p(Z)

witho1(Z) + 09(Z) + ...+ 04(Z2) = L.

(ii) Suppose X # 0. Then the primal constraint nondegeneracy holds at (t, X, %) if
and only if

([ AX + BT

T1UT2
(2) — @NT X — =
XV =0,(U)Xx =0 _ X=0
(UMNTXVD ¢ §o
| Te[(UM) "XV =0

w=~0

, (6.26)

where UV = [Uy, Uy, ..., Uy and VYV = V1, Va, ..., V3]

(iii) Suppose X = 0. Then the primal constraint nondegeneracy holds at (0,0,7%) if
and only if

AX + BT

T1UT2

X —
w=20 :>{ ) (6.27)
w=20
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(iv) If X # 0, then || Z||. = 1 and the dual constraint nondegeneracy holds at (Z, )
if and only if, for any k € R,

( By =0
(UHYT (A )V = kI
(U (A y)V2 =0

| (U (Ay)VE=0

— y =0, (6.28)

where U' = [Uy,Us, ..., Ugland V' = [Vi, Vs, ..., V] and B < «is the number

of the nonzero singular values of Z.

) If|Z|l« < 1, the dual constraint nondegeneracy holds at (Z,w) if and only if

BT1UT21y =0
A*y=0

— y =0. (6.29)

Proof. (1) From the first equality of (6.5) and the properties of projection, we know

1

K> _
—7Z

1 € K, (6.30)

t
X

which implies

t=(X,Z) and |Z|.<1.

By the von Neumann’s trace inequality applied to Y and Z, it holds that
(X, Z) < (0(X), 0(2)) < 01(X). (6.31)

Since (£, X) € K, then £ > o,(X) and hence the inequality above becomes equality.
Then part (i) of this proposition follows.

(ii) Since by direct computation lin(7(By — b)) can be derived as follows:

{0}n1+|‘rz|
Rl ’

lin(To(By — b)) = [

the primal constraint nondegeneracy condition (6.23) reduces to

[ g ]
= , (6.32)

8%711+|7'2|
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which is equivalent to

AX—I—BZ';UTQ/LU:O X:O
== . (6.33)

X ekt

w=~0

Since (%, X) is on the boundary of X, by Clark’s classical results on the characterization

of the tangent cone [16, Proposition 2.3.6 and Theorem 2.4.9], we deduce that

Tie(f, X) = {(s,d) € R x R | 0}(X;d) < 5}
(UNTgy @) 4 (VT gy ™)

= {(s,d) € R x K™ |\ >

] < s}
Then the lineality space of K can be written
linTy (2, X) = {(s,d) € R x R [(UNTqv® 4 (VOYTgTyW = 257}
and its projection K is
K(t,X)={de®R™"|3s € R, (UNTav® - (VOTGTUW® = s1}.

By this equality and a quick computation, it can be shown that the orthogonal comple-

ment of K is given by
Kt ={X e R™"|XV® =0, (UTX =0, UNTXVD e 8 Tr(UM)TXVV) = 0}.

Combining with (6.33), we know the conclusion of part (ii) holds.

(iii) Since X = 0, it follows from [16, Proposition 2.3.6 and Theorem 2.4.9] that

Ti(t, X) = {(s,d) € R x R™" |0} (X;d) < s}
={(s,d) € R x R™*"|[|d||2 < s},

which implies linT)c(f, X) = {0} x {0} and K = {0}™*". Hence the primal

constraint nondegeneracy condition (6.23) reduces to

A* §Rm><n
R = : (6.34)
BT1U7‘2 §Rn1+‘7—2‘
which is equivalent to
X pu—
AX + BZlUTQw =0 — { . (6.35)
w =
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(iv) Direct computation establishes that

114|721
lin(TQ* (U_))> = [ ?0}|722|+|73| ]

and then the dual constraints nondegeneracy condition (6.25) is reduced to

Alin(T3(2)) + BE Rl = R4, (6.36)
which is equivalent to
By =0
1 = y=0. (6.37)

Ay € lin(T5(2))*

By part (ii) of this proposition we know Z is on the boundary of B. Invoking [16,
Proposition 2.3.6 and Theorem 2.4.9] and [71, Theorem 2.7], one can establish

lin(T3(2)) = {Y e R™"| HV' € (UY*, (U>)THV? = 0}.
A simple calculation shows
in(Tp(2))" ={Y e R™"| 3k e R, (U)'YV' =kl (U)'YV? =0,(U*)TYV' =0},

which, together with (6.37), completes the proof of this part.
(v) Since Z = 0, by direct computation, it holds that

Ts(Z) = R™" and lin(Tp(2)) = R™™.

Substituting the equality above into (6.37), we can easily obtain the conclusion. ]

Lemma 6.3. Let H(-,-,-) be the smoothing function of Il (-, ) defined by (2.22) and
t € Randz € R™*" be given. Then for any (t,x) € R x R™ and V € 0H(0,¢&,T),
the following inequality holds:

(V(0,t,2), (t,2)) > [V(0,¢,2)| (6.38)
Proof. Denote M = {0} x }& x R™ whose Lebesgue measure is 0 and let
OuH(0,F,7) = {;}Eﬁo H'(F, 8%, 2%) « (%, %, 2%) — (0,F,7), e* o} .
From Proposition 2.11 part (i), for any (e, tx, zx) € R\{0} x R x R, it follows that

(H'(* %, 2")(0,t,2), (t,2)) > [|H (", t*, 2%)(0,¢, z)||%. (6.39)
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By taking limits for £ — 400 in (6.39), we know the inequality (6.38) is valid for any
V € OMH(0,t,T). LetV € OH(0,1,Z). Since the generalized Jacobian is blind to sets
of zero measure, then there exists a positive integer m > 0, V; € O\ H (0,6, %), A; >
0,i=1,2,...,m,suchthaty ;" A\, = land V = }_" \;Vi. Therefore,

<V(07 i ‘T)v (tv 37)) = Z:r;l Ai <VZ (Ov 2 $), (t’ $)>

> SNV (0,4,2)]?
=1

. 2 (6.40)
i=1
= ||V(0’ t x)Hza
which completes the proof. []

Lemma 6.4. Let (¢, X, 9,7, w) be a solution of the smoothing system (6.5). Suppose

t>0. ForanyV € OpH(0,t — 1,0(X) 4+ 0(Z)) and (t,z) € R x R™, it holds that

B f f[lﬁ l Omfa] t
V0.t z) = FILP 1 0m]T Diag([07 1 —11m9)) + f[17 1 0™ 717 [ 0™~ ] [ x ] |

where € (0,1) and [ € [0, 1]*7".

Proof. Let V be an element in d\H (0, — 1,0(X) + o(Z)). Then there exists a

sequence { (e, tg, vx)} € R\{0} x R x R™ with (e, ty, x) = (0,0(X)+0(Z),t—1)
such that V = lim H'(ey, ty, x1). For any given (0, ¢, x), it holds that

k—o0

8H(5k, tk, a:k)

H’(sk,tk,xk)(O,t,x) = (Zf“%) (t,ZE). (641)
On the other hand, by a direct computation applied to (2.24), we have
(%)
Q@ —«
6H(5k,tk,:vk) - b F 1—1—5%[);6
(t, ) B e2ay, , N e2ay, etar \T |’
- Diag(1 + 2b ( )
al—l—ezbk iag(1 + ezby) +Qk1+€ibk T+ 22y
where, foreach kandi =1,2,....m
1 1 1 1
ak)i = - ; (br)i = +
B (8 P B (78 PR AL (P PR e (TP PP
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and
1

14 ¢2 Zb Z eb(ar)?
kL k 1+ 2(by);

Since (g4, ty, 7)) — (0, — 1,0(X) + o(Z)), by Proposition 2.11 and 6.2, we can

Qp =

easily deduce that

lim y, = o(X), kh_{go s(en, tr, 7x) = 01(X).

k—o00

Using the above equalities and (6.6), it is easy to see

2

€
lim —* =0, a+1<i<m
koo ((Yr)i — k)
and
2
lim ——F—— =00, 1<i<5.

koo ((Y)i — si)?
Since 3a; /(1 + £2by,) is bounded, by taking a subsequence if necessary, there exists a
vector [ € [0, 1]*7# such that

lim efay /(14 %) = [17 107",

which implies

=07 1= 11T, fo=limoap = 1/(1+ 5+ 1) € (0,1

lim
k—oo 1 + Sibk k—o00

This, together with (6.41), completes the proof.
O

Proposition 6.5. Let 21, € [0,1]™*™ be two symmetric matrices. Then for any
Ac g):emxm,

(A, Q) 0 S(A) + Dy 0 T(A)) > || 0 S(A) + Qy 0 T(A)|[2.
Proof. By simple manipulation, it can be seen immediately that
(A, Q1 0S(A)+ Q0T (A))
(S(A), 0 S(A)) + (T(A), 20 T(A))
> (|0 S(A)E + 220 T(A)]F
> || 0S(A)+ Qo0 T(A)||%.

The proof is completed. ]
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Proposition 6.6. Let (t, X3, Z,w) be a solution of (6.5). If the primal constraint
nondegeneracy condition (6.23) holds at (t, X, %) and the dual constraint nondegen-
eracy conditions (6.25) holds at (Z,w), then any element in OE(0,t, X, ¥, Z,w) is

nonsingular.

Proof. Forany W € 0FE(0,t, X, 3, Z,w), let (Ae, At, AX, Ay, AZ, Aw) be a solu-

tion of the linear system:
WI[Ae, At, AX, Ay, A, N\, Au] = 0.

Therefore, there exist a Z; € G (0, — 1, X + Z) and a Z, € H,(0, iy — By + b)
such that

(

Ae =0,

(At,AX) =Z1(Ae, At, AX + AZ)
AAZ 4+ BTAw = 0

A Ay+AX =0

B1Ay =0

Awy = Zo(Ae, Awy — By Ay)

(6.42)

0
By the equation above, we know that:

(i) if i € 791, thus (H,);(-, -) is continuously differentiable at (0, (wy — Bay + b);) with
Ay = 0.

(ii) if 7 € Ty, then (Aws); = & (Awy — ByAy);, where 0 < §; < 1. This shows

(0, 1) as its derivative. This implies B

<(Aw)7'22’ (BQAy)T22> S 0.

(iii) if ¢ € 73, then (Byy — b); > 0 and (wg); = 0. (H,)i(e,x) is continuously
differentiable with the derivative (0, 0), and hence Aw,, = 0.

In summary, for any ¢ € 75 U 73, it holds that (Aws, ByAy) > 0. and then
(AX, AZ) = —(Ay, (By)" Aw) < 0. (6.43)

We next proceed to prove this proposition by considering the following two cases.

Case 1: ¢ = 0 and then X = 0. Since the primal constraint nondegeneracy condition
holds at (£, X, %), we know Z = 0 and w = 0. Let (*,t*, Z*) be a sequence con-
verging to (0, —1,0,0)) with e* # 0. Denote by oy, the singular value of Z* and write
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(sk, yx) = H(", t*, 01). By the definition of (sy, (yx)1), we know that

—( > 2(yw) _
(yr)1 = ( k)l_‘_ek—si_(yk)% 0,

m 251 (6.44)
2 — ; —
Sk—tk—gk;m—o,l—l72,...,m

Since (yy) is the largest element in y;, we know

. 2s 1
lim 1nf5i2—k2 > —,
k—ro0 S — (yk)l m

which, together with the first equality of (6.44), implies that

lim ()1 =0
k—o0 Sk
and then, for: = 1,2, ..., m, it holds
lim (yn): =0, lim Sk_—(yk% =1.
k—oo Sk k—o0 Sk + (yk‘)z
By taking a subsequence if necessary, we are able to show, fori =2,3,...,m,
25,62 1
lim QL%Q = —,
k—o0 S — (?Jk:)l m
which implies that
. €k . €k
lim ——— = lim ———— = .
k—oo Sp, — (yk>7, k—oo Si + (yk)z
By simple algebraic manipulation, we know
— 0 ! — 0
a —
F ’ 1+ é’:?ibk
and
()i — (Yr); 50, (Yx)i + (Yx); 0

(on)i — (on); (on)i + (o)
This shows =; = 0 and, then At = 0 and AX = —A*Ay = 0. On the other hand, by
the analysis above, it holds that

AAZ + BT,y =0
(6.45)
BTlU7'21y =0

Then one can invoke part (iii) and (v) in Proposition 6.2 and deduce that

AZ =0 and Aw =0, Ay=0.
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This proves the proposition for this case.

Case 2: t > 0. In this case, we break the proof into two steps.
Step 1: In this step, we prove Ay = 0 and AX = 0. Denote N' = {0} x R x ™"
whose Lebesgue measure is 0 and let

am%QﬁLZ+M::{mnG@ﬁﬁz%:@ﬂﬁZH—MQE—LZ+XLﬁ¢O}

k—o0

Since the generalized Jacobian is blind to sets of zero measure, we obtain that

0G(0,t —1,7Z + \) = convOnG(0,t — 1,0(Z + N)).

Let AX = UTXV and AZ = UTAZV. Letuy > us > ... > uy > Upy1 = 0 be
the distinct singular values of X + Z. Redefine a;, := {i|0o; = ux}. We consider 10

subcases.

Subcase 1: i € ay,,j € ag,, k1 # ks, where 1 < i < fand 1 < j < «. Since

and

. 20'1(X)
[y = lim I'}, =
T e T 200(X) + 0i(Z) + 0,(2)

By Proposition 2.4, it follows easily that

€ (0,1).

7 (6.46)

By solving the linear system above, we obtain that

AX; = —AX; = Y AZii— A
J J 2(1 _ FU) [ J J ]
which, by direct computation, yields that

Subcase 2: 1 < i < fand a + 1 < j < m. In this subcase,

S ok 01(X) — 0;(X)
Q= ;}1_{20 2 = 01(X) + 0i(Z) — 0;(X)

€ (0,1),
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n (X) +0;(X)
= + 0;
J kl—>oo K O'l(X)—FUl(Z)—i-O'J(Z)

By Proposition 2.4, we can easily deduce that

€ (0,1).

~ Qz ~ ~ ~ ~ f‘z ~ ~ ~ ~
AXj; = 7” [AXji + AZj+ AXy; + AZy] + 7J [AX; + AZj; — AXy; — AZy),

which by simple algebraic computation shows that

-1 1 -
AZz‘j = 5(61 + EQ)AXij + 5(61 - E2>Ain

AZji = 5(61 + EQ)Ain + 5(61 - €2>AXU

, (6.47)

where
0i(Z) B 0,(2)

n(X)—o,(X) 7T (X)) + 0y (X)

From (6.47), taking into account €;, €5 > 0, we can write

€1 —

(AXi;, AZy) + (AX i, AZy) = %(AXU FAX)?+ %(AXZ-]- ~AX)?
Subcase 3: 1 <7 < fand m + 1 < 5 < n. In this subcase,

iR T ko Ul(X)
Fui= I 7 = S T o Z)

and it therefore holds

This implies

Q

i(Z) 5

(AXy, AZyj) =

Subcase 4: a+1 < i <mandf+1 < j < a;ora+1 < i < rand
r+1<j<m
ori € ay, and j € ag,, where k; # ky and o + 1 < 4,5 < r. In these subcases, by
direct computation, we can easily deduce that

Qij = lim ij =1

k—o0

and
[;i:=limI* =1

i
J k—oo WY
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Hence, by Proposition 2.4 (ii), it holds that

) ] o (6.48)
AX]‘Z‘ = AX]Z + AZJZ

which implies AZij = AZji =0.
Subcase 5: f+1<i<randm+1 < j <n. Since inj = limy_ o E’j =1, we

know from Proposition 2.4 (ii) that
AXij - AX” + AZU,

which means AZJ- =0.

Subcase 6: i,j € ay, where 1 < 4,5 <  and ¢ # j. By an easily manipulation
applied to (2.23), it holds that

T 7 H O A N (74 R A A B 78
which implies
o (= W

k—oo (0%); — (0h);

Combining the equality above with lemma 6.4 and Proposition 2.4, we know

~ O'l(X) e ~ ¥ ~
A — AKX, + AZ, — AR, — AZy,
J QUl(X)+Ui(Z)+Uj(Z)( 1% ’ i (6.50)

e 20'1(X) + Ul(Z) + O'j(Z)
which, by simple algebraic computation, shows that

AX = A%, — X

= AZy; — NZ3).
) J 01(X> +Uj(X)( ©] ﬂ)

It therefore holds that

(AX;, AZy) + (AX

Vi

oi(X) + 0;(X)
01(X)

AZ;) = (AX;)°.

Subcase 7: 1,5 € ag, where a + 1 < 4,57 < r. From the subcase 6, we have

()i — (Z/k)j _
A = (on); -
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Therefore, it is easy to check that

3 v AXga + ANZga, + (AXpa, + AZgo, )"
AXaktlk = Z 1 Qi {Qz’T 2( ) Qi} QiT
i=1

1 ~ - ~ ~
+ 5 [AXakak + AZakak - (AXakak + AZakak)T] )

= AXakak + AZakakv

which implies that AZ, , = 0.

kQk

Subcase 8: r+ 1 < 7,7 < m. For ¢ # j, by simple manipulation applied to
equation (2.23) , we know the following equality holds

(Uk)i + (Uk)] 82 X 82
(Ye)i + (yr)s (k= (yr)) (sk + (yr)s) (e — (y)j) (s + (Yk)i)’

which together with (6.49) implies

Q;; :== lim Qf] =1, [ := lim Ffj -1

k—o0 k—o0

Then, similar as subcase 7, we can deduce easily that AZakak = 0.

Subcase 9: 7+ 1 < i < mand m + 1 < j < n. Using simple algebraic

computation, we know

<0k>i 1= 28%
(Yr)i (1) = (Ur)7
and it then holds
lim ).

Similarly, we have AZ,-]- = 0 for any ¢, 7 in this subcase.

Subcase 10: B+ 1 <i+# j < a;orl <i¢=j < f. For notational simplicity, we

use 1, I, and I to denote the following indexes:
L={12....0}, L:={6+1,+2,...,a}, [ :={1,2,...,a+ 1}.

Since
At

= Z,(Ae, At,AX + A7), 6.51
Ay 1 ) (6.51)
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it follows from lemma 6.4 that

At ; 0
diag(AX);, | = Zuz 0
AXLo, =1 Qi(Q 0 S(QT(AX + AZ)Q:) + T o T(QTA(X + 2)Q,)QT)
_ . )
100 100
+10 1 0 | Diag|v - 010
00 0 Tu{a+2},1U{a+2} diag(AX+AZ)Il 00 o )
' L dlag(QzT(AX + AZ)I2I2QI') ] '
(6.52)

where ; € R©@A*(@=H) jg orthogonal matrix, u; > 0, >.v_ u; = 1 and ¥; €
OH(0,t — 1,0(X + Z)) fori = 1,2,...,v. Then by Lemma 6.3 and Lemma 6.5,

using a simple manipulation, we have
<diag<AX)ha diag(AZ)h> + <AX12127 AZIzb) > 0.

On the other hand, by the structure of ¥/; and equation (6.52) , we can also deduce that
diag(AX);, is a quantity vector.
After checking all the subcases above and noting (6.43), we can see clearly that
Ay and AX satisfy
( B Ay =0
(UHYTAXVY = kI
(UHTAXVZ2=0
\ (UHTAXVI =0
Using the fact AX = —A*Ay and part (iii) of Proposition (6.2), we know Ay = 0 and
AX =0.

(6.53)

Step2: Consider ¢,j € ag, where § + 1 < ¢ # j < «. By the construction of
generalized Jacobian, there exists a 7,; depending on S (AZakak), such that
AZi; — NZj;

2

2

0= ni; +
(6.54)
0= 1ij +

Hence, AZ i = AZJ». In order to use the primal constraint nondegeneracy of (1.1), we
need to prove Tr[(UM)TAZV )] = 0. Since

At
0

] = 51(Ae, AL, AZ), (6.55)
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it follows from Lemma 6.4 that

At = uifi( At + Te(AZy 1) + Y ui fil'diag(Qf AZ,1,Q,
Uizl Ui:l (656)
0= wifi(At+ Tr(AZy1)) + > uifil' diagQf AZ,1, Q).

i=1 =1

Observing the first two equalities above, we know

At=0 and > wfi(Tr(AZyy,) + l'diagQf AZy,,Qi]) = 0. (6.57)
i=1
Hence, it holds that
0= Zuz (Diag|f;( (I Tr(AZy, ) + (Diag(1 — (INT) + f;(1)71)diag(QF AZy, 1,Q; N)Qr
+UZQZ(QZ o S(Q?AZI2IQ Qz))QzT
(6.58)
Using Lemma 6.3 and Lemma 6.5, we are able to show
Tr<AZI111) + lldlag[QzTAZIQIQQZ] =0
3 ' B JVie{jlu; >0,j=1,2,...,0},
TY(Abe) - lldlag[QzTAZIQth]
which implies Tr(AZ )1:a.1:0 = 0. Then one can invoke the part (ii) in Proposition 6.2
and establish that
AZ =0 and Aw =0.

This completes the proof. [

By combining Proposition 2.11, Proposition 6.1 and Proposition 6.6, we immedi-

ately obtain the convergence of smoothing Newton method.

Theorem 6.7. Suppose Ay, --- , A, are linearly independent and B has full row rank.
Then an infinite sequence of {ex, W*} is generated by Algorithm 6.1 and each ac-
cumulation point (0, W) of {ex, W*} is a solution of E,(e,W) = 0. Let W =
t, X,7,Z,w) € R x R™M x R x RM*" x RMA12_ [f the primal constraint non-
degeneracy condition (6.23) holds at (t, X, ) and the dual constraint nondegenera-
cy condition (6.25) holds at (Z,w), then the whole sequence {c,, W*} converges to

(0, W) in the order of 1 + v where v > 0 is some rational number, i.e.,
[, WE — W = O(||e", W — W|P*).

Furthermore, if t > 0, in particular Ao, A1, . .., A, are linearly independent, then the

the convergence rate becomes quadratic.
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6.4 Preliminary numerical results

In this section, we consider the unconstrained randomly generated matrix norm

approximation problems

In the experiments, the matrices Ay, Ay, ..., A, are generated independently from the

multivariate uniform distribution on [0, 1]™*".

For the squared smoothing Newton
method, we generate a warm starting point by running ADM for at most 50 iterations.
The ADM is stopped when max{R,, R;} < 5-107?. The squared smoothing Newton

method is stopped when the condition ¢(e*, W*) < 107° is met.

‘ m|n|p ‘ o) ‘it pobj | gap Ry | Raq time‘

51800100 | 9.7-7
10/ 800 | 100 | 4.3-6

839614503 0/ 1.2-6  7.6-7| 1.5-7 0.4
8.536087110/2.0-6 7.5-7|1.4-8 03
20| 800 | 100 | 5.7-7 8.916637100] 8.6-7 1.9-6/5.0-7 2.1
30/ 800 | 100 | 1.6-6 9.43725030 0/ 3.3-6 5.4-7/6.4-8 23
50/ 800 | 100 | 3.3-6 | 11  9.849537920|3.5-6 6.6-7|53-8 4.1
80/ 800 100 | 4.9-7 | 8  1.05945024 1]3.9-6 7.7-7/3.3-7 7.8
100/ 800 | 100 | 5.2-6 | 7 1.079904851|4.6-6 5.7-6/8.6-6  30.6
200/ 800 | 100 | 3.8-6 | 15 1.203251151|43-6 6.1-7/8.7-7  49.4
400/ 800 | 100 | 7.8-8 | 12 137761589 1| 4.4-6 4.2-7/6.1-8  85.1
600/ 800 | 100 | 4.1-6 | 15 149803951 1|8.4-6  9.7-72.3-7 2047
800 800 | 100 | 3.5-7 | 13 1.605697121|5.4-7 7.6-7|5.3-8 656.1

N 0| Q| w»

Table 6.1: Results for unconstrained random matrix norm approximation prob-

lems.

Table 6.1 shows the smoothing Newton methods work well for all the tested ex-
amples, especially for the case m << n. Itis able to obtain solutions with relative high
accuracy in a few iterations. However, with the increased scale of m, the consumed
time grows up quickly. Then, as one can expect from the Interior point methods, the
smoothing Newton method would encounter the high computational cost issues, which

limits its application to large scale problems.
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Chapter 7

Conclusion remark

In this thesis, we designed efficient algorithms for solving the matrix norm ap-
proximation problems. We first proposed a first order alternating direction method
(ADM) to solve this problem. At each iteration, the subproblem involved can either
be solved by a fast algorithm or it has a closed form solution, which makes the ADM

easily implementable.

To obtain solutions of high accuracy, we also proposed a semismooth Newton-CG
dual proximal point algorithm (SNDPPA) to solve large scale matrix norm approxima-
tion problems. In each iteration, the dual PPA solves its subproblem by a semismooth
Newton method and the Newton direction is computed inexactly by a PCG solver.
Theoretical results to guarantee the global convergence and local superlinear conver-
gence of the dual PPA are established based on the classical analysis of proximal point
algorithms. Capitalizing on the recent advances on spectral operator and related per-
turbation analysis, we also characterize the nonsingularity of the semismooth Newton
systems. The latter property is an important condition for the fast convergence of the
semismooth Newton method. Extensive numerical experiments on problems arising
from different areas are conducted to evaluate the performance of the SNDPPA against
the ADM. The numerical results show that the SNDPPA is very efficient and robust,
and it substantially outperforms the ADM.

Motivated by the great success of Interior point methods for the second order
cone programming, we also designed a squared smoothing Newton method for the
MNA problem in which the matrix is of much more columns than rows. Suplinear
convergence of this method is also established under the primal and dual constraint
nondegenerate conditions for the MNA problems and its dual at the primal dual opti-
mal solution pairs. We conduct preliminary numerical experiments to investigate the
performance of the smoothing Newton method. When the problem scale is small or
moderate, the numerical results reveals that our smoothing Newton method is robust

and efficient for the matrix norm approximation problems which is of the flat structure.
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