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Summary

In this paper, we aim to decompose the mixed structures in high-dimensional prob-

lems. We provide a general model which involves two distinct structures:

Y = X1Θ∗ +X2G
∗ +W,

where Θ∗ ∈ Rp×q and G∗ ∈ Rn×q are some low-dimensional structured matrices,

and W ∈ Rn×q is the noise matrix whose Frobenius norm is assumed to be small.

Then we formulate the model into the regularized squares problem and establish the

M-estimator:

(Θ̂, Ĝ) ∈ arg min
Θ,G

{L(Θ, G) + λ1R1(Θ) + λ2R2(G)}

= arg min
Θ,G

{‖Y −X1Θ−X2G‖2
F + λ1R1(Θ) + λ2R2(G)},

whereR1 andR2 stand for the regularizers according to the assumed low-dimensional

structures of Θ∗ ∈ Rp×q and G∗ ∈ Rn×q.

We impose four natural assumptions on the loss function L(Θ, G) and the reg-

ularizers R1(Θ) and R2(G) in the M-estimator. The first two basic assumptions

require that the loss function is convex and differentiable, and that the regularizers

are norms and decomposable. Moreover, we impose the restricted strong convexity
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x Summary

on the loss function and require the structural incoherence property on the interac-

tion between different structured components. Based on the four assumptions, we

provide an estimation of error bound in the general model setting, which depends

on the subspace compatibility constant [45] Ψ, the tuning parameters λ1, λ2, and

some parameters in the assumed conditions.

After that, we investigate the four conditions, particularly the requirement on

the structural incoherence. We then discuss the structural incoherence for differ-

ent specific problems such as the PCA model. Finally, we conclude the thesis via

simulations and interpret its correspondence with theoretical analysis.



List of Notations

• For any matrix A, we use Aj to denote the jth column of A.

• For any matrix A, we denote by ai,j the (i, j)-th entry of A.

• We use a superscript ′T ′ to represent the transpose of a matrix, i.e. AT stands

for the transpose of matrix A.

• For any matrix A, we use σmax(A) to denote its largest singular value.

• For any random matrix X , we use X ′ to denote an independent copy of X.

• For each matrix A, we use ‖A‖F to denote the Frobenius norm of matrix A.

‖A‖F = ‖A‖2 = (
∑

j

∑
i |ai,j|2)1/2,=

√
trace(A∗A)

• For each matrix A, we use ‖A‖∗ to denote its nuclear norm, i.e., the sum of

the singular. values of A.

• For each matrix A, we use ‖A‖1,2 to denote the `1/`2-norm of A. ‖A‖1,2 =∑
i(
∑

j |ai,j|2)1/2

• For each 1-dimensional number a, we use |a| to denote the absolute value of

a.
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xii List of Notations

• For given subspace M and vector θ, we use ΠM(θ) to denote the projection

of vector θ onto the subspace M.

• For a subspace pair (M,M⊥
), where M ∈ M, M represents the model

subspace that captures the constraints imposed on the model parameter and

is typically low-dimensional, and M⊥
means the perturbation subspace of

parameters that represents perturbations away from the model subspace.

• The subspace compatibility constant with respect to the pair (R, ‖.‖) is defined

as Ψ(M) := supu∈M{0}
R(u)
‖u‖ .

• We use ⊗ to denote the cross product of two vectors or matrices.

• We use E to denote the operator of taking expectation.

• Eε represents expectation operator conditioning on ε.

• For random variable Z, we use V ar(Z) to denote the variance of Z.

• When we say a Σ-Gaussian random matrix B, Σ represents the second moment

of B.

• We use P to denote the probability operator.

• We use P to denote the projection operator matrix.

• We use Sp−1 to denote a sphere in p-dimensional Euclidean space.

All further notations are either standard, or defined in the text.



Chapter 1
Introduction

In many fields of science and engineering, high-dimensional problems arise in a va-

riety of applications, including analysis of gene array data, medical imaging, remote

sensing and astronomical data analysis. High-dimensional statistical inference deals

with high-dimensional models in which the ambient dimension of the problem is

either comparable to or possibly larger than the sample size. Since it is usually

impossible to obtain consistent estimators without imposing additional model re-

strictions, many researchers have studied different types of structural constraints on

the model (such as sparse constraints, block-wise sparse constraints, the low-rank

structure and their combinations) and analyzed the behavior of the corresponding

estimators. In fact, these low-dimensional constraints are motivated by structures

arising in different problems.

1.1 Regularized M-estimators

For those high-dimensional problems, a general approach is to solve a regularized

optimization problem which is the sum of a loss function measuring how well the

model fits the data and some weighted regularization function that encourages the

assumed structure. These regularized convex programs are well-known as regularized

M-estimators.
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2 Chapter 1. Introduction

Single-structured regularizers include the `1-norm regularizer for sparse con-

straints, the nuclear norm regularizer for low-rank requirement and the `1/`q-norm

regularizer for models with block sparse structure.

For models with sparse constraints [30, 11], the `1-norm regularized estimators

such as LASSO [53] or basis pursuit [19], encourage sparsity and involve solving a

convex optimization problem of minimizing some variable’s `1-norm. The LASSO

proposed by Tibshirani [53] has gained popularity since it produces a sparse model

while keeping high prediction accuracy.

Since sparsity sometimes arises in a structured manner, a line of research intro-

duced the concept of block-wise sparse regularization [5, 61, 65, 47] and established

the `1/`q-norm regularizer which is a sum (i.e., `1-norm) of `q-norms on certain subset

of variables. The best known examples of such block-wise norms are the `1/`∞-norm

[54, 62, 46, 63] and the `1/`2-norm [47, 38, 22]. In particular, the grouped LASSO

[61] is a block-wise estimator with `1/`2-norm regularization.

For low-rank matrix estimation problems, researchers make use of the nuclear

norm regularizer [15, 36, 51, 50], since it encourages sparsity in the vector of singular

values and thus leads to low-rank solutions. The theoretical guarantees on the

equivalence between the nuclear norm minimization and rank minimization problem

were provided in [51, 36].

While the assumption of single clean structure is widely used, sometimes re-

searchers deal with problems where the sparsity and the low-rank property are

mixed together. Examples include the system identification problem with a sparse

impulse response and small model order, and the Gaussian graphical model with

latent and unobserved variables. Matrix decomposition models for these problems

use the mix-structured regularization, which minimizes a weighted combination of

the corresponding norm for the sparse structure and the nuclear norm for the low-

rank matrix. The sparse structure in the mixture can be element-wise sparse [24],

column-wise sparse [40, 58], or block-wise sparse [28].
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1.2 Theoretical guarantees

There is a large number of theoretical results that guarantee the performance of var-

ious types of regularized M-estimators, such as the estimation of the error bound,

the analysis of the prediction consistency, and the demonstration of the model con-

sistency.

To begin with, we review some theoretical results for estimators with sparse

constraints. The LASSO proposed in [53] is a popular technique for simultaneous

estimation and model selection. Exact recovery for observations without noise has

been discussed in [21, 39, 12]. The model selection consistency of the LASSO was in-

vestigated in [23, 67, 64, 42]. Moreover, the model selection consistency of Gaussian

graphical models was studied in [41, 61]. Results for the model selection problem in

the Gaussian concentration graph model, or the covariance selection problem were

provided in [49, 8].

For the block-wise sparse model, the block-regularized estimator recovers the

support of the model if the support is a union of groups and the covariates of

different groups are not too correlated.

The grouped LASSO proposed in [61] is a popular block-regularized estima-

tor with `1/`2-norm regularization. The main advantage of the group LASSO is

that one can make a group of regression coefficients vanish simultaneously [34, 26],

which is not possible for the LASSO. The group LASSO can be generalized to an

infinite-dimensional setting [5]. Moreover, an extension of the group LASSO, called

’Blockwise Sparse Regression’ (BSR) [33], works for general loss functions including

generalized linear models. In addition, other variants of the group LASSO were

studied and explored, such as the joint selection of covariates for multi-task learning

[47].

In estimating low-rank matrices, theoretical guarantees for the equivalence be-

tween the nuclear norm minimization and rank minimization problem were provided

in [51, 36]. The recovery of low-rank matrices was studied in [15] and the results
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were further improved in [13, 48, 50]. Necessary and sufficient conditions for rank

consistency in noisy settings were provided by [4]. In practice, the nuclear norm

minimization problem can be realized via semidefinite programming and there are

different algorithms designed for solving this optimization problem, such as the

interior point method [37], the gradient projection method, and the low-rank factor-

ization technique. A low complexity algorithm which combines spectral techniques

with manifold optimization was established in [31], and its performance guaran-

tees were provided in [32]. Moreover, the strengths and weaknesses for different

algorithms were studied in [51].

Furthermore, a line of research studied estimators based on the mixed structure.

Most of the studies focus on the decomposition of the superposition of a low-rank

component and a sparse component. The problem of decomposing the sum of a

low-rank matrix and an entrywise sparse matrix was initially studied by [18], which

demonstrated sufficient conditions for exact recovery with high probability based on

the notion of rank-sparsity incoherence. Moreover, recovery given inaccurate sam-

ples was studied by [17, 24]. There are other studies which focus on the superposition

of a column-wise sparse component and a low-rank component [40, 58], the super-

position of a block-sparse component and an entry-wise sparse component [28], and

so on. Furthermore, a general theory was developed in [1], which involves the above

cases and yields non-asymptotic Frobenius error bounds for both deterministic and

stochastic noise matrices.

1.3 Unified frameworks

In recent years, a line of on-going theoretical studies is focused on establishing a gen-

eral framework for high-dimensional models, including some interesting scenarios as

special cases. A unified framework was introduced by [45] to establish consistency

and convergence rates for regularized M-estimators under high-dimensional scaling,

under the assumption of the ”restricted strong convexity” on loss function and the
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decomposability for regularizers. This framework has also been used to prove several

results on the estimation of low-rank matrices using the nuclear norm, as well as

minimax-optimal rates for noisy matrix completion and noisy matrix decomposition.

Moreover, a general framework for the high-dimensional analysis of ”dirty” statisti-

cal models was established in [60], in which the model parameters are a superposition

of structurally constrained parameters.

1.4 Contributions

In this paper, we establish a unified model for structure identification in high-

dimensional problems. In our model’s setting, two distinct structures are correlated

by matrix coefficients. This framework can incorporate many models and appli-

cations. Special cases include principal component analysis problem and multiple

regression problem. In this paper, we provide an innovative proof for the structural

incoherence based on the estimation of the largest singular values of the product

of two random matrices. In the deduction process, some results from probability

theory and random matrix theory are used. Then, we establish error bounds that

will hold with high probability. In addition, we illustrate our theoretical results

via simulation for various parameters, that is, the sparse levels of the two unknown

matrices which are to be recovered. Fortunately, the simulation results show that

the property of structural incoherence of the coefficient matrices helps to reduce the

error in recovering the correlated unknown sparse matrices. This good performance

provides reliable evidence and verifications for theoretical analysis.

The remainder of this paper is organized as follows. In Chapter 2, we introduce

the framework and then formulate it into a regularized least-squares problem. In

Chapter 3, we derive some technical lemmas to demonstrate the main theorem

concerning the error bound. In Chapter 4, we analyze the coefficient matrices of the

specific model and demonstrate the structural incoherence with an innovative proof.

In Chapter 5 we present simulation results and interpret their correspondence with
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the theoretical analysis. Finally we conclude the thesis via final remarks in Chapter

6.



Chapter 2
Problem Setup and Properties

2.1 Problem setup

We study the following general framework with mixed structures. We observe the

response matrix Y ∈ Rn×q and the covariate matrices X1 ∈ Rn×p, X2 ∈ Rn×n such

that

Y = X1Θ∗ +X2G
∗ +W. (2.1)

Here Θ∗ ∈ Rp×q and G∗ ∈ Rn×q represent some unknown linear relationships be-

tween the predictors X1, X2 and the response Y. And they enjoy some special low-

dimensional structures, such as the element-wise sparse structure, the row-sparse

structure or the low-rank structure. The matrix W ∈ Rn×q is the noise matrix and

its Frobenius norm is assumed to be small. The estimator is then written as

(Θ̂, Ĝ) ∈ arg min
Θ,G

{L(Θ, G) + λ1R1(Θ) + λ2R2(G)}

= arg min
Θ,G

{‖Y −X1Θ−X2G‖2
F + λ1R1(Θ) + λ2R2(G)}. (2.2)

The regularizers R1,R2 are determined based on the assumed structures in the

corresponding specific setting.

Generally speaking, based on the properties of X1 and X2, we can split the

general model into 4 cases.

7



8 Chapter 2. Problem Setup and Properties

First Case: Both X1 and X2 are deterministic. For example, the PCA model

[1, 58], Y = Θ∗ + G∗ + W , where W ∈ Rn×n is a Wishart distributed matrix,

Θ∗ ∈ Rn×n is low-rank, and G∗ ∈ Rn×n is entry-wise sparse. Here in this example

X1 = X2 = In×n. The estimator is

(Θ̂, Ĝ) ∈ arg min
Θ,G

{‖Y −Θ−G‖2
F + λ1‖Θ‖∗ + λ2‖G‖1}. (2.3)

In this paper, ‖.‖∗ denotes the nuclear norm while ‖.‖1 stands for the entry-wise

`1-norm.

Second Case: For X1 and X2, one of them is deterministic while another one

is a random matrix. For example, the robust multi-task model with corrupted gross

errors [59], Y = X1Θ∗ + G∗ + W , where G∗ represents the gross error and Θ∗ is

assumed to be row-sparse. In this example X2 = In×n and X1 is a random matrix

with sub-Gaussian rows. The estimator is in the following form:

(Θ̂, Ĝ) ∈ arg min
Θ,G

{‖Y −X1Θ−G‖2
F + λ1‖Θ‖1,2 + λ2‖G‖1}. (2.4)

Note that ‖.‖1,2 stands for the `1/`2-norm that is the sum of `2-norm of rows of the

matrix.

Third Case: Both X1 and X2 are random matrices and they are correlated.

For instance, the multi-linear regression model with mixed structure: Y = X(Θ∗ +

G∗) + W . In this case, X1 = X2 = X. The two random matrices X1 and X2 are

fully correlated.

Fourth Case: X1 and X2 are independent random matrices.

In the following chapters, we mainly discuss the four properties and the error

bound for the last case where the coefficient matrices X1 and X2 are correlated and

independent random matrices. In fact, it is easier to study the first three cases

[60, 59, 1, 58]. In Section 4.3 we will derive similar results for the first three cases

by deriving corollaries based on the main theorem.
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2.2 Assumptions and notations

Set Z := X1Θ +X2G, then Z∗ = X1Θ∗ +X2G
∗, and the small deviation ∆Z equals

to X1∆Θ + X2∆G. Then we can write the loss function as a function of Z: L(Z).

Define the optimal errors ∆̂Θ = Θ̂−Θ∗ and ∆̂G = Ĝ−G∗.

Let’s state some natural assumptions on the regularization functions Rα (α =

1, 2) and the loss function L for model (2.1).

(A1) The loss function L is convex and differentiable.

(A2) The regularizers Rα are norms and are decomposable with respect to the

subspace pairs (Mα,M
⊥
α ), where Mα ∈Mα.

Remark. Decomposability means Rα(u+ v) = Rα(u) +Rα(v) for all u ∈Mα, v ∈

Mα
⊥

. Mα is the corresponding low-dimensional subspace. The property of decom-

position of a regularization function captures the suitability of a regularizer to a

particular structure.

Our next requirement is the ”restricted strong convexity” [45].

(A3) [Restricted Strong Convexity]

δL(∆Θ; Θ∗, G∗) ≥ KL‖∆Θ‖2
F − G1R2

1(∆Θ), (2.5)

δL(∆G; Θ∗, G∗) ≥ KL‖∆G‖2
F − G2R2

2(∆G). (2.6)

Note that the assumptions (A1)-(A3) are usually imposed on the model even when

there is only one clean structure. Our next assumption is on the interaction between

the different structured items [60] in mix-structure models.

(A4) [Structural Incoherence]

|L(Z∗ +X1∆Θ +X2∆G) + L(Z∗)− L(Z∗ +X1∆Θ)− L(Z∗ +X2∆G)|

≤KL
2

(‖∆Θ‖2
F + ‖∆G‖2

F ) +
∑
α=1,2

HαR2
α(∆α). (2.7)





Chapter 3
Estimation of the Error Bound

In this chapter, we estimate the error bound for the optimization problem (2.2),

based on the four natural assumptions (A1)-(A4). Firstly we present the main

result (Theorem 3.1) in Section 3.1. We will provide the proof in Section 3.3.

3.1 Main theorem

Note that the theorem involves the concept of subspace compatibility constant

Ψ(M, ‖.‖) := supu∈M{0}
R
‖u‖ , defined in [45]. This notion captures the relationship

between the regularization function R(.) and the error norm ‖.‖ over vectors in the

subspace, and it will be widely used in the following results.

Theorem 3.1. Suppose that (A1)-(A4) are satisfied. Define optimal error ∆̂G =

Ĝ−G∗, ∆̂Θ = Θ̂−Θ∗. Then we have:

‖Θ̂−Θ∗‖F + ‖Ĝ−G∗‖F ≤
3Φ + 2

√
KD

K
, (3.1)

11



12 Chapter 3. Estimation of the Error Bound

where

Φ = max{λ1Ψ1(M1), λ2Ψ2(M2)},

2D =τ(Z∗) + 2λ1R1(ΠM⊥
1

Θ∗) + 2λ2R2(ΠM⊥
2
G∗),

K =
KL
2
− 64G2

Φ2,

τ(Z∗) =64G2
(λ2

1R1(ΠM⊥
1

(Θ∗))2 + λ2
2R2(ΠM⊥

2
(G∗))2),

G =maxα=1,2
1

λα

√
Gα +Hα.

3.2 Preliminaries

In this section, we provide some technical lemmas to build up the theoretical base

for the proof of Theorem 3.1. For the convenience of proofs, we list some notions

and define some functions. In the following context, we will use ΠM(A) to denote

the projection of matrix A onto the subspace M. Define the set

C :={(∆Θ,∆G) : λ1R1(ΠM⊥
1

(∆Θ)) + λ2R2(ΠM⊥
2

(∆G)) (3.2)

≤λ1[3R1(ΠM1
(∆Θ)) + 4R1(ΠM1

(Θ∗))] + λ2[3R2(ΠM2
(∆G)) + 4R2(ΠM2

(G∗))]}.

Define

δL(∆Z) :=L(Z∗ + ∆Z)− L(Z∗)− 〈∇ZL(Z∗), X1∆Θ〉 − 〈∇ZL(Z∗), X2∆G〉,

(3.3)

F (∆Θ,∆G) :=L(Z∗ + ∆Z)− L(Z∗)

+ λ1[R1(Θ∗ + ∆Θ)−R1(Θ∗)] + λ2[R2(G∗ + ∆G)−R2(G∗)]. (3.4)

We can see that F (∆Θ,∆G) is the difference of the objective function values at

Z∗ + ∆Z and Z∗. We can rewrite it as

F (∆Θ,∆G) =δL(∆Z) + 〈∇ZL(Z∗), X1∆Θ〉+ 〈∇ZL(Z∗), X2∆G〉 (3.5)

+ λ1[R1(Θ∗ + ∆Θ)−R1(Θ∗)] + λ2[R2(G∗ + ∆G)−R2(G∗)].
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Remark. Define the optimal deviations ∆̂Θ = Θ̂ − Θ∗, ∆̂G = Ĝ − G∗, and ∆̂Z =

X1∆̂Θ +X2∆̂G = Ẑ − Z∗. Then

F (∆̂Θ, ∆̂G) = Objectivefunction(Ẑ)−Objectivefunction(Z∗) ≤ 0. (3.6)

In particular, F (0, 0) = 0,

Now let’s start with the following lemma which will be used in the following

results.

Lemma 3.2 (Deviation inequalities). For any decomposable regularizer, we have

R(θ∗ + ∆)−R(θ∗) ≥ R(ΠM⊥(∆))−R(ΠM(∆))− 2R(ΠM⊥(θ∗)), (3.7)

where θ∗ and ∆ are p-dimensional vectors.

Moreover, as long as λ ≥ 2R∗(∇L(θ∗)) and L is convex, we have

L(θ∗ + ∆)− L(θ∗) ≥ −λ
2

[R(ΠM(∆)) +R(ΠM⊥(∆))]. (3.8)

The detailed proof can be found in [60] appendix

Next, we present two technical results concerning the estimation of the optimal

error under the assumptions (A1) and (A2).

Lemma 3.3. Suppose that (A1) and (A2) are satisfied, λ1 ≥ 2R∗1(XT
1 ∇ZL(Z∗)),

and λ2 ≥ 2R∗2(XT
2 ∇ZL(Z∗)). Then the optimal error ∆̂ lies in the set

C :={(∆Θ,∆G) : λ1R1(ΠM⊥
1

(∆Θ)) + λ2R2(ΠM⊥
2

(∆G))

≤ λ1[3R1(ΠM1
(∆Θ)) + 4R1(ΠM1

(Θ∗))] + λ2[3R2(ΠM2
(∆G)) + 4R2(ΠM2

(G∗))]}.

Proof. In this proof, we make use of the function F (∆Θ,∆G) to achieve the conclu-

sion.

Recall the definition of F (∆Θ,∆G) (3.3), which is

F (∆Θ,∆G) :=L(Z∗ + ∆Z)− L(Z∗)

+ λ1[R1(Θ∗ + ∆Θ)−R1(Θ∗)] + λ2[R2(G∗ + ∆G)−R2(G∗)].
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We know

F (∆̂Θ, ∆̂G) := Objectivefn(Ẑ)−Objectivefn(Z∗) ≤ 0.

Applying Lemma (3.2) for decomposable regularizers R1 and R2, and get:

R1(Θ∗ + ∆Θ)−R1(Θ∗)

≥R1(ΠM1
⊥(∆Θ))−R1(ΠM1

(∆Θ))− 2R(ΠM⊥
1

(Θ∗)), (3.9)

R2(G∗ + ∆G)−R2(G∗)

≥R2(ΠM2
⊥(∆G))−R2(ΠM2

(∆G))− 2R2(ΠM⊥
2

(G∗)). (3.10)

Moreover, as long as λ ≥ 2R∗(∇L(θ∗)) and L is convex, we have

L(Z∗ + ∆Z)− L(Z∗)

=L(X1Θ∗ +X2G
∗ +X1∆Θ +X2∆G)− L(X1Θ∗ +X2G

∗)

≥〈∇ΘL(Z∗),∆Θ〉+ 〈∇GL(Z∗),∆G〉
(i)

≥−R∗1(∇ΘL(Z∗))R1(∆Θ)−R∗2(∇GL(Z∗))R2(∆G)

(ii)

≥ − λ1

2
[R1(ΠM1

(∆Θ)) +R1(ΠM1
⊥(∆Θ))]

− λ2

2
[R2(ΠM2

(∆G)) +R2(ΠM2
⊥(∆G))]. (3.11)

where the inequality (i) is from the generalized Cauchy-Schwarz inequality, and the

inequality (ii) is based on the decomposability of the regularizers and the assump-

tions on λ in the statement of this lemma.
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Combining (3.9), (3.10) and (3.11), we obtain

0 ≥ F (∆̂Θ, ∆̂G) =L(Z∗ + ∆̂Z)− L(Z∗)

+ λ1[R1(Θ∗ + ∆̂Θ)−R1(Θ∗)] + λ2[R2(G∗ + ∆̂G)−R2(G∗)]

≥− λ1

2
[R1(ΠM1

(∆Θ)) +R1(ΠM1
⊥(∆Θ))]

+ λ1[R1(ΠM1
⊥(∆Θ))−R1(ΠM1

(∆Θ))− 2R(ΠM⊥
1

(Θ∗))]

− λ2

2
[R2(ΠM2

(∆G)) +R2(ΠM2
⊥(∆G))].

+ λ2[R2(ΠM2
⊥(∆G))−R2(ΠM2

(∆G))− 2R2(ΠM⊥
2

(G∗))]

=− 3λ1

2
R1(ΠM1

(∆Θ)) +
λ1

2
R1(ΠM1

⊥(∆Θ))− 2λ1R(ΠM⊥
1

(Θ∗))

− 3λ2

2
R2(ΠM2

(∆Θ)) +
λ2

2
R2(ΠM2

⊥(∆Θ))− 2λ2R(ΠM⊥
2

(Θ∗)).

A simple reformulation completes the proof.

Lemma 3.4. Suppose that (A1) and (A2) are satisfied. C defined as in equation

(3.2). If F (∆Θ,∆G) > 0 for all possible vectors (∆Θ,∆G) ∈ K(δ) := C ∩ {‖∆Θ‖ +

‖∆G‖ = δ}, then the optimal error satisfies

‖∆̂Θ‖F + ‖∆̂G‖F ≤ δ, (3.12)

where ∆̂Θ = Θ̂−Θ∗, and ∆̂G = Ĝ−G∗.

Actually, a similar result was provided in [60]. We present the proof here as a

reference.

Proof. Let’s first show some special property of the set C, based on which we will

then derive the guarantees for error bound.

Let (∆Θ,∆G) be an arbitrary error vector in the set C. Then, for any t ∈ (0, 1), we
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have

λ1R1(ΠM1
⊥(t∆Θ)) + λ2R2(ΠM2

⊥(t∆G)‖)
(i)
=λ1R1(tΠM1

⊥(∆Θ)) + λ2R2(tΠM2
⊥(∆G))

(ii)
= tλ1R1(ΠM1

⊥(∆Θ)) + tλ2R2(ΠM2
⊥(∆G))

(iii)

≤ tλ1[3R1(ΠM1
(∆Θ)) + 4R1(ΠM⊥

1
(Θ∗))] + tλ2[3R2(ΠM2

(∆G)) + 4R2(ΠM⊥
2

(G∗))]

(iv)
= λ1[3R1(ΠM1

(t∆Θ)) + 4tR1(ΠM⊥
1

(Θ∗))] + λ2[3R2(ΠM2
(t∆G)) + 4tR2(ΠM⊥

2
(G∗))]

(v)

≤λ1[3R1(ΠM1
(t∆Θ)) + 4R1(ΠM⊥

1
(Θ∗))] + λ2[3R2(ΠM2

(t∆G)) + 4R2(ΠM⊥
2

(G∗))]

where step (i) uses the fact that

ΠM1
⊥(t∆Θ) =arg min

γ∈M⊥‖t∆Θ − γ‖

=targ min
γ∈M⊥‖∆Θ −

γ

t
‖

=tΠM1
⊥(∆Θ)

ΠM2
⊥(t∆G) =arg min

γ∈M⊥‖t∆G − γ‖

=targ min
γ∈M⊥‖∆G −

γ

t
‖

= tΠM2
⊥(∆G),

and step (ii) uses the positive homogeneity of norms, and step (iii) holds since

(∆Θ,∆G) ∈ C.

Moreover, step (iv) holds similarly as in equalities (i) and (ii), and finally step (v)

trivially holds for any t ≤ 1.

Therefore, if (∆Θ,∆G) ∈ C, then the line segment {(t∆Θ, t∆G), t ∈ (0, 1)} between

(∆Θ,∆G) and (0,0) also lies in C.

Suppose ‖∆̂Θ‖F + ‖∆̂G‖F > δ. Since ‖t∆̂Θ‖F + ‖t∆̂G‖F = t‖∆̂Θ‖F + t‖∆̂G‖F , there

exists some constant t∗ ∈ (0, 1) s.t (t∗∆̂Θ, t
∗∆̂G) ∈ K(δ). At the same time, by the

convexity of L and the regularizers,

F (t∗∆̂Θ, t
∗∆̂G) ≤ t∗F (∆̂Θ, ∆̂G) + (1− t∗)F (0, 0) ≤ 0.

Therefore, (t∗∆̂Θ, t
∗∆̂G) is in K(δ) such that F (t∗∆̂Θ, t

∗∆̂G) ≤ 0 by construction.

Hence the statement follows.
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In the following context, we show that (A3) and (A4) indicate the global re-

stricted strong convexity which bounds δL with a nice estimate. Actually, this

lemma and its proof have roots in [60].

Lemma 3.5. Suppose that (A3) and (A4) are satisfied. Then the global RSC (Re-

stricted Strong Convexity) holds:

δL :=L(Z∗ + ∆Z)− L(Z∗)− 〈∇ΘL(Z∗),∆Θ〉 − 〈∇GL(Z∗),∆G〉

≥K(‖∆Θ‖2
F + ‖∆G‖2

F )− τ(Z∗), (3.13)

where

K =
KL
2
− 64G2

Φ2,

τ(Z∗) =64g2(λ2
1R2

1(ΠM⊥
1

(Θ∗)) + λ2
2R2

2(ΠM⊥
2

(G∗))),

G =maxα=1,2
1

λα

√
Gα +Hα.

Proof. Observing the composition of δL(∆Z), we split it into three parts and bound

every term separately.

δL(∆Z) :=L(Z∗ + ∆Z)− L(Z∗)− 〈∇ZL(Z∗), X1∆Θ〉 − 〈∇ZL(Z∗), X2∆G〉,

=L(Z∗ +X1∆Θ +X2∆G) + L(Z∗)− L(Z∗ +X1∆Θ)− L(Z∗ +X2∆G)

+ [L(Z∗ +X1∆Θ)− L(Z∗)− 〈∇ZL(Z∗), X1∆Θ〉]

+ [L(Z∗ +X2∆G)− L(Z∗)− 〈∇ZL(Z∗), X2∆G〉]

:=W1 +W2 +W3,

where

W1 =L(Z∗ +X1∆Θ +X2∆G) + L(Z∗)− L(Z∗ +X1∆Θ)− L(Z∗ +X2∆G),

W2 =[L(Z∗ +X1∆Θ)− L(Z∗)− 〈∇ZL(Z∗), X1∆Θ〉],

W3 =[L(Z∗ +X2∆G)− L(Z∗)− 〈∇ZL(Z∗), X2∆G〉].
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By the inequalities (2.5), (2.6) and (2.7), we get

W1 ≥−
KL
2

(‖∆Θ‖2
F + ‖∆G‖2

F )−
∑
α=1,2

HαR2
α(∆α),

W2 ≥KL‖∆Θ‖2
F − G1R1(∆Θ)2,

W3 ≥KL‖∆G‖2
F − G2R2(∆G)2.

Then,

δL(∆Z) =W1 +W2 +W3

≥KL‖∆Θ‖2
F − G1R2

1(∆Θ) +KL‖∆G‖2
F − G2R2

2(∆G)

− KL
2

(‖∆Θ‖2
F + ‖∆G‖2

F )−H1R2
1(∆Θ)−H2R2

2(∆G)

=
KL
2

(‖∆Θ‖2
F + |∆G‖2

F )− (G1 +H1)R2
1(∆Θ)− (G2 +H2)R2

2(∆G)

:=
KL
2

(‖∆Θ‖2
F + |∆G‖2

F )− U,

where

U = (G1 +H1)R2
1(∆Θ) + (G2 +H2)R2

2(∆G).

And we also have

U =(G1 +H1)R2
1(∆Θ) + (G2 +H2)R2

2(∆G)

≤(
√
G1 +H1 R1(∆Θ) +

√
G2 +H2R2(∆G)2

≤ [G(λ1R1(∆Θ) + λ2R2(∆G))]2,

where in the second inequality we use 〈x, y〉 ≤ ‖x‖∞‖y‖1 and G := maxα=1,2
1
λα

√
Gα +Hα.

By Lemma 3.3, for any (∆Θ,∆G) ∈ C,

λ1R1(∆Θ) + λ2R2(∆G)

≤λ1(R1(ΠM1
(∆Θ)) +R1(ΠM⊥

1
(∆Θ))) + λ2(R2(ΠM2

(∆G)) +R2(ΠM⊥
2

(∆G)))

≤λ1(4R1ΠM1
(∆Θ)) + 4R1(ΠM⊥

1
(Θ∗))) + λ2(4R2(ΠM2

(∆G)) + 4R2(ΠM⊥
2

(G∗))).
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Therefore,

U ≤G2
[λ1R1(Θ) + λ2R2(∆G)]2

≤G2
16× 4× [λ2

1R1(ΠM1
(∆Θ))2 + λ2

1R1(ΠM⊥
1

(Θ∗))2 + λ2
2R2(ΠM2

(∆G))2 + λ2
2R2(ΠM⊥

2
(G∗))2]

≤64G2
[λ2

1Ψ2
1‖∆Θ‖2

F + λ2
1R1(ΠM⊥

1
(Θ∗))2 + λ2

2Ψ2
2|∆G‖2

F + λ2
2R2(ΠM⊥

2
(G∗))2].

Thus we get the lower-bound for δL :

δL(∆Z ;Z∗)

≥KL
2

(‖∆Θ‖2
F + |∆G‖2

F )− U

≥KL
2

(‖∆Θ‖2
F + |∆G‖2

F )− 64G2
(λ2

1Ψ2
1‖∆Θ‖2

F + λ2
1R1(ΠM⊥

1
(Θ∗))2

+ λ2
2Ψ2

2‖∆G‖2
F + λ2

2R2(ΠM⊥
2

(G∗))2)

≥(
KL
2
− 64G2

Φ2)(‖∆Θ‖2
F + ‖∆G‖2

F )− 64G2
(λ2

1R1(ΠM⊥
1

(Θ∗))2 + λ2
2R2(ΠM⊥

2
(G∗))2),

which concludes the proof.

Besides the above results, we still need to estimate the regularization part of the

objective function. In fact, we will use the following lemma to attain the minimum

in the estimation of F (∆Θ,∆G) in Section 3.3.

Lemma 3.6. Consider the 2-variate quadratic function: F (x1, x2) = ax2
1 +bx1 +c+

ax2
2 + bx2 + c for some constants a, b,c. In addition, we suppose a > 0, x1 ≥ 0, x2 ≥

0x1 + x2 = δ > 0. Then F (x1, x2) attains its minimum value at x1 = x2 = δ/2.

3.3 Demonstration of the main theorem

In this section, we employ the above lemmas to derive the main theorem for error

bounds.
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Proof of Theorem 3.1. Recall the definitions in Section 3.2,

δL(∆Z) :=L(Z∗ + ∆Z)− L(Z∗)− 〈∇ZL(Z∗), X1∆Θ〉 − 〈∇ZL(Z∗), X2∆G〉,

F (∆Θ,∆G) :=L(Z∗ + ∆Z)− L(Z∗)

+ λ1[R1(Θ∗ + ∆Θ)−R1(Θ∗)] + λ2[R2(G∗ + ∆G)−R2(G∗)].

Therefore,

F (∆Θ,∆G) =δL(∆Z) + 〈∇ZL(Z∗), X1∆Θ〉+ 〈∇ZL(Z∗), X2∆G〉

+ λ1[R1(Θ∗ + ∆Θ)−R1(Θ∗)] + λ2[R2(G∗ + ∆G)−R2(G∗)]

=δL − 2〈XT
1 (Y −X1Θ∗ −X2G

∗),∆Θ〉 − 2〈XT
2 (Y −X1Θ∗ −X2G

∗),∆G〉

+ λ1[R1(Θ∗ + ∆Θ)−R1(Θ∗)] + λ2[R2(G∗ + ∆G)−R2(G∗)]

:=V1 + V2 + V3 + V4,

where

V1 =δL,

V2 =− 2〈XT
1 (Y −X1Θ∗ −X2G

∗),∆Θ〉 − 2〈XT
2 (Y −X1Θ∗ −X2G

∗),∆G〉,

V3 =λ1[R1(Θ∗ + ∆Θ)−R1(Θ∗)],

V4 =λ2[R2(G∗ + ∆G)−R2(G∗)].

By Lemma 3.5

V1 ≥ K(‖∆Θ‖2
F + ‖∆G‖2

F )− τ(Z∗). (3.14)

By the inequality (i) and (ii) in equation (3.11), we obtain

V2 =− 2〈XT
1 (Y −X1Θ∗ −X2G

∗),∆Θ〉 − 2〈XT
2 (Y −X1Θ∗ −X2G

∗),∆G〉

≥ −R∗1(XT
1 ∇ZL(Z∗))R1(∆Θ)−R∗2(XT

2 ∇ZL(Z∗))R2(∆G),

≥− λ1

2
[R1(ΠM1

(∆Θ)) +R1(ΠM1
⊥(∆Θ))]

− λ2

2
[R2(ΠM2

(∆G)) +R2(ΠM2
⊥(∆G))]. (3.15)
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By Lemma 3.2

V3 =λ1[R1(Θ∗ + ∆Θ)−R1(Θ∗)], (3.16)

≥λ1(R1(ΠM⊥
1

(∆Θ))−R1(ΠM1
(∆Θ))− 2R1(ΠM⊥

1
Θ∗)),

V4 =λ2[R2(G∗ + ∆G)−R2(G∗)]

≥λ2(R2(ΠM⊥
2

(∆G))−R2(ΠM2
(∆G))− 2R2(ΠM⊥

2
G∗)). (3.17)

Combining the inequalities (3.14), (3.15), (3.16) and (3.17), and dropping the posi-

tive term R1(ΠM⊥
1

(∆Θ)) and R2(ΠM⊥
2

(∆G)), we obtain:

F (∆Θ,∆G)

≥K‖∆Θ‖2
F −

λ1

2
(3R1(ΠM1

(∆Θ)) + 4R1(ΠM⊥
1

Θ∗))

+K‖∆̂G‖2
F −

λ2

2
(3R2(ΠM2

(∆G)) + 4R2(ΠM⊥
2
G∗))− τ(Z∗)

≥K‖∆Θ‖2
F −

3λ1

2
R1(ΠM1

(∆Θ)) +K‖∆G‖2
F −

3λ2

2
R2(ΠM2

(∆G))

− τ(Z∗)− 2λ1R1(ΠM⊥
1

Θ∗)− 2λ2R2(ΠM⊥
2
G∗).

Using the definition of subspace compatibility constant, we get

F (∆Θ,∆G) =V1 + V2 + V3 + V4

≥K‖∆Θ‖2
F −

3λ1

2
Ψ1(M1)R1(∆Θ) +K‖∆G‖2

F −
3λ2

2
Ψ2(M2)R2(∆G)

− τ(Z∗)− 2λ1R1(ΠM⊥
1

Θ∗)− 2λ2R2(ΠM⊥
2
G∗).

Denote Φ = max{λ1Ψ1(M1), λ2Ψ2(M2)} and 2D = τ(Z∗) + 2λ1R1(ΠM⊥
1

Θ∗) +

2λ2R2(ΠM⊥
2
G∗). Then,

F (∆Θ,∆G) ≥ K‖∆Θ‖2
F −

3

2
ΦR1(∆Θ) +K‖∆G‖2

F −
3

2
ΦR2(∆G)− 2D.

Using Lemma 3.6, we get:

F (∆Θ,∆G) ≥ Kδ
2

2
− 3

2
Φδ − 2D. (3.18)
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Since K δ2

2
− 3

2
Φδ − 2D > 0 as long as δ >

1.5Φ+
√

2.25Φ2+4KD
K , we can say that when

δ > 3Φ+2
√
KD

K >
1.5Φ+
√

2.25Φ2+4KD
K , F (∆Θ,∆G) > 0.

Then using Lemma 3.4, we achieve the error bound:

||Θ̂−Θ∗||F + ||Ĝ−G∗||F ≤
3Φ + 2

√
KD

K
,

which completes the proof.



Chapter 4
Investigation into Specific Settings

In chapter 3, we provided error bounds under four natural assumptions. In this

chapter, we will investigate the four conditions for a specific model. More impor-

tantly, we establish an innovative proof for the structural incoherence property and

provide specific results on the error bound.

4.1 A specific model with its four natural condi-

tions

Let’s consider a specific model with regularization functions R1 = ‖.‖1,2 and R2 =

‖.‖1. To be more specific,

Y = X1Θ∗ +X2G
∗ +W, (4.1)

where Θ∗ ∈ Rp×q is row-sparse, G∗ ∈ Rn×q is entry-wise sparse and W ∈ Rn×q is the

noise matrix whose Frobenius norm should be small. The M-estimator is

(Θ̂, Ĝ) ∈ arg min
Θ,G

{‖Y −X1Θ−X2G‖2
F + λ1‖Θ‖1,2 + λ2‖G‖1}. (4.2)

Next, let’s verify that the four conditions imposed on the regularization functions

Rα (α = 1, 2) and the loss function L = ‖Y −X1Θ−X2G‖2
F are satisfied.

23
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(C1) The loss function L = ‖Y −X1Θ−X2G‖2
F is convex and differentiable.

(C2) The regularizers R1 = ‖.‖1,2 and R2 = ‖.‖1. are norms and are decomposable

with respect to the subspace pairs (Mα,M
⊥
α ), where Mα ∈Mα (α = 1, 2).

Proposition 4.1. The loss function and regularization functions in (4.2) satisfy the

properties (C1) and (C2).

Remark. The proof is also omitted since it is very straightforward.

The next condition is about the ”restricted strong convexity”. Since

δL(∆Θ; Θ∗, G∗) :=L(Z∗ +X1∆Θ)− L(Z∗)− 〈∇ΘL(Z∗),∆Θ〉

=‖Y − Z∗ −X1∆Θ‖2
F − ‖Y − Z∗‖2

F − 〈XT
1 ∇ZL(Z∗),∆Θ〉

=‖Y −X1Θ∗ −X2G
∗ −X1∆Θ‖2

F − ‖Y −X1Θ∗ −X2G
∗‖2
F

+ 2〈XT (Y −X1Θ∗ −X2G
∗),∆Θ〉

=‖X1∆Θ‖2
F , (4.3)

the ”restricted strong convexity” reduces to ‖X1∆Θ‖2
F ≥ KL‖∆Θ‖2

F − GR2(∆Θ).

(C3) [Restricted Strong Convexity]

‖X1∆Θ‖2
F ≥ KL‖∆Θ‖2

F − G1R1(∆Θ), (4.4)

‖X2∆G‖2
F ≥ KL‖∆G‖2

F − G2R2(∆G). (4.5)

Proposition 4.2. Model (4.1) satisfies the Restricted Strong Convexity.

Actually, there is a similar result in [1], which proves

1

n
‖X1∆Θ‖2

F ≥ κL‖∆Θ‖2
F − g1R1(∆Θ), (4.6)

where κL and g1 are positive constants. We can prove this proposition with KL =

nκL,G1 = ng1,G1 = ng2. The detail proof is omitted.

The next condition is the structural incoherence property. Since in this specific

setting, L = ‖Y − X1Θ − X2G‖2
F , the structural incoherence condition reduces to
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the following form.

(C4) [Structural Incoherence]

2〈X1∆Θ, X2∆G〉 ≤
KL
2

(‖∆Θ‖2
F + ‖∆G‖2

F ) +
∑
α=1,2

HαR2
α(∆α). (4.7)

In the following context, we provide a theorem to guarantee the structural incoher-

ence for the setting (4.2).

Theorem 4.1 (Structural Incoherence Theorem). Assume that X2 is an n×n ran-

dom matrix whose entries ai,j are independent random variables with fourth moment

bounded by 1, and that X1 is an n × p random matrix XT
1 = B = (B1, ..., Bn) with

E‖X1‖2 ≤ KL
16Λ2 , where Λ = max

2+3λγ1∗Ψγ1 (Mγ1 )

2+3λγ2∗Ψγ2 (Mγ2 )
, KL = nκL, and κL is the positive

constant in formula (4.6). Assume the rows of X are independent and identically

distributed. Then |2〈X1∆Θ, X2∆G〉| ≤ nκL
2

∑
α ‖∆α‖2

F .

Actually, a bridge between |2〈X1∆Θ, X2∆G〉| and |σmax(PT1 XT
1 X2P2)| was es-

tablished in [60], where Pα (α = 1, 2) represents the projection operator on to the

subspace Mα (α = 1, 2). The structural incoherence is then related to the largest

singular value of the product of two random matrices PT1 XT
1 and X2P2. In the

following section, we study the largest singular value of the product of two ran-

dom matrices. After that, we will prove the structural incoherence with Hα = 0 in

Section 4.3.

4.2 Bound the largest singular values

The largest singular value is also called the spectral norm of a matrix, we denote it

by ‖.‖. In this section, we estimate the largest singular value of the product of two

random matrices. The following theorem is our main result.

Theorem 4.2. Let A be an n×n random matrix whose entries ai,j are independent

random variables. Let B be an p × n random matrix B = (B1, ..., Bn), where Bi
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are independent and identically distributed. Then we can bound the largest singular

value of matrix BA

E‖BA‖ ≤ nEa2
11E‖B‖2 + C log (2p)

w2n

w3
1

, (4.8)

where w1 = nEa2
1 · E‖B1‖2

2 + 2
(

2
n

)
(E|a1|)2 · (E‖B1‖2)2 and w2 = nEa4

1E‖B1‖4
2 +

2(Ea2
1)2E(‖B‖2 · ‖B‖2

F ).

In proving Theorem 4.2, a foundation step is the M. Rudelson’s Theorem [43].

Here we present the theorem as a reference.

Theorem 4.3 (M. Rudelson). Let u1, ..., up be vectors in Rn. Then, for every p≥1,

one has

(E‖
p∑
i=1

εiui ⊗ ui‖p)1/p ≤ C(
√
p+

√
log n) ·max

i
‖ui‖2 · ‖

p∑
i=1

ui ⊗ ui‖1/2. (4.9)

In particular, for every t > 0, with probability at least 1− 2ne−ct
2
, one has

‖
p∑
i=1

εiui ⊗ ui‖ ≤ t ·max
i
‖ui‖2 · ‖

p∑
i=1

ui ⊗ ui‖1/2. (4.10)

Remark. In this paper we use C, c to represent constants.

The next lemma is a consequence of M. Rudelson’s Theorem and a standard

symmetrization argument.

Lemma 4.4. Let X1, ..., Xp be independent random vectors in Rn such that

‖EXj ⊗Xj‖ ≤ s for every j. (4.11)

Then

E‖
p∑
j=1

Xj ⊗Xj‖ ≤ ps+ C log (2n) · Emax
j
‖Xj‖2

2. (4.12)

Proof. Let ε1, ..., εn be independent symmetric Bernoulli random variables. Then by

the triangle inequality, the standard symmetrization argument and the assumption
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(4.11), we obtain

E :=E‖
p∑
j=1

Xj ⊗Xj‖ ≤ E‖
p∑
j=1

(Xj ⊗Xj − EXj ⊗Xj)‖+ ‖
p∑
j=1

Xj ⊗Xj‖

≤ 2E‖
p∑
j=1

εjXj ⊗Xj‖+ ps. (4.13)

Condition on the random variablesX1, ..., Xp and use Eε to denote the conditional

expectation with respect to ε1, ...εp. Applying Theorem 4.3, we obtain

Eε‖
p∑
j=1

εjXj ⊗Xj‖ ≤ C
√

log (2n) · Emax
j
‖Xj‖2 · ‖

n∑
j=1

Xj ⊗Xj‖1/2.

Take expectation with respect to X1, ..., Xn, and apply Cauchy-Schwarz inequality.

Then we get

E ≤ C
√

log (2n) · (Emax
j
‖Xj‖2

2)1/2 · E1/2 + ps.

Therefore,

E‖
n∑
j=1

Xj ⊗Xj‖ ≤ ps+ C log (2n) · Emax
j
‖Xj‖2

2.

Remark. The standard symmetrization is a popular technique in dealing with ran-

dom matrices. Let matrix A = (aij), and let A′ be an independent copy of A. Let εij

be independent symmetric Bernoulli random variables. Then by Jensen’s inequality,

E‖BA‖ = E‖B(A−EA′)‖ ≤ E‖B(A−A′)‖ = E‖B(εij(aij−a′ij))‖ ≤ 2E‖B(εijaij)‖.

To complete the proof of Theorem 4.2, we still need to present another two

auxiliary lemmas.

Lemma 4.5. Let a1, ..., an be independent random variables. Let B be an p×n matrix

B = (B1, ...Bi, ...Bn), where Bi, the columns of the matrix B, are independent and

identically distributed. Consider the random vector X ∈ Rp defined as

X =
n∑
i=1

aiBi.
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Then

E‖X‖2
2 ≤ nEa2

1 · E‖B1‖2
2 + 2

(
2
n

)
(E|a1|)2 · (E‖B1‖2)2, (4.14)

V ar(‖X‖2
2) ≤ nEa4

1E‖B1‖4
2 + 2(Ea2

1)2E(‖B‖2 · ‖B‖2
F ). (4.15)

Proof. To prove the inequality (4.14), we rewrite E‖X‖2
2 and use the properties of

norms. Specificly,

E‖X‖2
2 =E‖

n∑
i=1

aiBi‖2
2

=E‖a1B1 + a2B2 + ...+ anBn‖2
2

=E(‖a1B1 + a2B2 + ...+ anBn‖2)2

≤E(‖a1B1‖2 + ‖a2B2‖2 + ...+ ‖aNBn‖2)2

=E(‖a1B1‖2
2 + ‖a2B2‖2

2 + ...+ ‖anBn‖2
2 + 2

∑
1≤i<j≤n

‖aiBi‖2 · ‖ajBj‖2)

=E(a2
1‖B1‖2

2 + a2
2‖B2‖2

2 + ...+ a2
n‖Bn‖2

2 + 2
∑

1≤i<j≤n

|ai| · ‖Bi‖2 · |aj| · ‖Bj‖2)

=Ea2
1‖B1‖2

2 + Ea2
2‖B2‖2

2 + ...+ Ea2
n‖Bn‖2

2 + 2E
∑

1≤i<j≤n

|ai| · |aj| · ‖Bi‖2 · ‖Bj‖2

=nE(a2
1‖B1‖2

2) + 2
∑

1≤i<j≤n

E(|ai| · |aj| · ‖Bi‖2 · ‖Bj‖2)

=nEa2
1 · E‖B1‖2

2 + 2
∑

1≤i<j≤n

E|ai| · E|aj| · E‖Bi‖2 · E‖Bj‖2

=nEa2
1 · E‖B1‖2

2 + 2
∑

1≤i<j≤n

E|ai| · E|aj| · E‖Bi‖2 · E‖Bj‖2

=nEa2
1 · E‖B1‖2

2 + 2

(
2

n

)
(E|a1|)2 · (E‖B1‖2)2,

which concludes the proof for (4.10).

Next we derive the upper bound for V ar(‖X‖2
2). Since V ar(‖X‖2

2) can be written

as V ar(‖X‖2
2) = E‖X‖4

2− (‖X‖2
2)2, we estimate E‖X‖4

2 and (‖X‖2
2)2 separately and

then combine them. For E‖X‖4
2, we have

E‖X‖4
2 = E〈X,X〉2 = E〈

∑n
i=1 aiBi,

∑n
j=1 ajBj〉2

=
∑

i,j,k,l=1 Eaiajakal〈Bi, Bj〉〈Bk, Bl〉 (4.16)
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Due to the independence and mean zero assumption, non zero terms can only be

of the following cases: i = j = k = l; i = j, k = l, i 6= k; i = k, j = l, i 6= j; i = l, j =

k, i 6= j. Then the formula (4.16) is reduced to

E‖X‖4
2

=
n∑
i=1

Ea4
i 〈Bi, Bi〉2 +

n∑
i,k=1,i 6=k

Ea2
i a

2
k〈Bi, Bi〉〈Bk, Bk〉+ 2

n∑
i,j=1,i 6=j

Ea2
i a

2
j〈Bi, Bj〉2

=
n∑
i=1

Ea4
iE〈Bi, Bi〉2 +

n∑
i,k=1,i 6=k

Ea2
iEa2

kE〈Bi, Bi〉E〈Bk, Bk〉+ 2
n∑

i,j=1,i 6=j

Ea2
iEa2

jE〈Bi, Bj〉2

=nEa4
1E‖B1‖4

2 +
n∑

i,k=1,i 6=k

Ea2
iEa2

kE〈Bi, Bi〉E〈Bk, Bk〉+ 2
n∑

i,j=1,i 6=j

Ea2
iEa2

jE〈Bi, Bj〉2

=nEa4
1E‖B1‖4

2 +
n∑

i,k=1,i 6=k

Ea2
iEa2

kE〈Bi, Bi〉E〈Bk, Bk〉+ 2(Ea2
1)2E

n∑
i,j=1,i 6=j

〈Bi, Bj〉2

= : I1 + I2 + I3,

where

I1 =nEa4
1E‖B1‖4

2,

I2 =
n∑

i,k=1,i 6=k

Ea2
iEa2

kE〈Bi, Bi〉E〈Bk, Bk〉 ≤ (E‖X‖2
2)2,

I3 =2(Ea2
1)2E

n∑
i,j=1,i 6=j

〈Bi, Bj〉2

=2(Ea2
1)2E‖B∗B‖2

F

=2(Ea2
1)2E(‖B‖2‖B‖2

F ).

Therefore

V ar(‖X‖2
2) = E‖X‖4

2 − (‖X‖2
2)2 = I1 + I2 + I3 − (‖X‖2

2)2

≤ I1 + I3 ≤ nEa4
1E‖B1‖4

2 + 2(Ea2
1)2E(‖B‖2‖B‖2

F ) (4.17)

Lemma 4.6. Let A be an n× n random matrix whose entries ai,j are independent

random variables. Let B be an p × n random matrix B = (B1, ..., Bn), where the
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columns Bi are independent and identically distributed. Let X1, ..., Xn ∈ Rp denote

the columns of the matrix BA. Then

E max
j=1,...,n

‖Xj‖2
2 ≤

w2n

w3
1

, (4.18)

where w1 = nEa2
1 · E‖B1‖2

2 + 2
(

2
n

)
(E|a1|)2 · (E‖B1‖2)2 and w2 = nEa4

1E‖B1‖4
2 +

2(Ea2
1)2E(‖B‖2 · ‖B‖2

F ).

Proof. Let B = (B1, ..., Bn), A = (aij). Then Xj =
∑n

i=1 Biaij, j = 1, ...n. Fix

j ∈ {1, ..., n}, by the previous lemma, we get

E‖Xj‖2
2 ≤ w1, V ar(‖Xj‖2

2) ≤ w2,

where

w1 =nEa2
1 · E‖B1‖2

2 + 2

(
2

n

)
(E|a1|)2 · (E‖B1‖2)2,

w2 =nEa4
1E‖B1‖4

2 + 2(Ea2
1)2E(‖B‖2 · ‖B‖2

F ).

Recall Chebychev’s inequality, which states that if Z is a random variable with

σ2 = V ar(Z). Then for arbitrary k > 0, P(|Z − EZ| > kσ) ≤ 1/k2.

Applying Chebychev’s inequality for Z = ‖Xj‖2
2, k = t

√
w2 where t > 0 is arbitrary,

one can obtain

P(|‖Xj‖2
2 − E‖Xj‖2

2| > kσ) ≤ 1/k2. (4.19)

Then

1/k2 ≥P(|‖Xj‖2
2 − E‖Xj‖2

2| > kσ) ≥ P(‖Xj‖2
2 > E‖Xj‖2

2|+ kσ)

≥P(‖Xj‖2
2 > w1 + k

√
w2). (4.20)

Since k = t
√
w2, 1

t2w2
2
≥ P(‖Xj‖2

2 > w1 + tw2). Taking the union bound over all

j = 1, ...p, we get P(maxj=1,...p ‖Xj‖2
2 > w1 + tw2) ≤ n

t2w2
. Integration completes the

proof.

Equipped with the above lemmas, we can now present a complete proof for

Theorem 4.2
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Proof of Theorem 4.2. Let X1, ..., Xn ∈ Rp denote the columns of matrix BA, i.e.,

BA = (X1, ..., Xn). Then we can apply Lemma 4.4 to achieve the bound. Let’s first

check the conditions in Lemma 4.4 .

Xj =
n∑
i=1

Biaij, j = 1, ...n. (4.21)

Since E‖Xj ⊗Xj‖ = E〈Xj, x〉2 for some arbitrary vector x ∈ Sp−1, we can get

E‖Xj ⊗Xj‖ =E〈Xj, x〉2 = E〈
n∑
i=1

aijBi, x〉2 = E(
n∑
i=1

aij〈Bi, x〉)2

=
n∑
i=1

Ea2
ijE〈Bi, x〉2 = Ea2

11

n∑
i=1

E〈Bi, x〉2

=Ea2
11E

n∑
i=1

〈Bi, x〉2 = Ea2
11E‖B∗x‖2

2

≤Ea2
11E‖B∗‖2 = Ea2

11E‖B‖2.

Applying Lemma 4.4, we obtain

E‖BA‖ = E‖
p∑
j=1

Xj ⊗Xj‖ ≤ nEa2
11E‖B‖2 + C log (2p) · Emax

j
‖Xj‖2

2.

Then applying Lemma 4.6, we obtain

E‖BA‖ = E‖
p∑
j=1

Xj ⊗Xj‖ ≤ nEa2
11E‖B‖2 + C log (2p)

w2n

w3
1

,

where w1 = nEa2
1 · E‖B1‖2

2 + 2
(

2
n

)
(E|a1|)2 · (E‖B1‖2)2 and w2 = nEa4

1E‖B1‖4
2 +

2(Ea2
1)2E(‖B‖2 · ‖B‖2

F ).

4.3 Structural incoherence and error bounds

With the above lemmas and corollaries, we can derive a complete proof for the

structural incoherence property.

Proof of Theorem 4.1. It has been shown in [60] that

|2〈X1∆Θ, X2∆G〉| ≤2|σmax(PT1 XT
1 X2P2)| × Λ2 × 2× (‖∆α‖2

F + ‖∆G‖2
F )
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where

Λ = max
2 + 3λγ1 ∗Ψγ1(Mγ1)

2 + 3λγ2 ∗Ψγ2(Mγ2)
.

Apply Theorem 4.2 and do a simple computation. Then we obtain:

E‖PT2 XT
2 X1P‖ ≤ nEa2

11E‖B‖2 + C log (2p)
w2n

w3
1

≤ nκL
8Λ2

, (4.22)

where

w1 =nEa2
11 · E‖B1‖2

2 + 2

(
2

n

)
(E|a11|)2 · (E‖B1‖2)2,

w2 =nEa4
11E‖B1‖4

2 + 2(Ea2
11)2E(‖B‖2 · ‖B‖2

F ),

KL =nκL.

Therefore, |σmax(PT1 XT
1 X2P2)| ≤ KL

8Λ2 .

Thus |2〈X1∆Θ, X2∆G〉| ≤ 1
2
KL
∑

α ‖∆α‖2
F , where Λ = max

2+3λγ1∗Ψγ1 (Mγ1 )

2+3λγ2∗Ψγ2 (Mγ2 )
, and

KL = nκL.

We have demonstrated the structural incoherence property for model (4.1). Next,

we establish the error bound for it. In fact we will also do simulation for this model

in Chapter 6,

Theorem 4.7. Recall model (4.1) and its M-estimator (4.2). Assume λ1 = 8nσ
√

log pq
n

,

and λ2 = 8nσ{
√

q
n

+
√

log p
n
}. Then with high probability, the error of the the estimate

(Θ̂, Ĝ) is bounded by

||Θ̂−Θ∗||F + ||Ĝ−G∗||F ≤ (
24nσ

K
) max{

√
s(log pq)

n
,
√
sr(

√
q

n
+

√
log p

n
} (4.23)

where

K =
KL
2
− 64G2

Φ2,

KL =nκL,

G = max
α

√
Gα +Hα

λα
,

Φ = max{λ1Ψ1(M1), λ2Ψ2(M2)},
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κL is the positive constant in(4.6), sr is cardinality for the row-sparse matrix Θ, and

s for the entry-sparse matrix G.

Proof. From Proposition 4.1 and Proposition 4.2, we know that conditions (C1)-

(C3) are satisfied. Moreover, by Theorem 4.1, the structural incoherence is satisfied

with high probability.

We know

2R∗1(∇ΘL(Θ∗, G∗)) = 2R∗1(XTW ) = 4 max
t=1,2,...p

‖(XTW )t,∗‖2 ≤ 8nσ{
√
q

n
+

√
log p

n
} = λ1

with probability at least 1− 2 exp(−2 log p), which extends the result in [60]. Also

2R∗2(∇GL(Θ∗, G∗)) = 2R∗2(XTW ) = 4||(XTW )∗,t||∞ ≤ 8nσ

√
log pq

n
= λ2

with probability at least 1− c1 exp(−c2(log pq)), which extends the result in [60].

Moreover, Ψ1(M1) =
∑

∆
||∆||1,2
||∆||F

≤ √sr, and Ψ2(M2) = sup∆
||∆||1
||∆||F

≤
√
s.

Applying Theorem 4.1, we get the error bound

||Θ̂−Θ∗||F + ||Ĝ−G∗||F ≤ (
24nσ

K
) max{

√
s(log pq)

n
,
√
sr(

√
q

n
+

√
log p

n
},

which completes the proof.

4.4 Other examples

For the PCA model [1, 58, 60], Y = Θ∗ +G∗ +W , where Θ∗ is low-rank and G∗ is

element-wise sparse, the optimization problem is

min
Θ,G
{‖Y −Θ−G‖2

F + λ1‖Θ‖∗ + λ2‖G‖1}. (4.24)

We can specify our framework to this model by setting X2 = I, and X1 = I.

Another application is the multiple linear regression model [60] Y = X(Θ∗ +

G∗) +W. The corresponding estimator is

(Θ̂, Ĝ) ∈ arg min
Θ,G

{‖Y −XΘ−XG‖2
F + λ1‖Θ‖1,2 + λ2‖G‖1}. (4.25)
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We can specify our framework to this model by setting X1 = X2 = X. For this case,

the two matrices are greatly correlated, so we have to set more strict assumptions on

the matrix to obtain structural incoherence. The following estimation of the largest

singular values of matrix XTX was provided in [56].

Proposition 4.3. Suppose that X ∈ Rn×n is a Σ-Gaussian matrix. Then for any

fixed i,k and every δ > 0, with probability at least 1− 4exp(−c2δ
2), we have

‖XTX‖ ≤ n‖Σ‖+ nc1max(η, η2), (4.26)

where η =
√

t
n

+ δ√
n

, and constants c1, c2 only depend on the distribution of the rows

in X.



Chapter 5
Algorithm and Simulation

5.1 Algorithm

In this chapter, we do experiments for the specific model (4.1) where Θ∗ is row-sparse

and G∗ is entry-sparse. The estimator is

(Θ̂, Ĝ) ∈ arg min
Θ,G

{‖Y −X1Θ−X2G‖2
F + λ1‖Θ‖1,2 + λ2‖G‖1}. (5.1)

For this model, we use FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)

[6] to solve the optimization problem.

In the first step, we approximate the objective function

F (Θ, G) = ‖Y −X1Θ−X2G‖2
F + λ1‖Θ‖1,2 + λ2‖G‖1 (5.2)

with Q:

Q(Θ, G) =‖Y −X1Θk−1 −X2Gk−1‖2
F − 2〈XT

1 (Y −X1Θk−1 −X2Gk−1),∆Θ〉

− 2〈XT
2 (Y −X1Θk−1 −X2Gk−1),∆G〉+

L1

2
‖∆Θ‖2

F +
L2

2
‖∆G‖2

F

+ λ1‖Θ‖1,2 + λ2‖G‖1.

35
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Then, we calculate (Θk, Gk) using the formula Q.

(Θk, Gk) ∈ arg minF (Θ, G)

= arg min{L1

2
‖∆Θ‖2

F +
L2

2
‖∆G‖2

F − 2〈XT
1 (Y −X1Θk−1 −X2Gk−1),∆Θ〉

− 2〈XT
2 (Y −X1Θk−1 −X2Gk−1),∆G〉+ λ1‖Θ‖1,2 + λ2‖G‖1}

= arg min{L1

2
‖∆Θ− 1

L1

XT
1 (Y −X1Θk−1 −X2Gk−1)‖2

F

+
L2

2
‖∆G− 1

L2

XT
2 (Y −X1Θk−1 −X2Gk−1)‖2

F + λ1‖Θ‖1,2 + λ2‖G‖1}

= arg min{L1

2
‖Θ−Θk−1 −

1

L1

XT
1 (Y −X1Θk−1 −X2Gk−1)‖2

F

+
L2

2
‖G−Gk−1 −

1

L2

XT
2 (Y −X1Θk−1 −X2Gk−1)‖2

F + λ1‖Θ‖1,2 + λ2‖G‖1}.

(5.3)

Actually formula (5.3) is in the form of

arg min{L1

2
‖Θ− A‖2

F +
L2

2
‖G−B‖2

F + λ1‖Θ‖1,2 + λ2‖G‖1}, (5.4)

where

A =Θk−1 +
1

L1

XT
1 (Y −X1Θk−1 −X2Gk−1),

B =Gk−1 +
1

L2

XT
2 (Y −X1Θk−1 −X2Gk−1).

In fact, the iteration solution is

Gk = τ λ2
L2

(B), (5.5)

Θk(ij) = ηiAij, (5.6)

ηi = 1− λ1

L1

√
A2
i1 + A2

i2 + ...A2
iq

, (5.7)
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where

L1 =2λmax(X
T
1 X1),

L2 =2λmax(X
T
2 X2),

A =Θk−1 +
1

L1

XT
1 (Y −X1Θk−1 −X2Gk−1),

B =Gk−1 +
1

L2

XT
2 (Y −X1Θk−1 −X2Gk−1).

Now we have obtained the necessary data for the FISTA simulation.

5.2 Simulation results

We conduct simulation using MATLAB to see the effect of structural incoherence

which is the fundamental assumption of our model. In our experiments, we choose

n=100. For the row-sparse matrix Θ∗ with sub-Gaussian rows, we select nonzero

rows randomly using MATLAB command ’randperm’ and then generate row vectors

from Gaussian distribution using MATLAB command ’randn’. The element-wise

sparse matrix G∗ is generated by the command ’sprand’ in MATLAB.

We generate a random matrix X2 which are to be used in both experiments. For

the first set of experiments, we generate random matrix X1 independently from X2.

In the second set of experiments, we set X1 = X2. Obviously, the first set of data

enjoys better structural incoherence property. Then we study the effect of structural

incoherence by observing the performances of the two groups. Moreover, we repeat

the procedure according to different sparse levels. Thus we can see the effect of

sparse levels in the performance of error bound. To be noted that, we carried out

more than 20 tests for each situation, to average out the randomness and ensure the

reliability of the experiments.

Refer to Figure 5.1 and Figure 5.2. We can see that the structural incoherence

plays an important role in the performance of the errors. The more the structure is

incoherent, the smaller is the error. Figure 5.1 shows that, the fewer nonzero rows
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in the original matrix Θ∗, the smaller is the error in the estimated Θ. Moreover,

Figure 5.2 shows that, the fewer nonzero elements in the original matrix G∗, the

smaller is the error in the estimated G. Those observations are consistent with our

theory. Moreover, comparing the two figures, for the effect of structural incoherence,

we observe much greater reduction in error in G, the element-sparse matrix. This

performance is really caused by the property of structural incoherence. In fact, it

indicates the great power of structural incoherence in estimating element-wise sparse

matrix.

For the details of the MATLAB codes, please refer to the thesis package.
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Figure 5.1: Performance of errors according to different sparse levels of Θ∗
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Chapter 6
Conclusions

This thesis studied the structure decomposition problems in high-dimensional set-

tings. We set up a general framework which involves distinct structures and imposed

four natural assumptions on the model. Then we explored the four assumptions.

In particular, we investigated the property of structural incoherence, and provided

conditions under which the assumptions can hold in specific scenarios. The main

results were the theoretical estimation on the error bound. And we then discussed

structural incoherence for different specific scenarios, such as the PCA model and

multi-regression model with gross errors. In the end, we conducted simulation to see

the influence of the structural incoherence property. In fact, the simulation results

provided good verifications for our theoretical analysis.

We should mention that the work done in this thesis is far from complete and

comprehensive. There are still many interesting works to be done. Below we present

some directions for further research that deserve more explorations.

• We only considered a number of scenarios that are special cases of our model.

Maybe other norms and low-dimensional structures can also be incorporated

into our framework under appropriate conditions.

• We only discussed two distinct structures in this paper. A future research

direction is that, if the number of different structures is increased, whether one

41
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can possibly get some meaningful results concerning the parameter selection

and the estimation of the error bound.
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