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Summary

This thesis is concerned with an important class of high dimensional convex com-

posite quadratic optimization problems with large numbers of linear equality and

inequality constraints. The motivation for this work comes from recent interests in

important convex quadratic conic programming problems, as well as from convex

quadratic programming problems with dual block angular structures arising from

network flows problems, two stage stochastic programming problems, etc. In order

to solve the targeted problems to desired accuracy efficiently, we introduce a two

phase augmented Lagrangian method, with Phase I to generate a reasonably good

initial point and Phase II to obtain accurate solutions fast.

In Phase I, we carefully examine a class of convex composite quadratic program-

ming problems and introduce a one cycle symmetric block Gauss-Seidel technique.

This technique allows us to design a novel symmetric Gauss-Seidel based proximal

ADMM (sGS-PADMM) for solving convex composite quadratic programming prob-

lems. The ability of dealing with coupling quadratic term in the objective function

makes the proposed algorithm very flexible in solving various multi-block convex

optimization problems. The high efficiency of our proposed algorithm for achieving

low to medium accuracy solutions is demonstrated by numerical experiments on

various large scale examples including convex quadratic semidefinite programming

xi



xii Summary

(QSDP) problems, convex quadratic programming (QP) problems and some other

extensions.

In Phase II, in order to obtain more accurate solutions for convex composite

quadratic programming problems, we propose an inexact proximal augmented La-

grangian method (pALM). We study the global and local convergence of our pro-

posed algorithm based on the classic results of proximal point algorithms. We pro-

pose to solve the inner subproblems by inexact alternating minimization method.

Then, we specialize the proposed pALM algorithm to convex QSDP problems and

convex QP problems. We discuss the implementation of a semismooth Newton-CG

method and an inexact accelerated proximal gradient (APG) method for solving the

resulted inner subproblems. We also show that how the aforementioned symmetric

Gauss-Seidel technique can be intelligently incorporated in the implementation of

our Phase II algorithm. Numerical experiments on a variety of high dimensional

convex QSDP problems and convex QP problems show that our proposed two phase

framework is very efficient and robust.



Chapter 1
Introduction

In this thesis, we focus on designing algorithms for solving large scale convex com-

posite quadratic programming problems. In particular, we are interested in convex

quadratic semidefinite programming (QSDP) problems and convex quadratic pro-

gramming (QP) problems with large numbers of linear equality and inequality con-

straints. The general convex composite quadratic optimization model we considered

in this thesis is given as follows:

min θ(y1) + f(y1, y2, . . . , yp) + ϕ(z1) + g(z1, z2, . . . , zq)

s.t. A∗1y1 +A∗2y2 + · · ·+A∗pyp + B∗1z1 + B∗2z2 + · · ·+ B∗qzq = c,
(1.1)

where p and q are given nonnegative integers, θ : Y1 → (−∞,+∞] and ϕ : Z1 →

(−∞,+∞] are simple closed proper convex function in the sense that their proximal

mappings are relatively easy to compute, f : Y1 × Y2 × . . . × Yp → < and g :

Z1 × Z2 × . . . × Zq → < are convex quadratic, possibly nonseparable, functions,

Ai : X → Yi, i = 1, . . . , p, and Bj : X → Zj, j = 1, . . . , q, are linear maps, c ∈ X

is given data, Y1, . . . ,Yp,Z1, . . . ,Zq and X are real finite dimensional Euclidean

spaces each equipped with an inner product 〈·, ·〉 and its induced norm ‖ · ‖. In this

thesis, we aim to design efficient algorithms for finding a solution of medium to high

accuracy to convex composite quadratic programming problems.

1



2 Chapter 1. Introduction

1.1 Motivations and related methods

The motivation for studying general convex composite quadratic programming model

(1.1) comes from recent interests in the following convex composite quadratic conic

programming problem:

min θ(y1) +
1

2
〈y1, Qy1〉+ 〈c, y1〉

s.t. y1 ∈ K1, A∗1y1 − b ∈ K2,

(1.2)

where Q : Y1 → Y1 is a self-adjoint positive semidefinite linear operator, c ∈ Y1

and b ∈ X are given data, K1 ⊆ Y1 and K2 ⊆ X are closed convex cones. The

Lagrangian dual of problem (1.2) is given by

max −θ∗(−s)− 1

2
〈w, Qw〉+ 〈b, x〉

s.t. s+ z −Qw +A1x = c,

z ∈ K∗1, w ∈ W , x ∈ K∗2,

where W ⊆ Y1 is any subspace such that Range(Q) ⊆ W , K∗1 and K∗2 are the dual

cones of K1 and K2, respectively, i.e., K∗1 := {d ∈ Y1 | 〈d, y1〉 ≥ 0 ∀y1 ∈ K1}, θ∗(·)

is the Fenchel conjugate function [53] of θ(·) defined by θ∗(s) = supy1∈Y1{〈s, y1〉 −

θ(y1)}.

Below we introduce several prominent special cases of the model (1.2) including

convex quadratic semidefinite programming problems and convex quadratic pro-

gramming problems.

1.1.1 Convex quadratic semidefinite programming

An important special case of convex composite quadratic conic programming is the

following convex quadratic semidefinite programming (QSDP)

min 1
2
〈X, QX〉+ 〈C, X〉

s.t. AEX = bE, AIX ≥ bI , X ∈ Sn+ ∩ K ,
(1.3)
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where Sn+ is the cone of n × n symmetric and positive semidefinite matrices in the

space of n×n symmetric matrices Sn endowed with the standard trace inner product

〈·, ·〉 and the Frobenius norm ‖ · ‖, Q is a self-adjoint positive semidefinite linear

operator from Sn to Sn, AE : Sn → <mE and AI : Sn → <mI are two linear maps,

C ∈ Sn, bE ∈ <mE and bI ∈ <mI are given data, K is a nonempty simple closed

convex set, e.g., K = {W ∈ Sn : L ≤ W ≤ U} with L,U ∈ Sn being given matrices.

The dual of problem (1.3) is given by

max −δ∗K(−Z)− 1
2
〈X ′, QX ′〉+ 〈bE, yE〉+ 〈bI , yI〉

s.t. Z −QX ′ + S +A∗EyE +A∗IyI = C,

X ′ ∈ Sn, yI ≥ 0, S ∈ Sn+ ,

(1.4)

where for any Z ∈ Sn, δ∗K(−Z) is given by

δ∗K(−Z) = − inf
W∈K
〈Z, W 〉 = sup

W∈K
〈−Z, W 〉. (1.5)

Note that, in general, problem (1.4) does not fit our general convex composite

quadratic programming model (1.1) unless yI is vacuous from the model or K ≡ Sn.

However, one can always reformulate problem (1.4) equivalently as

min (δ∗K(−Z) + δ<mI+
(u)) + 1

2
〈X ′, QX ′〉+ δSn+(S)− 〈bE, yE〉 − 〈bI , yI〉

s.t. Z −QX ′ + S +A∗EyE +A∗IyI = C,

u− yI = 0, X ′ ∈ Sn,

(1.6)

where δ<mI+
(·) is the indicator function over <mI+ , i.e., δ<mI+

(u) = 0 if u ∈ <mI+ and

δ<mI+
(u) =∞ if u /∈ <mI+ . Now, one can see that problem (1.6) satisfies our general

optimization model (1.1). Actually, the introduction of the variable u in (1.6) not

only fits our model but also makes the computations more efficient. Specifically,

in applications, the largest eigenvalue of AIA∗I is normally very large. Thus, to

make the variable yI in (1.6) to be of free sign is critical for efficient numerical

computations.

Due to its wide applications and mathematical elegance [1, 26, 31, 50], QSDP has

been extensively studied both theoretically and numerically in the literature. For the
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recent theoretical developments, one may refer to [49, 61, 2] and references therein.

From the numerical aspect, below we briefly review some of the methods available for

solving QSDP problems. In (1.6), if there are no inequality constraints (i.e., AI and

bI are vacuous and K = Sn), Toh et al [63] and Toh [65] proposed inexact primal-dual

path-following methods, which belong to the category of interior point methods, to

solve this special class of convex QSDP problems. In theory, these methods can

be used to solve QSDP with any numbers of inequality constraints. However, in

practice, as far as we know, the interior point based methods can only solve moderate

scale QSDP problems. In her PhD thesis, Zhao [72] designed a semismooth Newton-

CG augmented Lagrangian (NAL) method and analyzed its convergence for solving

the primal formulation of QSDP problems (1.3). However, NAL algorithm may

encounter numerical difficulty when the nonnegative constraints are present. Later,

Jiang et al [29] proposed an inexact accelerated proximal gradient method mainly

for least squares semidefinite programming without inequality constraints. Note

that it is also designed to solve the primal formulation of QSDP. To the best of

our knowledge, there are no existing methods which can efficiently solve the general

QSDP model (1.3).

There are many convex optimization problems related to convex quadratic conic

programming which fall within our general convex composite quadratic program-

ming model. One example comes from the matrix completion with fixed basis coef-

ficients [42, 41, 68]. Indeed the nuclear semi-norm penalized least squares model in

[41] can be written as

min
X∈<m×n

1
2
‖AFX − d‖2 + ρ(‖X‖∗ − 〈C, X〉)

s.t. AEX = bE, X ∈ K := {X | ‖RΩX‖∞ ≤ α},
(1.7)

where ‖X‖∗ is the nuclear norm of X defined as the sum of all its singular values,

‖ · ‖∞ is the element-wise l∞ norm defined by ‖X‖∞ := max
i=1,...,m

max
j=1,...,n

|Xij|, AF :

<m×n → <nF and AE : <m×n → <nE are two linear maps, ρ and α are two given

positive parameters, d ∈ <nF , C ∈ <m×n and bE ∈ <nE are given data, Ω ⊆

{1, . . . ,m}×{1, . . . , n} is the set of the indices relative to which the basis coefficients
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are not fixed, RΩ : <m×n → <|Ω| is the linear map such thatRΩX := (Xij)ij∈Ω. Note

that when there are no fixed basis coefficients (i.e., Ω = {1, . . . ,m}×{1, . . . , n} and

AE are vacuous), the above problem reduces to the model considered by Negahban

and Wainwright in [45] and Klopp in [30]. By introducing slack variables η, R and

W , we can reformulate problem (1.7) as

min 1
2
‖η‖2 + ρ

(
‖R‖∗ − 〈C, X〉

)
+ δK(W )

s.t. AFX − d = η, AEX = bE, X = R, X = W.
(1.8)

The dual of problem (1.8) takes the form of

max −δ∗K(−Z)− 1
2
‖ξ‖2 + 〈d, ξ〉+ 〈bE, yE〉

s.t. Z +A∗F ξ + S +A∗EyE = −ρC, ‖S‖2 ≤ ρ,
(1.9)

where ‖S‖2 is the operator norm of S, which is defined to be its largest singular

value.

Another compelling example is the so called robust PCA (principle component

analysis) considered in [66]:

min ‖A‖∗ + λ1‖E‖1 +
λ2

2
‖Z‖2

F

s.t. A+ E + Z = W, A,E, Z ∈ <m×n ,
(1.10)

where W ∈ <m×n is the observed data matrix, ‖ · ‖1 is the elementwise l1 norm

given by ‖E‖1 :=
∑m

i=1

∑n
j=1 |Eij|, ‖ · ‖F is the Frobenius norm, λ1 and λ2 are two

positive parameters. There are many different variants to the robust PCA model.

For example, one may consider the following model where the observed data matrix

W is incomplete:

min ‖A‖∗ + λ1‖E‖1 +
λ2

2
‖PΩ(Z)‖2

F

s.t. PΩ(A+ E + Z) = PΩ(W ), A, E, Z ∈ <m×n ,
(1.11)

i.e. one assumes that only a subset Ω ⊆ {1, . . . ,m} × {1, . . . , n} of the entries of

W can be observed. Here PΩ : <m×n → <m×n is the orthogonal projection operator
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defined by

PΩ(X) =


Xij if (i, j) ∈ Ω,

0 otherwise.
(1.12)

In [62], Tao and Yuan tested one of the equivalent forms of problem (1.11). In the

numerical section, we will see other interesting examples.

Due to the fact that the objective functions in all above examples are separable,

these examples can also be viewed as special cases of the following block-separable

convex optimization problem:

min
{∑n

i=1
φi(wi) |

∑n

i=1
H∗iwi = c

}
, (1.13)

where for each i ∈ {1, . . . , n}, Wi is a finite dimensional real Euclidean space

equipped with an inner product 〈·, ·〉 and its induced norm ‖·‖, φi :Wi → (−∞,+∞]

is a closed proper convex function, Hi : X → Wi is a linear map and c ∈ X is given.

Note that the quadratic structure in all the mentioned examples is hidden in the

sense that each φi will be treated equally. However, this special quadratic structure

will be thoroughly exploited in our search for an efficient yet simple algorithm with

guaranteed convergence.

Let σ > 0 be a given parameter. The augmented Lagrangian function for (1.13)

is defined by

Lσ(w1, . . . , wn;x) :=
∑n

i=1φi(wi) + 〈x,
∑n

i=1H∗iwi − c〉+ σ
2
‖
∑n

i=1H∗iwi − c‖2

for wi ∈ Wi, i = 1, . . . , n and x ∈ X . Choose any initial points w0
i ∈ dom(φi),

i = 1, . . . , q and x0 ∈ X . The classical augmented Lagrangian method consists of

the following iterations:

(wk+1
1 , . . . , wk+1

n ) = argmin Lσ(w1, . . . , wn;xk), (1.14)

xk+1 = xk + τσ
(∑n

i=1
H∗iwk+1

i − c
)
, (1.15)

where τ ∈ (0, 2) guarantees the convergence. Due to the non-separability of the

quadratic penalty term in Lσ, it is generally a challenging task to solve the joint
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minimization problem (1.14) exactly or approximately with high accuracy. To over-

come this difficulty, one may consider the following n-block alternating direction

methods of multipliers (ADMM):

wk+1
1 = argmin Lσ(w1, w

k
2 . . . , w

k
n;xk),

...

wk+1
i = argmin Lσ(wk+1

1 , . . . , wk+1
i−1 , wi, w

k
i+1, . . . , w

k
n;xk),

... (1.16)

wk+1
n = argmin Lσ(wk+1

1 , . . . , wk+1
n−1, wn;xk),

xk+1 = xk + τσ
(∑n

i=1
H∗iwk+1

i − c
)
.

Note that although the above n-block ADMM can not be directly applied to solve

general convex composite quadratic programming problem (1.1) due to the nonsepa-

rable structure of the objective functions, we still briefly discuss recent developments

of this algorithm here as it is close related to our proposed new algorithm. In fact,

the above n-block ADMM is an direct extension of the ADMM for solving the fol-

lowing 2-block convex optimization problem

min {φ1(w1) + φ2(w2) | H∗1w1 +H∗2w2 = c} . (1.17)

The convergence of 2-block ADMM has already been extensively studied in [18,

16, 17, 14, 15, 11] and references therein. However, the convergence of the n-block

ADMM has been ambiguous for a long time. Fortunately this ambiguity has been

addressed very recently in [4] where Chen, He, Ye, and Yuan showed that the direct

extension of the ADMM to the case of a 3-block convex optimization problem is

not necessarily convergent. This seems to suggest that one has to give up the

direct extension of m-block (m ≥ 3) ADMM unless if one is willing to take a

sufficiently small step-length τ as was shown by Hong and Luo in [28] or to take

a small penalty parameter σ if at least m − 2 blocks in the objective are strongly

convex [23, 5, 36, 37, 34]. On the other hand, the n-block ADMM with τ ≥ 1 often
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works very well in practice and this fact poses a big challenge if one attempts to

develop new ADMM-type algorithms which have convergence guarantee but with

competitive numerical efficiency and iteration simplicity as the n-block ADMM.

Recently, there is exciting progress in this active research area. Sun, Toh and

Yang [59] proposed a convergent semi-proximal ADMM (ADMM+) for convex pro-

gramming problems of three separable blocks in the objective function with the

third part being linear. The convergence proof of ADMM+ presented in [59] is via

establishing its equivalence to a particular case of the general 2-block semi-proximal

ADMM considered in [13]. Later, Li, Sun and Toh [35] extended the 2-block semi-

proximal ADMM in [13] to a majorized ADMM with indefinite proximal terms.

In this thesis, inspired by the aforementioned work, we aim to extend the idea in

ADMM+ to solve convex composite quadratic programming problems based on the

convergence results provided in [35].

1.1.2 Convex quadratic programming

As a special class of convex composite quadratic conic programming, the following

high dimensional convex quadratic programming (QP) problem is also a strong

motivation for us to study the general convex composite quadratic programming

problem. The large scale convex quadratic programming with many equality and

inequality constraints is given as follows:

min

{
1

2
〈x, Qx〉+ 〈c, x〉 | Ax = b, b̄−Bx ∈ C, x ∈ K

}
, (1.18)

where vector c ∈ <n and positive semidefinite matrix Q ∈ Sn+ define the linear and

quadratic costs for decision variable x ∈ <n, matrices A ∈ <mE×n and B ∈ <mI×n

respectively define the equality and inequality constraints, C ⊆ <mI is a closed

convex cone, e.g., the nonnegative orthant C = {x̄ ∈ <mI | x̄ ≥ 0}, K ⊆ <n is a

nonempty simple closed convex set, e.g., K = {x ∈ <n | l ≤ x ≤ u} with l, u ∈ <n
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being given vectors. The dual of (1.18) takes the following form

max −δ∗K(−z)− 1
2
〈x′, Qx′〉+ 〈b, y〉+ 〈b̄, ȳ〉

s.t. z −Qx′ + A∗y +B∗ȳ = c, x′ ∈ <n, ȳ ∈ C◦,
(1.19)

where C◦ is the polar cone [53, Section 14] of C. We are more interested in the case

when the dimensions n and/or mE +mI are extremely large. Convex QP has been

extensively studied for over the last fifty years, see, for examples [60, 19, 20, 21, 8, 7,

9, 10, 70, 67] and references therein. Nowadays, main solvers for convex QP are based

on active set methods or interior point methods. One may also refer to http://www.

numerical.rl.ac.uk/people/nimg/qp/qp.html for more information. Currently,

one popular state-of-the-art solver for large scale convex QP problems is the interior

point methods based solver Gurobi[22]∗. However, for high dimensional convex

QP problems with a large number of constraints, the interior point methods based

solvers, such as Gurobi, will encounter inherent numerical difficulties as the lack of

sparsity of the linear systems to be solved often makes the critical sparse Cholesky

factorization fail. This fact indicates that an algorithm which can handle high

dimensional convex QP problems with many dense linear constraints is needed.

In order to handle the equality and inequality constraints simultaneously, we

propose to add a slack variable x̄ to get the following problem:

min 1
2
〈x, Qx〉+ 〈c, x〉

s.t.

 A

B I


 x

x̄

 =

 b

b̄

 , x ∈ K, x̄ ∈ C.
(1.20)

The dual of problem (1.20) is given by

max (−δ∗K(−z)− δ∗C(−z̄))− 1
2
〈x′, Qx′〉+ 〈b, y〉+ 〈b̄, ȳ〉

s.t.

 z

z̄

−
 Qx′

0

+

 A∗ B∗

I

 y

ȳ

 =

 c

0

 . (1.21)

∗Base on the results presented in http://plato.asu.edu/ftp/barrier.html

http://www.numerical.rl.ac.uk/people/nimg/qp/qp.html
http://www.numerical.rl.ac.uk/people/nimg/qp/qp.html
http://plato.asu.edu/ftp/barrier.html
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Thus, problem (1.21) belongs to our general optimization model (1.1). Note that,

due to the extremely large problem size, ideally, one should decompose x′ into smaller

pieces but then the quadratic term about x′ in the objective function becomes non-

separable. Thus, one will encounter difficulties while using classic ADMM to solve

(1.21) since classic ADMM can not handle nonseparable structures in the objective

function. This again calls for new developments of efficient and convergent ADMM

type methods.

A prominent example of convex QP comes from the two-stage stochastic opti-

mization problem. Consider the following stochastic optimization problem:

min
x

{1

2
〈x, Qx〉+ 〈c, x〉+ Eξ P (x; ξ) | Ax = b, x ∈ K}, (1.22)

where ξ is a random vector and

P (x; ξ) = min

{
1

2
〈x̄, Qξx̄〉+ 〈qξ, x̄〉 | Bξx̄ = b̄ξ −Bξx, x̄ ∈ Kξ

}
,

where Kξ ∈ X is a simple closed convex set depending on the random vector ξ. By

sampling N scenarios for ξ, one may approximately solve (1.22) via the following

deterministic optimization problem:

min 1
2
〈x, Qx〉+ 〈c, x〉+

∑N
i=1(1

2
〈x̄i, Qix̄i〉+ 〈c̄i, x̄i〉)

s.t.



A

B1 B1

...
. . .

BN BN




x

x̄1

...

x̄N

 =


b

b̄1

...

b̄N

 ,

x ∈ K, x̄ = [x̄1; . . . ; x̄N ] ∈ K = K1 × · · · × KN ,

(1.23)

where Qi = piQi and c̄i = piqi with pi being the probability of occurrence of the ith

scenario, Bi, Bi, b̄i are the data and x̄i is the second stage decision variable associated



1.2 Contributions 11

with the ith scenario. The dual problem of (1.23) is given by

min (
∑N

j=1 δ
∗
Kj

(−zj) + δ∗K(−z)) + 1
2 〈x
′, Qx′〉+

∑N
i=1

1
2 〈x̄
′
i, Qix̄

′
i〉 − 〈b, y〉 −

∑N
j=1〈b̄j , ȳj〉

s.t.


z

z̄1
...

z̄N

−

Q

Q1

. . .

QN




x′

x̄′1
...

x̄′N

+


A∗ B∗1 · · · B∗N

B
∗
1

. . .

B
∗
N




y

ȳ1
...

ȳN

 =


c

c̄1
...

c̄N

 .
(1.24)

Clearly, (1.24) is another perfect example of our general convex composite quadratic

programming problems.

1.2 Contributions

In order to solve the convex composite quadratic programming problems (1.1) to

high accuracy efficiently, we introduce a two-phase augmented Lagrangian method,

with Phase I to generate a reasonably good initial point and Phase II to obtain ac-

curate solutions fast. In fact, this two stage framework has been successfully applied

to solve semidefinite programming (SDP) problems with partial or full nonnegative

constraints where ADMM+ [59] and SDPNAL+ [69] are regraded as Phase I algo-

rithm and Phase II algorithm, respectively. Inspired by the aforementioned work,

we propose to extend their ideas to solve large scale convex composite quadratic

programming problems including convex QSDP and convex QP.

In Phase I, to solve convex quadratic conic programming, the first question we

need to ask is that shall we work on the primal formulation (1.2) or the dual for-

mulation (1.3)? Note that since the objective function in the dual problem contains

quadratic functions as the primal problem does and has more blocks, it is natural

for people to focus more on primal formulation. Actually, the primal approach has

been used to solve special class of QSDP as in [29, 72]. However, as demonstrated

in [59, 69], it is usually better to work on the dual formulation than the primal

formulation for linear SDP problems with nonegative constraints (SDP+). [59, 69]

pose the following question: for general convex quadratic conic programming (1.2),
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can we work on the dual formulation instead of primal formulation, as for the lin-

ear SDP+ problems? So that when the quadratic term in the objective function

of QSDP reduced to a linear term, our algorithm is at least comparable with the

algorithms proposed [59, 69]. In this thesis, we will resolve this issue in a unified way

elegantly. Observe that ADMM+ can only deal with convex programming problems

of three separable blocks in the objective function with the third part being lin-

ear. Thus, we need to invent new techniques to handle the quadratic terms and the

multi-block structure in (1.4). Fortunately, by carefully examining a class of convex

composite quadratic programming problems, we are able to design a novel one cy-

cle symmetric block Gauss-Seidel technique to deal with the nonseparable structure

in the objective function. Based on this technique, we then propose a symmetric

Gauss-Seidel based proximal ADMM (sGS-PADMM) for solving not only the dual

formulation of convex quadratic conic programming, which includes the dual formu-

lation of QSDP as a special case, but also the general convex composite quadratic

optimization model (1.1). Specifically, when sGS-PADMM is applied to solve high

dimensional convex QP problems, the obstacles brought about by the large scale

quadratic term, linear equality and inequality constraints can thus be overcome via

using sGS-PADMM to decompose these terms into smaller pieces. Extensive nu-

merical experiments on high dimensional QSDP problems, convex QP problems and

some extensions demonstrate the efficiency of sGS-PADMM for finding a solution

of low to medium accuracy.

In Phase I, the success of sGS-PADMM of being able to decompose the non-

separable structure in the dual formulation of convex quadratic conic programming

(1.3) depends on the assumptions that the subspace W in (1.3) is chosen to be the

whole space. This in fact can introduce unfavorable property of the unbounded-

ness of the dual solution w to problem (1.3). Fortunately, it causes no problem

in Phase I. However, this unboundedness becomes critical in designing our second

phase algorithm. Therefore, in Phase II, we will take W = Range(Q) to eliminate

the unboundedness of the dual optimal solution w. This of course will introduce
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numerical difficulties as we need to maintain w ∈ Range(Q), which, in general, is

a difficult task. However, by fully exploring the structure of problem (1.3), we are

able to resolve this issue. In this way, we can design an inexact proximal augmented

Lagrangian (pALM) method for solving convex composite quadratic programming.

The global convergence is analyzed based on the classic results of proximal point

algorithms. Under the error bound assumption, we are also able to establish the

local linear convergence of our proposed algorithm pALM. Then, we specialize the

proposed pALM algorithm to convex QSDP problems and convex QP problems. We

discuss in detail the implementation of a semismooth Newton-CG method and an

inexact accelerated proximal gradient (APG) method for solving the resulted inner

subproblems. We also show that how the aforementioned symmetric Gauss-Seidel

technique can be intelligently incorporated in the implementation of our Phase II

algorithm. The efficiency and robustness of our proposed two phase framework

is then demonstrated by numerical experiments on a variety of high dimensional

convex QSDP and convex QP problems.

1.3 Thesis organization

The rest of the thesis is organized as follows. In Chapter 2, we present some pre-

liminaries that are relate to the subsequent discussions. We analyze the property of

the Moreau-Yosida regularization and review the recent developments of proximal

ADMM. In Chapter 3, we introduce the one cycle symmetric block Gauss-Seidel

technique. Based on this technique, we are able to present our first phase algo-

rithm, i.e., a symmetric Gauss-Seidel based proximal ADMM (sGS-PADMM), for

solving convex composite quadratic programming problems. The efficiency of our

proposed algorithm for finding a solution of low to medium accuracy to the tested

problems is demonstrated by numerical experiments on various examples including

convex QSDP and convex QP. In Chapter 4, for Phase II, we propose an inexact

proximal augmented Lagrangian method for solving our convex composite quadratic
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optimization model and analyze its global and local convergence. The inner subprob-

lems are solved by an inexact alternating minimization method. We also discuss in

detail the implementations of our proposed algorithm for convex QSDP and convex

QP problems. We also show that how the aforementioned symmetric Gauss-Seidel

technique can be wisely incorporated in the proposed algorithms for solving the re-

sulted inner subproblems. Numerical experiments conducted on a variety of large

scale convex QSDP and convex QP problems show that our two phase framework

is very efficient and robust for finding high accuracy solutions for convex composite

quadratic programming problems. We give the final conclusions of the thesis and

discuss a few future research directions in Chapter 5.



Chapter 2
Preliminaries

2.1 Notations

Let X and Y be finite dimensional real Euclidian spaces each equipped with an

inner product 〈·, ·〉 and its induced norm ‖ · ‖. Let M : X → X be a self-adjoint

positive semidefinite linear operator. Then, there exists a unique positive semidef-

inite linear operator N with N 2 = M. Thus, we define M 1
2 =

√
M = N .

Define 〈·, ·〉M : X × X → < by 〈x, y〉M = 〈x,My〉 for all x, y ∈ X . Let

‖ · ‖M : X → < be defined as ‖x‖M =
√
〈x, x〉M for all x ∈ X . If, M is fur-

ther assumed to be positive definite, 〈·, ·〉M will be an inner product and ‖ · ‖M
will be its induced norm. Let Sn+ be the cone of n × n symmetric and posi-

tive semidefinite matrices in the space of n × n symmetric matrices Sn endowed

with the standard trace inner product 〈·, ·〉 and the Frobenius norm ‖ · ‖. Let

svec : Sn → <n(n+1)/2 be the vectorization operator on symmetric matrices defined

by svec(X) := [X11,
√

2X12, X22, . . . ,
√

2X1n, . . . ,
√

2Xn−1,n, Xnn]T .

Definition 2.1. A function F : X → Y is said to be directionally differentiable at

x ∈ X if

F ′(x;h) := lim
t→0+

F (x+ th)− F (x)

t
exists

for all h ∈ X and F is directionally differentiable if F is directionally differentiable

15
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at every x ∈ X .

Let F : X → Y be a Lipschitz continuous function. By Rademacher’s theorem

[56, Section 9.J], F is Fréchet differentiable almost everywhere. Let DF be the set of

points in X where F is differentiable. The Bouligand subdifferential of F at x ∈ X

is defined by

∂BF (x) =

{
lim
xk→x

F ′(xk), xk ∈ DF

}
,

where F ′(xk) denotes the Jacobian of F at xk ∈ DF and the Clarke’s [6] generalized

Jacobian of F at x ∈ X is defined as the convex hull of ∂BF (x) as follows

∂F (x) = conv{∂BF (x)}.

First introduced by Miffin [43] for functionals, the following concept of semismooth-

ness was then extended by Qi and Sun [51] to cases when a vector-valued function

is not differentiable, but locally Lipschitz continuous. See also [12, 40]

Definition 2.2. Let F : O ⊆ X → Y be a locally Lipschitz continuous function on

the open set O. F is said to be semismooth at a point x ∈ O if

1. F is directionally differentiable at x; and

2. for any ∆x ∈ X and V ∈ ∂F (x+ ∆x) with ∆x→ 0,

F (x+ ∆x)− F (x)− V∆x = o(‖∆x‖).

Furthermore, F is said to be strongly semismooth at x ∈ X if F is semismooth

at x and for any ∆x ∈ X and V ∈ ∂F (x+ ∆x) with ∆x→ 0,

F (x+ ∆x)− F (x)− V∆x = O(‖∆x‖2).

In fact, many functions such as convex functions and smooth functions are semis-

mooth everywhere. Moreover, piecewise linear functions and twice continuously

differentiable functions are strongly semismooth functions.
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2.2 The Moreau-Yosida regularization

In this section, we discuss the Moreau-Yosida regularization which is a useful tool

in our subsequent analysis.

Definition 2.3. Let f : X → (−∞,∞] be a closed proper convex function. Let

M : X → X be a self-adjoint positive definite linear operator. The Moreau-Yosida

regularization ϕfM : X → < of f with respect to M is defined as

ϕfM(x) = min
z∈X

{
f(z) +

1

2
‖z − x‖2

M

}
, x ∈ X . (2.1)

From [44, 71], we have the following proposition.

Proposition 2.1. For any given x ∈ X , the problem (2.1) has a unique optimal

solution.

Definition 2.4. The unique optimal solution of problem (2.1), denoted by proxfM(x),

is called the proximal point of x associated with f . WhenM = I, for simplicity, we

write proxf (x) ≡ proxfI(x) for all x ∈ X , where I : X → X is the identity operator.

Below, we list some important properties of the Moreau-Yosida regularization.

Proposition 2.2. Let g : X → (−∞,+∞] be defined as g(x) ≡ f(M− 1
2x) ∀x ∈ X .

Then,

proxfM(x) =M− 1
2 proxg(M

1
2x) ∀x ∈ X .

Proof. Note that, for any given x ∈ X ,

proxfM(x) = argmin{f(z) +
1

2
‖z − x‖2

M}

= argmin{f(z) +
1

2
‖M

1
2 z −M

1
2x‖2}.

By change of variables, we have proxfM(x) =M− 1
2y, where

y = argmin{f(M− 1
2y) +

1

2
‖y −M

1
2x‖2} = argmin{g(y) +

1

2
‖y −M

1
2x‖2}

= proxg(M
1
2x).

That is proxfM(x) =M− 1
2 proxgI(M

1
2x) for all x ∈ X .
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Proposition 2.3. [32, Theorem XV.4.1.4 and Theorem XV.4.1.7] Let f : X →

(−∞,+∞] be a closed proper convex function. Let M : X → X be a given self-

adjoint positive definite linear operator, ϕfM(x) be the Moreau-Yosida regularization

of f , and proxfM : X → X be the associated proximal mapping. Then the following

properties hold.

(i) argminx∈Xf(x) = argminx∈Xϕ
f
M(x).

(ii) Both proxfM and Qf
M := I−proxfM (I : X → X is the identity map) are firmly

non-expensive, i.e., for any x, y ∈ X ,

‖proxfM(x)− proxfM(y)‖2
M ≤ 〈proxfM(x)− proxfM(y), x− y〉M , (2.2)

‖Qf
M(x)−Qf

M(y)‖2
M ≤ 〈Qf

M(x)−Qf
M(y), x− y〉M . (2.3)

(iii) ϕfM is continuous differentiable, and further more, it holds that

∇ϕfM(x) =M(x− proxfM(x)) ∈ ∂f(proxfM(x)).

Hence,

f(v) ≥ f(proxfM(x)) + 〈x− proxfM(x), v − proxfM(x)〉M ∀v ∈ X .

Proposition 2.4 (Moreau Decomposition). Let f : X → (−∞,+∞] be a closed

proper convex function and f ∗ be its conjugate. Then any z ∈ X has the decompo-

sition

z = proxfM(z) +M−1proxf
∗

M−1(Mz).

Proof: For any given z ∈ X , by definition of proxfM(z), we have

0 ∈ ∂f(proxfM(z)) +M(proxfM(z)− z),

i.e., z − proxfM(z) ∈ M−1∂f(proxfM(z)). Define function g : X → (−∞,+∞] as

g(x) ≡ f(M−1x). By [53, Theorem 9.5], g is also a closed proper convex function.

By [53, Theorem 12.3 and Theorem 23.9], we have

g∗(y) = f ∗(My) and ∂g(x) =M−1∂f(M−1x),
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respectively. Thus, we obtain

z − proxfM(z) ∈ ∂g(MproxfM(z)).

Then, by [53, Theorem 23.5 and Theorem 23.9], it is easy to have that

MproxfM(z) ∈ ∂g∗(z − proxfM(z)) =M∂f ∗
(
M(z − proxfM(z))

)
.

Therefore,

M(z − proxfM(z)) = argminy∈X

{
f ∗(y) +

1

2
‖y −Mz‖2

M−1

}
= proxf

∗

M−1(Mz).

Thus, we complete the proof.

Now let us consider a special application of the aforementioned Moreau-Yosida

regularization.

We first focus on the case where the function f is assumed to be the indicator

function of a given closed convex set K, i.e., f(x) = δK(x) where δK(x) = 0 if x ∈ K

and δK(x) =∞ if x /∈ K. For simplicity, we also let the self-adjoint positive definite

linear operator M to be the identity operator I. Then, the proximal point of x

associated with indicator function f(·) = δK(·) with M = I is the unique optimal

solution, denoted by ΠK(x), of the following convex optimization problem:

min
1

2
‖z − x‖2

s.t. z ∈ K.
(2.4)

In fact, ΠK : X → X is the metric projector over K. Thus, the distance function

is defined by dist(x,K) = ‖x − ΠK(x)‖. By Proposition 2.3, we know that ΠK(x)

is Lipschitz continuous with modulus 1. Hence, ΠK(·) is almost everywhere Fréchet

differentiable in X and for every x ∈ X , ∂ΠK(x) is well defined. Below, we list the

following lemma [40], which provides some important properties of ∂ΠK(·).

Lemma 2.5. Let K ⊆ X be a closed convex set. Then, for any x ∈ X and V ∈

∂ΠK(x), it holds that
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1. V is self-adjoint.

2. 〈h, Vh〉 ≥ 0 ∀h ∈ X .

3. 〈h, Vh〉 ≥ ‖Vh‖2 ∀h ∈ X .

Let K = {W ∈ Sn | L ≤ W ≤ U} with L,U ∈ Sn being given matrices. For

X ∈ Sn, let Y = ΠK(X) be the metric projection of X onto the subset K of Sn

under the Frobenius norm. Then, Y = min(max(X,L), U). Define linear operator

W0 : Sn → Sn by

W0(M) = Ω ◦M, M ∈ Sn,

where

Ωij =


0 if Xij < Lij,

1 if Lij ≤ Xij ≤ Uij,

0 if Xij > Uij.

(2.5)

Observing that ΠK(X) now is in fact a piecewise linear function, we have W0 is an

element of the set ∂ΠK(X).

Let K = Sn+, i.e., the cone of n×n symmetric and positive semidefinite matrices.

GivenX ∈ Sn, letX+ = ΠSn+(X) be the projection ofX onto Sn+ under the Frobenius

norm. Assume that X has the following spectral decomposition

X = PΛP T ,

where Λ is the diagonal matrix with diagonal entries consisting of the eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λk > 0 ≥ λk+1 ≥ . . . ≥ λn of X and P is a corresponding

orthogonal matrix of eigenvectors. Then

X+ = PΛ+P
T ,

where Λ+ = max{Λ, 0}. Sun and Sun, in their paper [58], show that ΠSn+(·) is

strongly semismooth everywhere in Sn. Define the operator W0 : Sn → Sn by

W0(M) = Q(Ω ◦ (QTMQ))QT , M ∈ Sn, (2.6)
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where

Ω =

 Ek Ω

Ω
T

0

 , Ωij =
λi

λi − λj
, i ∈ {1, . . . , k}, j ∈ {k + 1, . . . , n},

where Ek is the square matrix of ones with dimension k (the number of positive

eigenvalues), and the matrix Ω has all its entries lying in the interval [0, 1]. In their

paper [47], Pang, Sun and Sun proved that W0 is an element of the set ∂ΠSn+(X).

Next we examine the case when the function f is chosen as follows:

f(x) = δ∗K(−x) = − inf
z∈K
〈z, x〉 = sup

z∈K
〈−z, x〉, (2.7)

where K is a given closed convex set. Then, by Proportion 2.3 and Proposition 2.4,

we have the following useful results.

Proposition 2.6. Let ϕ(x̄) := min δ∗K(−x) +
λ

2
‖x− x̄‖2, the following results hold:

(i) x+ = argmin δ∗K(−x) +
λ

2
‖x− x̄‖2 = x̄+

1

λ
ΠK(−λx̄).

(ii) ∇ϕ(x̄) = λ(x̄− x+) = −ΠK(−λx̄).

(iii) ϕ(x̄) = 〈−x+, ΠK(−λx̄)〉+ 1

2λ
‖ΠK(−λx̄)‖2 = −〈x̄, ΠK(−λx̄)〉− 1

2λ
‖ΠK(−λx̄)‖2.

2.3 Proximal ADMM

In this section, we review the convergence results for the proximal alternating direc-

tion method of multipliers (ADMM) which will be used in our subsequent analysis.

Let X , Y and Z be finite dimensional real Euclidian spaces. Let F : Y →

(−∞,+∞] and G : Z → (−∞,+∞] be closed proper convex functions, F : X → Y

and G : X → Z be linear maps. Let ∂F and ∂G be the subdifferential mappings of F

and G, respectively. Since both ∂F and ∂G are maximally monotone [56, Theorem

12.17], there exist two self-adjoint and positive semidefinite operators ΣF and ΣG

[13] such that for all y, ỹ ∈ dom(F ), ξ ∈ ∂F (y), and ξ̃ ∈ ∂F (ỹ),

〈ξ − ξ̃, y − ỹ〉 ≥ ‖y − ỹ‖2
ΣF

(2.8)
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and for all z, z̃ ∈ dom(G), ζ ∈ ∂G(z), and ζ̃ ∈ ∂G(z̃),

〈ζ − ζ̃ , z − z̃〉 ≥ ‖z − z̃‖2
ΣG
. (2.9)

2.3.1 Semi-proximal ADMM

Firstly, we discuss the semi-proximal ADMM proposed in [13]. Consider the convex

optimization problem with the following 2-block separable structure

min F (y) +G(z)

s.t. F∗y + G∗z = c.
(2.10)

The dual of problem (2.10) is given by

min {〈c, x〉+ F ∗(s) +G∗(t) | Fx+ s = 0, Gx+ t = 0} . (2.11)

Let σ > 0 be given. The augmented Lagrangian function associated with (2.10) is

given as follows:

Lσ(y, z;x) = F (y) +G(z) + 〈x, F∗y + G∗z − c〉+
σ

2
‖F∗y + G∗z − c‖2.

The semi-proximal ADMM proposed in [13], when applied to (2.10), has the

following template. Since the proximal terms added here are allowed to be posi-

tive semidefinite, the corresponding method is referred to as semi-proximal ADMM

instead of proximal ADMM as in [13].
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Algorithm sPADMM: A generic 2-block semi-proximal ADMM for solv-

ing (2.10).

Let σ > 0 and τ ∈ (0,∞) be given parameters. Let TF and TG be given self-adjoint

positive semidefinite, not necessarily positive definite, linear operators defined on Y

and Z, respectively. Choose (y0, z0, x0) ∈ dom(F )×dom(G)×X . For k = 0, 1, 2, ...,

perform the kth iteration as follows:

Step 1. Compute

yk+1 = argminy Lσ(y, zk;xk) +
σ

2
‖y − yk‖2

TF . (2.12)

Step 2. Compute

zk+1 = argminz Lσ(yk+1, z;xk) +
σ

2
‖z − zk‖2

TG . (2.13)

Step 3. Compute

xk+1 = xk + τσ(F∗yk+1 + G∗zk+1 − c). (2.14)

In the above 2-block semi-proximal ADMM for solving (2.10), the presence of TF
and TG can help to guarantee the existence of solutions for the subproblems (2.12)

and (2.13). In addition, they play important roles in ensuring the boundedness of

the two generated sequences {yk+1} and {zk+1}. Hence, these two proximal terms

are preferred. The choices of TF and TG are very much problem dependent. The

general principle is that both TF and TG should be as small as possible while yk+1

and zk+1 are still relatively easy to compute.

For the convergence of the 2-block semi-proximal ADMM, we need the following

assumption.

Assumption 1. There exists (ŷ, ẑ) ∈ ri(domF × domG) such that F∗ŷ + G∗ẑ = c.

Theorem 2.7. Let ΣF and ΣG be the self-adjoint and positive semidefinite opera-

tors defined by (2.8) and (2.9), respectively. Suppose that the solution set of problem
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(2.10) is nonempty and that Assumption 1 holds. Assume that TF and TG are chosen

such that the sequence {(yk, zk, xk)} generated by Algorithm sPADMM is well de-

fined. Then, under the condition either (a) τ ∈ (0, (1+
√

5 )/2) or (b) τ ≥ (1+
√

5 )/2

but
∑∞

k=0(‖G∗(zk+1− zk)‖2 + τ−1‖F∗yk+1 +G∗zk+1− c‖2) <∞, the following results

hold:

(i) If (y∞, z∞, x∞) is an accumulation point of {(yk, zk, xk)}, then (y∞, z∞) solves

problem (2.10) and x∞ solves (2.11), respectively.

(ii) If both σ−1ΣF + TF + FF∗ and σ−1ΣG + TG + GG∗ are positive definite, then

the sequence {(yk, zk, xk)}, which is automatically well defined, converges to a

unique limit, say, (y∞, z∞, x∞) with (y∞, z∞) solving problem (2.10) and x∞

solving (2.11), respectively.

(iii) When the y-part disappears, the corresponding results in parts (i)–(ii) hold

under the condition either τ ∈ (0, 2) or τ ≥ 2 but
∑∞

k=0 ‖G∗zk+1 − c‖2 <∞.

Remark 2.8. The conclusions of Theorem 2.7 follow essentially from the results

given in [13, Theorem B.1]. See [59] for more detailed discussions.

As a simple application of the aforementioned semi-proximal ADMM algorithm,

we present a special semi-proximal augmented Lagrangian method for solving the

following block-separable convex optimization problem

min
∑N

i=1 θi(vi)

s.t.
∑N

i=1A∗i vi = c,
(2.15)

where N is a given positive integer, θi : Vi → (−∞,+∞], i = 1, . . . , N are

closed proper convex functions, Ai : X → Vi, i = 1, . . . , N are linear operators,

V1, . . . ,VN are all real finite dimensional Euclidean spaces each equipped with an

inner product 〈·, ·〉 and its induced norm ‖ · ‖. For notational convenience, let
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V := V1 × V2×, . . . ,VN . For any v ∈ V , we write v ≡ (v1, v2, . . . , vN) ∈ V . De-

fine the linear map A : X → V such that its adjoint is given by

A∗v =
N∑
i=1

A∗i vi ∀v ∈ V .

Additionally, let

θ(v) =
N∑
i=1

θi(vi) ∀v ∈ V .

Given σ > 0, the augmented Lagrange function associated with (2.15) is given as

follows:

Lθσ(v;x) = θ(v) + 〈x, A∗v − c〉+
σ

2
‖A∗v − c‖2. (2.16)

In order to handle the non-separability of the quadratic penalty term in Lθσ, as well

as to design efficient parallel algorithm for solving problem (2.15), we propose the

following novel majorization step

AA∗ =


A1A∗1 · · · A1A∗N

...
. . .

...

ANA∗1 . . . ANA∗N

 (2.17)

� M := Diag(M1, . . . ,MN),

with Mi � AiA∗i +
∑

j 6=i(AiA∗jAjA∗i )
1
2 . Let S : Y → Y be a self-adjoint linear

operator given by

S :=M−AA∗. (2.18)

Here, we state a useful proposition to show that S is indeed a self-adjoint positive

semidefinite linear operator.

Proposition 2.9. It holds that S =M−AA∗ � 0.

Proof. The proposition can be proved by observing that for any given matrix

X ∈ <m×n, it holds that X

X∗

 �
 (XX∗)

1
2

(X∗X)
1
2

 .
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Define Tθ : V → V to be a self-adjoint positive semidefinite, not necessarily

positive definite, linear operator given by

Tθ := Diag(Tθ1 , . . . , TθN ), (2.19)

where for i = 1, . . . , N , each Tθi is a self-adjoint positive semidefinite linear operator

defined on Vi and is chosen such that the subproblem (2.20) is relatively easy to solve.

Now, we are ready to propose a semi-proximal augmented Lagrangian method with

a Jacobi type decomposition for solving (2.15).

Algorithm sPALMJ: A semi-proximal augmented Lagrangian method

with a Jacobi type decomposition for solving (2.15).

Let σ > 0 and τ ∈ (0,∞) be given initial parameters. Choose (v0, x0) ∈ dom(θ)×X .

For k = 0, 1, 2, ..., generate vk+1 according to the following iteration:

Step 1. For i = 1, . . . , N , compute

vk+1
i = argminvi

 Lθσ((vk1 , . . . , v
k
i−1, vi, v

k
i+1, . . . , v

k
N);xk)

+σ
2
‖vi − vki ‖2

Mi−AiiA∗ii
+ σ

2
‖vi − vki ‖2

Tθi

 . (2.20)

Step 2. Compute

xk+1 = xk + τσ(A∗vk+1 − c). (2.21)

The relationship between Algorithm sPALMJ and Algorithm sPADMM for solv-

ing (2.15) will be revealed in the next proposition. Hence, the convergence of Algo-

rithm sPALMJ can be easily obtained under certain conditions.

Proposition 2.10. For any k ≥ 0, the point (vk+1, xk+1) obtained by Algorithm

sPALMJ for solving problem (2.15) can be generated exactly according to the follow-

ing iteration:

vk+1 = argminv Lθσ(v;xk) +
σ

2
‖v − vk‖2

S +
σ

2
‖v − vk‖2

Tθ .

xk+1 = xk + τσ(A∗vk+1 − c).
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Proof. The equivalence can be obtained by carefully examining the optimality

conditions for subproblems (2.20) in Algorithm sPALMJ.

2.3.2 A majorized ADMM with indefinite proximal terms

Secondly, we discuss the majorized ADMM with indefinite proximal terms proposed

in [35]. Here, we assume that the convex functions F (·) and G(·) take the following

composite form:

F (y) = p(y) + f(y) and G(z) = q(z) + g(z),

where p : Y → (−∞,+∞] and q : Z → (−∞,+∞] are closed proper convex (not

necessarily smooth) functions; f : Y → (−∞,+∞] and g : Z → (−∞,+∞] are

closed proper convex functions with Lipschitz continuous gradients on some open

neighborhoods of dom(p) and dom(q), respectively. Problem (2.10) now takes the

form of

min p(y) + f(y) + q(z) + g(z)

s.t. F∗y + G∗z = c.
(2.22)

Since both f(·) and g(·) are assumed to be smooth convex functions with Lip-

schitz continuous gradients, we know that there exist two self-adjoint and positive

semidefinite linear operators Σf and Σg such that for any y, y′ ∈ Y and any z, z′ ∈ Z,

f(y) ≥ f(y′) + 〈y − y′, ∇f(y′)〉+
1

2
‖y − y′‖2

Σf
, (2.23)

g(z) ≥ g(z′) + 〈z − z′, ∇g(z′)〉+
1

2
‖z − z′‖2

Σg ; (2.24)

moreover, there exist self-adjoint and positive semidefinite linear operators Σ̂f � Σf

and Σ̂g � Σg such that for any y, y′ ∈ Y and any z, z′ ∈ Z,

f(y) ≤ f̂(y; y′) := f(y′) + 〈y − y′, ∇f(y′)〉+
1

2
‖y − y′‖2

Σ̂f
, (2.25)

g(z) ≤ ĝ(z; z′) := g(z′) + 〈z − z′, ∇g(z′)〉+
1

2
‖z − z′‖2

Σ̂g
. (2.26)
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The two functions f̂ and ĝ are called the majorized convex functions of f and g,

respectively. Given σ > 0, the augmented Lagrangian function is given by

Lσ(y, z;x) := p(y) + f(y) + q(z) + g(z) + 〈x, F∗y + G∗z − c〉+
σ

2
‖F∗y + G∗z − c‖2.

Similarly, for given (y′, z′) ∈ Y × Z, σ ∈ (0,+∞) and any (x, y, z) ∈ X × Y × Z,

define the majorized augmented Lagrangian function as follows:

L̂σ(y, z; (x, y′, z′)) :=

 p(y) + f̂(y; y′) + q(z) + ĝ(z; z′)

+〈x,F∗y + G∗z − c〉+ σ
2
‖F∗y + G∗z − c‖2

 , (2.27)

where the two majorized convex functions f̂ and ĝ are defined by (2.25) and (2.26),

respectively. The majorized ADMM with indefinite proximal terms proposed in [35],

when applied to (2.22), has the following template.

Algorithm Majorized iPADMM: A majorized ADMM with indefinite

proximal terms for solving (2.22).

Let σ > 0 and τ ∈ (0,∞) be given parameters. Let S and T be given self-adjoint,

possibly indefinite, linear operators defined on Y and Z, respectively such that

M := Σ̂f + S + σFF∗ � 0 and N := Σ̂g + T + σGG∗ � 0.

Choose (y0, z0, x0) ∈ dom(p) × dom(q) × X . For k = 0, 1, 2, ..., perform the kth

iteration as follows:

Step 1. Compute

yk+1 = argminy L̂σ(y, zk; (xk, yk, zk)) +
1

2
‖y − yk‖2

S . (2.28)

Step 2. Compute

zk+1 = argminz L̂σ(yk+1, z; (xk, yk, zk)) +
1

2
‖z − zk‖2

T . (2.29)

Step 3. Compute

xk+1 = xk + τσ(F∗yk+1 + G∗zk+1 − c). (2.30)
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There are two important differences between the Majorized iPADMM and the

semi-proximal ADMM. Firstly, the majorization technique is imposed in the Ma-

jorized iPADMM to make the correspond subproblems in the semi-proximal ADMM

more amenable to efficient computations, especially when the functions f and g are

not quadratic or linear functions. Secondly, the Majorized iPADMM allows the

added proximal terms to be indefinite.

Note that in the context of the 2-block convex composite optimization problem

(2.22), Assumption 1 takes the following form:

Assumption 2. There exists (ŷ, ẑ) ∈ ri(dom p× dom q) such that F∗ŷ + G∗ẑ = c.

Theorem 2.11. [35, Theorem 4.1, Remark 4.4] Suppose that the solution set of

problem (2.22) is nonempty and that Assumption 2 holds. Assume that S and T

are chosen such that the sequence {(yk, zk, xk)} generated by Algorithm sPADMM is

well defined. Then, the following results hold:

(i) Assume that τ ∈ (0, (1 +
√

5)/2) and for some α ∈ (τ/min(1 + τ, 1 + τ−1), 1],

Σ̂f + S � 0,
1

2
Σf + S +

(1− α)σ

2
FF∗ � 0,

1

2
Σf + S + σFF∗ � 0

and
1

2
Σ̂g + T � 0,

1

2
Σg + T + min(τ, 1 + τ − τ 2)σαGG∗ � 0.

Then, the sequence {(yk, zk)} converges to an optimal solution of problem

(2.22) and {xk} converges to an optimal solution of the dual of problem (2.22).

(ii) Suppose that G is vacuous, q ≡ 0 and g ≡ 0. Then, the corresponding results

in part (i) hold under the condition that τ ∈ (0, 2) and for some α ∈ (τ/2, 1],

Σ̂f + S � 0,
1

2
Σf + S +

(1− α)σ

2
FF∗ � 0,

1

2
Σf + S + σFF∗ � 0.

In order to discuss the worst-case iteration complexity of the Majorized iPADMM,

we need to rewrite the optimization problem (2.22) as the following variational in-

equality problem: find a vector find a vector w̄ := (ȳ, z̄, x̄) ∈ W := Y ×Z ×X such
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that

θ(u)− θ(ū) + 〈w − w̄,H(w̄)〉 ≥ 0 ∀w ∈ W (2.31)

with

u :=

 y

z

 , θ(u) := p(y)+q(z), w :=


y

z

x

 and H(w) :=


∇f(y) + Fx

∇g(z) + Gx

−(F∗y + G∗z − c)

 .

(2.32)

Denote by VI(W , H, θ) the variational inequality problem (2.31)-(2.32); and byW∗

the solution set of VI(W , H, θ), which is nonempty under Assumption 2 and the fact

that the solution set of problem (2.22) is assumed to be nonempty. Since the map-

ping H(·) in (2.32) is monotone with respect toW , we have, by [12, Theorem 2.3.5],

the solution set W∗ of VI(W , H, θ) is closed and convex and can be characterized

as follows:

W∗ :=
⋂
w∈W

{w̃ ∈ W | θ(u)− θ(ũ) + 〈w − w̃,H(w)〉 ≥ 0}.

Similarly as [46, Definition 1], the definition for an ε-approximation solution of the

variational inequality problem is given as following.

Definition 2.5. w̃ ∈ W is an ε-approximation solution of VI(W , H, θ) if it satisfies

sup
w∈B(w̃)

{
θ(ũ)−θ(u)+〈w̃−w,H(w)〉

}
≤ ε, where B(w̃) :=

{
w ∈ W | ‖w−w̃‖ ≤ 1

}
.

By this definition, the worst-case O(1/k) ergodic iteration-complexity of the

Algorithm Majorized iPADMM will be presented in the sense that one can find a

w̃ ∈ W such that

θ(ũ)− θ(u) + 〈w̃ − w,F (w)〉 ≤ ε ∀w ∈ B(w̃)

with ε = O(1/k), after k iterations. Denote

x̃k+1 := xk + σ(F∗yk+1 + G∗zk+1 − c), x̂k =
1

k

k∑
i=1

x̃i+1,

ŷk =
1

k

k∑
i=1

yi+1, ẑk =
1

k

k∑
i=1

zi+1.

(2.33)
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Theorem 2.12. [35, Theorem 4.3] Suppose that Assumption 2 holds. For τ ∈

(0, 1+
√

5
2

), under the same conditions in Theorem 2.11, we have that for any itera-

tion point {(yk, zk, xk)} generated by Majorized iPADMM, (ŷk, ẑk, x̂k) is an O(1/k)-

approximate solution of the first order optimality condition in variational inequality

form.





Chapter 3
Phase I: A symmetric Gauss-Seidel based

proximal ADMM for convex composite

quadratic programming

In this chapter, we focus on designing the Phase I algorithm, i.e., a simple yet efficient

algorithm to generate a good initial point for our general convex composite quadratic

optimization model. Recall the general convex composite quadratic optimization

model given in the Chapter 1:

min θ(y1) + f(y1, y2, . . . , yp) + ϕ(z1) + g(z1, z2, . . . , zq)

s.t. A∗1y1 +A∗2y2 + · · ·+A∗pyp + B∗1z1 + B∗2z2 + · · ·+ B∗qzq = c,
(3.1)

where p and q are given nonnegative integers, θ : Y1 → (−∞,+∞] and ϕ : Z1 →

(−∞,+∞] are simple closed proper convex function in the sense that their proxi-

mal mappings can be relatively easy to compute, f : Y1 × Y2 × . . . × Yp → < and

g : Z1 × Z2 × . . . × Zq → < are convex quadratic, possibly nonseparable, func-

tions, Ai : X → Yi, i = 1, . . . , p and Bj : X → Zj, j = 1, . . . , q are linear maps,

Y1, . . . ,Yp,Z1, . . . ,Zq and X are all real finite dimensional Euclidean spaces each

equipped with an inner product 〈·, ·〉 and its induced norm ‖ · ‖. Note that, the

functions f and g are also coupled with non-smooth functions θ and ϕ through the

33
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variables y1 and z1, respectively.

For notational convenience, we let Y := Y1×Y2×, . . . ,Yp, Z := Z1×Z2×, . . . ,Zq.

We write y ≡ (y1, y2, . . . , yp) ∈ Y and z ≡ (z1, z2, . . . , zq) ∈ Z. Define the linear

maps A : X → Y and B : X → Z such that the adjoint maps are given by

A∗y =

p∑
i=1

A∗i yi ∀y ∈ Y , B∗z =

q∑
j=1

B∗j zj ∀z ∈ Z.

3.1 One cycle symmetric block Gauss-Seidel tech-

nique

Let s ≥ 2 be a given integer and D := D1 × D2 × . . . × Ds with all Di being

assumed to be real finite dimensional Euclidean spaces. For any d ∈ D, we write

d ≡ (d1, d2, . . . , ds) ∈ D. Let H : D → D be a given self-adjoint positive semidefinite

linear operator. Consider the following block decomposition

Hd ≡


H11 H12 · · · H1s

H∗12 H22 · · · H2s

...
...

. . .
...

H∗1s H∗2s · · · Hss




d1

d2

...

ds

 ,

where Hii : Di → Di, i = 1, . . . , s are self-adjoint positive semidefinite linear opera-

tors, Hij : Dj → Di, i = 1, . . . , s−1, j > i are linear maps. Let r ≡ (r1, r2, . . . , rs) ∈

D be given. Define the convex quadratic function h : D → < by

h(d) :=
1

2
〈d, Hd〉 − 〈r, d〉, d ∈ D.

Let φ : D1 → (−∞,+∞] be a given closed proper convex function.
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3.1.1 The two block case

In this subsection, we consider the case for s = 2. Assume that H22 � 0. Define the

self-adjoint positive semidefinite linear operator Ô : D1 → D1 by

Ô = H12H−1
22H∗12.

Let r1 ∈ D1 and r2 ∈ D2 be given. Let δ+
1 ∈ D1 be an error tolerance vector in D1,

δ′2 and δ+
2 be two error tolerance vectors in D2, which all can be zero vectors. Define

η(δ′2, δ
+
2 ) =

 H12H−1
22 (δ′2 − δ+

2 )

−δ+
2

 .

Let (d̄1, d̄2) ∈ D1 ×D2 be given two vectors. Define (d+
1 , d

+
2 ) ∈ D1 ×D2 by

(d+
1 , d

+
2 ) = argmind1,d2 φ(d1) + h(d1, d2) +

1

2
‖d1 − d̄1‖2

Ô − 〈δ
+
1 , d1〉+ 〈η(δ′2, δ

+
2 ), d〉.

(3.2)

Proposition 3.1. Suppose that H22 is a self-adjoint positive definite linear operator

defined on D2. Define d′2 ∈ D2 by

d′2 = argmind2 φ(d̄1) + h(d̄1, d2)− 〈δ′2, d2〉 = H−1
22 (r2 + δ′2 −H∗12d̄1). (3.3)

Then the optimal solution (d+
1 , d

+
2 ) to problem (3.2) is generated exactly by the fol-

lowing procedure
d+

1 = argmind1 φ(d1) + h(d1, d
′
2)− 〈δ+

1 , d1〉,

d+
2 = argmind2 φ(d+

1 ) + h(d+
1 , d2)− 〈δ+

2 , d2〉 = H−1
22 (r2 + δ+

2 −H∗12d
+
1 ).

(3.4)

Furthermore, let δ̄ := H12H−1
22 (r2 + δ′2 − H∗12d̄1 − H22d̄2), then (d+

1 , d
+
2 ) can also be

obtained by the following equivalent procedure
d+

1 = argmind1 φ(d1) + h(d1, d̄2) + 〈δ̄, d1〉 − 〈δ+
1 , d1〉,

d+
2 = argmind2 φ(d+

1 ) + h(d+
1 , d2)− 〈δ+

2 , d2〉 = H−1
22 (r2 + δ+

2 −H∗12d
+
1 ).

(3.5)
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Proof. First we show the equivalence between (3.2) and (3.4). Note that (3.4)

can be equivalently rewritten as

0 ∈ ∂φ(d+
1 ) +H11d

+
1 +H12d

′
2 − r1 − δ+

1 , (3.6)

d+
2 = H−1

22 (r2 + δ+
2 −H∗12d

+
1 ). (3.7)

By using the definition of d′2 = H−1
22 (r2+δ′2−H∗12d̄1), we know that (3.6) is equivalent

to

0 ∈ ∂φ(d+
1 ) +H11d

+
1 +H12H−1

22 (r2 + δ′2 −H∗12d̄1)− r1 − δ+
1 , (3.8)

which, in view of (3.7), can be equivalently recast as follows

0 ∈ ∂φ(d+
1 ) +H11d

+
1 +H12d

+
2 +H12H−1

22H∗12(d+
1 − d̄1) +H12H−1

22 (δ′2 − δ+
2 )− r1 − δ+

1 .

Thus, we have
0 ∈ ∂φ(d+

1 ) +H11d
+
1 +H12d

+
2 +H12H−1

22 (δ′2 − δ+
2 )− r1 − δ+

1 + Ô(d+
1 − d̄1),

d+
2 = H−1

22 (r2 + δ+
2 −H∗12d

+
1 ),

which are equivalently to

(d+
1 , d

+
2 ) = argmind1,d2

 φ(d1) + h(d1, d2)− 〈δ+
1 , d1〉+ 1

2
‖d1 − d̄1‖2

Ô

+〈H12H−1
22 (δ′2 − δ+

2 ), d1〉 − 〈δ+
2 , d2〉

 .

Next, we prove the equivalence between (3.4) and (3.5). By using the definition

of δ̄ := H12H−1
22 (r2 + δ′2 −H∗12d̄1 −H22d̄2), we have that (3.8) is equivalent to

0 ∈ ∂φ(d+
1 ) +H11d

+
1 +H12d̄2 − r1 − δ+

1 + δ̄,

i.e.,

d+
1 = argmind1 φ(d1) + h(d1, d̄2) + 〈δ̄, d1〉 − 〈δ+

1 , d1〉.

Thus, we obtain the equivalence between (3.4) and (3.5).
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Remark 3.2. Under the setting of Proposition 3.1, if φ(d1) ≡ 0, δ+
1 = 0, δ′2 = δ+

2 = 0

and H11 � 0, then, by Proposition 3.1, we have (d+
1 , d

+
2 ) = argmind1,d2h(d1, d2) +

1
2
‖d1 − d̄1‖2

Ô and 
d′2 = H−1

22 (r2 −H∗12d̄1),

d+
1 = H−1

11 (r1 −H12d
′
2),

d+
2 = H−1

22 (r2 −H∗12d
+
1 ).

(3.9)

Note that, procedure (3.9) is exactly one cycle symmetric block Gauss-Seidel itera-

tion for the following linear system

Hd ≡

 H11 H12

H∗12 H22

 d1

d2

 =

 r1

r2

 (3.10)

with the starting point chosen as (d̄1, d̄2).

3.1.2 The multi-block case

Now we consider the multi-block case for s ≥ 2. Here, we further assume that

Hii, i = 2, . . . , s are positive definite. Define

d≤i := (d1, d2, . . . , di), d≥i := (di, di+1, . . . , ds), i = 0, . . . , s+ 1

with the convention that d0 = ds+1 = d≤0 = d≥s+1 = ∅. Let

Oi :=


H1i

...

H(i−1)i

H−1
ii

(
H∗1i · · · H∗(i−1)i

)
, i = 2, . . . , s.

Define the following self-adjoint linear operators: Ô2 := O2.

Ôi := diag(Ôi−1, 0) +Oi, i = 3, . . . , s. (3.11)
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Let δ+
1 ∈ D1 and δ′i, δ

+
i ∈ Di, i = 2, . . . , s be given error tolerance vectors. Let

ηi(δ
′
i, δ

+
i ) :=


H1iH−1

ii (δ′i − δ+
i )

...

H(i−1)iH−1
ii (δ′i − δ+

i )

−δ+
i

 , i = 2, . . . , s.

Define the following linear functions:

∆2(d1, d2) := −〈δ+
1 , d1〉+ 〈η2(δ′2, δ

+
2 ), d≤2〉

and for i = 3, . . . , s,

∆i(d≤i) := ∆i−1(d≤i−1) + 〈ηi(δ′i, δ+
i ), d≤i〉 (3.12)

for any d ∈ D. Write δ′≥2 ≡ (δ′2, . . . , δ
′
s), δ

+
≥2 ≡ (δ+

2 , . . . , δ
+
s ) and δ+ ≡ (δ+

1 , . . . , δ
+
s ).

By simple calculations, we have that

∆s(d) = −〈δ+, d〉+
〈
Ms(δ

′
≥2 − δ+

≥2), d≤s−1

〉
with

Ms =


H12 · · · H1s

. . .
...

H(s−1)s



H−1

22

. . .

H−1
ss

 .

Let d̄ ∈ D be given. Define

d+ := argmind

{
φ(d1) + h(d) +

1

2
‖d≤s−1 − d̄≤s−1‖2

Ôs
+ ∆s(d)

}
. (3.13)

The following theorem describing an equivalent procedure for computing d+ is the

key ingredient for our subsequent algorithmic developments. The idea of proving

this proposition is quite simple: use Proposition 3.1 repeatedly though the proof

itself is rather lengthy due to the multi-layered nature of the problems involved. For

(3.13), we first express ds as a function of d≤s−1 to obtain a problem involving only

d≤s−1, and from the resulting problem, express ds−1 as a function of d≤s−2 to get

another problem involving only d≤s−2. We continue this way until we get a problem

involving only (d1, d2).
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Theorem 3.3. Assume that the self-adjoint linear operators Hii, i = 2, . . . , s are

positive definite. For i = s, . . . , 2, define d′i ∈ Di by

d′i := argmindi φ(d̄1) + h(d̄≤i−1, di, d
′
≥i+1)− 〈δ′i, di〉

= H−1
ii

(
ri + δ′i −

i−1∑
j=1

H∗jid̄j −
s∑

j=i+1

Hijd
′
j

)
. (3.14)

(i) Then the optimal solution d+ defined by (3.13) can be obtained exactly via
d+

1 = argmind1 φ(d1) + h(d1, d
′
≥2)− 〈δ+

1 , d1〉,

d+
i = argmindi φ(d+

1 ) + h(d+
≤i−1, di, d

′
≥i+1)− 〈δ+

i , di〉

= H−1
ii (ri + δ+

i −
∑i−1

j=1H∗jid
+
j −

∑s
j=i+1Hijd

′
j), i = 2, . . . , s.

(3.15)

(ii) It holds that

H + diag(Ôs, 0) � 0⇔ H11 � 0. (3.16)

Proof. We will separate our proof into two parts.

Part (i). We prove our conclusions by induction. Firstly, the case for s = 2 has

been proven in Proposition 3.1.

Assume now that the equivalence between (3.13) and (3.15) holds for all s ≤ l.

We need to show that for s = l + 1, this equivalence also holds. For this purpose,

we define the following quadratic function with respect to d≤l and dl+1

hl+1(d≤l, dl+1) := h(d≤l, dl+1) +
1

2
‖d≤l−1 − d̄≤l−1‖2

Ôl
+ ∆l(d≤l). (3.17)

By using the definitions (3.11) and (3.12) and noting that

1

2
‖d≤l − d̄≤l‖2

Ôl+1
=

1

2
‖d≤l−1 − d̄≤l−1‖2

Ôl
+

1

2
‖d≤l − d̄≤l‖2

Ol+1

and

∆l+1(d≤l+1) = ∆l(d≤l) + 〈ηl+1(δ′l+1, δ
+
l+1), d≤l+1〉,

we can rewrite the optimization problem (3.13) for s = l + 1 equivalently as

(d+
≤l, d

+
l+1) = argmin(d≤l,dl+1)

 φ(d1) + hl+1(d≤l, dl+1) + 1
2
‖d≤l − d̄≤l‖2

Ol+1

+〈ηl+1(δ′l+1, δ
+
l+1), d≤l+1〉

 . (3.18)
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Now, from Proposition 3.1, we know that the optimal solution (d+
≤l, d

+
l+1) to problem

(3.18) is generated exactly by the following procedure

d′l+1 = argmindl+1
φ(d̄1) + hl+1(d̄≤l, dl+1)− 〈δ′l+1, dl+1〉

= argmindl+1
φ(d̄1) + h(d̄≤l, dl+1)− 〈δ′l+1, dl+1〉, (3.19)

d+
≤l = argmind≤l φ(d1) + hl+1(d≤l, d

′
l+1), (3.20)

d+
l+1 = argmindl+1

φ(d+
1 ) + hl+1(d+

≤l, dl+1)− 〈δ+
l+1, dl+1〉

= argmindl+1
φ(d+

1 ) + h(d+
≤l, dl+1)− 〈δ+

l+1, dl+1〉. (3.21)

In order to apply our induction hypothesis to problem (3.20), we need to construct

a corresponding quadratic function. For this purpose, let the self-dual positive

semidefinite linear operator H̃ be defined by

H̃


d1

d2

...

dl

 :=


H11 H12 · · · H1l

H∗12 H22 · · · H2l

...
...

. . .
...

H∗1l H∗2l · · · Hll




d1

d2

...

dl

 .

Consider the following quadratic function with respect to d≤l, which is obtained

from h(d≤l, d
′
l+1),

h̃(d≤l; d
′
l+1) :=

1

2
〈d≤l, H̃d≤l〉 − 〈r≤l − (H∗1,l+1, . . . ,H∗l,l+1)∗d′l+1, d≤l〉. (3.22)

Note that

hl+1(d≤l, d
′
l+1) =

 h̃(d≤l; d
′
l+1) + 1

2
‖d≤l−1 − d̄≤l−1‖2

Ôl
+ ∆l(d≤l)

+1
2
〈d′l+1, Hl+1,l+1d

′
l+1〉 − 〈rl+1, d

′
l+1〉

 .

Therefore, problem (3.20) can be equivalently recast as

d+
≤l = argmind≤l φ(d1) + h̃(d≤l; d

′
l+1) +

1

2
‖d≤l−1 − d̄≤l−1‖2

Ôl
+ ∆l(d≤l). (3.23)
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By applying our induction hypothesis on (3.23), we obtain equivalently that

d̃′i = argmindi

 φ(d̄1) + h̃(d̄≤i−1, di, (d̃
′
i+1, . . . , d̃

′
l); d

′
l+1)

−〈δ′i, di〉

 , i = l, . . . , 2, (3.24)

d+
1 = argmind1 φ(d1) + h̃(d1, (d̃

′
2, . . . , d̃

′
l); d

′
l+1)− 〈δ+

1 , d1〉, (3.25)

d+
i = argmindi

 φ(d+
1 ) + h̃(d+

≤i−1, di, (d̃
′
i+1, . . . , d̃

′
l); d

′
l+1)

−〈δ+
i , di〉

 , i = 2, . . . , l. (3.26)

Next we need to prove that

d̃′i = d′i ∀i = l, . . . , 2. (3.27)

By using the definition of the quadratic function h̃ in (3.22) and the definition of d′

in (3.14), we have that

d̃′l = H−1
ll

(
rl + δ′l −Hl,l+1d

′
l+1 −

l−1∑
j=1

H∗jld̄j
)

= d′l.

That is, (3.27) holds for i = l. Now assume that we have proven d̃′i = d′i for all

i ≥ k+ 1 with k+ 1 ≤ l. We shall next prove that (3.27) holds for i = k. Again, by

using the definition of h̃ and d′, we obtain that

d̃′k = H−1
kk

(
rk + δ′k −Hk,l+1d

′
l+1 −

k−1∑
j=1

H∗jkd̄j −
l∑

j=k+1

Hkj d̃
′
j

)

= H−1
kk

(
rk + δ′k −Hk,l+1d

′
l+1 −

k−1∑
j=1

H∗jkd̄j −
l∑

j=k+1

Hkjd
′
j

)
= d′k,

which shows that (3.27) holds for i = k. Thus, (3.27) holds. Note that by the

definition of h̃ and direct calculations, we have that

h(d≤l, d
′
l+1) = h̃(d≤l; d

′
l+1) +

1

2
〈d′l+1, Hl+1,l+1d

′
l+1〉 − 〈rl+1, d

′
l+1〉. (3.28)

Thus, by using (3.27) and (3.28), we know that (3.25) and (3.26) can be rewritten
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as 
d′i = argmindi φ(d̄1) + h(d̄≤i−1, di, d

′
≥i+1)− 〈δ′i, di〉, i = l, . . . , 2,

d+
1 = argmind1φ(d1) + h(d1, d

′
≥2)− 〈δ+

1 , d1〉,

d+
i = argmindi φ(d+

1 ) + h(d+
≤i−1, di, d

′
≥i+1)− 〈δ+

i , di〉, i = 2, . . . , l,

which together with (3.19) and (3.21) shows that the equivalence between (3.13)

and (3.15) holds for s = l + 1. Thus, the proof of the first part is completed.

Part (ii). Now we prove the second part. If s = 2, we have

H + diag(Ô2, 0) =

 H11 + Ô2 H12

H∗12 H22

 .

Since H22 � 0, by the Schur complement condition for ensuring the positive defi-

niteness of linear operators, we get H11 + Ô2 H12

H∗12 H22

 � 0 ⇔ H11 + Ô2 −H12H−1
22H∗12 = H11 � 0. (3.29)

Thus, we complete the proof the case of s = 2.

For the case s ≥ 3, let Ĥ1 = H11. For i = 1, . . . , s− 1, define

H≤i,i+1 :=


H1(i+1)

...

Hi(i+1)

 and Ĥi+1 :=

 Ĥi H≤i,i+1

H∗≤i,i+1 H(i+1)(i+1)

 .

Since Hii � 0 for all i ≥ 2, by the Schur complement condition for ensuring the

positive definiteness of linear operators, we obtain, for i = 2, . . . , s− 1,

Ĥi+1 + diag(Ôi+1, 0) =

 Ĥi + Ôi+1 H≤i,i+1

H∗≤i,i+1 H(i+1),(i+1)

 � 0

m

Ĥi + Ôi+1 −H≤i,i+1H−1
(i+1),(i+1)H∗≤i,i+1 = Ĥi + diag(Ôi, 0) � 0.

Therefore, by taking i = 2, we obtain that

H + diag(Ôs, 0) � 0 ⇔

 Ĥ11 + Ô2 H≤1,2

H∗≤1,2 H22

 =

 H11 + Ô2 H12

H∗12 H22

 � 0,
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i.e.,

H + diag(Ôs, 0) � 0 ⇔ H11 � 0.

This completes the proof to the second part of this theorem.

Remark 3.4. Under the setting of Theorem 3.3, if φ(d1) ≡ 0, δ+
1 = 0, δ′i = δ+

i =

0, i = 2, . . . , s and H11 � 0, then we know from Proposition 3.3 that
d′i = H−1

ii

(
ri −

∑i−1
j=1H∗jid̄j −

∑s
j=i+1Hijd

′
j

)
, i = s, . . . , 2,

d+
1 = H−1

11

(
r1 −

∑s
j=2H1jd

′
j

)
,

d+
i = H−1

ii (ri −
∑i−1

j=1H∗jid
+
j −

∑s
j=i+1Hijd

′
j), i = 2, . . . , s.

(3.30)

The procedure (3.30) is exactly one cycle symmetric block Gauss-Seidel iteration for

the following linear system

Hd ≡


H11 H12 · · · H1s

H∗12 H22 · · · H2s

...
...

. . .
...

H∗1s H∗2s · · · Hss




d1

d2

...

ds

 =


r1

r2

...

rs

 (3.31)

with the initial point chosen as d̄. Therefore, one can see that using the symmet-

ric Gauss-Seidel method for solving the linear system (3.31) can equivalently be

regarded as solving exactly a sequence of quadratic programming problems of the

form (3.13). Specifically, given d0 ∈ D, for k = 0, 1, . . . , compute

dk+1 = argmind

{
h(d) +

1

2
‖d≤s−1 − dk≤s−1‖2

Ôs

}
.

As far as we are aware of, this is the first time that the symmetric block Gauss-

Seidel algorithm is interpreted, from the optimization perspective, as a sequential

quadratic programming procedure.
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3.2 A symmetric Gauss-Seidel based semi-proximal

ALM

Before we introduce our approach for the general multi-block case, we shall first

pay particular attention to a special case of the general convex composite quadratic

optimization model (3.1). More specifically, we consider a simple yet important con-

vex composite quadratic optimization problem with the following 2-block separable

structure

min θ(y1) + ρ(y2)

s.t. A∗1y1 +A∗2y2 = c,
(3.32)

i.e., in (3.1), p = 2, B is vacuous, ϕ ≡ 0, g ≡ 0 and ρ(y2) ≡ f(y1, y2) ∀(y1, y2) ∈

Y1 × Y2 is a convex quadratic function depending only on y2:

ρ(y2) =
1

2
〈y2, Σ2y2〉 − 〈b, y2〉, y2 ∈ Y2,

where Σ2 is a self-adjoint positive semidefinite linear operator defined on Y2 and

b ∈ Y2 is a given vector. Let ∂θ be the subdifferential mapping of θ. Since ∂θ is

maximally monotone [53, Corollary 31.5.2], there exists a self-adjoint and positive

semidefinite operator Σ1 such that for all y1, ỹ1 ∈ dom(θ), ξ ∈ ∂θ(y1), and ξ̃ ∈ ∂θ(ỹ1),

〈ξ − ξ̃, y1 − ỹ1〉 ≥ ‖y1 − ỹ1‖2
Σ1
.

Given σ > 0, the augmented Lagrangian function associated with (3.32) is given as

follows:

Lσ(y1, y2;x) = θ(y1) + ρ(y2) + 〈x, A∗1y1 +A∗2y2 − c〉+
σ

2
‖A∗1y1 +A∗2y2 − c‖2.

Here, we consider using Algorithm sPADMM, proposed in [13] and reviewed in

Chapter 2, to solve problem (3.32). In order to solve the subproblem associated with

y2 in Algorithm sPADMM, we need to solve a linear system with the linear operator

given by σ−1Σ2 + A2A∗2. Hence, an appropriate proximal term should be chosen
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such that the corresponding subproblem can be solved efficiently. Here, we choose

T2 as follows. Let E2 : Y2 → Y2 be a self-adjoint positive definite linear operator

such that it is a majorization of σ−1Σ2 +A2A∗2, i.e.,

E2 � σ−1Σ2 +A2A∗2.

We choose E2 such that its inverse can be computed at a moderate cost. Define

T2 := E2 − σ−1Σ2 −A2A∗2 � 0. (3.33)

Note that for numerical efficiency, we need the self-adjoint positive semidefinite

linear operator T2 to be as small as possible. In order to fully exploit the structure

of the quadratic function ρ(·), we add, instead of a naive proximal term, a proximal

term based on the symmetric Gauss-Seidel technique as follows. For a given T1 � 0,

we define the self-adjoint positive semidefinite linear operator

T̂1 := T1 +A1A∗2E−1
2 A2A∗1. (3.34)

Now, we can propose our symmetric Gauss-Seidel based semi-proximal aug-

mented Lagrangian method (sGS-sPALM) to solve (3.32) with a specially chosen

proximal term involving T̂1 and T2.

Algorithm sGS-sPALM: A symmetric Gauss-Seidel based semi-proximal

augmented Lagrangian method for solving (3.32).

Let σ > 0 and τ ∈ (0,∞) be given parameters. Choose (y0
1, y

0
2, x

0) ∈ dom(θ)×Y2×

X . For k = 0, 1, 2, ..., perform the kth iteration as follows:

Step 1. Compute

(yk+1
1 , yk+1

2 ) = argminy1,y2

 Lσ(y1, y2;xk) + σ
2
‖y1 − yk1‖2

T̂1

+σ
2
‖y2 − yk2‖2

T2

 . (3.35)

Step 2. Compute

xk+1 = xk + τσ(F∗uk+1 + G∗vk+1 − c). (3.36)
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Note that problem (3.35) in Step 1 is well defined if σ−1Σ1 + T1 +A1A∗1 � 0.

For the convergence of the sGS-sPALM, we need the following assumption.

Assumption 3. There exists (ŷ1, ŷ2) ∈ ri(dom θ)× Y2 such that A∗1ŷ1 +A∗2ŷ2 = c.

Now, we are ready to establish our convergence results for Algorithm sGS-sPALM

for solving (3.32).

Theorem 3.5. Suppose that the solution set of problem (3.32) is nonempty and that

Assumption 3 holds. Assume that T1 is chosen such that the sequence {(yk1 , yk2 , xk)}

generated by Algorithm sGS-sPALM is well defined. Then, under the condition either

(a) τ ∈ (0, 2) or (b) τ ≥ 2 but
∑∞

k=0 ‖A∗1y
k+1
1 + A∗2yk+1

2 − c‖2 < ∞, the following

results hold:

(i) If (y∞1 , y
∞
2 , x

∞) is an accumulation point of {(yk1 , yk2 , xk)}, then (y∞1 , y
∞
2 ) solves

problem (3.32) and x∞ solves its dual problem, respectively.

(ii) If σ−1Σ1 + T1 + A1A∗1 is positive definite, then the sequence {(yk1 , yk2 , xk)} is

well defined and it converges to a unique limit, say, (y∞1 , y
∞
2 , x

∞) with (y∞1 , y
∞
2 )

solving problem (3.32) and x∞ solving the corresponding dual problem, respec-

tively.

Proof. By combining Theorem 2.7 and the fact that A1

A2

 A1

A2

∗ + σ−1

 Σ1

Σ2

+

 T̂1

T2

 � 0

⇐⇒ A1A∗1 + σ−1Σ1 + T1 � 0,

one can prove the results of this theorem directly.

Now we are able to apply our one cycle symmetric Gauss-Seidel technique on

the subproblem (3.35). Let δρ : Y1 × Y2 × X → Y1 be an auxiliary linear function

associated with (3.35) defined by

δρ(y1, y2, x) := A1A∗2E−1
2 (b−A2x− Σ2y2 + σA2(c−A∗1y1 −A∗2y2)). (3.37)
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Proposition 3.6. Let δkρ := δρ(y
k
1 , y

k
2 , x

k) for k = 0, 1, 2, .... We have that yk+1
1 and

yk+1
2 obtained by Algorithm sGS-sPALM for solving (3.32) can be generated exactly

according to the following procedure:

ȳk2 = argminy2 Lσ(yk1 , y2;xk) + σ
2
‖y2 − yk2‖2

T2 ,

yk+1
1 = argminy1 Lσ(y1, ȳ

k
2 ;xk) + σ

2
‖y1 − yk1‖2

T1 ,

yk+1
2 = argminy2 Lσ(yk+1

1 , y2;xk) + σ
2
‖y2 − yk2‖2

T2 ,

xk+1 = xk + τσ(A∗1yk+1
1 +A∗2yk+1

2 − c).

(3.38)

Equivalently, (yk+1
1 , yk+1

2 ) can also be obtained exactly via:
yk+1

1 = argminy1 Lσ(y1, y
k
2 ;xk) + 〈δkρ , y1〉+ σ

2
‖y1 − yk1‖2

T1 ,

yk+1
2 = argminy2 Lσ(yk+1

1 , y2;xk) + σ
2
‖y2 − yk2‖2

T2 ,

xk+1 = xk + τσ(A∗1yk+1
1 +A∗2yk+1

2 − c).

(3.39)

Proof. The results follow directly from (3.4) and (3.5) in Proposition 3.1 with

all the error tolerance vectors (δ+
1 , δ

′
2, δ

+
2 ) chosen to be zero vectors.

Remark 3.7. (i) Note that comparing to the Algorithm sPADMM, the first sub-

problem of (3.39) has an extra linear term 〈δkρ , ·〉. This linear term will vanish if

Σ2 = 0, E2 = A2A∗2 � 0 and a proper starting point (y0
1, y

0
2, x

0) is chosen. Specifi-

cally, if we choose x0 ∈ X such that A2x
0 = b and (y0

1, y
0
2) ∈ dom(θ)×Y2 such that

y0
2 = E−1

2 A2(c − A∗1y0
1), then it holds that A2x

k = b and yk2 = E−1
2 A2(c − A∗1yk1),

which imply that δkρ = 0.

(ii) Observe that when T1 and T2 are chosen to be 0 in (3.39), apart from the range

of τ , our Algorithm sGS-sPALM differs from the classical 2-block ADMM for solv-

ing problem (3.32) only in the linear term 〈δkρ , ·〉. This shows that the classical

2-block ADMM for solving problem (3.32) has an unremovable deviation from the

augmented Lagrangian method. This may explain why even when ADMM type

methods suffer from slow local convergence, the latter can still enjoy fast local con-

vergence.
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In the following, we compare our symmetric Gauss-Seidel based proximal term

σ
2
‖y1− yk1‖2

T̂1
+ σ

2
‖y2− yk2‖2

T2 used to derive the scheme (3.39) for solving (3.32) with

the following proximal term which allows one to update y1 and y2 simultaneously:

σ
2
(‖(y1, y2)− (yk1 , y

k
2)‖2
M + ‖y1 − yk1‖2

T1 + ‖y2 − yk2‖2
T2) with (3.40)

M =

 D1 −A1A∗2
−A2A∗1 D2

 � 0,

where D1 : Y1 → Y1 and D2 : Y2 → Y2 are two self-adjoint positive semidefinite

linear operators satisfying

D1 �
√

(A1A∗2)(A1A∗2)∗ and D2 �
√

(A2A∗1)(A2A∗1)∗ .

A common and naive choice will be D1 = λmaxI1 and D2 = λmaxI2 where λmax =

‖A1A∗2‖2, I1 : Y1 → Y1 and I2 : Y2 → Y2 are identity maps. By Proposition 2.10,

we have that the resulting semi-proximal augmented Lagrangian method generates

(yk+1
1 , yk+1

2 , xk+1) as follows:
yk+1

1 = argminy1 Lσ(y1, y
k
2 ;xk) + σ

2
‖y1 − yk1‖2

D1+T1 ,

yk+1
2 = argminy2 Lσ(yk1 , y2;xk) + σ

2
‖y2 − yk2‖2

D2+T2 ,

xk+1 = xk + τσ(A∗1yk+1
1 +A∗2yk+1

2 − c).

(3.41)

To ensure that the subproblems in (3.41) are well defined, we may require the

following sufficient conditions to hold:

σ−1Σ1 + T1 +A1A∗1 +D1 � 0 and σ−1Σ2 + T2 +A2A∗2 +D2 � 0.

Comparing the proximal terms used in (3.35) and (3.40), we can easily see that the

difference is:

‖y1 − yk1‖2
A1A∗2E

−1
2 A2A∗1

vs. ‖(y1, y2)− (yk1 , y
k
2)‖2
M.

To simplify the comparison, we assume that

D1 =
√

(A1A∗2)(A1A∗2)∗ and D2 =
√

(A2A∗1)(A2A∗1)∗ .
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By rescaling the equality constraint in (3.32) if necessary, we may also assume that

‖A1‖ = 1. Now, we have that

A1A∗2E−1
2 A2A∗1 � A1A∗1

and

‖y1 − yk1‖2
A1A∗2E

−1
2 A2A∗1

≤ ‖y1 − yk1‖2
A1A∗1

≤ ‖y1 − yk1‖2.

In contrast, we have

‖(y1, y2)− (yk1 , y
k
2)‖2
M ≤ 2

(
‖y1 − yk1‖2

D1
+ ‖y2 − yk2‖2

D2

)
≤ 2‖A1A∗2‖

(
‖y1 − yk1‖2 + ‖y2 − yk2‖2

)
≤ 2‖A2‖

(
‖y1 − yk1‖2 + ‖y2 − yk2‖2

)
,

which is larger than the former upper bound ‖y1 − yk1‖2 if ‖A2‖ ≥ 1/2. Thus we

can conclude safely that the proximal term ‖y1− yk2‖2
A1A∗2E

−1
2 A2A∗1

can be potentially

much smaller than ‖(y1, y2) − (yk1 , y
k
2)‖2
M unless ‖A2‖ is very small. In fact, as is

already presented in (2.17), for the general multi-block case, one can always design

a proximal term M to obtain an algorithm with a Jacobian type decomposition.

The above mentioned upper bounds difference is of course due to the fact that

the sGS semi-proximal augmented Lagrangian method takes advantage of the fact

that ρ is assumed to be a convex quadratic function. However, the key difference

lies in the fact that (3.41) is a splitting version of the semi-proximal augmented

Lagrangian method with a Jacobi type decomposition, whereas Algorithm sGS-

sPALM is a splitting version of semi-proximal augmented Lagrangian method with

a Gauss-Seidel type decomposition. It is this fact that provides us with the key idea

to design symmetric Gauss-Seidel based proximal terms for multi-block composite

convex quadratic optimization problems in the next section.
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3.3 A symmetric Gauss-Seidel based proximal ADMM

Here, we rewrite the general convex composite quadratic optimization model (3.1)

in a more compact form:

min θ(y1) + f(y) + ϕ(z1) + g(z)

s.t. A∗y + B∗z = c,
(3.42)

where the convex quadratic functions f : Y → < and g : Z → < are given by

f(y) =
1

2
〈y, Py〉 − 〈by, y〉 and g(z) =

1

2
〈z, Qz〉 − 〈bz, z〉

with by ∈ Y and bz ∈ Z as given data. Here, P and Q are two self-adjoint positive

semidefinite linear operators. For later discussions, we write P and Q as follows:

P :=


P11 P12 · · · P1p

P∗12 P22 · · · P2p

...
...

. . .
...

P∗1p P∗2p · · · Ppp

 and Q :=


Q11 Q12 · · · Q1q

Q∗12 Q22 · · · Q2q

...
...

. . .
...

Q∗1q Q∗2q · · · Qqq

 ,

where Hij : Yj → Yi for i = 1, . . . , p, j ≤ i and Qmn : Zn → Zm for m =

1, . . . , q, n ≤ m are linear operators. For notational convenience, we further write

θf (y) := θ(y1) + f(y) ∀y ∈ Y and ϕg(z) := ϕ(z1) + g(z) ∀z ∈ Z. (3.43)

Let σ > 0 be given. The augmented Lagrangian function associated with (3.42) is

given as follows:

Lσ(y, z;x) = θf (y) + ϕg(z) + 〈x, A∗y + B∗z − c〉+
σ

2
‖A∗y + B∗z − c‖2.

Recall the majorized ADMM with indefinite proximal terms proposed in [35],

when applied to (3.42), has the following template. Note that now since f and g

are convex quadratic functions, the majorization step is omitted.
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iPADMM: An ADMM with indefinite proximal terms for solving problem

(3.42).

Let σ > 0 and τ ∈ (0,∞) be given parameters. LetM and N be given self-adjoint,

possibly indefinite, linear operators defined on Y and Z, respectively such that

σ−1P +M+AA∗ � 0 and σ−1Q+N + BB∗ � 0.

Choose (y0, z0, x0) ∈ dom(θf )×dom(ϕg)×X . For k = 0, 1, 2, ..., generate (yk+1, zk+1)

and xk+1 according to the following iteration.

Step 1. Compute

yk+1 = argminy Lσ(y, zk;xk) +
σ

2
‖y − yk‖2

M.

Step 2. Compute

zk+1 = argminz Lσ(yk+1, z;xk) +
σ

2
‖z − zk‖2

N .

Step 3. Compute

xk+1 = xk + τσ(A∗yk+1 + B∗zk+1 − c).

Remark 3.8. In the above iPADMM for solving problem (3.42), the presence of two

self-adjoint linear operator M and N not only helps to ensure the well-definedness

and convergence of the algorithm but also, as will be demonstrated later, is the

key for us to use the symmetric Gauss-Seidel idea from the previous section. The

general principle is that both M and N should be chosen such that yk+1 and zk+1

take larger step-lengths while they are still relatively easy to compute. From the

numerical point of view, it is therefore advantageous to pick indefinite M and N

whenever possible.

For the convergence and the iteration complexity of the iPADMM, we need the

following assumption.
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Assumption 4. There exists (ŷ, ẑ) ∈ ri(dom θf )×ri(domϕg) such that A∗ŷ+B∗ẑ =

c.

We also denote

x̃k+1 := xk + σ(A∗yk+1 + B∗zk+1 − c), x̂k =
1

k

k∑
i=1

x̃i+1,

ŷk =
1

k

k∑
i=1

yi+1, ẑk =
1

k

k∑
i=1

zi+1.

(3.44)

Now we are ready to show the global convergence property and the O(1/k) iteration

complexity of the iPADMM.

Theorem 3.9. Suppose that the solution set of problem (3.42) is nonempty and

that Assumption 4 holds. Assume that M and N are chosen such that the sequence

{(yk, zk, xk)} generated by Algorithm iPADMM is well defined. Let τ ∈ (0, (1 +
√

5 )/2), if

1

2
σ−1P +M� 0,

1

2
σ−1P +M+AA∗ � 0 (3.45)

and

1

2
σ−1Q+N � 0,

1

2
σ−1Q+N + BB∗ � 0, (3.46)

we have:

(a) The sequence {(yk, zk, xk)} converges to a unique limit, say, (y∞, z∞, x∞) with

(y∞, z∞) solving problem (3.42) and x∞ solving its dual problem, respectively.

(b) For any iteration point {(yk, zk, xk)} generated by iPADMM, (ŷk, ẑk, x̂k) is

an approximate solution of the first order optimality condition in variational

inequality form with O(1/k) iteration complexity.

Remark 3.10. The conclusion of Theorem 3.9 follows essentially from Theorem

2.11 and Theorem 2.12. See [35] for more detailed discussions.
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From Remark 3.8, here, we propose to split M into the sum of two self-adjoint

linear operators. In order to take the larger step-length, the first linear operator,

denoted by S, is chosen to be indefinite. Meanwhile, the second linear operator

is chosen to be positive semidefinite and is specially designed such that the joint

minimization subproblem corresponding to y can be decoupled by our symmetric

Gauss-Seidel based decomposition technique. Using the similar idea, N can again be

decomposed as the sum of a self-adjoint indefinite linear operator T and a specially

designed self-adjoint positive semidefinite linear operator. In this thesis, to simplify

the analysis, we made the following assumption.

Assumption 5. For any given α ∈ [0, 1
2
], assume

S = −σ−1αP and T = −σ−1αQ.

Note that, in this way, the conditions 1
2
σ−1P +M� 0 and 1

2
σ−1Q+N � 0 are

always guaranteed. Below, we focus on the design of the rest parts of M and N .

Given α ∈ [0, 1
2
], we first define two self-adjoint semidefinite linear operators S1

and T1 to handle the convex, possibly nonsmooth, functions θ(y1) and ϕ(z1). Let

Ey1 ,S1 be self-adjoint semidefinite linear operators defined on Y1 such that

Ey1 := S1 + σ−1(1− α)P11 +A1A∗1 � 0, (3.47)

and the following well-defined optimization problem can easily be solved

min
y1

θ(y1) +
σ

2
‖y1 − ȳ1‖2

Ey1
.

Similarly, define self-adjoint semidefinite linear operators Ez1 , T1 on Z1 such that

Ez1 := T1 + σ−1(1− α)Q11 + B1B∗1 � 0, (3.48)

and the optimal solution to the following problem can be easily obtained

min
z1

ϕ(z1) +
σ

2
‖z1 − z̄1‖2

Ez1
.
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Then, for i = 2, . . . , p, let Eyi be a self-adjoint positive definite linear operator on Yi
such that it is a majorization of σ−1(1− α)Pii +AiA∗i , i.e.,

Eyi � σ−1(1− α)Pii +AiA∗i .

In practice, we would choose Eyi in such a way that its inverse can be computed at

a moderate cost. Define

Si := Eyi − σ−1(1− α)Pii −AiA∗i � 0, i = 1, . . . , p. (3.49)

Note that for numerical efficiency, we need the self-adjoint positive semidefinite

linear operator Si to be as small as possible for each i = 1, . . . , p. Similarly, for

j = 2, . . . , q, let Ezj be a self-adjoint positive definite linear operator on Zj that

majorizes σ−1(1−α)Qjj +BjB∗j in such a way that E−1
zj

can be computed relatively

easily. Define

Tj := Ezj − σ−1(1− α)Qjj − BjB∗j � 0, j = 1, . . . , q. (3.50)

Again, we need the self-adjoint positive semidefinite linear operator Tj to be as small

as possible for each j = 1, . . . , q.

Now we are ready to present our sGS-PADMM (symmetric Gauss-Seidel based

proximal alternating direction method of multipliers) algorithm for solving (3.42).
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Algorithm sGS-PADMM: A symmetric Gauss-Seidel based proximal

ADMM for solving (3.42). Let σ > 0 and τ ∈ (0,∞) be given parameters.

Choose (y0, z0, x0) ∈ dom(θf )×dom(ϕg)×X . For k = 0, 1, 2, ..., generate (yk+1, zk+1)

and xk+1 according to the following iteration.

Step 1. (Backward GS sweep) Compute for i = p, . . . , 2,

yki = argminyi

 Lσ((yk≤i−1, yi, y
k
≥i+1), zk;xk)

+σ
2
‖(yk≤i−1, yi, y

k
≥i+1)− yk‖2

S + σ
2
‖yi − yki ‖2

Si

 .

Then compute

yk+1
1 = argminy1

 Lσ((y1, y
k
≥2), zk;xk) + σ

2
‖(y1, y

k
≥2)− yk‖2

S

+σ
2
‖y1 − yk1‖2

S1

 .

Step 2. (Forward GS sweep) Compute for i = 2, . . . , p,

yk+1
i = argminyi

 Lσ((yk+1
≤i−1, yi, y

k
≥i+1), zk;xk)

+σ
2
‖(yk+1
≤i−1, yi, y

k
≥i+1)− yk‖2

S + σ
2
‖yi − yki ‖2

Si

 .

Step 3. (Backward GS sweep) Compute for j = q, . . . , 2,

zkj = argminzj

 Lσ(yk+1, (zk≤j−1, zj, z
k
≥j+1);xk)

+σ
2
‖(zk≤j−1, zj, z

k
≥j+1)− zk‖2

T + σ
2
‖zj − zkj ‖2

Tj

 .

Then compute

zk+1
1 = argminz1


Lσ(yk+1, (z1, z

k
≥2);xk)

+σ
2
‖(z1, z

k
≥2)− zk‖2

T + σ
2
‖z1 − zk1‖2

T1

 .

Step 4. (Forward GS sweep) Compute for j = 2, . . . , q,

zk+1
j = argminzj


Lσ(yk+1, (zk+1

≤j−1, zj, z
k
≥j+1);xk)

+σ
2
‖(zk+1
≤j−1, zj, z

k
≥j+1))− zk‖2

T + σ
2
‖zj − zkj ‖2

Tj

 .

Step 5. Compute

xk+1 = xk + τσ(A∗yk+1 + B∗zk+1 − c).
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In order to prove the convergence of Algorithm sGS-PADMM for solving (3.42),

we need first to study the relationship between sGS-PADMM and the generic 2-block

iPADMM for solving a two-block convex optimization problem.

For given α ∈ [0, 1
2
], define the following linear operators:

Mi := σ−1(1− α)


P1i

...

P(i−1)i

+


A1

...

Ai−1

A∗i , i = 2, . . . , p.

Similarly, let

Nj := σ−1(1− α)


Q1j

...

Q(j−1)j

+


B1

...

Bi−1

B∗j , j = 2, . . . , q.

For the given self-adjoint semidefinite linear operators S1 and T1, define Ŝ2 := S1 +

M2E−1
2 M∗

2,

Ŝi := diag(Ŝi−1,Si−1) +MiE−1
yi
M∗

i , i = 3, . . . , p

and T̂2 := T1 +N2E−1
z2
N ∗2 ,

T̂j := diag(T̂j−1, Tj−1) +NjE−1
zj
N ∗j , j = 3, . . . , q.

Proposition 3.11. For any k ≥ 0, the point (xk+1, yk+1, zk+1) obtained by Algo-

rithm sGS-PADMM for solving problem (3.42) can be generated exactly according to

the following iteration:

yk+1 = argminy


Lσ(y, zk;xk) + σ

2
‖y − yk‖2

S

+σ
2
‖y≤p−1 − yk≤p−1‖2

Ŝp
+ σ

2
‖yp − ykp‖2

Sp

 , (3.51)

zk+1 = argminz


Lσ(yk+1, z;xk) + σ

2
‖z − zk‖2

T

+σ
2
‖z≤q−1 − zk≤q−1‖2

T̂q
+ σ

2
‖zq − zkq ‖2

Tq

 , (3.52)

xk+1 = xk + τσ(A∗yk+1 + B∗zk+1 − c).
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Proof. We only need to prove the yk+1 part as the zk+1 part can be obtained

in the similar manner. Let

∆Sp := Ŝp − diag(S1, . . . ,Sp−1).

Note that problem (3.51) can equivalently be rewritten as

yk+1 = argminy

 Lσ(y, zk;xk) + σ
2
‖y1 − yk1‖2

S1 + σ
2

∑p
i=2 ‖yi − yki ‖2

Si

+σ
2
‖y − yk‖2

S0 + σ
2
‖y≤p−1 − yk≤p−1‖2

∆Sp

 . (3.53)

The equivalence then follows directly by applying Theorem 3.3 with all the error

tolerance vectors (δ+, δ′≥2) chosen to be zero for problem (3.53). The proof of this

proposition is completed.

Remark 3.12. Note that in the proof for Proposition 3.11, all the error tolerance

vectors (δ+, δ′≥2) are set to zero. Naturally, one may ask the following question: Why

these error tolerance vectors are included in Theorem 3.3? As can be seen later, these

error terms play important roles in the designing of a special inexact accelerated

proximal gradient (APG) algorithm in Phase II. In fact, these error tolerance vectors

also open up many possibilities of designing inexact ADMM type methods which

will allow the inexact solution for each subproblem and have attainable stopping

conditions.

In fact, we have finished the design of M and N . From Proposition 3.11, we

have

M = −σ−1αP + diag(Ŝp,Sp) (3.54)

and

N = −σ−1αQ+ diag(T̂p, Tp). (3.55)

Next, we study the conditions which will guarantee the convergence of our proposed

Algorithm sGS-PADMM.

In order to prove the convergence of Algorithm sGS-PADMM for solving problem

(3.42), the following proposition is needed.
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Proposition 3.13. For any given α ∈ [0, 1
2
), it holds that

AA∗ + σ−1(1
2
− α)P + diag(Ŝp,Sp) � 0

⇔ A1A∗1 + σ−1(1− α)P11 + S1 � 0, (3.56)

BB∗ + σ−1(1
2
− α)Q+ diag(T̂q, Tq) � 0

⇔ B1B∗1 + σ−1(1− α)Q11 + T1 � 0. (3.57)

Proof. Note the fact that if A and B are two positive semidefinite linear oper-

ators, then

(∀α1 > 0, α2 > 0) α1A+ α2B � 0

⇔ (∃α1 > 0, α2 > 0) α1A+ α2B � 0

⇔ A+ B � 0.

Hence, to prove (3.56) and (3.57), we only need to prove
AA∗ + σ−1(1− α)P + diag(Ŝp,Sp) � 0⇔ A1A∗1 + σ−1(1− α)P11 + S1 � 0,

BB∗ + σ−1(1− α)Q+ diag(T̂q, Tq) � 0⇔ B1B∗1 + σ−1(1− α)Q11 + T1 � 0.

(3.58)

Note that (3.58) can be readily obtained by using part (ii) of Theorem 3.3. Thus,

we prove the proposition.

After all these preparations, we can finally state our main convergence theorem.

Theorem 3.14. Suppose that the solution set of problem (3.42) is nonempty and

that Assumption 4 and 5 hold. Assume that the sequence {(yk, zk, xk)} generated

by Algorithm sGS-PADMM is well defined. Let τ ∈ (0, (1 +
√

5 )/2). Then, the

following conclusion holds:

(a) For α ∈ [0, 1/2), under the condition that

A1A∗1 + σ−1(1− α)P11 + S1 � 0 and B1B∗1 + σ−1(1− α)Q11 + T1 � 0,

the sequence {(yk, zk)}, which is automatically well defined, converges to an

optimal solution of problem (3.42) and {xk} converges to an optimal solution

of the corresponding dual problem, respectively.
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(b) For α = 1
2
, under the condition that

AA∗ + diag(Ŝp,Sp) � 0 and BB∗ + diag(T̂q, Tq) � 0,

the sequence {(yk, zk)}, which is automatically well defined, converges to an

optimal solution of problem (3.42) and {xk} converges to an optimal solution

of the corresponding dual problem, respectively.

Proof. Note that, conditions (3.45) and (3.46) now become AA∗ + σ−1(1
2
− α)P + diag(Ŝp,Sp) � 0,

BB∗ + σ−1(1
2
− α)Q+ diag(T̂q, Tq) � 0.

(3.59)

When α ∈ [0, 1
2
), by Proposition 3.13, conditions (3.59) are equivalent to

A1A∗1 + σ−1(1− α)P11 + S1 � 0 and B1B∗1 + σ−1(1− α)Q11 + T1 � 0.

On the other hand, if α = 1
2
, conditions (3.59) reduce to

AA∗ + diag(Ŝp,Sp) � 0 and BB∗ + diag(T̂q, Tq) � 0.

Then by combing part (a) of Theorem 3.9 with Proposition 3.11, we can readily

obtain the conclusions of this theorem.

In the next theorem, we shall show that the sGS-PADMM for solving problem

(3.42) has O(1/k) ergodic iteration complexity.

Theorem 3.15. Suppose that Assumption 4 holds. For τ ∈ (0, 1+
√

5
2

), under the

same conditions in Theorem 3.14, we have that for any iteration point {(yk, zk, xk)}

generated by sGS-PADMM, (ŷk, ẑk, x̂k) is an approximate solution of the first order

optimality condition in variational inequality form with O(1/k) iteration complexity.

Proof. By by combing part (b) of Theorem 3.9 with Proposition 3.11, we know

that the conclusion of this theorem holds.
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3.4 Numerical results and examples

Recall the definitions of θf (·) and ϕg(·) in (3.43), our general convex quadratic

composite optimization model can be recast as

min θf (y) + ϕg(z)

s.t. A∗y + B∗z = c
(3.60)

and its dual is given by

max
{
− 〈c, x〉 − θ∗f (−Ax)− ϕ∗g(−Bx)

}
. (3.61)

We first examine the optimality condition for the general problem (3.60) and its

dual (3.61). Suppose that the solution set of problem (3.60) is nonempty and that

Assumption 4 holds. Then in order that (y∗, z∗) be an optimal solution for (3.60)

and x∗ be an optimal solution for (3.60), it is necessary and sufficient that (y∗, z∗)

and x∗ satisfy 
A∗y + B∗z = c,

θf (y) + θ∗f (−Ax) = 〈y, −Ax〉,

ϕg(z) + ϕ∗g(−Bx) = 〈z, −Bx〉.

(3.62)

We will measure the accuracy of an approximate solution based on the above op-

timality condition. If the given problem is properly scaled, the following relative

residual is a natural choice to be used in our stopping criterion:

η = max{ηP , ηθf , ηϕg}, (3.63)

where

ηP =
‖A∗y + B∗z − c‖

1 + ‖c‖
,

ηθf =
‖y − proxθf (y −Ax)‖

1 + ‖y‖+ ‖Ax‖
,

ηϕg =
‖z − proxϕg(z − Bx)‖

1 + ‖z‖+ ‖Bx‖
.
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Additionally, we compute the relative gap by

ηgap =
objP − objD

1 + |objP |+ |objD|
,

where objP := θ(y1)+f(y)+ϕ(z1)+g(z) and objD := −〈c, x〉−θ∗f (−Ax)−ϕ∗g(−Bx).

In order to demonstrate the efficiency of our proposed algorithms in Phase I, we test

the following problem sets. Note that, for simplicity, we set α = 0 in our Algorithm

sGS-padmm, i.e., we add only semidefinite proximal terms.

3.4.1 Convex quadratic semidefinite programming (QSDP)

As a very important example of the convex composite quadratic optimization prob-

lems, in this subsection, we consider the following convex quadratic semidefinite

programming problem:

min 1
2
〈X, QX〉+ 〈C, X〉

s.t. AEX = bE, AIX ≥ bI , X ∈ Sn+ ∩ K,
(3.64)

where Q is a self-adjoint positive semidefinite linear operator from Sn to Sn, AE :

Sn → <mE and AI : Sn → <mI are two linear maps, C ∈ Sn, bE ∈ <mE and

bI ∈ <mI are given data, K is a nonempty simple closed convex set, e.g., K =

{X ∈ Sn | L ≤ X ≤ U} with L,U ∈ Sn being given matrices. The dual problem

associated with (3.64) is given by

max −δ∗K(−Z)− 1
2
〈X ′, QX ′〉+ 〈bE, yE〉+ 〈bI , yI〉

s.t. Z −QX ′ + S +A∗EyE +A∗IyI = C,

X ′ ∈ Sn, yI ≥ 0, S ∈ Sn+ .

(3.65)

We use X ′ here to indicate the fact that X ′ can be different from the primal variable

X. Despite this fact, we have that at the optimal point, QX = QX ′. Since Q is only

assumed to be a self-adjoint positive semidefinite linear operator, the augmented

Lagrangian function associated with (3.65) may not be strongly convex with respect

to X ′. Without further adding a proximal term, we propose the following strategy
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to rectify this difficulty. Since Q is positive semidefinite, Q can be decomposed as

Q = B∗B for some linear map B. By introducing a new variable Ξ = −BX ′, the

problem (3.65) can be rewritten as follows:

max −δ∗K(−Z)− 1
2
‖Ξ‖2

F + 〈bE, yE〉+ 〈bI , yI〉

s.t. Z + B∗Ξ + S +A∗EyE +A∗IyI = C, yI ≥ 0, S ∈ Sn+ .
(3.66)

Note that now the augmented Lagrangian function associated with (3.66) is strongly

convex with respect to Ξ. Surprisingly, much to our delight, we can update the iter-

ations in our sGS-padmm without explicitly computing B or B∗. Given Z, ȳI , S, ȳE

and X, denote

Ξ+ := argminΞ

1

2
‖Ξ‖2 +

σ

2
‖Z +A∗I ȳI + B∗Ξ + S +A∗E ȳE − C + σ−1X‖2

= −(I + σBB∗)−1BR,

where R = X + σ(Z + A∗I ȳI + S + A∗E ȳE − C). In updating the sGS-padmm

iterations, we actually do not need Ξ+ explicitly, but only need Υ+ := −B∗Ξ+. From

the condition that (I + σBB∗)(−Ξ+) = BR, we get (I + σB∗B)(−B∗Ξ+) = B∗BR.

Hence we can compute Υ+ via Q:

Υ+ = (I + σQ)−1(QR).

In fact, Υ := −B∗Ξ can be viewed as the shadow of QX ′. Meanwhile, for the

function δ∗K(−Z), we have the following useful observation that for any λ > 0,

Z+ = argmin δ∗K(−Z) +
λ

2
‖Z − Z‖2 = Z +

1

λ
ΠK(−λZ), (3.67)

where (3.67) follows from Proposition 2.6.

Here, in our numerical experiments, we test QSDP problems without inequality

constraints (i.e., AI and bI are vacuous). We consider first the linear operator Q

given by

Q(X) =
1

2
(BX +XB) (3.68)
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for a given matrix B ∈ Sn+. Suppose that we have the eigenvalue decomposition

B = PΛP T , where Λ = diag(λ) and λ = (λ1, . . . , λn)T is the vector of eigenvalues

of B. Then

〈X, QX〉 =
1

2
〈X̂, ΛX̂ + X̂Λ〉 =

1

2

n∑
i=1

n∑
j=1

X̂2
ij(λi + λj)

=
n∑
i=1

n∑
j=1

X̂2
ijH

2
ij = 〈X, B∗BX〉,

where X̂ = P TXP , Hij =
√

λi+λj
2

, BX = H ◦ (P TXP ) and B∗Ξ = P (H ◦Ξ)P T . In

our numerical experiments, the matrix B is a low rank random symmetric positive

semidefinite matrix. Note that when rank(B) = 0 and K is a polyhedral cone,

problem (3.64) reduces to the SDP problem considered in [59]. In our experiments,

we test both of the cases where rank(B) = 5 and rank(B) = 10. All the linear

constraints are extracted from the numerical test examples in [59] (Section 4.1).

More specifically, we construct the following problem sets:

(i) The QSDP-BIQ problem is given by:

min 1
2
〈X, QX〉+ 1

2
〈Q, X0〉+ 〈c, x〉

s.t. diag(X0)− x = 0, α = 1,

X =

 X0 x

xT α

 ∈ Sn+, X ∈ K := {X ∈ Sn | X ≥ 0}.

(3.69)

In our numerical experiments, the test data for Q and c are taken from Biq

Mac Library maintained by Wiegele, which is available at http://biqmac.

uni-klu.ac.at/biqmaclib.html.

(ii) Given a graph G with edge set E , the QSDP-θ+ problem is constructed by:

min 1
2
〈X, QX〉 − 〈eeT , X〉

s.t. 〈Eij, X〉 = 0, (i, j) ∈ E , 〈I, X〉 = 1,

X ∈ Sn+, X ∈ K := {X ∈ Sn | X ≥ 0},

(3.70)

http://biqmac.uni-klu.ac.at/biqmaclib.html
http://biqmac.uni-klu.ac.at/biqmaclib.html
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where Eij = eie
T
j + eje

T
i and ei denotes the ith column of the identity matrix.

In our numerical experiments, we test the graph instances G considered in

[57, 64, 39].

(iii) The QSDP-RCP problem is constructed based on the formula presented in

[48, eq. (13)] as following:

min 1
2
〈X, QX〉 − 〈W, X〉

s.t. Xe = e, 〈I, X〉 = K,

X ∈ Sn+, X ∈ K := {X ∈ Sn | X ≥ 0},

(3.71)

where W is the so-called affinity matrix whose entries represent the similarities

of the objects in the dataset, e is the vector of ones, and K is the number

of clusters. All the data sets we tested are from the UCI Machine Learning

Repository (available at http://archive.ics.uci.edu/ml/datasets.html).

For some large data instances, we only select the first n rows. For example,

the original data instance “spambase” has 4601 rows, we select the first 1500

rows to obtain the test problem “spambase-large.2” for which the number

“2” means that there are K = 2 clusters.

Here we compare our algorithm sGS-padmm with the directly extended Admm

(with step length τ = 1) and the convergent alternating direction method with a

Gaussian back substitution proposed in [24] (we call the method Admmgb here

and use the parameter α = 0.99 in the Gaussian back substitution step). We have

implemented all the algorithms sGS-padmm, Admm and Admmgb in Matlab

version 7.13. The numerical results reported later are obtained from a PC with 24

GB memory and 2.80GHz dual-core CPU running on 64-bit Windows Operating

System.

We measure the accuracy of an approximate optimal solution (X,Z,Ξ, S, yE) for

QSDP (3.64) and its dual (3.66) by using the following relative residual obtained

from the general optimality condition (3.62):

ηqsdp = max{ηP , ηD, ηZ , ηS1 , ηS2}, (3.72)
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where

ηP =
‖AEX − bE‖

1 + ‖bE‖
, ηD =

‖Z + B∗Ξ + S +A∗EyE − C‖
1 + ‖C‖

, ηZ =
‖X −ΠK(X − Z)‖

1 + ‖X‖+ ‖Z‖
,

ηS1 =
|〈S, X〉|

1 + ‖S‖+ ‖X‖
, ηS2 =

‖X −ΠSn+(X)‖
1 + ‖X‖

.

We terminate the solvers sGS-padmm, Admm and Admmgb when ηqsdp < 10−6

with the maximum number of iterations set at 25000.

Table 3.1 reports detailed numerical results for sGS-padmm, Admm and Admmgb

in solving some large scale QSDP problems. Here, we only list the results for the

case of rank(B) = 10, since we obtain similar results for the case of rank(B) = 5.

Our numerical experience also indicates that the order of solving the subproblems

has generally no influence on the performance of sGS-padmm . From the numerical

results, one can observe that sGS-padmm is generally the fastest in terms of the

computing time, especially when the problem size is large. In addition, we can see

that sGS-padmm and Admm solved all instances to the required accuracy, while

Admmgb failed in certain cases.

Figure 3.1 shows the performance profiles in terms of the number of iterations and

computing time for sGS-padmm, Admm and Admmgb, for all the tested large scale

QSDP problems. We recall that a point (x, y) is in the performance profiles curve

of a method if and only if it can solve (100y)% of all the tested problems no slower

than x times of any other methods. We may observe that for the majority of the

tested problems, sGS-padmm takes the least number of iterations. Besides, in terms

of computing time, it can be seen that both sGS-padmm and Admm outperform

Admmgb by a significant margin, even though Admm has no convergence guarantee.
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Figure 3.1: Performance profiles of sGS-padmm, Admm and Admmgb for the
tested large scale QSDP.
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convex composite quadratic programming
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3.4 Numerical results and examples 69
T

ab
le

3.
1:

T
h
e

p
er

fo
rm

an
ce

of
sG

S
-p

a
d
m

m
,

A
d
m

m
,

A
d
m

m
g

b
on

Q
S
D

P
-θ

+
,

Q
S
D

P
-B

IQ
an

d
Q

S
D

P
-R

C
P

p
ro

b
le

m
s

(a
c-

cu
ra

cy
=

10
−

6
).

In
th

e
ta

b
le

,
“s

gs
”

st
an

d
s

fo
r

sG
S
-p

a
d
m

m
an

d
“g

b
”

st
an

d
s

fo
r

A
d
m

m
g

b
,

re
sp

ec
ti

ve
ly

.
T

h
e

co
m

p
u
ta

ti
on

ti
m

e
is

in
th

e
fo

rm
at

of
“h

ou
rs

:m
in

u
te

s:
se

co
n
d
s”

.

it
er

a
ti

o
n

η
q
sd

p
η
g
a
p

ti
m

e

p
ro

b
le

m
m
E

;n
s

ra
n

k
(B

)
sg

s|
a
d

m
m
|g

b
sg

s|
a
d

m
m
|g

b
sg

s|
a
d

m
m
|g

b
sg

s|
a
d

m
m
|g

b

b
q
p

1
0
0
-8

1
0
1

;
1
0
1

1
0

1
8
2
0
|3

3
3
7
|9

6
1
2

9
.9

-7
|9

.9
-7
|9

.9
-7

7
.3

-7
|8

.9
-8
|1

.1
-8

0
6
|0

9
|3

2

b
q
p

1
0
0
-9

1
0
1

;
1
0
1

1
0

1
9
4
8
|4

1
4
6
|1

5
9
0
1

9
.9

-7
|9

.9
-7
|9

.9
-7

-2
.2

-6
|-

6
.7

-7
|2

.6
-9

0
7
|1

1
|5

2

b
q
p

1
0
0
-1

0
1
0
1

;
1
0
1

1
0

3
2
0
7
|5

0
7
7
|1

2
1
0
1

9
.9

-7
|9

.9
-7
|9

.9
-7

8
.0

-8
|4

.3
-7
|2

.7
-8

1
0
|1

5
|3

8

b
q
p

2
5
0
-1

2
5
1

;
2
5
1

1
0

3
9
3
1
|5

9
4
1
|1

1
7
5
8

9
.6

-7
|9

.9
-7
|9

.9
-7

-1
.2

-6
|-

1
.5

-6
|1

.2
-7

5
7
|1

:1
0
|2

:3
9

b
q
p

2
5
0
-2

2
5
1

;
2
5
1

1
0

4
0
0
7
|5

7
7
4
|9

7
0
4

9
.5

-7
|9

.9
-7
|9

.9
-7

-6
.6

-7
|-

2
.3

-7
|-

1
.2

-6
5
7
|1

:0
7
|2

:1
1

b
q
p

2
5
0
-3

2
5
1

;
2
5
1

1
0

4
1
1
2
|5

7
0
8
|1

2
2
0
2

9
.9

-7
|9

.9
-7
|9

.9
-7

-3
.9

-6
|3

.8
-8
|3

.0
-6

5
7
|1

:0
5
|2

:4
0

b
q
p

2
5
0
-4

2
5
1

;
2
5
1

1
0

3
1
5
8
|4

2
9
0
|9

6
7
1

9
.9

-7
|9

.9
-7
|9

.9
-7

-5
.5

-7
|-

2
.4

-6
|4

.5
-6

4
5
|5

2
|2

:1
3

b
q
p

2
5
0
-5

2
5
1

;
2
5
1

1
0

4
4
3
0
|7

3
4
9
|2

2
8
0
2

9
.9

-7
|9

.9
-7
|9

.9
-7

-2
.0

-6
|3

.6
-6
|-

1
.3

-8
1
:0

2
|1

:2
9
|5

:1
3

b
q
p

2
5
0
-6

2
5
1

;
2
5
1

1
0

2
8
7
1
|5

1
2
2
|7

8
0
1

9
.9

-7
|9

.9
-7
|9

.9
-7

-1
.2

-6
|-

1
.3

-6
|-

2
.5

-7
4
2
|1

:0
1
|1

:4
7

b
q
p

2
5
0
-7

2
5
1

;
2
5
1

1
0

3
9
9
1
|5

5
7
0
|1

1
5
0
8

9
.9

-7
|9

.9
-7
|9

.9
-7

-2
.2

-6
|-

2
.0

-6
|-

2
.7

-6
5
7
|1

:0
4
|2

:3
1

b
q
p

2
5
0
-8

2
5
1

;
2
5
1

1
0

2
8
8
2
|4

0
0
8
|5

5
0
1

9
.9

-7
|9

.8
-7
|9

.8
-7

-2
.0

-7
|-

7
.1

-7
|-

1
.0

-6
4
0
|4

5
|1

:1
4

b
q
p

2
5
0
-9

2
5
1

;
2
5
1

1
0

4
1
2
7
|6

2
7
9
|1

1
9
9
8

9
.7

-7
|9

.9
-7
|9

.9
-7

-5
.1

-7
|-

3
.9

-7
|3

.8
-6

5
8
|1

:1
1
|2

:3
8

b
q
p

2
5
0
-1

0
2
5
1

;
2
5
1

1
0

3
0
4
4
|4

1
8
5
|7

9
8
6

9
.9

-7
|9

.9
-7
|9

.9
-7

-9
.3

-7
|-

7
.5

-7
|-

2
.5

-6
4
3
|4

8
|1

:4
3

b
q
p

5
0
0
-1

5
0
1

;
5
0
1

1
0

6
0
0
3
|8

3
9
1
|1

3
4
1
6

9
.9

-7
|9

.9
-7
|9

.9
-7

-3
.9

-7
|-

7
.3

-7
|-

5
.4

-7
6
:0

1
|7

:0
5
|1

3
:3

4

b
q
p

5
0
0
-2

5
0
1

;
5
0
1

1
0

6
6
0
1
|1

0
2
0
3
|2

5
0
0
0

9
.7

-7
|9

.9
-7
|3

.4
-6

-4
.2

-7
|-

1
.2

-7
|1

.8
-5

6
:5

2
|8

:4
3
|2

5
:2

3

b
q
p

5
0
0
-3

5
0
1

;
5
0
1

1
0

7
4
5
0
|1

0
5
1
7
|2

1
1
4
0

9
.9

-7
|9

.9
-7
|9

.9
-7

7
.6

-7
|-

4
.3

-6
|1

.1
-6

7
:3

1
|8

:4
6
|2

1
:1

0

b
q
p

5
0
0
-4

5
0
1

;
5
0
1

1
0

7
0
3
5
|9

9
0
3
|2

3
5
5
1

9
.6

-7
|9

.9
-7
|9

.9
-7

-3
.3

-7
|-

1
.3

-6
|2

.6
-6

7
:0

8
|8

:1
2
|2

3
:3

6

b
q
p

5
0
0
-5

5
0
1

;
5
0
1

1
0

6
1
6
4
|8

4
0
6
|2

0
5
3
3

9
.9

-7
|9

.9
-7
|9

.9
-7

-8
.8

-7
|-

4
.8

-7
|2

.8
-6

6
:3

0
|7

:0
4
|2

0
:3

7

b
q
p

5
0
0
-6

5
0
1

;
5
0
1

1
0

6
9
0
5
|8

6
5
9
|2

5
0
0
0

9
.8

-7
|9

.9
-7
|1

.4
-4

-3
.8

-7
|-

1
.5

-6
|-

1
.8
-4

7
:1

3
|7

:3
0
|2

5
:4

4

b
q
p

5
0
0
-7

5
0
1

;
5
0
1

1
0

6
5
8
7
|9

0
3
8
|1

8
0
7
2

9
.9

-7
|9

.9
-7
|9

.9
-7

-6
.8

-7
|2

.5
-7
|2

.8
-6

6
:4

1
|7

:3
9
|1

8
:1

3



70
Chapter 3. Phase I: A symmetric Gauss-Seidel based proximal ADMM for

convex composite quadratic programming
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Chapter 3. Phase I: A symmetric Gauss-Seidel based proximal ADMM for

convex composite quadratic programming
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Chapter 3. Phase I: A symmetric Gauss-Seidel based proximal ADMM for

convex composite quadratic programming
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3.4.2 Nearest correlation matrix (NCM) approximations

In this subsection, we first consider the problem of finding the nearest correlation

matrix (NCM) to a given matrix G ∈ Sn:

min 1
2
‖H ◦ (X −G)‖2

F + 〈C, X〉

s.t. AEX = bE, X ∈ Sn+ ∩ K ,
(3.73)

where H ∈ Sn is a nonnegative weight matrix, AE : Sn → <mE is a linear map,

G ∈ Sn, C ∈ Sn and bE ∈ <mE are given data, K is a nonempty simple closed convex

set, e.g., K = {W ∈ Sn | L ≤ W ≤ U} with L,U ∈ Sn being given matrices. In fact,

this is also an instance of the general model of problem (3.64) with no inequality

constraints, QX = H ◦H ◦X and BX = H ◦X. We place this special example of

QSDP here since an extension will be considered next.

Now, let’s consider an interesting variant of the above NCM problem:

min ‖H ◦ (X −G)‖2 + 〈C, X〉

s.t. AEX = bE, X ∈ Sn+ ∩ K .
(3.74)

Note, in (3.74), instead of the Frobenius norm, we use the spectral norm. By

introducing a slack variable Y , we can reformulate problem (3.74) as

min ‖Y ‖2 + 〈C, X〉

s.t. H ◦ (X −G) = Y, AEX = bE, X ∈ Sn+ ∩ K .
(3.75)

The dual of problem (3.75) is given by

max −δ∗K(−Z) + 〈H ◦G, Ξ〉+ 〈bE, yE〉

s.t. Z +H ◦ Ξ + S +A∗EyE = C, ‖Ξ‖∗ ≤ 1, S ∈ Sn+ ,
(3.76)

which is obviously equivalent to the following problem

max −δ∗K(−Z) + 〈H ◦G, Ξ〉+ 〈bE, yE〉

s.t. Z +H ◦ Ξ + S +A∗EyE = C, ‖Γ‖∗ ≤ 1, S ∈ Sn+ ,

D∗Γ−D∗Ξ = 0,

(3.77)
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where D : Sn → Sn is a nonsingular linear operator. Note that sGS-padmm can not

be directly applied to solve the problem (3.76) while the equivalent reformulation

(3.77) fits our model nicely.

In our numerical test, matrix Ĝ is the gene correlation matrix from [33]. For

testing purpose we perturb Ĝ to

G := (1− α)Ĝ+ αE,

where α ∈ (0, 1) and E is a randomly generated symmetric matrix with entries in

[−1, 1]. We also set Gii = 1, i = 1, . . . , n. The weight matrix H is generated from

a weight matrix H0 used by a hedge fund company. The matrix H0 is a 93 × 93

symmetric matrix with all positive entries. It has about 24% of the entries equal to

10−5 and the rest are distributed in the interval [2, 1.28× 103]. It has 28 eigenvalues

in the interval [−520,−0.04], 11 eigenvalues in the interval [−5× 10−13, 2× 10−13],

and the rest of 54 eigenvalues in the interval [10−4, 2× 104]. The Matlab code for

generating the matrix H is given by

tmp = kron(ones(25,25),H0); H = tmp(1:n,1:n); H = (H’+H)/2.

The reason for using such a weight matrix is because the resulting problems gen-

erated are more challenging to solve as opposed to a randomly generated weight

matrix. Note that the matrices G and H are generated in the same way as in [29].

For simplicity, we further set C = 0 and K = {X ∈ Sn : X ≥ −0.5}.

Generally speaking, there is no widely accepted stopping criterion for spectral

norm H-weighted NCM problem (3.75). Here, with reference to the general rel-

ative residue (3.63), we measure the accuracy of an approximate optimal solution

(X,Z,Ξ, S, yE) for spectral norm H-weighted NCM problem problem (3.74) (equiva-

lently (3.75)) and its dual (3.76) (equivalently (3.77)) by using the following relative

residual derived from the general optimality condition (3.62):

ηsncm = max{ηP , ηD, ηZ , ηS1 , ηS2 , ηΞ}, (3.78)
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Table 3.2: The performance of sGS-padmm, Admm, Admmgb on Frobenius norm H-

weighted NCM problems (dual of (3.73)) (accuracy = 10−6). In the table, “sgs” stands

for sGS-padmm and “gb” stands for Admmgb, respectively. The computation time is in

the format of “hours:minutes:seconds”.

iteration ηqsdp ηgap time

problem ns α sgs|admm|gb sgs|admm|gb sgs|admm|gb sgs|admm|gb

Lymph 587 0.10 263 | 522 | 696 9.9-7 | 9.9-7 | 9.9-7 -4.4-7 | -4.5-7 | -4.0-7 30 | 53 | 1:23

587 0.05 264 | 356 | 592 9.9-7 | 9.9-7 | 9.9-7 -3.9-7 | -3.4-7 | -3.0-7 29 | 35 | 1:08

ER 692 0.10 268 | 355 | 711 9.9-7 | 9.9-7 | 9.9-7 -5.1-7 | -4.7-7 | -4.2-7 43 | 51 | 1:58

692 0.05 226 | 293 | 603 9.9-7 | 9.9-7 | 9.9-7 -4.2-7 | -3.8-7 | -3.3-7 37 | 43 | 1:54

Arabidopsis 834 0.10 510 | 528 | 725 9.9-7 | 9.9-7 | 9.9-7 -5.9-7 | -5.3-7 | -3.9-7 2:11 | 2:02 | 3:03

834 0.05 444 | 470 | 650 9.9-7 | 9.9-7 | 9.9-7 -5.8-7 | -5.2-7 | -4.8-7 1:51 | 1:43 | 2:44

Leukemia 1255 0.10 292 | 420 | 826 9.9-7 | 9.9-7 | 9.9-7 -5.4-7 | -5.3-7 | -4.4-7 3:13 | 4:11 | 9:13

1255 0.05 251 | 408 | 670 9.9-7 | 9.7-7 | 9.6-7 -5.4-7 | -4.9-7 | -4.0-7 2:48 | 4:03 | 7:35

hereditarybc 1869 0.10 555 | 634 | 871 9.9-7 | 9.9-7 | 9.9-7 -9.1-7 | -9.1-7 | -7.0-7 17:39 | 18:38 | 28:01

1869 0.05 530 | 626 | 839 9.9-7 | 9.9-7 | 9.9-7 -8.7-7 | -8.7-7 | -5.2-7 16:50 | 18:15 | 26:34

where

ηP =
‖AEX − bE‖

1 + ‖bE‖
, ηD =

‖Z +H ◦ Ξ + S +A∗EyE‖
1 + ‖Z‖+ ‖S‖

, ηZ =
‖X −ΠK(X − Z)‖

1 + ‖X‖+ ‖Z‖
,

ηS1 =
|〈S, X〉|

1 + ‖S‖+ ‖X‖
, ηS2 =

‖X −ΠSn+(X)‖
1 + ‖X‖

,

ηΞ =
‖Ξ−Π{X∈<n×n :‖X‖∗≤1}(Ξ−H ◦ (X −G))‖

1 + ‖Ξ‖+ ‖H ◦ (X −G)‖
.

Firstly, numerical results for solving F-norm H-weighted NCM problems (3.74)

are reported. We compare all three algorithms, namely sGS-padmm, Admm,

Admmgb using the relative residue (3.72). We terminate the solvers when ηqsdp <

10−6 with the maximum number of iterations set at 25000.

In Table 3.2, we report detailed numerical results for sGS-padmm, Admm and

Admmgb in solving various instances of F-norm H-weighted NCM problem. As we

can see from Table 3.2, our sGS-padmm is certainly more efficient than the other

two algorithms on most of the problems tested.
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Table 3.3: The performance of sGS-padmm, Admm, Admmgb on spectral norm H-

weighted NCM problem (3.77) (accuracy = 10−5). In the table, “sgs” stands for

sGS-padmm and “gb” stands for Admmgb, respectively. The computation time is in

the format of “hours:minutes:seconds”.

iteration ηsncm ηgap time

problem ns α sgs|admm|gb sgs|admm|gb sgs|admm|gb sgs|admm|gb

Lymph 587 0.10 4110|6048|7131 9.9-6|9.9-6|1.0-5 -3.4-5|-2.8-5|-2.7-5 13:21|17:10|21:43

587 0.05 5001|7401|8101 9.8-6|9.9-6|9.9-6 -2.0-5|-2.3-5|-8.1-6 19:41|21:25|25:13

ER 692 0.10 3251|4844|6478 9.9-6|9.9-6|1.0-5 -3.1-5|-2.6-5|-6.0-6 15:06|19:30|28:03

692 0.05 4201|5851|7548 9.3-6|9.8-6|1.0-5 -3.5-5|-2.9-5|-3.4-5 18:44|23:46|32:57

Arabid. 834 0.10 3344|6251|7965 9.9-6|9.7-6|1.0-5 -3.8-5|-2.0-5|-3.7-5 23:20|40:12|54:31

834 0.05 2496|3101|3231 9.9-6|9.9-6|1.0-5 -9.1-5|-4.3-5|-5.3-5 17:03|19:53|21:56

Leukemia 1255 0.10 4351|6102|7301 9.9-6|9.9-6|1.0-5 -3.7-5|-3.3-5|-3.0-5 1:22:42|1:49:02|2:16:52

1255 0.05 3957|5851|10151 9.9-6|9.7-6|9.5-6 -7.2-5|-5.7-5|-1.1-5 1:18:19|1:44:47|3:26:08

The rest of this subsection is devoted to the numerical results of the spectral norm

H-weighted NCM problem (3.74). As mentioned before, sGS-padmm is applied to

solve the problem (3.77) rather than (3.76). We implemented all the algorithms for

solving problem (3.77) using the relative residue (3.78). We terminate the solvers

when ηsncm < 10−5 with the maximum number of iterations set at 25000. In Table

3.3, we report detailed numerical results for sGS-padmm, Admm and Admmgb

in solving various instances of spectral norm H-weighted NCM problem. As we

can see from Table 3.3, our sGS-padmm is much more efficient than the other two

algorithms.

Observe that although there is no convergence guarantee, one may still apply

the directly extended Admm with 4 blocks to the original dual problem (3.76) by

adding a proximal term for the Ξ part. We call this method Ladmm. Moreover, by

using the same proximal strategy for Ξ, a convergent linearized alternating direction

method with a Gausssian back substitution proposed in [25] (we call the method

Ladmmgb here and use the parameter α = 0.99 in the Gasussian back substitution

step) can also be applied to the original problem (3.76). We have also implemented



3.4 Numerical results and examples 79

Table 3.4: The performance of Ladmm, Ladmmgb on spectral norm H-weighted NCM

problem(3.76) (accuracy = 10−5). In the table, “lgb” stands for Ladmmgb. The compu-

tation time is in the format of “hours:minutes:seconds”.

iteration ηsncm ηgap time

problem ns α ladmm|lgb ladmm|lgb ladmm|lgb ladmm|lgb

Lymph 587 0.10 8401 | 25000 9.9-6 | 1.4-5 -1.6-5 | -2.1-5 23:59 | 1:22:58

Lymph 587 0.05 13609 | 25000 9.9-6 | 2.3-5 -1.6-5 | -4.2-5 39:29 | 1:18:50

Ladmm and Ladmmgb in Matlab. Our experiments show that solving the prob-

lem (3.76) directly is much slower than solving the equivalent problem (3.77). Thus,

the reformulation of (3.76) to (3.77) is in fact advantageous for both Admm and

Admmgb. In Table 3.4, for the purpose of illustration we list a couple of detailed

numerical results on the performance of Ladmm and Ladmmgb.

3.4.3 Convex quadratic programming (QP)

In this subsection, we consider the following convex quadratic programming prob-

lems

min

{
1

2
〈x, Qx〉+ 〈c, x〉 | Ax = b, b̄−Bx ∈ C, x ∈ K

}
, (3.79)

where vector c ∈ <n and positive semidefinite matrix Q ∈ Sn+ define the linear and

quadratic costs for decision variable x ∈ <n, matrices A ∈ <mE×n and B ∈ <mI×n

respectively define the equality and inequality constraints, C ⊆ <mI is a closed

convex cone, e.g., the nonnegative orthant C = {x̄ ∈ <mI | x̄ ≥ 0}, K ⊆ <n is a

nonempty simple closed convex set, e.g., K = {x ∈ <n | l ≤ x ≤ u} with l, u ∈ <n

being given vectors. The dual of (3.79) takes the following form

max −δ∗K(−z)− 1
2
〈x′, Qx′〉+ 〈b, y〉+ 〈b̄, ȳ〉

s.t. z −Qx′ + A∗y +B∗ȳ = c, x′ ∈ <n, ȳ ∈ C◦,
(3.80)

where C◦ is the polar cone [53, Section 14] of C. We are interesting in the case when

the dimensions n and mE +mI are extremely large. In order to handle the equality
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and inequality constraints simultaneously, as well as to use Algorithm sGS-padmm,

we propose to add a slack variable x̄ to get the following problem:

min 1
2
〈x, Qx〉+ 〈c, x〉

s.t.

 A

B I


 x

x̄

 =

 b

b̄

 , x ∈ K, x̄ ∈ C.
(3.81)

The dual of problem (3.81) is given by

max (−δ∗K(−z)− δ∗C(−z̄))− 1
2
〈x′, Qx′〉+ 〈b, y〉+ 〈b̄, ȳ〉

s.t.

 z

z̄

−
 Qx′

0

+

 A∗ B∗

I

 y

ȳ

 =

 c

0

 . (3.82)

When we apply our Algorithm sGS-padmm for solving (3.82), if the linear map B is

large scale and dense, we can decompose the linear system into several small pieces.

More specifically, for the constraints Bx + x̄ = b̄ and given positive integer N , we

propose the following decomposition scheme

Bx+ x̄ = b̄⇒


B1 I1

...
. . .

BN IN




x

x̄1

...

x̄N

 =


b̄1

...

b̄N

 .

Note that our Algorithm sGS-padmm also allow us to decompose the linear map Q

in the following way:

Qx′ = [Q1 . . . Qp]


x′1
...

x′p

 = Q1x
′
1 + . . .+Qpx

′
p.

In our numerical experiments, we test our Algorithm sGS-padmm on the con-

vex quadratic programming problems generated from the following binary integer

nonconvex quadratic (BIQ) programming:{
1

2
〈x, Q0x〉+ 〈c, x〉 | x ∈ {0, 1}n0

}
(3.83)
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with Q0 ∈ Sn0 . Let Y = xxT , we have 〈x, Q0x〉 = 〈Y, Q0〉. By relaxing the binary

constraint, we can add the following valid inequalities

xi(1− xj) ≥ 0, xj(1− xi) ≥ 0, (1− xi)(1− xj) ≥ 0.

Since x ∈ {0, 1}n0 , we know that 〈x, x〉 = 〈e, x〉, where e := ones(n0, 1). Hence

〈x, Q0x〉 = 〈x, (Q+ λI)x〉 − λ〈e, x〉.

Choose λ = λmin(Q0) such that Q0 + λI � 0. Then, we obtain the following convex

quadratic programming relaxation:

min 1
2
〈x, (Q0 + λI)x〉+ 〈c− λe, x〉

s.t. Diag(Y )− x = 0,

−Yij + xi ≥ 0, −Yij + xj ≥ 0,

Yij − xi − xj ≥ −1, ∀i < j, j = 2, . . . , n0,

Y ∈ Sn0 , Y ≥ 0, x ≥ 0.

(3.84)

Denote ñ = (n2
0 + 3n0)/2 and x̃ := [svec(Y );x] ∈ <ñ. Since the equality constraint

in (3.84) is relatively easy, we further add valid equations Ax̃ = b, where A ∈ <n0×ñ

and b ∈ <n0 are randomly generated. Thus, we can construct the following convex

quadratic programming problem:

min 1
2
〈x, (Q0 + λI)x〉+ 〈c− λe, x〉

s.t. Ax̃ = b, Diag(Y )− x = 0,

−Yij + xi ≥ 0, −Yij + xj ≥ 0,

Yij − xi − xj ≥ −1, ∀i < j, j = 2, . . . , n0,

x̃ := [svec(Y );x], Y ∈ Sn0 , Y ≥ 0, x ≥ 0.

(3.85)

We need to emphasis that in problem (3.85), the matrix which defines the quadratic

cost is given by Diag(0, Q0 +λI). It is in fact a low rank sparse positive semidefinite

matrix. In addition, compared with the problem size ñ, matrix Q0 ∈ <n0×n0 is still
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quite small. To test our idea of the decomposition of large and dense quadratic term

Q, we replace the quadratic term in (3.85) by randomly generated instances, i.e.,

min 1
2
〈x̃, Q̃x̃〉+ 〈c− λe, x〉

s.t. Ax̃ = b, Diag(Y )− x = 0,

−Yij + xi ≥ 0, −Yij + xj ≥ 0,

Yij − xi − xj ≥ −1, ∀i < j, j = 2, . . . , n0,

x̃ := [svec(Y );x], Y ∈ Sn0 , Y ≥ 0, x ≥ 0,

(3.86)

where, for simplicity, Q̃ ∈ <ñ×ñ is a randomly generated positive definite matrix.

Here we compare our algorithm sGS-padmm with Gurobi 6.0 [22] (the state-

of-the-art solver for large scale quadratic programming). We have implemented the

algorithms sGS-padmm, in Matlab version 7.13. The numerical results reported

later are obtained from a workstation running on 64-bit Windows Operating System

having 16 cores with 32 Intel Xeon E5-2650 processors at 2.60GHz and 64 GB

memory. When we test our sGS-padmm algorithm, we restrict the number of

threads used by Matlab to be 1. On the other hand, since Gurobi was built to fully

exploit parallelism, we test Gurobi by setting its threads parameter to be 1, 4, 8, 16

and 32, respectively. We also emphasis that for large scale quadratic programming

problems, Gurobi need a very large RAM to meet the memory requirement of the

Cholesky decomposition, while sGS-padmm is scalable with respect to the memory

used to store the problem.

We measure the accuracy of an approximate optimal solution (x, z, x′, s, y, ȳ)

for convex quadratic programming (3.79) and its dual (3.80) by using the following

relative residual obtained from the general optimality condition (3.63):

ηqp = max{ηP , ηD, ηQ, ηz, ηȳ}, (3.87)
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where

ηP =
‖AX − b‖

1 + ‖b‖
, ηD =

‖z −Qx′ + s+ A∗y +B∗ȳ − C‖
1 + ‖c‖

,

ηZ =
‖x− ΠK(x− z)‖

1 + ‖x‖+ ‖z‖
, ηȳ =

‖ȳ − ΠC◦(ȳ −Bx+ b̄)‖
1 + ‖ȳ‖+ ‖Bx‖

,

ηQ =
‖Qx−Qx′‖

1 + ‖Qx‖
.

We terminate the sGS-padmm when ηqp < 10−5 with the maximum number of

iterations set at 25000. For Gurobi, we also set the error tolerance to be 10−5.

However, due to the natural of the interior algorithm, Gurobi generally will achieve

higher accuracy than 10−5.

Table 3.5 reports detailed numerical results for sGS-padmm and Gurobi for

solving convex quadratic programming problems (3.85). The first three columns

of the table give the problem name, the dimension of the variable, the number

of linear equality constraints and inequality constraints, respectively. Then, we

list in the fourth column the block numbers of our decomposition with respect to

the linear equality, inequality constraints and quadratic term. We list the total

number of iterations and the running time for sGS-padmm using only one thread

for computation. Meanwhile, for comparison purpose, we list all the running times

of Gurobi using 1, 4, 8, 16 and 32 threads, respectively. The memory used by

Gurobi during computation is listed in the last column. As can be observed, in

term of running time, sGS-padmm is comparable with Gurobi on the medium size

problems. In fact, sGS-padmm is much faster when Gurobi use only 1 thread.

When the problem size grows, sGS-padmm turns out to be faster than Gurobi,

even Gurobi use all 32 threads for computation. One can see that our Algorithm

sGS-padmm is scalable with respect to the problem dimension.
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Table 3.5: The performance of sGS-padmm on BIQ-QP problems (dual of (3.85))
(accuracy = 10−5). In the table, “sGS” stands for sGS-padmm. The computation
time is in the format of “hours:minutes:seconds”.

(A,B,Q)blk iters time memory

problem| n | mE ,mI sGS sGS sGS(1) Gurobi(1|4|8|16|32) Gurobi

be100.1 |5150 |200,14850 (2,25,1) 2143 58 2:37|58|35|26|25 0.3 GB

(2,50,1) 2925 1:42

(2,100,1) 2770 2:17

be120.3.1 |7380 |240,21420 (2,25,1) 2216 1:32 6:37|2:44|1:31|1:01|1:08 0.6 GB

(2,50,1) 2492 2:23

(2,100,1) 2864 3:57

be150.3.1 |11475 |300,33525 (2,25) 2500 3:56 26:16|8:46|5:02|3:11|3:49 1.5 GB

(2,50,1) 2918 4:33

(2,100,1) 3324 6:41

be200.3.1 |20300|400,59700 (2,25) 3310 13:09 2:07:52|45:58|25:50|14:19 |13:32 5.0 GB

(2,50,1) 3596 11:37

(2,100,1) 4145 15:33

be250.1 |31625 |500,93375 (2,25) 2899 24:21 8:12:36|2:21:13|1:46:45|53:58 |40:51 10.0 GB

(2,50,1) 3625 22:41

(2,100,1) 4440 29:11

In figure 3.2, we present the performance profile in terms of the number of itera-

tions and computing time for sGS-padmm on (3.85) by decomposing the inequality

constraints into different number of blocks. More specifically, for problem be100.1,

we test our Algorithm sGS-padmm with the decomposition parameters chosen as

(A,Q)blk = (2, 1) and Bblk = 1, 2, . . . , 50. It is interesting to note the running time

at Bblk = 1 is approximately 7 times of the running time at Bblk = 1. Moreover,

although the decomposition brings more iterations, the largest iterations number

(reached at Bblk = 47) is only 2 times of the smallest iterations number (reached at

Bblk = 1). These observations clearly state that it is in fact good to do sGS-padmm

style decomposition for convex quadratic decomposition problems with many linear

equality and inequality constraints.

Table 3.6 reports detailed numerical results for sGS-padmm and Gurobi in solv-

ing convex quadratic programming problems (3.86). As can be observed, for these
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Figure 3.2: Performance profile of sGS-padmm for solving (3.85) in terms of iter.
and time with different number of Bblk
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large scale problems with large and dense quadratic term Q, sGS-padmm can be

significantly faster than Gurobi. In addition, sGS-padmm, free from the large mem-

ory requirements as for Gurobi, can solve these problems on a normal PC without

large RAM. Above facts indicate that as a Phase I algorithm, sGS-padmm can

quickly generated a good initial point.

Table 3.6: The performance of sGS-padmm on randomly generated BIQ-QP prob-
lems (dual of (3.86)) (accuracy = 10−5). In the table, “sGS” stands for sGS-padmm.
The computation time is in the format of “hours:minutes:seconds”.

(A,B,Q)blk iters time memory

problem | n | mE ,mI sGS sGS sGS(1) Gurobi(1|4|8|16|32) Gurobi

be100.1 |5150 |200,14850 (2,25,25) 789 47 27:57|7:52|4:23|3:31|3:36 1.4 GB

(2,50,50) 1057 1:34

(2,100,100) 1134 2:58

be120.3.1 |7380 |240,21420 (2,25,25) 528 40 1:34:46|26:58|14:46|11:43|9:37 3.0 GB

(2,50,50) 625 1:15

(2,100,100) 810 2:48

be150.3.1 |11475 |300,33525 (2,25,25) 515 1:19 6:21:43|1:45:21|54:39|39:46|32:52 8.0 GB

(2,50,50) 611 1:38

(2,100,100) 715 3:26

be200.3.1 |20300 |400,59700 (2,25,25) 1139 6:45 36:30:08|8:32:49|5:14:24|3:29:43|3:07:01 25.0 GB

(2,50,50) 783 4:28

(2,100,100) 839 6:30

be250.1 |31625 |500,93375 (2,25,25) 644 10:04 -:-:-|-:-:-|-:-:-|-:-:-| over 24:00:00∗ 62.0† GB

(2,50,50) 718 9:29

(2,100,100) 874 11:38

In Figure 3.3, we present the performance profiles in terms of the number of

iterations and computing time for sGS-padmm for solving (3.86) by decomposing

the quadratic term Q into different number of blocks. More specifically, for problem

be150.3.1, we test our Algorithm sGS-padmm with the decomposition parameters

∗Even we use all the 32 threads, Gurobi is still in the pre-solving step after 24 hours.
† In fact, for this problem, Gurobi runs out of memory, although our work station has 64GB

RAM.
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chosen as (A,B)blk = (2, 50) and Qblk = 1, 2, . . . , 50. One can obtain similar con-

clusion as before, i.e., for these problems, it is in fact good to do sGS-padmm style

decomposition on quadratic term Q.

In this Chapter, we have proposed a symmetric Gauss-Seidel based convergent

yet efficient proximal ADMM for solving convex composite quadratic programming

problems, with a coupling linear equality constraint. The ability of dealing with non-

separable convex quadratic functions in the objective function makes the proposed

algorithm very flexible in solving various convex optimization problems. By con-

ducting numerical experiments on large scale convex quadratic programming with

many equality and inequality constraints, QSDP and its extensions, we have pre-

sented convincing numerical results to demonstrate the superior performance of our

proposed sGS-padmm. As is mentioned before, our primary motivation of introduc-

ing this sGS-padmm is to quickly generate a good initial point so as to warm-start

methods which have fast local convergence properties. For standard linear SDP

and linear SDP with doubly nonnegative constraints, this has already been done

by Zhao, Sun and Toh in [73] and Yang, Sun and Toh in [69], respectively. Natu-

rally, our next target is to extend the approach of [73, 69] to solve convex composite

quadratic programming problems with an initial point generated by sGS-padmm.





Chapter 4
Phase II: An inexact proximal augmented

Lagrangian method for convex composite

quadratic programming

In this Chapter, we discuss our Phase II framework for solving the convex composite

optimization problem. The purpose of this phase is to obtain high accurate solutions

efficiently after warm-started by our Phase I algorithm.

Consider the compact form of our general convex composite quadratic optimiza-

tion model

min θ(y1) + f(y) + ϕ(z1) + g(z)

s.t. A∗y + B∗z = c,
(4.1)

where θ : Y1 → (−∞,+∞] and ϕ : Z1 → (−∞,+∞] are simple closed proper

convex functions, f : Y1 × Y2 × . . . × Yp → < and g : Z1 × Z2 × . . . × Zq → < are

convex quadratic functions with Y = Y1×Y2× . . .×Yp and Z = Z1×Z2× . . .×Zq.

For notational convenience, we write

θf (y) := θ(y1) + f(y) ∀y ∈ Y and ϕg(z) := ϕ(z1) + g(z) ∀z ∈ Z. (4.2)

89
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Given σ > 0, we denote by l the Lagrangian function for (4.1):

l(y, z;x) = θf (y) + ϕg(z) + 〈x,A∗y + B∗z − c〉, (4.3)

and by Lσ the augmented Lagrangian function associated with problem (4.1):

Lσ(y, z;x) = θf (y) + ϕg(z) + 〈x,A∗y + B∗z − c〉+
σ

2
‖A∗y + B∗z − c‖2. (4.4)

4.1 A proximal augmented Lagrangian method of

multipliers

For our Phase II algorithm for solving (4.1), we propose the following proximal

minimization framework for given positive parameter σk:

(yk+1, zk+1, xk+1)

= arg max
x

min
y,z
{l(y, z;x) +

1

2σk
‖y − yk‖2

Λ1
+

1

2σk
‖z − zk‖2

Λ2
− 1

2σk
‖x− xk‖2},

(4.5)

where Λ1 : Y → Y and Λ2 : Z → Z are two self-adjoint, positive definite linear

operators. An inexact form of the implementation works as follows:

Algorithm pALM: A proximal augmented Lagrangian method of multi-

pliers for solving (4.1)

Let σ0, σ∞ > 0 be given parameters. Choose (y0, z0, x0) ∈ dom(θf )× dom(ϕg)×X .

For k = 0, 1, 2, ..., generate (yk+1, zk+1) and xk+1 according to the following iteration.

Step 1. Compute

(yk+1, zk+1) ≈ argminy,z{Lσk(y, z;xk)+
1

2σk
‖y−yk‖2

Λ1
+

1

2σk
‖z−zk‖2

Λ2
}. (4.6)

Step 2. Compute

xk+1 = xk + σk(A∗yk+1 + B∗zk+1 − c).

Step 3. Update σk+1 ↑ σ∞ ≤ ∞ .
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Note that the only difference between our pALM and the classical proximal

augmented Lagrangian method is that we put more general positive definite terms

1
2σk
‖y−yk‖2

Λ1
and 1

2σk
‖z−zk‖2

Λ2
in (4.5) instead of multiples of identity operators. In

the subsequent discussions readers will find that this modification not only necessary

but also may generate easier subproblems. Before that, we first show that our pALM

in fact can be regarded as a primal-dual proximal point algorithm (PPA) so that

the nice convergence properties still hold.

Define an operator Tl by

Tl(y, z, x) := {(y′, z′, x′) | (y′, z′,−x′) ∈ ∂l(y, z;x)},

whose corresponding inverse operator is given by

T −1
l (y′, z′, x′) := arg min

y,z
max
x
{l(y, z;x)− 〈y′, y〉 − 〈z′, z〉+ 〈x′, x〉}. (4.7)

Let Λ = Diag (Λ1,Λ2, I) � 0 and define function

l̃(y, z, x) ≡ l(Λ−
1
2 (y, z, x)) ∀(y, z, x) ∈ Y × Z × X .

Similarly, we define an operator Tl̃ associated with l̃, by

Tl̃(y, z, x) := {(y′, z′, x′) | (y′, z′,−x′) ∈ ∂l̃(y, z;x)}.

We know by simple calculations that

Tl̃(y, z, x) ≡ Λ−
1
2Tl(Λ−

1
2 (y, z, x)) ∀(y, z, x) ∈ Y × Z × X

and T −1

l̃
(0) = Λ

1
2T −1

l (0). Since Tl is a maximal monotone operator [53, Corollary

37.5.2], we know that Tl̃ is also a maximal monotone operator.

Proposition 4.1. Let {(yk, zk, xk)} be the sequence generated by (4.5). Then,

(yk+1, zk+1, xk+1) = Λ−
1
2 (I + σkTl̃)

−1(Λ
1
2 (yk, zk, xk)). (4.8)

Thus pALM can be viewed as a generalized PPA algorithm for solving 0 ∈ Tl̃(y, z, x).
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Proof. By combine [55, Theorem 5] and Proposition 2.2, we can easily prove

the required results.

Next, we discuss the stopping criteria for the subproblem (4.6) in Algorithm

pALM. Assume that λmin and λmax (λmax ≥ λmin > 0) are the smallest and largest

eigenvalues of the self-adjoint positive definite operator Λ, respecitvely. Denote

w = (y, z, x) and w̃ = Λ
1
2w. Let Sk(w) = Tl(w) + σ−1

k Λ(w − wk) and S̃k(w̃) =

Tl̃(ω̃) + σ−1
k (w̃ − w̃k). We use the following stopping criteria proposed in [55, 54] to

terminate the subproblem in pALM:

(A) dist(0,Sk(wk+1)) ≤ εk
√
λmin

σk
,

∞∑
k=0

εk < +∞,

(B) dist(0,Sk(wk+1)) ≤ δkλmin

σk
‖wk+1 − wk‖,

∞∑
k=0

δk < +∞.
(4.9)

The following proposition gives the relation between dist(0,S(w)) and dist(0, S̃k(w̃)).

Proposition 4.2. It holds that√
λmindist(0, S̃k(w̃k+1)) ≤ dist(0,Sk(wk+1)). (4.10)

Therefore, (A) implies

(A′) dist(0, S̃k(w̃k+1)) ≤ εk
σk
,

∞∑
k=0

εk < +∞

and (B) implies

(B′) dist(0, S̃k(w̃k+1)) ≤ δk
σk
‖w̃k+1 − w̃k‖,

∞∑
k=0

δk < +∞,

respectively.

Proof. Since Tl(wk+1) is a closed and convex set, there exists uk+1 ∈ Tl(wk+1),

such that dist(0,Sk(wk+1)) = ‖uk+1 +σ−1
k Λ(w−wk)‖. Let ũk+1 = Λ−

1
2uk+1, we have

that ũk+1 ∈ Tl̃(w̃k+1). Therefore,

‖uk+1 + σ−1
k Λ(w − wk)‖ = ‖Λ

1
2 (ũk+1 + σ−1

k (w̃k+1 − w̃k))‖

≥
√
λmin‖ũk+1 + σ−1

k (w̃k+1 − w̃k)‖

≥
√
λmindist(0, S̃k(ũk+1)).
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That is
√
λmindist(0, S̃k(w̃k+1)) ≤ dist(0,Sk(wk+1)).

Criterion (B′) can be obtained by observing the fact that

‖wk+1 − wk‖ = ‖Λ−
1
2 (w̃k+1 − w̃k)‖ ≤ ‖w̃

k+1 − w̃k‖√
λmin

.

The proof of the proposition is completed.

The global convergence of the pALM algorithm follows from Rockafellar [55, 54]

without much difficulty.

Theorem 4.3. Suppose that Assumption 4 holds and the solutions set of problem

(4.1) is nonempty. Then the sequence {(yk, zk, xk)} generated by pALM with stop-

ping criterion (A) is bounded and (yk, zk) converges to the optimal solution of (4.1),

xk converges to the optimal solution of the dual problem.

To study the local convergence rate of our proposed Algorithm pALM, we need

the following error bound assumption proposed in [38].

Assumption 6 (Error bound assumption). For a maximal monotone operator T (ξ)

with T −1(0) := Ξ is nonempty, there exist ε > 0 and a > 0 such that

∀η ∈ B(0, ε) and ∀ξ ∈ T −1(η), dist(ξ,Ξ) ≤ a‖η‖. (4.11)

Remark 4.4. The above assumption contains the case that T −1 is locally Lipschitz

at 0, which was used extensively in [55, 54] for deriving the convergence rate of

proximal point algorithms.

Remark 4.5. The error bound assumption (4.11) holds automatically when Tl is

a polyhedral multifunction [52]. Specifically, for the convex quadratic programming

(3.80), if the simple convex set K is a polyhedra, then Assumption 6 holds for the

corresponding Tl.

In the next proposition, we discuss the relation between error bound assumptions

on Tl and Tl̃.
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Proposition 4.6. Assume that Ω := T −1
l (0) is nonempty and that there exist ε > 0

and a > 0 such that

∀u ∈ B(0, ε) and ∀w ∈ T −1
l (u), dist(w,Ω) ≤ a‖u‖.

Then, we have Ω̃ := T −1

l̃
(0) = Λ

1
2 Ω is nonempty and

∀ũ ∈ B(0,
ε√
λmax

) and ∀w̃ ∈ T −1

l̃
(ũ), dist(w̃, Ω̃) ≤ aλmax‖ũ‖,

i.e., the error bound assumption also holds for Tl̃.

Proof. For any given ũ ∈ B(0,
ε√
λmax

) and w̃ ∈ T −1

l̃
(ũ), let

u = Λ
1
2 ũ and w = Λ−

1
2 w̃.

We have that ‖u‖ = ‖Λ 1
2 ũ‖ ≤

√
λmax‖ũ‖ ≤ ε and w ∈ T −1

l (u). Thus, dist(w,Ω) ≤

a‖u‖. Since Ω is closed and convex, there exist ω ∈ Ω such that dist(w,Ω) = ‖w−ω‖.

Let ω̃ = Λ
1
2ω, then we know that ω̃ ∈ Ω̃ and

dist(w,Ω) = ‖w − ω‖ = ‖Λ−
1
2 (w̃ − ω̃)‖

≥ ‖w̃ − ω̃‖√
λmax

≥ dist(w̃, Ω̃)√
λmax

.

Therefore,

dist(w̃, Ω̃)√
λmax

≤ a‖u‖ ≤ a
√
λmax‖ũ‖.

This completes the proof of the proposition.

After all these preparations, we are now ready to present the local linear conver-

gence of the Algorithm pALM.

Theorem 4.7. Suppose Assumption 6 holds for Tl, i.e., Ω = T −1
l (0) is nonempty

and there exist ε > 0 and a > 0 such that

∀u ∈ B(0, ε) and ∀w ∈ T −1
l (u), dist(w,Ω) ≤ a‖u‖.
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Let {wk} = {(yk, zk;xk)} be the sequence generated by pALM with stopping criterion

(B′). Recall that w̃k = Λ
1
2wk and Ω̃ = Λ

1
2 Ω. Then, for all k sufficiently large,

dist(w̃k+1, Ω̃) ≤ θkdist(w̃k, Ω̃), (4.12)

where θk = (
a
√
λmax√

a2λmax + σ2
k

+ 2δk)(1− δk)−1 → a
√
λmax√

a2λmax + σ2
∞

as k → +∞.

Proof. By combining Proposition 4.6 and Theorem 2.1 in [38], we can readily

obtain the desired results.

Note that in practice it is difficult to compute dist(0, Sk(w
k+1)) in criteria (A)

and (B) for terminating Algorithm pALM. Hence, we need implementable criteria

for terminating Algorithm pALM. Denote

ŷk+1 = Proxθ̂(y
k+1−∇yhk(y

k+1, zk+1)) and ẑk+1 = Proxϕ̂(zk+1−∇zhk(y
k+1, zk+1)).

Thus

0 ∈ ∂θ̂(ŷk+1) + ŷk+1 − yk+1 +∇yhk(y
k+1, zk+1), (4.13)

which implies

yk+1 − ŷk+1 +∇yhk(ŷ
k+1, z̃k+1)−∇yhk(y

k+1, zk+1) ∈ ∂θ̂(ŷk+1) +∇yhk(ŷ
k+1, ẑk+1).

(4.14)

Similarly we can also get

zk+1 − ẑk+1 +∇zhk(ŷ
k+1, ẑk+1)−∇zhk(y

k+1, zk+1) ∈ ∂ϕ̂(ẑk+1) +∇zhk(ỹ
k+1, ẑk+1).

(4.15)

Let x̂k+1 = xk + σk(A∗ŷk+1 + B∗ẑk+1 − c) and ŵk+1 = (ŷk+1, ẑk+1, x̂k+1). By [54,

Propositon 7], we have

(∂yLσk(ŷk+1, ẑk+1, xk), ∂zLσk(ŷk+1, ẑk+1, xk), σ−1
k (xk − x̂k+1)) ∈ Tl(ŵk+1).



96
Chapter 4. Phase II: An inexact proximal augmented Lagrangian method for

convex composite quadratic programming

Recall that Sk(w) = Tl(w) + σ−1
k Λ(w − wk). Thus, we know that

dist(0,Sk(ŵk+1)) ≤ dist(0, Tl(ŵk+1)) + ‖σ−1
k Λ(ŵk+1 − wk)‖

≤ dist(0, ∂yLσk(ŷk+1, ẑk+1, xk)) + dist(0, ∂zLσk(ŷk+1, ẑk+1, xk))

+σ−1
k ‖x

k − x̂k+1‖+ λmaxσ
−1
k ‖w

k − ŵk+1‖

≤ ‖yk+1 − ŷk+1 +∇yhk(ŷ
k+1, ẑk+1)−∇yhk(y

k+1, zk+1)‖

+‖zk+1 − ẑk+1 +∇zhk(ŷ
k+1, ẑk+1)−∇zhk(y

k+1, zk+1)‖

+σ−1
k ‖x

k − x̂k+1‖+ λmaxσ
−1
k ‖w

k − ŵk+1‖

≤ (1 + Lhk)(‖yk+1 − ŷk+1‖+ ‖zk+1 − ẑk+1‖) + σ−1
k ‖x

k − x̂k+1‖

+λmaxσ
−1
k ‖w

k − ŵk+1‖,

where Lhk is the the Lipschitz constant of ∇hk. Therefore, we obtain a computable

upper bound for dist(0,Sk(ŵk+1)). Then, the implementable criteria for terminating

Algorithm pALM can be easily constructed.

4.1.1 An inexact alternating minimization method for inner

subproblems

In this subsection, we will introduce an inexact alternating minimization method

for solving the inner subproblem (4.6). Consider the following problem:

min
u∈U ,v∈V

H(u, v) := p(u) + q(v) + h(u, v), (4.16)

where U and V are two real finite dimensional Euclidean spaces, p : U → (−∞,+∞]

and q : V → (−∞,+∞] are two closed proper convex functions and h : U × V →

(−∞,+∞] is a closed proper convex function and is continuous differentiable on

some open neighborhoods of dom(p) × dom(q). We propose the following inexact
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alternating minimization method:
uk+1 ≈ argminu{p(u) + h(u, vk)},

vk+1 ≈ argminv{q(v) + h(uk+1, v)}.
(4.17)

Given ε1 > 0, ε2 > 0, the following criteria are used to terminate the above sub-

problems: 
H(uk+1, vk) ≤ H(uk, vk)− ε1‖rk+1

1 ‖,

H(uk+1, vk+1) ≤ H(uk+1, vk)− ε2‖rk+1
2 ‖,

(4.18)

where 
rk+1

1 := proxp(u
k+1 −∇uh(uk+1, vk))− uk+1,

rk+1
2 := proxq(v

k+1 −∇vh(uk+1, vk+1))− vk+1.

We make the following assumption:

Assumption 7. For a given (u0, v0) ∈ U×V, the set S := {(u, v) ∈ U×V |H(u, v) ≤

H(u0, v0)} is compact and H(·) is continuous on S.

Assumption 8. For arbitrary uk ∈ dom(p) and vk ∈ dom(q), each of the optimiza-

tion problems in (4.17) admits a solution.

Next, we establish the convergence of the proposed inexact alternating minimiza-

tion method.

Lemma 4.8. Given (uk, vk) ∈ int(dom(p)×dom(q)), uk+1 and vk+1 are well-defined.

Proof. If uk is an optimal solution for the first subproblem in (4.17), then

proxp(u
k −∇uh(uk, vk))− uk = 0,

which implies that the first inequality in (4.18) is satisfied. Otherwise, denote one

of the solutions to the first subproblem as ûk+1. We have

proxp(û
k+1 −∇uh(ûk+1, vk))− ûk+1 = 0.

By the continuity of proximal residual and the factH(uk, vk) > H(ûk+1, vk), we know

that there is a neighborhood of ûk+1 such that for any point in this neighborhood,
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the first inequality in (4.18) is satisfied. Similarly the second inequality is also

achievable. Thus, uk+1 and vk+1 are well-defined.

Proposition 4.9. Suppose Assumptions 7 and 8 hold, then the sequences {uk+1, vk}

and {uk, vk} are bounded and every cluster point of each of these sequences is an

optimal solution to problem (4.16).

Proof. From Assumption 7, we know that the sequences {uk+1, vk} and {uk, vk}

generated by the inexact alternating minimization procedure are bounded. Thus,

the sequence {uk+1, vk} must admit at least one cluster point. Then, for any cluster

point of the sequence {uk+1, vk}, say (ū, v̄), there exists a subsequence {ukl+1, vkl}

such that liml→∞(ukl+1, vkl) = (ū, v̄).

Note that the sequence {ukl+1, vkl+1} is also bounded, then there is a subset of

{kl}, denoted as {kn}n=1,2,... such that

lim
n→∞

(ukn+1, vkn) = (ū, v̄) and lim
n→∞

(ukn+1, vkn+1) = (ū, v̂).

From Assumption 7 and (4.18), we have ‖rk1‖ → 0 and ‖rk2‖ → 0 as k →∞. By the

continuity of proximal mapping we have

proxp(ū−∇uh(ū, v̄)) = ū. (4.19)

Similarly, we have

proxq(v̂ −∇vh(ū, v̂)) = v̂,

which means v̂ = argminvH(ū, v). Since H(u, v) is continuous on S and the function

value is monotonically decreasing in the inexact alternating minimization method,

we know that

H(ū, v̂) = H(ū, v̄).

Thus, we have v̄ = argminvH(ū, v), which can be equivalently reformulated as

proxq(v̄ −∇vh(ū, v̄)) = v̄. (4.20)
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By combining (4.19) and (4.20), we know that (ū, v̄) is an optimal solution to (4.16).

Thus, any cluster point of the sequence {uk+1, vk} is an optimal solution to problem

(4.16). The desired results for the sequence {uk, vk} can be obtained similarly.

Let

Φk(y, z) := Lσk(y, z;xk) +
1

2σk
‖y − yk‖2

Λ1
+

1

2σk
‖z − zk‖2

Λ2
.

The aforementioned inexact alternating minimization method, when applied to (4.6),

has the following template.

Algorithm iAMM: An inexact alternating minimization method for the

inner subproblem (4.6)

Choose tolerance ε > 0. Choose (yk,0, zk,0) ∈ dom(θf )× dom(ϕg). For l = 0, 1, 2, ...,

generate (yk,l+1, zk,l+1) according to the following iteration.

Step 1. Compute

yk,l+1 ≈ arg min
y

Φk(y, z
k,l). (4.21)

Step 2. Compute

zk,l+1 ≈ arg min
z

Φk(y
k,l+1, z). (4.22)

Based on (4.18), we discuss the stopping criteria for the subproblems (4.21) and

(4.22). In order to simplify the subsequent discussions, denote

Φk(y, z) = θ̂(y) + ϕ̂(z) + hk(y, z),

where θ̂(y) ≡ θ(y1) ∀y ∈ Y , ϕ̂(z) ≡ ϕ(z1) ∀z ∈ Z are the nonsmooth functions, and

hk is the smooth function given as follows:

hk(y, z) = f(y) + g(z) + 〈xk,A∗y + B∗z − c〉+
σk
2
‖A∗y + B∗z − c‖2

+
1

2σk
‖y − yk‖2

Σ1
+

1

2σk
‖z − zk‖2

Σ2
, (4.23)
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i.e., we split Φk into the summation of nonsmooth part and smooth part. For the

l-th iteration in Algorithm iAMM, define the following residue functions
Rk,l+1

1 = yk,l+1 − Proxθ̂(y
k,l+1 −∇yhk(y

k,l+1, zk,l)),

Rk,l+1
2 = zk,l+1 − Proxϕ̂(zk,l+1 −∇zhk(y

k,l+1, zk,l+1)).

(4.24)

Given the tolerance ε > 0, we propose the following stopping criteria:
Φk(y

k,l+1, zk,l)− Φk(y
k,l, zk,l) ≤ −ε‖Rk,l+1

1 ‖,

Φk(y
k,l+1, zk,l+1)− Φk(y

k,l+1, zk,l) ≤ −ε‖Rk,l+1
2 ‖.

(4.25)

In the next theorem, we establish the convergence of Algorithm iAMM.

Theorem 4.10. Suppose the sequence {(yk,l, zk,l)} generated by iAMM with stopping

criteria (4.25). Then it converges to the unique optimal solution of problem (4.6).

Proof. Due to the strong convexity of Φk(y, z), we know that the Assumption

7 and 8 hold for function Φk. Therefore, by Proposition 4.9, we have that any

cluster point of the sequence {(yk,l, zk,l)} is an optimal solution of problem (4.6).

The result then follows by noting that the inner subproblem (4.6) has an unique

optimal solution.

4.2 The second stage of solving convex QSDP

As a prominent example of the convex composite quadratic optimization problems,

in this section, we focus on applying our Phase II algorithm on the following convex

quadratic semidefinite programming problem:

min 1
2
〈X, QX〉+ 〈C, X〉

s.t. AEX = bE, AIX ≥ bI , X ∈ Sn+ ∩ K,
(4.26)

where Q is a self-adjoint positive semidefinite linear operator from Sn to Sn, AE :

Sn → <mE and AI : Sn → <mI are two linear maps, C ∈ Sn, bE ∈ <mE and

bI ∈ <mI are given data, K is a nonempty simple closed convex set, e.g., K = {X ∈



4.2 The second stage of solving convex QSDP 101

Sn | L ≤ X ≤ U} with L,U ∈ Sn being given matrices. Carefully examine shows

that the dual problem associated with (4.26) can be written as following:

max −δ∗K(−Z)− 1
2
〈W, QW 〉+ 〈bE, yE〉+ 〈bI , yI〉

s.t. Z −QW + S +A∗EyE +A∗IyI = C,

yI ≥ 0, S ∈ Sn+, W ∈ W ,

(4.27)

where W ⊆ Sn is any subspace such that Range(Q) ⊆ W . In fact, when Q is

singular, we have infinite many dual problems corresponding to the primal problem

(4.26). While in Phase I, we consider the case W = Sn in the dual problem (4.27),

in the second phase, we must restrict W = Range(Q) to avoid the unboundedness

of the dual solution W , i.e.,

max −δ∗K(−Z)− 1
2
〈W, QW 〉+ 〈bE, yE〉+ 〈bI , yI〉

s.t. Z −QW + S +A∗EyE +A∗IyI = C,

yI ≥ 0, S ∈ Sn+, W ∈ W = Range(Q).

(4.28)

The reason for this special choice will be revealed in the subsequent analysis. Prob-

lem (4.28) can be equivalently recast as

min δ∗K(−Z) + 1
2
〈W, QW 〉 − 〈bE, yE〉 − 〈bI , yI〉

s.t. Z −QW + S +A∗EyE +A∗IyI = C,

u+ yI = 0, u ≤ 0, S ∈ Sn+, W ∈ W .

(4.29)

Define the affine function Γ : Sn ×W × Sn ×<mE ×<mI → Sn by

Γ(Z,W, S, yE, yI) := Z −QW + S +A∗EyE +A∗IyI − C.

Similarly, define the linear function γ : <mI ×<mI → <mI by

γ(u, yI) := u+ yI .
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Let σ > 0, the augmented Lagrangian function associated with (4.29) is given as

follows:

Lσ(Z,W, u, S, yE, yI ;X, x) =


δ∗K(−Z) +

1

2
〈W, QW 〉 − 〈bE, yE〉 − 〈bI , yI〉

+
σ

2
‖Γ(Z,W, S, yE, yI) + σ−1X‖2

+
σ

2
‖γ(u, yI) + σ−1x‖2 − 1

2σ
‖X‖2 − 1

2σ
‖x‖2

(4.30)

for all (Z,W, u, S, yE, yI , X, x) ∈ Sn × W × <mI × Sn × <mE × <mI × Sn × <mI .

When we apply Algorithm pALM to solve (4.29), in the kth iteration, we propose

to add the following proximal term:

Λk(Z,W, u, S, yE, yI) :=
1

2σk
(‖Z − Zk‖2 + ‖W −W k‖2

Q + ‖u− uk‖2 + ‖S − Sk‖2

+‖yE − ykE‖2 + ‖yI − ykI ‖2). (4.31)

Being regarded as a self-adjoint linear operator defined on W = Range(Q), Q is in

fact positive definite. Thus, the above proximal term satisfies the requirement of

Algorithm pALM. Then, the inner subproblem (4.6) takes the form of

(Zk+1,W k+1, uk+1, Sk+1, yk+1
E , yk+1

I )

≈ argmin

 Lσk(Z,W, u, S, yE, yI ;Xk, xk) + Λk(Z,W, u, S, yE, yI) |Z ∈ Sn,

W ∈ W , u ∈ <mI− , S ∈ Sn+, yE ∈ <mE , yI ∈ <mI

 .

(4.32)

By adding proximal terms and choosing W = Range(Q), we are actually dealing

with a strongly convex function in (4.32). This is in fact a key idea in the designing

of our second stage algorithm. Here, we propose to apply Algorithm iAMM to solve

subproblem (4.32), i.e., we solve optimization problems with respect to (Z,W, u)

and (S, yE, yI) alternatively. Therefore, we only need to focus on solving the inner

subproblems (4.21) and (4.22).

For our QSDP problem (4.29), the inner subproblem (4.21) takes the following

form:

min


Ψ(Z,W, u) := δ∗K(−Z) +

1

2
〈W, QW 〉+

σ

2
(‖Z −QW − Ĉ‖2 + ‖u− ĉ‖2)

+
1

2σ
(‖Z − Ẑ‖2 + ‖W − Ŵ‖2

Q + ‖u− û‖2) |Z ∈ Sn,W ∈ W , u ∈ <mI−

 ,
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where (Ĉ, ĉ, Ẑ, Ŵ , û) ∈ Sn×<mI ×Sn×W ×<mI are given data. Given σ > 0 and

(Ĉ, Ẑ) ∈ Sn × Sn, denote

Z(W ) := σ(QW + Ĉ) + σ−1Ẑ ∀W ∈ W and σ̂ = σ + σ−1.

By Proposition 2.6, we know that if (Z∗,W ∗, u∗) = argmin{Ψ(Z,W, u) |Z ∈ Sn,W ∈

W , u ∈ <mI− }, then

W ∗ = argmin


ϕ(W ) := −σ̂−1〈Z(W ), ΠK(−Z(W ))〉

− 1

2σ̂
(‖ΠK(−Z(W ))‖2 − ‖QW + Ĉ − Ẑ‖2)

+
1

2
〈W, QW 〉+

1

2σ
‖W − Ŵ‖2

Q |W ∈ W


,

Z∗ = σ̂−1(Z(W ∗) + ΠK(−Z(W ∗))),

u∗ = min {σ̂−1(σĉ+ σ−1û), 0} .

(4.33)

Hence, we need to solve the following problem

W ∗ = argmin{ϕ(W ) |W ∈ W}. (4.34)

The objective function in (4.34) is continuously differentiable with the gradient given

as follows:

∇ϕ(W ) = (1 + σ−1)QW + σ̂−1(Q(QW + Ĉ − Ẑ)− σQΠK(−Z(W )))− σ−1QŴ .

Hence, solving (4.34) is equivalent to solving the following nonsmooth equation:

∇ϕ(W ) = 0, W ∈ W . (4.35)

Note that, if K is a polyhedral set, then ∇ϕ is piecewise smooth. For any W ∈ W ,

define

∂̂2ϕ(W ) := (1 + σ−1)Q+ σ̂−1Q(I + σ2∂ΠK(−Z(W )))Q,

where ∂ΠK(−Z(W )) is the Clarke subdifferential [6] of ΠK(·) at −Z(W ), I :W →

W is the identity map. Note that from [27], we know that

∂̂2ϕ(W )D = ∂2ϕ(W )D ∀D ∈ W , (4.36)
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where ∂2ϕ(W ) denotes the generalized Hessian of ϕ at W , i.e., the Clarke subdif-

ferential of ∇ϕ at W . Given W ∈ W , let U0
W ∈ ∂ΠK(−Z(W )) be given , we know

that

V0
W = (1 + σ−1)Q+ σ̂−1Q(I + σ2U0

W )Q ∈ ∂̂2ϕ(W ). (4.37)

In fact if K = {X ∈ Sn |L ≤ X ≤ U} with given L,U ∈ Sn, we can easily find

an element U0
W ∈ ∂ΠK(−Z(W )) by using (2.5). After all the perparation, we can

design a semismooth Newton-CG method as in [73] to solve (4.35).

Algorithm SNCG: A semismooth Newton-CG algorithm.

Given µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], and δ ∈ (0, 1). Perform the jth iteration

as follows.

Step 1. Compute

ηj := min(η̄, ‖∇ϕ(yj)‖1+τ ).

Apply the conjugate gradient (CG) algorithm to find an approximation solu-

tion Dj ∈ W to

Vj D = −∇ϕ(W j), (4.38)

where Vj ∈ ∂̂2ϕ(W j) is defined as in (4.37).

Step 2. Set αj = δmj , where mj is the first nonnegative integer m for which

ϕ(W j + δmDj) ≤ ϕ(W j) + µδm〈∇ϕ(W j), Dj〉. (4.39)

Step 3. Set W j+1 = W j + αj D
j.

The convergence results for the above SNCG algorithm are stated in Theorem

4.11.
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Theorem 4.11. Suppose that at each step j ≥ 0, when the CG algorithm terminates,

the tolerance ηj is achieved, i.e.,

‖∇ϕ(W j) + Vj Dj‖ ≤ ηj. (4.40)

Then the sequence {W j} converges to the unique optimal solution, say W , of the

optimization problem in (4.34) and

‖W j+1 −W‖ = O(‖W j −W‖1+τ ). (4.41)

Proof. Since ϕ(W ) is a strongly convex function defined on W = Range(Q),

problem (4.34) then has a unique solution W and the level set {W ∈ W |ϕ(W ) ≤

ϕ(W 0)} is compact. Therefore, the sequence generated by SNCG is bounded as Dj

is a descent direction [73, Propsition 3.3]. Note that for all W ∈ Range(Q), every

V ∈ ∂̂2ϕ(W ) is self-adjoint and positive definite on Range(Q), the desired results

thus can be easily obtained by combining [73, Theorem 3.4 and 3.5].

Remark 4.12. Note that in above algorithm, the approximate solution of (4.38),

i.e., the obtained direction Dj, need to be maintained within the subspace Range(Q).

Fortunately, when Algorithm CG is applied to solve (4.38), the requirement Dj ∈

Range(Q) will always be satisfied if the starting point of Algorithm CG is chosen

to be in Range(Q) [67]. In fact, one can always choose 0 as a starting point in

Algorithm CG.

Next we focus on the subproblem corresponding to (S, yE, yI). The discussion

presented here is in fact similar to the aforementioned discussion about solving the

subproblem corresponding to (Z,W, u). The inner subproblem (4.22) now takes the

following form:

min


Φ(S, yE, yI) := −〈bE, yE〉 − 〈bI , yI〉+

σ

2
‖S +A∗EyE +A∗IyI − Ĉ‖2

+
σ

2
‖yI − ĉ‖2 +

1

2σ
(‖S − Ŝ‖2 + ‖yE − ŷE‖2 + ‖yI − ŷI‖2) |S ∈ Sn+,

yE ∈ <mE , yI ∈ <mI

 ,

(4.42)
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where (Ĉ, Ŝ, ĉ, ŷE, ŷI) ∈ Sn × Sn+ × <mI × <mE × <mI are given data. Given σ > 0

and (Ĉ, Ŝ) ∈ Sn × Sn, denote

S(yE, yI) := σ(Ĉ −A∗EyE −A∗IyI) + σ−1Ŝ ∀ (yE, yI) ∈ <mE ×<mI .

Again by Proposition 2.7, we know that if (S∗, y∗E, y
∗
I ) = argmin{Φ(S, yE, yI) |S ∈

Sn+, yE ∈ <mE , yI ∈ <mI}, then
(y∗E, y

∗
I ) = argmin


φ(yE, yI) := −〈bE, yE〉 − 〈bI , yI〉+

1

2σ̂
‖ΠSn+(−S(yE, yI))‖2

+
1

2σ̂
‖Ĉ −A∗EyE −A∗IyI − Ŝ‖2 +

σ

2
‖yI − ĉ‖2

+
1

2σ
(‖yE − ŷE‖2 + ‖yI − ŷI‖2) | yE ∈ <mE , yI ∈ <mI


,

S∗ = σ̂−1ΠSn+(S(y∗E, y
∗
I )),

(4.43)

where σ̂ = σ + σ−1. Then, we need to solve the following problem

(y∗E, y
∗
I ) = argmin{φ(yE, yI) | (yE, yI) ∈ <mE ×<mI}. (4.44)

The objective function in (4.44) is continuously differentiable with the gradient given

as follows:

∇φ(yE, yI) = σ̂−1

 AE
AI

(σΠSn+(−S(yE, yI)) +A∗EyE +A∗IyI + Ŝ − Ĉ
)

+σ

 0

yI − ĉ

+ σ−1

 yE − ŷE
yI − ŷI

−
 bE

bI

 .

Hence, solving (4.34) is equivalent to solving the following nonsmooth equation:

∇φ(yE, yI) = 0, (yE, yI) ∈ <mE ×<mI . (4.45)

Given (yE, yI) ∈ <mE ×<mI , define

∂̂2φ(yE, yI) := σ̂−1

 AE
AI

(I + σ2∂ΠSn+(−S(yE, yI))
)
(A∗E,A∗I) +

 σ−1I1

σ̂I2

 ,

where I : Sn → Sn is the identity map, I1 ∈ <mE×mE and I2 ∈ <mI×mI are identity

matrices, ∂ΠSn+(−S(yE, yI)) is the Clark subdifferential of ΠSn+ at −S(yE, yI). Note
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that one can find an element in ∂ΠSn+(−S(yE, yI)) by using (2.6) based on the results

obtained in [47]. Then, equation (4.34) can be efficiently solved by the semismooth

Newton-CG method presented above. The convergence analysis can be similarly

derived as in Theorem 4.11.

4.2.1 The second stage of solving convex QP

Although convex quadratic programming can be viewed as a special case of QSDP,

we study in this subsection, as an application of the idea of using our symmetric

Gauss-Seidel technique in Phase II algorithm, the second phase of solving convex

quadratic programming problem. Consider the following convex quadratic program-

ming problem

min

{
1

2
〈x, Qx〉+ 〈c, x〉 | Ax = b, b̄−Bx ∈ C, x ∈ K

}
, (4.46)

where matrices Q ∈ Sn+, A ∈ <mE×n and B ∈ <mI×n, vectors b, c and b̄ are

given data, C ⊆ <mI is a closed convex cone, e.g., the nonnegative orthant C =

{x̄ ∈ <mI | x̄ ≥ 0}, K ⊆ <n is a nonempty simple closed convex set, e.g., K =

{x ∈ <n | l ≤ x ≤ u} with l, u ∈ <n being given vectors. The dual problem of (4.46)

we consider here is

max −δ∗K(−z)− 1
2
〈w, Qw〉+ 〈b̄, ȳ〉+ 〈b, y〉

s.t. z −Qw +B∗ȳ + A∗y = c, ȳ ∈ C◦, w ∈ Range(Q).
(4.47)

Similar as in (4.28), we further require w ∈ Range(Q) comparing to the dual problem

(3.80) considered in Phase I. Note that (4.47) can be equivalently recast as

min δ∗K(−z) + 1
2
〈w, Qw〉 − 〈b, y〉 − 〈b̄, ȳ〉

s.t.

 z

z̄

−
 Qw

0

+

 A∗ B∗

I

 y

ȳ

 =

 c

0

 ,
z̄ ∈ C, w ∈ Range(Q).

(4.48)

Below, we focus on applying pALM, i.e., our algorithm in Phase II, to solve prob-

lem (4.48). Note that, by Remark 4.5, if K in problem (4.48) is assumed to be
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polyhedral, the error bound assumption (Assumption 6) holds automatically for the

corresponding Tl. Given σ > 0, the augmented Lagrangian function associated with

(4.48) is given as follows:

Lσ(z, z̄, w, y, ȳ;x, x̄) = δ∗K(−z) +
1

2
〈w, Qw〉 − 〈b, y〉 − 〈b̄, ȳ〉+

σ

2
‖z̄ + ȳ + σ−1x̄‖2

+
σ

2
‖z −Qw + A∗y +B∗y + σ−1x− c‖2 − 1

2σ
(‖x‖2 + ‖x̄‖2).

In the kth iteration of Algorithm pALM, we propose to add the following proximal

term:

Λk(z, z̄, w, y, ȳ) =
1

2σk
(‖z − zk‖2 + ‖z̄ − z̄k‖2 + ‖w − wk‖2

Q + ‖y − yk‖2 + ‖ȳ − ȳk‖2).

By restricting w ∈ Range(Q), the positive definiteness of the added proximal term

is guaranteed. Then, the inner subproblem (4.6) takes the form of

(zk+1, z̄k+1, wk+1, yk+1, ȳk+1)

≈ argmin

 Ψk(z, z̄, w, y, ȳ) := Lσk(z, z̄, w, y, ȳ;xk, x̄k) + Λk(z, z̄, w, y, ȳ)

| z ∈ <n, z̄ ∈ C, w ∈ Range(Q), y ∈ <mE , ȳ ∈ <mI

 .

(4.49)

To solve (4.49), we can follow the same idea discussed in (4.33). Specifically, in each

iteration of pLAM, we solve the following unconstrained minimization problem

min{ϕ(w, y, ȳ) := min
z∈<n,z̄∈C

Ψ(z, z̄, w, y, ȳ) | w ∈ Range(Q), y ∈ <mE , ȳ ∈ <mI}.

(4.50)

Instead of using the semismooth Newton-CG algorithm to solve (4.50), one can solve

this subproblem with an inexact accelerated proximal gradient (APG) algorithm

proposed in [29]. The quadratic model used by the inexact APG can be constructed

as follows. By adopting the majorization technique proposed in [69], we can obtain

a convex quadratic function ϕ̂k as a majorization function of ϕ at (wk, yk, ȳk), i.e.,

we have that ϕ̂k(w
k, yk, ȳk) = ϕ(wk, yk, ȳk) and ϕ̂k(w, y, ȳ) ≥ ϕ(w, y, ȳ), ∀(w, y, ȳ) ∈

Range(Q) × <mE × <mI . Thus, in each iteration of Algorithm iAPG, the following

unconstrained convex quadratic programming problem needs to be solved

min{ϕ̂k(w, y, ȳ) | w ∈ Range(Q), y ∈ <mE , ȳ ∈ <mI}. (4.51)
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Note that solving (4.51) is equivalent to solving a large scale linear system corre-

sponding to (w, y, ȳ). It can be efficiently solved via a preconditioned CG (PCG)

algorithm provided a suitable preconditioner can be found. If such a preconditioner

is not available, then we can use the one cycle symmetric block Gauss-Seidel (sGS)

technique developed in Chapter 3 to manipulate problem (4.51). In this way, we

can decompose the large scale linear system into three small pieces with each of

them corresponding to only one variable of (w, y, ȳ) and then solve these three lin-

ear systems separately by the PCG algorithm. Now, it should be easy to find a

suitable preconditioner for each smaller linear system. By Theorem 3.3, our sGS

technique used to manipulate problem (4.51) can be regarded as taking a scaled

gradient step for solving (4.51). Thus, the whole process we discussed here can still

be viewed as an inexact APG algorithm for solving (4.50) with one more proximal

term corresponding to sGS technique needs to be added to ϕ̂k in (4.51). Then, the

global and local convergence results follow from [29, Theorem 2.1], Theorem (4.3)

and Theorem (4.7).

In fact, as a simple but not that fast approach, we can also directly apply our

(inexact) sGS technique to problem (4.49). The procedure can be described as

follows: given (zk, z̄k, wk, yk, ȳk, xk, x̄k) ∈ <n×C×Range(Q)×<mE×<mI×<n×<mI ,

(zk+1, z̄k+1, wk+1, yk+1, ȳk+1) is obtained via

ȳk+ 1
2 ≈ argminȳ∈<mIΨk(z

k, z̄k, wk, yk, ȳ),

yk+ 1
2 ≈ argminy∈<mEΨk(z

k, z̄k, wk, y, ȳk+ 1
2 ),

wk+ 1
2 ≈ argminw∈Range(Q)Ψk(z

k, z̄k, w, yk+ 1
2 , ȳk+ 1

2 ),

(zk+1, z̄k+1) = argminz∈<n,z̄∈CΨk(z
k, z̄k, wk+ 1

2 , yk+ 1
2 , ȳk+ 1

2 ),

wk+1 ≈ argminw∈Range(Q)Ψk(z
k+1, z̄k+1, w, yk+ 1

2 , ȳk+ 1
2 ),

yk+1 ≈ argminy∈<mEΨk(z
k+1, z̄k+1, wk+1, y, ȳk+ 1

2 ),

ȳk+1 ≈ argminȳ∈<mIΨk(z
k+1, z̄k+1, wk+1, yk+1, ȳ).

(4.52)

Note that the joint minimization of (z, z̄) in (4.52) can be carried out analytically.
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Instead of further decomposing w,y and ȳ into smaller pieces as we have done in

Phase I algorithm, we allow inexact minimizations in (4.52). In this way, Algorithm

PCG can be applied to obtain high-accuracy solutions for these linear systems. By

Theorem 3.3, procedure (4.52) is equivalent to solving (4.49) with an additional

proximal term corresponding to sGS technique and an error term corresponding to

inexact minimizations of w,y and ȳ added to Ψk. Since this extra error term can

be arbitrarily small when the PCG algorithm is applied to solve the resulted linear

systems in (4.52), the above procedure can be regarded as a special implementation

of solving subproblem (4.6) in Algorithm pALM. In addition, the stopping criteria

(A) and (B) for this special case are achievable. Thus, the convergence results

still hold. Due to the appearance of the inexact minimizations in the one cycle

symmetric block Gauss-Seidel procedure (4.52), we refer the resulted algorithm as

inexact symmetric Gauss-Seidel based proximal augmented Lagrangian algorithm

(inexact sGS-Aug). One remarkable property of our proposed inexact sGS-Aug

algorithm here is that we can still enjoy the linear convergence rate of Algorithm

pALM by only doing one cycle symmetric Gauss-Seidel procedure (4.52). More

specifically, under the same setting of Theorem 4.7, by using the discussions in

Section 3.1.2 on the structure of Ô in (3.11), it is not difficult to derive that the

convergence rate θk in (4.12) satisfies

θk → θ̄ ≤ 1√
1 + c̄

as k →∞, (4.53)

where c̄ =
1

a2(3 + 2‖Q‖2 + ‖A‖2)
. Note that the constant number θ̄ in (4.53) is

independent of σ and if a is not large, it can be a decent number smaller than 1.

Observing that in our proposed algorithms, it is important that the resulted

large scale linear systems can be solved by the PCG efficiently. For this purpose, we

discuss a novel approach to construct suitable preconditioners for given symmetric

positive definite linear systems. Consider the following symmetric positive definite

linear system

Ax = b,
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where matrix A ∈ Sn is symmetric positive definite, vector b ∈ <n is given data.

Suppose that A has the following spectral decomposition

A = PΛP T ,

where Λ is the diagonal matrix with diagonal entries consisting of the eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn > 0 of A and P is a corresponding orthogonal matrix of eigen-

vectors. Then, for given integer 1 ≤ r ≤ n, we propose the following preconditioner:

Ã :=
r∑
i=1

λiPiP
T
i +

λr
2

n∑
i=r+1

PiP
T
i

=
r∑
i=1

λiPiP
T
i +

λr
2

(I −
r∑
i=1

PiP
T
i ) (4.54)

=
λr
2
I +

r∑
i=1

(λi −
λr
2

)PiP
T
i ,

where I ∈ <n×n is the identity matrix, Pi is the ith column of matrix P . Note that

Ã−1 can be easily obtained as follows:

Ã−1 =
2

λr
I +

r∑
i=1

(
1

λi
− 2

λr
)PiP

T
i .

Following the same idea in (4.54), we can also design a practically useful morjoriza-

tion for A as follows:

A � Â :=
r∑
i=1

λiPiP
T
i + λr

n∑
i=r+1

PiP
T
i = λrI +

r∑
i=1

(λi − λr)PiP T
i .

In practice, Matlab built in function “eigs” can be used to find the first r eigenvalues

and their corresponding eigenvectors.

4.3 Numerical results

In this section, we conduct a variety of large scale QSDP problems and convex

quadratic programming problems to evaluate the performance of our proposed Phase

II algorithm.
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Firstly, we focus on the QSDP problems. Apart from the QSDP-BIQ problems

(3.69) and QSDP-θ+ problems (3.70), we also test here the following QSDP-QAP

problems. The QSDP-QAP problem is given by:

min 1
2
〈X, QX〉+ 〈A2 ⊗ A1, X〉

s.t.
∑n

i=1 X
ii = I, 〈I, X ij〉 = δij ∀ 1 ≤ i ≤ j ≤ n,

〈E, X ij〉 = 1 ∀ 1 ≤ i ≤ j ≤ n, X ∈ Sn2

+ , X ∈ K,

(4.55)

where E is the matrix of ones, and δij = 1 if i = j, and 0 otherwise, K = {X ∈ Sn2 |

X ≥ 0}. In our numerical experiments, the test instances (A1, A2) are taken from

the QAP Library [3]. Note that the linear operator Q used here is the same as been

generated in (3.68) and used in the test of Phase I algorithm. For simplicity, we still

don’t include the general inequality constraints here, i.e., AI and bI are vacuous.

In Phase II, when our inexact proximal augmented Lagrangian algorithm is ap-

plied to solve QSDP problems, it is in fact a generalization of SDPNAL [73] and

SDPNAL+ [69]. Hence, we would like to call this special implementation of our

Phase II algorithm as Qsdpnal. Since we use the Phase I algorithm sGS-padmm

to warm start our Qsdpnal, we also list the numerical results obtained by running

sGS-padmm alone for the purpose of demonstrating the power and the importance

of the proposed inexact proximal augmented Lagrangian algorithm for solving diffi-

cult QSDP problems. All our computational results for the tested QSDP problems

are obtained from a workstation running on 64-bit Windows Operating System hav-

ing 16 cores with 32 Intel Xeon E5-2650 processors at 2.60GHz and 64 GB memory.

We measure the accuracy of an approximate optimal solution (X,Z,Ξ, S, yE) for

QSDP (4.26) and its dual (4.28) by using the following relative residual:

ηqsdp = max{ηP , ηD, ηZ , ηS1 , ηS2}, (4.56)

where

ηP =
‖AEX − bE‖

1 + ‖bE‖
, ηD =

‖Z + B∗Ξ + S +A∗EyE − C‖
1 + ‖C‖

, ηZ =
‖X −ΠK(X − Z)‖

1 + ‖X‖+ ‖Z‖
,

ηS1 =
|〈S, X〉|

1 + ‖S‖+ ‖X‖
, ηS2 =

‖X −ΠSn+(X)‖
1 + ‖X‖

.
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We terminate the solvers sGS-padmmand Qsdpnal when ηqsdp < 10−6 with the

maximum number of iterations set at 25000.

In table 4.1, we present the detailed numerical results for Qsdpnal and sGS-padmm

in solving some large scale QSDP problems. In the table, “it” and “itersub” stand for

the number of outer iterations and the total number of inner iterations of Qsdpnal,

respectively. “itersGS” stands for the total number of iterations of sGS-padmm

used to warm start Qsdpnal. It is interesting to note that Qsdpnal can solve

all the 49 difficult QSDP-QAP problems to an accuracy of 10−6 efficiently, while

the Phase I algorithm sGS-padmm can only solve 5 QSDP-QAP problems to re-

quired accuracy. Besides, Qsdpnal generally outperform sGS-padmm in terms of

the computing time, especially when the problem size is large. The superior nu-

merical performance of Qsdpnal over sGS-padmm demonstrate the power and the

necessity of our proposed two phase framework.

Table 4.1: The performance of Qsdpnal (a) and sGS-padmm(b) on QSDP-θ+,
QSDP-QAP and QSDP-BIQ problems (accuracy = 10−6). The computation time
is in the format of “hours:minutes:seconds”.

iter.a iter.b ηqsdp ηgap time

problem mE ;ns it|itsub|itsGS a|b a|b a|b

theta6 4375 ; 300 0 | 0 | 311 311 7.9-7 | 7.9-7 2.1-6 | 2.1-6 09 | 08

theta62 13390 ; 300 0 | 0 | 153 153 9.6-7 | 9.6-7 -1.1-7 | -1.1-7 04 | 04

theta8 7905 ; 400 0 | 0 | 314 314 9.5-7 | 9.5-7 2.7-6 | 2.7-6 19 | 19

theta82 23872 ; 400 0 | 0 | 158 158 9.5-7 | 9.5-7 -3.7-8 | -3.7-8 10 | 10

theta83 39862 ; 400 0 | 0 | 156 156 9.5-7 | 9.5-7 3.3-8 | 3.3-8 10 | 10

theta10 12470 ; 500 0 | 0 | 340 340 9.8-7 | 9.8-7 3.2-6 | 3.2-6 32 | 31

theta102 37467 ; 500 0 | 0 | 150 150 8.7-7 | 8.7-7 6.4-7 | 6.4-7 15 | 14

theta103 62516 ; 500 0 | 0 | 202 202 9.8-7 | 9.8-7 -4.2-8 | -4.2-8 20 | 20

theta104 87245 ; 500 0 | 0 | 162 162 9.8-7 | 9.8-7 5.9-8 | 5.9-8 16 | 16

theta12 17979 ; 600 0 | 0 | 354 354 9.5-7 | 9.5-7 -3.9-6 | -3.9-6 48 | 47

theta123 90020 ; 600 0 | 0 | 204 204 9.7-7 | 9.7-7 -9.2-8 | -9.2-8 30 | 28

san200-0.7-1 5971 ; 200 4 | 5 | 500 2197 3.2-7 | 9.3-7 6.3-9 | 6.1-6 06 | 21

sanr200-0.7 6033 ; 200 0 | 0 | 177 177 9.5-7 | 9.5-7 1.9-7 | 1.9-7 03 | 02

c-fat200-1 18367 ; 200 8 | 8 | 1050 1972 9.6-7 | 9.9-7 -7.7-6 | -2.6-6 15 | 23
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Table 4.1: The performance of Qsdpnal (a) and sGS-padmm(b) on QSDP-θ+,
QSDP-QAP and QSDP-BIQ problems (accuracy = 10−6). The computation time
is in the format of “hours:minutes:seconds”.

iter.a iter.b ηqsdp ηgap time

problem mE ;ns it|itsub|itsGS a|b a|b a|b

hamming-8-4 11777 ; 256 0 | 0 | 2493 2493 9.9-7 | 9.9-7 -6.0-7 | -6.0-7 51 | 48

hamming-9-8 2305 ; 512 249 | 249 | 600 4120 9.9-7 | 9.9-7 -2.6-8 | -4.4-6 1:56 | 5:34

hamming-8-3-4 16129 ; 256 0 | 0 | 202 202 6.9-7 | 6.9-7 5.4-6 | 5.4-6 05 | 04

hamming-9-5-6 53761 ; 512 0 | 0 | 446 446 8.2-7 | 8.2-7 -1.1-5 | -1.1-5 47 | 42

brock200-1 5067 ; 200 0 | 0 | 198 198 9.7-7 | 9.7-7 9.9-8 | 9.9-8 03 | 02

brock200-4 6812 ; 200 0 | 0 | 201 201 9.3-7 | 9.3-7 1.1-7 | 1.1-7 03 | 03

brock400-1 20078 ; 400 0 | 0 | 168 168 9.0-7 | 9.0-7 8.6-7 | 8.6-7 11 | 10

keller4 5101 ; 171 0 | 0 | 669 669 9.9-7 | 9.9-7 -1.3-8 | -1.3-8 08 | 07

p-hat300-1 33918 ; 300 0 | 0 | 452 452 9.9-7 | 9.9-7 -1.0-6 | -1.0-6 13 | 12

G43 9991 ; 1000 4 | 4 | 700 982 8.8-7 | 9.5-7 7.1-7 | -5.0-6 4:39 | 5:38

G44 9991 ; 1000 4 | 4 | 700 955 6.2-7 | 8.8-7 5.4-7 | 4.6-6 4:39 | 5:31

G45 9991 ; 1000 4 | 4 | 700 954 5.5-7 | 9.0-7 4.2-7 | 4.8-6 4:41 | 5:29

G46 9991 ; 1000 4 | 4 | 700 1000 8.6-7 | 8.8-7 -1.8-7 | 6.6-6 4:36 | 6:19

G47 9991 ; 1000 4 | 4 | 702 985 5.9-7 | 9.2-7 4.0-6 | -4.8-6 4:40 | 7:49

1dc.256 3840 ; 256 5 | 7 | 600 2312 6.5-7 | 9.4-7 1.1-6 | -1.6-5 12 | 38

1et.256 1665 ; 256 0 | 0 | 4972 4972 9.9-7 | 9.9-7 -4.9-7 | -4.9-7 1:36 | 1:48

1tc.256 1313 ; 256 2 | 4 | 9512 12051 9.9-7 | 9.9-7 -4.0-6 | -3.2-6 3:05 | 4:25

1zc.256 2817 ; 256 0 | 0 | 3147 3147 9.9-7 | 9.9-7 -3.7-7 | -3.7-7 1:02 | 1:00

1dc.512 9728 ; 512 0 | 0 | 2032 2032 9.9-7 | 9.9-7 -4.4-7 | -4.4-7 3:25 | 3:12

1et.512 4033 ; 512 8 | 8 | 4297 4440 9.7-7 | 9.8-7 -1.8-6 | -2.9-6 7:13 | 7:50

1tc.512 3265 ; 512 1 | 7 | 12591 11801 9.9-7 | 9.9-7 -4.4-6 | -4.4-6 20:58 | 25:35

2dc.512 54896 ; 512 0 | 0 | 2368 2368 9.9-7 | 9.9-7 -5.0-6 | -5.0-6 3:52 | 5:42

1zc.512 6913 ; 512 0 | 0 | 2719 2719 9.9-7 | 9.9-7 -3.4-6 | -3.4-6 4:38 | 6:40

1dc.1024 24064 ; 1024 0 | 0 | 2418 2418 9.9-7 | 9.9-7 -8.5-7 | -8.5-7 18:38 | 22:41

1et.1024 9601 ; 1024 0 | 0 | 3186 3186 9.9-7 | 9.9-7 -5.1-7 | -5.1-7 25:31 | 21:28

1tc.1024 7937 ; 1024 5 | 6 | 5199 5922 9.8-7 | 9.9-7 -7.5-6 | -1.0-5 39:22 | 39:25

1zc.1024 16641 ; 1024 8 | 8 | 1938 3113 9.9-7 | 9.9-7 6.9-6 | 7.8-6 14:48 | 21:07

2dc.1024 169163 ; 1024 0 | 0 | 3460 3460 9.7-7 | 9.7-7 -3.0-5 | -3.0-5 28:11 | 23:24

be250.1 251 ; 251 88 | 108 | 1589 4120 9.9-7 | 9.9-7 7.0-7 | -6.4-7 38 | 1:07

be250.2 251 ; 251 143 | 213 | 1980 3555 8.6-7 | 9.9-7 1.8-7 | -7.5-7 51 | 58

be250.3 251 ; 251 120 | 152 | 1680 3558 9.4-7 | 9.9-7 -9.7-8 | -9.6-7 43 | 58

be250.4 251 ; 251 93 | 124 | 1650 4072 9.9-7 | 9.9-7 8.5-7 | -2.1-6 40 | 1:05
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Table 4.1: The performance of Qsdpnal (a) and sGS-padmm(b) on QSDP-θ+,
QSDP-QAP and QSDP-BIQ problems (accuracy = 10−6). The computation time
is in the format of “hours:minutes:seconds”.

iter.a iter.b ηqsdp ηgap time

problem mE ;ns it|itsub|itsGS a|b a|b a|b

be250.5 251 ; 251 91 | 124 | 1639 3204 9.5-7 | 9.9-7 -3.8-8 | -9.1-7 39 | 52

be250.6 251 ; 251 77 | 99 | 1394 3250 9.7-7 | 9.9-7 1.5-6 | -2.8-7 33 | 51

be250.7 251 ; 251 97 | 133 | 1728 3699 9.2-7 | 9.9-7 1.2-7 | -6.5-7 42 | 59

be250.8 251 ; 251 116 | 149 | 1516 3516 8.2-7 | 9.9-7 -1.8-7 | -9.1-7 37 | 56

be250.9 251 ; 251 104 | 128 | 2139 3586 9.0-7 | 9.9-7 -5.8-7 | -3.4-7 46 | 59

be250.10 251 ; 251 98 | 131 | 1750 3302 6.3-7 | 9.9-7 -2.7-7 | -1.1-6 38 | 52

bqp100-1 101 ; 101 24 | 26 | 1134 1339 9.6-7 | 9.9-7 -9.0-7 | -2.2-7 07 | 07

bqp100-2 101 ; 101 47 | 52 | 1717 2493 9.6-7 | 9.9-7 2.8-7 | 2.6-8 11 | 13

bqp100-3 101 ; 101 2 | 2 | 1661 1751 7.8-7 | 9.9-7 -6.6-9 | -2.7-6 09 | 09

bqp100-4 101 ; 101 16 | 16 | 1478 2910 9.9-7 | 9.7-7 -6.7-7 | -10.0-8 09 | 16

bqp100-5 101 ; 101 13 | 14 | 1746 1911 9.9-7 | 9.9-7 -3.3-7 | -5.7-8 10 | 10

bqp100-6 101 ; 101 8 | 8 | 1383 1405 9.9-7 | 9.9-7 5.0-7 | 3.3-7 08 | 08

bqp100-7 101 ; 101 40 | 44 | 1322 1770 9.9-7 | 9.9-7 -9.8-7 | -5.7-7 09 | 10

bqp100-8 101 ; 101 19 | 21 | 1454 1820 8.7-7 | 9.9-7 5.6-7 | 7.3-7 09 | 10

bqp100-9 101 ; 101 28 | 28 | 1371 2038 8.2-7 | 9.9-7 -6.7-7 | 2.0-6 09 | 11

bqp100-10 101 ; 101 38 | 52 | 2331 2904 9.7-7 | 9.7-7 1.6-7 | 2.8-7 14 | 15

bqp250-1 251 ; 251 97 | 119 | 1864 3899 9.8-7 | 9.9-7 -3.1-7 | -8.0-7 40 | 1:02

bqp250-2 251 ; 251 80 | 107 | 1712 4120 9.2-7 | 9.9-7 -1.9-8 | -4.9-7 37 | 1:06

bqp250-3 251 ; 251 95 | 133 | 2103 4102 9.9-7 | 9.9-7 7.2-7 | -3.9-6 45 | 1:04

bqp250-4 251 ; 251 93 | 105 | 1611 3103 9.3-7 | 9.9-7 -1.9-7 | -4.2-7 35 | 50

bqp250-5 251 ; 251 85 | 111 | 1664 4419 9.5-7 | 9.9-7 4.2-7 | -2.0-6 37 | 1:10

bqp250-6 251 ; 251 80 | 100 | 1470 2952 9.9-7 | 9.9-7 1.3-6 | -1.0-6 32 | 47

bqp250-7 251 ; 251 106 | 131 | 1469 3844 6.7-7 | 9.9-7 -8.7-8 | -1.5-6 34 | 1:01

bqp250-8 251 ; 251 91 | 113 | 1605 2716 9.9-7 | 9.9-7 7.3-8 | -8.8-7 35 | 43

bqp250-9 251 ; 251 91 | 130 | 1674 4200 9.7-7 | 9.8-7 4.2-7 | -6.7-7 37 | 1:06

bqp250-10 251 ; 251 86 | 107 | 1396 3027 9.9-7 | 9.9-7 9.4-7 | -7.7-7 31 | 47

bqp500-1 501 ; 501 175 | 250 | 2508 6003 9.9-7 | 9.9-7 1.7-7 | -3.9-7 4:43 | 7:58

bqp500-2 501 ; 501 164 | 253 | 2186 6609 9.8-7 | 9.8-7 2.8-7 | -4.7-7 4:33 | 8:52

bqp500-3 501 ; 501 144 | 213 | 2205 7443 9.9-7 | 9.8-7 4.4-7 | 8.4-7 4:22 | 9:53

bqp500-4 501 ; 501 125 | 161 | 1574 6962 9.9-7 | 9.9-7 -1.0-6 | -1.5-6 3:09 | 9:10

bqp500-5 501 ; 501 145 | 194 | 1676 5801 9.8-7 | 8.9-7 1.2-7 | 1.7-6 3:21 | 7:44

bqp500-6 501 ; 501 174 | 245 | 2104 6894 9.0-7 | 9.9-7 -4.3-7 | -4.7-7 4:03 | 9:22
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Table 4.1: The performance of Qsdpnal (a) and sGS-padmm(b) on QSDP-θ+,
QSDP-QAP and QSDP-BIQ problems (accuracy = 10−6). The computation time
is in the format of “hours:minutes:seconds”.

iter.a iter.b ηqsdp ηgap time

problem mE ;ns it|itsub|itsGS a|b a|b a|b

bqp500-7 501 ; 501 165 | 232 | 2373 6528 9.9-7 | 9.9-7 -3.7-7 | -7.8-7 4:20 | 8:45

bqp500-8 501 ; 501 167 | 244 | 2609 6261 9.9-7 | 9.9-7 -4.9-7 | -4.6-7 4:42 | 8:15

bqp500-9 501 ; 501 178 | 270 | 2904 6532 9.6-7 | 9.9-7 -5.2-7 | 9.9-7 5:15 | 8:44

bqp500-10 501 ; 501 154 | 218 | 1924 6434 9.9-7 | 9.9-7 2.2-7 | 9.9-7 3:40 | 8:33

gka1d 101 ; 101 13 | 13 | 1364 1600 8.9-7 | 9.8-7 -4.6-7 | -4.2-7 08 | 09

gka2d 101 ; 101 30 | 41 | 1550 1927 9.2-7 | 9.9-7 -7.1-8 | -5.0-7 10 | 11

gka3d 101 ; 101 11 | 11 | 1970 2292 9.9-7 | 9.9-7 -4.1-7 | -3.7-7 12 | 12

gka4d 101 ; 101 2 | 2 | 2038 2157 9.9-7 | 9.6-7 3.5-7 | 3.4-7 12 | 12

chr12a 232 ; 144 46 | 88 | 3490 25000 9.9-7 | 1.0-5 -1.4-5 | -1.4-4 36 | 3:03

chr12b 232 ; 144 33 | 86 | 4224 25000 9.9-7 | 9.1-6 -2.8-5 | -1.4-4 45 | 3:03

chr12c 232 ; 144 70 | 130 | 4718 25000 9.9-7 | 1.5-5 -2.3-5 | -2.2-4 51 | 3:03

chr15a 358 ; 225 45 | 99 | 4010 25000 9.8-7 | 1.1-5 -2.6-5 | -1.4-4 1:24 | 5:39

chr15b 358 ; 225 75 | 103 | 4462 25000 9.9-7 | 1.3-5 -2.7-5 | -1.7-4 1:27 | 5:40

chr15c 358 ; 225 47 | 75 | 3601 25000 9.9-7 | 1.2-5 -3.4-5 | -1.9-4 1:10 | 5:41

chr18a 511 ; 324 61 | 111 | 4297 25000 9.9-7 | 1.3-5 -2.5-5 | -2.1-4 2:40 | 11:26

chr18b 511 ; 324 764 | 1083 | 8210 25000 9.9-7 | 1.4-6 -1.1-6 | -5.0-6 6:54 | 10:48

chr20a 628 ; 400 72 | 111 | 5101 25000 9.9-7 | 8.3-6 -1.8-5 | -9.9-5 6:12 | 23:45

chr20b 628 ; 400 57 | 103 | 4544 25000 9.9-7 | 8.1-6 -1.4-5 | -7.5-5 5:50 | 23:47

chr20c 628 ; 400 101 | 154 | 6940 25000 9.9-7 | 1.6-5 -2.9-5 | -2.3-4 8:26 | 23:41

chr22a 757 ; 484 44 | 171 | 5975 25000 9.9-7 | 4.1-6 -1.8-5 | -6.5-5 12:13 | 33:39

chr22b 757 ; 484 51 | 180 | 6284 25000 9.9-7 | 3.4-6 -1.7-5 | -5.3-5 12:43 | 33:39

els19 568 ; 361 81 | 281 | 10293 25000 9.9-7 | 2.5-6 -1.5-5 | -3.3-5 15:10 | 22:51

esc16a 406 ; 256 39 | 134 | 3938 25000 9.9-7 | 7.3-6 -9.4-6 | -7.2-5 1:42 | 7:48

esc16b 406 ; 256 130 | 469 | 9020 25000 9.9-7 | 9.0-6 -1.6-5 | -2.0-4 4:20 | 7:47

esc16c 406 ; 256 140 | 465 | 10483 25000 9.9-7 | 7.4-6 -5.6-5 | -1.4-4 4:54 | 7:45

esc16d 406 ; 256 16 | 16 | 915 812 9.9-7 | 9.9-7 -3.5-7 | -5.6-7 19 | 15

esc16e 406 ; 256 21 | 21 | 930 983 9.8-7 | 9.9-7 8.5-7 | 7.4-7 19 | 18

esc16g 406 ; 256 32 | 33 | 1339 1700 9.9-7 | 9.8-7 -9.9-7 | -1.2-6 28 | 31

esc16h 406 ; 256 26 | 58 | 2020 25000 8.5-7 | 2.9-6 -3.0-6 | -1.7-5 47 | 7:46

esc16i 406 ; 256 42 | 67 | 1718 1811 9.9-7 | 9.9-7 -5.1-7 | -8.0-7 39 | 33

esc16j 406 ; 256 46 | 49 | 1290 2363 9.7-7 | 9.9-7 8.3-7 | -2.4-6 28 | 44

had12 232 ; 144 43 | 78 | 3083 25000 9.8-7 | 1.3-5 -1.7-5 | -9.4-5 31 | 3:04
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Table 4.1: The performance of Qsdpnal (a) and sGS-padmm(b) on QSDP-θ+,
QSDP-QAP and QSDP-BIQ problems (accuracy = 10−6). The computation time
is in the format of “hours:minutes:seconds”.

iter.a iter.b ηqsdp ηgap time

problem mE ;ns it|itsub|itsGS a|b a|b a|b

had14 313 ; 196 58 | 90 | 5427 25000 9.9-7 | 1.0-5 -1.4-5 | -9.3-5 1:22 | 4:38

had16 406 ; 256 80 | 143 | 6286 25000 9.9-7 | 1.3-5 -1.5-5 | -9.7-5 2:32 | 7:30

had18 511 ; 324 54 | 120 | 4387 25000 9.9-7 | 1.1-5 -1.1-5 | -6.6-5 2:47 | 11:48

had20 628 ; 400 105 | 146 | 7808 25000 9.9-7 | 1.2-5 -1.5-5 | -1.1-4 9:21 | 23:33

nug12 232 ; 144 35 | 51 | 1786 25000 9.9-7 | 7.3-6 -2.1-5 | -8.5-5 19 | 3:11

nug14 313 ; 196 29 | 51 | 2082 25000 9.9-7 | 9.7-6 -2.4-5 | -9.8-5 32 | 4:44

nug15 358 ; 225 29 | 52 | 2056 25000 9.9-7 | 9.2-6 -1.7-5 | -9.4-5 41 | 5:43

nug16a 406 ; 256 40 | 63 | 2260 25000 9.9-7 | 1.1-5 -2.3-5 | -1.1-4 56 | 7:51

nug16b 406 ; 256 41 | 62 | 2130 25000 9.7-7 | 9.2-6 -2.5-5 | -1.0-4 53 | 7:48

nug17 457 ; 289 32 | 60 | 2119 25000 9.9-7 | 1.1-5 -2.8-5 | -1.1-4 1:03 | 9:21

nug18 511 ; 324 34 | 60 | 2179 25000 9.9-7 | 9.8-6 -2.5-5 | -9.8-5 1:19 | 12:14

nug20 628 ; 400 42 | 70 | 2269 25000 9.5-7 | 9.4-6 -2.1-5 | -9.0-5 2:51 | 24:40

nug21 691 ; 441 43 | 67 | 2785 25000 9.8-7 | 1.1-5 -2.4-5 | -1.1-4 4:07 | 30:05

rou12 232 ; 144 41 | 50 | 1770 25000 9.8-7 | 8.0-6 -3.1-5 | -8.9-5 17 | 3:15

rou15 358 ; 225 33 | 45 | 1640 25000 8.7-7 | 7.2-6 -1.9-5 | -7.6-5 30 | 6:01

rou20 628 ; 400 31 | 41 | 1650 25000 9.9-7 | 6.1-6 -1.9-5 | -5.6-5 1:51 | 24:25

scr12 232 ; 144 66 | 93 | 3190 25000 9.9-7 | 7.4-6 -7.4-6 | -7.3-5 32 | 3:14

scr15 358 ; 225 62 | 89 | 3422 25000 9.9-7 | 1.1-5 -1.7-5 | -1.1-4 1:06 | 5:51

scr20 628 ; 400 52 | 81 | 3700 25000 9.9-7 | 9.7-6 -1.5-5 | -1.0-4 4:27 | 24:12

tai12a 232 ; 144 40 | 54 | 2086 25000 9.6-7 | 9.5-6 -3.4-5 | -1.2-4 21 | 3:15

tai12b 232 ; 144 56 | 91 | 4635 25000 9.9-7 | 1.7-5 -3.2-5 | -2.4-4 47 | 3:11

tai15a 358 ; 225 36 | 47 | 1597 25000 9.4-7 | 6.5-6 -1.8-5 | -6.1-5 30 | 6:05

tai15b 358 ; 225 61 | 165 | 4330 4088 9.9-7 | 9.9-7 -2.7-6 | -2.5-6 1:36 | 58

tai17a 457 ; 289 34 | 43 | 1509 25000 9.8-7 | 6.3-6 -1.6-5 | -5.6-5 43 | 9:29

tai20a 628 ; 400 41 | 51 | 1627 25000 8.9-7 | 5.5-6 -1.6-5 | -5.1-5 1:52 | 24:26

In the second part of this section, we focus on the large scale convex quadratic

programming problems. We test convex quadratic programming problems con-

structed in (3.86) which have been used in the test of Phase I algorithm (sGS-padmm).

We measure the accuracy of an approximate optimal solution (x, z, x′, s, y, ȳ) for con-

vex quadratic programming (4.46) and its dual (4.47) by using the following relative
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residual :

ηqp = max{ηP , ηD, ηQ, ηz, ηȳ}, (4.57)

where

ηP =
‖AX − b‖

1 + ‖b‖
, ηD =

‖z −Qx′ + s+ A∗y +B∗ȳ − C‖
1 + ‖c‖

,

ηZ =
‖x− ΠK(x− z)‖

1 + ‖x‖+ ‖z‖
, ηȳ =

‖ȳ − ΠC◦(ȳ −Bx+ b̄)‖
1 + ‖ȳ‖+ ‖Bx‖

,

ηQ =
‖Qx−Qx′‖

1 + ‖Qx‖
.

Note that in Phase I, we terminate the sGS-padmm when ηqp < 10−5. Now, with

the help of Phase II algorithm, we hope to obtain high accuracy solutions efficiently

with ηqp < 10−6. Here, we test the very special implementation of our Phase II algo-

rithm, the inexact symmetric Gauss-Seidel based proximal augmented Lagrangian

algorithm (inexact sGS-Aug), for solving convex quadratic programming problems.

We will switch the solver from sGS-padmm to inexact sGS-Aug when ηqp < 10−5

and stop the whole process when ηqp < 10−6.

Table 4.2: The performance of inexact sGS-Aug on randomly generated BIQ-
QP problems (accuracy = 10−6). The computation time is in the format of
“hours:minutes:seconds”.

problem | n | mE ,mI (A,B,Q)blk it|itsGS ηqp ηgap time

be100.1 |5150 |200,14850 (2,25,25) 24 | 901 6.1-7 1.4-8 58

be120.3.1 |7380 |240,21420 (2,25,25) 42 | 694 7.7-7 6.2-8 56

be150.3.1 |11475 |300,33525 (2,25,25) 17 | 703 8.2-7 7.1-8 1:51

be200.3.1 |20300 |400,59700 (2,50,50) 25 | 860 9.5-7 -3.2-8 5:31

be250.1 |31625 |500,93375 (2,50,50) 20 | 1495 7.1-7 3.3-8 18:10

Table 4.2 reports the detailed numerical results for inexact sGS-Aug for solving

convex quadratic programming problems (3.86). In the table, “it” stands for the

number of iterations of inexact sGS-Aug. “itersGS” stands for the total number
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of iterations of sGS-padmm used to warm start sGS-Aug with its decomposition

parameters set to be (A,B,Q)blk. As can be observed, our Phase II algorithm can

obtain high accuracy solutions efficiently. This fact again demonstrates the power

and the necessity of our proposed two phase framework.





Chapter 5
Conclusions

In this thesis, we designed algorithms for solving high dimensional convex com-

posite quadratic programming problems with large numbers of linear equality and

inequality constraints. In order to solve the targeted problems to desired accuracy

efficiently, we introduced a two phase augmented Lagrangian method, with Phase I

to generate a reasonably good initial point and Phase II to obtain accurate solutions

fast.

In Phase I, by carefully examining a class of convex composite quadratic pro-

gramming problems, we introduced the one cycle symmetric block Gauss-Seidel

technique. This technique enabled us to deal with the nonseparable structure in the

objective function even when a coupled nonsmooth term was involving. Based on

this technique, we were able to design a novel symmetric Gauss-Seidel based proxi-

mal ADMM (sGS-PADMM) for solving convex composite quadratic programming.

The ability of dealing with coupling quadratic terms in the objective function made

the proposed algorithm very flexible in solving various multi-block convex optimiza-

tion problems. By conducting numerical experiments including large scale convex

quadratic programming (QP) problems and convex quadratic semidefinite program-

ming (QSDP) problems, we presented convincing numerical results to demonstrate

the superior performance of our proposed sGS-PADMM.
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In Phase II, in order to obtain more accurate solutions efficiently, we studied the

inexact proximal augmented Lagrangian method (pALM). We establish the global

convergence of our proposed algorithm based on the classic results of proximal point

algorithms. Under the error bound assumption, the local linear convergence of

Algorithm pALM was also analyzed. The inner subproblems were solved by an in-

exact alternating minimization method. Then, we specialized the proposed pALM

algorithm to QSDP problems and convex QP problems. We discussed in detail

the implementation issues of solving the resulted inner subproblems. The aforemen-

tioned symmetric Gauss-Seidel technique was also shown can be wisely incorporated

into our Phase II algorithm. Numerical experiments conducted on a variety of large

scale difficult convex QSDP problems and high dimensional convex QP problems

demonstrated that our proposed algorithms can efficiently solve these problems to

high accuracy.

There are still many interesting problems that will lead to further development

of algorithms for solving convex composite quadratic optimization problems. Below

we briefly list some research directions that deserve more explorations.

• Is it possible to extend our one cycle symmetric block Gauss-Seidel technique

to more general cases with more than one nonsmooth terms involved?

• In Phase I, can one find a simpler and better algorithm than sGS-PADMM

for general convex problems?

• In Phase II, is it possible to provide some reasonably weak and manageable

sufficient conditions to guarantee the error bound assumption for QSDP prob-

lems?
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