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Summary

This thesis focuses on a class of convex composite conic optimization problems with
nonlinear constraints. It is inspired by recent developments and success in the study
of convex composite quadratic semidefinite programming problems. So far, most of
the work concerning conic programming has only dealt with the linearly constrained
case, however, in practical applications, some nonlinear constraints apart from the
cone constraint are also involved. Therefore, a thorough investigation is needed to

close the aforementioned gap.

To acquire some guidance on solving the nonlinearly constrained convex compos-
ite conic optimization problems, we begin with the numerical study on some existing
first order methods for solving large scale linear semidefinite programming problems.
It can be observed from the numerical results that applying the ADMM-type method
to the dual problem is a good choice for solving the linear SDP problems. Then, in
order to get optimal solutions for large scale linear SDP problems with high accuracy
efficiently, we propose an approximate semismooth Newton-CG (ASNCG) method
for solving the inner problems involved in the augmented Lagrangian algorithm.
The proposed ASNCG method has fast local linear rate convergence though it only

needs part of the second order information.

Based on the experience gained from the numerical study on first order methods
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Summary

for linear SDP problems, we try to design an ADMM-type algorithm for solving the
dual of our targeted model. We propose a symmetric Gauss-Seidel based inexact
ADMM with indefinite proximal terms for solving the dual of our targeted model.
The subproblems corresponding to the nonlinear constraints are discussed and im-
plementable criteria on the inexactness for solving these subproblems are given. We
also establish the global convergence and iteration complexity results for the inexact
majorized ADMM with indefinite proximal terms. In order to evaluate the efficiency
of our proposed algorithm, computational experiments on a variety of convex com-
posite quadratic semidefinite programming problems with quadratic constraints are
conducted. The numerical results indicate that our proposed method is very effective

and can handle both the linear constraints and the nonlinear constraints efficiently.



Chapter

Introduction

In this thesis, we are concentrated on convex composite conic programming problems
with nonlinear constraints. In particular, we are interested in the convex quadratic
semidefinite programming problems with linear equality, inequality constraints and
nonlinear constraints. Let X and Vg, Vi, ), be real finite dimensional Euclidean
spaces. Each of them is equipped with an inner product (-, -) and its induced norm
| - ||. The general nonlinearly constrained convex composite conic programming

model considered in this thesis is formed as follows:

min 0(z)+ f(x)+ l(x, Qx) + (c, x)
2 (1.1)
st. Apr=bg, Ajx—>b;€C, g(zx)eK,

where 6§ : X — (—o00,+00] and f : X — (—o00,+00] are two closed proper convex
functions, Q : X — X is a self-adjoint positive semidefinite linear operator, Ag :
X = Vg, Ar + X = Y; are two linear maps, g : X — }, is a nonlinear smooth
map, ¢ € X and by € Vg, by € YV are given data, C C YV;, K C Y, are two closed
convex cones. We define the set ¢7'(K) := {x € X | g(x) € K}. In this thesis, we
only focus on the case when g~ !(K) is convex.

Our goal is to design efficient algorithms for solving this nonlinearly constrained
convex composite conic programming, especially for the convex quadratic semidefi-

nite programming problems with nonlinear constraints.



Chapter 1. Introduction

1.1 Literature review

There are many interesting problems fit the setting of our general model (1.1]). In
this section, we briefly discuss some of the prominent special cases of this model and

the existing methods for solving them.

One important class is the linear semidefinite programming (SDP):
min {(C, X) | AgX =bp, 41X >b;, X € SINN}, (1.2)

where S is the cone of n X n symmetric positive semidefinite matrices in the space
of n x n symmetric matrices 8", C € 8", by € R™F and b; € R™ are given data,
Agp : 8" — R™E and A; : S — R"™ are two given linear maps, (-, -) denotes
the trace inner product of two matrices, i.e., (C, X) = trace(CTX) and N is a
nonempty simple closed convex set, e.g., N = {X € 8" | X > 0}. Let A* denote
the adjoint of A, the dual associated with the linear SDP takes the form of

max —O0x(—2)+ (br, yg) + (b1, yr)

(1.3)
s.t. Z—i—S—i—Aj‘EyE%—A?y[:C’, yr > 0, SGSﬁ,
where for any Z € 8", 63(—Z2) is given by
o (—2) = sup (—Z, X). (1.4)

XeN

d3/(+) is in fact the support function of V. Problem ([I.3]) can be equivalently written

as

min (03 (=2) + oyrs (u) + 082 (S) = (bg, yr) — (b1, yr)
st. Z+S+ Abye + Ay = C, (1.5)
u—yr =0,
where 5%111 () is the indicator function over R and dsy () is the indicator function
over 8.
Linear SDP has been studied by various researchers on both theoretical and nu-

merical aspects due to its wide applications [8, 20, 57, 56, 81, [70, 50, 51]. Here we
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do a quick review on some of the algorithms designed for solving large scale linear
SDP problems. For the case A; and N in are vacuous, Helmberg and Rendl
[30] propose a spectral bundle method for a special class of linear SDP, that is, the
trace of the primal variable X is fixed. Under the condition that the trace of X is
fixed, the dual problem is then reformulated as an unconstrained eigenvalue
optimization problem, and a proximal bundle method [34] is used to solve the re-
sulted eigenvalue optimization problem. Later in [29], the above method is modified
to fit the linear SDP model with both equality and inequality constraints. Burer
and Monteiro [10, T1] introduce a low-rank factorization method for solving linear
SDP problems. As reported in [I0} 1], for the case with A; and N being
vacuous, the low rank factorization method can solve the linear SDP to a medium
accuracy efficiently. Another impressive work for solving the large scale linear SDP
problems is by Zhao, Sun and Toh [90], in which a semismooth Newton-CG aug-
mented Lagrangian (SDPNAL) method is proposed and it can handle large number
of linear equality constraints with n moderate. It is among the most efficient algo-
rithms for solving linear SDP problems with linear equality constraints. However,
it may encounter numerical difficulty when there exists a large number of inequality
constraints. The problem is then solved by Yang et al [85] by employing a majorized
semismooth Newton-CG augmented Lagrangian method coupled with a convergent
3-block alternating direction method of multipliers. Recently, Renegar proposes
two first order methods in [61] for semidefinite programming and linear program-
ming. The two methods are based on reformulating the primal problem (1.2 into
an eigenvalue optimization problem (EOP) with linear equality constraints, and
then applying subgradient methods to the resulted EOP or applying gradient-type
methods to the smoothed EOP. In order to find out which approaches are good
for providing an approximate optimal solution with moderate accuracy, we explore
intensively on the numerical performance of some of the aforementioned methods

and algorithms in the subsequent discussions.
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The following convex quadratic semidefinite programming (QSDP) has also re-

ceived a lot of attention.
1
min —(X, 9X) + (C, X)
2 (1.6)
s.t. AEX = bE, A[X Z b[, X e S?_ ﬂ/\/,

where Q : 8" — S§" is a self-adjoint positive semidefinite linear operator. One may

refer to [1I, B2, [75], 87, [88] to see the wide applications of QSDP problems. The dual
of problem (/1.6)) is given by
1
max —d0y(—Z) — §(VV, OW) + (bg, yr) + (b1, yr)
st. Z—OW+ S+ Ayyp + Aty = C, (L.7)

WeWw, y >0, Sedt,
or equivalently,
min (03 (—Z) + 572?(“)) + %(W, owW) + 551(5) —(bg, yr) — (b1, yr)
st. Z—OW+S+Awyp+ Ay =C, WeWw, (1.8)
u—yr =0,
where W is any linear subspace in 8" containing Range(Q), the range space of Q,

e.g., W= S8" or W = Range(Q). Note that the objective functions in (1.5) and
(1.8) are separable.

Both problem (1.5 and (1.8)) are multi-block convex problems with linear equal-

ity constraints, which have the following general formulation:

min { imu» | Z%u =}, (1.9)

where U;,© = 1,--- ,n, is a finite dimensional real Euclidean space equipped with
an inner product (-, -) and its induced norm || - ||, ¢; : U; — (—o0, +0o0] is a closed
proper convex function, H; : X — U; is a linear map and ¢ € X is given. Let
o € (0,00) be a given penalty parameter. The augmented Lagrangian function for

problem (1.9) is defined as follows: for any (u1,...,u,) € Uy X -+ X Uy,

' B n n . o n . ,
Eo(ulw'wunyx) T Zzl¢z<uz) + <.f1}', zZIqu’L - C) + 5”;%@“@ _C” :



1.1 Literature review

One classical method to solve ((1.9)) is the augmented Lagrangian method [311, [67, [73].
Given an initial point v? € dom(¢;), i = 1,...,n, and 2° € X, the augmented

i

Lagrangian method consists of the following iterations:

(u’f“,--- uk“) = argminﬁa(ul,---,un;xk), (1.10)

ro'n

n
o* = aF 4o E Hiul ™ — ),
i—1

where 7 € (0, 2) is the steplength. The augmented Lagrangian method is very attrac-
tive since it enjoys the fast linear convergence property when the penalty parameter
o exceeds a certain threshold. However, it is generally difficult and expensive to solve
the inner problem exactly or to high accuracy due to the coupled quadratic
term interacting with several nonsmooth functions in the augmented Lagrangian
functions. Regarding the difficulties in solving the inner problem ((1.10]), one may

want to design algorithms that take advantage of the composite structure of ([1.10)).

When n = 2, the classic alternating direction method of multipliers introduced
by Glowinski and Marroco [25] and Gabay and Mercier [23] can be applied to solve
. In each iteration, it solves u; and uy alternatively and then update the mul-
tiplier z. From the computational aspect, this is appealing since solving the two
variables u; and uy one by one is easier than solving them simultaneously. The con-
vergence of 2-block ADMM has been studied in [25, 23], 26l 19, 22] and references
therein. Observing the efficiency of the classic ADMM for solving certain 2-block
separable problems, it is natural to think of extending it to the multi-block setting.
Wen et al [84] give a directly extended ADMM solver (called SDPAD in [84]) for
solving doubly nonnegative SDP (DNN-SDP) problems. From the numerical aspect,
the code is competitive compared with some other convergence guaranteed meth-
ods such as 2EBD-HPE in [44] and a convergent alternating direction method with
Gaussian back substitution proposed in [28]. However, the convergence of the direct
extension of ADMM to multi-block case remains unclear for a long time. Recently,
Chen, He, Ye and Yuan [13] show that the direct extension of the ADMM to the case

of a 3-block convex optimization problem is not necessarily convergent. This fact
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urges researchers to put forward convergent guaranteed yet efficient algorithms for
solving the multi-block problem (1.9). Sun, Toh and Yang [72] propose a convergent
semi-proximal ADMM for convex programming problems of three separate blocks
in the objective function with the third part being linear (ADMM3c). Compared to
the directly extended ADMM-type methods, whose convergence is not guaranteed,
the ADMM3c only requires an inexpensive extra step per iteration and numerical
experiments in [72] show that ADMM3c has superior numerical efficiency over the
directly extended ADMM. Li, Sun and Toh [39, 40] and Li [3§] propose a symmetric
Gauss-Seidel technique and design the symmetric Gauss-Seidel iteration based semi-
proximal ADMM (sGS-sPADMM). The sGS-sPADMM is a convergent ADMM-type
method and is capable of solving large scale convex quadratic conic programming
problems, including quadratic programming problems and quadratic semidefinite
programming problems. Chen, Sun and Toh [14] propose an inexact multi-block
ADMM-type first order method for solving a class of high-dimensional convex com-
posite conic optimization problems. The cost for solving the involved subproblems
can be greatly reduced with some inexactness and the efficiency is shown by numer-
ical experiments on a class of high-dimensional linear and convex quadratic SDP

problems with a large number of linear equality and inequality constraints.

Our model also includes the log-determinant programming [82] and the maximal
entropy problem [83] as special cases. Wang et al in [82] study the log-determinant

optimization problem as follows:
min{(C, X) — plogdetX | A(X) =b, X > 0},
and its dual
max{b’y + plogdetZ + nu(1 —logpu) | Z + A*y = C, Z = 0}.
Later, the following maximal entropy problem:

min{(C, X) + u(Xlog X — X, I) | A(X) =b, X = 0},
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and its dual
max{(b, y) — (I, ¢?) | Z+ Ay = C, Z = 0},

is considered by Wang and Xu in [83].

All the aforementioned problems are special cases of our model , with the
nonlinear constraint g(x) € K being vacuous, and as a result, the methods specifi-
cally designed for solving these special cases are not applicable when applied to our
general nonlinearly constrained convex composite conic programming model .
Therefore, it is natural for us to think one step further, i.e., to design an efficient

algorithm for solving model (|1.1)) which has the nonlinear constraint g(X) € K.
Sun and Zhang [75] consider the following quadratically constrained quadratic
semidefinite programming problem

1
(X, QoX) + (Bo, X)+co

min go(X) = 5
1
2

st q(X) (X, QX))+ (B;, X)+¢, <0, i=1,---,m, (1.11)

X e 87,
where Q; : 8" — S8™,i = 0,1,--- ,m, are self-adjoint positive semidefinite linear
operators, B; € S" and ¢; € R, 7=0,1,--- ,m are given data. This model is again a
special case of our model with the f(-) part vanishing, 6(-) being the indicator
function of S, ie., 6(-) = dsr (") and g(z) € K now representing the quadratic
constraints. A modified alternating direction method is proposed in [75] for solving
problem . To deal with the quadratic constraints, they introduce the following

artificial constraints
;=X and Q;={Y;:q(Y;)) <0,Vi=1,--- ,m}.
Problem (1.11)) then can be equivalently rewritten as

min go(X)
st. X =Y, Y,€eQ,i=1,-,m, (1.12)
Xesn
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The modified alternating direction method of multipliers proposed in [75] is in fact
the classical 2-block ADMM applied to the problem

min  (go(X) + ds2 (X)) + 32124 0o, (V7)

(1.13)

st. X=Y,i=1,--- m.
In each iteration of the modified ADMM, in order to compute Y;, i = 1,--- ,m, one
has to compute the projection onto the corresponding €2;, ¢ = 1,--- ,m, while this
computation is not easy sometimes. Specifically, for a single quadratic constraint
%(X , ©:X) 4+ (B, X) 4+ ¢; < 0, one may encounter severe numerical difficulty in
the high-dimensional setting. Additionally, if the quadratic constraints in ([1.11]

degenerate to linear inequality constraints, it is then much better to identify these

linear constraints.

To the best of our knowledge, the convex composite optimization problems with
nonlinear constraints have not been studied in depth. One can not directly apply
the aforementioned algorithms to the model . In this thesis, we aim to fill this
gap by providing an efficient method for solving .

1.2 Contributions of the thesis

In this thesis, we focus on solving a class of multi-block convex optimization prob-
lems with nonlinear constraints. We are especially interested in the large scale
semidefinite programming problems. Observing that most of the work concerning
semidefinite programming only deals with the linearly constrained case, in real ap-
plications, however, one may need to face some nonlinear constraints, say quadratic
constraints. In this thesis, we intend to give an efficient method that can solve the

nonlinearly constrained composite convex problem to a moderate accuracy.
To gain some guidance on this topic which has not yet been studied in depth,
we first compare some existing first order methods on linear semidefinite program-

ming problems. Through the numerical experiments, we are asserted that applying
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the ADMM-type method to the dual problem is a better choice for the linear SDP
problems. In order to obtain optimal solutions of large scale SDP with high accu-
racy efficiently, we also propose an approximate semismooth Newton-CG method
to solve the inner problems involved in the augmented Lagrangian algorithm. Our
approximate semismooth Newton-CG method only needs part of the second order

information while it can still enjoy fast local linear rate convergence.

Based on the experience from the numerical results of methods for solving large
scale linear SDP problems, we try to solve the nonlinearly constrained convex com-
posite conic programming model through its dual. A symmetric Gauss-Seidel based
inexact ADMM with indefinite proximal terms is put forward for solving the dual
of our targeted model. Concerned with the difficulties introduced by the nonlinear
constraints, we study the subproblems corresponding to the nonlinear constraints.
Despite the fact that these subproblems generally do not have an explicit formula-
tion and the subgradients of the objective in these subproblems can hardly be cal-
culated, we give checkable criteria on the inexactness for solving the subproblems.
Global convergence and iteration complexity results of our proposed algorithm are
established. Computational experiments on a variety of semidefinite programming
problems with quadratic constraints are conducted. The numerical results show
that our proposed algorithm is very efficient in solving quadratically constrained
semidefinite programming problems and is capable of handling both the linear and

nonlinear constraints.

1.3 Organization of the thesis

The remaining parts of this thesis is organized as follows. In Chapter[2, some prelim-
inaries that are essential for the subsequent discussions are provided. In particular,
we present some important properties of convex functions and the Moreau-Yosida
regularization. The inexact block symmetric Gauss-Seidel technique is also intro-

duced. In Chapter [3, we review several first order methods designed for solving
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large scale linear SDP problems and compare the numerical performance of these
methods. We also propose an approximate semismooth Newton-CG augmented La-
grangian method for solving large scale SDP problems. In Chapter [4, we consider
the convex composite conic programming problem with nonlinear constraints. An
inexact (indefinite) proximal ADMM with symmetric Gauss-Seidel iteration for solv-
ing the dual of our targeted nonlinearly constrained convex composite optimization
problem is proposed. We discuss in details on solving the subproblems related to the
nonlinear constraints. Convergence of our proposed algorithm is analyzed and global
convergence and iteration complexity results are presented. We verify the efficiency
of our proposed algorithm through numerical experiments on various quadratically
constrained convex QSDP examples. Finally, we conclude this thesis and point out

several future research directions in Chapter [5



Chapter

Prelimilaries

In this chapter, we present some basic concepts and preliminary results that are

essential for the subsequent discussions.

2.1 Notations

Let X and ) be finite dimensional real Euclidean spaces each endowed with an
inner product (-,-) and its induced norm || - ||. Let M : X — X be a self-adjoint
positive semidefinite linear operator. Then, there exists a unique self-adjoint positive
semidefinite linear operator, denoted as M%, such that M2 Mz = M. For any
z,y € X, define (z, ) == (z, My) and ||z||r == +/(x, Mz) = | Mzz|. Moreover,
for any set S C X, define dist(z, S) := inf,cg ||z —2'||. Then, for any z,2",y,y € X,

(Il + yllia = el = Iyl » (2.1)

N | —

1
(o y)m =5 (2l + gl = llz = ylli) =
2 2 1 2
1231 + 191130 2 51z = yll, (2.2)

(Il + gl + 12"+ 915 = e+ 9 15 = 12" + i) - (23)

N —

(@ =2 y—y)y=

Let 8™ be the space of n X n symmetric matrices and S be the cone of positive

semidefinite matrices in S". For a matrix X € 8™, we use the notation X > 0 to

11
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denote that X is a nonnegative matrix, i.e., all entries of X are nonnegative. We use

the notation X > 0 to denote that X is a symmetric positive semidefinite matrix.

Let K be a closed convex cone, we use K* and K° to denote its dual cone and

polar cone [63, Section 14], respectively.

2.2 Convex functions and the Moreau-Yosida reg-

ularization

In this section, we present some basic concepts in convex analysis and introduce the

Moreau-Yosida regularization which is critical for our subsequent analysis.

Definition 2.1. Let f : X — (—00,400] be a closed proper convex function. The
(one side) directional derivative of f at € X with f(x) being finite along a direction

h € X is defined to be the limit

Flash) = g 1O = S)

if it exists. A vector x* € X is said to be a subgradient of f at a point x if
f(z) > flz)+ (2", z—1x), VzeX.

The set of all subgradients of f at x is called the subdifferential of f at x and is
denoted by Of(x).

For the subgradient, the following results are well known [63].

Proposition 2.1. Let f : X — (—00,+00] be a convex function. Then the following

properties hold.

(i) If f is proper, then ri(domf) # 0, and Of(x) is nonempty for any x €
ri(domf). Furthermore, Of(x) is nonempty and bounded if and only if x €
int(domf), the interior of domf.



2.2 Convex functions and the Moreau-Yosida regularization 13

(ii) If f is closed and proper, then the infimum of f over X is attained at x if and
only if 0 € Of (z).

(iii) If f is closed and proper, then the subdifferential operator Of is upper semi-
continuous, i.e., for any v® € Of(zF) with v* — v and 2* — x, it holds that

vedf(x).

(iv) If f is proper, then the subdifferential operator Of is monotone, i.e., for any
x,y € X such that Of(x) and Of(y) are nonempty, it holds that (x—y, u—v) >
0 for allu € 0f(x) and v € Of(y).

Definition 2.2. Let f be a closed convex function on X. The Fenchel conjugate of

f is defined by
[ (@) =sup{(2/, z) — f(x) 2 € X}, 2 eX.
The support function of a convex set C' € X is defined by
0o(2")y =sup{(2’, x) :x € C}, 2'eX.

For the conjugate of a convex funtion, the following equivalent conditions [63]

are useful .

Proposition 2.2. Let f be a closed proper convex funtion on X. For any x € X,

the following conditions on a vector x* € X are equivalent to each other:

(i) f(z)+ f(z") = (@, 27);
(ii) 2* € Of (x);
(i) z € Of*(x*);
(iv) (z, 2") — f(z) = max.ex{(z, 2") — f(2)};
(v) (@, 2%) — f*(2*) = maxzea{(z, 2*) — f*(2")}.
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Definition 2.3. We say F': X — Y is directionally differentiable at z € X" if

exists

for all h € X and F is directionally differentiable if F' is directionally differentiable

at every r € X.

Let F': X — Y be a locally Lipschitz function. By Rademacher’s theorem [69]
Section 9.J], F' is Fréchet differentiable almost everywhere. Let Dp denote the set of
points in X where F is differentiable. The Bouligand subdifferential of F' at z € X
is defined by

OpF(z) = { lim F'(2%), 2% € DF} :

where F'(z) denotes the Jacobian of F' at x € Dp. Then the Clarke’s [15] generalized
Jacobian of F' at x € X is defined as the convex hull of dgF(x), i.e.,

OF (z) = conv{0gF(z)}.

By Lemma 2.2 in [60], we know that if F' is directionally differentiable in a neighbor-
hood of x € X, then for any h € X, there exists V € OF(x) such that F'(z;h) = Vh.
The following concept of semismoothness was first introduced by Mifflin [43] for

functionals and then extended by Qi and Sun [60] to vector-valued functions.

Definition 2.4. F' is said to be semismooth at x if
1. F'is directionally differentiable at x; and
2. for any h € X and V € OF (z + h) with h — 0,

F(z+h) — F(z) — Vi = o(||h]).

Furthermore, F' is said to be strongly semismooth at x if F' is semismooth at z and

for any h € X and V € 0F(xz + h) with h — 0,

F(z 4+ h) — F(z) — Vh = O(||h]]?).
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Next, we introduce the Moreau-Yosida regularization, which is a useful tool in

our subsequent discussions.

Definition 2.5. Let f : X — (—o00,+00] be a closed proper convex function and
M X — X be a self-adjoint positive definite linear operator. The Moreau-Yosida

regularization gpfvl : X — R of f associated with M, is defined as

oha(a) =min { f(2) + gz~ alyy}, wex (2.4)

From [35], we have the following proposition.
Proposition 2.3. For any x € X, problem (2.4]) has a unique optimal solution.

Definition 2.6. The proximal mapping of f associated with M, Proxf\/l X = A,
is defined by

1
Prox),(z) := argmi)rfl {f(z) + 5“2 — xH.QM}, reX.
zE
Proval (x) is called the proximal point of x associated with f and M.

The proximal mapping Proxfw(-) has the following properties [35].

Proposition 2.4. Let f : X — (—o0,+0o0] be a closed proper convex function and
M be a self-adjoint positive definite linear operator. Let gofw(x) be the Moreau-
Yosida reqularization of f and Proxfw be the associated proximal mapping. Then
the following properties hold.

(i) argmingey f(x) = argmingey ‘va( ().

(ii) Let I : X — X be the identity map. Both Proxfw and vat =1 - Provat are

firmly non-expansive, i.e., Vr,y € X,

IProxiy, (2) — Proxl,(y)llie < (Prox)(z) — Proxiy(y), « = y)um,
QM () = QMR < (QMu(@) = QM(Y), & —y)um.

Consequently, both Proxfw and wa are globally Lipschitz continuous.
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(iii) 905\4 is continuously differentiable. Furthermore, it holds that
Vol (x) = M(z — Prox)(z)) € df (Prox),(z)).

Theorem 2.5. (Moreau Decomposition [63, Theorem 31.5]). Let f : X — (—o00, +0]
be a closed proper convex function and f* be its conjugate. Let M : X — X be a

self-adjoint positive definite linear operator. Then any x € X has the decomposition
x = Prox), (z) + M_lProxf\;,l(Mx).

By Theorem [2.5/and the definition of the Fenchel conjugate, we have the following
proposition which provides some useful properties of the Moreau-Yosida regulariza-

tion of f*(-).

Proposition 2.6. Let f : X — (—o0,+00| be a closed proper convex function, f*
be the Fenchel conjugate of f and M : X — X be a self-adjoint positive definite

linear operator. Define

U(e) o= min { f*(~s) + %Hs ~aly), wex

seX

Then it holds that
1
(i) st :=argmingy {f*(—s) + §||s - x||3\/t} =z+ /\/lflPrOXfM,l(—/\/lx).
(i) Vi(z) = M(x —sT) = —Proxfw_l(—/\/lx).
Proof. (i) The equation can be obtained from Theorem directly.

(ii) From Proposition [2.4] (iii) and Theorem we can get the equation.

2.3 An inexact block symmetric Gauss-Seidel it-

eration

In this section, we introduce the inexact block symmetric Gauss-Seidel (sGS) tech-

nique proposed by Li, Sun and Toh [40]. The sGS is very useful in designing efficient



2.3 An inexact block symmetric Gauss-Seidel iteration

and convergent algorithms for multi-block convex optimization problems.

Let s > 2 be a given integer and X := &} Xx Xy X -+ X X, where X, i =1,...,s
are finite dimensional real Euclidean spaces. For any x € X, x can be written as
x = (r1,T9,...,2s) witha; € X, i =1,...,s. Let @: X — X be a given self-adjoint

positive semidefinite linear operator. Consider the following block decomposition

On Qi - Qi T

Ox Qly Qap -+ Oy T

Ts Q;S ot st L

and denote U : X — X as

0 Qi - Q1 I
Ux = ' ,
c Qs—l,s :
0 T
where Q;; : X, — A, © = 1,...,s are self-adjoint positive semidefinite linear
operators, Q;; : X; — A&;, i« = 1,...,5s — 1, j > 4 are linear maps. Clearly,

Q = U+ D+ U where Dxr = (Qq121, ..., Qssxs). Throughout this section, we

assume that Q,;, i = 1,...,s are positive definite.

Let h : X — R be a convex quadratic function defined by
1
h(l’) = 5(5(7, QI>_<T7 I>, Z‘EX,

where r = (r1,79,...,75) € X is given. Let p : X} — (—o00, +00| be a given lower

semi-continuous proper convex function. Define
T<ii= (21,29, ..., ), T>i = (TiTig1,...,Ts), 1 =0,...,5+1,

with the convention that r<g = x>.11 = 0.

Suppose that 51, 67 € X, i=1,...,sare given error vectors, with &, = 0. Denote
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o= (by,...,0,) and 6+ = (6;,...,6F). Define the following operator and vector:
T = UD'U*,
A(6,6%) = 6T +UDTI(6T —9). (2.5)
Let z € X be given. Define
o = argmin {p(e:) + h(x) + 5l — 7% — (AG,5Y), )} (2.6)

In order to make their Schur complement based alternating direction method of mul-

tipliers [39] more explicit, Li, Sun and Toh [40] introduce the following proposition.

Proposition 2.7. Assume that the self-adjoint linear operators Qu;, i =1,...,s are

positive definite. Let * € X be given. Forv=s,...,2, define z; € X; by

A

T; = arg rrglgiin{p(:il) + h(Z<iz1, @iy T>i41) — (03, i) }
= Qu'(ri+ 6 — QT — Y01 Qiy). (2.7)
Then the optimal solution x* defined by can be obtained exactly via
af = argming, {p(z1) + h(z1,322) — (0], 1)},
xf = argming, {p(ay) + h(ed; 1,25, T5i01) — (6,7, i)} (2.8)

— i—1 ~x s I .
= Qu'(ri+ 6 — Zj:l jS:cj - Ej=i+1 Qijij), 1=2,...,s.
Furthermore, H := Q +T = (D +U)D~Y(D + U*) is positive definite.

The following proposition will be useful in calculating the bound of error.
Proposition 2.8. Suppose that H := Q+ T = (D +U)D (D + U*) is positive
definite. Let € = |H~/2A(0,07)|. Then,

E= D7V = 8) + DA+ U < IDTVEET = 0)|| + ([H V3.
Remark 2.9. Though put in the objective of minimization problems in (2.7) and
(2.8), the error vectors & and ;" are not given in prior but generated once the
approximate solutions are computed. In fact, Z; and x] can be interpreted as

approximate solutions to the minimization problems (2.7) and (2.8) without the

terms involving ¢; and 5
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A numerical study on algorithms for large

scale linear SDP

Let 8™ denote the space of n x n symmetric matrices and S} denote the cone of
positive semidefinite matrices in ™. The standard linear SDP problem takes the

following form:
min {(C, X) | AX =b, X € S}}, (3.1)

where C' € §™ and b € R"™ are given data, A : §™ — R™ is a given linear map, (-, )
denotes the trace inner product of two matrices, i.e., (C, X) = trace(CT X). Let A*
denote the adjoint of A. The dual problem associated with the standard linear SDP
(3.1) can be written as

max {(b, y) | A'y+S=C, SeS8}}. (3.2)

The standard linear SDP problem (3.1)) and its dual (3.2) have been studied by
groups of researchers [10, 1T}, 30} 61], 90] and there are a variety of algorithms designed

for solving them.

Notice that problem (3.1]) is a special case of our model (|1.1]). Since our nonlin-
early constrained convex composite conic programming model is rather complex, as
the first step of our research, we want to look into this special case to see whether

we can get any guidance from this fruitful field.
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In this chapter, we first review some of the first order methods for solving stan-
dard linear SDP problems and then conduct numerical experiments to evaluate the
performance of these methods. We briefly discuss several methods in this chapter,
including the spectral bundle method [30, 29], the low-rank factorization method
[10, 11], the semi-proximal alternating direction method of multipliers [23], 25] 211 [72]
and the first order method proposed by Renegar in [61]. We choose to study these
methods not only because some of them have been proved to be very efficient for
large scale semidefinite programming problems, more importantly, each of the four
methods is based on a different reformulation of the standard linear SDP . This
experience will be helpful in designing an efficient algorithm for solving our targeted

model.

Besides the discussions on the first order methods, we propose an approximate
semismooth Newton-CG augmented Lagrangian method for solving large scale linear
SDP problems. We focus on solving the inner problems involved in the augmented
Lagrangian method for the dual problem . The convergence of the approxi-
mate semismooth Newton-CG method is analyzed and linear rate convergence is
established. We also conduct numerical experiments to verify the efficiency of the

proposed algorithm on large scale SDP problems.

3.1 A review on first order methods for large scale

linear SDP

In this section, we review some first order methods for solving large scale linear SDP

problems.

3.1.1 A spectral bundle method for SDP

The spectral bundle method is proposed by Helmberg and Rendl [30] for a special

class of SDP problems, that is, the trace of the primal variable matrix X is fixed.
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First, the linear SDP problem is reformulated to an equivalent eigenvalue
optimization problem (EOP). Then, the proximal bundle method for nonsmooth
convex programming is used to solve the resulted EOP. The convergence of the
algorithm follows from the convergence of the proximal bundle method by Kiwiel
[34] directly.

In [30], the following SDP problem is considered:
max {(C, X) | AX =b, trace(X) =a,X € S}}, (3.3)
where a € R is some positive constant. Its dual has the format
min {aX+ (b, y) | Z=A'y+ X - C, Z € S}}. (3.4)

Since a > 0, any feasible X satisfies X # 0. From the fact that for any optimal
solution X* of and optimal solution (y*, Z*) of (3.4), (X*, Z*) =0 and Z* = 0,
we have that any optimal Z* is singular, therefore Apa.x(—2) = 0. Thus A =
Amax(C — A*y). In this way the dual problem can be reformulated as the

following eigenvalue optimization problem:
min {g(y) 1= adnax(C' = A%y) + (b, y) [y € R}, (3.5)

which is an unconstrained convex, nonsmooth optimization problem. Standard non-
smooth methods for convex programming can be used to solve this problem. In [30],
the proximal bundle method is applied to problem . Without loss of generality,
in the following discussions, we assume a = 1.

Define the set W to be W = {WW € 8" | W = 0,trace(W) = 1}, then W is a
closed convex set and Apax(-) = max {(W, -) | W € W}. Thus, we have

9(y) = max {L(W,y) := (€ = Ay, W) + (b, y)}, (3.6)
and the eigenvalue optimization problem (3.5) can be equivalently written as

min max {L(W,y) = (C = A"y, W) + (b, »)}- (3.7)



22

Chapter 3. A numerical study on algorithms for large scale linear SDP

It can be observed that the lower approximation of g can be obtained by restricting
W to be contained in some subset of WW. In their paper [30], Helmberg and Rendl

use the following subset in the spectral bundle method
W = {aW + PVPT | a+trace(V) =1, a >0, V = 0}, (3.8)

where P € R™" is an n x r matrix with orthonormal columns, and W € S™ is a
positive semidefinite matrix with trace 1. Clearly, the set W is a closed convex subset
of W. By using this kind of subset, a non-polyhedral semidefinite cutting surface
model is constructed. The problem then becomes solving a series of unconstrained
convex problem

min {g(4) = max L(W,) [y € %7 | (39)

wew

In [30], proximal point idea is used in minimizing §. Consequently, in each iteration,

one needs to solve the following subproblem:
{ ; Iwew
max (O, W) + (b — AW, y) — S| AW —b|]* | W € w} : (3.10)

By the definition of W, problem (3.10)) can be viewed as a linearly constrained
quadratic semidefinite programming problem, with the variable being a r x r matrix
and a scalar instead of an n x n matrix. For given matrices W and P, define the

linear operator B: 8" x R — S™ as
B([V;a]) = aW + PV PT,
then problem (3.10]) can be written as

1 ~  ~ o~
min —(V, QV) + (C, V)
20 - (3.11)

st. (V. D=1, V=0
where Q(-) := oB*A*AB(-), C = B*(A*y — 0 A*b — C), I € 8" x R is the identity
mapping, and the variable Vo= [V;al. This quadratic semidefinite programming

problem has much smaller size (the variable Ve S x R) than the original SDP

problem (with variable X € &™) and it has only one linear equation constraint.
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The computational cost of the spectral bundle method mainly depends on two
parts, one is computing the largest eigenvalues of the symmetric n x n matrix (C' —
A*y) and the other one is solving the subproblem (3.11). In [30], the subproblem
(3.11)) is solved by interior point method, while if a larger bundle size is desired, one
may consider applying the accelerated proximal gradient (APG) method [4] to the
subproblem (3.11)) instead.

The spectral bundle method always gives feasible dual solution. Meanwhile, the
optimal solution W* of the subproblem can be interpreted as an approximate
primal solution. In fact, the proximal spectral bundle method proposed by Helmberg
and Rendl [30] can be interpreted as an augmented Lagrangian method applied to
the primal problem , with restricting the primal variable to be in some subspace
of set W and letting the subspace be successively corrected and improved till the

optimal subspace is identified.

The spectral bundle method in [30] is then extended by Helmberg and Kiwiel

[29] to handle linear SDP problems with both equality and inequality constraints.

3.1.2 The low-rank factorization method

From the fact that a matrix X € R™*" is symmetric positive semidefinite if and only
if X = VVT for some matrix V € R"*", one can reformulate the standard linear

SDP problem (3.1 as the following nonlinear programming problem:
min {(C, VVT) | AVVT) =b, V € R}, (3.12)

Various algorithms [33], @, [12] are proposed to solve this reformulated problem. In-
stead of using the n x n matrix V, Burer and Monteiro [10] present a variant but
similar reformulation. They factorize the symmetric positive semidefinite variable
X by X = RRT where R € R™*" with some positive integer r < n, and yield the

nonconvex problem

min {(C, RR") | A(RR") =b, R€ R""}. (3.13)
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The advantage of this reformulation is that if r is much smaller than n, the formula-
tion will have much fewer variables than (3.12). Hence, less space for storage
and faster speed of the method can be expected. Note that {RRT | R € ™"} is
only a subset of S7. One question is that whether an optimal solution R* of
yields an optimal solution R*(R*)T of the linear SDP (3.1]). Fortunately, this can

be guaranteed by the following result due to Barvinok [3] and Pataki [55].

Proposition 3.1. ([3, Theorem 1.3], [55, Theorem 2.1]). If the feasible set of the
linear SDP problem (3.1) contains an extreme point, then there exists an optimal
solution X* of (3.1)) with rank r satisfying the inequality r(r + 1) < 2m.

By Proposition , if r is chosen to be some integer satisfying r > [v/2m], an
optimal solution R* of will give an optimal solution R*(R*)” of (3.1). Burer
and Monteiro [10] then apply the augmented Lagrangian method to solve problem
. Let 0 > 0 be a given penalty parameter. For a fixed r, the augmented
Lagrangian function of problem is defined as follows: for any R € R"*",
y e R™,

Lo(R:y) = (C. RR") + (y, b— A(RR")) + S A(RR") — 0],

In [10], the inner problem involved in the augmented Lagrangian method is solved by
the limited memory BFGS method. For a fixed r, this low-rank factorization with
augmented Lagrangian method can also be viewed as the augmented Lagrangian
method applied to the primal SDP problem (3.1]) with restricting the primal variable
X to be in the subset S%(r) := {X € S} : rank(X) < r} of S7. The subset S7(r)
is nonconvex for r € [1,n — 1]. Since is nonconvex, it is unclear whether
every local minimum of is a global minimum. Burer and Monteiro [I1] prove
the optimal convergence of a slight variant of the algorithm. The modification is
by adding a small term pudet(RTR) to the augmented Lagrangian function, where
parameter p > 0 and goes to zero progressively. In pracical computing, Burer and

Monteiro [10] [T1] still use the algorithm in [I0]. Despite the fact that the nonlinear
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problem ({3.13)) is nonconvex, numerical experiments in [10] show that the algorithm

always converges to the optimal value of (3.1]).

The low-rank factorization method can be extended to deal with linear SDP
problems with inequality constraints by introducing a slack variable v € R™ and

rewriting the inequality constraints A; X > b; as
A X —v=>b;, v>0. (3.14)

However, it’s not clear whether this is the best way to incorporate the inequality
constraints into the low rank algorithm. The low-rank factorization method has
been implemented by Burer et al., in the code SDPLR which is available at the

website http://dollar.biz.uiowa.edu/~sburer/files/SDPLR-1.03-beta.zip.

3.1.3 Renegar’s transformation

Recently, two first order methods for large scale linear semidefinite programming are
proposed by Renegar [61]. The methods are based on a transformation of the linear
SDP problem . Throughout this subsection, we assume that a strictly feasible
matrix E is known, that is, for problem , a matrix F satisfying AE =b,F > 0
is known. Without loss of generality, one can assume F = I, where I denotes the
identity matrix. Based on the following lemma, Renegar [61] reformulates the SDP

problem into an eigenvalue optimization problem (EOP).

Lemma 3.2. ([61, Lemma 2.1]). Assume SDP (3.1) has bounded optimal value.
The identity matriz I is strictly feasible for the SDP (3.1)). If X € S™ satisfies
AX =0b and (C, X) < (C, I), then Apin(X) < 1.

Let Z(X) be defined as:

I
1 — Anin(X)
The SDP problem ({3.1)) is eqivalent to the following eigenvalue optimization problem
[61, Theorem 2.2]

Z(X) =1+ (X —1I). (3.15)

max { A\min(X) | AX) = b, (C, X) = val}, (3.16)
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where val can be any value satisfying val < (C, I). Denote the optimal objective
value of as val*. If X* solves (3.16), then Z(X*) is optimal for (3.1). Con-
versely, if Z* is optimal for (3.1)), then X* := I + ég;ﬁ—::;li(Z* — 1) is optimal for
(3-16), and Z* = Z(X™).

A NonSmoothed Scheme is proposed for solving the EOP , and the bound
O(1/€?) on the number of iterations is achieved. In paper [61], a projected subgra-
dient method [47] is used for solving (3.16]). The author also proposes a Smoothed
Scheme in this paper, specifically, applying the smoothing technique [48, 49], one
can solve a smoothed version of problem instead.

max { f,(X)] A(X)=0b, (C,X)=wal}, (3.17)

where f,(X) := —pln}_; e~/ > 0 is user-chosen and A (X),..., A\, (X) are
the eigenvalues of X. Nesterov’s first first-order method [47] is used in the Smoothed
Scheme and the bound O(1/¢) on the number of iterations is achieved. From the
theoretical aspect, the transformation is elegant, however, as one may notice, in
practice, the assumption that a strictly feasible matrix F is known may be quite

restrictive. In fact, to find a strictly feasible solution itself can be a hard problem.

3.1.4 The semi-proximal alternating direction method of

multipliers

In this subsection, we briefly discuss the semi-proximal ADMM proposed in [21],
which is a useful extension of the classic ADMM by Glowinski and Marroco [25]
and Gabay and Mercier [23]. Consider the convex optimization problem with the

following separable structure

min  F(y) + G(z)
(3.18)
st. A'y+ Bz =c,
where F' : Y — (—o00,+00] and G : Z — (—o0,+00] are closed proper convex

functions, A : X — Y and B : X — Z are two linear operators, and X, ), Z are
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finite dimensional real Euclidean spaces equipped with inner product (-, -) and its

induce norm || -||. Let F*,G* denote the adjoints of F and G, respectively. The dual

of (3.18)) takes the form of
min{{c, z) + F*(—Azx) + G*(—Bx)}. (3.19)

Let OF and OG be the subdifferential mappings of F' and G respectively. Note that
OF and 0G are maximal monotone [64], there exist two self-adjoint and positive
semidefinite operators X and g such that for all y,y’ € dom(F), £ € OF(y) and
§ e IF(Y),

=& y—v)>lly—vI3, (3.20)
and for all z, 2’ € dom(G), ¢ € 0G(z) and ' € 0G(Z'),
(€= 2=2) 2z =25, (3.21)
The augmented Lagrangian function associated with is given by
Lo(y,z;2) = F(y) + G(2) + (x, Ay + B*z — c) + %HA*y + Bz —c|]?,

where (x,y,2) € X x Y x Z. The semi-proximal ADMM for solving (3.18|) takes

the following form:
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Algorithm sPADMM: A generic 2-block semi-proximal ADMM for solv-
ing (3.18).

Given parameters o > 0 and 7 € (0, +00). Let S and T be two self-adjoint positive
semidefinite, not necessarily positive definite, linear operators on ) and Z, respec-
tively. Input (y°, 2% 2%) € dom(F) x dom(G) x X. For k = 1,2,..., perform the

kth iteration as follows:

Step 1. Compute

) 1
Y = argmin Lo(y, 2 2%) + Slly — I3 (3.22)
Step 2. Compute
1
= argmin £, (v, z;2%) + 5”2 - M7 (3.23)
Step 3. Compute
P = 4 ro (AT 4 B — o). (3.:24)

In the above 2-block semi-proximal ADMM algorithm, the added proximal terms
can help to guarantee the existence of solutions for the subproblems and
(3-23). The proximal terms, together with Xp, X and AA*, BB*, play an impor-
tant role in ensuring the boundedness of the two generated sequences {y*} and {2*}.
Moreover, as demonstrated in [39], the two proximal terms S and T are vital in de-
signing the convergent multi-block ADMM-type algorithm. The following constraint
qualification is needed for the 2-block semi-proximal ADMM:

Assumption 1. There ezists (7, %) € ri(dom F' x dom G) such that A*y+ B*Z = c.

Under Assumption (1} (7, z) is a solution to (3.18]) if and only if there exists a
Lagrangian multiplier z € X such that (z, g, Z) satisfies the following Karush-Kuhn-
Tucker (KKT) system [63]:

Az € —0F(y), Bzre —-0G(z), Ay+BzZ—c=0. (3.25)
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Theorem 3.3. ([39, Theorem 2.1]). Let ¥y and X be the two self-adjoint positive

semidefinite operators defined in (3.20) and (3.21)), respectively. Suppose that the
solution set of problem (3.18|) is nonempty and that Assumption |1| holds. Assume

that S and T are chosen such that the sequence {(y*, 2, z*)} generated by Algorithm
sPADMM is well defined. Then, under the condition either (a) T € (0,(1++/5)/2)
or (b) 7 > (1-4v/5)/2 but S35 (1B (41— 24) [P 7 A+ Boh 1 — ) < o,
the following results hold:

(i) If (y*°, 2, 2) is an accumulation point of {(y*, 2%, %)}, then (y>°, 2>°) solves

(3.18) and x> solves (3.19)), respectively.

(ii) If both Xp +S + 0 AA* and X + T + oBB* are positive definite, then the se-

quence {(y*, 2%, 2%)}, which is automatically well defined, converges to a unique

limit, say, (y>,z%,x>) with (y>°, z>°) solving (3.18) and x> solving (3.19),

respectively.

(i) When the z-part disappears, i.e., problem (3.18]) becomes the following problem:
min { F(y) | A"y = c},

the corresponding results in parts (i) and (ii) hold under the condition either

7€ (0,2) orT>2 buty oo, | A Y = ¢]|? < 0.

3.2 An approximate semismooth Newton-CG aug-
mented Lagrangian method for semidefinite
programming

In the previous section, we review first order methods for solving large scale linear
SDP (3.1)) and its dual (3.2)). The main purpose of the study is that we want to
know which methods are good for providing an approximate solution with moderate

accuracy. However, if a high accuracy is required, these first order methods may
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not be good enough, and one may need to use second order methods to obtain the
high accuracy. Zhao et al [90] and Yang et al [72] use ADMM-type methods to gen-
erate an initial point and then use (majorized) semismooth Newton-CG augmented
Lagrangian method to solve the dual of the SDP or doubly nonnegative SDP. This
approach has been proved to be very efficient in solving both the standard linear
SDP problems and the doubly nonnegative SDP problems. When applying the
semismooth Newton-CG method, full eigenvalue decomposition of an n x n matrix
is required in each iteration for solving the subproblems. From the study of first
order methods, we notice that one may want to avoid doing full eigenvalue decom-
position for big matrices, since it can be time-comsuming for large size matrices (say
n > 5000).

Our consideration is that, can we design an algorithm which needs only a small
part of the second order information while is still efficient and can obtain high
accuracy? Our answer to this question is affirmative. In this section, we propose
an approximate semismooth Newton-CG augmented Lagrangian method for solving

large scale linear SDP problems.

Throughout this section, we assume the following Slater’s condition for (i3.1))
holds:

A: 8" — R™ is onto,

(3.26)
X, € S} such that A(Xy) = b, X, > 0.
Recall that the dual problem (3.2)) takes the following form:
min {—(b, y) | A'y+S=C, SeS}}. (3.27)

For a given o > 0, the augmented Lagrangian function associated with (3.27)) is

given by
Lo(y, $:X) = (b, y) + (X, Ay +5 = C) + Z| Ay + 5= CJ,

where X € &, y € R, S € §t. In [90], Zhao et al use the following inexact
augmented Lagrangian method to solve (3.27). Specifically, given o, y° € R™, for
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k=0,1,..., perform the following steps at each iteration:

(y*, SF) ~ argmin { £, (y, S; X*) |y € R™, S € ST},

3.28
X = XF 4 gy (A + SFH - O), o2

where o, € (0, +00). Note that if (§, S) € arg min {Ls.(y,S; XF) |y e R™, Se S},
~ 1
then S = Ilgn (C' — A"y — =X*). Therefore, in each iteration of the augmented La-
o

grangian method, one needs to solve the following inner problem:
Yy ~ arg min { —(b, y) + EHHSn (A*y + le - O)|? - iHXkH2 (3.29)
yeRm ’ 2o o 20 ’

1

and S**! can be computed by S** = Tlgn (C' — A*y**' — —X*). Here, we need to
o

focus on solving the inner problem ({3.29). For a fixed X, we define

o . 1 1
ply) ==~ (b, y) + 5 g (Ay + ~X = C)|F = 5[ X
o o

©(+) is continuously differentiable and solving (3.29) is equivalent to solving the

following nonsmooth equation:
Vo(y) = Allsy (X +o(Ay = C)) =b=0, yeR™. (3.30)

Since Ilsr (+) is Lipschitz continuous with modulus 1, the mapping V¢ is Lipschitz
continuous on ™. Then for any y € R, the generalized Hessian of ¢(y) is well
defined by 9*¢(y) := (V) (y), where d(V¢)(y) is the Clarke’s generalized Jacobian
[15] of Vi at y. However, it is difficult to express 9%¢(y) exactly, we define the

following alternative for 9%¢(y):
0*ply) = o Adsy (X + o( A"y — C)) A",

where Ollsy (X + 0 (A"y —C)) is the Clarke subdifferential of Ilsy () at X +o(A*y —
). From [I5] p.75], we have that for d € ®™, %¢(y)d C 9%p(y)d.

Denote Y = X + o(A*y — C) € 8™ Suppose Y has the following eigenvalue
decomposition Y = PA,PT where P € R7"*" is an orthogonal matrix whose columns

are eigenvectors of matrix Y, and A, is the diagonal matrix of eigenvalues with the
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diagonal elements arranged in nonincreasing order: A; > --- > \,. Define the

following index sets:
a:={i|NY)>0} a:={i|NY)<O0}
Define the operator W, : " — S" by
W,(H) := P(Qo (PTHP))P', HeS"

where 70” denotes the Hadamard product of two matrices and

Eaa Tad /\z . . _
0= ;T = ,1EQ, ] € aq,
o0 Ai = A

where E,, denotes the |a| X |a] matrix with all elements being 1. By Pang, Sun
and Sun [54, Lemma 11], we know that W, € 9lls: (X + o(A*y — C)). Define the
operator V, : R™ — S™ by

V,d = o A[P(Qo (PT(A*d)P))PT], deR™,

then we have V, = 0 AW, A* € 0%p(y).

For fixed y and given d, one needs all the eigenvalues and eigenvectors of X +
o(A*'y — C) to compute Vyd, while in our approximate semismooth Newton-CG
method, we consider using only part of eigenvalues and eigenvectors of X + o(A*y —
C') to compute W, (H) approximately.

We divide the index set & into two parts: v; and 7,, with elements in v; being
smaller than that in v5. We define the upper triangle part of the symmetric matrix

Q as follows:

1, Vi, j € a,
R 0, Vi,j € a,
Qij - Pis Pi € (Oa 1]7VZ € avj € 71, (331)
by
L YVi€aq,jE .
[ N, EMIET
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Consider the following linear operator WSt — Sn

W(H) := P(Qo (PTHP))PT.
Let D, = Diag(p1,--- ,pjal), then

W(H) = P(Qo (PTHP))PT

(3.32)
= P,PTHP,PF + Wy + W + Wy + WY

where

W, = PaDpPgH<I_PaP§_P’72P’72)>

W2 = Pa(ﬁawz o PgHP72)P72'

We use this approximation when |o| < |@|. From (3.32), it can be observed that
if Y is of low rank, then one only needs the positive eigenvalues and a small part
of the negative eigenvalues and the corresponding eigenvectors (B,, P,,) to compute
W, (H) approximately.

If |a| > |@|, partition the index set «v into two parts: «a; and aw, and let elements
in a; be smaller than that in as. Define the upper triangle part of the symmetric

matrix € as follows:

1, Vi, j € a,
R 0, Vi, j € a,
=9 p; € (0,1],Vi € as,j € @, (3.33)
: Vie o, j € a.

Similarly as in the case |a| < |a|, we can compute W, (H) approximately by using
only a few eigenvalues and eigenvectors of X + o(A*y — C). Define D, = Diag(ps),

then we have

W(H) = P(Qo (PTHP))PT

= H — P((Epxn — Q) o (PTHP))PT (3.34)
= H — (PaP{ HP P + Wi + W] + Wy + W)
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where

Wy = (I — Py PL — PsPs)HP:s(Iiajxja — D,)PY,

a1+ aq a

Wy = Po,(Eiayixja| — Qara) © PL.HPy)Ps.

From (3.34]), we know that if Y is of high rank, then only the negative eigenvalues
and a small part of positive eigenvalues and the corresponding eigenvectors (P,,, Ps)

are needed to compute the W, (H) approximately.
Now for X + o(A*y — C), we define V,, : R™ — 8" as follows

V,d = o A(P(Q o (PT(A*d)P))PT). (3.35)

We can easily get the following proposition:

Proposition 3.4. Iffl € S™ satisfies that @ij >0,Vi=1,--- ,n,g=1,---,n, then

Vy 1s positive semidefinite.
Proof. By noticing
(d. Vyd) = o (PT(A'd)P, Qo (PT(A"d)P)),

we know that as long as Q> 0, (d, %d) > 0 holds, which completes the proof. [J

From our construction of  ((3.31) or (3.33)), we always have Q > 0. Hence

for any y € R™, Vy = 0. We present our approximate semismooth Newton-CG

algorithm as follows:
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Algorithm ASNCG: An approximate semismooth Newton-CG algorithm
for solving problem ((3.29).

Given p € (0,1/2), 7 € (0,1), 7 € (0,1], 71,72 € (0,1), and § € (0,1). Choose
y' € R™. For j =0,1,---

Step 1. Given a maximum number of CG iterations N; > 0, compute

|1+7’).

n; = min(7, | Ve (y')|

Apply the conjugate gradient (CG) algorithm (CG(n;, N;)), to find an approx-

imate solution d’ to
(Vi + e;1)d = =Vely), (3.36)
where V; is defined as in and €; := 7, min{7, [|[Ve(y?)| }.
Step 2. Set a; = §™i, where M; is the first nonnegative integer M for which

oy + Md) < (i) + s (Vo(y), ). (3.37)

Step 3. Set ¢/t =y + a;d.

Note that the only difference between ASNCG and the semismooth Newton-CG
method proposed in [90] is that we use the approximate operator 17j instead of V;
when calculating the Newton direction d in (3.36]). Next, we analyze the convergence

of our proposed algorithm ASNCG.

3.2.1 Convergence analysis

From Proposition , we know that for any j > 0, 17; = 0. As long as Vy(y’) # 0,
the matrix ‘73 + €;1 is positive definite. Similarly as in [90], with the assumption

V(y') # 0 for any j > 0, we have the following proposition:

Proposition 3.5. For every j > 0, the search direction d’ generated by Algorithm
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ASNCG satisfies

Amax (Vi +6,1) = IVe@IP ~ A (Vi + ;1)

where )\max(";;' +¢;1) and )\min(vj +€;1) are the largest and smallest eigenvalues of
I7j + €;1 respectively.

Proposition implies that for any j > 0, &’ is a descent direction. Thus
Algorithm ASNCG is well defined. As same as in [90], we have the following theorem
for the global convergence of Algorithm ASNCG.

Theorem 3.6. Suppose that problem (3.1) satisfies the Slater condition ([3.26)).
Then Algorithm ASNCG is well defined and any accumulation point § of {y’} gen-

erated by Algorithm ASNCG is an optimal solution to problem (3.29)).

Before establishing the rate of convergene of Algorithm ASNCG, we need to
analyze the properties of ‘7] Let ¢ be an optimal solution to problem , S =
g2 (C — A*) — 07" X) and define Y = X + o(A*§ — C). Suppose Y has the
eigenvalue decomposition:

Y =QAQ",
where Q € R"*" is an orthogonal matrix and A = Diag(Aq,...,\,) is the diagonal
matrix with the diagonal elements arranged in nonincreasing order. Define the index
sets:

a:={i| NY)>0}, 4:={i|NY)<O0}

Then, S has the spectral decomposition:

_ 0 0 .
S=Q L | en
0 —=A,
g

Let the linear operator V : #™ — 8™ be defined by

Vd=0cAQ(Q0 (Q"(A'd)Q)Q"), (3.38)

where Q1 € 8" and Q;; = 1,Vi,j € &, Q;; = 0,Vi,j € 4, Q; € (0,1],Vi € &,5 € 4.

We have the following theorem to ensure the positive definiteness of V.
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Proposition 3.7. Assume that the constraint nondegenerate condition
Alin(Tsy (S)) = ®™ (3.39)

holds at S := sy (X + o(A"g — C)), where lin(Tsy (5)) denotes the lineality space
of 7fgi(§) Let V : R™ — S™ be defined by (3.38)), then V is positive definite.

Proof. The proof is similar to that in [2, Proposition 2.7]. However, since we use a

different operator V, we still provide a proof here.

From Proposition , we know V is positive semidefinite. Now we show the
positive definiteness of V. Let d € R™ be a vector such that Vd = 0. Then from
the fact that 1 > Q > 0, we have

0=(d, Vd) =a(QT(Ad)Q, Qo (QT(A*d)Q))

7(Q0 (QT(A*d)Q), Qo (QT(A*)Q)),

v

which implies that Q o (QT(A*d)Q) = 0. Since Q;; > 0,Vi € &, we know that
QT (A*d)Q4 = 0, thus (A*d)Q4 = 0. Therefore, from the definition of lin(Tgi(S\)):

lin(7s;(5)) = {B € 8" | Q¥ BQ; = 0},

we know that A*d € lin(’]fgz(g))L. Since the constraint nondegenerate condition

holds, 3h € lin(7:g¢(§)) such that d = Ah. Hence, it holds that
(d, d) = (Ah, d) = (h, A*d) = 0.

Thus d = 0, which, together with the fact that V is positive semidefintie, shows that

V is positive definite. O

Now from Propositon , we can build the uniform boundedness of {||(V; +
e; 1)1}

Proposition 3.8. Let V; be defined by (3.35), where Q is defined by (3:31)), with

pi > MaX ey, {7 }. Assume that the constraint nondegenerate condition holds at S.

Then {||(V; + ¢;1)~*||} is uniformly bounded.
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Proof. Define the linear operator V; : R™ — 8" by , and replace Q with Q,
where Q is defined as follows:

Eqo DE,.s
(DE,s)" 0

0= : (3.40)

where E,, denotes the |a| X |a| matrix with all elements being 1, E,5 denotes the

la| X |@| matrix with all elements being 1, D denotes the diagonal matrix

D := Diag( ), 1€ .

Ai — A\
Let V be defined by , and the corresponding € is defined as in (3.40]), with o
being replaced by &, & being replaced by 4. Then we have Vj — V, since ¢/ — 4.
We know that V is positive definite from Proposition From the fact Q > Q, we
get \N/j =V, which, together with V; — V and V > 0, implies that {||(1N/j +e, 1)}

is uniformly bounded. 0

Next we discuss the rate of convergence of Algorithm ASNCG.

Theorem 3.9. Assume that problem (3.1)) satisfies Slater’s condition (3.26)). Let

i be an accumulation point of the infinite sequence y’ generated by Algorithm AS-

NCG for solving the inner problem (3.29)). Let XZ be defined by (3.35) with p; >
maX;ey,{7ij}. Suppose that at each step j > 0, when the CG algorithm terminates,

the tolerance n; is achieved, i.e.,
IVe(y’) + (Vi + D) | < n;.
Assume that the constraint nondegenerate condition
3 a9 _ m
Alin(7s» (S)) = R

holds at S := [sn (X + o(A"g — C)), where lin(Tsy (5)) denotes the lineality space
of 7?31(§) Then the whole sequence {y’} converges to 4. If for j sufficiently large,
3p € [0,1), such that (Vs + &) (Vs = Vi)l < p, then for any § € (p,1), for j

sufficiently large, we have

Iy = gll < plly” = 9ll-
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Proof. By Theorem , we know that the sequence {y’} is bounded and § is an
optimal solution to with V() = 0. Since the constraint nondegenerate
condition is assumed to hold at S , U is the unique optimal solution to . It
then follows from Theorem that {y’} converges to . Since Ilsp () is strongly
semismooth [71], it holds that

Vo(y') — V(i) = Vily’ —9) = O(ly’ —4?).

We also have that ||(V; + €;1)7"| is uniformly bounded from Proposition E It

holds that for all j sufficiently large,

7 +d’ — 9|
= |l + (Vi + &) (Vo) + (V; + 1) d) = V() — gl
ly! — 5 — (Vi + 1) V()| + |(V; + 1)
(Vi + ;D)1 (Vi(y' = 9) — Vo))l + 1V + &) I (elly? — 9l +ny)
(Vs + ;D)7 (V; = Vi) (' = 9 (3.41)
IV + DOy = 9112 + ey — g1l + ny)
(Vs + &)~V = Vi) — @)l + O(lly? — glI'+7)
plly’ — gl + O(lly? —gl1™*7)

plly’ =9l

IN A

IA

IA

IA

Therefore, for all j sufficiently large,
y —g=-d +0(|d|) and [&| -0,

and

(Voly') + (V; + )d, d)
el

IV (y?) |11

= IVe(y’) = V@Il
ol AllllA v = glI* |||
O(||d|[>*7).

IN

IN

IN

IA
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Since ||d7|| — 0 and ||(V; +¢;1)]|| is uniformly bounded, there exists a constant § > 0

such that for all j sufficiently large,
—(Ve(y), ) = 8|l d/|>

Since V(+) is semismooth at g, from [53], we have that for € (0,1/2), there exists

an integer jp such that for any j > jo,

oy +d) < oy’) + 1(Ve(y’), &),

which implies that, for all j > jo, ¥’™' = 3/ + &. This, together with (3.41)

completes the proof. O

Remark 3.10. In Theorem [3.9] the linear convergence rate is based on the condition
that ||(Vj+ej[)’1(‘7j—vj)|| < p, for j sufficiently large. This condition can always be
satisfied as long as we compute enough eigenvalues and eigenvectors. In particular, if
we calculate all the eigenvalues and eigenvectors and use V; directly, this condition
holds. If |a| is small, we only need all the positive eigenvalues and one negative

eigenvalue Ay, which has the smallest magnitude among all the negative eigenvalues

A
Ny

j sufficiently large, there exists p € [0,1) such that ||(V; + 1)~ (V; = V;)|| < p.

to make this condition holds. In fact, if we let p; = , for all ¢ € «, then for
Based on Theorem [3.9] one can expect fast linear convergence of the approximate

semismooth Newton-CG method for the inner problems.

3.3 Numerical experiments

In this section, we first report the numerical results of the spectral bundle method
(SPB), the low rank factorization method (SDPLR), Renegar’s first order methods,
including NonSmoothed Scheme (RNS) and Smoothed Scheme (RS), and ADMM for
the standard linear SDP problems . Then, we compare SDPLR and ADMM+
on solving doubly nonnegative SDP problems. In the second part, we report the nu-
merical results of the approximate semismooth Newton-CG augmented Lagrangian

method for solving the standard linear SDP problems.
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3.3.1 First order methods for linear SDP problems

Firstly, we test the first order methods on the standard linear SDP problems. The
test problems are SDP problems arsing from the relaxation of maximum stable set
problems. Given a graph G with edge set £, the SDP relaxation # of the maximum

stable set problem are given by

min (—eel, X)
st (Ey, X)=0, (i,j) €&, I, X)=1, (3.42)
X edSt,

where e € R" is the vector of ones, F;; = eie]T + ejel-T and e; denotes the ith column
of the identity matrix. In our numerical experiments, we test the graph instances GG
considered in [70], ’1], [80].

Before the discussions on the numerical results, a few comments relative to the

numerical results are presented.

First of all, our motivation of doing the numerical comparison between the first
order methods is that we want to find out which methods are good at providing some
initial points and which methods can obtain solutions of moderate accuracy fast.
Considering the motivation, we want the methods to provide both primal and dual
solutions of medium accuracy. However, some of the methods we discussed in section
are not designed for this purpose. In particular, Renegar’s first order methods are
primal feasible methods and only produce primal variables in the computation. The
spectral bundle method is a feasible dual method and is more focused on providing
valid lower bounds for the dual problem . The low-rank factorization method
is a primal method which is designed for generating approximate optimal primal

solutions.

Secondly, some of the methods are not applicable for general linear SDPs and
may have some restrictions in applications. For example, the spectral bundle method
only applies to a special class of SDP problems, that is, the trace of the primal matrix

X is fixed. In Renegar’s first order methods, it is always assumed that a strictly
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feasible matrix E is known in prior while this is not always the case.

Thirdly, since the four algorithms are of great difference, it is hard to give a
unified standard to measure the performance of all the four algorithms. We will
present computational results that compare the methods based on the time needed
to solve the linear SDP and the accuracy they attain. For SPB, SDPLR and ADMM,
we use the KKT conditions as the stopping criteria. In order to adapt the stopping
criteria, we slightly modified the code SDPLR. For SPB, we implement it in MATLAB
and apply the APG method to solve the subproblems. In the test, we apply the
classical 2-block ADMM to the dual problem . Here we test the methods under

various requirements of accuracy.

For ADMM, SDPLR and SPB, we measure the accuracy of an approximate
optimal solution (X, y, S) for (3.1 and (3.2]) by using the following relative residual:

n= maX{nPanDanKanK*anC}7 (343)
where
oA ayrs—c
L+ lof L+
(3.44)
Mgl S xs)
Kc = — 1C* —= AL C = .
1+ [|X]| 1+ 5] L+ (| X][ + ([

In the numerical experiments, we use n < ¢ as the condition of termination, and
we test the cases € = 1072, € = 1073, € = 107%, € = 1075, respectively. Besides
the termination condition 1 < €, we stop ADMM if the number of iterations reaches
25,000 steps; we stop SPB if the number of iterations reaches 5, 000; we stop SDPLR
if np < 107 but nr > e. Moreover, we set the maximum computing time for each
test instance to be 3 hours. In our numerical results, the computation time is in the
format of “hours:minutes:seconds”. Since Renegar’s first order methods RNS and
RS do not generate dual variables during computation, we need some other criteria
to measure the performance of them. Because of this difference, at first, we report

the numercal results of RNS and RS alone.
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Note that for the SDP problem , I € 8™ is strictly feasible as required
in the assmuption of Renegar’s transformation in [6I]. One can apply both the
NonSmoothed Scheme and Smoothed Scheme to solve probelm (3.42)).

The condition for termination given in [61] is by number of iterations based on
iteration complexity results.

Let XY satisfy AX® =0 and (C, X°) < (C, I). Let valy := (C, X°). Let d be a
distance upper bound: a value for which there exists X7, satisfying || X°— X7, || <
d. Let val* be the optimal objective value of (3.1). By [6I, Theorem 4.2], the
NonSmoothed Scheme outputs Z which is feasible for and satisfies

(C, Z) —val” <
(C, I) —val™ — ©

1 (C, Iy —val*
N:=0d+1)=+1 N T T
(9d" + )(e2+ 0g3/2(<0’ [>—val0)>

iterations. From [6I], Theorem 7.2], for the Smoothed Scheme, this accuracy can be

(3.45)

within

attained within

o (1 (C, I) — val’
N :=12vVInnd <€ + logs /4 ((C, I) —val()))

iterations. These upper bounds are used as the stopping criteria in [61]. Note that
this N is related to not only the required accuracy €, but also the optimal value
of the primal and the distance between the initial point and the optimal solution,
which in fact are not known in prior. Regarding our testing purpose, we let the
maximum number of iterations be 50,000 and terminate the algorithms RNS and
RS when the maximum number of iterations is reached.

All our computational results are obtained by running MATLAB on a PC with
24 GB memory, 2.80GHz quad-core CPU.

Table reports detailed numerical results for RNS and RS in solving linear
SDP problems. The accuracy is measured by , where the optimal value val* is
obtained by running ADMM to the accuracy of n < 107%. It can be observed from
Table that with the same number of iterations (50, 000), the Smoothed Scheme
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always outperforms the NonSmoothed Scheme regarding the accuracy they achieve,

except for 1 ‘hamming’ problems.

Table 3.1: The performance of RNS and RS on 6 problems.

obj accuracy time
problem mg;ns RNS | RS RNS | RS RNS | RS
theta6 4375;300 -6.007646e+01 | -6.211937e+01 | 8.90e-02 | 3.55e-02 7:12 | 7:41
theta62 133905300 -2.897335e+01 | -2.955699¢e+01 | 4.22¢-02 | 5.32e-03 7:34 | 8:01
theta8 7905;400 -6.922082e+01 | -7.242072e+01 | 1.06e-01 | 3.44e-02 13:51 | 15:35
theta82 23872;400 -3.336740e+-01 | -3.426811e+01 | 5.40e-02 | 5.33e-03 14:41 | 16:15
thetalO 12470;500 -7.791784e+01 | -8.204702e+01 | 1.15e-01 | 3.44e-02 22:52 | 26:19
thetal02 37467;500 -3.715977e+01 | -3.827713e+01 | 5.95e-02 | 5.49e-03 24:18 | 27:17
thetal03 62516;500 -2.225686e+-01 | -2.251300e+01 | 2.58e-02 | 1.48e-03 26:45 | 30:34
thetal2 17979;600 -8.593251e+01 | -9.097084e+01 | 1.21e-01 | 3.22e-02 35:49 | 40:50
MANN-a27 703;378 -1.246544e+02 | -1.274914e+02 | 1.45e-01 | 9.44e-02 13:14 | 15:40
hamming-9-8 2305;512 -2.238372e+02 | -2.232066e+02 | 9.42e-04 | 4.59e-03 27:59 | 30:54
hamming-10-2 23041;1024 | -9.333387e+01 | -1.021668¢+-02 | 1.13e-01 | 2.91e-03 | 2:15:52 | 2:41:39
hamming-9-5-6 53761;512 -7.192332e+01 | -8.341631e+01 | 2.09e-01 | 2.98e-02 28:42 | 32:59
brock200-1 5067;200 -2.668194e+4-01 | -2.730495e+01 | 5.21e-02 | 1.02e-02 2:59 | 3:01
brock200-4 6812;200 -2.095956e+-01 | -2.124345e+01 | 3.13e-02 | 4.68e-03 3:12 | 3:09
brock400-1 20078;400 -3.833572e+01 | -3.953192e+01 | 6.16e-02 | 7.67e-03 14:34 | 16:14
G43 9991;1000 -2.421583e+02 | -2.615174e+02 | 2.12e-01 | 1.05e-01 | 1:53:13 | 2:17:13
G44 9991;1000 -2.414950e+-02 | -2.615721e+02 | 2.16e-01 | 1.05e-01 | 1:53:09 | 2:17:03
G45 9991;1000 -2.416341e+02 | -2.613756e+02 | 2.13e-01 | 1.04e-01 | 1:53:28 | 2:17:16
G46 9991;1000 -2.420855e+02 | -2.613634e+02 | 2.10e-01 | 1.03e-01 | 1:53:51 | 2:17:15
G47 9991;1000 -2.423640e+02 | -2.624489¢+02 | 2.15e-01 | 1.06e-01 | 1:52:45 | 2:17:31
G51 5910;1000 -2.609559¢+02 | -2.775372e+02 | 3.10e-01 | 2.52e-01 | 1:50:02 | 2:16:23
G52 5917;1000 -2.458167e+02 | -2.738153e+02 | 3.59e-01 | 2.61e-01 | 1:52:31 | 2:19:58
G53 5915;1000 -2.461438e+02 | -2.738168e+02 | 3.61e-01 | 2.64e-01 | 1:52:46 | 2:20:11
G54 5917;1000 -2.571007e+02 | -2.738127e+02 | 3.04e-01 | 2.43e-01 | 1:52:39 | 2:19:59
1dc.512 9728;512 -4.987921e+01 | -5.135355e+01 | 8.31e-02 | 4.42¢-02 27:18 | 29:56
let.512 4033;512 -8.581939¢e+01 | -9.504731e+01 | 2.29e-01 | 1.16e-01 27:04 | 28:14
2dc.512 54896;512 -1.022580e+01 | -1.141692e+01 | 1.85e-01 | 4.22¢-02 29:10 | 31:41
1dc.1024 24064;1024 | -9.071561e+01 | -9.303439e+-01 | 7.32e-02 | 4.10e-02 | 2:14:48 | 2:41:03
let.1024 9601;1024 -1.567018e+02 | -1.698919e+02 | 1.90e-01 | 9.87e-02 | 2:14:15 | 2:37:20
2dc.1024 169163;1024 | -1.605866e+01 | -1.818741e4+01 | 1.81e-01 | 3.17e-02 | 2:20:20 | 2:49:42
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Note that for big problems (n > 1000), the Smoothed Scheme takes more time in one
iteration than the NonSmoothed Scheme. Concerned with this, we give Figure |3.1

to show the performance of RNS and RS on several big instances. In the figures,
we use the circle line to denote RNS and the triangle line to denote RS. Figure [3.1
shows the performance of Renegar’s NonSmoothed Scheme and Smoothed Scheme
for the test instance ‘hamming-10-2’ with respect to the number of iterations and
Figure 3.2/ shows the performance with respect to computing time. Figure to
show the performance with respect to computing time for the test instance ‘G43’,
‘1dc.1024” and ‘2dc.1024’ and ‘2dc.2048’, respectively. We can observe from the
figures that the Smoothed Scheme usually converges faster than the NonSmoothed

Scheme.

Next, we report the numerical results of ADMM, SDPLR and SPB. Table
to 3.5 report the detailed numerical results for ADMM, SDPLR and SPB in solving

standard linear SDP problems with the accuracy from 1072 to 107, respectively.

Table 3.2: The performance of ADMM, SDPLR, SPB on # problems (accuracy
=1072). ‘

n time
problem mg;ns ADMM | SDPLR | SPB | ADMM | SDPLR | SPB
thetad 1949;200 9.5-32.5-3]9.2-3 1.1]1.5]2.5
thetad2 5986;200 7.7-3|4.8-3(9.7-3 0.7]0.8/9.3
theta6 4375;300 8.7-3|4.0-3(9.6-3 2.4/4]3
theta62 13390;300 8.1-3/8.0-3]9.6-3 1.4]1.7|7.2
theta8 7905;400 9.9-32.8-3]9.4-3 4.3]2.911.8
theta82 23872;400 9.7-39.9-3/8.0-3 2.5/2.3|24
thetal0 12470;500 8.1-3/3.0-3/8.9-3 6.9]4.5/21.2
thetal02 37467500 9.8-39.1-3|8.1-3 4.4]4.3|41.2
thetalO3 625165500 9.6-3|9.7-3/8.4-3 2.6/9.2|1:03
thetal2 17979;600 9.5-3]4.1-3/8.8-3 10.3|5.8|52.4

MANN-a27 703;378 7.9-3|5.6-5|7.6-3 7.5(3.4/8.9
$an200-0.7-1 5971;200 9.9-32.4-3|7.1-3 0.9|0.3(3.7
$anr200-0.7 6033;200 7.7-34.1-3/8.5-3 0.5/1.8/6.5
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Table 3.2: The performance of ADMM, SDPLR, SPB on 6 problems .(accuracy

= 1072).

n time
problem mg;ns ADMM | SDPLR | SPB | ADMM | SDPLR | SPB
c-fat200-1 18367;200 9.6-3|4.9-3]4.5-3 0.4(1|2.1

hamming-8-4 11777;256 9.7-3|5.7-3|7.8-3 0.6/0.3]4.3
hamming-9-8 2305;512 9.9-3|3.8-5(6.4-3 21.1/0.7]1.9
hamming-10-2  23041;1024 9.1-3|7.5-4/3.4-3 30.6/3.2|48.9
hamming-7-5-6 1793;128 6.7-32.1-3]5.5-4 0.5/0/0.3
hamming-8-3-4  16129;256 9.9-3|1.4-3|1.4-3 1.10.2/3.8
hamming-9-5-6  53761;512 9.6-36.4-3(6.3-4 4.7)0.61.3
brock200-1 5067;200 9.7-3]5.0-3]9.6-3 0.6]1.1]5.7
brock200-4 6812;200 8.3-3/6.3-3/9.8-3 0.5|1.3]6.7
brock400-1 20078;400 9.4-3|6.2-3]9.7-3 2.8|3.515.8
kellerd 5101;171 9.9-3(6.0-3|8.2-3 0.30.2]4.8
G43 9991;1000 9.9-3|1.9-3(8.7-3 1:07|9.9]52.4
G4 9991;1000 9.2-3]1.6-3/9.5-3 1:07]11.9|37.1
G45 9991;1000 9.4-3(2.2-3]9.0-3 1:12]7.737.2
G46 9991;1000 8.7-319.2-4]9.9-3 1:12|18.3|37.2
G47 9991;1000 9.0-3]2.1-3]9.0-3 1:07|10.8|36.6
G51 5910;1000 9.9-3]1.6-3/8.9-3 1:36|16.5|37.8
G52 5917;1000 9.9-3|2.0-3/9.5-3 1:33]15.8|42.1
Gb53 5915;1000 9.9-3|1.8-3/8.5-3 1:31]14.1|47.2
Gb4 5917;1000 9.8-3]1.3-3]9.9-3 1:33|16.2(28.8
1dc.128 1472;128 9.9-3|3.2-3(9.1-3 0.20.2/5.8
let.128 673,128 9.0-3/2.3-3|7.6-3 0.3/0.4/8
12¢.128 1121;128 9.6-39.0-3|5.6-3 0.2]0.1/6.3
1dc.256 3840;256 9.5-3|2.6-3/8.5-3 1]0.4/6.7
let.256 1665;256 9.8-3/2.2-3]9.3-3 1.24/3.8
1zc.256 2817;256 7.6-3|4.0-3]7.1-3 0.9|0.2/6.4
1dc.512 9728;512 8.9-3|4.0-3/9.8-3 6.7|11.1]27
let.512 4033;512 9.8-3(2.5-3(9.2-3 9.6|2.4/15.2
2dc.512 54896512 9.9-319.6-3(9.0-3 3.2/2.548.7
1dc.1024 24064;1024 9.0-3]4.9-3/8.8-3 38.4]4.6|1:02
let.1024 9601;1024 9.4-3|3.0-3]9.5-3 51.7|15.2]53.1
2dc.1024 169163;1024 8.5-3]9.7-3]9.8-3 14.2|13.2|4:03
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Table 3.3: The performance of ADMM, SDPLR, SPB on 6 problems .(accuracy

=1073).

n time
problem mg;ns ADMM | SDPLR | SPB | ADMM | SDPLR | SPB
thetad 1949;200 9.6-4/6.4-4/8.8-4 1.5[13.7|11.4
thetad2 5986;200 8.8-4|1.3-4/8.2-4 1.2]11.6]19.3
theta 4375:300 9.4-4]9.9-4/8.7-4 3.218.2]18.5
theta62 13390;300 9.9-4/3.5-4]9.9-4 2.4/34.9[32.1
theta8 7905;400 8.5-4]4.1-4]9.5-4 7.2|14|24.8
thetas2 23872;400 9.6-4]2.7-4]7.8-4 5.6|39.8/1:03
thetalO 12470;500 8.6-4|3.3-4]9.3-4 11.2|35.8|2:19
thetal02 37467;500 9.5-4/5.0-4]9.6-4 8.4]5:04/1:48
thetalO3 625165500 7.8-4|4.7-4]9.5-4 4.2|11:16|2:21
thetal2 17979;600 9.2-4|1.8-4/8.4-4 16.2|57.1|1:56

MANN-a27 703;378 7.5-4]5.6-5]9.1-4 13.2|3.2|20.3
san200-0.7-1 5971;200 9.2-4|3.4-5/9.8-4 4.3]0.4/8.3
sanr200-0.7 6033;200 9.5-4/6.8-4]9.5-4 1.2/5.9]15.1

c-fat200-1 18367;200 7.7-4]2.4-4]8.4-4 1225

hamming-8-4 11777256 9.9-4]4.4-4/8.8-4 1.6/0.8/6.9
hamming-9-8 2305;512 9.9-3/3.8-5/8.0-4 54.8)0.7]4.4
hamming-10-2 23041;1024 6.5-4]2.2-4]2.3-4 1:15|4.8|1:14
hamming-7-5-6 1793;128 6.5-4/3.1-4/5.5-4 0.9/0.1/0.3
hamming-8-3-4  16129;256 9.8-4/3.9-4]3.0-5 2.30.4/4.7
hamming-9-5-6  53761;512 7.9-4|1.4-4/6.3-4 17.9|1]1.3
brock200-1 5067;200 9.7-4|4.9-49.2-4 1.2|8]14.5
brock200-4 6812;200 9.8-4/6.1-4/8.9-4 1.2/8]15.4
brock400-1 20078;400 9.7-4]4.5-4]9.4-4 5.6/1:25/41.9
keller4 5101;171 9.1-4/6.0-4]9.5-4 0.7]0.7]11.7

G43 9991;1000 8.9-4]1.4-4]9.4-4 2:03(2:14|2:10

G44 9991;1000 9.1-4/9.1-5(9.7-4 2:03|3:00|1:54

G45 9991;1000 9.2-4|7.6-5/9.2-4 2:04]1:36|1:53

G46 9991;1000 9.7-4|1.8-4/8.8-4 2:08|1:09]2:08

G47 9991;1000 9.6-4]9.9-4]9.6-4 1:49|1:52|1:54

G5l 5910;1000 9.9-4]4.2-5(9.7-4 3:23|4:17|8:42

G52 5917;1000 9.9-4]9.9-4(9.5-4 3:28]4:24(6:26

G53 5915;1000 9.9-4/6.8-5[9.9-4 3:34/8:21|5:07

G54 5917;1000 9.9-4/5.5-5(9.9-4 4:49]2:03|4:49
1dc.128 1472;128 9.8-4/1.9-4]9.5-4 0.9/0.5[43
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Table 3.3: The performance of ADMM, SDPLR, SPB on 6 problems .(accuracy

= 1073).

Table 3.4: The performance of ADMM, SDPLR, SPB on 6 problems .(accuracy

= 1074).

n time
problem mg;ns ADMM | SDPLR | SPB | ADMM | SDPLR | SPB
let.128 673;128 9.4-4|2.8-4]2.5-4 0.6[0.5/35.3
1zc.128 1121;128 9.8-4|4.1-4/8.6-4 0.3|0.2|11.4
1dc.256 3840;256 9.9-4|4.5-4]9.2-4 2.6/5.8/1:03
let.256 1665;256 9.8-4/3.0-4]9.7-4 2.315.231.3
12¢.256 2817;256 7.7-4]1.3-4]8.7-4 1.20.4/17.4
1de.512 9728;512 9.9-4/5.6-4]9.9-4 15.8]3.4]4:24
let.512 4033;512 9.8-4]1.3-4]9.8-4 18.1|17.4|5:34
2dc.512 548965512 9.9-4/6.2-4]9.8-4 14|58.7|6:51
1dc.1024 24064;1024 9.9-4|3.1-4/9.9-4 1:43/20.8|8:48
let.1024 9601;1024 9.6-4/9.9-4/9.8-4 1:40|2:30|31:16
2dc.1024 169163;1024 9.9-4]9.9-4]9.8-4 1:09]25.4|35:50

n time
problem mg;ns ADMM | SDPLR | SPB | ADMM | SDPLR | SPB
thetad 1949;200 8.5-5/9.9-5/9.1-5 1.8]14.7|25.2
thetad2 5986;200 9.7-5|1.2-4|7.4-5 1.6]9.6/29.9
theta 4375;300 8.5-5|9.9-5/9.8-5 4.8[1:04/35.5
theta62 13390;300 8.5-5|3.5-4/9.3-5 3.3(29.6/1:02
theta8 7905;400 8.5-5/4.1-4]9.3-5 9.1|11.5/42.7
thetas2 23872;400 9.9-5[2.7-4/9.9-5 7.5(37|1:42
thetal0 12470;500 9.3-5/3.3-4/8.9-5 15/32.3|4:13
thetal02 37467;500 9.5-5[2.7-5(9.9-5 11.9/6:56]2:52
thetal03 62516;500 8.9-5|4.6-4]9.6-5 5.5|1:14/6:27
thetal2 17979;600 9.6-5|1.7-4/8.3-5 21.6]1:033:20

MANN-a27 703;378 8.6-5/9.8-5/9.8-5 21.7|3.4]34.5
san200-0.7-1 5971;200 9.4-5|9.8-5|7.8-5 10.8/0.7|22.8
sanr200-0.7 6033;200 8.1-5/6.8-4/9.8-5 2.8[8.5/27.4

c-fat200-1 18367;200 8.0-5|3.8-5/8.2-5 1.4]3.5|22.8
hamming-8-4 11777256 9.6-5/6.3-5/8.1-5 2.1|1.516.3
hamming-9-8 2305;512 9.7-5/5.0-6|1.1-5 1:25(1.2|7.3
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Table 3.4: The performance of ADMM, SDPLR, SPB on 6 problems .(accuracy

—=1074).

n time
problem mg;ns ADMM | SDPLR | SPB | ADMM | SDPLR | SPB
hamming-10-2 23041;1024 5.7-5/2.1-5|1.6-5 1:53]11.3|1:42
hamming-7-5-6 1793;128 8.9-5|8.8-5/4.8-6 1.2]0.1|0.7
hamming-8-3-4  16129;256 9.4-5|2.8-5/3.0-5 3/0.6]4.7
hamming-9-5-6  53761;512 9.9-59.4-5|7.1-6 40.4]1.2|2
brock200-1 5067;200 8.3-5|4.8-4|7.8-5 1.77.8|23.8
brock200-4 6812;200 9.9-5(6.1-4/8.8-5 1.7]6.8]29.2
brock400-1 20078;400 9.9-54.5-4]9.6-5 7.8|1:24/1:13
kellerd 5101;171 9.9-5(6.2-5[9.7-5 1.1]1.824.1
G43 9991;1000 9.9-5/9.9-5|8.4-5 2:57|17:13|3:53
G44 9991;1000 9.7-5/9.9-5/9.8-5 3:03|3:23|3:31
G45 9991;1000 9.1-5|6.8-5/8.0-5 3:02|1:52|3:33
G46 9991;1000 9.7-5|9.9-59.9-5 3:02]17:20|3:33
G47 9991;1000 9.2-59.9-5|7.9-5 2:573:52|3:24
G51 5910;1000 9.9-5|9.9-5|3.4-4 5:52|14:01| 2:59:29
G52 5917;1000 9.9-5|9.9-5|1.5-4 7:44|11:49| 2:59:39
G53 5915;1000 9.9-5|9.9-5|3.0-4 7:14|14:20] 2:59:43
Gb4 5917;1000 9.9-5|9.9-5|1.7-4 6:53|17:55| 2:59:56
1dc.128 1472;128 9.9-5/9.9-5/9.6-5 1.6]2.7|1:52
let.128 673;128 9.3-5|2.0-5/7.0-5 0.9/2|1:06
1zc.128 1121;128 9.6-5|9.9-5|6.1-5 0.5]4.3]37.1
1dc.256 3840;256 9.9-5|9.9-5/9.8-5 16/3:03|15:48
let.256 1665;256 9.9-5|7.7-6]9.8-5 5.3|55.7]10:28
12¢.256 2817;256 8.3-5/3.0-5[9.9-5 1.82.3)47.4
1dc.512 9728;512 9.9-5[9.9-5(9.9-5 57.5|44.6| 1:34:28
let.512 4033;512 9.9-5/9.9-5/9.9-5 23.9]32.5(27:22
2dc.512 548965512 9.9-5/9.9-5/9.9-5 33.1/5:55| 2:36:40
1dc.1024 24064;1024 9.9-5/9.9-5/9.9-5 5:53|2:56| 1:44:05
let.1024 9601;1024 9.9-5/9.9-5]9.9-5 2:41]3:53| 1:19:22
2dc.1024 169163;1024 9.9-5|9.9-5|2.4-4 3:09]42:27| 2:59:56
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Table 3.5: The performance of ADMM, SDPLR, SPB on # problems (accuracy
=107°). '

n time
problem mg;ns ADMM | SDPLR | SPB | ADMM | SDPLR | SPB
thetad 1949;200 9.5-6(9.6-6|7.8-6 2.4|16.1]42.6
thetad2 5986;200 9.6-6|1.2-49.7-6 2.1[9.8]40.9
theta 4375:300 9.9-6|9.9-6|7.6-6 4.8]1:36/54.4
theta62 13390;300 8.1-6|3.5-4|7.9-6 4.3]37.7/11:26
theta8 7905;400 8.7-6]4.1-4]6.3-6 11.4|15.6|1:09
theta82 23872;400 8.4-6/2.7-4/6.9-6 9.6|45.3|2:23
thetal0 12470;500 9.6-6/3.3-4]5.8-6 18.8]39.2|5:50
thetal02 37467;500 9.9-6|2.7-5]9.2-6 14.8|11:213:44
thetalO3 625165500 9.1-6|4.6-4]1.4-5 7.5|2:21|27:06
thetal2 17979;600 7.4-6|1.7-4/8.3-6 27.8]2:07|5:30

MANN-a27 703;378 9.9-6|5.5-6/8.7-6 45.3|7]51.8
5an200-0.7-1 5971;200 9.3-6|3.6-5(9.3-6 16.8]0.6/1:22
sanr200-0.7 6033;200 9.8-6/6.8-4|7.5-6 2.1|7.9|39.7
c-fat200-1 18367;200 8.7-6/3.3-6]9.5-6 1.8/13.1/53.7
hamming-8-4 11777256 9.5-6/4.6-6|9.1-6 2.6|3.1]48.3
hamming-9-8 2305;512 9.8-6/1.3-6]2.9-6 1:51|1.4|10.7
hamming-10-2 23041;1024 7.4-6|3.2-6]4.5-6 2:32]17|2:13
hamming-7-5-6 1793;128 9.3-6/3.9-9/4.8-6 1.7]0.2|0.7
hamming-8-3-4 16129;256 9.8-6|7.2-6/6.6-6 3.7|11.26.7
hamming-9-5-6  53761;512 5.5-6|5.6-6|7.1-6 40.72.1/2
brock200-1 5067;200 7.9-6]4.8-4/8.3-6 2.2|13.3|35.7
brock200-4 6812;200 9.9-6/6.1-4]9.7-6 2.1]11.5[46.2
brock400-1 20078;400 9.8-6]4.5-4]9.8-6 9.7]1:50[1:52
keller4 5101;171 9.6-6/4.7-6/8.7-6 1.3/12.8]47.6
1dc.128 1472;128 9.9-6]1.2-7]9.9-6 5.9(2:26/20:10
let.128 673;128 8.2-6/8.7-6/8.5-6 1.1]1.82:17
1zc.128 1121;128 9.7-6/6.4-8|3.8-6 0.7/2.51:11
1dc.256 3840;256 9.3-6/9.9-619.0-6 45.9]2:10|16:42
let.256 1665;256 9.9-6]9.9-6]9.9-6 10.9]4:27|33:26
12¢.256 2817;256 9.6-6/2.6-6/8.8-6 2.1|7.6]2:43
1dc.512 9728;512 9.9-6]4.5-6/5.1-5 2:15(6:17| 2:59:58
let.512 4033512 9.9-6/9.9-6|7.7-5 1:16]1:44] 2:59:52
2dc.512 54896512 9.9-6/5.6-5/9.1-5 2:3540:01| 2:59:44
1dc.1024 24064;1024 9.9-6/1.1-6/6.2-5 7:46(22:18| 2:59:59
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Table 3.5: The performance of ADMM, SDPLR, SPB on # problems (accuracy
=107°). '

n time
problem mg;ns ADMM | SDPLR | SPB | ADMM | SDPLR | SPB
let.1024 9601;1024 9.9-6/9.9-7]3.9-5 8:41|24:52| 2:59:25
2dc.1024 169163;1024 9.9-6]9.9-6]2.4-4 8:50] 1:55:11| 2:59:56

All of the three methods can solve all the test examples to accuracy of 1073, Figure
and Figure[3.8|show the performance profiles of ADMM, SDPLR and SPB for the
tested problems listed in Table and Table with 7 < 1072, 1073, respectively.
We recall that the point (x,y) in the performance profile curve of a method indicates
that it can solve (100y)% of all the tested problems at most x times slower than any
other methods. It can be seen that both ADMM and SDPLR outperform SPB in
terms of computation time. For n < 1072, SDPLR is the most efficient one for more
than 60% tested problems. For n < 1073, we can observe that ADMM and SDPLR
have similar performance and ADMM outperforms SDPLR slightly.

It can be observed from Table [3.4] and [3.5] all the tested problems can be solved
to the required accuracy by ADMM, while there exist several problems that can not
be solved to the required accuracy by SDPLR and SPB. For n < 10~*, SDPLR and
SPB can not solve 11 and 5 problems, respectively. For n < 10, SDPLR and SPB
can not solve 14 and 7 problems, respectively. Figure 3.9 and Figure show the
performance profiles of ADMM, SDPLR and SPB for the tested problems listed in
Table [3.4] and Table [3.5] respectively. It can be seen that ADMM outperforms both
SDPLR and SPB by a significant margin.

Remark 3.11. From the numerical results, we can conclude that both ADMM
and SDPLR are very competitive in solving standard linear SDP problems to a low
accuracy (1072, 107%). If higher accuracy (1074, 107°) is desired, ADMM seems
to be more efficient than the other first methods being tested. We observe that

for n < 107* and < 107°, there are problems can not be solved by SDPLR and
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SPB. For the SPB, in the numerical experiments, we limit the bundle size to be
at most min(100, [v/2m]). If we use bigger bundle size, then perhaps the required
accuracy can be obtained, while it would take more time in solving the QSDP
subproblems. For the SDPLR, we scale the data before computing, we let b,., =
b/||b]] and Ciey = C/||C]|. Note that different scaling may give slightly different
results, while in general, SDPLR is efficient in decreasing the primal infeasibility but
have difficulties in decreasing the cone infeasibility of S when the required accuracy
is n < 107% or 107°. In applications, if only an approximate primal solution is
needed, then one can consider using SDPLR. Noticing that we want to have both
approximate primal and dual solutions with moderate accuracy, ADMM seems to

be a better choice.

From the numerical experiments on standard linear SDP problems, it can be
observed that for most of the test instances, ADMM and SDPLR outperform SPB.
Hence, in our next numerical example, we only compare SDPLR and ADMM+ [72]
on the following doubly nonnegative SDP (DNN-SDP) problems:

min {(C, X) | AX =b, X e STNN}, (3.46)
where N := {X € §" : X > 0}. Its dual takes the following form:
max {(b, y) | Z+ A'y+S=C, Se€S8!, ZeN}. (3.47)

SDPLR is applied to the primal problem ([3.46) and ADMM+- is applied to the dual
problem (3.47). The test examples are from the SDP relaxation of binary integer

nonconvex quadratic (BIQ) programming, which takes the form of following:
1
min 5(@7 X0> + <Cv ZL'>

s.t. diag(Xp) —x =0, a=1,
g(Xo) (3.48)

X() X
X = eSt, XeWN.
e

We use the following relative residual to measure the accuracy:

n= maX{UPa N, T, NN T TIN5 TCy 7702}7
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where
; IAX — b ; |A*y + S — C ; [TLsn (= X) ||
P—= ——~ 1.1 > 'ID— sy TIK — — 1~
L+ [[o]| L+ |C 1+ [|X]
—_— [TLsn (=9)] v = [TTA (= X)| e = [TTp=(—=2)|
L+ S L+ IX] L+1z||
KX 9) (X, Z)]
Nc, = y Moy = .
L+ [ X[+ (IS L+ [|X]| + || Z]]

Let n; := max(np,ny). For ADMM+, we use the MATLAB code by Yang et al
[72]. We terminate ADMM+ when 7 < € and terminate SDPLR when 7, < ¢, or
when the computational time reaches 3 hours. We do not use the same stopping
criteria since we have observed that SDPLR always has difficulty in reducing the
cone infeasibility ni« for these DNN-SDP test examples. We can hardly expect the
problems to be solved to the accuracy of n < 1072 by SDPLR. Table and
report the detailed numerical results of ADMM-+, SDPLR in solving with
€ = 1073,1075, respectively. The primal infeasibility np and the cone infeasibility
nic~ are listed in the second column of the tables. Note that ADMM+ can solve all
the problems to the accuracy of n < 107°. Despite the fact that we only require
1 < €, it can be observed from Table and that SDPLR always needs more
than 20 times of computational time compared with ADMM+, which, indicates
that ADMM+ is much more effiective than SDPLR in handling numerous inequality

constraints.

Table 3.6: The performance of ADMM+ and SDPLR on BIQ problems (accuracy

—1079).
np;nKcx time
problem mpg;ns ADMM+ | SDPLR ADMM-+ | SDPLR
be200.8.1 201;201 | 4.2-14; 6.1-6|1.8-4; 5.2-3 11.1]4:54
be200.8.2 201;201 1.4-13; 1.1-5|2.8-4; 5.8-3 7.9/3:30
be200.8.3 201;201 | 6.5-14; 3.3-6|2.3-4; 5.8-3 9.5/6:13
be200.8.4 201;201 | 8.9-15; 1.0-5|3.3-4; 6.5-3 10.2|4:22
be200.8.5 201;201 1.5-13; 1.0-5|2.8-4; 6.5-3 8.5/5:44
be200.8.6 201;201 | 1.2-14; 9.2-6|1.9-4; 5.5-3 12.4|4:35
be200.8.7 201;201 | 1.1-13; 5.6-6|4.2-4; 4.9-3 10.8|5:37
be200.8.8 201;201 | 9.5-15; 1.0-5|1.5-4; 5.5-3 10]4:06
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Table 3.6: The performance of ADMM+ and SDPLR on BIQ problems (accuracy
=107%). '

NP3k time
problem meg;ns ADMM+ | SDPLR ADMM+ | SDPLR
be200.8.9 201;201 | 1.5-13; 2.9-6|2.8-4; 6.2-3 9.1]5:06
be200.8.10  201;201 | 3.6-14; 5.4-6|3.5-4; 5.8-3 9.7/6:34
be250.1 251;251 | 4.1-14; 6.5-6|4.5-4; 5.5-3 18.9|14:33
be250.2 251;251 | 8.6-14; 4.2-6|2.3-4; 5.8-3 18.8|8:09
be250.3 251;251 | 2.0-14; 6.1-6|1.4-4; 6.1-3 19.4]|9:53
be250.4 251;251 | 8.3-14; 1.0-6|2.1-4; 5.4-3 20.3]11:08
be250.5 251;251 | 3.6-14; 4.6-6|3.1-4; 6.4-3 14.8|8:41
be250.6 251;251 | 1.1-14; 8.4-6|3.3-4; 5.9-3 18.3|14:05
be250.7 251;251 | 1.1-14; 7.5-6/3.1-4; 5.9-3 20|13:07
be250.8 251;251 | 1.1-14; 7.9-6|2.3-4; 5.0-3 19.7]12:59
be250.9 251;251 | 4.5-14; 6.8-6|1.5-4; 7.4-3 15.9|12:45
be250.10 251;251 | 1.1-14; 7.8-6|1.1-4; 5.3-3 19.7|10:43
bqp500-1  501;501 | 1.7-13; 4.0-6]6.7-4; 2.7-3 3:07| 2:48:56
bgp500-2 501;501 | 1.2-14; 3.8-6|5.0-4; 7.7-3 3:34] 1:50:11
bgp500-3 501;501 | 9.2-14; 8.6-7|2.5-4; 2.4-3 3:21] 2:51:48
bqp500-4 501;501 | 9.6-15; 3.9-6|1.6-4; 2.1-3 3:38] 2:29:47
bqp500-5 501;501 | 1.7-13; 2.6-6/3.9-4; 2.6-3 3:20] 2:40:18
bqp500-6 501;501 | 1.2-14; 4.1-6|1.9-4; 2.9-3 3:38| 1:37:50
bqp500-7 501;501 | 9.2-15; 4.1-6/7.6-3; 2.9-3 3:33| 3:00:01
bqp500-8 501;501 | 1.0-14; 4.0-6|1.9-3; 2.0-3 3:31] 3:00:01
bap500-9 5013501 | 8.2-14; 1.1-6[2.1-4; 2.4-3 3:20] 2:34:25
bqp500-10  501;501 | 1.2-13; 1.4-6|7.6-3; 2.6-3 3:37| 3:00:01

Table 3.7: The performance of ADMM+ and SDPLR on BIQ problems (accuracy
=107°). '

- time
problem mpg;ns ADMM+ | SDPLR ADMM+ | SDPLR
be200.8.1 201;201 | 4.1-14; 3.5-8|1.1-6; 5.3-3 36.2]34:02
be200.8.2 201;201 | 9.1-14; 8.0-8|7.3-6; 5.6-3 28.6]11:16
be200.8.3 201;201 | 1.8-14; 5.4-8|1.3-6; 6.0-3 32.1]25:39
be200.8.4 201;201 | 1.0-13; 2.7-8|3.9-6; 6.6-3 23.6]16:16
be200.8.5 201;201 | 1.5-13; 7.6-8|1.5-6; 6.7-3 28.5|39:39
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Table 3.7: The performance of ADMM+ and SDPLR on BIQ problems (accuracy
=1079).

NP3k time
problem meg;ns ADMM+ | SDPLR ADMM+ | SDPLR
be200.8.6 201;201 | 5.1-15; 8.7-8|6.9-7; 5.7-3 28.5(24:07
be200.8.7  201;201 | 7.7-14; 8.9-9|2.2-6; 5.2-3 22.5[12:26
be200.8.8 201;201 | 1.6-13; 2.5-8|9.8-7; 5.6-3 28.3]23:08
be200.8.9 201;201 | 1.1-13; 8.5-8|3.0-6; 6.4-3 28.6/26:08

be200.8.10  201;201 | 2.7-13; 8.4-8|7.1-7; 5.9-3 28.1]21:51
be250.1 251;251 | 3.1-13; 1.4-7|1.4-6; 5.6-3 44]54:16
be250.2 251;251 | 2.1-14; 9.4-8|1.3-6; 6.2-3 41.4]27:58
be250.3 251;251 | 2.2-14; 9.8-8|1.4-6; 6.0-3 36.8]48:41
be250.4 251;251 | 6.6-14; 4.9-8|2.7-6; 5.6-3 41.5|34:57
be250.5 251;251 | 1.7-13; 5.4-8|2.1-6; 6.7-3 34.7|31:27
be250.6 251;251 | 2.3-14; 9.7-8|2.7-6; 6.0-3 34.3]34:08
be250.7 251;251 | 2.9-13; 1.0-7|2.9-6; 5.9-3 37.7| 1:08:35
be250.8 251;251 | 1.8-14; 8.5-8|2.7-6; 5.0-3 33.9]54:29
be250.9 251;251 | 7.9-14; 1.3-7|2.4-6; 8.0-3 38.7|34:40
be250.10 251;251 | 3.1-13; 1.3-7|1.4-6; 5.3-3 32.8/38:49

3.3.2 The approximate semismooth Newton-CG augmented

Lagrangian method for standard linear SDP problems

In this subsection, we report the numerical results for the approximate semismooth
Newton-CG augmented Lagrangian method for standard linear SDP problems. In
our numerical experiments, the problems we test are from SDP relaxations for rank-1

tensor approximations (R1TA) [51]:

max {(f, y) | M(y) € %, (g9,y) =1}, (3.49)

where y € R M (y) is a linear pencil in y. The dual is given by

min {7 |vg — f = M*(X), X € S}}. (3.50)
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Problem ([3.50)) can be transformed into a standard SDP (up to a constant) [50] :
min {(C, X) | A(X) =b, X € S}}, (3.51)

where C' € 8" is a constant matrix and A is a linear map which depend on M, f, g.

In [85], it is shown that on R1TA problems, the semismooth Newton-CG aug-
mented Lagrangian method outperforms the first order methods ADMM+ [72], SD-
PAD [84] and 2EBD [44]. For the large instance ‘nonsym(21,4)’, SDPNAL+ can
solve it to the accuracy of 107¢ within 15 hours while the other three first order
methods can not solve it to the required accuracy within 99 hours. SDPAD and
2EBD can only obtain the accuracy of 1072 and ADMM+ can obtain the accu-
racy of 1073. Noticing this fact, we only compare the approximate semismooth
Newton-CG augmented Lagrangian (ASNCG) method with SDPNAL+. All our
computational results reported in this subsection are obtained by running MATLAB

on a PC with 24 GB memory, 2.80GHz quad-core CPU.

Table reports detailed numerical results for SDPNAL+ and our proposed
ASNCG based augmented Lagrangian method. In the first column, the problem
name, dimension of the variable and number of linear equality constraints are listed.
In the second column, we give the number of iterations, the total number of iter-
ations for solving inner subproblems and the number of iterations of ADMM for
calculating an initial point. For all the test examples, we use the same initial point
for SDPNAL+ and ASNCG, thus ‘itA’ are the same. In the third column, we list
the accuracy which we obtain when the algorithms terminate. In the fourth column,
we give the relative gap

- <Ca X> - <ba y>
Hoer = T, X) [+ (b, )]

In the last column, the computation time of the algorithms are presented.

It can be observed from the numerical results that ASNCG generally would not

increase the total number of iterations in solving subproblems. When n is not too

big (n < 6,000), ASNCG and SDPNAL+ have similar performance. Both of them
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can obtain a high accuracy efficiently. For the three large examples (n > 8,000),
namely ‘nonsym(20,4)’, ‘nonsym(21,4)” and ‘nonsym(10,5)’, ASNCG can reduce
about half of the computational time compared with SDPNAL+, which indicates
that our proposed algorithm ASNCG is very effective and is useful in dealing with

large scale linear SDP problems.
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Performance profile: time. Tol = 1e-3
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Performance profile: time. Tol = 1e-4
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Chapter I

Convex composite conic programming

problems with nonlinear constraints

In this chapter, we focus on solving the convex composite conic programming prob-
lems with nonlinear constraints proposed in Chapter Recall that the general

nonlinearly constrained convex composite conic programming problem is given by:

min 60(z) + f () + %@7 Q) + (e, 7) (4.1)

st. Agr = bE, Arx — by € C, g(x) € IC,

where 6 : X — (—o0,400] and f : X — (—o0,+0o0] are two closed proper convex
functions, Q : X — X is a self-adjoint positive semidefinite linear operator, Ag :
X = Vg, Ar : X — Yy are two linear maps, g : X — )/, is a nonlinear smooth map,
c€ X and bg € Vg, by € Vi are given data, C C YVr, K C Y, are two closed convex
cones. The spaces X and Vg, Vr, Y, are all real finite dimensional Euclidean spaces.

Each of them is equipped with an inner product (-, -) and its induced norm || - ||.

The adjoints of Ag and A; are denoted as Aj, and A}, respectively. In the
subsequent discussions, for notational simplicity, we define the linear operator A

and its adjoint map A* by

AE'I * * *
Ax = , Vee X, Avy:=Apys+ Apyr, Yye),
.A]:B

65
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b
where Y := Vg x Y,y := vE , and by letting b := o , we have (bg, yg)+

Yr br
(br, yr) = (b, y). In addition, if the y; part is vacuous, i.e., the constraint A;z—0b; €

C does not exist, we let A, A*, b,y denote Ag, A}, bg, yr, respectively.

In this chapter, we focus on convex problems and require the set
g H(K) == {z € X | g(z) € K}

to be convex, while this is not always true if we merely assume that  C ), is a
closed convex cone and g : X — ), is a nonlinear smooth map. Thus, we have to
impose certain conditions to guarantee the convexity of the set ¢~ *(K). Throughout

this chapter, we make the following assumption:

Assumption 2. For the map g : X — Y, and the closed convex cone K C Y, it
holds that

gz + (1= Ny) = (Ag(z) + (1 = Ng(y)) € £, VA€ (0,1).

This assumption has been used to describe the generalized constraints in non-
linear programming by Rockafellar [66, Example 4’]. A typical example is IC := R™
and each g; : X —» R,i=1,...,m is a convex function. ¢ can also be matrix-valued
functions. For example, let g : 8™ — 8™ be defined by ¢(X) := I — X? and K := 87,
then Assumption [2] holds.

Proposition 4.1. Let K C Y, be a closed convexr cone. Assume that the map

g: X =Y, satisfies Assumption . Then the set g~ (K) is convez.

Proof. For any z € X and y € X satisfying g(x) € K and g(y) € K, by the convexity

of K, we have

Let t1(A) := g(Az + (1= A)y), t2(A) = Ag(x) + (1 = A)g(y), then g(Az+ (1 —N)y) =
St (N) —t2(N)) + 3t2(A). Since K is a closed convex cone, by Assumption , we have

%g()\x + (1= \y) €K
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Thus we have g(Az + (1 — N)y) € K for all A € (0,1). O

Note that in (4.1]), the functions 6(-) and f(-) are possibly nonsmooth. A use-
ful example is that 6(-) is the indicator function of the cone of symmetric positive
semidefinite matrices and f(-) is the indicator function of a certain polyhedral set.
Problem (4.1)) can be very difficult to solve due to the presence of the composite
objective function and a large number of constraints, including some nonlinear con-
straints. In the previous chapter, we conduct numerical experiments on linear SDP
problems, it can be observed from the numerical results that solving the original
problem via its dual is a good choice. Inspired by this observation, in this section,
we consider designing an algorithm for solving the dual of instead of dealing
with directly. In this chapter, we first formulate the dual of the nonlinearly
constrained convex composite conic programming problem . We then present
an inexact symmetric Gauss-Seidel based ADMM with indefinite proximal terms to
solve the obtained dual formulation. The inexactness in solving the corresponding
subproblems is essential due to the difficulty introduced by the nonlinear constraints.
Moreover, global convergence and iteration complexity results for our proposed al-
gorithm will be established. In the last section of this chapter, we test our algorithm

on a variety of examples and report the detailed numerical results.

4.1 Dual of problem (4.1

By introducing slack variables u,v € X, problem (4.1)) can be recasted as

min 0(v) + f(u) + %(L Or) + (¢, 7)

st. Apr=bp, Ajx—b;€C, gu) ek, z—u=0, z—v=
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The Lagrangian function associated with problem (4.2)) is defined as follows: for any
(,u, 052, M, 8, Yp, Y1) €E X X X X X x X x KO x X x Vg x C*,

L(x,u,v;z,\,8,ye,yr) = f(u)+ %(x, Qx) + (¢, ) + 0(v)
+(yp, bg — Agzx) + (yr, by — Asx)
+(A, g(u)) + (z, u — ) + (s, v — ).

The dual of problem (4.2)) takes the form of

1
max —(z,\) — 5(“% Quw) — 0*(=s) + (bg, yg) + (br, yr)
st. 2—Quw+s+Apyp+Ajyr=c¢, yreC, Iek’ weWw,

where 6*(-) denotes the Fenchel conjugate of 0, i.e.,

0" (s) = sup{(s, u) — 0(u)},

ueX

(-, -) is defined as

(2, A) = sup{—(u, 2) = (A, g(u)) = f(u)},

ueX

W is any linear subspace of X’ such that Range(Q) C W. By introducing a slack

variable ( € Yy, the dual problem (4.3)) can be equivalently written as

min (2, A) + o (A) + deo () + 3(w, Q) +6*(—s) — (be, yr) — (br, yr)
st. z—Quw+s+ Aypys + Ajyr = ¢, (4.4)

C+yr=0, weW.

Let 0 € (0,400) be a given parameter. The augmented Lagrangian function asso-

ciated with (4.4)) is given by

Loz, N\ w, 8,9y, y1,C2,€) = (2, \) + do(N) 4+ 0co(C) + %(w, Qu)
+0"(—=s) — (b, )
+(x, 2 — Quw+ s+ Ay —¢)
—l—%Hz — Qu+ s+ A*y — ¢|]?

HE CHun) + 5 l¢+uill®
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for any (z, A\, w, s,yg, yr, (;2,8) E X X Yy Xx WX X X Vg x Yy x YV x X X Yr.

By noticing the multi-block structure in problem , one may consider solv-
ing problem by using a multi-block ADMM-type method directly extended
from the classic 2-block ADMM. However, it has been shown in [13] that the direct
extension of the ADMM to the case of a 3-block convex optimization problem is
not necessarily convergent. Despite that a lot of numerical results showing that
the direct extension is often effective in practice [72], [84], we want to adopt differ-
ent strategies to design a convergence guaranteed ADMM-type algorithm for the
multi-block problems. Fortunately, this can be realized by applying the symmetric
Gauss-Seidel (sGS) technique introduced by Li et al in [40]. Recently, Chen et al
[T4] propose an inexact majorized semi-proximal ADMM (imsPADMM) for solving
convex composite conic optimization problems. Although they allow all the subprob-
lems to be solved inexactly in theory, there is no guarantee that all the subproblems,
especially the subproblems involving nonsmooth objective functions, can be solved
approximately to a required accuracy. In fact, in their numerical examples, they
always solve the subproblems related to the nonsmooth terms (the projection on to
the cone S7) exactly. In contrast, in our problem , it is generally impossible to
solve the subproblems corresponding to (z, A) exactly. This fact urges us to develop
new ideas to handle the general convex composite conic programming model with
nonlinear constraints ([4.4). Meanwhile, Li et al [37] propose a majorized ADMM
with indefinite proximal terms for linearly constrained 2-block convex composite
optimization problems. The numerical results in [37] show that by using the indef-
inite proximal terms, one can achieve the impressive reduction of up to 70% in the
number of iterations as compared to the ADMM with semi-proximal terms. This
dramatic reduction inspires us to adopt this idea in designing our algorithm for
solving problem . In the next section, we shall present our sGS based inexact
ADMM with indefinite proximal terms for solving problem ({4.4)).
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4.2 An sGS based inexact ADMM with indefinite

proximal terms

We view variables ((z,A),(,w) as one block, and (s,yg,yr) as another. In each
block, we take advantage of the symmetric Gauss-Seidel technique introduced in

[40] and apply an inexact proximal ADMM to problem (4.4)).

We present our algorithm as follows:

Algorithm 1: An sGS based inexact proximal ADMM for solving problem
E3).

Given parameter o > 0 and step length 7 > 0. Choose an initial point such that
(29,09 € dom(¢)(z, ) + dxo(N)), w® € X, —s° € dom(0*), v € Vg, ¥ € Vi,
¢ € dom(deo(+)), 2° € X, € Y. For k=0,1,---

Step 1. Compute

k \k k ok ok k. ko ¢k
wk-ﬁ-% ~ argmin ‘CUI(Z 7/\ W, S 7yE7yI7< 3L 75 ) : (45)
v Fle et

R P T R R R Y
(ZkJrl )\kJrl) ~ argmin LU(’Z’ )‘7w 2,8 7yan17§ Y 75 ) (46)
| G| +4lle = 215 + 31 - |
2 T. T2 Tx

1
—~ . EU(Zk+17)\k+17wk+27sk7yg’y’;?c?'rk?gk)
R~ argm{m : (4.7)

(k—l—l
+11¢ = ¢HII%

k4+1 yk+1 k ok ok rk+1. .k ¢k
wk:-l—l ~ argmin ‘6171(’2 7)‘k y W, S 7yE7y17C Y 75 ) . (48)
v sl — et
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Step 2. Compute

- Lo (251, AHL g1 gk gk gkl gk gk
y; ° ~ argmin X 7 ’ LT 7 . (49)
v +3llyr — villZ,
Lo (241 AR bt gh k3 kgl ok ok
k—‘ré . U w y S 7yE7y[ aC ;L 75 )
Yp ® A argmin , (4.10)
e Hslly — ykllE,

1
SRl kL ke 2 k1. .k
Ly( S AT R s yE ,yl ,C x

7569 } (4.11)
+3lls = "3,

s**1 ~ arg min
S

k+3
k+1 k+1 k+1 k+1 k+1. .k ¢k
E( >\ , W S yYE, Yr 27< axag)

ol +35lly — yhllE,

Ea( k+1 )\k+1’wk+1 k+1 , k+1 <k+1;$k7€k>

k+1 yYp Y1,

Yy A~ argmin
yI

yit! ~ arg min {

+3llyr — i3,
Step 3. Compute

ZF = gk 4 7o (F — Qut 4 R 4 AFyktl ¢,

4.14
=T+ ). .

Note that several proximal terms are introduced in the above algorithm. Certain
requirements should be imposed on these proximal terms. Here the operators 7 :
X=X, T V=V, T.: X =>XT: YV, =Yy, S1 : X = X, 85 : Vg = Vg,

S3 @ Yy — Y are chosen to be self-adjoint linear operators (not necessarily positive
semidefinite) such that

0y +T, >0, Ta>=0, 0y, +T: >0, Q+0cQ*Q+ 7T >0,
(4.15)

0Zx+ 81 >0, 0cApAL;+ S >0, o(Zy, + ArA;) + S5 >0,
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where Zy : X — X and Iy, : Yy — Y are two identity maps. These conditions

guarantee that each subproblem has a unique solution.

In Algorithm 1, for each subproblem, we only require an approximate solution.
We should emphasize here that this inexactness is in fact crucial in our algorithm
design. Specifically, in problem , due to the nonlinear constraint g(z) € I, we
even may not be able to obtain an explicit formulation for ¢(z, A). Thus, it can
be extremely hard to solve the subproblem exactly while inexact minimization
seems to be the only method to resolve this difficulty.

In order to guarantee the convergence of Algorithm 1, certain criteria should
be given for solving the subproblems. Chen, Sun and Toh [14] propose an inexact
sGS based majorized semi-Proximal ADMM (sGS-imsPADMM) for convex compos-
ite conic programming and give simple and implementable error tolerance criteria
on solving the subproblems approximately. Namely, they require the norm of the
subgradient of the objecitive in each subproblem to be sufficiently small. Here we

will follow their ideas and use the similar conditions.

Let {€x}r>0 be a summable sequence of nonnegative numbers. In Algorithm 1,

we require the subproblems to be solved to the accuracy that
18511, 1951 1OE N 1051 < &, (4.16)

where
5,5 € awﬁﬂ(zkv )‘k7 wk—i_%? Sk? y%a ylfv <k§ xk’ gk) + 75<wk+% - wk)’
7;<Zk+1 _ Zk)
08 € Dap) Lo (M NFL akts sk gk CFiah k) 4 :
7;\(/\k+1 _ /\k)
5? € a{£0(2k+17 )\kJrla wk+17 Sk) y%a ylfv CkJrl; xka gk) + 7Z(Ck+1 - Ck)v

L 55 € aw*ca(szrla >\k+17 warlv Ska y%> ylfv Ck+1; $k> gk) + E(wk+1 - wk)v

and

131 35 0 11 gl s 1| < &y (4.17)
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where

;

~ k+1 k41

’7§ c aylza(zk+1’ )\chrl7 wk+1, 3k7 y%’ Y, 2 Ck+1; xk7 fk) + 83(91 2 yllc)7

~k o L k+1 /\k+1 k+1 k+2 k+2 k+1. k S 1 .k
V2 € YE O'(Z ’ , W ; 7yE y Y C l’ 5 )+ 2( yE)7
V€ 9L, (2FH NHL gkt gt yk+2 kt3 L CFHL gk Ry 1 S (sM ) — sb),

7Ea[

k+1 k41
75 6 ayE‘CO'(Zk+17 )\kJrla wk+17 k+17 yE+ Y [ 2 9 Ck+1’ 7£k) + SQ(ykJrl - y%)a

,y?lf c 8y1£(,(z’“+1, )\kJrl’ wl~c+17 k+1 7y%+1’y/;:+1 CkJrl; xk’gk) + Sg(y];+1 . y}c)
Denote
= (2, A Gw),  ve = (8,ym, Y1)

Define the self-adjoint linear operators ’7A’, M:XXY XV XX = XX Yy XY x X
and g,./\/': X XV x Y —= X x Vg x Y as follows

7. 0 0 O z
81 0 0 S
~ 0 7. 0 O A ~
vy = . Svg = 0 S 0 Ye |
0 0 7. 0 ¢
0 0 83 Yr
0 0 0 75 w
cZ+7T. O 0 ocQ z
T 0 0 A
MUl == )
0 0 oZ+7; 0 ¢
cQ* 0 0 Q+0Q Q0+ T, w
o+ S oAy g A} s
Nuy = ocAg U.AE.A*E + S O'-AE/W YE
o A; U.A].A*E O'.A[.A? + 0T + S3 Yr

Moreover, we define

My = Diag(cZ+T.,Th,0Z+ T, Q+0Q"Q+ Ta),
Ny = Diag(cZ + Si,0Ap Ay + Sz, 0 A A} + 0T + S3),



Chapter 4. Convex composite conic programming problems with nonlinear

74 constraints
0 00 0oQ " 4
0 oA o A%
000 0 F !
M, = , Nui=[ 0 0 oAgA;
000 O
0 0 0
000 O

By the positive definiteness of the operators in (4.15]), we have My = 0 and Ny > 0.
Let H1, Ho be defined by

Hy = (Mg+ MM (Mg + M), (4.18)
Ho = (Ng+ NN NG+ N, (4.19)

then H; = 0 and H, = 0.
Denote 0; = (6., d¢), then we have ||6F|] < v/28; from ||6¥|| < &, and 1081 < &

Let 0y = 61, 1 = 71, denote 0 = (01,02), 6 = (61,62), 7 = (1,92, %3), ¥ =
(71,72,73). Let the two error terms be defined as in ([2.5), i.e.,

AL(6,6) =0+ MMG (6= 0), Do(7,7) =7+ NN (v = 7).
By Proposition [2.8] it holds that

1,2 AL(8,8)|| < [MGY26 = 8)| + | Hy 6],

12 Ba3 ) < WG 20 = )+ I
For £k =0,1,--- , define
AF = A (6, 6F) and  AF = AL(5F,4F).
By applying Propositions and to the Algorithm 1, the following result holds.

Proposition 4.2. Let the self-adjoint linear operators T, Tx, So be chosen such that
(4.15)) is satisfied, then My = 0 and Ny = 0. Let Hyi, Ha be defined by (4.18) and
(4.19), then Hy = 0 and Hz = 0. Define

—1/2 ~1/2 —1/2 —1/2
o= 2 M P I, k= NG 4 30,
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Let {(vF vk 2% &%)} be the sequence generated by Algorithm 1. Then we have for
k=0,1,---,

A’f € am {Eo(vf—i_l:?}]g) + %HUT—H - UIfH’T' + %HU{H—I - U]fo\/luM;lM;;} )
(4.20)
A% € 0y { £ (o o) 4 S — bl A — 12

with |1y PAF| < k18, and |Hy 2AE| < kofy.

Proof. Since My > 0 and Ny = 0, we can apply Proposition [2.7]to Algorithm 1. By
the definition of A¥ A% we get (4.20)). By Proposition and (4.16]), we have

[ 2AR < MGV 00|+ 1Ay 28R
<M AR = S 1 HT 18"
< MG+ 3 H P Des

thus the inequality |[|H;
1152 A5|| < #28, holds. O

Y 2Alf|| < k1€ holds. Similarly, the required inequality

Remark 4.3. By Proposition we know that the sequence generated by Algo-
rithm 1 can be viewed as a sequence generated by an inexact proximal ADMM with
specifically chosen proximal terms applied to the general 2-block problem (|3.18]).
Note that S and 7 are not necessarily positive semidefinite. The fact that we
do not require the proximal terms to be positive semidefinite makes our algorithm

different from the imsPADMM proposed by Chen et al [14].

4.2.1 Subproblems with respect to the nonlinear constraints

In section [£.2] we propose Algorithm 1 for solving the dual of the nonlinearly con-
strained convex composite conic programming problem . In Algorithm 1, we
only solve the subproblems approximately, and we gave criteria on the accuracy in
and (4.17). Concerned with the difficulty introduced by the nonlinear con-
straint g(z) € K, in this section, we show that the subproblem (4.6)) can be solved

to the required accuracy.
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Let U be a finite dimensional real Euclidean space equipped with an inner prod-
uct (-, -) and its induced norm || -||. Let p : Y — (—o0, o0] be a closed proper convex
function. Let h : U — (—00, 00| be a convex function which is continuously differ-
entiable on an open set that contains dom(p). Consider the following unconstrained

composite optimization problem:

min{p(u) + h(u)}. (4.21)

Let O : U4 — U be a self-adjoint positive semidefinite linear operator. For problem

(£.21), we define the proximal residual mapping R%"(-) : U — U as:
RE (1) = u — Proxt(u — O Vh(u)), uecl.

From Proposition [2.4] we know that the proximal residual mapping defined above

is continuous and it satisfies the following property.

Lemma 4.4. The variable u € U satisfies Rgh(ﬂ) = 0 if and only if u is a solution

to problem (4.21)).

When the solution set of problem (4.21f) is nonempty, we have the following
result related to finding a point at which the objective function in (4.21]) possesses

a subgradient whose norm is sufficiently small.

Lemma 4.5. Assume that the solution set to problem (4.21) is nonempty. Let

{u'} % be a sequence in dom(p) that converges to a solution w € U of problem
(4.21). Fori> 1, define
a' = Proxh(u' — O~ 'Vh(u)),
d" = O(u' —a') + Vh(a') — Vh(u").
Then we have d* € dp(a') + Vh(d") and lim;_,« ||d']| = 0.
Proof. By the definition of @' and d*, we can readily obtain that d* € dp(a')+Vh(u?).

Since u’ converges to @, by the continuity of the proximal residual mapping R’é’h(-),

we have Proxt,(u' — O 'V h(u'))—u’ — 0 as i — oo, which implies limy,_,q (@' —u’) =



4.2 An sGS based inexact ADMM with indefinite proximal terms

77

0. Therefore, by the definition of d* and the fact that h is continuously differentiable

on dom(p), we know that ||d‘|| — 0 as i — oo, which completes the proof. O

Remark 4.6. From Lemma 4.5, we know if a sequence converges to the exact
solution, then one can always obtain a point such that the norm of the subgradient

at that point is sufficiently small.

Now we come back to the subproblem ({4.6)), which can be equivalently written

as
g ~
(2, A) + 00 (A) + S [|12* — 252
(5N ~ arg ?H)\n 1 2 , (4.22)
D Hglle = I+ A - X
1
where 78 := QuFtz + ¢ — ;xk — b — Anyk — Aty¥. Since in general we do not

have an explicit formulation of ¥(z, A), we can not solve the problem (4.22)) exactly.
Define

7A; =0T+ T, 2F.= i_l(aik + 7;zk)

Positive definiteness of the operator 7A; is obtained from (4.15)). Note that subprob-
lem (4.6)) can be rewritten as

: 1 . 1
min w(z,)\)+§|\z—zk]|%—|—§H/\—>\kHQTA. (4.23)

2€X,\ek0

Substituting (2, \) into (4.23)), we need to solve

: 1 k|12 1 k112
Zeg};gmigg{ (u, 2) = (A g(w)) = f(w)} + Sllz = 2% + S A = Al

By exchanging the order of solving uw and (z, A) [63, Theorem 37.3], we obtain the

following equivalent problem

sup_min {f(w) — (u, )+ 5= = I — O glu)) + 5IA - M) (4.24)

ueX z€X AeK0

The inner minimization problem of (4.24)) has the optimal solution

z = ’f;ilu + 25 N = Theo (T Hg(u) + AF). (4.25)
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By substituting the optimal (z, A) (4.25]) into (4.24]), we obtain the following problem
: 1 T sk |2 1 ky(|2
min {f(w) + Sllu+ T2 %m0 + S o (g(w) + TIAT)I7 -} (4.26)

From the fact that f(-) is convex and 7, = 0, 75 = 0, we know that the objec-
tive function in (4.26) is strongly convex. Therefore, problem (4.26) has a unique
solution. Let ¢ be defined as

1 ~ . 1
() = 5 llu+ T2 )%+ 5 1Mo (9(w) + TN,

then ¢ is continuously differentiable on X', and its gradient is

-1

Vi) = T (u+ T.2%) + T, Vg(u)lko(g(u) + TA®).

From Lemma we know that for any given € > 0, problem (4.26) can be solved
to the required accuracy such that ||0|| < e, where 6 € 9, f(u) + V(). We present
the procedure for solving (4.23)) as follows:

1 ~ 1
a~ argmin § f(u) + 5llu+ T2 + S Teo (g(u) + TAAR) 5 ¢
2 T: 2 75 (4.27)

c=T a2k, N =eo(TYg(a) + AF).

A typical choice of the operators 7, and 7, is 7. = 0 and T, = Z, where parameter
B is a positive scalar. In this case, (4.27)) can be simplified to

1 1
ur argmin{ f(u) + o~ fu+ o2 + ﬁl\HKO(Q(U) +AAN)1%}

and

4.3 Convergence analysis

In section [4.2] we have shown that Algorithm 1 can be viewed as an inexact (in-

definite) proximal ADMM by taking advantage of the sGS technique. Without loss
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of generality, we discuss the inexact majorized proximal ADMM and establish the

convergence results for it in this section.

Let X, Y and Z be three real finite dimensional Euclidean spaces each equipped
with an inner product (-,-) and its induced norm || - ||. In this section, we consider
the following 2-block convex composite optimization problem

min {p(@) + 7(@) +aly) +9(y) | A'w+ By = cf. (4.28)

where p : X — (—o00,+00] and ¢ : Y — (—o0,+0o0] are closed proper convex
(not necessarily smooth) functions, f : X — (—o0,00) and g : Y — (—00,00) are
continuously differentiable convex functions with Lipschitz continuous gradients.
The linear operators A* : X — Z and B* : ) — Z are the adjoints of the linear
operators A : Z — X and B : Z — ), respectively, and ¢ € Z is given data. Since
f(-) and g(-) are convex functions with Lipschitz continuous gradients, there exist
four self-adjoint positive semidefinite operators with ZA]f = Y and ig = Y4 such
that for any z,2’ € X and 3,7y’ € ),

f@) = f@) + (V@) x =) + 5lle =23, (4.29)

9(y) > 9(v) + (Vay'),y —¢) +5lly = ¥II3,, (4.30)

f(@) < flasal) = f(@) + (V@)oo =) + gl — 2|12, (4.31)
9w) <9 y) = 9(W) + (Vo) y —v) +5ly =¥ - (4.32)

We make the following blanket assumption for the subsequent discussions.

Assumption 3. There exists a vector (Z,y,z2) € X x Y x Z thal is a solution to

the following Karush-Kuhn-Tucker (KKT) system
Vf(z)+ Az € —0p(z), Vg(y)+Bze —0q(y), AT+B'y—c=0. (4.33)

For notational simplicity, we denote w := (z,y,z) and W = X x Y x Z. If
w = (Z,y,z) € W is a solution to the KKT system (4.33]), then (Z,7) is a solution
to problem (4.28)) and z € Z is an optimal solution to the dual of problem (|4.28)).
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We consider an inexact majorized ADMM with (indefinite) proximal terms for
for solving problem (4.28)). For given o € (0,4+00), (2/,y) € X x Y and (x,y,z2) €
X x Y x Z, the majorized augmented Lagrangian function is defined as follows:

Lo(z,y; (2,2, y) == plx)+ fz;2) +a(y) + §(y; v/)
+(z, A%z + By —¢) + %HA*SB + B*y — ¢||?,

where ]/C\(, 2') and g(-,y’) are the majorized convex functions defined in (4.31]) and
(4.32). Let S : X — X and T : Y — Y be two self-adjoint linear operators such
that

M:=5;4+8+0AA* =0 and N :=3,+T +oBB* = 0. (4.34)

We emphasize here that S and 7 are not necessarily positive semidefinite. Suppose
{(z*, y*, 2%) >0 is a sequence in X x Y x Z. To simplify the notations, we define

LF X xY = (—00,00], ¥ : X = (—00,00] and ¢ : YV — (—00, 00] as follows:

Li(x,y) = Lo(wy; (F,2%,4M),
Uile) = plo) + gllel + (V) + A~ Ma* 4 AT 1 B — o), )
= po)+ 3l Ma) = (1, ),
arly) = aly) + ol + (Vo) + B2 — Ny + 0BT + By — o), y)
= qly) + %<y, Ny) =y, v),
where
—1F =V f(z*) + A — Ma? + o A(A* 2" + B*y* — ¢),
—1F = Vg(yF) + BzF — Ny¥ + o B(A* 2" + B*yF —¢).

Let {ex} be a summable sequence of nonnegative numbers, and define

E=Ypen<oo, & =37, <. (4.35)
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We present the inexact majorized ADMM with indefinite proximal terms for solving

problem (4.28) as follows.

Algorithm imPADMM: An inexact majorized Proximal ADMM for solv-

ing (4.28).

Given parameter 0 € (0,4+00) and 7 € (0, (1 4+ /5)/2). Let {ex}r>0 be a non-
negative summable sequence. Choose self-adjoint linear operators & and 7 such
that M and N defined in are positive definite. Choose an initial point
(2°,4°,2°) € dom(p) x dom(q) x Z. For k =0, 1,..., perform the following steps:
Step 1. Compute z**! and d* such that

~ 1
o~ A= arg miﬂzex{ﬁfr(%yk) + §||$ - ka?s}
= arg minge v {5 ()}, (4.36)

d* e op(z")  with [M2d%|| < e (4.37)

Step 2. Compute y* and d} such that

) . o 1
ytox gt = arg mlnyey{ﬁ'é(ﬂfk“,y) +35lly - ykIIQT}
= argminyey {pr(y) + (eBA* (2" — 2"1), )}, (4.38)
A € Aoyt with [[NTEdE| < & (4.39)

Step 3. Compute

=2k 4 ro(Af M 4 By — o).

Though & and T are not required to be positive semidefinite, we still need

M =0 and N > 0. Similarly as in [14], we have the following result bounding the

—k+1

k+1
Y

difference between (z¥+1, y**1) and (z ) in terms of the given error tolerance.
Here we present it without proof, since it can be derived in the same fashion as in

[14, Proposition 1].

Proposition 4.7. Let {(z*,y*, 2%)} be the sequence generated by the imPADMM,
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and {Z*}, {4*} be defined by (4.36) and (4.38). Then for any k > 0, we have
e = 2 < MR < e

SR A T

IN

ly IV 2| + o |NTEBAM 2| M3
< 01k,
where 0y := 1+ o||[N"2BA* M~ 2|
Let {(2*,9* 2*)} be the sequence generated by imPADMM and {(z*,7*)} be
defined by and . For convenience, we define the following variables

Tk = A*I’k + B*yk —c, fk = A*i'k _|_B*gk —c,

(4.40)
Let a € (0, 1], we denote
a=(1—-a)+amax(l —7,1—771),
(1-a) ( ) )
B :=min(l,1 —7+7 a—(1-a)r
For (z,y,2) € X x Y x Z and k =0,1,..., define
R(z,y) == p(z) + f(z) + a(y) + 9(y),
1
A B L L
* *, k 2 ~ k|12 k k=12
+ol| A + By — cf” + aollrt]]” + ally® =y g,
_ 1 _ _ _
O(@,y,2) = —|lz = FIP e =213, 5+ lly = 7°1%,
* *-k 2 P~ =k |2 =k _ k=112
+ol| Az + By —c|* +ao || +allg” =y g L

The following two self-adjoint linear operators F and G are needed in the subsequent

analysis:

1 1-—
F =%, +8+ ﬂfm*,

12 2 (4.42)
G = 529 + T +min(7,1 + 7 — 7%)ac BB*.

1~
With an additional condition §EQ+T > 0, similarly as in [14], we have the following

lemma.
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Lemma 4.8. Assume that

1~
5Eg+Tz0.

Let {(x*,y*, 2*)} be the sequence generated by Algorithm imPADMM. Then for any

k > 1, the following inequalities hold.

(a) For any a € (0,1],
(1= D)ol + o] Aab1 + Byt — o]

> max(l—7,1— 7 Ho([[r"H* — [|Ir]?)
(4.43)
+min(r, 1+ 7 —7%)o ([[B*(y" — y** )|+ 77 )

(™ =M L Iy R ) 20dy - dyTh R =),

(b) For any « € (0,1],

(1 = D)l P + o A2+ By — ]

> ao(|Ir* P = [1r*)1?) — 20ddy — dyh yH = yF)
(4.44)
I = g+ Bl el =
_a||yk k 1”2 g+T + ”y k+1”m1n T,147—72)acBB**
Proof. (a) By the definition of 7**1  we have the following equation
(1= 7)o P12 + o A2k 4 Byt — |
(4.45)

= @)l + ollBH G — g+ 2, B — )
From ({.40)), we have orftl = ZFF1 — 2% 4 (1 — 7)ork, we rewrite the last term in
(4.45) as
2ot By — 1))
= 2(1-7)o <7° B*(y* k+1)> + 2<?Zk+1 —2F B*(yF — yk+1)>.

Firstly, we estimate the last term in the above equation. From (4.39) and (4.40)),

(4.46)

we have for k£ > 0,
5 — Vg(y*) — B — (S, + Ty — y*) € dg(y*+),

d5 = Vg(yh ) — B — (8, + T)(* — ") € da(y").



Chapter 4. Convex composite conic programming problems with nonlinear
84 constraints

By the maximal monotonicity of dq(-), we have that for k > 1,
(dy —dy™ = (Vg(y*) = Vg(y*=)) = BZ*H = 2%), g — o)
—((Zg + Ty = 29" +y471), Y1 —yh) > 0,
thus
(B = 2 B = )+ (= i g =
> [ =g (S T =), o — o) (4.47)
HVa(*) = Ve, y* = o).

Since Vf(-) and Vg(-) are Lipschitz continuous, by Clarke’s Mean Value Theorem
[15, Proposition 2.6.5], we know that there exist two self-adjoint linear operators

0= Pk jif andOijjig such that

Vf(ak) = V(b)) = P> —a51), Vg(y*) — Vg(y* ) = Py (y" — o).

(4.48)
Thus (4.47) can be written as
(FH =28 By =y + {dy —dy Tyt =)
~ (4.49)
> |l =yt (S + T =P =), o™ =)
Using equation ({2.1)), the triangle inequality (2.2]) and ig - 775 = 0, we get
2+ T =P = yh), v =)
= ‘|yk+1 y ”E +7T— pk + Hyk k IHE +7T— pk ’lyk+l k 1”2 +7’ 'pk
2 Hyk+1 y HE +T— pk + Hyk k IHE +7— 'pk ’lyk+l k 1”2 +7’ 1795 (450)
Z Hyk—i_l Y ”E +7 — pk + ||y k 1”2 +7T — pk

k: 1||

_2”yk+1 Y ||E +7-,lfpk 2||yk ) +7-,lfplm

where the last inequality holds since

14 1
5, +T——7>’“— 3t T+5 (29—725)50.
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(4.50) together with (4.49)) gives the following inequality:

2~ B, By — )+ 2dh - i, g g
(4.51)
> Ny =yl =y S
By applying (4.51)) to equation (4.46|), we get
2or L By — y"h)) + 2(dy — dyT Yt =)
(4.52)

> 21 =)ok, Bt~y )+ I = oM I

Now we estimate the term 2(1 — 7)o (rk, B*(y* — y**1)). From Cauchy-Schwarz

inequality we have
2(1 = 7)o (rk, B (y" — y**))
—(L=7)o|[B*(y* —y* P = (1 = n)alr*% 7€ (0,1],

(L =nor|B*(y* = y* I + (L = r)orIr*|?, 7€ (1,+00).

Combining the above inequality with (4.45)) and (4.52]), we have that when 7 € (0, 1],

(1 = D)ol P + o A2+ By — ]

> (L=7)a(lr* 12 = [Ir*)?) + 7ol B (" — y* I + oflr* 2

=R = = 20— g = )

and when 7 € (1, +00),
(1 —T7)o||[r* % + o||A*z* T + B*yk — |2
> (=7 Ho(r 1 = [Ir]?)
H(L 7= 7)o (1B (y" =y )2 + 77 IrH1?)
L2 2(dk — dEt, Rl — ),

k+1 1k
Hly =M~ Iyt - ST

which completes the proof of part (a).
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(b) From the Cauchy-Schwarz inequality, we obtain
o AT 4 By — ol = o+ A% — o)

= Ol + ol A — )| + 200, A — %)

IV

ollr*|* + ol A* (@ — 2®)||? — 20|r*||? — %UIIA"(%’“+1 —a")|I?
= ol + A @ - a2
Therefore, for any a € (0, 1], we have
(1= a)|[(1= 7)ol |2 + ol A2 + B'y* — ol

> (1-a)[(1= ol = oI+ Sl A — )] (4.5)

= —( =)ol 7 + (L= o (I = r*1%) + 12" — 2w 4
Then (4.44)) can be proved by adding to an inequality which is generated by
multiplying « to both sides of ([4.43)), which completes the proof of part (b). ]

For the sequence {(z"*! y**! z**1)} we have the following lemma which is

similar to Lemma [£.8

Lemma 4.9. Suppose {(z*,y*,2*)} be the sequence generated by the imPADMM

and
1~
525, +7T = 0.
Then for any k > 1, we have
(1-— 7_)0||77k+1||2 + 0||A*fk+1 + Byt — CHQ

> max(l— 71— 7o ([P — [Irf]?)

(4.54)
+min(r, 147 = 7)o (|B*(y* — g2 + 71 )?)
a7 T R e T A et )

The proof of Lemma can be done in the same fashion as that of part (a) in

Lemma [4.8) we omit it here.

Next, we give the following proposition which is essential for establishing both

the global convergence and the iteration complexity results of the imPADMM.
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Proposition 4.10. Suppose that Assumptz’on holds. Let {(x*,y*, 2¥)} be the se-
quence generated by the imPADMM. Then for any o € (0,1] and k > 1 we have the

following results:
(a) Forany (x,y,2) € X x Y X Z,

p(z) +q(y) — p(zFt) — q(y* )
H(Vf(z) + Az, @ — ") + (Vg(y) + Bz, y — y**")

. 1
+<A*-T + B*y —C, Zk+1 - Z> + §(¢k(x7 Y, Z) - ¢k+1(x7 Y, Z))

(4.55)
—(d, x — ™) —(dy, y — y**)
> (1 = 23+ 5 — g3+ o))
—afdy — dy~t yH = ).
(b) For any (z,y,z) satisfying (4.33),
k(7. Y, 2) — or11(Z,9, 2)
+2(dy, oM —7) + 2(dy, " = g) + o ||dy — dH1G (4.56)

> [laM — 2%+ BollrM P + Yt - yF - aG TN (dy — dy T2
Proof. (a) Since f(-) is convex with Lipschitz continuous gradients, directly from
(4.29) and (4.31)), we obtain
1
Fl@) = F@R) V), o —ah) > e e}, Vee X,
1
FER) = FE) +(VF(h), o = ab) = =t =2

Summing up the above two inequalities, we get

Fla) = @)~ (VI ), & — a4 > Sl — a¥ ) — Sl — b (457

From (4.36)) and (4.37)), we have

dy + Uy — M+ € Op(ah),
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ie.,
— V(") — AE 4 0B (yF — M) = (Ef + S)(@* — 2b) € ap(att),

where we make use of the fact that 2% +o(A*2* 1+ B*y* —c) = Z*1 40 B* (y* — ¢~ 1).

By the maximal monotonicity of dp(-), we know that

p(x) = p(a**) +(Vf(2*) = df, © — 2™

(4.58)
AR+ oB (Y — y* )] + (B + S) (2 = a¥), @ — ) > 0.
Adding (4.57)) to , we have that for any z € X,
plx) + f(x) — p(a®*h) — f(aPt) — (dh, x — 2*T)
—|—<A[5k+1 + UB*(yk . yk+1)] + (if + 5)(:Bk+1 . xk)’ T — xk+1> (4_59)
1
> §(|lx — oM, — [l — kazgf)'
Similarly, we have that for any y € ),
q(y) — q* ) + (Vg(y*) — di, y — ")
R (4.60)
(B 4 (B + T) (W —9*), y —y*) >0,
and
a(y) + 9(y) —q@* ) — g ) — (b, y — )
HBFH + (S + T = yh), y — ™) (4.61)

> §(Ily I3, = I =t )
From and (4.61), we know that for any (z,y,2) € X x Y x Z,
R(z,y) — R,y ) — (dy, « — ") — (dy, y — y**")
+HAz, x — 2" + (Bz, y — ") + (A*x + By — ¢, ZF — 2)
+Ho— 2 (S + 8) (@ =) + (=t Cy+ T b)) (462)
(= ), BE(yE — R )Y o (PR R

+o(A
1 k 1 k+1 k|12 k+1 k12
> S(le = "5, +lly -y "I1%,) — 5 (™ =2l + 1y = o"lI5,)-
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Next, we shall rewrite the last four terms on the left-hand side of (4.62)). Firstly,
from (4.40)), we have that
1

(Pl o — ZRHLY = (At oy ok k) = (R ok R o2
TO
1
= %(sz+1 = 2Pl = 2R = 1 = 2)P) = ol (4.63)

_ 1 k12 k+1 2 (1 —2)o k4112
= o (lls = = 12— 2)?) + S

Secondly, by (2.3)), we get
U<A*(5L’ _ $k+1), B*<yk _ yk+1)>

= (AT — ) — (AT =), By — By
4.
T (14 %, k 2 x, k1 | pae kel 2 (4.64)
= §(||A$+By —c|)? + [[A* T + By — )

o
—E(HA*x + Byt — | + AT 4+ By — f)?).
Thirdly, from ({2.1)), we have

<$ _ karl’ @f +S)(l.k+1 _ l.k)> + < k+1 (Z + T)( E+1 _ yk)>

_ 1 k+1 _ kH

R I R BN (465)

1
(g = oM12, 7= lly = o3 ) — §||yk+1

+ Nl
—~

DN | —

e AT

Then by substituting (4.63] and (| into , we get that
R(x,y) — R(@* g™ — (d}, & — 2™ — (dy, y — y**)
+(Az, x — 2" (B2, y — " + (A% + By — ¢, 2T — 2)
+5 (4@ + By —cl|* = [l A" + By — |2
byl =2 o+l = sHI5, o+ oz — #1?) (4.66)

1
! okl e SkF12
S R R e

v

(e = "%, + ly = ¢"I%, + 12" = 25 + ly** = *17)

(UH.A*SCIH_I + B yk —c|]? + (1 — 7')0'”7“k+1H2).
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Hence, by applying the inequality (4.44) to the right hand side of (4.66), we can

obtain
R(z,y) — R ") —(dg, v — 2™ — (dy, y — y™*)
Az,  — 2" + (Bz, y — y*) + (A + By — ¢, 28— 2)

o
+—(||A*x + Byt — c||? — || A*x + BryF !t — c|\2)

2
1
- .k = _ k|12
1 1
_E(Hx k—HHEerS_'_ Hy_yk—HHE +7'+_”Z_Zk+l”2) <467)
1. «a
Sao (It — 1) + St — R — Sl I
1

v

5 e =815, + lly = o* I, + 12 =25 + g™ = o*17)
_a<dy - d’;_la yk+1 - yk>

E+1 k+1 ||

5l

1
+§50||7"k+1||2 + 5

k112
T oo + =

min(7,14+7—72)acBB* "

Now note that by (4.29) and (4.30]), we have for any z € X, y € Y,
1
f@h) = f(2) +(V (@), @ —2"0) = o — a5,
1
9" ) = 9(v) + (Vo). y =) = Slly =y I3,

By adding the above inequalities to and using , together with the defi-
nitions of ¢x(z,y,2), F, G, and f, we can obtain the inequality . The proof
of part (a) is completed.

(b) Since (z,y, z) satisfies the KKT system (4.33), by the convexity of f and g, we

have
p(a* —p(z)) + (Vf(T) + Az, 2" — ) > 0,
g™ —q(®) + (Vg(z) + Bz, y* — ) > 0.

By applying the results in part (a), together with the above two inequalities, we can
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get
¢(Z,Y,2) = or41(Z, 7, 2)
> [l = 2%+ Y = yRIG o+ Bollr
—20(dy — dy™", " = yF) = 2(dy, 2 - 3) = 20dy, ¢ - )
= 2"t = 2P% + B+ Iy =yt - aG T (dy — Y2
The proof of part (b) is completed. ]

Proposition 4.11. Suppose that Assumptz’on holds. Let {(x*,y*, 2*)} be the se-
quence generated by the imPADMM and let {z*} and {y*} be the two sequences

defined by (4.36) and ([4.38), respectively. Let z*t1 .= 2k + or**1. Then for any
a € (0,1] and k > 1, the following inequalities hold:

(a) For any (z,y,2) € X x Y x Z,

(p(x) + q(y)) — (p(Z*F) + q(7")

V(@) + Az, o — 2" + (Vg(y) + Bz,y — )
) (4.68)
+<A*LL’ + B*y -G ék+1 - Z> + %(Qbk(I,y; Z) - ¢k+l<x7y7 Z))

> S (25 = a*1% + 177 = yFIIg + Boll™ 12 + 20(dy~, 751 — y*)).

DN | —

(b) Por any (7,9, %) satisfying (33),
¢k(§ja Y, 2) - &k-&-l(‘jﬁa Y, 2) + 02‘|d§_1|’é_1
(4.69)
> (| = k% + Bol| PP+ (g -y + aG T TG

Proof. Proof can be done by substituting z**! and ¢**! for 2**! and y**! in the

proof of Proposition and using Lemma [£.9) instead of Lemma [1.8] O

4.3.1 Global convergence

In this subsection, we establish the global convergence of the imPADMM. Since

we allow both inexactness in solving subproblems and indefinite proximal terms, we
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need to combine the techniques used in [14] and [37] to obtain the global convergence

results.

Theorem 4.12. Suppose that the solution set to problem (4.28) is nonempty and
Assumption[d] holds. Let {(x*,y"*, 2%)} be the sequence generated by the imPADMM.
Let (Z,7,%) be a vector satisfying the KKT system ([4.33)) and let {z*} and {§*} be

the two sequences defined by (4.36|) and (4.38)), respectively. Assume that

a€ (t/min(l+7,14+771),1),

1 1~ ~
F =0, G0, §Zf+S+o—AA"‘>0, 5E{,Jr’fto, Yr+S8>=0. (4.70)
Then, the sequence {(z*,y*)} converges to an optimal solution of problem (4.28))

and {z*} converges to an optimal solution to the dual of problem (4.28).

Proof. Note that o € (7/min(1 + 7,14 7"),1) and 7 € (0, (1 + v/5)/2), by (@41

we have > 0 and @ > 0. From (4.33) and the convexity of f and g, we have

p(z**h) = p(z) + (Vf(Z) + Az, 2" —7) >0,
(4.71)

q(y*) — (@) + (Vg(@) + Bz, ¢! =) > 0.
By (4.55) and the above two inequalities (4.71]), we obtain

O(,7,2) = opr(2,5,2) = (2" = 2M|%+ Iy = PG + Bollrt P
—2a(dl — i~y — )
_2<dl;’ P ZZ‘> . 2(d’;, yk—I—l . g>
Since G > 0, observing that
I+ 320 —ds g ) = [y G (- d 3ol

we know that

+2(dk, 2 — F) + 2(dh, P — )+ a?|dh — dE L2

> 2" = aF[|% 4 Bollrt I 4yt =yt = aGTH(dy — dyTh
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Similarly, it also holds that for any (z,y, z) satisfying (4.33)),
¢k(i> ga 2) - $k+l(j> ga 2) + a2”d}y€_1 Hé—l
(4.72)
> [z = aF|% o+ Bol|FE P+ (|9 =yt + a2

Now we are ready to prove the convergence of the sequence {(z*, y*, 2%)}. Firstly,

we show that the sequence {(z*,y*, 2¥)} is bounded. Denote z, :== z—Z, y. := y— 7

and z. ==z — z for any (z,y,2) € X x Y x Z. From (4.72), we have that
O1(2,5,2) < ou(T,7,2) + [l dy |G-
Note that
|AZ + By — | = Az + By — ¢+ By" — B y|* = [|B*y|* = [y 13- -

From the definitions of ¢y (Z,¥,2) and ¢p41(7,7, 2), and N = ig + T + oBB*, we

have
1 _ _ i _
;HZS“II2 + ||flf'§“||2§f+3 + lgEH 3 + Qo llP P 4 afl gt - y’“l!%g”
L ke k|2 k2
< gllzell Flzells, s +lvelln (4.73)

+aolrt|? + ally® -y U L+ oflldyT g

Define the sequences {¢¥} and {¢*} by
1
NaT

_ 1 ~ 1 — = 1
&= (g Bt SRk Nogh Vaor, Va(S, + T): (7" — v* ).

Obviously, ¢x(%,9,2) = [[€¥]* and éx(7,5,2) = [|€*]>. Thus by @.73), we get
€12 < [I€%]2 + a2 G252, which implies

= (=2 (B + 8)2ak Nk Vaort Va(S, + T): (" — o)),

€M < 1€ + allg™2dy "l (4.74)
Therefore, we can obtain that

€] < 1€5]] + al|G2dE Y| + [|E5 Y — gLy, (4.75)
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Now we consider the last two terms in (4.75)). Firstly, we estimate the term ||+ —

L], Note that @ + 7 € [1,2] and

= 1
k+1 _ ¢k+1)12 sk+1 _ k412 Fk+1 _ k412 —k+1 _  k+1)(2
L = Lo o e B e e
—i—&Uka-H _ Tk+1H2 + Oz||gk+1 _ yk+1“2

Sg+T

= [lZ5 =S s+ 17 =y R+ allgt =R

(7 + Qo || AT (@ — 2 + B (g -yt
< (2@ + ) (I = 2R+ 17 =y IR)
_ _ 2

f 5(ka+1 _xk+1"M_|_ Hyk—i-l _yk—l-l”N,) S 5<1+Q1)25i7

where the last inequality can be obtained by applying Proposition 4.7 Thus
€54t = € < V(1 + a1)er (4.76)

Clearly, from (4.39)), we have

IG™2dE|| < osen, (4.77)

where g, := ||G2Nz||. By applying ([@.76) and (@.77) to (£.75), we obtain that

I < 1188+ VB(1 + e1)ex + g2en-1- (4.78)

As a result, we have that the sequence {71} is bounded:
1€ < 05 = €M1+ (VB(L + 1) + 02)€, (4.79)

where £ is a finite number defined in (4.35). We also have that the sequence {£¥}
is bounded from ([4.74), and (£.79). Hence, {¢x(Z, 7, 2)} and {¢x(Z,y, 2)} are
bounded. From the definition of {¢¥} and the fact that /' = 0, we can see that the
sequences {y*} and {z*} are bounded. We also have that the sequences {r*} and
{@f + 8)22+} are bounded. Note that A*Z = ¢ — B*j, we have

A2k — A2 = || A%k + B G — c|? = |r* + B*g — By

(4.80)
<2712 + 2/ BIPllye 1.
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Thus from the boundedness of {y*} and {r*}, we know {||z¥||% 4.} is bounded. To-
gether with the fact that {(if‘i‘S)% (z¥)} is bounded, we conclude that {||z* “2 +S+UA.A*}
is bounded. Since M = if-l—S—FUA.A* = 18 +S+0AA* = 0, {zF} is also bounded.
Consequently, we have proved that the sequence {(z*, y*, z*)} is bounded.

Since the sequence {(z*"! y**! 2*1)} is bounded, there exists a subsequence
{(akitt g+l kit1)} which converges to an accumulation point (2,4, 2*°). We
now show that (2°°,y>, 2°°) satisfies the KKT system (4.33)). By part (b) in Propo-
sition [.11], we know that

S llZ T = 2% 4 BT+ |7 — ot + oG G

< Yo (0k(E, 7, 2) = ok (7,7, 2)) + (911 (T, 7, 2) — drr (7,7, 2)) + a2||d§_1||é—l
< 0u(7,5,2) + (026) + 2 €5 = EHIS T + 1D

< 61T, 7,2) + (026) + V(1 + 00)€ (maxgu {[|E ]| + [|E€41]}) < oo,

From the summability of the sequences {||z*T1 — 2| %}, {||F*"1)|2}, {||g**! — % +

aG~'d}~ g}, we have that
kh_{n ka—l-l kH}_ + ||7,k+1||2 + ||—k+1 k + Ozg_ld;j_lHé =0.

k+1 k+1

— 2|7 = 0, limp_,o0 [|7* — ¥¥|lg = 0 and limy_,o ||F*]] = 0.
Note that G = 0 by the assumption (4.70), and M > 0, N = 0. From the fact that

|5* Tt — || v < 016k, and ([.77), we have that

Thus limy_,« ||Z

kh_}rgo(yk — gyt =0, kh_)rrolo rktl =, (4.81)
Since
A" @ =) < [P )+ 1B (5 = )
we have

=0.

: ko k+l
klgglo |z" — =z HFF(H;)GAA*

Then by [|Z5F" — 27| o < ek, we can get

lim (2% — 2F*1) = 0.
k—ro0
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Now taking limits for k; — oo on both sides of (4.58)) and (4.60]), and using (4.81]),
we can get that for any (z,9,2) € X x Y x Z, A*x>®° + B*z> — ¢ =0 and

p(x) = p(a™) + (x — 2%, Vf(2%) + Az%) > 0,

q(y) —a(y™) + {y —y>, Vg(y™) + Bz>) 20,
which implies that (z°°, 3>, 2°) satisfy the KKT system (4.33)), thus (z*°,y>) is a
solution to problem (4.28)) and {z>°} is a solution to the corresponding dual problem.

To complete the proof, we need to show that (x>, y>°, 2°°) is the limit of the sequence

{(2%,y*, 2%)}. Without lose of generality, we assume (z°°,y>, 2°) = (Z, ¥, z). From

(4.78), we have for any k > k;

I < fle™

+ D (VB(L+ 01)2; + 02551).

Since limy, .o [|€¥]] = 0 and {g;} is summable, we have that limy . ||€¥"]] = 0.

Thus by the definition of £*, we have

lim 2* =2* =2 and limy" =9y~ =7. (4.82)

k—o0 k—o0

In addition, (4.80]) together with (4.81)) and (4.82)), gives that

k [

lim 2" = 2% = Z.
k—o0
This completes the whole proof of the theorem. O

4.3.2 Iteration complexity

In this subsection we establish the iteration complexity result in non-ergodic sense

for the sequence generated by the imPADMM.

First, we provide some preliminaries for the iteration complexity analysis. We
denote the set of all the KKT points of problem (4.28) by W and define the function
D:W — [0,00) by

D(w) := dist*(0, Vf(z) + Az + 9p(z)) + dist*(0, Vg(y) + Bz + dq(y))

(4.83)
+||A*x + B*y — |
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We say that w € W is an e-approximation solution of if D(w) < e. The
iteration complexity in terms of the KKT optimality conditions can be established
in the sense that we can find a point w € W such that D(w) < € is satisfied
with € = o(1/k) in at most k steps. Similarly as [37, Lemma 2.1], we write down

the following lemma, which will be useful in analyzing the non-ergodic iteration

complexity of the imPADMM.
Lemma 4.13. If {a;} is a nonnegative sequence satisfies y .-, a; = a, then we have

: Y e . Cmin 4 — 0.
i:rnLlnr'l’k{al}_a/k and kirgo{k élilgkal} 0

Lemma 4.14. Suppose that the solution set to problem (4.28) is nonempty and
Assumption [d holds. Assume that ([{ET0) holds. Let {(x*,y*, 2*)} be the sequence
generated by the imPADMM and (Z,9, 2) be the limit point of {(z*,y*, 2¥)}. Define

¢ :=2(v/max(2,2/a) + 1) o5& + 405’

and

k
Ghlw,y) = D (20, 2™ — 2+ 2(ds, y™ = ) + Pl — di 2.

i=1

Then, we have
6.(5.5) < 3 (2Nt + (o) + 0¥ — a7 B ) <6 (a8
i=1
Proof. By the definition of ¢! and , we have
lye"H Ik + Nze IS, s+ aollr™ 7 < €17 < o (4.85)
From , we have

(@)l + 20yl (4.86)

SHILY

2t 12 4ae < 201712 4 20|y |2 55 <

From (4.85)) and (4.86|), we can obtain that

lze 3 <l g s+

505 T =@ IPHE 4 2[lye IR < max(2,2/@)d5. (4.87)

S
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Clearly, from (4.85]) we konw that

lye™ v < os. (4.88)

Thus by using (4.39), (4.87) and (4.88]), we have

[, 2e™) +(dy, ™) < (Vmax(2,2/8) + 1)oser. (4.89)

Note that 0 < a < 1, from (4.77)), we have a||g_%d’;*1|| < 026)_1, thus

oG (d, — di )P < 205 (e +<10). (4.90)
(4.89) together with (4.90]), gives the inequality (4.84]). O

Theorem 4.15. Suppose that the solution set to problem (4.28) is nonempty and
Assumption@ holds. Assume that (4.70) holds and F = 0. Let {(z*,y*, 2*)} be the
sequence generated by the imPADMDM. Then there exists a constant W such that

: i+l il it ~
Jnin {D(z",y"™* 2} <©/k (4.91)
and
: : k1 ikl il _
klggo {k X min {D(", y"*, 2 )}} =0, (4.92)

where D(-) is defined as in (4.83)).

Proof. By (4.37) and (4.48)), we have
d]; + P§+1(xk+1 — xk) — (/X\]f + S)(xk—kl _ xk) + (7_ _ 1)0A7ak+1 + UAB*(yk+1 . y’“)

Eap($k+1)+Vf($k+l)+AZk+l.

Similarly, by (4.39)) and (4.48)), we have

e PR (kL gy @g F T — k) + (7 — 1)oBrkH

c aq(yk—i-l) +vg(yk+l) +sz+1.
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Denote wkt! := (xF*1 y#+1 2k+1) by the definition of D(-), we have that
D(wk+1)

|dE — (S 4+ 8 — PEY) (2! — 2b) + (7 — D)o Arkt! + g AB* (yF ! — ) |2

IN

Hlldf = (S + T = Py M —y8) + (= DoBri 2 4 [|rk+1 2.
= ||d§ — (M — 7)54‘1)(3;.164-1 _ Ik) + O.A(Trk’-i-l _ Tk>||2 + ||7”k+1||2

Hldf = (V=PI =) o Bl — (@ — o) P

IA

B(IdEI” + (M = Pt @+ — 2|2 + 0| A(rrtt —r%)]?) (4.93)
+H3(dyl1” + [N = Py = y9)|1P + 202 B(rrt 1 — )2

—|—202HBA*(1'}€+1 o xk)H) + HT]H'IHQ

IA

S (LM + ulle — a3 + et — r¥]2)
FBIN NIV 22 + o5l = yHII3 + 20 et — vk
+202||N*%BA*M*%||2H$k+1 . ka%\/l) + ||7Jc+1||27

where g4 = 2(1+ [|M72|IZ4]2), 05 := 2(1+ [N 72|, ]|?). In the last inequality,
we used the fact that M = 0 AA* and N = ¢BB* to bound the terms [|A(7r*+! —

r®)|| and ||B(rrktL — r%)||. We used the Cauchy-Schwarz inequality to obtain
I(M =P (@ —a®) | < M@+ 2AlMH PP 2 — 2%,
which, together with the fact that 5 = Pf = 0 for all £ > 1, implies
I(M =P (@ = a®) | < oalIM[f]a*+ — =¥,

Similarly, by the Cauchy-Schwarz inequality and the fact that flg >~ Pz’f > 0 for all

k > 1, we can get

IV =Py =) < osIN T = oI5

Now we shall use Proposition to obtain an upper bound for Y ;7 D(w*™). By
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using (4.56) in Proposition |4.10] we have
Dot 2t = 2%+ Bollr P 4 lyt =y — G (dy — dyT)E
< 220:1 (¢k(f7 Y, 2) - ¢k+1(f7 Y, 2))

+ 3000 (21, 2]+ 20(dy, vt + a?lldy — dy g

(4.94)
< ¢1(7,7,2) + ¢,
where the last inequality is from Lemma [4.14 We also notice that
ly* ! —yf —aG (ds—dy I > 1y —yF 15 =206 (vF T —yM)IG 2 (ds—di )]
Thus from (4.88) we have
163 (6" = )l < 1G=N % oa.
From (4.77)), we have
allG72(dE — dE )| < oo(er + exn).
Applying the above three inequalities together to (4.94]), we know that

D (" = a5+ Bollr P + [y = * 1)
k

=1 (4.95)
< (2,5, 2) + C+ 4]|GEN 2] 0,E.

1
Let wy := o + 3max(||M||, |NV]), and

1 1 6(1+ 72
ws = max (01 + 20N EBA M )| F M|, 0205, % +1).

By summing up the inequalities (4.93)) from k = 1 to co and applying the inequality

(4.95) to it, we can get

6 = 1 1
Yooy D) < wy (28 + W5(EHT1H2 + ¢1(Z,7,2) + ¢+ 4]|G2N 2| 0:E)).

Therefore, from Lemma [4.13] we have that both (4.91) and (4.92) hold. O]
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4.4 Numerical experiments

In this section, we consider the following quadratically constrained QSDP problem

1
2 (4.96)
s.t. .AEX = bE, .A[X > b[, g(X) < O, X e Si ﬂN,

min

where 8% is the cone of n x n symmetric and positive semidefinite matrices in the
space of n X n symmetric matrices 8", Q : 8" — 8" is a self-adjoint positive
semidefinite linear operator, Ag : 8™ — R™F and A; : S" — R™ are two linear
maps, C € 8", by € R™E and by € R™ are given data, N is a nonempty simple
closed convex set, eg., N = {X € 8" | X > 0}. Map g : S — R! consists of

quadratic functions ¢; : S — R, i = 1,...,[ defined by
1
9i(X) == §(X, QX))+ (Cy, X) +d;, i=1,---,1,

where Q; : 8" — 8™, i =1,--- [ are self-adjoint positive semidefinite linear opera-
tors, and C; € 8", d; € R, 1 =1,--- ,[ are given data. The dual problem associated
with is given by
max —W(Z,3) ~ (W, QW) + (be, yi) + {br, v1)
st. Z-OW+S+Ayye+ Ajyr =C,
yr e R, XeRl, Sesr, Wew,

where U(Z, \) = supyesn{—(U, Z) — (A, g(U)) — ox(U)}, W is any subspace in S"
such that Range(Q) C W. Typically, W is chosen to be either S™ or Range(Q).
Here we fix W = 8™ As in (4.4), we introduce a slack variable ¢ and a positive

definite linear operator D : Y; — Y;, to obtain the following equivalent problem
min W(z, A) + Opt (N) + Sy (C) + %(W, QW) + dsn(S) — (be, yr) — (br, y1)
st. Z— QW+ 8+ Ayyp + Ajyr = C, (4.97)
D —yr)=0, WeWw.

Now we can apply our algorithm to problem (4.97)).
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The KKT conditions for (4.96) and its dual are given as follows:

(

Asyp + Asyr + S+ 72— QW —C =0, ApX — bg =0,
0€ Ny(X)+Vg(X)A+Z, QX — QW =0,
AIX_bI Z 07 Yr Z 07 <AIX_bI7 y[> - 07 (498)

9(X) <0, A >0, (A g(X)) =0,

\ XeS&t Sest, (X,8) =0,

where Nj(X) denotes the normal cone of N at X. We measure the accuracy of our
algorithm based on the optimality conditions (4.98]). For an approximate optimal
solution (X, Z, \, W, S, yg,ys) for (4.96) and its dual by using the following relative

residual:

n = max{np, N, Mw, Ns, 71X Nz M1 Mg }»

where

nP:M nD:H‘AEZ/E"FAEI"‘S‘FZ—QW—CH
L+ [logll 1+C] ,

o — QX — QW] IX —Tse (X (X, 9)] \
W — A1 s ,
L+ Q] L+[IX] T+ X+ 11S]]

pe 2 X ICO X - (X — 2 = Vg
THIXT " T TR 2T+ V9 (XA

,nS:maX{

min(0,y)|| || min(0, A/ X — bl [{ArX —br, yi)|
Lyl 1+ [[b]] 1 [lAr = bl + [l

max(0, (X)) [[min(0, V] — [{g(X), M|
L+l 7 T+ T T+ [lg(ON + (1Al

nr = max{ H

H}7

1.

1g = max{ ”

We terminate Algorithm 1 when 1 < 107% or when the maximum number of itera-
tions is reached. All the problems in this section are tested by running MATLAB on

a PC with 24 GB memory, 2.80GHz quad-core CPU.

In Example [4.1] 1.2 and [£.4] all the linear equality and linear inequality

constraints are extracted from the test examples in [72]. Our test instances are
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constructed based on relaxation of binary integer quadratic (BIQ) programming

problems. More explicitly, the problem we solve have the following form:

(i) The QSDP-BIQ-Q problem is given by:
1 1

s.t. diag(Y)—x =0, a=1,

Y =
X = eS8t XeWN,
l’T (6%

%(X, OX) +(C, X) +d <0,

where N = {X € §" | X > 0}. In our numerical experiments, the test data
for @ and c are taken from Biq Mac Library maintained by Wiegele, which is
available at http://bigmac.uni-klu.ac.at/bigmaclib.html. Q:8" 8"
is a self-adjoint positive semidefinite linear operator, C €8 and d € R are

given data.

(ii) The QSDP-exBIQ-Q problem is given by:
1 1
min §<X7 QX> + 5(@7 Y> + <C> x>

st. diag(Y)—2z=0, a=1,

Y =
X = €S, XeN: ={XeS"|X >0}
e

=Y+, 20, =Y,;+2; >0, Y; —x; —x; > —1,

v2<], j:27"'7n_17

%(X, OX)+(C, X)+d<0.

Example 4.1. The QSDP-BIQ-Q problem. In the quadratic constraint

S1X, 8X) +(C, X) +d <0,

~ ~ 1
Q is chosen as the symmetric Kronecker operator Q(X) = §(AXB+BXA), with A,

B being matrices truncated from two different large correlation matrices (Russell


http://biqmac. uni-klu.ac.at/biqmaclib.html
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1000 and Russell 2000) fetched from Yahoo finance by MATLAB. The matrix C

is randomly generated by
C=rand(n); C = -0.5%(C+C’);

— 1 — ~
We get dy from a feasible point X of SDP-BIQ by letting dy = —(§(X, oX) +
(C, X)), and then let d be (do — 0.2|do|), do, (do—+0.1]do|) and (do+0.2|do|), respec-
tively.

We report the detailed numerical results for Example in Table 4.1 The first
column of the table gives the problem name, the dimension of the variable, the
number of linear equality constraints and inequality constraints, respectively. The
second column gives the total number of iterations of our proposed algorithm. In the
third column, we list the accuracy we obtain when the algorithm terminates. The
last column gives the running time of Algorithm 1. we let the maximum number of
iterations be 50, 000. For d = dy—0.2|do|, d = do, d = do+0.1|do| and d = do+0.2|do|,

we can solve 130, 125, 122 and 118 problems to the required accuracy, respectively.

Example 4.2. The QSDP-BIQ-Q problem. The quadratic constraint has the fol-
lowing form:

| A X —br||? < (H, X) +d,

where A; and b; are the same as in the QSDP-exBIQ-Q problem, H is generated

by the following commands:

H=rand(n); H = 0.01x(H+H’) /norm(H, ’fro’);
and d is choosen to be my, m;/4, m;/9, m;/16, respectively.

We report the detailed numerical results of Example in Table [4.2] We can
solve most of the problems to required accuracy (n < 107%) except for the case
d = my/16. When d = m;/16, there are 8 instances can not be solved to the
required accuracy within 25,000 iterations, and the numerical results in the table

indicate that in fact 7 problems of them are infeasible.
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Example 4.3. The QSDP-BIQ-Q problem. In this example, we use the constraint
IX - GlI* <d,
where G is generated by
G=randn(n); G = 0.01*%(G+G’) /norm(G, ’fro’);
and d is choosen to be ((n—1)/2)?, ((n—1)/3)%, ((n—1)/4)?, ((n—1)/5)?, respectively.

Detailed numerical results of Example are reported in Table 4.3 We can
solve all the problem to the accuracy n < 107% within 25,000 iterations except one

instance ‘bqp500-8’, when d = ((n — 1)/2)2.

Example 4.4. The QSDP-exBIQ-Q problem. The quadratic constraint we use has
the same format as in Example [4.3] Here G is generated by solving the correspond-
ing QSDP-exBIQ problem to accuracy of 1072, and d is choosen to be 0.09||G]J?,
0.25||G||? and 0.49||G||?, respectively.

The detailed numerical results for Example |4.4] are reported in Table We can
solve all the test examples to accuracy of 107%, except for the instance ‘be120.3.10’

when d = 0.09||GJ2.
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4.4 Numerical experiments
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4.4 Numerical experiments
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Example 4.5. The quadratically constrained nearest correlation problem. Sun and
Zhang [75] consider the following nearest correlation problem for robust estimation

of correlation matrix:
1
min §HX — C?
1 )12
st. || X=C|F<e
2
diag(X) = e,
X eS8t
where e € R" is the vector ones, C, C are the sample covariance matrices from short-
term data and long-term data respectively and ¢ is a positive constant to control

the size of trust region from the long-term stable estimation. In our test, we first

generate the correlation matrix G by the following MATLAB commands:
x=10"[-4:4/(n-1):0]; G = gallery(’randcorr’ ,n*x/sum(x)) ;

then, we perturb G, and conduct our numerical experiments under the following

four situations:
() C=G+10"'%E;C=G+10"' % E;
(i) C=G+102%E;: C =G +10"2 % E;
(i) C=G+102+F; C =G+ 10" « E;
(iv) C=G+10" '« E; C =G+ 1072 % E;
where E and E are two random symmetric matrices generated by
E = rand(n); E = (E+E’)/2; for i=1:n; E(i,i)=1; end;

We take e = r||C' = C||, with 7 = 0.6 and r = 0.8, respectively. We test four cases
when n = 100, 500, 1000 and 2000, respectively.

All the problems in this example are tested by running MATLAB on a MacBook

Pro with one 2.3 GHz Intel Core i5 Processor and 4GB (DDR3-1333MHz) RAM.
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Chapter 4. Convex composite conic programming problems with nonlinear
constraints

Table 4.5: Performance of Algorithm 1 for quadratically constrained nearest corre-
lation problem. r = 0.8.

iteration n time
n (1| i) (iv) (1| i) (iv) (D1 (i) (iv)
100 | 26 20|24 |18 | 8.3-7|7.3-7|9.7-7 | 3.6-7 0.5/0.4]0.5]0.4
500 | 3031|3029 | 80-7|9.3-7|8.0-7 | 8.3-7 8.4/9|18.5|8

1000 | 31|31 31|30 | 8.87]9.3-7|8.87 | 7.7-7 58.6|59.4/56.6(53.3

2000 | 2923|2923 | 9.7-7| 7.3-7 | 9.7-7 | 7.3-7 | 15:15|11:50|21:36]12:03

Table 4.6: Performance of Algorithm 1 for quadratically constrained nearest corre-
lation problem. r» = 0.6.

iteration n time
n @D (D] (iv) @D (D] (iv) (DI i) (iv)
100 | 3231|3031 | 84-7|5.8-7|7.2-7| 587 0.4]0.4/0.3]0.4

500 | 30| 31]30|29 | 7.9-7|9.3-7 | 7.9-7 | 8.3-T 8.5(8.9/8.6/7.9

1000 | 3131 |31]30 | 8.87]9.37|887|7.7-7 | 58/59.4/58.6|55.2

2000 | 3230|3230 | 9.5-7 | 7.8-7 | 9.5-7 | 7.8-7 | 7:03|6:36|6:43|6:27

Table [4.5] and Table 4.6| report the number of iterations and time of computing for
r = 0.8 and r = 0.6, respectively. The numerical results show that our proposed
algorithm is efficient in solving the robust nearest correlation problems. For all the
test examples, we can solve them to the required accuracy within a small number

of iterations.

Observing the numerical results for all the examples being tested, we can con-
clude that our proposed algorithm is capable of dealing with QSDP problems with
quadratic constraints. We can solve most of the test examples to the accuracy of
1076 efficiently. We only test the QSDP problems with quadratic constraints in this
section, while our proposed algorithm can be applied to other nonlinear constrained

convex conic programming problems. We will leave this part to future study.



Chapter

Conclusions

In this thesis, we focus on solving a class of nonlinearly constrained convex composite

conic optimization problems.

In order to obtain some guidance on solving the general nonlinearly constrained
convex composite conic programming model, we conduct a variety of numerical ex-
periments to evaluate the computational performance of some existing first order
methods for large scale linear semidefinite programming problems. It can be ob-
served from the numerical results that applying the ADMM to the dual of linear
SDP is very effective. Besides the study of the first order methods, we propose
an approximate semismooth Newton-CG method for solving the inner problems
in the augmented Lagrangian method. We only need a small part of the second
order information when using this method. The linear convergence of this approxi-
mate semismooth Newton-CG method is established. The numerical results indicate
that the approximate semismooth Newton-CG augmented Lagrangian method can
achieve high accuracy efficiently. For the tested instance with n > 8,000, it can
reduce about 50% of computational time compared to the semismooth Newton-CG

augmented Lagrangian method.
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Chapter 5. Conclusions

By taking the advantage of the recently developed symmetric Gauss-Seidel tech-
nique, we propose a multi-block inexact ADMM-type algorithm for solving the non-
linearly constrained convex composite conic programming model and its dual. We
study the subproblems and tackle the difficulties introduced by the nonlinear con-
straints. We give implementable error tolerance criteria for solving the subproblems
even when the subproblem do not have explicit formula and the subgradients can
not be easily calculated. We allow both indefinite proximal terms and inexactness in
our algorithm. Global convergence and iteration complexity results are established.
Computational experiments on a variety of semidefinite programming problems with
quadratic constraints are conducted. The numerical results indicate that our pro-
posed method is capable of handling both the linear and nonlinear constraints and

solving the problems to moderate accuracy efficiently.

It should be noticed that the work done in this thesis is far from comprehensive.

Below we briefly list some research directions that deserve further explorations.

e Can one design an efficient second order algorithm and combine it with our

algorithm to achieve better accuracy?

e [sour algorithm still effective in solving general nonlinearly constrained convex

programming problems?

e Can we find more applications and apply our method to them?
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