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Abstract We analyze the rate of local convergence of the augmented Lagrangian
method in nonlinear semidefinite optimization. The presence of the positive semidefi-
nite cone constraint requires extensive tools such as the singular value decomposition
of matrices, an implicit function theorem for semismooth functions, and variational
analysis on the projection operator in the symmetric matrix space. Without requiring
strict complementarity, we prove that, under the constraint nondegeneracy condition
and the strong second order sufficient condition, the rate of convergence is linear and
the ratio constant is proportional to 1/c, where c is the penalty parameter that exceeds
a threshold c > 0.
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1 Introduction

The nonconvex semidefinite programming problem has wide applications in system
control, structural design, and other fields. It has recently become a focal point in op-
timization research. For example, in the recent release of the library COMPleib [24], a
total of 168 test examples for nonlinear semidefinite programs, control system design,
and related problems are collected. Among very few algorithms for this problem, the
augmented Lagrangian method appears to perform well [26]. It naturally calls for a
suitable theoretical explanation for this phenomenon. Note that algorithms for non-
linear semidefinite programs may display quite distinctive features from conventional
nonlinear programming programs (see [14] for such an example). In its general setting,
the augmented Lagrangian method can be used to solve the following optimization
problem

min f (x) s.t. h(x) = 0, g(x) ∈ K , (OP)

where f : X �→ �, h : X �→ �m , and g : X �→ Y are twice continuously differ-
entiable functions, X and Y are two finite-dimensional real Hilbert spaces equipped
with a scalar product 〈·, ·〉 and its induced norm ‖ · ‖, and K is a closed convex
cone in Y . For any given x ∈ X and ε > 0, let the open ball be Bε(x) := {x ∈
X | ‖x − x‖ < ε}. Suppose that X ′ and Y ′ are two finite-dimensional real Hilbert
spaces and that F : X × X ′ �→ Y ′. If F is Fréchet-differentiable at (x, x ′) ∈
X × X ′, then we use J F(x, x ′) (respectively, Jx F(x, x ′)) to denote the Fréchet-
derivative of F at (x, x ′) (respectively, the partial Fréchet-derivative of F at (x, x ′)with
respect to x) and ∇F(x, x ′) := J F(x, x ′)∗, the adjoint of J F(x, x ′) (respectively,
∇x F(x, x ′) := Jx F(x, x ′)∗, the adjoint of Jx F(x, x ′)). Moreover, if F is twice
Fréchet-differentiable at (x, x ′) ∈ X × X ′, we define

J 2 F(x, x ′) := J (J F)(x, x ′) , J 2
xx F(x, x ′) := Jx (Jx F)(x, x ′),

∇2 F(x, x ′) := J (∇F)(x, x ′), and ∇2
xx F(x, x ′) := Jx (∇x F)(x, x ′).

A feasible point x ∈ X to (OP) is called a stationary point if there exist ζ ∈ �m

and ξ ∈ Y such that the following Karush–Kuhn–Tucker (KKT) condition is satisfied
at (x, ζ, ξ):

∇x L0(x, ζ, ξ) = 0, h(x) = 0, g(x) ∈ K , ξ ∈ K ∗, 〈g(x), ξ 〉 = 0, (1)

where the Lagrangian function L0 : X × �m × Y �→ � is defined as

L0(x, ζ, ξ) := f (x) + 〈ζ, h(x)〉 − 〈ξ, g(x)〉
and K ∗ is the dual cone of K , i.e.,

K ∗ := {v ∈ Y | 〈v, z〉 ≥ 0 ∀ z ∈ K }.
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Any point (x, ζ, ξ) ∈ X × �m × Y satisfying (1) is called a KKT point and the
corresponding point (ζ, ξ) is called a Lagrange multiplier at x . Let M(x) (maybe
empty) be the set of all Lagrangian multipliers at x .

Let c > 0 be a parameter. The augmented Lagrangian function with the penalty
parameter c for problem (OP) is defined as (cf. [39, Section 11.K] or [42])

Lc(x, ζ, ξ) := f (x) + 〈ζ, h(x)〉 + c

2
‖h(x)‖2 + 1

2c

[
‖ΠK ∗(ξ − cg(x))‖2 − ‖ξ‖2

]
,

(2)
where (x, ζ, ξ) ∈ X × �m × Y and ΠK ∗(·) denotes the metric projection operator
onto the set K ∗. By observing (cf. [50])

ΠK ∗(y) = ΠK (−y) + y and 〈ΠK (−y) + y,ΠK (−y)〉 = 0 ∀ y ∈ Y,

we have for any (x, ζ, ξ) ∈ X × �m × Y that

lim
c↓0

Lc(x, ζ, ξ)= L0(x, ζ, ξ)−lim
c↓0

1

2c
‖ΠK (cg(x) − ξ)‖2 =

{
L0(x, ζ, ξ) if ξ ∈ K ∗,
−∞ otherwise.

If there is no inequality constraint, problem (OP) specializes to

min f (x) s.t. h(x) = 0. (3)

The corresponding augmented Lagrangian function is

Lc(x, ζ ) = f (x) + 〈ζ, h(x)〉 + c

2
‖h(x)‖2, (x, ζ ) ∈ X × �m,

which was introduced by Arrow and Solow [2] in the study of a differential equation
method for solving (3). The augmented Lagrangian method was initiated by Hestenes
[19] and Powell [31] for solving the equality constrained problem (3) and was gener-
alized by Rockafellar [34] to the following nonlinear programming problem

min f (x) s.t. h(x) = 0, g(x) ≥ 0, (NLP)

where f : �n �→ �, h : �n �→ �m , and g : �n �→ �p are twice continuously
differentiable. Problem (NLP) is a special case of (OP) with X := �n , Y := �p, and
K := �p

+.
For the equality constrained optimization problem (3), Powell sketched a proof in

[31] to show that if the linear independence constraint qualification and the second-
order sufficient condition are satisfied, then the augmented Lagrangian method can
converge locally at a linear rate without having c → ∞. For convex programming,
Rockafellar [34] established a saddle point theorem in terms of Lc(·) and Rockafellar
[35] and Tretyakov [47] proved the global convergence of the augmented Lagrangian
method for any c > 0.

The augmented Lagrangian method for solving (OP) can be stated as follows.
Let c0 > 0 be given. Let (ζ 0, ξ0) ∈ �m × K ∗ be the initial estimated Lagrange
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multiplier. At the kth iteration, determine xk by minimizing Lck (x, ζ
k, ξ k), compute

(ζ k+1, ξ k+1) by

{
ζ k+1 := ζ k + ckh(xk),

ξ k+1 := ΠK ∗(ξ k − ck g(xk)),

and update ck+1 by

ck+1 := ck or ck+1 := κck

according to certain rules, whereκ > 1 is a preselected positive number. If the sequence
of parameters {ck} is chosen to satisfy ck → +∞, then the global convergence of
the augmented Lagrangian method can be similarly discussed to the penalty function
method [4]. If ck has a finite limit, then there exists a positive integer N0 such that
ck ≡ c for k ≥ N0 and some positive number c. In this paper, instead of consider-
ing global convergence properties, we consider the local convergence properties of
the augmented Lagrangian method for (OP) when the second case occurs; namely
the case in which ck ≡ c for all sufficient large k. For simplicity in our analysis, for k
sufficiently large, we choose xk as an exact local solution of Lc(·, ζ k, ξ k).

In [3] (also see [4, Sect. 2.2]), Bertsekas established an important result on the linear
rate of convergence of the augmented Lagrangian method for the equality constrained
problem (3), in which the ratio constant is proportional to 1/c. The significance of
Bertsekas’s result resides in the fact that theoretically, subject to numerical stability,
we can select a large c to accelerate the convergence, which partially explains why
the practical performance of this method has been good. In [4, Chap. 3], assuming the
strict complementarity condition, Bertsekas also discussed similar results for nonlinear
programming (NLP). On the other hand, without assuming the strict complementarity
condition, many authors (e.g., Conn et al. [11], Contesse-Becker[12], and Ito and
Kunisch [21] ) derived linear convergence rate for the augmented Lagrangian method.
For more on the augmented Lagrangian method for nonlinear programming, see the
two monographs [4,17] and the survey paper [38].

The main objective of this paper is to study, without assuming the strict comple-
mentarity, the rate of convergence of the augmented Lagrangian method for solving
the nonlinear semidefinite programming problem

min f (x) s.t. h(x) = 0, g(x) ∈ S p
+, (NLSDP)

where S p
+ is the cone of all positive semidefinite matrices in S p, the linear space of all

p by p symmetric matrices in �p×p. The difficulty for achieving this objective lies in
the facts that the positive semidefinite cone S p

+ is nonpolyhedral for p > 1 and very
few established tools exist for dealing with the augmented Lagrangian method in such
a general setting. A work of similar nature (but of different target) is Pennanen’s local
convergence analysis of proximal point methods for the inclusion problem

0 ∈ T (x), (4)
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where T is a set-valued mapping from a Hilbert space X ′ to itself [30]. Based in part
on Rockafellar’s convergence analysis for the inclusion problem (4) with monotone
operators [36,37], Pennanen [30] established local linear convergence results of the
proximal point methods under the condition that T −1 has a Lipschitz localization
property at a solution x to (4). One interesting part of Pennanen’s results is that
he used his theory to establish the local linear convergence of the proximal point
method of multipliers (the regularized augmented Lagrangian method) for solving
(NLP) without assuming the strict complementarity condition. This suggests that one
may do the same for (NLSDP). However, by focusing on the optimization problem
(OP) instead of the more general inclusion problem (4), we hope to gain more by
using the rich symmetry structure uniquely possessed by this optimization problem.
Indeed, we are not only able to prove that the ratio constant is proportional to 1/c
with the penalty parameter c exceeding a threshold c > 0, but also able to provide
nice properties on the generalized Hessian of the dual function used in our analysis
(cf. Proposition 5) for (NLSDP) that relate the augmented Lagrangian method to an
approximate generalized Newton method.

The organization of this paper is as follows. In Sect. 2, we discuss several technical
results used in our convergence analysis. In Sect. 3, we develop a general theory on the
rate of convergence of the augmented Lagrangian method for a class of constrained
optimization problems under two basic assumptions. Section 4 is devoted to applying
the theory developed in Sect. 3 to nonlinear semidefinite programming. Finally, we
give our conclusions in Sect. 5. To show how the removal of strict complementarity
complicates the analysis, we provide a simple proof of the counterpart under strict
complementarity as an appendix.

2 Preliminaries

To analyze the problem without the strict complementarity condition, we use tools from
semismooth matrix functions. This section serves as a preparation for our analysis.
We will cite and prove some results that are essential to our discussion.

Let X and Y be two finite-dimensional real Hilbert spaces. Let O be an open set
in X and Φ : O ⊆ X → Y be a locally Lipschitz continuous function on the open
set O. By Rademacher’s theorem, Φ is almost everywhere Fréchet-differentiable in
O. We denote by DΦ the set of Fréchet-differentiable points of Φ in O. Then, the
Bouligand-subdifferential of Φ at x ∈ O, denoted ∂BΦ(x), is

∂BΦ(x) :=
{

lim
k→∞ JΦ(xk) | xk ∈ DΦ, xk → x

}
.

Clarke’s generalized Jacobian of Φ at x is the convex hull of ∂BΦ(x) (see [10]), i.e.,

∂Φ(x) = conv {∂BΦ(x)} .

The following concept of semismoothness was first introduced by Mifflin [28] for
functionals and was extended by Qi and Sun [32] to vector valued functions.
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Definition 1 Let Φ : O ⊆ X �→ Y be a locally Lipschitz continuous function on the
open set O. We say that Φ is semismooth at a point x ∈ O if

(i) Φ is directionally differentiable at x ; and
(ii) for any ∆x ∈ X and V ∈ ∂Φ(x + ∆x) with 	x → 0,

Φ(x + ∆x) − Φ(x) − V (∆x) = o(‖	x‖).

Furthermore, Φ is said to be strongly semismooth at x ∈ O if Φ is semismooth at x
and for any ∆x ∈ X and V ∈ ∂Φ(x + 	x) with 	x → 0,

Φ(x + ∆x) − Φ(x) − V (∆x) = O(‖	x‖2).

By combining Clarke’s implicit function theorem for locally Lipschitz continuous
functions [10, Sect. 7.1] with [43, Theorem 1.1] and [23, Lemma 2], we can get the
following lemma of implicit functions directly. Here and below,

πx∂H(x, y) = the projection of ∂H(x, y) onto the space X.

Lemma 1 Suppose that H : X × Y �→ X is a locally Lipschitz continuous function
in an open neighborhood of (x, y) ∈ X × Y with H(x, y) = 0. If every element in
πx∂H(x, y) is nonsingular, then there exist an open neighborhood OY of y and a
locally Lipschitz continuous function x(·) : OY �→ X satisfying x(y) = x such that
for every y ∈ OY ,

H(x(y), y) = 0.

Furthermore, if H is (strongly) semismooth at every point in the open neighborhood
of (x, y), then x(·) is (strongly) semismooth at every point in OY .

The following two lemmas on the Bouligand-subdifferential of composite functions
are useful in determining πx∂B(∇x Lc)(·). The first one is proved in [44, Lemma 2.1]
and the second one needs a proof, which will be given here.

Lemma 2 Let F : X �→ Y be a continuously differentiable function on an open
neighborhood O of x̄ ∈ X and Φ : OY ⊆ Y �→ X ′ be a locally Lipschitz continuous
function on an open set OY containing ȳ := F(x̄), where X ′ is a finite-dimensional
real vector space. Suppose that Φ is directionally differentiable at every point in OY

and that J F(x̄) : X → Y is onto. Then it holds that

∂B(Φ∗F)(x̄) = ∂BΦ(ȳ)J F(x̄),

where “∗” stands for the composite operation.
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Lemma 3 Let F : X �→ Y be a continuously differentiable function on an open
neighborhood O and Φ : X → X ′ be a locally Lipschitz continuous function on O,
where X ′ is a finite-dimensional real vector space. Suppose that Φ is semismooth at
every point in O. Let Ψ : X �→ Y ′ be defined as

Ψ (x) := F(x)Φ(x) ≡ F(x) · Φ(x), x ∈ X,

where Y ′ is a finite-dimensional real vector space and “·” is a bi-linear operator from
Y × X ′ to Y ′. Then for every x ∈ O and 	x ∈ X,

∂BΨ (x)(	x) = J F(x)(	x)Φ(x) + F(x)∂BΦ(x)(	x). (5)

Proof Let x ∈ O and 	x ∈ X be two arbitrary but fixed points. By using the fact that
if Φ is Fréchet differentiable at y ∈ O, then Ψ is also Fréchet differentiable at y we
obtain

∂BΨ (x)(	x) ⊇ J F(x)(	x)Φ(x) + F(x)∂BΦ(x)(	x).

Conversely, let W ∈ ∂BΨ (x). Then there exists a sequence of Fréchet differentiable
points {xk} ⊆ O converging to x such that W = limk→∞ JΨ (xk). SinceΦ is assumed
to be semismooth at each xk , we have

Φ ′(xk;∆x) ∈ ∂BΦ(xk)(	x).

Thus, for any k ≥ 1,

JΨ (xk)(	x) = J F(xk)(	x)Φ(xk) + F(xk)Φ ′(xk;∆x)
∈ J F(xk)(	x)Φ(xk) + F(xk)∂BΦ(xk)(	x),

which, together with the upper semicontinuity of ∂BΦ(·), implies

W (	x) = lim
k→∞ JΨ (xk)(	x) ∈ J F(x)(	x)Φ(x) + F(x)∂BΦ(x)(	x).

Consequently, (5) holds. ��
Let K be a closed convex set in Y . It is well known [50] that the metric projectorΠK (·)
is Lipschitz continuous with the Lipschitz constant 1. Then for any y ∈ Y , ∂ΠK (y) is
well defined. Below is a lemma on the general properties of ∂ΠK (·).
Lemma 4 [27, Proposition 1] Let K ⊆ Y be a closed convex set. Then, for any y ∈ Y
and V ∈ ∂ΠK (y), it holds that

(i) V is self-adjoint.
(ii) 〈d, V d〉 ≥ 0 ∀ d ∈ Y .

(iii) 〈V d, d − V d〉 ≥ 0 ∀ d ∈ Y.
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For discussions on nonlinear semidefinite programming we need more properties
about the Bouligand-subdifferential of the metric projector ΠS p

+(·) over S p
+ under the

Frobenius inner product in S p. We write C � 0 to mean that C is a symmetric positive
semidefinite matrix.

Let Z ∈ S p and Z+ := ΠS p
+(Z). Suppose that Z has the following spectral

decomposition

Z = PΛP
T
, (6)

whereΛ is the diagonal matrix of eigenvalues of Z and P is a corresponding orthogonal
matrix of the orthonormal eigenvectors. Then

Z+ = PΛ+ P
T
,

where Λ+ is the diagonal matrix whose diagonal entries are the nonnegative parts of
the respective diagonal entries of Λ [20,48].

Define three index sets of positive, zero, and negative eigenvalues of Z , respectively,
as

α := {i | λi > 0}, β := {i | λi = 0}, γ := {i | λi < 0}.

Write

Λ =
⎡
⎢⎣
Λα 0 0

0 0 0

0 0 Λγ

⎤
⎥⎦ and P = [ Pα Pβ Pγ ]

with Pα ∈ �p×|α|, Pβ ∈ �p×|β|, and Pγ ∈ �p×|γ |. Let Θ be any matrix in S p with
entries ⎧⎨

⎩
Θi j = max{λi , 0} + max{λ j , 0}

| λi | + | λ j | if (i, j) /∈ β × β,

Θi j ∈ [0, 1] if (i, j) ∈ β × β.

(7)

The projection operator ΠS p
+(·) is directionally differentiable everywhere in S p [5,6]

and is a strongly semismooth matrix-valued function [45]. For any H ∈ S p, we have

Π ′
S p

+
(Z; H) = P

⎡
⎢⎢⎢⎣

P
T
α H Pα P

T
α H Pβ Θαγ ◦ P

T
α H Pγ

P
T
β H Pα ΠS |β|

+
(P

T
β H Pβ) 0

P
T
γ H Pα ◦ Θγα 0 0

⎤
⎥⎥⎥⎦ P

T
, (8)

123



The augmented Lagrangian method 357

where “◦” denotes the Hadamard product [29,45]. When β = ∅, ΠS p
+(·) is Fréchet-

differentiable at Z and (8) reduces to the classical result of Löwner [25]:

JΠS p
+(Z)H = P

⎡
⎣ P

T
α H Pα Θαγ ◦ P

T
α H Pγ

P
T
γ H Pα ◦ Θγα 0

⎤
⎦ P

T ∀ H ∈ S p. (9)

The tangent cone of S p
+ at Z+, denoted TS p

+(Z+), can be completely characterized as
follows

TS p
+(Z+) = {B ∈ S p | B = Π ′

S p
+
(Z+; B)} = {B ∈ S p | [Pβ Pγ ]T B[Pβ Pγ ] � 0}.

The characterization of TS p
+(Z+) was first obtained by Arnold [1] by using a different

approach from the above. The lineality space of TS p
+(Z+), i.e., the largest linear space

in TS p
+(Z+), denoted by lin

(
TS p

+(Z+)
)

, takes the following form:

lin
(
TS p

+(Z+)
)

= {B ∈ S p | [Pβ Pγ ]T B[Pβ Pγ ] = 0}.

The critical cone of S p
+ at Z ∈ S p associated with the problem of finding the metric

projection of Z onto S p
+ (i.e., Z+) is defined as [8, Sect. 5.3]

C(Z;S p
+) := TS p

+(Z+) ∩ {B ∈ S p | 〈B, Z+ − Z〉 = 0}.

Thus, it holds that

C(Z;S p
+) =

{
B ∈ S p

∣∣∣ P
T
β B Pβ � 0, P

T
β B Pγ = 0, P

T
γ B Pγ = 0

}
.

The affine hull of C(Z;S p
+), denoted by aff(C(Z;S p

+)), can then be written as

aff
(
C(Z;S p

+)
) =

{
B ∈ S p | P

T
β B Pγ = 0, P

T
γ B Pγ = 0

}
. (10)

The following lemma on ∂BΠS p
+(Z) is part of [44, Proposition 4], which is based

on [29, Lemma 11].

Lemma 5 Let Θ ∈ S p satisfy (7). Then W ∈ ∂BΠS p
+(Z) if and only if there exists

W0 ∈ ∂BΠS |β|
+
(0) such that

W (H) = P

⎡
⎢⎢⎢⎣

P
T
α H Pα P

T
α H Pβ Θαγ ◦ P

T
α H Pγ

P
T
β H Pα W0(P

T
β H Pβ) 0

P
T
γ H Pα ◦ Θγα 0 0

⎤
⎥⎥⎥⎦ P

T ∀ H ∈ S p.
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Let Q be the set of all orthogonal matrices of order |β| × |β|. Let

P := {
P ∈ �p×p | P = [Pα Pβ Pγ ] = [Pα (Pβ Q) Pγ ], Q ∈ Q

}
. (11)

Note that all P ∈ P have the same Pα and Pγ . From the definition of ∂BΠS |β|
+
(0) and

(9) we know that if W0 ∈ ∂BΠS |β|
+
(0), then there exist matrices Q ∈ Q and Ω ∈ S |β|

with entries Ωi j ∈ [0, 1] such that

W0(D) = Q(Ω ◦ (QT DQ))QT ∀ D ∈ S |β|.

For an extension to the above result, see [9, Lemma 4.7]. By using Lemma 5 we obtain
the following useful lemma, which does not need further explanation.

Lemma 6 For any W ∈ ∂BΠS p
+(Z), there exist two matrices P ∈ P and Θ ∈ S p

satisfying (7) such that

W (H) = P
(
Θ ◦ (PT H P)

)
PT ∀ H ∈ S p.

The following result, due to Debreu [13], is useful for the study of the Bouligand-
subdifferential of ∇x Lc(·).
Lemma 7 Let φ : X �→ � be continuous and positive homogeneous of degree two:

φ(td) = t2φ(d) ∀ t ≥ 0 and d ∈ X.

Suppose that there exists a positive number η0 > 0 such that for any d satisfying
Ld = 0, one has φ(d) ≥ η0‖d‖2, where L : X �→ Y is a given linear operator. Then
there exist positive numbers η ∈ (0, η0] and c0 > 0 such that

φ(d) + c0〈Ld,Ld〉 ≥ η〈d, d〉 ∀ d ∈ X.

Next, we provide a technical result used in Sect. 4.

Lemma 8 Let a, b, c, and c0 be four positive scalars with c ≥ c0. Let

ψ(t; c, a, b, c0) := a − 1

c
t + t2

b + (c − c0)t
, t ∈ [0, 1]. (12)

Then, for any c ≥ max
{
c0, (b − c0)

2/c0
}
, ψ(·; c, a, b, c0) is a convex function on

[0, 1],
min

t∈[0,1]ψ(t; c, a, b, c0) = a − 1

c

b

(
√

c + √
c0)2

, (13)

and
max

t∈[0,1]ψ(t; c, a, b, c0) = max
{
ψ(0; c, a, b, c0), ψ(1; c, a, b, c0)

}
. (14)
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Proof By simple calculations for any t ∈ [0, 1] we have

∇tψ(t; c, a, b, c0) = c0

c(c − c0)
− b2

(c − c0)(b + (c − c0)t)2

and

∇2
t tψ(t; c, a, b, c0) = 2b2

(b + (c − c0)t)3 .

Then, since for c ≥ c0, ∇2
t tψ(t, c, a, b, c0) ≥ 0 for all t ∈ [0, 1], ψ(·; c, a, b, c0) is a

convex function on [0, 1]. Consequently, (14) holds.
Let t :=b/(c0+√

cc0). Then∇tψ(t; c, a, b, c0)=0. Since for any c≥max
{
c0, (b−

c0)
2/c0

}
, t ∈ (0, 1] and ψ(·; c, a, b, c0) is convex on [0, 1], we have

min
t∈[0,1]ψ(t; c, a, b, c0) = ψ(t; c, a, b, c0),

which, implies that (13) holds. ��

3 General discussions on the rate of convergence

In this section, we always assume that the cone K presented in the optimization prob-
lem (OP) is a self-dual cone, i.e, K = K ∗ and that ΠK (·) is semismooth everywhere.
In particular, this is the case for any closed symmetric cone because a closed symmet-
ric cone is always self-dual [16] and ΠK (·) is strongly semismooth everywhere [46].
The cones �p

+ and S p
+ are special cases of symmetric cones. For more on symmetric

cones, see Faraut and Korányi [16].
Let c > 0 and x be a stationary point of (OP). Then M(x), the set of Lagrange

multipliers at x , is nonempty. Since f, h, and g are assumed to be twice continuously
differentiable, we know from (2) and [50] that the augmented Lagrangian function
Lc(·) is continuously differentiable and for any (x, ζ, ξ) ∈ X × �m × Y ,

∇x Lc(x, ζ, ξ) = ∇ f (x) + ∇h(x)(ζ + ch(x)) − ∇g(x)ΠK (ξ − cg(x)). (15)

Therefore, from (1) and [15], we have ∇x Lc(x, ζ, ξ) = 0 for any (ζ, ξ) ∈ M(x).
Define Fc : X × �m × Y �→ Y by

Fc(x, ζ, ξ) = ξ − cg(x), (x, ζ, ξ) ∈ X × �m × Y.

SinceΠK (·) is assumed to be semismooth everywhere,ΠK (·) is directionally differen-
tiable at any point y ∈ Y . Hence, by using the fact that for any (x, ζ, ξ) ∈ X ×�m ×Y ,
J Fc(x, ζ, ξ) : X × �m × Y �→ Y is onto, we know from Lemma 2 that

∂B(ΠK ∗ Fc)(x, ζ, ξ) = ∂BΠK (ξ − cg(x))J Fc(x, ζ, ξ). (16)

123



360 D. Sun et al.

For any (x, ζ, ξ) ∈ X × �m × Y , let

Ψc(x, ζ, ξ) := ∇g(x)(ΠK ∗ Fc)(x, ζ, ξ) = ∇g(x)ΠK (ξ − cg(x)).

Let (x, ζ, ξ) ∈ X × �m × Y . Then from the semismoothness of ΠK (·) and Lemma 3
we obtain that for any (	x,∆ζ,∆ξ) ∈ X × �m × Y ,

∂BΨc(x, ζ, ξ)(	x,∆ζ,	ξ) = ∇2g(x)(	x)ΠK (ξ − cg(x))

+∇g(x)∂B(ΠK ∗ Fc)(x, ζ, ξ)(	x,	ζ,∆ξ). (17)

From (15) and the definition of Ψc(·) we know that

∂B(∇x Lc)(x, ζ, ξ) = (∇2 f (x), 0, 0) − ∂BΨc(x, ζ, ξ)

+
(

m∑
i=1

(ζi + chi (x))∇2hi (x) + c∇h(x)J h(x),∇h(x), 0

)

which, together with (16) and (17), implies that for any 	x ∈ X ,

(πx∂B(∇x Lc)(x, ζ, ξ)) (	x)

= ∇2
xx L0(x, ζ + ch(x),ΠK (ξ − cg(x)))(	x) + c∇h(x)J h(x)(	x)

+c ∇g(x)∂BΠK (ξ − cg(x))J g(x)(	x), (18)

where

∇2
xx L0(x, ζ + ch(x),ΠK (ξ − cg(x)))(	x)
= ∇2 f (x)(	x) + ∇2h(x)(	x)(ζ + ch(x)) − ∇2g(x)(	x)ΠK (ξ − cg(x)).

Let (ζ , ξ) ∈ M(x) be a Lagrange multiplier at x . For any W : Y �→ Y , let

Ac(ζ , ξ ,W ) := ∇2
xx L0(x, ζ , ξ) + c∇h(x)J h(x) + c∇g(x)WJ g(x). (19)

Then for any 	x ∈ X ,

(
πx∂B(∇x Lc)(x, ζ , ξ)

)
(	x) = {

Ac(ζ , ξ ,W )(	x) | W ∈ ∂BΠK (ξ − cg(x))
}
.

(20)
Next, we make two basic assumptions for the constrained optimization problem

(OP). The first one is about the positive definiteness of Ac(ζ , ξ , ·).
Assumption B1 We assume that (ζ , ξ) is the unique Lagrange multiplier at x , i.e.,
M(x) = {(ζ , ξ)} and that there exist two positive numbers c0 and η such that for any

c ≥ c0 and any W ∈ ∂BΠK (ξ − cg(x)),

〈
d,Ac(ζ , ξ ,W )d

〉 ≥ η 〈d, d〉 ∀ d ∈ X.
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Assumption B1 is related to the sufficient conditions for the constrained optimization
problem (OP). It will be shown in Proposition 4 that, under the constraint nondegen-
eracy condition and the strong second order sufficient condition, Assumption B1 is
valid for (NLSDP).

For the remaining part of this section, we suppose that Assumption B1 is satisfied.
Let y := (ζ , ξ). Then ∇x Lc(x, y) = 0. Let c0 and η be two positive numbers defined
in Assumption B1 and c ≥ c0 be a positive number. Since by (20) and Assumption
B1, every element in πx∂B(∇x Lc)(x, y) is positive definite, we know from Lemma
1 that there exist an open neighborhood Oy of y and a locally Lipschitz continuous
function xc(·) defined on Oy such that for any y ∈ Oy , ∇x Lc(xc(y), y) = 0. Fur-
thermore, since ΠK (·) is assumed to be semismooth everywhere, xc(·) is semismooth
(strongly semismooth if ∇2 f,∇2g, and ∇2h are locally Lipschitz continuous and
ΠK (·) is strongly semismooth everywhere) at any point in Oy . Moreover, there exist
two positive numbers ε > 0 and δ0 > 0 (both depending on c) such that for any
x ∈ Bε(x) and y ∈ Bδ0(y) := {y ∈ �m × Y | ‖y − y‖ < δ0} ⊂ Oy , every element in
πx∂B(∇x Lc)(x, y) is positive definite. Thus, for any y ∈ Bδ0(y), xc(y) is the unique
minimizer of Lc(·, y) over Bε(x), i.e.,

{xc(y)} = argmin
{

Lc(x, y) | x ∈ Bε(x)
}
. (21)

For ease of reference, we write these conclusions in the following proposition.

Proposition 1 Suppose that Assumption B1 is satisfied. Let c ≥ c0. Then there exist
two positive numbers ε > 0 and δ0 > 0 (both depending on c ) and a locally Lipschitz
continuous function xc(·), given by (21), defined on the open ball Bδ0(y) such that the
following conclusions hold:

(i) The function xc(·) is semismooth at any point in Bδ0(y).
(ii) If ∇2 f,∇2g, and ∇2h are locally Lipschitz continuous and ΠK (·) is strongly

semismooth everywhere, then xc(·) is strongly semismooth at any point in
Bδ0(y).

(iii) For any x ∈ Bε(x) and y ∈ Bδ0(y), every element in πx∂B(∇x Lc)(x, y) is
positive definite.

(iv) For any y ∈ Bδ0(y), xc(y) is the unique optimal solution to

min Lc(x, y) s.t. x ∈ Bε(x).

Let ϑc : �m × Y �→ � be defined as

ϑc(ζ, ξ) := min
x∈Bε(x)

Lc(x, ζ, ξ), (ζ, ξ) ∈ �m × Y . (22)

Since for each fixed x ∈ X , Lc(x, ·) is a concave function, ϑc(·) is also a concave
function as it is the minimum function of a family of concave functions. By using the
fact that for any y ∈ Bδ0(y), xc(y) is the unique minimizer of Lc(·, y) over Bε(x), we
have

ϑc(y) = Lc(xc(y), y), y ∈ Bδ0(y).
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For any y ∈ Bδ0(y) with y = (ζ, ξ) ∈ �m × Y , let

(
ζc(y)
ξc(y)

)
:=

(
ζ + ch(xc(y))

ΠK (ξ − cg(xc(y)))

)
. (23)

Then we have

∇x L0(xc(y), ζc(y), ξc(y)) = ∇x Lc(xc(y), y) = 0, y ∈ Bδ0(y). (24)

Proposition 2 Suppose that Assumption B1 is satisfied. Let c ≥ c0. Then the concave
function ϑc(·) defined by (22) is continuously differentiable on Bδ0(y) with

∇ϑc(y) =
(

h(xc(y))
−c−1ξ + c−1ΠK (ξ − cg(xc(y)))

)
, y = (ζ, ξ) ∈ Bδ0(y). (25)

Moreover, ∇ϑc(·) is semismooth at any point in Bδ0(y). It is strongly semismooth at
any point in Bδ0(y) if ∇2 f,∇2g, and ∇2h are locally Lipschitz continuous and ΠK (·)
is strongly semismooth everywhere.

Proof Let y = (ζ, ξ) ∈ Bδ0(y). Then from (24) and [10, Theorem 2.6.6] we have for
any (	ζ,	ξ) ∈ �m × Y that

∂ϑc(y)(	ζ,	ξ) = Jx Lc(xc(y), y)(∂xc(y)(	ζ,	ξ))

+Jζ Lc(xc(y), y)(	ζ) + Jξ Lc(xc(y), y)(	ξ)

= 〈h(xc(y)),	ζ 〉 − c−1〈ξ,�ξ 〉 + 〈c−1ΠK (ξ − cg(xc(y))),	ξ 〉.

Thus, ∂ϑc(y)(	ζ,	ξ) is a singleton for each (	ζ,	ξ) ∈ �m × Y . This implies that
∂ϑc(y) is a singleton. Therefore, ϑc(·) is Fréchet-differentiable at y and ∇ϑc(y) is
given by (25). The continuity of ∇ϑc(·) follows from the continuity of xc(·).

The properties on the (strong) semismoothness of ∇ϑc(·) at y follows directly from
(25) and Proposition 1. ��

For any c ≥ c0 and 	y := (	ζ,	ξ) ∈ �m × Y , define

Vc(	y) :=
{(

J h(x)
−WJ g(x)

)
Ac(y,W )−1 (−∇h(x)(	ζ) + ∇g(x)W (	ξ))

+
(

0
−c−1	ξ + c−1W (∆ξ)

) ∣∣∣ W ∈ ∂BΠK (ξ − cg(x))

}
. (26)

Since by Assumption B1, Ac(y,W ) is positive definite for any W ∈ ∂BΠK (ξ−cg(x)),
Vc(·) is well defined. The next proposition establishes an important relationship
between Vc(·) and ∂B(∇ϑc)(y)(·). Note that the function ∇ϑc(·) given by (25) involves
two nonsmooth functions ΠK (·) and xc(·), which are related to each other.
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Proposition 3 Suppose that Assumption B1 is satisfied. Let c ≥ c0. Then for any
	y := (	ζ,	ξ) ∈ �m × Y ,

∂B(∇ϑc)(y)(	y) ⊆ Vc(	y). (27)

Proof Let	y = (	ζ,	ξ) ∈ �m ×Y be an arbitrary but fixed point. From Proposition
2, we know that ∇ϑc(·) is semismooth at any point y ∈ Bδ0(y). Let D∇ϑc denote the
set of all Fréchet-differentiable points of ∇ϑc(·) in Bδ0(y). Then for any y = (ζ, ξ) ∈
D∇ϑc , we have

∇2ϑc(y)(	y)

=
(

J h(xc(y))(xc)
′(y;	y)

−c−1	ξ + c−1Π ′
K

(
ξ − cg(xc(y));	ξ − cJ g(xc(y))(xc)

′(y;	y)
)

)
.

(28)
Let y ∈ Bδ0(y). Now, we derive the formula for (xc)

′(y;	y). From (23) and (24)
we have

0 = ∇xx L0(xc(y), ζc(y), ξc(y))(xc)
′(y;	y)

+c∇h(xc(y))J h(xc(y))(xc)
′(y;	y) + ∇h(xc(y))(	ζ)

−∇g(xc(y))Π
′
K

(
ξ − cg(xc(y));	ξ − cJ g(xc(y))(xc)

′(y;	y)
)
. (29)

Since ΠK (·) is semismooth everywhere, there exists an element Ŵ ∈ ∂BΠK (ξ −
cg(xc(y))) such that

Π ′
K

(
ξ − cg(xc(y));	ξ − cJ g(xc(y))(xc)

′(y;	y)
)

= Ŵ (	ξ − cJ g(xc(y))(xc)
′(y;	y)). (30)

For any W ∈ ∂BΠK (ξ − cg(xc(y))), let

Ac(y,W ) := ∇2
xx L0(xc(y), ζc(y), ξc(y)) + c∇h(xc(y))J h(xc(y))

+c∇g(xc(y))WJ g(xc(y)).

From (18) and the definition of δ0,Ac(y,W ) is positive definite for any W ∈ ∂BΠK (ξ−
cg(xc(y))). Then from (29) and (30) we obtain that

(xc)
′(y;	y) = Ac(y, Ŵ )−1 (−∇h(xc(y))(	ζ) + ∇g(xc(y))Ŵ (	ξ)

)
. (31)

Therefore, we have from (28) and (31) that for any y = (ζ, ξ) ∈ D∇ϑc ,

∇2ϑc(y)(	y) ∈
{(

J h(xc(y))
−WJ g(xc(y))

)
Ac(y,W )−1 (−∇h(xc(y))(	ζ)

+∇g(xc(y))W (	ξ))

+
(

0
−c−1(	ξ) + c−1W (	ξ)

)∣∣∣∣ W ∈ ∂BΠK (ξ − cg(xc(y)))

}
,

123



364 D. Sun et al.

which, together with the continuity of xc(·) and the upper semicontinuity of ∂BΠK (·),
implies that for any V ∈ ∂B(∇ϑc)(y), one has V (	y) ∈ Vc(	y). Consequently, (27)
holds. ��

The second basic assumption needed in this section is stated below.
Assumption B2 There exist positive numbers c ≥ c0, µ0 > 0, �0 > 0, and τ > 1
such that for any c ≥ c and 	y ∈ �m × Y ,

‖(xc)
′(y;	y))‖ ≤ �0‖	y‖/c (32)

and
〈
V (	y) + c−1∆y, ∆y

〉
∈ µ0 [−1, 1] ‖∆y‖2/cτ ∀ V (∆y) ∈ Vc(	y). (33)

Relation (32) in Assumption B2 is about an estimate of the directional derivative
of xc(·) at y while (33) pertains to the generalized Jacobian of ∇ϑc(·) at y. It will
be shown in the next section that Assumption B2 is valid for (NLSDP) when the
constraint nondegeneracy condition and the strong second order sufficient condition
are satisfied.

Under Assumptions B1 and B2, we are ready to give the main result on the rate of
convergence of the augmented Lagrangian method for the constrained optimization
problem (OP).

Theorem 1 Suppose that K is a self-dual cone and that ΠK (·) is semismooth every-
where. Let Assumptions B1 and B2 be satisfied. Let c0, η, c, µ0, �0, and τ be the
positive numbers defined in these assumptions. Define

�1 := 2�0 and �2 := 4µ0.

Then for any c ≥ c, there exist two positive numbers ε and δ (both depending on c)
such that for any (ζ, ξ) ∈ Bδ(ζ , ξ), the problem

min Lc(x, ζ, ξ) s.t. x ∈ Bε(x) (34)

has a unique solution denoted xc(ζ, ξ). The function xc(·, ·) is locally Lipschitz
continuous on Bδ(ζ , ξ) and is semismooth at any point in Bδ(ζ , ξ), and for any
(ζ, ξ) ∈ Bδ(ζ , ξ), we have

‖xc(ζ, ξ) − x‖ ≤ �1‖(ζ, ξ) − (ζ , ξ)‖/c (35)

and
‖(ζc(ζ, ξ), ξc(ζ, ξ)) − (ζ , ξ)‖ ≤ �2‖(ζ, ξ) − (ζ , ξ)‖/cτ−1, (36)

where ζc(ζ, ξ) and ξc(ζ, ξ)) are defined by (23), i.e.,

ζc(ζ, ξ) := ζ + ch(xc(ζ, ξ)) and ξc(ζ, ξ) := ΠK (ξ − cg(xc(ζ, ξ))).
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Proof Let c ≥ c. From Proposition 1 we have already known that there exist two
positive numbers ε > 0 and δ0 > 0 (both depending on c) and a locally Lipschitz
continuous function xc(·, ·) defined on Bδ0(ζ , ξ) such that the function xc(·, ·) is
semismooth at any point in Bδ0(ζ , ξ) and for any (ζ, ξ) ∈ Bδ0(ζ , ξ), xc(ζ, ξ) is the
unique solution to (34).

Denote y := (ζ, ξ) ∈ �m × Y . Since xc(·) is locally Lipschitz continuous on
Bδ0(y) and is directionally differentiable at y, by [40] we know that xc(·) is Bouligand-
differentiable at y, i.e., xc(·) is directionally differentiable at y and

lim
y→y

‖xc(y) − xc(y) − (xc)
′(y; y − y)‖

‖y − y‖ = 0.

By Proposition 2, ∇ϑc(·) is semismooth at y, and thus is also Bouligand-differentiable
at y. Then there exists δ ∈ (0, δ0] such that for any y ∈ Bδ(y),

‖xc(y) − xc(y) − (xc)
′(y; y − y)‖ ≤ �0‖y − y‖/c (37)

and
‖∇ϑc(y) − ∇ϑc(y) − (∇ϑc)

′(y; y − y)‖ ≤ µ0‖y − y‖/cτ . (38)

Let y := (ζ, ξ) ∈ Bδ(y) be an arbitrary point. From (32), (37), and the fact that
xc(y) = x , we have

‖xc(y) − x‖ ≤ ‖(xc)
′(y; y − y)‖ + �0‖y − y‖/c = �1‖y − y‖/c,

which, shows that (35) holds.
Since ∇ϑc(·) is semismooth at y, there exists an element V ∈ ∂B(∇ϑc)(y) such

that (∇ϑc)
′(y; y − y) = V (y − y). By using the fact that V is self-adjoint (see Lemma

4), we know from (33) in Assumption B2 and Proposition 3 that

‖V (y − y) + c−1(y − y)‖ ≤ 3µ0‖y − y‖/cτ . (39)

Therefore, we have from (38) and (39)

‖y + c∇ϑc(y) − y‖
= c‖∇ϑc(y) − ∇ϑc(y) − (∇ϑc)

′(y; y − y) + (∇ϑc)
′(y; y − y) + c−1(y − y)‖

≤ c‖∇ϑc(y) − ∇ϑc(y) − (∇ϑc)
′(y; y − y)‖ + c‖V (y − y) + c−1(y − y)‖

≤ µ0‖y − y‖/cτ−1 + 3µ0‖y − y‖/cτ−1 = �2‖y − y‖/cτ−1 ,

which, together with (25) and the definitions of ζc(ζ, ξ) and ξc(ζ, ξ)), proves (36).
The proof is completed. ��

Under Assumptions B1 and B2, Theorem 1 shows that if for all k sufficiently large
with ck ≡ c larger than a threshold and if (xk, ζ k, ξ k) is sufficiently close to (x, ζ , ξ),
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then the augmented Lagrangian method can locally be regarded as the gradient ascent
method applied to the dual problem

max ϑc(ζ, ξ) s.t. (ζ, ξ) ∈ �m × Y

with a constant step-length c, i.e., for all k sufficiently large

(
ζ k+1

ξ k+1

)
=

(
ζ k

ξ k

)
+ c∇ϑc(ζ

k, ξ k).

By (32) in Assumption B2, we see that locally the augmented Lagrangian method can
also be treated as an approximate generalized Newton method applied to the following
nonsmooth equation

∇ϑc(ζ, ξ) = 0

with −c−1I as a good estimate to elements in ∂∇ϑc(ζ
k, ξ k) for all (ζ k, ξ k) sufficiently

close to (ζ , ξ) as every element in ∂∇ϑc(ζ , ξ) is in the form of −c−1 I + O(c−τ ),
where I is the identity operator in �m × Y . Since ∇ϑc(·, ·) is semismooth at (ζ , ξ)
(cf. Proposition 2), the fast local convergence of the augmented Lagrangian method
comes no surprise for those who are familiar with the theory developed by Kummer
[22] and Qi and Sun [32] on the superlinear convergence of the generalized Newton
method for semismooth equations.

The local rate of convergence for {(ζ k, ξ k)} established in Theorem 1 is propor-
tional to 1/cτ−1, which tends to zero as c → ∞. However, to increase the value of
c may force the convergence sphere to shrink. In the next section, we shall check
whether Assumptions B1 and B2 imposed in this section can be satisfied by nonlinear
semidefinite programming.

4 The case for nonlinear semidefinite programming

This section is devoted to studying the following nonlinear semidefinite programming

min f (x) s.t. h(x) = 0, g(x) ∈ S p
+, (NLSDP)

where f : �n �→ �, h : �n �→ �m , and g : �n �→ S p are twice continuously
differentiable. Nonlinear semidefinite programming (NLSDP) is a special case of
(OP) with X := �n , Y := S p and K := S p

+. The Lagrangian function for (NLSDP)
is

L0(x, ζ,�) = f (x) + 〈ζ, h(x)〉 − 〈�, g(x)〉, (x, ζ,�) ∈ �n × �m × S p,

where we use � instead of ξ to represent the Lagrange multiplier corresponding to
the constraint g(x) ∈ S p

+. Then for any (x, ζ,�) ∈ �n × �m × S p,

∇x L0(x, ζ,�) = ∇ f (x) + ∇h(x)ζ − ∇g(x)�.
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Let (x, ζ ,�) ∈ �n × �m × S p be a given KKT point. Then, (x, ζ ,�) satisfies

∇x L0(x, ζ ,�) = 0, h(x) = 0, � � 0, g(x) � 0, and 〈�, g(x)〉 = 0. (40)

Let Z := � − g(x). Suppose that Z has the spectral decomposition as in (6), i.e.,

Z = PΛP
T
,

whereΛ is the diagonal matrix of eigenvalues of Z and P is a corresponding orthogonal
matrix of orthonormal eigenvectors. Define three index sets of positive, zero, and
negative eigenvalues of Z , respectively, as

α := {i | λi > 0}, β := {i | λi = 0}, γ := {i | λi < 0}.

Write

Λ =
⎡
⎢⎣
Λα 0 0

0 0 0

0 0 Λγ

⎤
⎥⎦ and P = [ Pα Pβ Pγ ]

with Pα ∈ �p×|α|, Pβ ∈ �p×|β|, and Pγ ∈ �p×|γ |. From (40), we know that
�g(x) = g(x)� = 0. Thus, we have

� = P

⎡
⎢⎣
Λα 0 0

0 0 0

0 0 0

⎤
⎥⎦ P

T
, g(x) = P

⎡
⎢⎣

0 0 0

0 0 0

0 0 −Λγ

⎤
⎥⎦ P

T

� − tg(x) = P

⎡
⎢⎣
Λα 0 0

0 0 0

0 0 tΛγ

⎤
⎥⎦ P

T
. (41)

Let
ν0 := min

i∈α, j∈γ λi/|λ j |, ν0 := max
i∈α, j∈γ λi/|λ j |. (42)

Let Q be the set of all orthogonal matrices of order |β| × |β|. Define P by (11), i.e.,

P = {
P ∈ �p×p | P = [Pα (Pβ Q) Pγ ], Q ∈ Q

}
.

We now introduce the conditions needed in this section.
Assumption (nlsdp-A1) The constraint nondegeneracy condition holds at x :

(
J h(x)
J g(x)

)
�n +

( {0}
lin

(
TS p

+(g(x))
)

)
=

(�m

S p

)
. (43)
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Assumption (nlsdp-A1) is the analogue to the linear independence constraint qualifi-
cation for nonlinear programming [33,41]. It also implies that M(x) is a singleton [8,
Proposition 4.5].
Assumption (nlsdp-A2) The strong second order sufficient condition holds at x [44]:

〈
d,∇2

xx L0(x, ζ ,�)d
〉
+ Υg(x)(�,J g(x)d) > 0 ∀ d ∈ app(ζ ,�) \ {0},

where

app(ζ ,�) := {
d | J h(x)d = 0, J g(x)d ∈ aff(C(g(x) − �;S p

+))
}

(44)

and for any given B ∈ S p, the linear-quadratic function ΥB(·, ·) is defined as

ΥB(Γ,C) := 2
〈
Γ,C B†C

〉
, (Γ,C) ∈ S p × S p

with B† being the Moore–Penrose pseudo-inverse of B.
Note that if the strict complementarity condition (i.e., β = ∅) holds, then the strong

second order sufficient condition made in Assumption (nlsdp-A2) reduces to the so
called “no gap” second order sufficient optimality condition [8, Sect. 5.3.5] as in this
case the two sets aff(C(g(x)−�;S p

+)) and C(g(x)−�;S p
+) coincide. In the general

case, as its name suggests, the strong second order sufficient condition is a stronger
condition than the second order sufficient optimality condition. See [42,44] for many
conditions equivalent or related to Assumptions (nlsdp-A1) and (nlsdp-A2).

Let P ∈ P . Then there exists Q ∈ Q such that P = [Pα (Pβ Q) Pγ ]. For index
sets χ, χ ′ ∈ {α, β, γ }, let

C(χ,χ ′)(P) :=
(

vec(PT
χ Jx1 g(x)Pχ ′) · · · vec(PT

χ Jxn g(x)Pχ ′)
)

and

Ĉ(χ,χ)(P) :=
(

svec(PT
χ Jx1 g(x)Pχ ) · · · svec(PT

χ Jxn g(x)Pχ )
)
,

where vec(B) denotes the vector obtained by stacking up all the columns of a given
matrix B and svec(B) denotes the vector obtained by stacking up all the columns of
the upper triangular part of a given symmetric matrix B. Since Pα = Pα and Pγ =
Pγ , we write C(χ,χ ′) and Ĉ(χ,χ) instead of C(χ,χ ′)(P) and Ĉ(χ,χ)(P), respectively if
χ, χ ′ ∈ {α, γ }. Define

n1 := m + |α|(|α| + 1)/2, n2 := n1 + |β|(|β| + 1)/2 + |α||β|, n3 := n − n2,
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and

A(P) :=

⎛
⎜⎜⎝

J h(x)
−Ĉ(α,α)

−Ĉ(β,β)(P)
−C(α,β)(P)

⎞
⎟⎟⎠ .

Suppose that Assumption (nlsdp-A1) holds. Then by (43) in Assumption (nlsdp-A1)
we know that A(P) is of full row rank.1 Let A(P) have the following singular value
decomposition:

A(P) = U [Σ(P) 0]RT , (45)

where U ∈ �n2×n2 and R ∈ �n×n are orthogonal matrices,Σ(P) = Diag
(
σ1(A(P)),

· · · , σn2(A(P))
)

, and σ1(A(P)) ≥ σ2(A(P)) ≥ · · · ≥ σn2(A(P))> 0 are the singu-

lar values of A(P). It should be pointed out here that U and R also depend on P . But
for the sake of notational simplification, we drop the argument P from U and R in
our analysis below.

Let

σ := min

{
1, min

P∈P
min

1≤i≤n2
σ−2

i (A(P))

}
and σ := max

{
1,max

P∈P
max

1≤i≤n2
σ−2

i (A(P))

}
.

Then, since P is a compact set and Σ(P) changes continuously with respect to P ,
both σ and σ are finite positive numbers. Thus there exist two positive numbers ν and
ν such that for any P ∈ P and s ∈ �|α||γ |,

ν‖s‖2 ≤ max
{〈

s, C̃(α,γ )(P)(C̃ T
(α,γ )(P))s

〉
,

〈
s,C(α,γ )C

T
(α,γ )s

〉}
≤ ν‖s‖2, (46)

where

C̃(α,γ )(P) := C(α,γ ) R̃ and R̃ := R

[
Σ(P)−1U T 0

0 In3

]
.

When no ambiguity arises, we often drop P from A(P), C(χ,χ ′)(P), and C̃(α,γ )(P).
Let c > 0 and W ∈ ∂BΠS p

+(� − cg(x)). Define λc ∈ �p as

(λc)i :=
{
λi if i ∈ α ∪ β,

cλi if i ∈ γ.

Then it follows from Lemma 6 that there exist two matrices Q ∈ Q with
P = [Pα (Pβ Q) Pγ ] and Θc ∈ S p such that

1 One may consult [8, Proposition 5.71] for a proof, where Bonnans and Shapiro only considered the case
that g(x) ∈ S p

+. However, it is easy to modify their arguments to include the equality constraint h(x) = 0.
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W (H) = P
(
Θc ◦ (PT H P)

)
PT ∀ H ∈ S p (47)

with the entries of Θc being given by

⎧
⎨
⎩
(Θc)i j = max{(λc)i , 0} + max{(λc) j , 0}

| (λc)i | + | (λc) j | if (i, j) /∈ β × β,

(Θc)i j ∈ [0, 1] if (i, j) ∈ β × β.

(48)

For index sets χ, χ ′ ∈ {α, β, γ }, we introduce the following notation:

(Θc)(χ,χ ′) = Diag
(
vec((Θc)χχ ′)

)
, (Θ̂c)(χ,χ) = Diag

(
svec((Θc)χχ ◦ Eχχ )

)
,

where “◦” is the Hadamard product and E is a matrix in S p with entries being given
by

Ei j :=
{

1 if i = j,
2 if i �= j.

Let

Dc :=

⎡
⎢⎢⎣

Im 0 0 0
0 (Θ̂c)(α,α) 0 0
0 0 (Θ̂c)(β,β) 0
0 0 0 2I|α||β|

⎤
⎥⎥⎦ .

Let Ac(ζ , ξ ,W ) be defined as (19), i.e.,

Ac(ζ ,�,W ) = ∇2
xx L0(x, ζ ,�) + c∇h(x)J h(x) + c∇g(x)WJ g(x).

A compact formula for Ac(ζ , ξ ,W ) is given in the next lemma.

Lemma 9 The matrix Ac(ζ , ξ ,W ) can be expressed equivalently as

Ac(ζ ,�,W )= ∇2
xx L0(x, ζ ,�) + c

(
∇h(x)J h(x) + Ĉ T

(α,α)(Θ̂c)(α,α)Ĉ(α,α)

+2C T
(α,β)C(α,β) + 2C T

(α,γ )(Θc)(α,γ )C(α,γ )+Ĉ T
(β,β)(Θ̂c)(β,β)Ĉ(β,β)

)
.

(49)

Proof Let d be an arbitrary point in �n . By the definition of ∇g(x), we have for
H := J g(x)d that

∇g(x)W (H) =

⎡
⎢⎢⎢⎢⎣

〈
Jx1 g(x),W (H)

〉
〈
Jx2 g(x),W (H)

〉
...〈

Jxn g(x),W (H)
〉

⎤
⎥⎥⎥⎥⎦
. (50)
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Noting that from (47) and (48), for any 1 ≤ l ≤ p,

〈Jxl g(x),W (H)〉 =
〈
PT Jxl g(x)P,

p∑
i=1

PT W (Jxi g(x)di )P
〉

=
〈
PT Jxl g(x)P, (Θc) ◦

( p∑
i=1

PT Jxi g(x)Pdi

)〉

= 〈(C(α,α))l ,C(α,α)d〉 + 〈(C(β,α))l ,C(β,α)d〉 + 〈(C(α,β))l ,C(α,β)d〉
+〈(C(γ,α))l , (Θc)(γ,α)C(γ,α)d〉 + 〈(C(α,γ ))l , (Θc)(α,γ )C(α,γ )d〉
+〈(C(β,β))l , (Θc)(β,β)C(β,β)d〉

= 〈(Ĉ(α,α))l , (Θ̂c)(α,α)Ĉ(α,α)d〉 + 〈(C(β,α))l ,C(β,α)d〉 + 〈(C(α,β))l ,C(α,β)d〉
+〈(C(γ,α))l , (Θc)(γ,α)C(γ,α)d〉 + 〈(C(α,γ ))l , (Θc)(α,γ )C(α,γ )d〉
+〈(Ĉ(β,β))l , (Θ̂c)(β,β)Ĉ(β,β)d〉,

we have from (50) that

∇g(x)W (Jx g(x)d) =
(

Ĉ T
(α,α)(Θ̂c)(α,α)Ĉ(α,α) + 2C T

(α,β)C(α,β)

+2C T
(α,γ )(Θc)(α,γ )C(α,γ ) + Ĉ T

(β,β)(Θ̂c)(β,β)Ĉ(β,β)

)
d.

Since d is arbitrarily chosen, (49) holds. ��
Lemma 9 shows that Ac(ζ ,�,W ) can be written as

Ac(ζ ,�,W ) = ∇2
xx L0(x, ζ ,�) + cAT Dc A + 2cC T

(α,γ )(Θc)(α,γ )C(α,γ ). (51)

For any c′, c > 0, let

Bc′,c(ζ ,�,W ) := ∇2
xx L0(x, ζ ,�) + c′ AT Dc A + 2cC T

(α,γ )(Θc)(α,γ )C(α,γ ). (52)

The following proposition shows that, under Assumptions (nlsdp-A1) and
(nlsdp-A2), the basic Assumption B1 made in Sect. 3 is satisfied by nonlinear semi-
definite programming.

Proposition 4 Suppose that Assumptions (nlsdp-A1) and (nlsdp-A2) are satisfied.
Then there exist two positive numbers c0 and η such that for any c ≥ c0 and

W ∈ ∂BΠS p
+(� − cg(x)),

〈
d,Ac(ζ ,�,W )d

〉 ≥ 〈
d,Bc0,c(ζ ,�,W )d

〉 ≥ η〈d, d〉 ∀ d ∈ �n .

Proof It follows from Assumption (nlsdp-A2) that there exists η0 > 0 such that

〈d,∇2
xx L0(x, ζ ,�)d〉 + Υg(x)(�,J g(x)d) ≥ η0‖d‖2 ∀ d ∈ app(ζ ,�). (53)
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By (10), (41), (44), and the fact that g(x) − � = −Z , we have

app(ζ ,�) = {d | J h(x)d = 0, P
T
α (J g(x)d)Pα = 0, P

T
α (J g(x)d)Pβ = 0}

or equivalently

app (ζ ,�) = {d | J h(x)d = 0, Ĉ(α,α)d = 0, C(α,β)(P)d = 0}. (54)

Since (53) and (54) hold, by using Lemma 7 with φ and L being defined by φ(d) :=
〈d,∇2

xx L0(x, ζ ,�)d〉+Υg(x)(�,J g(x)d) and L(d) := (J h(x)d; Ĉ(α,α)d;
C(α,β)(P)d) for any d ∈ �n , respectively, we know that there exist two positive
numbers c1 and η ∈ (0, η0/2] such that for any c ≥ c1,

〈d,∇2
xx L0(x, ζ ,�)d〉 + Υg(x)(�,J g(x)d)

+c‖J h(x)d‖2 + c‖Ĉ(α,α)d‖2 + c‖C(α,β)(P)d‖2 ≥ 2η‖d‖2 ∀ d ∈ �n . (55)

Let c0 ≥ c1 be such that for any c ≥ c0,

max
1≤l≤n

‖Jxl g(x)‖2
∑

i∈γ, j∈α

λ2
j

|λi |(λ j + c|λi |) ≤ η/2. (56)

Let c ≥ c0 and W ∈ ∂BΠS p
+(� − cg(x)). Then there exist two matrices Q ∈ Q with

P = [Pα (Pβ Q) Pγ ] and Θc ∈ S p satisfying (48) such that (47) holds, i.e.,

W (H) = P
(
Θc ◦ (PT H P)

)
PT ∀ H ∈ S p.

It is easy to see from (56) that for any c ≥ c0 and d ∈ �n we have

Υg(x)(�,J g(x)d) − 2c
〈
d,C T

(α,γ )(Θc)(α,γ )C(α,γ )d
〉

= 2
〈
�,J g(x)dg(x)†J g(x)d

〉
− 2c

〈
d,C T

(α,γ )(Θc)(α,γ )C(α,γ )d
〉

= 2
∑

i∈γ, j∈α

λ j

|λi |

(
n∑

l=1

PT
i Jxl g(x)Pj dl

)2

−2c
∑

i∈γ, j∈α

λ j

λ j + c|λi |

(
n∑

l=1

PT
i Jxl g(x)Pj dl

)2

123



The augmented Lagrangian method 373

≤ 2
∑

i∈γ, j∈α

[
λ2

j

|λi |(λ j + c|λi |)
n∑

l=1

‖Jxl g(x)‖2‖Pi‖2‖Pj‖2d2
l

]

≤ 2 max
1≤l≤n

‖Jxl g(x)‖2
∑

i∈γ, j∈α

λ2
j

|λi |(λ j + c|λi |)‖d‖2

≤ η‖d‖2,

which, together with (55), implies that for any c ≥ c0 we have

〈d,∇2
xx L0(x, ζ ,�)d〉 + 2c

〈
d,C T

(α,γ )(Θc)(α,γ )C(α,γ )d
〉

+c0‖J h(x)d‖2 + c0‖Ĉ(α,α)d‖2 + c0‖C(α,β)(P)d‖2 ≥ η‖d‖2 ∀ d ∈ �n . (57)

Let “⊗” denote the Kronecker product. Since for any d ∈ �n ,

‖C(α,β)(P)d‖2

= 〈
C(α,β)(P)d,C(α,β)(P)d

〉

=
〈 n∑

l=1

vec(PT
α Jxl g(x)Pβ)dl ,

n∑
l=1

vec(PT
α Jxl g(x)Pβ)dl

〉

=
〈 n∑

l=1

vec(P
T
αJxl g(x)Pβ Q)dl ,

n∑
l=1

vec(P
T
αJxl g(x)Pβ Q)dl

〉

=
〈
(QT ⊗ I|α|)

n∑
l=1

vec(P
T
αJxl g(x)Pβ)dl , (Q

T ⊗ I|α|)
n∑

l=1

vec(P
T
αJxl g(x)Pβ)dl

〉

=
〈 n∑

l=1

vec(P
T
αJxl g(x)Pβ)dl ,

n∑
l=1

vec(P
T
αJxl g(x)Pβ)dl

〉

= 〈
C(α,β)(P)d,C(α,β)(P)d

〉 = ‖C(α,β)(P)d‖2,

from (52), (57), and the fact that Ĉ T
(β,β)(Θ̂c)(β,β)Ĉ(β,β) � 0, we can see that for any

c ≥ c0,

〈
d,Bc0,c(ζ ,�,W )d

〉 ≥ η‖d‖2 ∀ d ∈ �n .

By noting the fact that

Ac(ζ ,�,W ) = Bc0,c(ζ ,�,W ) + (c − c0)AT Dc A,

we complete the proof. ��
Let Assumptions (nlsdp-A1) and (nlsdp-A2) be satisfied. Let the two positive num-

bers c0 and η be defined as in Proposition 4. Let c ≥ c0. Then, by Propositions 1 and 4
and the fact that ΠS p

+(·) is strongly semismooth everywhere, there exist two positive
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numbers ε > 0 and δ0 > 0 (both depending on c) and a locally Lipschitz continuous
function xc(·, ·) defined on Bδ0(ζ ,�) such that for any (ζ,�) ∈ Bδ0(ζ ,�), xc(ζ,�)

is the unique minimizer of Lc(·, ζ,�) over Bε(x) and xc(·, ·) is semismooth at (ζ,�).
Let ϑc : �m × S p �→ � be defined as (22), i.e.,

ϑc(ζ,�) := min
x∈Bε(x)

Lc(x, ζ,�), (ζ,�) ∈ �m × �p .

Then it holds that

ϑc(ζ,�) = Lc(xc(ζ,�), ζ,�), (ζ,�) ∈ Bδ0(ζ ,�).

Furthermore, it follows from Propositions 2 and 4 that the concave function ϑc(·, ·) is
continuously differentiable on Bδ0(ζ ,�) with

∇ϑc(ζ,�) =
(

h(xc(ζ,�))

c−1
(

− � + ΠS p
+(ξ − cg(xc(ζ,�)))

)
)
, (ζ,�) ∈ Bδ0(ζ ,�).

For any (	ζ,∆�) ∈ �m ×S p, let Vc(	ζ,∆�) be defined as in (26). By Propositions
3 and 4, we have for any (	ζ,∆�) ∈ �m × S p that

∂B(∇ϑc)(ζ ,�)(	ζ,∆�) ⊆ Vc(	ζ,∆�).

Since

lim
c→∞ c(Θc)i j = lim

c→∞ c
λi

λi + c|λ j | = λi

|λ j | ∀ (i, j) ∈ α × γ,

we know that there exists a positive number η such that

〈
d,Bc0,c(ζ ,�,W )d

〉 ≤ η〈d, d〉 ∀ d ∈�n, c ≥ c0, and W ∈∂BΠS p
+(�−cg(x)).

(58)
Let c ≥ c0 and W ∈ ∂BΠS p

+(� − cg(x)). Then there exist two matrices Q ∈ Q
with P = [Pα (Pβ Q) Pγ ] and Θc ∈ S p satisfying (48) such that (47) holds. Let
A(P) have the singular value decomposition as in (45), i.e.,

A(P) = U [Σ(P) 0]RT . (59)

Let y := (ζ ,�). Then we have the following result for Ac(y,W ).

Lemma 10 Let c > c0 and W ∈ ∂BΠS p
+(� − cg(x)). Suppose that Assumptions

(nlsdp-A1) and (nlsdp-A2) are satisfied. Then we have

Ac(y,W )−1 � R

[
Σ−1U T

(
σηIn2 + (c − c0)Dc

)−1
UΣ−1 0

0 σ−1η−1 In3

]
RT ,

(60)
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Ac(y,W )−1 � R

[
Σ−1U T

(
σηIn2 + (c − c0)Dc

)−1
UΣ−1 0

0 σ−1η−1 In3

]
RT ,

(61)
and

‖Ac(y,W )−1 AT Dcu‖ ≤ √
2
(
σ + (ση)−2(ση)2

)
‖u‖/(c − c0) ∀ u ∈ �n2 , (62)

where Σ := Σ(P).

Proof Let ĉ := c − c0. By (51), (52), and the singular value decomposition (59) of
A := A(P), we have

Ac(y,W )−1 =
(
Bc0,c(y,W ) + ĉAT Dc A

)−1

=
(
Bc0,c(y,W ) + ĉR[Σ 0]T U T DcU [Σ 0]RT

)−1

= R

(
RT Bc0,c(y,W )R + ĉ

[
Σ 0
0 In3

] [
U T DcU 0

0 0

] [
Σ 0
0 In3

])−1

RT

= R

[
Σ−1 0

0 In3

](
Gc0(y,W ) + ĉ

[
U T DcU 0

0 0

])−1 [
Σ−1 0

0 In3

]
RT ,

(63)

where

Gc0(y,W ) :=
[
Σ−1 0

0 In3

]
RT Bc0,c(y,W )R

[
Σ−1 0

0 In3

]
.

It follows from Proposition 4, the definitions of σ and σ , and (58) that

Gc0(y,W ) � η

[
Σ−1 0

0 In3

]2

� σηIn (64)

and

Gc0(y,W ) � η

[
Σ−1 0

0 In3

]2

� σηIn . (65)

Therefore, (60) and (61) follow from (63).
Now we turn to the proof of (62).
Let

Gc0(y,W ) :=
[

U 0
0 In3

]
Gc0(y,W )

[
U T 0
0 In3

]
and Hc0(y,W ) := Gc0(y,W )−1.
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Partition Hc0(y,W ) as

Hc0(y,W ) =
[

H1(W ) H2(W )T

H2(W ) H3(W )

]

with H1(W ) ∈ Sn2 , H2(W ) ∈ �n3×n2 , and H3(W ) ∈ Sn3 . Then, it follows from (64)
and (65) that

‖H1(W )‖2 ≤(ση)−1, ‖H1(W )−1‖2 ≤ση, and ‖H2(W )H1(W )−1‖2 ≤(ση)−1ση.

(66)
For any ε > 0, let

Dc,ε := Dc + ε In2 , Ac,ε(y,W ) := Bc0,c(y,W ) + ĉAT Dc,ε A.

Let ε > 0. By referring to (63), we obtain

Ac,ε(y,W )−1 = R

[
Σ−1U T 0

0 In3

](
Gc0(y,W )+ĉ

[
Dc,ε 0

0 0

])−1 [
UΣ−1 0

0 In3

]
RT ,

which, together with (59) and the Sherman–Morrison–Woodbury formula (cf. [18,
Sect. 2.1]), implies

Ac,ε(y,W )−1 AT Dc,ε

= R

[
Σ−1U T 0
0 In3

][ (
H1(W )−1 + ĉDc,ε

)−1
Dc,ε

H2(W )H1(W )−1
(
H1(W )−1 + ĉDc,ε

)−1
Dc,ε

]
.

Since, it follows from the Sherman–Morrison–Woodbury formula that

(
H1(W )−1 + ĉDc,ε

)−1
Dc,ε

=
(

ĉ In2 + D−1
c,ε H1(W )−1

)−1

= ĉ−1 In2 − ĉ−2 D−1
c,ε

(
In2 + ĉ−1 H1(W )−1 D−1

c,ε

)−1
H1(W )−1

= ĉ−1 In2 − ĉ−1
(

ĉDc,ε + H1(W )−1
)−1

H1(W )−1,

we have

Ac(y,W )−1 AT Dc = lim
ε↓0

Ac,ε(y,W )−1 AT Dc,ε

= R

[
Σ−1U T

H2(W )H1(W )−1

](
ĉ−1 In2 − ĉ−1

(
ĉDc + H1(W )−1

)−1
H1(W )−1

)
.
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Therefore, from the definition of σ and (66) we have for any u ∈ �n2 that

‖Ac(y,W )−1 AT Dcu‖2

≤
(
σ + (ση)−2(ση)2

) ∥∥∥∥
(

ĉ−1 In2 − ĉ−1
(

ĉDc + H1(W )−1
)−1

H1(W )−1
)

u

∥∥∥∥
2

≤
(
σ+(ση)−2(ση)2

)(
ĉ−1‖u‖+ĉ−1

∥∥∥∥
(
ĉDc + H1(W )−1

)−1
∥∥∥∥

2
‖H1(W )−1‖2‖u‖

)2

≤
(
σ + (ση)−2(ση)2

)
ĉ−2

(
1 + ‖H1(W )‖2‖H1(W )−1‖2

)2 ‖u‖2

≤
(
σ + (ση)−2(ση)2

)
ĉ−2

(
1 + (ση)−1(ση)

)2 ‖u‖2,

which, together with the fact that σ ≥ 1, proves (62). ��
Let

c := max
{
(2 + √

2)c0, (ση − c0)
2/c0, (ση/2 − c0)

2/c0

}
(67)

and

�0 :=
(

max
{

4νσσ−2η−2ν2
0, 4κ2

0

})1/2
. (68)

where

κ0 := √
2
(
σ + (ση)−2(ση)2

)
.

Proposition 5 Suppose that Assumptions (nlsdp-A1) and (nlsdp-A2) are satisfied.
Then there exists a positive number µ0 such that for any c ≥ c and 	y ∈ �m × S p,

‖(xc)
′(y;	y)‖ ≤ �0‖	y‖/c (69)

and
〈
V (	y) + c−1	y,∆y

〉
∈ µ0[−1, 1]‖∆y‖2/c2 ∀ V (	y) ∈ Vc(	y). (70)

Proof Let c ≥ c. Let 	y := (	ζ,	�) ∈ �m × S p. From the proof of Proposition 3
we know that there exists an element W ∈ ∂BΠS p

+(� − cg(x)) such that

(xc)
′(y;	y) = Ac(y,W )−1 (−∇h(x)(	ζ) + ∇g(x)W (	�)) . (71)

For this W ∈ ∂BΠS p
+(� − cg(x)), there exist two matrices P ∈ P and Θc ∈ S p

satisfying (48) such that

W (H) = P
(
Θc ◦ (PT H P)

)
PT ∀ H ∈ S p.
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Let A := A(P) have the singular value decomposition as in (45), i.e.,

A = U [Σ 0]RT , (72)

where Σ := Σ(P). For any two index sets χ, χ ′ ∈ {α, β, γ }, let

ω(χ,χ ′) := vec(P T
χ 	�Pχ ′), ω̂(χ,χ) := svec(P T

χ 	�Pχ ).

Define

∆d0 :=

⎛
⎜⎜⎝
	ζ

ω̂(α,α)

ω̂(β,β)

ω(α,β)

⎞
⎟⎟⎠ , 	d :=

(
∆d0
ω(α,γ )

)
.

Then, from (71), we have

〈
(xc)

′(y;	y), (xc)
′(y;	y)

〉

=
〈
[AT Dc 2C T

(α,γ )(Θc)(α,γ )]	d,Ac(y,W )−2[AT Dc 2C T
(α,γ )(Θc)(α,γ )]	d

〉

≤ 2
〈
AT Dc	d0,Ac(y,W )−2 AT Dc∆d0

〉

+8
〈
C T
(α,γ )(Θc)(α,γ )ω(α,γ ),Ac(y,W )−2C T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉
.

(73)
From (62), we have for c ≥ c (≥ (2 + √

2)c0) that

〈
AT Dc∆d0,Ac(y,W )−2 AT Dc∆d0

〉

= ‖Ac(y,W )−1 AT Dc∆d0‖2

≤ κ2
0 ĉ−2 (‖	d0‖)2

≤ κ2
0 ĉ−2

(‖(	ζ, ω(α,α), ω(β,β))‖2 + 2‖ω(α,β)‖2
)

≤ 1

2
�2

0c−2
(
‖(	ζ, ω(α,α), ω(β,β))‖2 + 2‖ω(α,β)‖2

)
.

(74)

Let

Ec := (
σηIn2 + (c − c0)Dc

)−1
, Ec :=

(
σηIn2 + (c − c0)Dc

)−1

and

Hc :=
[

Ec 0
0 σ−1η−1 In3

]
, Hc :=

[
Ec 0
0 σ−1η−1 In3

]
. (75)

By recalling that

C̃(α,γ ) = C(α,γ ) R̃ and R̃ = R

[
Σ−1U T 0

0 In3

]
,
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we know from Lemma 10, (75), (46), and (42) (by denoting M̄ = Ac(y,W )) that

〈
C T
(α,γ )(Θc)(α,γ )ω(α,γ ),Ac(y,W )−2C T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉

=
〈
M̄−1/2C T

(α,γ )(Θc)(α,γ )ω(α,γ ), M̄−1 M̄−1/2C T
(α,γ )(Θc)(α,γ )ω(α,γ )

〉

≤
〈
M̄−1/2C T

(α,γ )(Θc)(α,γ )ω(α,γ ), R̃ Hc R̃T M̄−1/2C T
(α,γ )(Θc)(α,γ )ω(α,γ )

〉

≤ σσ−1η−1
〈
C T
(α,γ )(Θc)(α,γ )ω(α,γ ),Ac(y,W )−1C T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉

≤ σσ−2η−2
〈
C̃ T
(α,γ )(Θc)(α,γ )ω(α,γ ), C̃ T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉

≤ νσσ−2η−2‖(Θc)(α,γ )ω(α,γ )‖2

≤ νσσ−2η−2
(

max
i∈α, j∈γ λi/(λi + c|λ j |)

)2

‖ω(α,γ )‖2

≤ νσσ−2η−2ν2
0(ν0 + c)−2‖ω(α,γ )‖2

≤ νσσ−2η−2ν2
0c−2‖ω(α,γ )‖2,

≤ 1

8
�2

0c−2(2‖ω(α,γ )‖2), (76)

which, together with (73) and (74), implies

〈
(xc)

′(y;	y), (xc)
′(y;	y)

〉 ≤ �2
0‖	y‖2/c2.

Thus (69) holds.
Let V (	y)∈ Vc(	y). Then from the definition of Vc(	y), there exists W ∈ ∂BΠS p

+
(� − cg(x)) such that

V (	y) =
(

J h(x)
−WJ g(x)

)
Ac(y,W )−1

( − ∇h(x)	ζ + ∇g(x)W (	�)
)

+
(

0
−c−1	� + c−1W (	�)

)
.

For notational convenience, we assume that this W ∈ ∂BΠS p
+(�− cg(x)) is the same

as in (71).
After direct calculations (cf. Lemma 9), we obtain

−〈V (	y),∆y〉
=

〈
[AT Dc 2C T

(α,γ )(Θc)(α,γ )]	d,Ac(y,W )−1[AT Dc 2C T
(α,γ )(Θc)(α,γ )]	d

〉

+c−1‖	�‖2 − c−1 〈	�,W (	�)〉
=

〈
AT Dc	d0, M̄−1 AT Dc∆d0

〉
+ 4

〈
AT Dc	d0, M̄−1C T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉

+4
〈
C T
(α,γ )(Θc)(α,γ )ω(α,γ ), M̄−1C T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉

+c−1‖	�‖2 − c−1 〈	�,W (	�)〉 . (77)
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Next, we estimate the lower and upper bounds of the right hand side of (77). By
using (72) and Lemma 10 we obtain

Ec � AAc(y,W )−1 AT � Ec.

Thus, we have

〈
AT Dc∆d0,Ac(y,W )−1 AT Dc∆d0

〉
≥ 〈

Dc∆d0, Ec Dc∆d0
〉

≥ (ση + (c − c0))
−1 ‖(	ζ, ω(α,α))‖2 + 4 (ση + 2(c − c0))

−1 ‖ω(α,β)‖2

+
〈
(Θ̂c)(β,β)ω̂(β,β),

(
σηI|β|(|β|+1)/2 + (c − c0)(Θ̂c)(β,β)

)−1
(Θ̂c)(β,β)ω̂(β,β)

〉

≥ (ση + (c − c0))
−1 ‖(	ζ, ω(α,α))‖2 + 4 (ση + 2(c − c0))

−1 ‖ω(α,β)‖2

+
〈
(Θc)(β,β)ω(β,β),

(
σηI|β| + (c − c0)(Θc)(β,β)

)−1
(Θc)(β,β)ω(β,β)

〉
(78)

and

〈
AT Dc∆d0,Ac(y,W )−1 AT Dc∆d0

〉
≤ 〈

Dc∆d0, Ec Dc	d0
〉

≤
(
ση/2 + (c − c0)

)−1 ‖(	ζ, ω(α,α))‖2 + 4
(
ση + 2(c − c0)

)−1 ‖ω(α,β)‖2

+
〈
(Θ̂c)(β,β)ω̂(β,β),

(
σηI|β|(|β|+1)/2 + (c − c0)(Θ̂c)(β,β)

)−1
(Θ̂c)(β,β)ω̂(β,β)

〉

≤
(
ση/2 + (c − c0)

)−1 ‖(	ζ, ω(α,α))‖2 + 4
(
ση + 2(c − c0)

)−1 ‖ω(α,β)‖2

+
〈
(Θc)(β,β)ω(β,β),

(
(ση/2)I|β| + (c − c0)(Θc)(β,β)

)−1
(Θc)(β,β)ω(β,β)

〉
.

(79)

From Lemma 10, (75), (46), and (42) we know that

〈
C T
(α,γ )(Θc)(α,γ )ω(α,γ ),Ac(y,W )−1C T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉

≥
〈
C̃ T
(α,γ )(Θc)(α,γ )ω(α,γ ),HcC̃ T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉

≥ (ση + 2(c − c0))
−1

〈
C̃ T
(α,γ )(Θc)(α,γ )ω(α,γ ), C̃ T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉

≥ ν (ση + 2(c − c0))
−1 ‖(Θc)(α,γ )ω(α,γ )‖2

≥ ν (ση + 2(c − c0))
−1

(
min

i∈α, j∈γ λi/(λi + c|λ j |)
)2

‖ω(α,γ )‖2

≥ ν (ση + 2(c − c0))
−1 ν2

0(ν0 + c)−2‖ω(α,γ )‖2, (80)
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〈
C T
(α,γ )(Θc)(α,γ )ω(α,γ ),Ac(y,W )−1C T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉

≤
〈
C̃ T
(α,γ )(Θc)(α,γ )ω(α,γ ),HcC̃ T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉

≤ σ−1η−1
〈
C̃ T
(α,γ )(Θc)(α,γ )ω(α,γ ), C̃ T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉

≤ νσ−1η−1‖(Θc)(α,γ )ω(α,γ )‖2

≤ νσ−1η−1
(

max
i∈α, j∈γ λi/(λi + c|λ j |)

)2

‖ω(α,γ )‖2

≤ νσ−1η−1ν2
0(ν0 + c)−2‖ω(α,γ )‖2, (81)

and

〈
C T
(α,γ )(Θc)(α,γ )ω(α,γ ),C T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉

≤ ν‖(Θc)(α,γ )ω(α,γ )‖2

≤ ν

(
max

i∈α, j∈γ λi/(λi + c|λ j |)
)2

‖ω(α,γ )‖2

≤ νν2
0c−2‖ω(α,γ )‖2. (82)

By using (74) and (82) we have

∣∣∣
〈
AT Dc∆d0,Ac(y,W )−1C T

(α,γ )(Θc)(α,γ )ω(α,γ )

〉∣∣∣
≤ ‖Ac(y,W )−1 AT Dc	d0‖ ‖C T

(α,γ )(Θc)(α,γ )ω(α,γ )‖
≤ �0√

2
c−1

(
‖(	ζ, ω(α,α), ω(β,β))‖2 + 2‖ω(α,β)‖2

)1/2 (
ν0

√
νc−1‖ω(α,γ )‖

)

≤ �0ν0
√
ν

4
c−2

(
‖(	ζ, ω(α,α), ω(β,β))‖2 + 2‖ω(α,β)‖2 + 2‖ω(α,γ )‖2

)
. (83)

By direct calculations we have

‖	�‖2 − 〈	�,W (	�)〉
=

(
‖ω(γ,γ )‖2 + 2‖ω(β,γ )‖2

)
+ 2

(
‖ω(α,γ )‖2 − 〈ω(α,γ ), (Θc)(α,γ )ω(α,γ )〉

)

+
(
‖ω(β,β)‖2 − 〈ω(β,β), (Θc)(β,β)ω(β,β)〉

)
. (84)

Now we are ready to estimate the lower and upper bounds of −〈V (	y),∆y〉. In light
of (77), (78), (80), (83), and (84), we have

−〈V (	y),∆y〉 ≥ c−1
(‖ω(γ,γ )‖2 + 2‖ω(β,γ )‖2

)
+κ1(c)‖(	ζ, ω(α,α))‖2 + 2κ2(c)‖ω(α,β)‖2

+2κ3(c)‖ω(α,γ )‖2 + κ4(c)‖ω(β,β)‖2,

(85)
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where

κ1(c) := (ση + (c − c0))
−1 − �0ν0

√
νc−2,

κ2(c) := (ση/2 + (c − c0))
−1 − �0ν0

√
νc−2

κ3(c) := c−1[1 − ν0(ν0 + c)−1] + 2ν (ση + 2(c − c0))
−1 ν2

0(ν0 + c)−2

−�0ν0
√
νc−2,

and

κ4(c) := min
t∈[0,1]ψ(t; c, ac, bc, c0)

with ψ(·; ·) being defined as (12) in Lemma 8 and

ac := c−1 − �0ν0
√
νc−2, bc := ση.

It follows from (13) in Lemma 8 that for c ≥ c,

κ4(c) = c−1 − ρ0ν0
√
νc−2 − ση

c(
√

c + √
c0)2

.

Thus, there exists a positive number µ1 such that for c ≥ c we have

min{κ1(c), κ2(c), κ3(c), κ4(c)} ≥ c−1 − µ1c−2.

Therefore, from (85) we have

−〈V (	y),∆y〉≥min{c−1, κ1(c), κ2(c), κ3(c), κ4(c)}‖	y‖2 ≥(c−1−µ1c−2)‖	y‖2.

(86)
On the other hand, in light of (77), (79), (81), (83), and (84), we have

− 〈V (	y),∆y〉 ≤ c−1
(
‖ω(γ,γ )‖2 + 2‖ω(β,γ )‖2

)

+µ1(c)‖(	ζ, ω(α,α))‖2 + 2µ2(c)‖ω(α,β)‖2

+2µ3(c)‖ω(α,γ )‖2 + µ4(c)‖ω(β,β)‖2, (87)

where

µ1(c) :=
(
ση/2 + (c − c0)

)−1 + �0ν0
√
νc−2,

µ2(c) := µ1(c),

µ3(c) := c−1[1 − ν0(ν0 + c)−1] + 2νσ−1η−1ν2
0 (ν0 + (c − c0))

−2 + �0ν0
√
νc−2 ,

and

µ4(c) := max
t∈[0,1]ψ(t; c, a′

c, b′
c, c0)
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with

a′
c := c−1 + �0ν0

√
νc−2, b′

c := ση/2.

It follows from (14) in Lemma 8 that for c ≥ c,

µ4(c) = max{ψ(0; c, a′
c, b′

c, c0), ψ(1; c, a′
c, b′

c, c0)}
= �0ν0

√
νc−2 + max

{
c−1,

(
ση/2 + (c − c0)

)−1
}
. (88)

Then there exists a positive number µ0 ≥ µ1 such that for c ≥ c we have

max{µ1(c), µ2(c), µ3(c), µ4(c)} ≤ c−1 + µ0c−2.

Therefore, from (87) we have

− 〈V (	y),∆y〉 ≤ max{c−1, µ1(c), µ2(c), µ3(c), µ4(c)}‖	y‖2

≤ (c−1 + µ0c−2)‖	y‖2. (89)

By (86) and (89), noting that µ0 ≥ µ1, we obtain that

µ0c−2‖	y‖2 ≥ −〈V (	y) + c−1∆y,	y〉 ≥ −µ0c−2‖	y‖2.

This shows that (70) holds. The proof is completed. ��
Now we are ready to state our main result on the rate of convergence of the augmented
Lagrangian method for nonlinear semidefinite programming.

Theorem 2 Suppose that Assumptions (nlsdp-A1) and (nlsdp-A2) are satisfied. Let
c0 and η be two positive numbers obtained by Proposition 4. Let η, c, and �0 be defined
as in (58), (67), and (68), respectively. Let µ0 be obtained by Proposition 5. Define

�1 := 2�0 and �2 := 4µ0.

Then for any c ≥ c, there exist two positive numbers ε and δ (both depending on c)
such that for any (ζ,�) ∈ Bδ(ζ ,�), the problem

min Lc(x, ζ,�) s.t. x ∈ Bε(x)

has a unique solution denoted xc(ζ,�). The function xc(·, ·) is locally Lipschitz
continuous on Bδ(ζ ,�) and is semismooth at any point in Bδ(ζ ,�), and for any
(ζ,�) ∈ Bδ(ζ ,�), we have

‖xc(ζ,�) − x‖ ≤ �1‖(ζ,�) − (ζ ,�)‖/c
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and

‖(ζc(ζ,�),�c(ζ,�)) − (ζ ,�)‖ ≤ �2‖(ζ,�) − (ζ ,�)‖/c,

where ζc(ζ,�) and ξc(ζ,�)) are defined as

ζc(ζ,�) := ζ + ch(xc(ζ,�)) and �c(ζ,�) := ΠS p
+(ξ − cg(xc(ζ,�))).

Proof If Assumptions (nlsdp-A1) and (nlsdp-A2) are satisfied, then from Propositions
4 and 5 we know that both Assumptions B1 and B2 (with τ = 2) made in Sect. 3 are
satisfied. Then the conclusions in this theorem follow from Theorem 1. ��

Before closing this section, we make a final comment. Note that if the strict com-
plementarity condition is satisfied, then the result on the rate of convergence can be
deduced in a much more straightforward way. For a comparison, we present the cor-
responding analysis, i.e., Theorem 3 below, as an appendix. Another purpose of the
appendix is to point out that one can adopt the proof used in Theorem 3 to deal with
(NLP). By doing so, one can actually give a corrected proof of the approach sketched
in Bertsekas [4] for (NLP) (compared with the proof given in the appendix, the missing
parts in Bertsekas’ approach [4, Sect. 3.1] can be readily seen). Just as in the case for
(NLP) [4], the second order sufficient condition in Theorem 3 automatically implies
the strict complementarity condition.

For (NLP), when the strict complementarity condition holds, an approach to derive
results similar to (94) and (95) was also suggested by Golshtein and Tretyakov [17,
Chap. 7].

The conditions imposed in Theorem 3 are equivalent to Assumptions (nlsdp-A1)
and (nlsdp-A2) plus the strict complementarity condition, i.e., β = ∅. Compared
Theorem 2 with Theorem 3, we can see that there is no loss on the rate of convergence
of the augmented Lagrangian method for (NLSDP) even the strict complementarity
condition fails to hold. However, different from Theorem 3, the convergence region in
Theorem 2 may depend on c. It would be interesting to know if this dependence can
be removed under Assumptions (nlsdp-A1) and (nlsdp-A2) only.

5 Conclusions

This paper provides an analysis on the rate of convergence of the augmented
Lagrangian method for solving nonlinear semidefinite programming. By assuming
that K is a self-dual cone and that ΠK (·) is semismooth everywhere, we first establish
a general result on the rate of convergence of the augmented Lagrangian method for
a class of general optimization problems. Then we apply this general result to non-
linear semidefinite programming under the constraint nondegeneracy condition and
the strong second order sufficient condition. This procedure suggests that our result
may be used to deal with other optimization problems. For example, it seems possible
to apply our general result to nonlinear second order cone programming by using the
strong second order sufficient condition recently proposed in [7] for second order cone
programming.
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6 Appendix: An analysis under strict complementarity

In this appendix, we shall provide a direct analysis, with strict complementarity, on
the rate of convergence of the augmented Lagrangian method for solving nonlinear
semidefinite programming

min f (x) s.t. h(x) = 0, g(x) ∈ S p
+, (NLSDP)

where f : �n �→ �, h : �n �→ �m , and g : �n �→ S p are twice continuously
differentiable.

For any two matrices C and D in �m×n , we write

〈C, D〉 := Tr
(

CT D
)

for the Frobenius inner product between C and D, where “Tr” denotes the trace of a
square matrix. Since in this case S p

+ = {z2 | z ∈ S p},
(NLSDP) can be transformed into the following equality constrained optimization

problem:

min f (x) s.t. h(x) = 0, z2 − g(x) = 0, (x, z) ∈ X × S p. (90)

Let c > 0. Let L̂c(x, z, ζ, ξ) be the augmented Lagrangian function for (90). Define
L̃c : X × S p × �m × S p �→ � by

L̃c(x, v, ζ, ξ) := f (x) + 〈ζ, h(x)〉 + c

2
‖h(x)‖2 + 〈ξ, v − g(x)〉 + c

2
‖v − g(x)‖2.

Then for any (x, z, ζ, ξ) ∈ X × S p × �m × S p, we have

L̂c(x, z, ζ, ξ) = L̃c(x, z2, ζ, ξ)

= f (x) + 〈ζ, h(x)〉 + c

2
‖h(x)‖2 + 〈ξ, z2 − g(x)〉 + c

2
‖z2 − g(x)‖2.

For any (x, ζ, ξ) ∈ X × �m × S p, let

ṽ(x, ξ, c) := ΠS p
+(g(x) − c−1ξ) =

(
g(x) − c−1ξ

)
+ c−1ΠS p

+(ξ − cg(x)).
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Since

inf
v∈S p

+
L̃c(x, v, ζ, ξ)

= f (x) + 〈ζ, h(x)〉 + c

2
‖h(x)‖2 + inf

v∈S p
+
〈ξ, v − g(x)〉 + c

2
‖v − g(x)‖2

= f (x)+〈ζ, h(x)〉+ c

2
‖h(x)‖2 + 〈ξ, ṽ(x, ξ, c) − g(x)〉+ c

2
‖̃v(x, ζ, ξ)−g(x)‖2

= L̃c(x, ṽ(x, ξ, c), ζ, ξ)

= Lc(x, ζ, ξ),

we have for any (x, ζ, ξ) ∈ X × �m × S p

Lc(x, ζ, ξ) = L̂c(x, zc(x, ζ, ξ), ζ, ξ) = L̃(x, z2
c(x, ζ, ξ), ζ, ξ), (91)

where zc(x, ζ, ξ) is the square root of ΠS p
+

(
g(x) − c−1ξ

)
, i.e.,

zc(x, ζ, ξ) :=
√
ΠS p

+
(
g(x) − c−1ξ

)
. (92)

Define ĥ : X × S p �→ �m × S p by

ĥ(x, z) :=
(

h(x)
z2 − g(x)

)
, (x, z) ∈ X × S p.

Then we have the following conclusion on the rate of convergence of the augmented
Lagrangian method for nonlinear semidefinite programming.

Theorem 3 Consider (NLSDP) and its equivalent problem (90). Let (x, z, ζ , ξ) ∈
X ×S p ×�m ×S p

+ be a KKT point of (90) with z := √
g(x). Suppose that J ĥ(x, z) :

X ×S p �→ �m ×S p is onto and that the second order sufficient condition is satisfied
at (x, z, ζ , ξ). Let ĉ be a positive scalar such that

〈
d,∇2

(x,z)(x,z) L̂ ĉ(x, z, ζ , ξ)d
〉
> 0 ∀ 0 �= d ∈ X × S p.

Then there exist positive scalars c ≥ ĉ, δ, ε, and �0 such that

(i) For all (ζ, ξ, c) in the set D ⊂ �m × S p × � defined as

D := {(ζ, ξ, c) ∈ �m × S p × � | ‖(ζ, ξ) − (ζ , ξ)‖ < δc, c ≤ c},
the problem

min Lc(x, ζ, ξ) s.t. x ∈ Bε(x) (93)

has a unique solution denoted x(ζ, ξ, c). The function x(·, ·, ·) is continuously
differentiable in the interior of D, and, for all (ζ, ξ, c) ∈ D, we have

‖x(ζ, ξ, c) − x‖ ≤ �0‖(ζ, ξ) − (ζ , ξ)‖/c. (94)
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(ii) For all (ζ, ξ, c) ∈ D, we have

‖ (̃
ζ (ζ, ξ, c), ξ̃ (ζ, ξ, c)

) − (ζ , ξ)‖ ≤ �0‖(ζ, ξ) − (ζ , ξ)‖/c, (95)

where

ζ̃ (ζ, ξ, c) := ζ + ch (x(ζ, ξ, c)) , ξ̃ (ζ, ξ, c) := ΠS p
+ (ξ − cg(x(ζ, ξ, c))) .

Proof It follows from [3] (also see [4, Sect. 2.2]) that there exist positive numbers
δ̂, ε̂, and �0 such that for all (ζ, ξ, c) in the set D̂ ⊂ �m × S p × � defined as

D̂ := {(ζ, ξ, c)
∣∣‖(ζ, ξ) − (ζ , ξ)‖ < δ̂c, ĉ ≤ c},

the problem
min L̂c(x, z, ζ, ξ) s.t. (x, z) ∈ Bε̂(x) × Bε̂(z) (96)

has a unique solution denoted (x̂(ζ, ξ, c), ẑ(ζ, ξ, c)) satisfying

‖(x̂(ζ, ξ, c), ẑ(ζ, ξ, c)) − (x, z)‖ ≤ �0‖(ζ, ξ) − (ζ , ξ)‖/c,
‖(ζ̂ (ζ, ξ, c), ξ̂ (ζ, ξ, c)) − (ζ , ξ)‖ ≤ �0‖(ζ, ξ) − (ζ , ξ)‖/c,

(97)

where

ζ̂ (ζ, ξ, c) := ζ + ch
(
x̂(ζ, ξ, c)

)
, ξ̂ (ζ, ξ, c) := ξ + c

(
ẑ2(ζ, ξ, c) − g(x̂(ζ, ξ, c))

)
.

(98)
Assume that rank (g(x)) = r0 and g(x) has the following spectral decomposition

g(x) = P

[
0 0
0 Λ0

]
PT ,

where Λ0 ∈ Sr0 is a diagonal matrix whose diagonal elements are the r0 positive
eigenvalues of g(x) and P is an orthogonal matrix. Then the mapping G : Sr0 �→ Sr0

defined as

G(Λ) :=
√√

Λ2, Λ ∈ Sr0

is analytic atΛ0 [49, Theorem 3.1]. Therefore there exists a positive number ε̂1 ∈ (0, ε̂)
such that for any Λ ∈ Sr0 with ‖Λ − Λ0‖ ≤ 2ε̂1, Λ is positive definite and

‖√Λ − √
Λ0‖ = ‖G(Λ) − G(Λ0)‖ ≤ 2‖J G(Λ0)‖‖Λ − Λ0‖. (99)

Let ε̂2 ∈ (0, ε̂1] be such that

3
√

pε̂2 + 16‖J G(Λ0)‖2ε̂2
2 ≤ ε̂2

1 . (100)
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Since g is continuously differentiable, there exists lg > 0 such that

‖g(x) − g(x)‖ ≤ lg‖x − x‖ ∀ x ∈ Bε̂(x).

Let ε ∈ (0, ε̂], δ ∈ (0, δ̂], and c ≥ ĉ be such that

lgε + δ + ‖ξ‖/c ≤ ε̂2. (101)

Define

D := {(ζ, ξ, c) ∈ �m × S p × � ∣∣ ‖(ζ, ξ) − (ζ , ξ)‖ < δc, c ≤ c}.

Then, for any (ζ, ξ, c) ∈ D and x ∈ X such that ‖x − x‖ ≤ ε, it follows from (92)
and (101) that

‖z2
c(x, ζ, ξ) − g(x)‖ = ‖ΠS p

+ (g(x) − ξ/c) − ΠS p
+(g(x))‖

≤ ‖g(x) − g(x) − (ξ − ξ)/c − ξ/c‖
≤ ‖g(x) − g(x)‖ + ‖(ξ − ξ)/c‖ + ‖ξ/c‖
≤ lg‖x − x‖ + δ + ‖ξ‖/c ≤ ε̂2. (102)

Let v ∈ S p
+ be such that v ∈ Bε̂2(g(x)). Define Z11 ∈ S p−r0 , Z12 ∈ �(p−r0)×r0 ,

and Z22 ∈ Sr0 by

[
Z11 Z12

Z T
12 Z22

]
:= PT √

vP.

Then

∥∥∥∥∥
[

Z11 Z12

Z T
12 Z22

]2

−
[

0 0
0 Λ0

]∥∥∥∥∥ = ‖PT vP − PT g(x)P‖ = ‖v − g(x)‖ ≤ ε̂2.

Therefore,

〈Z2
11, Z2

11〉 ≤ ε̂2
2, 〈Z12 Z T

12, Z12 Z T
12〉≤ ε̂2

2, 〈Z2
22 + Z T

12 Z12−Λ0, Z2
22 + Z T

12 Z12−Λ0〉
≤ ε̂2

2,

which, implies

Tr(Z2
11) ≤ √

pε̂2, Tr(Z12 Z T
21) = Tr (Z T

12 Z12) ≤ √
pε̂2. (103)

Let Γ0 := Z2
22 − Λ0. Then

‖Γ0‖ = ‖
(

Z2
22 + Z T

12 Z12 − Λ0

)
− Z T

12 Z12‖ ≤ ε̂2 + ‖Z12 Z T
12‖ ≤ 2ε̂2.
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Hence, by (99),

‖Z22 − √
Λ0‖ = ‖√Λ0 + Γ0 − √

Λ0‖ ≤ 2‖J G(Λ0)‖‖Γ0‖ ≤ 4ε̂2‖J G(Λ0)‖.
(104)

Therefore, by (103), (104), and (100), we have

∥∥√
v − √

g(x)
∥∥2 =

∥∥∥∥
[

Z11 Z12

Z T
12 Z22

]
−

[
0 0
0

√
Λ0

]∥∥∥∥
2

=
∥∥∥∥
[

Z11 Z12

Z T
12 Z22 − √

Λ0

]∥∥∥∥
2

= Tr(Z2
11 + Z12 Z T

12) + Tr(Z T
12 Z12) + Tr((Z22 − √

Λ0)
2)

≤ 3
√

pε̂2 + 16ε̂2
2‖J G(Λ0)‖2 ≤ ε̂2

1,

which implies that for any v ∈ S p
+ satisfying v ∈ Bε̂2(g(x)) we have

‖√v − z‖ ≤ ε̂1.

In particular, by (102), for any (ζ, ξ, c) ∈ D and x ∈ X such that ‖x − x‖ ≤ ε, we
have

zc(x, ζ, ξ) ∈ Bε̂1(z).

Thus, from (91) we know that for any (ζ, ξ, c) ∈ D,

min
x∈Bε(x)

Lc(x, ζ, ξ) = min
x∈Bε(x)

L̂c(x, zc(x, ζ, ξ), ζ, ξ)

≥ min
(x,z)∈Bε(x)×Bε̂1

(z)
L̂c(x, z, ζ, ξ)

≥ min
x∈Bε(x)

(
min
z∈S p

L̂c(x, z, ζ, ξ)

)

= min
x∈Bε(x)

(
min
v∈S p

+
L̃c(x, v, ζ, ξ)

)

= min
x∈Bε(x)

Lc(x, ζ, ξ). (105)

Let

x(ζ, ξ, c) := x̂(ζ, ξ, c), (ζ, ξ, c) ∈ D.

Then, by (105), for any (ζ, ξ, c) ∈ D, x(ζ, ξ, c) is a solution to problem (93). The
uniqueness of x(ζ, ξ, c) follows from the uniqueness of (x̂(ζ, ξ, c), ẑ(ζ, ξ, c)).

For any (ζ, ξ, c) ∈ D, by using (98), (105), and the fact that (x̂(ζ, ξ, c), ẑ(ζ, ξ, c))
is the unique solution to (96), we know that

ζ̂ (ζ, ξ, c) = ζ + ch(x̂(ζ, ξ, c)) = ζ + ch(x(ζ, ξ, c)) = ζ̃ (ζ, ξ, c)
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and

ξ̂ (ζ, ξ, c) = ξ + c
(
ẑ2(ζ, ξ, c) − g(x̂(ζ, ξ, c))

)
= ξ + cz2

c(x(ζ, ξ, c), ζ, ξ) − cg(x(ζ, ξ, c))
= ξ − cg(x(ζ, ξ, c)) + cΠS p

+
(
g(x(ζ, ξ, c)) − c−1ξ

)
= ΠS p

+ (ξ − cg(x(ζ, ξ, c))) = ξ̃ (ζ, ξ, c).

Finally, the estimates (94) and (95) follow from (97). ��
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Matematicheskie Metody 9, 525–540 (1973)
48. Tseng, P.: Merit functions for semi-definite complementarity problems. Math. Program. 83, 159–

185 (1998)
49. Tsing, N.-K., Fan, M.K.H., Verriest, E.I.: On analyticity of functions involving eigenvalues. Linear

Algebra Appl. 207, 159–180 (1994)
50. Zarantonello, E. H.: Projections on convex sets in Hilbert space and spectral theory I and II. In

Zarantonello, E.H. (ed.) Contributions to Nonlinear Functional Analysis, pp. 237–424. Academic,
New York (1971)

123


	The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming
	Abstract
	Introduction
	Preliminaries
	General discussions on the rate of convergence
	 The case for nonlinear semidefinite programming
	Conclusions
	Acknowledgment
	Appendix: An analysis under strict complementarity


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


