
The 9th National Conference on Mathematical Programming of China/Hangzhou, April 20-24, 2012. NUS/SUN – 1 / 33

An inexact accelerated proximal
gradient method for large scale linearly

constrained convex SDP

Defeng Sun

Department of Mathematics and Risk Management Institute

National University of Singapore

Based on a joint work with Kaifeng Jiang and Kim Chuan Toh at NUS



Convex semidefinite programming(SDP)
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Consider the following convex (SDP) problem:

(P ) min
{
f(x) : A(x) = b, x � 0, x ∈ Sn

}
,

where f is a smooth convex function on Sn, A : Sn → IRm is a
linear map, b ∈ IRm, and Sn is the space of n× n symmetric
matrices. The notation x � 0 means that x is positive semidefinite.

Let A∗ be the adjoint of A. The dual problem associated with (P )

(D) max
{
f(x)− 〈∇f(x), x〉 + 〈b, p〉 : ∇f(x)−A∗p− z = 0,

z � 0,
x � 0

}
.
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Assume that the linear map A is surjective, and that strong duality
holds for (P ) and (D).
Let x∗ be an optimal solution of (P ) and (x∗, p∗, z∗) be an optimal
solution of (D). Then, they must satisfy the following KKT
conditions:

A(x) = b, ∇f(x)−A∗p− z = 0, 〈x, z〉 = 0, x � 0, z � 0.

The problem (P ) contains the following important special case of
convex quadratic semidefinite programming (QSDP):

min
{1

2
〈x,Q(x)〉+ 〈c, x〉 : A(x) = b, x � 0

}
, (1)

where Q : Sn → Sn is a given self-adjoint positive semidefinite
linear operator and c ∈ Sn.



The nearest correlation matrix problem

The 9th National Conference on Mathematical Programming of China/Hangzhou, April 20-24, 2012. NUS/SUN – 4 / 33

A typical example of QSDP is the nearest correlation matrix
problem [Higham 2002].
Given a symmetric matrix u ∈ Sn, we want to solve

min
{1

2
‖L(x− u)‖2 : Diag(x) = e, x � 0

}
, (2)

where L : Sn → IRn×n is a linear map and e ∈ IRn is the vector of all
ones. Here Q = L∗L and c = −L∗L(u). A well studied special case
of (2) is the W -weighted nearest correlation matrix problem

min
{1

2
‖W 1/2(x− u)W 1/2‖2 : Diag(x) = e, x � 0

}
,

where W ∈ Sn is a given positive definite matrix.
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For the W -weighted nearest correlation matrix problem, we have

• The alternating projection method [Higham 2002]

• The quasi-Newton method [Malick 2004]

• An inexact semismooth Newton-CG method [Qi and Sun 2006]

• An inexact interior-point method [Toh, Tütüncü and Todd 2007]
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The second case is the H-weighted case of (2)

min
{1

2
‖H ◦ (x− u)‖2 : Diag(x) = b, x � 0

}
, (3)

where H ∈ Sn with nonnegative entries and“◦” denoting the
Hardamard product of two matrices defined by (A ◦B)ij = AijBij.

The weight matrix H represents one’s confidence levels on the
estimated matrix on a component by component basis.

The corresponding entries of H are zeros for missing entries of u.
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For the H-weighted nearest correlation matrix problem, we have

• An inexact interior-point method for a general convex QSDP
[Toh 2008].

• an augmented Lagrangian dual method [Qi and Sun 2010]

If the weight matrix H is very sparse or ill-conditioned, the
conjugate gradient (CG) method would have great
difficulty in solving the linear system of equations.

• A semismooth Newton-CG augmented Lagrangian method for
convex quadratic programming over symmetric cones [Zhao
2009].

• A modified alternating direction method for convex
quadratically constrained QSDPs [Sun and Zhang 2010].



Motivation: Choice of Algorithms
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Assume that we are interested in solving the unconstrained problem

min f(x)

with highly ill conditioned Hessian ∇f2(x). Then

• Newton’s method including inexact ones is certainly not feasible.

• Quasi Newton methods are out of touch due to high dimension.

• Gradient type methods are very few possible choices.



Why the APG method?
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The accelerated proximal gradient (APG) method was first
proposed by [Nesterov 1983] for minimizing smooth convex
functions, later extended by [Beck and Teboulle 2009] to composite
convex objective functions, and studied in a unifying manner by
[Tseng 2008]. The algorithm we propose is based on the APG
method (FISTA) [Beck and Teboulle 2009], where in the kth iteration
with iterate xk, a subproblem of the following form must be solved:

min
x∈Sn

{
〈∇f(xk), x− xk〉+

1

2
〈x− xk,Hk(x− xk)〉 : A(x) = b, x � 0

}
,

(4)
where Hk : Sn → Sn is a given self-adjoint positive definite linear
operator.
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Assume that ∇f(·) is globally Lipschitz continuous. That is, there
exists L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L||x− y‖ ∀x, y.

Attractive iteration complexity: O(
√

L/ε) for APG vs O(L/ε) for
proximal gradient (PG) method.

Limitations of FISTA:

1 Hk is restricted to L I, where I : Sn → Sn denotes the identity
map and L is the Lipschitz constant of ∇f . (L could be very
large)

2 The subproblem (4) must be solved exactly to generate the
next iterate xk+1.



An inexact APG method
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For more generality, we consider the following minimization problem

min{F (x) := f(x) + g(x) : x ∈ X} (5)

where X is a finite-dimensional Euclidean space. The functions
f : X → IR, g : X → IR ∪ {+∞} are proper, lower semi-continuous
convex functions (possibly nonsmooth). We assume that
dom(g) := {x ∈ X : g(x) < ∞} is closed, f is continuously
differentiable on X and its gradient ∇f is Lipschitz continuous with
modulus L on X . It is a well known property that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ L

2
‖x− y‖2 ∀ x, y ∈ X .

We also assume that the problem (5) is solvable with an optimal
solution x∗ ∈ dom(g).



Algorithm 1: An inexact APG for (5)
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Algorithm 1. Given a tolerance ε > 0. Input y1 = x0 ∈ dom(g), t1 = 1. Set
k = 1. Iterate the following steps.

Step 1. Find an approximate minimizer

xk ≈ argmin
y∈X

{
f(yk)+〈∇f(yk), y−yk〉+

1

2
〈y−yk,Hk(y−yk)〉+g(y)

}
,

where Hk is a self-adjoint positive definite linear operator that is
chosen by the user.

Step 2. Compute tk+1 =
1+
√

1+4t2
k

2 .

Step 3. Compute yk+1 = xk +
(
tk−1
tk+1

)
(xk − xk−1).
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Given any positive definite linear operator Hj : X → X , and yj ∈ X ,
we define qj(·) : X → IR by

qj(x) = f(yj) + 〈∇f(yj), x− yj〉+
1

2
〈x− yj,Hj(x− yj)〉.

Let {ξk}, {ǫk} be given convergent sequences of nonnegative
numbers such that

∑∞
k=1 ξk < ∞ and

∑∞
k=1 ǫk < ∞. In the j-th

iteration of Algorithm 1, we assume the approximation minimizer xj

satisfies the following conditions

F (xj) ≤ qj(xj) + g(xj) +
ξj
2t2j

, (6)

∇f(yj) +Hj(xj − yj) + γj = δj with ‖H−1/2
j δj‖ ≤ ǫj/(

√
2tj) (7)

where γj ∈ ∂g(xj;
ξj
2t2

j

) (the set of ξj
2t2

j

-subgradients of g at xj).
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Note that for xj to be an approximate minimizer, we must have
xj ∈ dom(g). We let
τ = 1

2
〈x0 − x∗,H1(x0 − x∗)〉, ǭk =

∑k
j=1 ǫj, ξ̄k =

∑k
j=1(ξj + ǫ2j).

Theorem 1 Suppose the conditions (6) and (7) hold, and
Hk−1 � Hk ≻ 0 for all k. Then

0 ≤ F (xk)− F (x∗) ≤
4

(k + 1)2

(
(
√
τ + ε̄k)

2 + 2ξ̄k

)
.



Specialized tog(·) = δ(· |Ω)
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For the problem (P ), we have g(·) = δ(· |Ω) where
Ω = {x ∈ Sn : A(x) = b, x � 0} is the feasible set of (P ). We need
to solve the following constrained minimization problem:

min
{
〈∇f(yk), x−yk〉+

1

2
〈x−yk,Hk(x−yk)〉 : A(x) = b, x � 0

}
. (8)

Suppose we have an approximate solution (xk, pk, zk) to the KKT
optimality conditions for (8):

∇f(yk) +Hk(xk − yk)−A∗pk − zk =: δk ≈ 0

A(xk)− b = 0 (9)
〈xk, zk〉 =: εk ≈ 0, xk, zk � 0.

Let γk = −A∗pk − zk. Then γk is an εk-subgradient of g at xk ∈ Ω if
zk � 0. However, in practice, we have xk � 0 but
rk := A(xk)− b 6= 0.
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Suppose that there exists x̄ ≻ 0 such that A(x̄) = b. Since A is
surjective, AA∗ is nonsingular. Let ωk = −A∗(AA∗)−1(rk). Note that
A(xk + ωk) = b. However, xk + ωk may not be positive semidefinite.
Thus we consider the following iterate:

x̃k = λ(xk + ωk) + (1− λ)x̄ = λxk + (λωk + (1− λ)x̄), λ ∈ [0, 1].

It is clear that Ax̃k = b. By choosing
λ = 1− ‖ωk‖2/(‖ωk‖2 + λmin(x̄)), we can have that x̃k is positive
semidefinite. We can also have that (x̃k, pk, zk) satisfies the
condition (6) if

‖ωk‖2 ≤ min
{

ξk
4t2

k

√
n‖zk‖

(
1 + λmax(x̄)

λmin(x̄)

)−1
, εk

2
√

2nλmax(H1) tk

(
1 + ‖x̄−xk‖2

λmin(x̄)

)−1}
.



An inexact APG for (P)
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Let qk(x) = f(yk) + 〈∇f(yk), x− yk〉+ 1
2〈x− yk,Hk(x− yk)〉, x ∈ Sn.

Algorithm 2. Given a tolerance ε > 0. Input y1 = x0 ∈ Sn, t1 = 1. Set
k = 1. Iterate the following steps.

Step 1. Find an approximate minimizer

xk ≈ argmin
x∈X

{
qk(x) : x ∈ Ω

}
, (10)

where xk ∈ Ωk ⊇ Ω.

Step 2. Compute tk+1 =
1+
√

1+4t2
k

2 .

Step 3. Compute yk+1 = xk +
(
tk−1
tk+1

)
(xk − xk−1).

When Ωk = Ω, the dual problem of (10) is given by

max
{
qk(x)−〈∇qk(x), x〉+〈b, p〉 | ∇qk(x)−A∗p−z = 0, z � 0, x � 0

}
. (11)
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Let {ξk}, {ǫk}, {µk} be given convergent sequences of nonnegative
numbers such that

∑∞
k=1 ξk < ∞,

∑∞
k=1 ǫk < ∞, and

∑∞
k=1 µk < ∞,

and ∆ be a given positive number. We assume that (xk, pk, zk)
satisfies the following conditions:

f(xk) ≤ qk(xk) + ξk/(2t
2
k)

|〈∇qk(xk), xk〉 − 〈b, pk〉| ≤ ∆

∇qk(xk)−A∗pk − zk = δk, with ‖H−1/2
k δk‖ ≤ ǫk/(

√
2tk)

‖A(xk)− b‖ ≤ µk/t
2
k

〈xk, zk〉 ≤ ξk/(2t
2
k), xk � 0, zk � 0.
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We also assume that µk/t
2
k ≥ µk+1/t

2
k+1 and ǫk/tk ≥ ǫk+1/tk+1 for all

k. We can have that (xk, pk, zk) is an approximate optimal solution
of (10) and (11). Note that

Ωk :=
{
x ∈ Sn : ‖A(x)− b‖ ≤ µk/t

2
k, x � 0

}
and Ωk+1 ⊆ Ωk.

We let (x∗, p∗, z∗) be an optimal solution of (P ) and (D),

τ =
1

2
〈x0 − x∗,H1(x0 − x∗)〉, χk = ‖pk−1 − pk‖µk−1, with χ1 = 0,

ǭk =
k∑

j=1

ǫj, χ̄k =
k∑

j=1

(ξj + ǫ2j), ξ̄k =
k∑

j=1

χj.
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Theorem 2 Suppose Mk = max1≤j≤k{
√

(‖p∗‖+ ‖pj‖)µj}. Then we have

−4‖p∗‖µk

(k + 1)2
≤ f(xk)− f(x∗)

≤ 4

(k + 1)2

(
(
√
τ + ǭk)

2 + ‖pk‖µk + 2ǭkMk + 2(ξ̄k + χ̄k)
)
.

{‖pk‖} bounded (?) =⇒ {Mk} and {χ̄k} bounded =⇒ O(1/k2).



Boundedness of{pk}
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Lemma 1 Suppose that there exists (x̄, p̄, z̄) such that

A(x̄) = b, x̄ � 0, ∇f(x̄) = A∗p̄+ z̄, z̄ ≻ 0.

If the sequence {f(xk)} is bounded from above, then the sequence {xk}
is bounded.

Lemma 2 Suppose that {xk} is bounded and there exists x̂ such that

A(x̂) = b, x̂ ≻ 0.

Then the sequence {zk} is bounded. In addition, the sequence {pk} is
also bounded.

In many cases, such as the nearest correlation matrix problem (2), the
condition that {f(xk)} is bounded above or that {xk} is bounded can be
ensured since Ω1 is bounded.



A semismooth Newton-CG method for inner
subproblems

The 9th National Conference on Mathematical Programming of China/Hangzhou, April 20-24, 2012. NUS/SUN – 22 / 33

Suppose that at each iteration we are able to choose the
self-adjoint positive definite linear operator Hk of the form:

Hk(x) := wk ⊛ wk(x) = wkxwk, where wk ∈ Sn positive definite,

such that f(x) ≤ qk(x) for all x ∈ Ω (A simple choice: wk =
√
LI).

Then qk(·) in (10) can equivalently be written as

qk(x) =
1

2
‖w1/2

k (x− uk)w
1/2
k ‖2 + f(yk)−

1

2
‖w−1/2

k ∇f(yk)w
−1/2
k ‖2,

where uk = yk − w−1
k ∇f(yk)w

−1
k .
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Then (10) can be equivalently written as the following well-studied
W -weighted semidefinite least squares problem

min
{1

2
‖w1/2

k (x− uk)w
1/2
k ‖2 : A(x) = b, x � 0

}
, (12)

which can be efficiently solved by the SSNCG method in [Qi and
Sun 2006].

The availability of the SSNCG is vital for our inexact APG to work.

For example, for a 2000 by 2000 weighted nearest correlation matrix
problem, SSNCG needs 23 seconds to get error less than 10−9

while the APG needs more than 4980 seconds to get gradient error
as 0.68.



Symmetrized Kronecker product approximation
of Q
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● For the H-weighted NCM problem where Q(x) = (H ◦H) ◦ x,
let w = diag(d), where the vector d ∈ IRn can be chosen as

dj = max
{
ǫ, max

1≤i≤n
{Hij}

}
, j = 1, . . . , n,

where ǫ > 0 is a small positive number.
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● If Q(x) = B ⊛ I(x) = (Bx+ xB)/2, B ∈ Sn
+. Suppose we have

the eigenvalue decomposition B = PΛP T , where Λ = diag(λ)
and λ = (λ1, . . . , λn)

T is the vector of eigenvalues of B. Let
M = 1

2
(λeT + eλT ) with e ∈ IRn being the vector of all ones. We

consider the following nonconvex minimization problem:

min
{ n∑

i=1

n∑

j=1

hihj | hihj −Mij ≥ 0 ∀ i, j = 1, . . . , n, h ∈ IRn
+

}
.

If ĥ is a feasible solution to the above problem, let
wk = Pdiag(ĥ)P T .



Numerical results for convex QSDP problems
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In our numerical experiments, we stop the inexact APG algorithm
when

max{RP , RD} ≤ 10−6.

Example 1 We consider the following H-weighted nearest
correlation matrix problem

min
{1

2
‖H ◦ (x− u)‖2 | Diag(x) = e, x � 0

}
.
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We compare the performance of our inexact APG (IAPG) method
and the augmented Lagrangian dual method (AL) studied by [Qi
and Sun 2010]. We set the tolerance Tol1 = 10−4 in AL. Given the
correlation matrices û, we perturb û to

u := (1− α)û+ αE,

where α ∈ (0, 1) and E is a randomly generated symmetric matrix
with entries in [−1, 1].

The weight matrix H is a sparse random symmetric matrix with
about 50% nonzero entries.
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Algo. problem (n) α iter/newt RP RD pobj time rankX
IAPGER (692) 0.1 167/172 2.27e-10 9.92e-7 1.26095534e+1 3:30 189

0.05 187/207 3.93e-11 9.54e-7 1.14555927e+0 3:40 220
AL ER (692) 0.1 12 3.73e-7 4.63e-7 1.26095561e+1 9:28 189

0.05 12 3.21e-7 1.02e-6 1.14555886e+0 14:14 220

IAPGArabidopsis (834) 0.1 125/133 3.28e-10 9.36e-7 3.46252363e+1 4:01 191
0.05 131/148 2.41e-10 9.75e-7 5.50148194e+0 4:09 220

AL Arabidopsis (834) 0.1 13 2.28e-7 7.54e-7 3.46252429e+1 12:35 191
0.05 12 2.96e-8 1.01e-6 5.50148169e+0 22:49 220

IAPGLeukemia (1255) 0.1 104/111 5.35e-10 7.97e-7 1.08939600e+2 9:24 254
0.05 96/104 4.81e-10 9.31e-7 2.20789464e+1 8:35 276

AL Leukemia (1255) 0.1 12 3.06e-7 2.74e-7 1.08939601e+2 22:04 254
0.05 11 2.90e-7 8.57e-7 2.20789454e+1 28:37 276

IAPGhereditarybc (1869) 0.1 67/87 2.96e-10 8.68e-7 4.57244497e+2 17:56 233
0.05 64/85 9.58e-10 7.04e-7 1.13171325e+2 17:32 236

AL hereditarybc (1869) 0.1 13 2.31e-7 3.55e-7 4.57244525e+2 38:35 233
0.05 11 2.51e-7 6.29e-7 1.13171335e+2 36:31 236



Example 2: “bad” weight matrix H
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We consider the same problem as in Example 1, but the weight
matrix H is generated from a weight matrix H0 used by a hedge
fund company. The matrix H0 is a 93× 93 symmetric matrix with all
positive entries.

● It has 24% of the entries equal to 10−5 and the rest are in the
interval [2, 1.28× 103].

● It has 28 eigenvalues in [−520,−0.04], 11 eigenvalues in
[−5× 10−13, 2× 10−13], and the rest 54 eigenvalues in
[10−4, 2× 104].

We set the tolerance Tol1 = 10−2 in AL. (“∗” means “> 24 hours”)
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Algo. problem (n) α iter/newt RP RD pobj time rankX
IAPGER (692) 0.1 62/156 2.48e-9 9.72e-7 1.51144194e+7 2:33 254

0.05 56/145 3.58e-9 9.55e-7 3.01128282e+6 2:22 295
AL ER (692) 0.1 16 1.22e-5 5.80e-6 1.51144456e+7 2:05:38 288

0.05 12 3.11e-5 6.29e-6 3.01123631e+6 53:15 309

IAPGArabidopsis (834) 0.1 61/159 6.75e-9 9.98e-7 2.69548461e+7 4:01 254
0.05 54/145 1.06e-8 9.82e-7 5.87047119e+6 3:41 286

AL Arabidopsis (834) 0.1 19 3.04e-6 3.94e-6 2.69548769e+7 4:49:00 308
0.05 13 1.69e-5 6.76e-6 5.87044318e+6 1:28:59 328

IAPGLeukemia (1255) 0.1 65/158 8.43e-9 9.86e-7 7.17192454e+7 11:32 321
0.05 55/143 1.19e-7 9.80e-7 1.70092540e+7 10:18 340

AL Leukemia (1255) 0.1 ∗ ∗ ∗ ∗ ∗ ∗

0.05 13 3.19e-5 5.15e-6 1.70091646e+7 5:55:21 432

IAPGhereditarybc (1869) 0.1 48/156 2.08e-8 9.16e-7 2.05907938e+8 29:07 294
0.05 49/136 6.39e-8 9.61e-7 5.13121563e+7 26:16 297

AL hereditarybc (1869) 0.1 ∗ ∗ ∗ ∗ ∗ ∗

0.05 ∗ ∗ ∗ ∗ ∗ ∗
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Example 3 We consider the linearly constrained convex QSDP
problem, where Q(x) = 1

2
(Bx+ xB) for a given B ≻ 0 and

A(x) = Diag(x).

n; m cond(B) iter/newt RP RD pobj dobj time
500; 5009.21e+0 9/9 3.24e-10 9.70e-7-4.09219187e+4 -4.09219188e+4 13

1000; 10009.43e+0 9/9 3.68e-10 9.28e-7-8.41240999e+4 -8.41241006e+4 1:13
2000; 20009.28e+0 9/9 3.16e-10 8.53e-7-1.65502323e+5 -1.65502325e+5 8:49
2500; 25009.34e+0 9/9 3.32e-10 8.57e-7-2.07906307e+5 -2.07906309e+5 16:15
3000; 30009.34e+0 9/9 2.98e-10 8.13e-7-2.49907743e+5 -2.49907745e+5 29:02
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Example 4 We consider the same problem as Example 3, but the
linear map A is generated by using the first generator in [Malick,
Povh, Rendl, and Wiegele 2009] with order p = 3. The positive
definite matrix B is generated by using MATLAB’s built-in function: B
= gallery(’lehmer’,n) with cond(B) ∈ [n, 4n2].

n; m cond(B) iter/newt RP RD pobj dobj time
500; 100002.67e+5 51/102 3.02e-8 9.79e-7-9.19583895e+3 -9.19584894e+3 1:29

1000; 500001.07e+6 62/115 2.43e-8 9.71e-7-1.74777588e+4 -1.74776690e+4 11:46
2000; 1000004.32e+6 76/94 5.24e-9 5.28e-7-3.78101950e+4 -3.78101705e+4 1:14:04
2500; 1000006.76e+6 80/96 4.62e-9 5.64e-7-4.79637904e+4 -4.79637879e+4 2:11:01
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