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Convex semidefinite programming(SDP) NUS

iversi
of Singapore

Consider the following convex (SDP) problem:

(P) min {f(m) A(z)=b, >0, z € sn},
where f Is a smooth convex functionon &, A: S - IR™ Is a

linear map, b € IR™, and S” Is the space of n x n symmetric
matrices. The notation x = 0 means that x Is positive semidefinite.

Let A* be the adjoint of .A. The dual problem associated with (P)

(D) max { f(x) = (VS (@).) + (b.p) : VS{w) = Ap=2=0, Z T |
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Assume that the linear map A Is surjective, and that strong duality
holds for (P) and (D).

Let z, be an optimal solution of (P) and (x., p., z) be an optimal
solution of (D). Then, they must satisfy the following KKT
conditions:

A(x) =b, Vf(x)—Ap—2=0, (x,2)=0, =0, z>0.

The problem (P) contains the following important special case of
convex quadratic semidefinite programming (QSDP):

min {%(x, Q(x)) + (c,x) : Alx)=0b,x = O}, (1)

where Q : 8™ — 8™ Is a given self-adjoint positive semidefinite
linear operator and c € S™.
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A typical example of QSDP is the nearest correlation matrix
problem [Higham 2002].
Given a symmetric matrix © € §”, we want to solve

min{%“ﬁ(:z:—u)HQ - Diag(r) = e, z = 0}, 2)

where £ : S — IR™ " is a linear map and e € IR" Is the vector of all
ones. Here Q = £*L and ¢ = —L*L(u). A well studied special case
of (2) Is the IV-weighted nearest correlation matrix problem

1
min {§]|W1/2(:1: _W)WY2|? : Diag(z) =e, & = o},

where W € S§™ Is a given positive definite matrix.
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For the W/ -weighted nearest correlation matrix problem, we have
e The alternating projection method [Higham 2002]
e The guasi-Newton method [Malick 2004]

e An inexact semismooth Newton-CG method [QiI and Sun 2006]

e An inexact interior-point method [Toh, Tutuncu and Todd 2007]
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The second case is the H-weighted case of (2)
.1 5 .
min {§HH o(x —u)||* : Diag(z) =0, x = O}, (3)

where H € §" with nonnegative entries and“c” denoting the
Hardamard product of two matrices defined by (A o B);; = A;; Bi;.

The weight matrix H represents one’s confidence levels on the
estimated matrix on a component by component basis.

The corresponding entries of H are zeros for missing entries of w.
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For the H-weighted nearest correlation matrix problem, we have

e An inexact interior-point method for a general convex QSDP
[Toh 2008].

e an augmented Lagrangian dual method [QI and Sun 2010]

If the weight matrix H Is very sparse or ill-conditioned, the
conjugate gradient (CG) method would have great
difficulty in solving the linear system of equations.

e A semismooth Newton-CG augmented Lagrangian method for
convex quadratic programming over symmetric cones [Zhao
2009].

e A modified alternating direction method for convex
guadratically constrained QSDPs [Sun and Zhang 2010].
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Assume that we are interested in solving the unconstrained problem
min f(x)

with highly ill conditioned Hessian V f?(z). Then

e Newton’s method including inexact ones is certainly not feasible.

e Quasi Newton methods are out of touch due to high dimension.

e Gradient type methods are very few possible choices.
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The accelerated proximal gradient (APG) method was first
proposed by [Nesterov 1983] for minimizing smooth convex
functions, later extended by [Beck and Teboulle 2009] to composite
convex objective functions, and studied in a unifying manner by
[Tseng 2008]. The algorithm we propose is based on the APG
method (FISTA) [Beck and Teboulle 2009], where in the kth iteration
with iterate z,, a subproblem of the following form must be solved:

mm{<w(@),x—fk>+%<x—fk,yk(x—fk)> Ax) = b= 0}

reES™

o O
where H, : S — S™ Is a given self-adjoint positive definite linear
operator.
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Assume that V f(-) is globally Lipschitz continuous. That is, there
exists L > 0 such that

IVi(z) = Vi)l < Lllz -yl Vz,y.
Attractive iteration complexity: O(\/L/e) for APG vs O(L/e) for
proximal gradient (PG) method.
Limitations of FISTA:

1 H, Isrestricted to LZ, where 7 : S — S™ denotes the identity

map and L is the Lipschitz constant of V f. (L could be very
large)

2 The subproblem (4) must be solved exactly to generate the
next iterate x; 1.
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For more generality, we consider the following minimization problem
min{ F'(z) := f(x) + g(x) : z € X} (5)

where X is a finite-dimensional Euclidean space. The functions
f:X=1R,g: X — IRU{+o0} are proper, lower semi-continuous
convex functions (possibly nonsmooth). We assume that

dom(g) := {x € X : g(x) < oo} is closed, f is continuously
differentiable on X and its gradient V f is Lipschitz continuous with
modulus L on X. It is a well known property that

F&) < F0) + (Vi) — ) + Slle—yl? Vaye X

We also assume that the problem (5) is solvable with an optimal
solution x, € dom(g).
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Algorithm 1. Given a tolerance € > 0. Input y; = g € dom(g), t; = 1. Set
k = 1. lterate the following steps.

Step 1. Find an approximate minimizer

Ty A arg 2%133 {f(yk) +(Vf(yr), y—yk) +%<y—yk, Hi(y—y)) +g(y)},

where H;. is a self-adjoint positive definite linear operator that is
chosen by the user.

/ 2
Step 2. Compute tp 1 = s 21+4t’f.

Step 3. Compute yi11 = x + (tk_l) () — Tp_1).

tk41
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Given any positive definite linear operator #; : X — X, and y, € X,
we define ¢;(-) : X — IR by

1

~{z — yj, Hi(x — y5))-

gi(w) = f(y;) +{Vf(y;), z —y;) + 5

Let {&1.}, {ex} be given convergent sequences of nonnegative
numbers such that >~ & < ocoand > ;- € < oo. In the j-th
iteration of Algorithm 1, we assume the approximation minimizer x,
satisfies the following conditions

F(:CJ) < q](iC]) +g(:13]) + 2t2’ (6)
Vfy;) + My — )+ = 65 with |7 25| < €;/(V2t;)  (7)

where v, € dg(x;; 2152) (the set of 24 -subgradients of ¢ at ;).

W
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Note that for x, to be an approximate minimizer, we must have
z; € dom(g). We let

T —= %<:’UO — CU*7H1(CUO - ZC*)>, Ek — Zle €j7 gk’ — Zle(é-] _|_ 6?)

Theorem 1 Suppose the conditions (6) and (7) hold, and
Hi—1 = Hi > 0 forall k. Then

4
- (k +

e (V7 +20° + 26 ).
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For the problem (P), we have g(-) = 6(- | 2) where
Q={z eS8 : A(x) =10, z = 0} is the feasible set of (P). We need
to solve the following constrained minimization problem:

1

min{(Vf(yk),m—yk>+§(x—yk,7{k(x—yk)> : A(x) = b,z > O}. (8)

Suppose we have an approximate solution (zy, px, zx) to the KKT
optimality conditions for (8):

Vfye) + Hiloy —yp) — Apr — 2, =20 = 0
<ka, Zk> =& O, Ly Rk i 0.
Let v, = —A*p, — z,.. Then ~, IS an g,-subgradient of g at x;, € Q If

2, ~— 0. However, In practice, we have x; >~ 0 but
T -— .A(ilfk) —b;é()
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Suppose that there exists z > 0 such that A(z) = b. Since A is
surjective, AA* is nonsingular. Let w, = —A*(AA*)"'(r;). Note that
A(xp + wy) = b. However, x5, + wp may not be positive semidefinite.
Thus we consider the following iterate:

T = )\([Ck +wk) + (1 — )\)573 = Az, + ()\wk + (1 — )\)Zf‘), A E [O, 1].

It is clear that Az, = 0. By choosing

A=1—lJwrll2/(||we|l2 + Amin(Z)), we can have that 7, is positive
semidefinite. We can also have that (Z, px, zx) Satisfies the
condition (6) If

. ‘, Amax@c))—l ) ( ||a—c—xk||2)‘1}
k2 < mm{zlti\/ﬁ]lzkn (1 T 3@ ) 2ot A Amin(@) |
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Let gx(x) = f(yr) + (VF (k) ® — y) + 5(x — y, Hi(z — ), z € S™
Algorithm 2. Given a tolerance € > 0. Input y; = xg € §", t; = 1. Set
k = 1. lterate the following steps.

Step 1. Find an approximate minimizer

~ ' ; Q} 1
X arg;rg)rfl{qk(x) x e e, (10)

where z;. € Q. O Q.

/ 2
Step 2. Compute tp 1 = s 21+4tk.

Step 3. Compute yi11 = x5 + (tk_l) () — Tp_1).

te+1

When ;.. = Q, the dual problem of (10) is given by

max 4 ¢k () —(Var(z), 2)+{b, p) | Varp(z)—A"p—2 =10, 2 = 0,2 = 0. (11)
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Let {&:}, {ex}, {ur} be given convergent sequences of nonnegative

numbers such that >~ & < o0, > -, € < 00, and > - g < 00,
and A be a given positive number. We assume that (x, px, 2x)

satisfies the following conditions:
floe) < aqulan) + &/ (2t7)
[(Var(zg), zr) — (0, p)| < A
Vap(ay) — A'pr — 2 = O, with [[Hy 26| < e/(V24)

JA(ze) — bl < e/t
(zr, 21) < &/(2t7), @, =0, 2, = 0.
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We also assume that i /t; > g1/t and e /ty > €x1/ti for all

k. We can have that (xy, px, 2x) IS an approximate optimal solution
of (10) and (11). Note that

O = {:L’ e S ||A®x) — bl < i /t2, T - o} and Qy..; C Q.

We let (z,, p., z.) be an optimal solution of (P) and (D),

1 .
T §<330 — T, Hi(®o — 24))s X = [[Pr—1 — Prllpr—1, With x1 =0,

k k

k
€x = Zﬁja Xk = Z(ﬁj b E?)v & = ZXJ"
j=1

j=1 j=1
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Theorem 2 Suppose Mj, = maxi<j<i{\/(|[p«| + [[p;|)1;}. Then we have

4| pac|| e
—(k+1)]§ < flwr) — f(x)
4

= (k+1)2

(V7 + @)% + 1wk + 266 My + 2(& + X))

{|lpx ||} bounded (?) = {M;.} and {x;} bounded = O(1/k?).
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Lemma 1 Suppose that there exists (z, p, Z) such that
A(z)=0b, >0, Vf(x)=A"p+2z z>~0.

If the sequence {f(xx)} is bounded from above, then the sequence {z}
IS bounded.

Lemma 2 Suppose that {z;} is bounded and there exists z such that
A(z) =b, z = 0.

Then the sequence {z;} is bounded. In addition, the sequence {p} is
also bounded.

In many cases, such as the nearest correlation matrix problem (2), the
condition that { f(z)} is bounded above or that {x;} is bounded can be

ensured since (), is bounded.
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A semismooth Newton-CG method for inner
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Suppose that at each iteration we are able to choose the
self-adjoint positive definite linear operator 4, of the form:

Hyp(x) = wp ® wi(x) = wpzwy,, Where w, € S™ positive definite,

such that f(z) < qx(z) for all z € Q (A simple choice: w;, = v/ LI).
Then ¢, (-) in (10) can equivalently be written as

1

1/2 1/2 1 —1/2 —1/2
k(1) = Sllwy (@ — w)w* 1P + ) = Sl 2V f (gow P

where u;, =y, — w, "V f(ye)w;, '

The 9th National Conference on Mathematical Programming of China/Hangzhou, April 20-24, 2012. NUS/SUN - 22 / 33




of Singapore

Then (10) can be equivalently written as the following well-studied
W -weighted semidefinite least squares problem

min {%\]wi/Q(x - uk)w,i/QHQ : A(x) = b,x = O}, (12)
which can be efficiently solved by the SSNCG method in [QI and
Sun 2006].

The avallability of the SSNCG is vital for our inexact APG to work.

For example, for a 2000 by 2000 weighted nearest correlation matrix
problem, SSNCG needs 23 seconds to get error less than 10~
while the APG needs more than 4980 seconds to get gradient error
as 0.68.
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Symmetrized Kronecker product approximation
_QLO " eae

-~

o For the H-weighted NCM problem where O(z) = (H o H) oz,
let w = diag(d), where the vector d € IR" can be chosen as

Tl = max{e, maX{Hij}}, j=1,...,n,

1<i<n

where ¢ > 0 Is a small positive number.
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o If Q(x) =B®I(x)=(Bx+2B)/2, B S". Suppose we have
the eigenvalue decomposition B = PAP?, where A = diag())
and A = (\,...,\,)! is the vector of eigenvalues of B. Let
M = 1(XNe’ + eAT) with e € IR" being the vector of all ones. We
consider the following nonconvex minimization problem:

min{ZZhihj | hihy — My, >0Vi,5=1,...,n, hem}.
i=1 j=1

If 1 is a feasible solution to the above problem, let
wy, = Pdiag(h)P’.
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In our numerical experiments, we stop the inexact APG algorithm

when
maX{Rp, RD} S 10_6.

Example 1 We consider the following H-weighted nearest
correlation matrix problem

1
min{iHHo (z — u)||* | Diag(z) = e,z = O}.
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We compare the performance of our inexact APG (IAPG) method
and the augmented Lagrangian dual method (AL) studied by [QI
and Sun 2010]. We set the tolerance Tol 1 = 10~ in AL. Given the
correlation matrices u, we perturb u to

u:=(1—a)u+ akF,

where o € (0,1) and E is a randomly generated symmetric matrix
with entries in [—1, 1].

The weight matrix H is a sparse random symmetric matrix with
about 50% nonzero entries.
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Algo.|problem (n) a || iter/newt Rp Rp pobj time rank
IAPGER (692) 0.1| 167/172 2.27e-10 9.92e-7 1.26095534e+1 | 3:30 189
0.05| 187/207 3.93e-11 9.54e-7 1.14555927e+0 | 3:40 220
AL |ER (692) 0.1 12 3.73e-7 4.63e-7 1.26095561e+1 | 9:28 189
0.05] 12 3.21e-7 1.02e-6 1.14555886e+0 (14:14 220
IAPGArabidopsis (834) 0.1 125/133 3.28e-10 9.36e-7 3.46252363e+1 | 4:01 191
0.05| 131/148 2.41e-10 9.75e-7 5.50148194e+0 | 4:.09 220
AL |Arabidopsis (834) 0.1] 13 2.28e-7 7.54e-7 3.46252429%e+1 12:35 191
0.05] 12 2.96e-8 1.0le-6 5.50148169e+0 (22:49 220
IAPG|Leukemia (1255) 0.1| 104/111 5.35e-10 7.97e-7 1.08939600e+2 | 9:24 254
0.05| 96/104 4.81e-10 9.31le-7 2.20789464e+1 | 8:35 276
AL |Leukemia (1255) 0.1 12 3.06e-7 2.74e-7 1.08939601le+2 [22:04 254
0.05] 11 2.90e-7 8.57e-7 2.20789454e+1 128:37 276
|IAPGlhereditarybc (1869) 0.1 67/87 2.96e-10 8.68e-7 4.57244497e+2 [17:56 233
0.05| 64/85 9.58e-10 7.04e-7 1.13171325e+2 |17:32 236
AL |hereditarybc (1869) 0.1| 13 2.31e-7 3.55e-7 4.57244525e+2 38:35 233
0.05] 11 2.51e-7 6.29e-7 1.13171335e+2 36:31 236
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We consider the same problem as in Example 1, but the weight
matrix H Is generated from a weight matrix H, used by a hedge

fund company. The matrix Hy is a 93 x 93 symmetric matrix with all
positive entries.

o It has 24% of the entries equal to 10~ and the rest are in the
interval [2,1.28 x 103].

o It has 28 eigenvalues in |[—520, —0.04], 11 eigenvalues in

[—5 x 1071, 2 x 10~"¥], and the rest 54 eigenvalues in
(1074, 2 x 10%].

We set the tolerance Tol 1 = 1072 in AL. (“+” means “> 24 hours”)
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Algo. |problem (n) a || iter/newt Rp Rp pobj time ranl
IAPGER (692) 0.1 62/156 2.48e-9 9.72e-7 1.51144194e+7 2:33 254
0.05| 56/145 3.58e-9 9.55e-7 3.01128282e+6 2:22 295
AL [ER (692) 0.1 16 1.22e-5 5.80e-6 1.51144456e+7 [2:05:38 288
0.05] 12 3.11e-5 6.29e-6 3.01123631le+6 | 53:15 309
|IAPGArabidopsis (834) 0.1j] 61/159 6.75e-9 9.98e-7 2.69548461e+7 4:01 254
0.05| 54/145 1.06e-8 9.82e-7 5.87047119e+6 3:41 286
AL |Arabidopsis (834) 0.1 19 3.04e-6 3.94e-6 2.69548769e+7 14:49:00 308
0.05| 13 1.69e-5 6.76e-6 5.87044318e+6 [1:28:59 328
IAPGLeukemia (1255) 0.1} 65/158 8.43e-9 9.86e-7 7.17192454e+7 | 11:32 321
0.05| 55/143 1.19e-7 9.80e-7 1.70092540e+7 | 10:18 34C
AL |Leukemia (1255) 0.1 = * * * * ok
0.05] 13 3.19e-5 5.15e-6 1.70091646e+7 [5:55:21 432
|IAPGhereditarybc (1869) 0.1|| 48/156 2.08e-8 9.16e-7 2.05907938e+8 | 29:.07 294
0.05| 49/136 6.39e-8 9.61e-7 5.13121563e+7 | 26:16 297
AL |hereditarybc (1869) 0.1 x * * * *x K

ES
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Example 3 We consider the linearly constrained convex QSDP
problem, where Q(z) = 1(Bx + «B) for a given B - 0 and
A(z) = Diag(x).

n;m |cond(B)|iter/newt Rp Rp pobj dobj time

500; 5009.21e+(0]] 9/9 3.24e-10 9.70e-7-4.09219187e+4 -4.09219188e+4| 13
1000; 10009.43e+0|| 9/9 3.68e-10 9.28e-7-8.41240999%e+4 -8.41241006e+4| 1:13
2000; 20009.28e+0]| 9/9 3.16e-10 8.53e-7-1.65502323e+5 -1.65502325e+5| 8:49
2500; 25009.34e+0| 9/9 3.32e-10 8.57e-7-2.07906307e+5 -2.07906309e+5| 16:15
3000; 30009.34e+0| 9/9 2.98e-10 8.13e-7-2.49907743e+5 -2.49907745e+5 29:02
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Example 4 We consider the same problem as Example 3, but the
linear map A is generated by using the first generator in [Malick,
Povh, Rendl, and Wiegele 2009] with order p = 3. The positive

definite matrix B is generated by using MATLAB'’s built-in function: B

= gal l ery(’ | ehnmer’, n) with cond(B) € [n,4n?].

n, m cond(B)|iter/lnewt Rp Rp pobj dobj time
500; 100002.67e+5|| 51/102 3.02e-8 9.79e-719.19583895e+3 -9.19584894e+3|| 1:29
1000; 500001.07e+6|| 62/115 2.43e-8 9.71e-7-1.74777588e+4 -1.74776690e+4|| 11:46
2000; 1000004.32e+6)| 76/94 5.24e-9 5.28e-7-3.78101950e+4 -3.78101705e+4(1:14:04
2500; 1000006.76e+6)| 80/96 4.62e-9 5.64e-7-4.79637904e+4  -4.79637879e+42:11:01
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We need more creative ideas!
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