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Proximal point algorithm (PPA)

X real finite dimensional Euclidean space endowed inner product
(-, ) and norm || - ||. Consider a maximal monotone operator 7 :
X = X.

Solve the following inclusion problem: 0 € 7 (z)

Given ¢ > 0, the proximal mapping associated with ¢7T
P:=(T+cT)™!

The proximal point algorithm (PPA):

ZkJrl ~ Pk(Zk), Pk = (I+ CkT)il

Criterion for approximate calculation of P (2%):

(A) s M =BG < 0l =AM D e < oo
k=0



Let Z:={2€X|0€T(2)}#0.
Error bound condition for 7: da > 0,7 >0

dist(z, Z) < a|w|, Vze T Y(w), |w| <7

Theorem 1 (Luque 1984, based on Rockafellar 1976)

Let 2 be generated by PPA using criterion (A) with cy,
nondecreasing (cx 1 coo < +00). Suppose that the above error
bound condition holds for T. Then,

o dist(2*,Z) — 0 linearly with a rate bounded from above by

a

JEZT &

@ If coo = 400, the convergence is superlinear.

<1 (fast linear convergence)



Alternating direction method of multipliers (ADMM)

Consider
min  f(u) + g(v)

st. F'u+G*v=c

Closed proper convex functions: f : U — (—oo,+c], g : V —
(—00, +00]

Linear maps F : X - U, G: X =V

Given o > 0, the augmented Lagrangian function:
Ly(u,v;x) = f(u)+g(v)+(z, ]:*u+g*v—c>+%H]—"*u—f—Q*U—CHQ.

Its dual:
max {—(c, z) — f*(=Fz) — g"(~=Gx)}
Let A(z) :=c— F*Of*(—Fz), B(x):=-G*0g"(—Gz).



ADMM

Algorithm ADMM(7): An ADMM with step-length
For k=0,1,2,..., iterate
1. Compute

k+1 _ arg min Eg(u,vk; xk)

u

u

2. Compute

kL — argmin £, (uf*, v; 2¥)

v

3. Compute $k+1 = g;k + TO.(]:‘*uk—i-l + g*,vk—i-l - C).

v




DR Splitting

Consider a general inclusion model
0€ (A+ B)(»), (1)

where A, B : Z = Z are maximal monotone operators. Given
o >0, let

Joa(2) = (I +0A)(2), J,p(2):=(I+0cB) ()

be the resolvents of 0 A and o B, respectively. Let {tk}zozo be the se-
quence generated by the following Douglas-Rachford splitting (DR-
splitting) method

th = (Jyoa0 2J,p — 1)+ (I — Jyp))t~. 2)



ADMM = DR Splitting = PPA

Assume that the KKT solution set is nonempty.

o Gabay (1983) showed that ADMM(1) with FF* = 0 and GG* = 0
can be viewed as a DR-splitting method applied to 0 € (A + B)(x)

e Eckstein (PhD Thesis, 1989) showed that the DR-splitting is in
fact a PPA corresponding to the following maximal monotone oper-
ator:

Sap={(y+obz—y)|be B(z),ac Aly), y+ oa =z — ob}

Caution: ADMM(1) is PPA. But in general ADMM(7) is not PPA.



Piece-wise linear-quadratic functions

Theorem 2 (J. Sun, PhD Thesis (1986))

Let f be a closed proper convex function. Then f is piecewise
linear-quadratic iff the graph of Of is piecewise polyhedral.
Moreover, f is piecewise linear-quadratic iff f* (Fenchel conjugate
function) is piecewise linear-quadratic.

Theorem 3 (Robinson 1981)

If the multi-valued mapping F' : X = Y is piecewise polyhedral,
then F is calm at 2°, i.e., kg > 0 and a neighborhood V of x°
such that

F(z) C F(2°) 4 wollz — 2°|By, VzeV.

Thus, the error bound condition holds for S4 p corresponding to the
convex piecewise quadratic programming (QP).



Linear convergence rate for ADMM(1)

Linear convergence rate of ADMM(1) for convex piecewise QP:

(1). ADMM(1) with FF* > 0 and GG* > 0 is a PPA corresponding
to SA,B-
(2). The error bound condition holds for the corresponding maximal
monotone operator S4 g [Robinson + J. Sun].
@ (1) + (2) = Linear convergence rate.

All the above are essentially known by 1989. There are several recent
papers with more direct proofs ...



Convex composite optimization

The convex composite optimization problem

Jepin {9(y) +9(y) +¢(2) + h(z) : Ay + B2 = c},

where ) and Z are two finite-dimensional real Euclidean spaces each
equipped with an inner product (-,-) and its induced norm || - ||.

eV : )Y — (—oo,+x], ¢ : Z — (—00,+00] proper closed
convex functions

0g:Y — (—00,+00) and h : Z — (—o0,+00) are two C*
convex functions (e.g., convex quadratic functions)
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The augmented Lagrangian function

o Write ¥4(-) = 9(-) + g(-) and @i (-) = ¢(-) + h(:).
@ The augmented Lagrangian function is defined by
Lo(y,zx) = O9(y) + on(z) + (z, A'y + B2 — ¢)
—l—%HA*y + B*z — ¢|)?,
V(y,z,x) €Y x Z X X.
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sPADMM

Step 0. Input (y°,2°,2°) € dom ¥ x dom ¢ x X. Let 7 € (0,00) be a
positive parameter (e.g., 7 € (0,(1++v/5)/2)),and S: Y — Y
and 7 : Z — Z be two self-adjoint positive semi-definite, not
necessarily positive definite, linear operators. Set k := 0.

Step 1. Set
Y€ argmin Lo(y, 25 2%) + 3lly — vF(13,
2P € argmin L, (y* 1, 25 2F) + %Hz — zk||%-, (3)
oFH = 2F ¢ ro(AFyFL 4 BrR L —¢).

Step 2. If a termination criterion is not met, set £ := k + 1 and go to
Step 1.

The KKT system has a non-empty solution set.
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Denote u := (y,z,x) fory € Y, z € Z and z € X. Let
U=YxZxX.
Define the KKT mapping R: U — U as
y — Proly — (Vg(y) + Az)]
R(u) = [ z—Prylz— (Vh(z)+Bz)] |, Yuel,
c— A'y —B*z

where Pry(-) denotes the Moreau-Yosida proximal mapping. The
mapping R(-) is at least continuous on U and

VueU, R(u)=0<+<=ucq.
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Global convergence of sSPADMM

The global convergence of the sSPADMM is established in Appendix
B of Fazel-Pong-S.-Tseng (2013). For the iteration complexity on
sPADMM(1), see Shefi and Teboulle (2014).

There exist two self-adjoint and positive semi-definite linear opera-
tors (could be zero operators) ¥, and X, such that for all ¢/, y €
dom ¢, and for all 2,z € dom ¢,

(Va(y') = Vo), —y) > Iy — yll3,,
(Vh(z') = Vh(z),2' = 2) > ||z — Zquh
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Linear convergence rate of sSPADMM

For any 7 € (0, 00), define

5—7 —3min{r,71} 1 — 7+ min{r, 771}
1 & tri= 3

Sr =

1/4<s;,<5/4 & 0<t,<1/8, V7e(0,(1+5)/2).

Let £: X - U :=)Y x Z x X be a linear operator such that its
adjoint £* satisfies

Ey,z,x) = A'y + Bz

for any (y,z,x) € Y x Z x X.
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Denote
M :=Diag (S + ¢, T + Sy + 0BB*, (10)"'I) + 5,0EE*
‘H := Diag (5 + %Eg,'T—I— %Eh + TUBB*,4'L'T(T20)_1I)
+t.0EE*.

Proposition 1

Let 7 € (0,(1++/5)/2). Then

Yg+S+0AA* ~0& E, +T +0BB* >0

i}
M=0<«—=H 0.



Proposition 2

Let 7 € (0, (1 ++/5)/2) and {(y*, 2*,2*)} be an infinite sequence
generated by the SPADMM. Then for any i = (3, 2,%) € Q and
any k> 1,

e R

- _ (1)
< (lu? = allf, + 2% = 27HIF) = flu = b3,
Consequently, we have for all k > 1,
dist(uFt1, Q) + |51 — K2 @)

< (disthy(uF, Q) + [|2% — 2F71|%) — jubt? — k|3,



For establishing the linear rate of convergence of the sSPADMM, we
need the following error bound condition with respect to @ € 2.

Assumption 2

For some given @ € ), there exist positive constants § and 1 > 0
such that

dist(u, Q) < n||R(w)|, Yue{uel: ||u—al <d}. (3)



Theorem 1

Let 7 € (0,(1 ++/5)/2). Suppose that Assumptions 1 and 2 hold.
Assume Xy +S + 0 AA* =0 & X, + T +oBB* = 0. Then for all
k sufficiently large,

disth (w1, Q) + ||2FFL — 2F||12

< pu [dist3 (uF, Q) + ||2F — 2F71)2]

(4)

where 1 := (14 2k4) " (1 4+ K4) < 1 with

ka 1= min{r, 4t, } (12K Amax (M) T > 0,

K :=max {K1, K2, K3},
K1 := 3”8“7 Ko = maX{3O')\max(~AA*)72HT”}7
k3 1= 3(1 = 7)°0 Amax(AA*) + 2(1 — 7)?0Amax(BB*) + 0.



(cont.) Moreover, there exists a positive number ¢ € [u,1) such
that for all &k > 1,

dist} o (ub 1, Q) + || AT — k)12
< ¢ [disth (ub, Q) + |25 — 5117

(5)
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Corollary 2

Let 7 € (0,(1 ++/5)/2). Suppose that Q # () and that
Yg+S+0AA" =0 & Xy + T + oBB* = 0. Assume that the
mapping R : U — U is piecewise polyhedral. Then there exists a
constant ¢ € (0,1) such that

distd(uFt1, Q) + |51 — K12
<g [distg\,l(uk,ﬁ) + ||2% = 2 2], VE> 1.

If [S > 0and T = 0] or if [one of them is positive definite and the
other is zero], one can use PPA or Ha's partial PPA (1990) to derive
the linear convergence with 7 = 1 though in forms different from
the above.



Application to multi-block conic QP

The convex composite quadratic conic programming

min %(m, Qx) + (¢, x) + ¢(x)

(6)
st. Az =b, xzeK,

where c € X', b e R™, Q : X — X is a self-adjoint positive semi-
definite linear operator, A : X — R™ is a linear operator which is
surjective, K is a closed convex cone in X and ¢ : X' € (—o0, 0] is a
proper closed convex function whose epigraph is convex polyhedral,
i.e., ¢ is a closed proper convex polyhedral function.
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The Lagrange dual of problem (6) takes the form of

max inf {§< o) + <v,w>} T (by) — ¢ (—2)

zeX
st. s+Ay+v+z=¢c seK

which is equivalent to

1
min e« (s) — (b,y) + §(w, Quw) + ¢*(—=z) (7)
st. s+ AW —Quw+z=c¢, weW :=RangeQ.

One may call problem (7) the restricted Wolfe dual to problem (6).
sGS-ADMM: For (7).

Step 0. Input (s%,9%,w% 2% 20) € K x R™ x W x
(—dom ¢*) x X. Let 7 € (0, 00) be a positive parameter
(e.g., 7€ (0,(14++/5)/2)). Set k := 0.
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Step 1. Set
(k41 : E .k . .k
w®T2 = argmin L, (s", y", w, 2"; 2")
1 . 1
Y2 = argmin £, (5%, y, wh T2, 2F; )
) 1 1
skt = argmin L, (s, ¥+ 2, wh T2, 2F; 2F)
. 1
Y = argmin L, (s, y, wht 2, 2k 2k)
wht = argmin £, (s¥11, ¢ w, 2F; k)
A+ = argmin Lo (sF1, yF 1wkt 2 k)
\ phtl = ok 4 To.(sk-i-l 4 A*yk-i-l _ ka-i-l + P c).
Step 2. If a termination criterion is not met, set k := k + 1 and
go to Step 1.
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The global convergence of Algorithm sGS-ADMM is to convert it
into an equivalent sSPADMM scheme (3) with S = 0 but S % 0 and
T =0.

By using the same connection, one can use Theorem 1 to derive the
linear rate convergence of the infinite sequence {(s*, y*, w", ¥, z*)}
generated by Algorithm sGS-ADMM if Assumptions 1 and 2 hold
for problem (7) and 7 € (0,(1 + v/5)/2). Assumption 2 holds
automatically if X is convex polyhedral.
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Error bounds for convex quadratic SDP

For convex quadratic SDP, the error bound condition is valid if the
second order sufficient conditions for both the primal and dual prob-
lems hold (almost best possible), one of 8 equivalent conditions.

For multi-block SDPs, the sGS-ADMM is not only convergent but
also is more efficient than the naive direct extension. This is different
from others.

Essentially, a desirable ADMM for many core multi-block convex
optimization problems has been designed and analyzed (using dual).
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