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Chapter 1

Introduction

The nonlinear complementarity problem (NCP) is formally defined as follows. Given
amapping F : D O R} — R", this problem, denoted NCP(F), is to find a vector z € R
such that

g >0, F(z) >0, 2T F(z) = 0. (1)

There are many generalizations of NCP. For example, the general nonlinear comple-
mentarity, denoted NCP(F,G), is to find z € R" such that

F(z) >0, G(z) >0, F(z)TG(z) =0, (2)

where F,G : R" — R". For a comprehensive review of complementarity problems, see
12].

The complementarity problem NCP(F) is a special case of variational inequality
problem which is defined as follows. Let K be a given subset of #% and F : D D K — R".
This problem, denoted VI(K, F), is to find a vector z € K such that

(y—2)TF(z) >0 VyeK. (3)

Complementarity problems and variational inequality problems arise from a diver-
sity of sources and disciplines, such as mathematical programs, economic equilibrium
oroblems, and engineering applications. For example, consider the standard nonlinear
zrogram (N LP):

min §(z)
s.t. g;(z) <0, i=1,..,p (4)
hi(z) =0, 5=1,..,q
wrere the given functions 6, g;, h; : ®R* — R are all continuously differentiable. The
Lazrangian function for (4) can be defined as

L(z, A, 1) = 8(x) +ZA,.g,.(x) + Zujhj(x). (5)



The well-known Karush-Kukn-Tucker (K-K-T) optimality conditions for the above prob-
lem is [9]:
ViL(z,\,u) =0,

20, g(z) <0, My(z) =0, (6)

h(z) =0.

We shall call (z,A,u) a K-K-T triple of the NLP (4) if it satisfies the above K-K-T
conditions; in this case, the corresponding vector z called a K-K-T point. Let z =
(z,A,u) € R™ x RP x N7 and define

z) (7)
)

and
K={z={(z,\,p) Xi>0,i=1,..,p}.

Then z = (z, A, ) is a solution of system (6) if and only if z is a solution of VIK,F).
So the K-K-T optimality conditions is a special case of variational inequality problems.

The case of a linearly constrained N LP is particularly of interest. This special case
may be expressed as
in 6
min 6(z) (8)
st. z€ K,

where K is a polyhedral set in R". It is well known that a vector z is a K-K-T point if
and only if it is a stationary point, i.e., if and only if z € K and satisfies the so-called
variational principles:

(y—2)TVo(z) >0 VyekK.

This latter problem is precisely the V I(K, V§). For the relations of variational inequality
rroblems with equilibrium problems and engineering applications, see (12]

A general approach for solving the variational inequality V I(X, F) consists of creating
sequence =¥ C X such that each z*! solves the problem VI(K, F¥):
>

w

Fk($k+1)T(y _ xk+1) Z 0 Vv y = K, (9)

#ere F¥(z) is some approximation to F(z). The two basic choices for this approximation
=7« that F*¥ is either a linear or nonlinear function. For the linear approximations:

PHa) = F(%) + A()(z - o), (10)
szere A(z*) is an n x n matrix, several methods exist which differ in the choice of A(z*):

A(z*) = F'(z*) (Newton's method)
~ F'(z*) (Quasi — Newton methods)
= E (Projection method),



where E is a fixed, symmetric, positive definite matrix.

Before giving the convergence of Newton method and quasi-Newton methods, we
must discuss the notion of a regular solution which was introduced by Robinson under
the context of generalized equations.

Definition 1 [20]. Let z* be a solution of the problem VI(K,F). Then z* is called
regular if there exist a neighborhood N of z* and a scalar § > 0 such that for every
vector y with [|y|| < &, there is a unique vector z(y) € N that solves the perturbed
linearized variational inequality problem V I(X, F¥ ), where F¥ : R" — R" is defined by

Fi(z) = F(z") +y+ F'(z")(y ~ 27);

moreover, as a function of the perturbed vector y, the solution z(y) is Lipschitz contin-
uous; i.e., there exists a constant L > 0O such that whenever lly]| < & and ||2]| < 6, one
has

l2(y) = =(2)]| < Llly - z]}.

It is easy to see that when K = R™, the regularity of a solution z* of the VI(K,F)is
equivalent to the nonsingularity of the Jacobian matrix F'(z*). For the details of regular
solution, see Robinson [20].

Theorem 1 [6]. Let K be a nonempty, closed and convex subset of R F:R™ — " be
nce continuously differentiable, and z* be a regular solution of VI(K,F). Then there
exists a neighborhood N of z* such that whenever the initial vector z° is chosen in N,
“ne entire sequence {xk} generated by Newton’s method is well-defined and converges
0 z7. Furthermore if F'(z) is Lipschitz continuous around z* , then the convergence is
cuadratic; 1.e., there exists a constant ¢ > 0 such that for all k sufficiently large,

2548 — || < cf|e* - 2|2,

In 7, Josephy considered such quasi-Newton methods that in the linear approxi-
ation scheme the matrix A(z*) is updated from one iteration to the next by a SImple
S alI rank matrix. These quasi-Newton methods reduce the work to evaluate F'(zF),
out do not ease the computational effort involved in solving the resulting subproblems,
which are nonlinear and nonconvex problems in general.

Definition 2 [10|. The mapping F : R — R" is said to be
(i) monotone over a set K if

[F(z) = F(y)]"(z-y) 20 VYeo,yeK; (11)
(ii) pseudomonotone over K if
F(y)¥(z - y) > 0 implies F)T(z-y)>0 Va,yc K, (12)
(i1i) strongly monotone over K if there exists an o > 0 such that

[Fz) - F(y)]"(z-y) > alle—y|)? Vaz,yckK.



In Pang and Chan [13], the convergence of the Projection method is presented.

Theorem 2 [13]. Let K be a nonempty, closed and convex subset of R" and let F :
R™ — R™ be given. Suppose that F is Lipschitz continuous and strongly monotone with
positive constants 8 and 7y respectively; i.e., for all vectors ¢,y € K,

IF(2) = F(y)ll < Blle — ],

[F(2) = F(y)]" (= — y) > 1llz - ]|

Let E' be a symmetric positive definite matrix with smallest and largest eigenvalues given
by k71, p respectively. If k?24% < 2v/7, then for any initial vector z° the sequence {z*
generated by the Projection algorithm with the matrix E will converge to the unique
solution of the VI(K, F).

Consider the VI(K, F) with a closed convex set K and a continuous mapping F.
Denote Ik (2) be the projection of a vector z € R onto the set X under the Euclidean
norm, then we can easily show that a vector z € R solves the VI(K,F) if and only if z
1s a zero of the following projection equations

H(z) =z -1Ilg[z — F(2)] = 0. (13)

With a change of variable, we can show that if z solves VI(K,F), then y := z — F(z)is
a zero of the following equations

H(y) := F(IIg(y)) +y - Tk (y) = 0; (14)

conversely, if y is a zero of H, then z := Ik (y) is a solution of V I(K, F). Letting F and
G be continuously mappings, then we can show that z is solution of NCP(F,G) if and
saly if z is a zero of the following mapping

H(z) := min(F(z),G(z)) = 0, (15)
where “min” denotes the componentwise minimum operator of two vectors in R".

In general, the mappings H, I;T, and H are not Frechét differentiable even if F and
5 are continuously differentiable. In a recent paper [22], Robinson cointed the term
‘normal maps” for H. Since the advent of the path-breaking work of Pang [11], there
nave appeared a large number of literatures on solving nonsmooth equations and related
croblems, such as LC' optimization problem. An LC! optimization problem is such
“ptimization problem that the objective function and constrained functions are not C?
Zinctions but LC! functions, Le., they are once continuously differentiable and their
derivatives are locally Lipschitzian but not necessarily F-differentiable. For example,
“he extended linear-quadratic program, which arise from stochastic programming and
“ptimal control (23], is such a problem in the fully quadratic case. The augmented
Lagrangian of a C? nonlinear program is also a LC! function [19].

Definition 3 [21]. A function H : ®* — R" is said to be B-differentiable at a point z
-~ there exists a function BH(z) : ®* — R", called the B-derivative of H at z, which is



positively homogeneous of degree 1 (i.e., BH(z)(tv) = tBH(z)v for all v € R" and all

t > 0), such that
lim H(z+v) - H(z) - BH(z)v _o. (16)
v=0 llvl]
If H is B-differentiable at all points in a set S, then H is said to be B-differentiable in
S. It was proved by Shapiro [24] that if H : R* — R" is locally Lipschitzian at a vector
z, then H is B-differentiable at z if and only if H is directionally differentiable at z; i.e.,

for any h € R

z+th) — H(z)
; .

Basing on the B-derivative, Pang (11] gave the following modified Newton method for
solving

H'(2;h) = lim A (17)

H(z)=0. (18)

Newton’s method with line search. Let z° be an arbitrary vector. Let s, # and o be
given scalars with s > 0, 8 € (0,1) and o € (0, 1/2). In general, given 2* with H(zF) # 0,
solve the generalized Newton equations

H(z*)+ BH(z*)d =0 (19)

for a direction d*. Let oy = f™* s where my 1s the first nonnegative integer m for which
9(2%) = g(F + Bsd*) > —of™sq!(2%; d*), (20)

where ,

o(2) = S H(TH(2) (21)
and

g'(2;d) = H(z)T BH(z)d.

Set z8=1 = k4 apdF.

Some limited global convergence for Newton’s method with line search is obtained
= Pang [11]. Since (19) is a nonlinear problem, it is difficult to solve. In order to ease
‘e difficulty of computing (19), Pang and Gabriel [14] proposed an NE/SQP method
Iz solving nonlinear complementarity problem. NE/SQP stands for Nonsmooth Equa-
-2 Sequential Quadratic Programming. Pang and Gabriel’s method needs to solve a
:nvex quadratic problem to get the direction d*¥. Global convergence is discussed and
.zcally quadratic convergence is obtained in (14]. See Pang and Qi [15] for such method’s
=xtensions. For variational inequality problem VI(K,F), when F € C!, Fukushima (3]
zave a differentiable merit function

1 1
Y(z) = 5F(2)" Fa) - ollz = F(z) - g [z — F(a)]||*. (22)
2asing on this differentiable merit function, when F is strongly monotone , Taji, Fukushima,
=22 Ibaraki [26] gave a globally convergent Newton method, which in the k-th step needs

olve a linear variational inequality problem V I(F*(z), K), where

F¥(g) = F(z*) + F'(z*)(z - z*).



The quadratic convergence is established under the generalized strict complementarity
condition, which is somewhat restrictive.

Suppose that H : R” — R" is locally Lipschitzian. H is said to be semismooth at
z € R if the following limit exists for any h € R
i Vh'}. 23
Veall-llgl-{-th’){ } ( )
rf—h t]o

If H is semismooth at z, then H is directionally differentiable at z and H'(z;h) is
equal to the limit in (23). For the semismoothness, see [19]. Basing on the concept of

the semismoothness, Qi and Sun [19] gave the following generalized Newton method

gftl = 2k Vo H(2), (24)

where Vi, € 0 H(z*).

Suppose that z* is a zero of (18), then under the conditions of semismoothness of &
at * and the nonsingularity assumption of V € d H(z*), Qi and Sun [19] established the
superlinear convergence of the iterative form (24). In order to reduce the nonsingularity
assumption of 0 H(z), dpH(z) was introduced in [17, 15].

05H (@) = { Jim F'()}, (25)

2t —zx

where Dy is the set where H is differentiable. Then
dH(x) = co dpH(z), (26)

where co S is the convex hull of a set S. So in the generalized Newton method we
can restrict Vi € dpH(z*) [17, 15]. When H is of the special form (15), Qi [17] gave
a method how to choose an element of g H(z). But for (13) and (14), there exist no
results on how to compute dp H(z) even if K is just a polyhedral set. In a certain sense,
various generalized Newton methods for solving nonsmooth equations are satisfactory.
But for quasi-Newton methods, there exist few satisfactory results. Ip and Kyparisis
5 considered quasi-Newton methods directly applied to nonsmooth equations. The
suiperlinear convergence is established on the assumption that H is strongly differentiable
10 at the solution point. This is restrictive. Chen and Qi’s results [1] for quasi-Newton
ethods are not too far away from this. Kojima and Shindo [8] considered quasi-Newton
methods for piecewise smooth functions. When the iterative sequence moves to a new C*
ciece, a new starting approximation matrix is needed. Thus a potentially large number
-7 starting matrices need to be computed and stored. Qi and Jiang [18] considered quasi-
Newton methods for solving various K-K-T systems of NLP. This is a special case of
3) or (15).

The rest of this dissertation is organized as follows. In Chapter 2, we give a globally
“invergent iterative method for solving (13) when F is pseudomonotone and continuous,
-~ Chapter 3, we give a Newton method and a quasi-Newton method for solving (13)
“.2n K being a box constraint set, and (15). The superlinear convergence property is

10



established under very mild conditions. In particular, our methods need to solve a linear
equations in each step. Moreover, for quasi-Newton method we discuss how to update
the QR factorization of the present iterative matrix to the QR factorization of the next.
In Chapter 4, we prove the superlinear convergence of the approximate Newton methods
for solving LC! optimization problem without assuming the strict complementarity. In
Chapter 5, we give a Newton method and a quasi-Newton method for solving (14) with
K being a polyhedral set. The new resulting methods in each step need to solve a
linear equations whereas the corresponding algorithms in the literatures need to solve a
variational inequality problem defined on K. Also the computational cost is discussed
for quasi-Newton method. In Chapter 6, by combining the result of Chapter 2 and the
extensions of the results of Chapter 5, we give a globally and superlinearly convergent
safeguarded Newton method for solving (13) when K is a polyhedral set and F is locally
Lipschitzian, semismooth over ®" and pseudomonotone over K.
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Chapter 2

A Class of Iterative Methods for Solving Nonlinear
Projection Equations

Abstract

A class of globally convergent iterative methods for solving nonlinear projection equa-
tions are provided under the continuity condition of the mapping F. When F is pseu-
domonotone, a necessary and sufficient condition on the nonemptyness of the solution
set is obtained.
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Chapter 2
A Class of Iterative Methods for Solving Nonlinear
Projection Equations

1. Introduction

Assume that the mapping F': X C R™ — R" is continuous and X is a closed convex
subset of R", we will consider the solution of the following projection equations:

- Ix[z - F(z)] =0, (1)

where for any y € R",
Mx(y) = argmin{z € X| ||z - 4|} (2)
Here || - || denotes the lz-norm of R™ or its induced matrix norm. The complementarity

problem, variational inequality problem, and the Karush-Kuhn-Tucker systems of the
nonlinear programming problems can all be cast as a special case of (1); see Eaves (Ref.
3) for a proof. For any 8 > 0, define

Ex(z,8) = = — Iix[z - BF(z)]. (3)

Without causing any confusion, we will use E(z, 8) to represent Ex(z,3). It is easy to
see that z is a solution of (1) if and only if E(z,8) = 0 for some or any 8 > 0. Denote

X" ={z € X| z is a solution of (1)}. (4)

Definition 1.1. The mapping F : R™ — R" is said to
(i) be monotone over a set D if

[F(z) — F(y)]T(z —y) >0, forall z, y € D; (5)
(ii) be pseudomonotone over a set D relative to a set Y (C D) if

F(y)T(z — y) > 0 implies F(z)T(c—y) >0, forallz € D, ye Y. (6)

Remark 1.1. When Y = D, the pseudomonotonicity of F over a set D relative
22 Y is the usual pseudomonotonicity, and in this case we will say directly that F is
cseudomonotone over D.

For solving projection equations (1) and related problems, there is a long history

.. mathematical programming field; see the comprehensive articles by Pang and Chan

Ref. 24), Harker and Pang (Ref. 7), and Pang and Qi (Ref. 26) for a detail. Among the

algorithms on solving (1), Newton’s method is the basic method when the derivative of F

=xists and is easy to implement. In this chapter, we will investigate a globally convergent
~ethod for solving (1) only with assuming the continuity of the mapping F.
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When F is monotone and Lipschitzian continuous over X (i.e., there exists a positive
number L such that ||F(z) — F(y)|| < L|lz — y||, for all z, y € X), Korpelevich (Ref.
19) proposed the following extragradient (EG) method:

Tk = lx[z* — BF ()],

=51l = Mx[z* - BF(2¥)],
where 8 € (0, 1/L) is a constant. By introducing an inexact line search, Sun (Ref. 28)
proposed the following improved extragradient (IEG) method:

Given constants n € (0, 1), a € (0, 1), and s € (0, +00). The iterative form is as
follows

z* = Mx[2* — B F(z*)],
xk+1 — Hx[zk _ ﬂkF(:T:k)],

where B; = sa™* and my is the smallest nonnegative integer m such that
Tx[z* — sa™F(2*)] ~ ¥

sa™

1P (Mx[z* — sa™F (2*)]) — F(z*)|| <

holds. The improved algorithm needs not the Lipschitzian constant. For algorithms with
strong monotonicity and Lipschitzian continuity assumptions, see Fukushima (Ref. 4)
and Pang and Chan (Ref. 24).

When F' is an affine map, ie., F(z) = Mz + ¢, where M € R™™™ and ¢ € R",
He (Refs. 9, 11-12) and He and Stoer (Ref. 10) proposed a projection and contraction
(PC) method for solving (1). The numerical results show that PC method behaves much
better than EG method or IEG method in linear cases (ie., F(z) = Mz + ¢). This
stimulates us to investigate such algorithms that not only can compete with the PC
method in the linear cases but also behave much better than EG method or IEG method
in the nonlinear cases. By introducing some parameters, Sun (Ref. 29) made a first step
towards this. In this chapter, we will propose a class of iterative methods for solving (1)
without choosing these parameters. When F(z) = Mz + ¢ and M is a skew-symmetric
matrix (i.e., MT = —M), our algorithms are also discussed by He (Refs. 12-13).

In section 2, we will give some preliminaries. In section 3, we give a class of ab-
stract search directions and the corresponding algorithms. In section 4, we discuss two
72rms of search directions which satisfy the requirements. In section 5, we establish a
~ecessary and sufficient condition on the nonemptyness of the solution set when F is
cseudomonotone. Numerical results are presented in section 6. In section 7, we give
s2me discussions.

2. Basic Preliminaries

Throughout this chapter, we will assume that X is a nonempty convex subset of R"
z==d F is continuous over X.

Lemma 2.1 [Moré (Ref. 22)]. If F is continuous over a nonempty compact convex
== *". then there exists y* € Y such that

F(y)T(y-y) >0, forallyey.
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Lemma 2.2 [Zarantonello (Ref. 32)]. For the projection operator Ilx(-), we have
(i) when y € X, [z — Mx(2)]T]y — Ix(2)] <0, for all z € R™;
(ii) [|Tx(2) — Mx(y)|| < Iz — y||, for all y, z € R™.

Lemma 2.3 [Gafni and Bertsekas (Ref. 5) and Calamai and Moré (Ref.
2)]. Given z € R"™ and d € R", then the function # defined by

8(8) = |Mx(z + Bd) — =||/B, B>0

is antitone (nonincreasing).

Choose an arbitrary constant n € (0, 1) (e.g., 7 = 1/2). When = € X, define

L C) R
nur={”“““1 IBG R e >0 ™
1, otherwise
e 1Bz, )
s(z) = (1 —n(=)] t(;:) , iftz)>0 , (8)
1, otherwise

where t(z) = {F(z) — F(Iix[z — F(z)])}T E(z,1). It is easy to see that 0 < s(z) < 1.

Theorem 2.1. Suppose that F is continuous over X and n € (0, 1) is a constant. If
S = X\X* is a compact set, then there exists a positive constant § (< 1) such that for
2.1z € S with s(z) < 1 and 8 € (0, 8], we have

{F(z) - F(lix[z — BF()))}" E(=,6) < [1 - n()]|| E(z, B)II*/B. (9)
Proof. Note that for any =z € X\ X* with s(z) < 1, we have

t(z)
t(Z) >0 and ?7(9:) >1- m,
wrich. and the definition of n(z), means that n(z) = 7.

Since S C X\X* is a compact set and F is continuous over X, there exists a constant
> 0 such that for all £ € S, we have

llnx[:l: - F(:E)] - :EH > 6y > 0. (10)
--m Lemma 2.3 and (10), for all # € (0, 1] and = € S we have
&~ Tixlz - BE)I/B > lle — Tixlz ~ F@)| > & (1)

Z::m the continuity of F we know that F is uniformly continuous over compact sets. So
‘- . /i) of Lemma 2.2 we know that there exists a positive constant § (< 1) such for all
= 5 with s(z) < 1 and 8 € (0, 6] that

|1F(Ix [z — BF()]) = F(2)] < (1—=n)bo. (12)
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Combining (11) and (12), for all z € S and 8 € (0, §] we have

{F(z) - F(lix[z - BF(2)])}" E(=, B)
<||F(z) - F(Ilx[z = BF (z)])l]|| E(=, B
< (1-n)lE(=z,8)|*/8
= [1 = n(2)lll E(=, B)II*/8,

which completes the proof of (9). a

3. Algorithms and Convergence

Suppose that g : R™ X Ri+ — R™ is a continuous mapping. We will use g(z,8) as a
search direction in this section. The various forms of g(z,3) will be given in section 4.
First we will describe our algorithms (in the abstract form of g(z, 3)).

Projection and Contraction (PC) Methods

Given z° € X, positive constants n, « € (0, 1), and 0 < A; < Ay < 2.

For k = 0,1, ..., if z¥ ¢ X*, then do

1. Calculate n(z*) and s(z*). If s(z¥) = 1, let By = 1; otherwise determine f; =
s(rk)amk, where my, is the smallest nonnegative integer m such that

{F(z*) - F(Ix[z* - s(z*)a™ F(2*)])}T E(, 5(z*)a™)

< [1 = (@) E(z*, s(z*)a™) |/ (s(z*)a™) (13)
~olds.
2. Calculate g(z*, 8x).
3. Calculate
pe = E(<*, 8c) (<, 8k) /lla(=*, B |I*. (14)

4. Take v, € [A1, Ay} and set

ik - zk - ’7kpkg(xk:ﬂk)> (15)

cFH = Ty (25). (16)

Remark 3.1. Theorem 2.1 ensures that 8; can be obtained in finite number of trials
“: :%) < 1. When s(z*) = 1, (13) holds for m = 0.

-:r 3> 0, define
¥(z,8) = n(2)|| E(z, )|/ 8. (17)

Theorem 3.1. Suppose that F, g are continuous over X, X x R} | respectively. If

3

= . and there exists * € X* such that the infinite sequence {z*} generated by PC
— 2o Zs satisfies

(«F —2")Tg(z", Br) = E(<*, 8:)T 9(*, Bi) > ¥(a*, i), (18)

=2t <z =P - (2 - )9 (e, Br)/llo(<F, Be)I) (19)
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Proof. From (ii) of Lemma 2.2 and (18), we have
e+t — 2¥||? = [[Tx[e* — ykprg(z¥, Br)] — =*|I?
< flz* — veorg(=*, ) — 7|
= ||zF — 27||* — 2yepr(z® — )T g (=, Bi) + 1Eplla(=*, Be) |
< lz* — &*|* — 2ykpe B(<*, B) g (<*, Bi) + viokllo (<, Br)|)®
= [[&* = 2[|” = (2 — W) [E(=*, B) Tg (¥, Be)I*/llg (=¥, Be) |2

< [l% = 2*|1* — (2 — ) ¥*(=*, Be) /lla (=*, Be) I,
which verifies (19).

Define
dist(z, X*) = inf{||z - z"||| =" € X"}. (20)

Theorem 3.2. Suppose that the conditions of Theorem 3.1 hold. Then the infinite
sequence {z*} generated by PC methods is bounded and li&ior.}f dist(z*, X*) = 0. Fur-
thermore, if (18) holds for any z* € X*, then there exists Z € X* such that =¥ — z as
£ — 00.

Proof. For the sake of simplicity, we take v = 1.

From (19) we know that {||z¥ — z*||} is a decreasing sequence. So the sequence {z*}
zenerated by PC methods is bounded and the sequence {dist(z*, X*)} is also bounded.
Zuppose that there exists a positive constant € such that

dist(z*, X*) > e > 0, for all k.

Zefine
S = {z € X| dist(z, X*) > ¢, ||z — 2*|| < ||z® - =*||}.

Tren S C X\ X~ is a compact set and {z*} C S. From Theorem 2.1 we know that there
x:sts a positive constant § (< 1) such for all z € S with s(z) < 1 and g € (0, §] that
> holds. Hence for each k with s(z*) < 1, we have

B > min{aé,s(z*)}. (21)
From the definition of s(z*), we know that if s(z*) < 1, then
{F(z*) - F(Tix[z* - F(z"))} E(=*,1) > 0, n(") =,

[£(=*, 1) ||

s = (= ) G et - PP ERE 1)

B, 1)]]
P () + || £ (Tx[z* — Pzl

> (1-n)
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From the continuity of F and {z*¥} ¢ S ¢ X\X*, we know that

inf || E(a*, 1) > 0.

From (21-23), there exists a positive constant § (< 1) such that
Br > 6> 0.
If s(z*) = 1, then Bx = 1. Hence
1>8>6>0, forall k.

Therefore,

inf y(z*, B¢)/llg (=", Bi) | = €0 > 0,
which, and (19) (note that we just take v = 1), means that

a1 — 27| < ok — 27|12 = eo?.

(24)

Taking limits in both sides of the above inequality, we can derive a contradiction since

{ z* — z*||} is a convergent sequence. So we have

lim inf dist(z¥, X*) = 0.
k—o0

(25)

Furthermore, if (18) holds for all z* € X*. We can conclude that there exists z € X~
such that ¥ — Z as k — oo. In fact, since X* is closed, (25) and the boundedness of
- r*} mean that there exist Z € X* and a subsequence {z*i } such that 2%/ — z as j — co.
Since {||z* — ||} is a decreasing sequence and z¥i — Z as j — oo, the whole sequence

~1z*} also converges to Z.

When X is of the following form

X ={ze€ R"|l <z < u},

|

(26)

wnere [ and u are two vectors of { R U {oo}}", we can give an improved form of the PC

~sthods. For any z € X and 8 > 0, denote

N(z,8) = {i| (z: = li and (g(z, 8)); 2 0) or (= = w; and (9(=, §)): <0},

B(z,B) ={1,..,n}\N(z, B).
Z:note gy(z, B8) and gg(z,B) as follows

0 if i € B(z, )

(gn(z,8))i = { (;(m’ﬂ))i, otherwise

(98(z,8))i = (9(=,8))i — (gn(2,8))i, 1=1,...

Trenfor any ¥ € X* and ¢ € X,

(z—2")"9p(z,0) = (z ~ ) g(x, ).
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So if in the PC methods we set

2" = Tx[z* — veprgn(2®, i), (30)

where
ok = E(z*, B)" 9(=*, Be) /llg (<, Bi)I,

then the convergence Theorems 3.1-3.2 hold for the improved PC methods. In practice,
we will use the iterative form (30) whenever X is of the form (26).

4. The Search Directions

In this section, under some conditions, we will give two forms of search directions
which satisfy the assumptions of Theorems 3.1-3.2.

For any 8 > 0, define
g(e,B) = F(lix[z - BF(z)]) (31)

9(z,8) = F(lix[z — BF(z)]) - F(z) + E(z, B)/B. (32)

Theorem 4.1. Suppose that F is continuous over X, X* is nonempty, and 9(z,08) is

-7 the form (31) or (32). If F is pseudomonotone over X relative to z* € X* and there
=x:5ts 8 > 0 such that (9) holds for some z € X\ X*, then

(z—2)7g(z,8) > E(z,8) g(z, 8) > ¥(z, B). (33)

T .rinermore, if F is pseudomonontone over X relative to X*, then (33) holds for all
=X
Proof. Since F is pseudomonotone over X relative to z* € X*, for all z € X we have

(z—z*)TF(z) > 0.
"~ zzruicular, we have
{Tix[z - BF(z)] - 2} F(Ix|z - BF(2))) > 0. (34)
7 .rs7 we consider the case that g(z, 8) takes the form (31). Considering (34), we have
2 —2)Tg(2,8) = (¢ — =*)T F(Iix[z — BF(2)))

= E(z,8)7g(z,8) + {lix[z — BF(z)] - ="}T F(Tx[z — BF(z)))

> E(z,8)Tg(z, 8)

= E(z,0)"{F(Iix[z ~ fF(z)]) ~ F(2)} + E(=, )T F(z)

2 =1 =n(a)]ll E(z, B)II*/B + E(z, )" F(x),
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where the last inequality follows from (9). By taking z = z — §F(z) and y = z in (i) of
Lemma 2.2, we have

BE(z,8) F(z) 2 ||E(z,A)|",

which, and the above formulas, means that
(z-2)"g9(z,8) > E(z,8)"9(z, )
> —[1 = n()]|| B, B)|I*/8 + || E(=, B)II*/ B
= n(z)|E(=, B)I*/8
= ¥(z,6).

Next we will consider the case that g(z,8) takes the form (32). By taking z =
r— BF(z) and y = z* in (i) of Lemma 2.2, we have

(" - lx[z - BF(@)))"{z - BF(z) - TIx[z - BF(x)]} <.
By rearrangement,
(2 - ") Bz, f) > A{llx|z - BF(2)] - =} F(2) + | E(z, )%
Therefore,
(z - =")Tg(z, B)
= (z ~ =) P(lxlz ~ AF()]) ~ (= ~ =")TF(z) + (= — =*)7 B(s, 8)/8
> (2 — ") F(Iix[z - BF(2)]) - (z — =*)TF(z)
+{lix[s ~ BF(2)] — = YT F(2) + || E(=, B)|12/8
> B(e, /)7 F(lixlz - BF(2)]) - Bz, BT F(z) + Bz, O)}/8 (using (34))

= E(z,8)"g(z, B).

~_z<-:tuting (9) into the above formulas, we have
(¢ —2)g(z, 8) > E(z,8)"g(=,B)
= E(z,8)"{F(Ilx|z ~ fF(z)]) - F(z)} + [|E(z, B)II*/8
> ~[1 = n(z)]||E(z,B)I1*/B + ||E(z, B)I*/8
= n(z)|E(z, B)|*/8
= ¥(z,f).
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Remark 4.1. Assume that F(z) = Mz + ¢ and M is skew-symmetric (i.e., MT =
—M). If g(z, 8) takes the form (31), then

Bk =1 and g(z,B) = MTE(:z:k, 1) + (Mz* + ¢),

which means that for linear programming (translated into an equivalent linear comple-
mentarity problem), our method reduced to the same discussed by He (Ref. 11). If
9(z, B) takes the form (32), then

Be=1 and g(z*,fr) = MTE(z*,1) + E(<*, 1),

which was also appeared in He (Ref. 13).

5. A Theorem on the Existence of the Solution(s)

When F is continuous and pseudomonotone over X, there exist some results on the
existence of the solution(s) of equations (1); see Harker and Pang (Ref. 7). Here we will
give a necessary and sufficient condition on the existence of the solution(s).

Theorem 5.1. Suppose that g(z, 3) takes form (31) or (32). If F is continuous and
pseudomonotone over X, then X* # @ if and only if some or any sequence {z¥} generated

by PC methods is bounded.
Proof. We just discuss the case that g(z, p) takes the form (31). The proof on taking
the form (32) is similar.

When X* # 0, then from Theorems 3.2 and 4.1, any sequence {z*} generated by PC
methods is bounded.

For the converse part of the theorem, we suppose that there exists a bounded sequence
{z*} generated by the PC methods. From the boundedness of {z*} and the continuity
of F, there exists a positive constant r such that

=¥l <r, |FE®))<r, forall k.
From (ii) of Lemma 2.2, for all k and g € [0, 1] we have
IMx[z* — BF(z*)]) < 2r.
~noosing an arbitrary fixed vector v € X, define
Y ={zc R [ < 2r+ o]} n X,
“2en ¥ 1s a nonempty compact convex set, and for all k and 8 € [0, 1] we have
=¥, Mx[e* - gF(z*)] e V.

Z:rce from the definition of Y and the properties of the projection operators IIx(-) and

..+ +}. for all k we have

My[z* — BF(z*)] = Tx[z* - BF(c*)), for all B o, 1] (35)
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and
2P = Tx [z — yeprg(2*, Be)] = My [z* — ~eprg(c®, Br)]. (36)

For any z € Y and 8 > 0, define

Ai(z) = { max{n, 1 ng—z(—)w} if t((z) >0 ’
1, otherwise
2
5(2;) _ [1 — 7)( )]HEY(( ) )” , £ t_(x) >0 |
1, otherwise

and
(2, 8) = (=) || By (=, B)|I*/8,
where t(z) = {F(z) —_F(l'[y_[:r: — F(2)))}T Ev (,1). For each k, if 5(z*) = 1, let B} = 1;

otherwise determine B, = 5(z¥)a™*, where m, is the smallest nonnegative integer m
such that

{F(z*) - F(Tly [z* - 5(z*)a™F («*)])} By (¥, 5(z*)a™)

< 1 - 7(*)I|By (2*, 5(*)o™) |12/ (5(*)a™).

From (35) we know that

7(z*) = n(*), 5(c*) = (<), (37)
and for all B € [0, 1],
Ey(<*,B) = Ex(<*,8). (38)
~rzrefore, for all k we have
B = Br. (39)

Define
4(z,8) = F(Ily [z — BF(z)])

pr = By (2*, 8:) a(<*, Br) /13 (=*, Be) >
T-.- fom (35) and (37)-(39), we have
g(z*, Bi) = 9(=*, 8¢) and pi = py. (40)
<=2 “:-m (36) and (40), we have

B = Tx[e® - veorg(z*, Be)]

T

= Iy [2* — veorg(=F, Br))

= Hy{l‘k - 7kﬁk§(zka5k”’

23



which means that {z*} can be regarded as such a sequence that generated by applying
the PC methods to solve

Ey(z,1) =0. (41)

ince Y is a nonempty compact convex subset of R", from Lemma 2.1 and Eaves (Ref.
) we know that the solution set

o N

Y* = {y €Y]| yis a solution of (41)}
is nonempty. According to Theorems 3.2 and 4.1, there exists z* € Y* such that

5 z* ask — oo.

Since 2" € Y and v € Y, from Eaves (Ref. 3) we know that

F(z*)T(v—2*) > 0.
Since v is an arbitrary fixed point of X and z* is the limit point of {z*}, we have
F(z*)T(z—2') >0, forallze X,
~zich, again from Eaves (Ref. 3), means that Ex(z*, 1) =0, i.e., X* is nonempty and
=X

O

Remark 5.1. When X is of the form (26), Theorem 5.1 also holds for the improved
-~ methods. The proof is similar and the detail is omitted.

Remark 5.2. The skill introduced here can be used to give a positive answer to an
-Zen problem proposed by He and Stoer (Ref. 10); also see Sun (Ref. 30) for a proof on

.7..3 open problem.

6. Numerical Experiments

[ the following examples, we will take n = o = 0.5, and A; = Ay = 1.95 (the
s.z.rithms behave better when +; approaches 2.0) and use p(z,1) = F(z)TE(z,1) < ¢?
= te that p(z,1) > ||[E(z,1)|f* for all z € X) as a stop criteria, where ¢ is a small
~:nrezative number. The projection and contraction method for solving nonlinear pro-
.¥77..% equations with taking forms (31) and (32) will be abbreviated as “NPC1” and
"2 FU27 respectively. The projection and contraction method for solving linear projec-

=zuations by He (Ref. 11) will be abbreviated as “LPC”. In the above algorithms,
== ... use the improved search direction gg(z, 3) instead of 9(z,8)

7 ks

Example 1. This example is a 4-dimensional nonlinear complementarity problem,
--::22 by Kojima and Shindo (Ref. 18), where X = R? and
3:7:% + 2z 29 + 2x§ +z3+32z4—6
P(z) = 222 + zy + 2% + 1023 + 224 — 2
3:1:% + z129 + 2:1:% + 223+ 924 — 9
z? + 322 + 223 + 374 — 3
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We take €2 = 10716,

Tabular 1
Results for example 1 with starting point (0,0,0,0)

Algorithms | Number of Number of
iterations | inner iterations
NPC1 54 2

L NPC2 58 2

Example 2. This example, discussed by Ahn (Ref. 1), is of the form F(z) = Dz +c,
where ¢ is an n-vector and D is an n X n nonsymmetric matrix

4 -2
1 4 -2
1 4 -2
D=
-2
1 4

X = I, u], where I = (0,0,..,0)T and u = (1,1, ..., 1)T. We take €2 = n10~!* where n
is the dimension of the problem.

Tabular 2
Results for example 2 with starting point (0,0,...,0).
Algorithms Number of iterations (left) and number of inner iterations (right)
n=10 n=50 n=100 n=200 n=500
LPC 39 39 39 39 39
NPC1 19 13 16 6 15 5 17 9 16 11
NPC2 16 8 17 11 14 4 14 4 13

Example 3. This example is a linear complementarity problem for which Lemke’s
:.zorithm is known to run in exponential time (see Murty (Ref. 23, chapter 6)). This
zroblem is also discussed by Harker and Pang (Ref. 6) and Harker and Xiao (Ref. 8).
T-e mapping F(z) = Dz + ¢, where

1 2 2 2
01 2 2
0 01 2
D =
000 - . .1
2n2:=(=1,-1,..,-1)T. We take e? = n10~!* where n is the dimension of the problem.
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Tabular 3
Results for example 3 with starting point (0,0,...,0)

Algorithms Number of iterations (left) and number of inner iterations (right)
n=10 n=>50 n=100 n=200 n=500
LPC 10 5 11 7 12
NPC1 11 3 17 3 19 8 24 8 34 10
NPC2 11 3 17 4 19 5 25 8 31 5

Example 4. This problem is discussed by Sun (Ref. 29). Consider F(z) =
Fi(z) + Fy(z), = = (21,...,2,)7, 2o = Zni1 = 0, Fi(z) = (fi(z),..., fn(2))T and
Fy(z) = Dz + ¢, where f;(z) = g? 2l + 3z + ZiTiy1, + = 1,...,n, and D and
¢ are the same to those of example 2. We take X = ([, u] and € = n10714, where
1=(0,0,..,007, u=(1,1,.., 1)T, and n is the dimension of the problem.

Tabular 4
Results for example 4 with starting point (0,0,...,0)
Algorithms Number of iterations (left) and number of inner iterations (right)
n=10 n=50 n=100 n=200 n=500
NPC1 9 0 9 0 9 0 9 0 10 2
NPC2 9 0 9 0 9 0 10 0 10 0

7. Some Discussions

In this chapter, a class of globally convergent algorithms for solving nonlinear projec-
tion equations (1) are provided. Here the convergence rate of the given methods is not
discussed, since we think that the best convergence rate is @-linear. The basic reason
for this is that the derivative of ¥ is not assumed. However, the methods given here can
converge to the neighborhood of the solution set very fast. In practice, a suitable choice
is that when the iterative point is far away from the solution set, the PC methods can
be used to make the iterative sequence to reach the neighborhood of the solution set;
and when the iterative sequence approaches the solution set close enough, more rapid
locally convergent methods, such as Newton and quasi-Newton methods, can be used.
For Newton and quasi-Newton methods for solving equations (1), See Josephy (Refs.
14-15), Pang (Ref. 25), Qi and Sun (Ref. 27), Pang and Qi (Ref. 26), and Sun and Han
(Ref. 31). '

In section 4, two forms of search directions are given to satisfy the requirements. In
fact, more search directions can be given. For example, the convex combination of the
forms (31) and (32) is also a suitable choice. For various forms of search directions for
solving linear projection equations, see He (Refs. 9, 11-13) and He and Stoer (Ref. 10).

When F is Lipschitzian continuous over X, we can prove that the steplength is
bounded away from zero if g(z, ) takes the form (32). This result doesn’t hold for
the form (31). But from the computational experience, there is no difference between
choosing (31) and (32).

26



10

11

14

[
(W]

References

Ahn, Byong-hun, Iterative Methods for Linear Complementarity Problem with Up-
perbounds and Lowerbounds, Mathematical Programming, Vol. 26, pp. 295-315,
1983.

Calamai, P. H., and Mor¢, J. J., Projected Gradient Method for Linearly Constrained
Problems, Mathematical Programming, Vol. 39, pp. 93-116, 1987.

Eaves, B. C., On the Basic Theorem of Complementarity, Mathematical Program-
ming, Vol. 1, pp. 68-75, 1971.

Fukushima, M., Equivalent Differentiable Optimization Problems and Descent Meth-
ods for Asymmetric Variational Inequality Problems, Mathematical Programming,
Vol. 53, pp. 99-110, 1992.

Gafni, E. H., and Bertsekas, D. P., Two-Metric Projection Methods for Constrained
Optimization, SIAM Journal on Control and Optimization, Vol. 22, pp. 936-964,
1984.

Harker, P. T., and Pang, J. -S., A Damped-Newton Method for Linear Complemen-
tarity Problem, in G. Allgower and K. Georg, eds., Computational Solutions of Non-
linear Systems of Equations, Lectures in Applied Mathematics, Vol. 26 (American
Mathematical Society, Province, RI, 1990), pp. 265-284.

Harker, P. T., and Pang, J. -S., Finite-Dimensional Variational Inequality and Non-
Iinear Complementarity Problems: A Survey of Theory, Algorithms and Applications,
Mathematical Programming, Vol. 48, pp. 161-220, 1990.

Harker, P. T., and Xiao, B., Newton’s Method for the Nonlinear Complementarity
Problem: A B-Differentiable Equation Approach, Mathematical Programming, Vol.
48, pp. 339-357, 1990.

He, B., A Saddle Point Algorithm for Linear Programming, Shu Xue Banian Kan,
Vol. 6, pp. 42-48, 1989.

He, B., and Stoer, J., Solutions of Projection Problems over Polytopes, Numerische
Mathematik, Vol. 61, pp. 73-90, 1992.

He, B., A Projection and Contraction Method for a Class of Linear Complementarity
Problems and Its Application in Convex Quadratic Programming, Applied Mathe-
matics and Optimization, Vol. 25, pp. 247-262, 1992.

He, B., On a Class of Iterative Projection and Contraction Methods for Linear Pro-
gramming, Journal of Optimization Theory and Applications, Vol. 78, pp. 247-266,
1993.

He, B., Solving a Class of Linear Projection Equations, to Appear in Mathematical
Programming.

Josephy, N. H., Newton’s Method for Generalized Equations, Technical Summary
Report No. 1965, Mathematical Research Center, Univerty of Wisconsin-Madison,
1979.

Josephy, N. H., Quasi-Newton Methods for Generalized Equations, Technical Sum-
mary Report No. 1966, Mathematical Research Center, University of Wisconsin-
Madison, 1979.

Karamardian, S., Generalized Complementarity Problems, Journal of Optimization
Theory and Applications, Vol. 8, pp. 747-756, 1971.

27



17

18

19

20

21

22

23

24

25

26

Karamardian, S., and Schaible, S., Seven Kinds of Monotone Maps, Journal of Opti-
mization Theory and Applications, Vol. 66, pp. 37-46, 1990.

Kojima, M., and Shindo, S., Extensions of Newton and Quasi-Newton Methods to
Systems of PC' Equations, Journal of Operations Research Society of Japan, Vol.
29, pp. 352-374, 1986.

Korpelevich, G. M., Ekstragradientnyi Method Dlia Otyskaniia Sedlovykh Tchek I
Drugikh Zadach, Ekonomica I Matematicheski Metody, Vol. 12, pp. 947-956, 1976.
Lemke, C. E., On Complementarity Pivot Theory, in Mathematics of the Decision
Sciences, G. B. Dantzig and A. F. Veinott, eds., 1968.

Mathiesen, L., An Algorithm Based on a Sequence of Linear Complementarity Prob-
lems Applied to a Walrasian Equilibrium Model: An Example, Mathematical Pro-
gramming, Vol. 37, pp. 1-18, 1987.

Moré, J. J., Coercivity Conditions in Nonlinear Complementarity Problems, SIAM
Review, Vol. 16, pp. 1-16, 1974.

Murty, K. G., Linear Complementarity, Linear and Nonlinear Programming, Helder-
man, Berlin, 1988. ;

Pang, J. -S., and Chan, D., Iterative Methods for Variational and Complementarity
Problems, Mathematical Programming, Vol. 24, pp. 284-313, 1982.

Pang, J. -S., Newton’s Method for B-Differentiable Equations, Mathematics of Oper-
ations Research, Vol. 15, pp. 311-341, 1990.

Pang, J. -S., and Qi., L., Nonsmooth Equations: Motivation and Algorithms, SIAM
Journal on Optimization, Vol. 3, pp. 443-465, 1993.

Qi, L., and Sun, J., A Nonsmooth Version of Newton’s Method, Mathematical Pro-
gramming, Vol. 58, pp. 353-368, 1993.

Sun, D., An Iterative Method for Solving Variational Inequality Problems and Com-
plementarity Problems, Numerical Mathematics, A Journal of Chinese Universities,
Vol. 16, pp. 145-153, 1994.

Sun, D., A Projection and Contraction Method for the Nonlinear Complementarity
Problem and Its Extensions, Mathematica Numerica Sinica, Vol. 16, pp. 183-194,
1994,

Sun, D., On the Convergence Properties of a Projection and Contraction Method,
to Appear in Numerical Mathematics, A Journal of Chinese Universities (English
Series).

Sun, D., and Han, J., Newton and Quasi-Newton Methods for a Class of Nonsmooth
Equations and Related Problems, Technical Report No. 026, Institute of Applied
Mathematics, Academia Sinica, Beijing 100080, China, 1994

Zarantonello, E. H., Projections on Convex Sets in Hilbert Space and Spectral Theory,
in E. H. Zarantonello, ed., Contributions to Nonlinear Functional Analysis, Academic
Press, New York, 1971.

28



Chapter 3

Newton and Quasi-Newton Methods for a Class of
Nonsmooth Equations and Related Problems

Abstract

This chapter presents a Newton method and a quasi-Newton method for solving
some nonsmooth equations (NE). In order to construct a convergent and practical quasi-
Newton method for solving a class of nonsmooth equations, which arises from com-
plementarity problem, variational inequality problem, the Karush-Kuhn-Tucker (KKT)
system of nonlinear programming, and related problems, a concept 9, F(z) and an ap-
proximation idea are introduced in this chapter. The Q-superlinear convergence of the
Newton method and the quasi-Newton method is established under suitable assumptions,
in which the existence of F'(z*) is not assumed. The new algorithms only need to solve
a linear equations in each step. For complementarity problem, the QR factorization on
the quasi-Newton method is discussed.
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Chapter 3
Newton and Quasi-Newton Methods for a Class of
Nonsmooth Equations and Related Problems

1. Introduction

In the recent years, many authors have considered various forms of Newton method
for solving nonsmooth equations (NE) (see, e.g., [16, 17, 18, 19, 11, 12, 20, 21, 22,
25]). Some authors have also considered the application of quasi-Newton methods to
nonsmooth equations. In Kojima and Shindo [11], quasi-Newton method was applied to
piecewise smooth equations. When the iteration sequence moves to a new Cl-piece, a
new approximate starting matrix is needed. Ip and Kyparisis [9] considered the local
convergence of quasi-Newton methods directly applied to B-differentiable equations (in
the sense of Robinson [24]). The superlinearly convergent theorems are established under
the assumption that F is strongly F- differentiable [14] at the solution.

The main object of this chapter is to construct a practical quasi-Newton method for
nonsmooth equations, especially for the nonsmooth equations, which is of concrete back-
ground. In order to complete this, we first give a slight modification of the generalized
Newton method [20, 21]. Basing on the modified generalized Newton method, we give a
quasi-Newton method for solving a class of nonsmooth equations, which arises from com-
plementarity problem, variational inequality problem, the Karush-Kuhn-Tucker (KKT)
system of nonlinear programming, and related problems. In each step, we only need
to solve a linear equations. The Q-superlinear convergence is established under mild
conditions. Although we don’t know how to give a convergent quasi-Newton method
for general nonsmooth equations, the general convergent theorems in abstract forms are
established. These theorems will be helpful in constructing new methods for solving
nonsmooth equations, which is of some special form.

The characteristics of the quasi-Newton method for solving (4.1) established in §4
include: (i) without assuming the existence of F'(z*), we prove the @-superlinearly
convergent property, (ii) only one approximate starting matrix is needed, and (iii) from
the QR factorization of the kth iterate matrix we need at most O((I(k)+1)n?) arithmetic
operations to get the QR factorization of the (k + 1)th iterate matrix (for the definition
of I(k) see (5.8)).

The remainder of this chapter is organized as follows. In §2, we give some preliminar-
les on nonsmooth functions. In §3, we propose a modified generalized Newton method.
In §4, we give a quasi-Newton method for solving a class of nonsmooth equations. In §5,
we discuss the implementation of the quasi-Newton method for the nonlinear comple-
mentarity problem. The KKT system of variational inequality problem with upper and
lower bounds are discussed in §6. The computational results are given in §7.
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2. Preliminaries

In general, assume that F : R® — R™ is locally Lipschitzian. In order to reduce the
nonsingularity assumption of the generalized Newton method [21], the concept dp F(z)
was introduced by Qi [20]

dpF(x) :{ lim F'(zk)}, (2.1)

zkEDF

where D is the set where F is differentiable. Let 0 F be the generalized Jacobian of F
in the sense of Clarke [4]. Then 0 F(z) is the convex hull of dp F(z),

dF(z) = co dpF(z). (2.2)
For m = 1, dp F(z) was introduced by Shor {26]. Here, we denote
O F(z) = dpFi(z) X dpFa(z) X --- X O F(z). (2.3)

When m =1, 0,F(z) = 0pF(z).

Suppose that f, g : R® — R! are continuously differentiable functions. Let h(z) =
min(f(z), 9()), then

{Vi(=)"} if f(z) <g(2),
ah(z) = § {VF(2)",Ve(e)"}  if f(2) = g(2),
{Vg(2)7} if f(z) > g(<).

In fact, when f(z) = g(z) but Vf(z) # Vg(z), we can prove that in an arbitrary
neighborhood N(z) of z there exist y, z € N(z) such that f(y) < g(y) and f(2) > g(2).

We say that F is semismooth at z, if

V€3£‘1(11n+th’){Vh,} (2.4)
RI—h, t]0

exists for any h € R™. If F is semismooth at z, then F is directionally differentiable at z
and F'(z;h) is equal to the limit in (2.4) (see [21]). Semismoothness was originally
:ntroduced by Mifflin [13] for functionals. Convex functions, smooth functions, and
siecewlse linear functions are examples of semismooth functions. Scalar productions
and sums of semismooth functions are still semismooth functions (see [13]). In [22], Qi
and Sun extended the definition of semismooth functions to F : R® — R™. It was proved
n 22] that F is semismooth at z if and only if all its component functions are so.

LEMMA 2.1 [21]. Suppose that F : R* — R™ is a locally Lipschitzian function and
iemismooth at . Then

(1) for anyV € F(z + h), h — 0,

Vh — F'(z; h) = of||Al]); (2.5)

31



(2) for any h — 0,
Plo+h) - F(a) = Plah) = o). (2.

LEMMA 2.2. Suppose that F : R* — R™ is a locally Lipschitzian function. If all
V € 8y F(z) are nonsingular. Then there exists a positive constant C such that

v <c

for any V € 8, F(z). Furthermore, there exists a neighborhood N(z) of x such that for
any y € N(z), all W € 8,F(y) are nonsingular and satisfy
_ 10C
w1 < 5 (2.7)
Proof. From the definition of 3, F(z) we have
W F(z) C OF(z) x Fz(z) x -+ x O Fy(z).

Since F; is locally Lipschitzian, 0 F; is bounded in a neighborhood of z. Therefore, 8, F
is also bounded in a neighborhood of z. The closeness of d,F(z) can be easily derived
from the definition of 9y F. Since all V € 8, F(z) are nonsingular, and 9 F(z) is bounded
and closed, there is a positive number C such that

vl<c

for any V € 9, F(z).

In order to complete the second part of the Lemma, for given € = somC e claim

n
that for each ¢ € {1,2,...,n} there exists a neighborhood N;(z) of z such that for any
y € Dp, N Ni(z),

F!(y) c 8yFi(z) +¢€B, (2.8)
where B is the unit ball of R™. If this claim is not true, then there exists some ? €
{1,2,...,n} and a sequence {y*} — z, y* € Dp, such that

IF{(y*) = V]| > € (2.9)
for any V' € 8 Fi(z). Since 8, F; is locally bounded and F}(y*) € 8, F;(y*), by passing
to a subsequence if necessary, we may assume that Fi'(yk) — W1, Then from the def-
inition of 9y F;(z) we have W' € 8,F;(z), which contradicts (2.9). Hence, (2.8) holds.
From the definition of d;F; and (2.8), we can prove by contradiction that there exists a
neighborhood N(z) of z such that

abFi(y) C 0y Fi(z) + 2¢B (2.10)

for any y € N(z) and ¢ € {1,2,...,n}. Therefore, for any W € 3, F(y), y € N(z), there
exists V € 0, F(z) such that

W = V]| < 2ne = —

10C"
Then from Theorem 2.3.2 of [14] we know that W is nonsingular and
VY C 10
WS T e T T
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3. Newton Method for Nonsmooth Equations

Suppose that F' : R™ — R" is locally Lipschitzian. We are interested in finding a solution
of the equations
F(z)=o0. (3.1)

Qi and Sun [21] and Qi [20] considered various forms of Newton method for solving
(3.1) when F is not F-differentiable. Here we will consider the following slightly modified
Newton method

=2k VIR, k=o0,1,.., (3.2)

where V, € BbF(mk). This method is useful to establish the superlinear convergence of
quasi-Newton methods given in §4. Similar to that of [20, 21], we can give the following
convergent theorem.

THEOREM 3.1. Suppose that z* is a solution of (3.1), F is locally Lipschitzian and
semismooth at z*, and all V, € 8, F(z*) are nonsingular. Then the iteration method (3.2)
is well defined and converges to z* Q-superlinearly in a neighborhood of z*.

Proof. By Lemma 2.2, (3.2) is well defined in a neighborhood of z* for the frst step
k = 0. Since V}, € 3,F(z*), the ith row V{ of Vj, satisfies

Vi € 0, Fi(zF).
From the semismoothness of F we know that F; 1s semismooth at z*. By Lemma 2.1,
Vi(eh - 2) - Fl(a'sa* - o) = oflle* — 2°|)), i=1,...,m.

Therefore, ’
Vi(eF — 2%) — F'(z*; 2% - z) = o(||z* — 2*)). (3.3)

From Lemma 2.1 and (3.3) we have
254 = 2| = flz* — & — Vi P (a¥)
S VP (a*) = F(z") = F'(e%; 2% - o))
IV Vi(a* - 2%) - F'(2*; 2% - o)

= of|la* - 2*])). 0

4. Quasi-Newton Method for Some Nonsmooth Equations

[~ this section, we will first consider the following nonsmooth equations, which arises
z>m complementarity problem, variational inequality problem, and the KKT system of
~.-nlinear programming:

F(z) =z - Pxlz - f(2)] = 0, (4.1)

~zere f : R® — R™ is a continuously differentiable function, Py(-) is the orthogonal
Z1ijection operator onto a nonempty closed convex set Y,and X = {z € R"| | < z < u},
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=zere l,u € {RU{oo0}}". To solve equations (4.1) is the original motivation in investi-
r3%ing nonsmooth equations. When f € C!, F is a semismooth function. The results
7 Newton method for solving (4.1) are fruitful, but not for the quasi-Newton method.
-~ this section, we will give a new quasi-Newton method for solving equations (4.1),
=< generalize the convergent theory to general nonsmooth equations. We don’t know
> to construct a superlinearly convergent quasi-Newton method for general nonsmooth
=;zations under mild conditions, but the skill introduced here will be helpful in devis-
.=z quasi-Newton methods for some other special nonsmooth equations. We also give

s1amples to demonstrate this.
We will give a quasi-Newton method for solving equations (4.1).
Quasi-Newton Method (Broyden’s Case)
Given f: R® — R", 2% € R", Ay € R™*"
Do for k=0,1,...:
Define
H(2) = 1(a*) + Ar(z - <)
F¥(z) = 2 - Pxlz - 1*(3) (4.2
Choose Vj € 9, F¥(z*)
Solve Vis* + F(z*) =0 for s

gl = gk 4 gk

vk = f(aF) - f(<b)

(y* — Ags®)sk
kT gk

T

Ak+1 - Ak + (43)

For any matrix B € R™", let B' be the tth row of B. For an arbitrary function
S =CHifV € 9yF(z), then V satisfies

[i if T — f,-(:z:) < I,' (or > ui),
Vi={ NF+ (- M)fl(e) if zi- fi(z) =1 (or = uy), (4.4)
f:(:c) if <z — f,'(:l:) < Uy,

= zere A; € {0,1}, I is the unit matrix of R™™". On the other hand, any V of the above
“:rm is an element of 9y F(z).

THEOREM 4.1. Suppose that f : R® — R"™ is continuously differentiable, z* is a
-r.ution of (4.1), f'(z) ts Lipschitz continuous in a neighborhood of =* and the Lipschitz
nstant is 4. Suppose that all W, € 9, F(z*) are nonsingular. There exist positive
“snstants €, & such that if ||2° — 2*|| < € and ||Ag — f'(2*)]| < 6, then the sequence {z*}
sinerated by the Quasi-Newton Method (Broyden’s Case) is well defined and converges
--superlinearly to z*.
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Proof. From Lemma 2.2, there exists a positive constant 8 such that |[W || < 8 for
all W, € 3, F(z*) and there exists a neighborhood Np(z*) of z* such that

- 10
W=l < 8

for any y € No(z*), W € 3, F(y). Choose €1 and § such that

1£'(w) = f'(z")I < Ally — =", (4.5)
1286 < 1, (4.6)

3ve; < 26, (4.7)

w1 < 27 (4.8)

for any y € Ni(z*) = {z | ]z — 2"|| < e1}, W € 0 F(y). From (1) and (2) of Lemma 2.1,
if F; is semismooth at z*, then for any W* € 9, F;(z), =z — z*

|Fi(z) = Fi(z") =W'(z — &) || = ofl|z ~ z"|]).
The semismoothness of F; is obvious. Therefore, for any W € 9, F(z), = — z*, we have
|1F(z) - F(z*) = W(z = 2")|| = off|z — =7|])-

Then we can choose positive constant &3 such that for any y € Ny(z*) = {z| ||z — z”]| <
£2}, W € 9y F(y), we have

I1F(y) = F(z*) = W(y — =) < 28[ly — =7]. (4.9)

Let ¢ = min{e;, ez} and N(z*) = Ny(z*) N No(z*). Then (4.5), (4.8) and (4.9) hold for
any y € N(z*), W € 8,F(y). Denote e* = zF — o*.

The local Q-linear convergence proof consists of showing by induction that

1.10) 14k - f'(=")l < (2-275)s,
Vil < ;ﬂ, (4.11)
e+ < Sl (112)
rk=0,1,....

For k = 0, (4.10) is trivially true. The proof of (4.11) and (4.12) is identical to the
zroof at the induction step, so we omit it here.

Now assume that (4.10), (4.11) and (4.12) hold for k = 0,...,¢ — 1. For k =1, we
-ave from Lemma 8.2.1 of [6] (also see [5]), and the induction hypothesis that

4¢ = £/ < Aima = £+ JO1E+ e )
< (22765 4 Tt (4.13)
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From (4.12) and ||€°|| < & we get
lef =1 < 2767 < 276N,

Substituting this into (4.13) and using (4.7) gives

4= 1@ < 2= 27 D)5+ e o6
~(i-1) 37 ~(i-1)

<(2-270"Y 42798 = (2 - 279)s,
which verifies (4.10).

To verify (4.11), we must first show that V; is invertible. From the definition of F*(z)
and (4.4) the jth row V7 of V; satisfies

Vel if x;. — f;(m') < lj (or > u](),
vie! NB-X)Al i g fil) =1 (or = uy), (4.14)
Af if I; < xg. — f]’(:r') < uy,

where /\; € {0,1}. For such constants /\; we define a companion matrix W; such that the
jth row Wij of W; satisfies

r if :z:;'~ - f;(x') < 1; (or > uy),
Wt.j = )\;Ij +(1- )\;)f]'(x‘) if x;. - f]’(m’) =1; (or = uy), (4.15)
f]’-(zi) if I; < a:;- — f]'(z’) < uy.

From f(z') = fi(z*) and (4.15) we get

W; € 8, F(z). (4.16)
From (4.8) we get 0
Wt < 'Bﬁ- (4.17)

From (4.14) and (4.15) for any z € R"™ we get

(W] = V))el < |(A] = fi())al.

Therefore,

Wi = Vil < JlAi - ['(=")]]

< [JAi = f'(z7)

+ /() = £'(=")]- (4.18)
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Using (4.10) for k = 1 and the Lipschitz condition (4.5) gives

|W: — Vi|| < (2 —279)6 +4]|z* — =
= (22798 + el (4.19)
Trom (4.12), ||€]] < e, and (4.7)
e < 2o < 271y < 22,

= nich, substituted into (4.19), gives

: 2 .
W, -Vil| <(2-27*)6 + 3 276 < 26. (4.20)
Zr2m (4.17), (4.20) and (4.6) we get
. 108 20 1 5
+21) ~1 Vi€ — 26— — = — y

:: we have from Theorem 2.3.2 of [14] that V; is invertible and

w1 EYd

L S A AT

3
<38
5 3
3 2
= . verifies (4.11).
Tz complete the induction, we verify (4.12). From F(z') + V;(z**! ~ z*) = 0 we have
F(z)+Vi(et! =" + 2" - 2') =0

Vie'Tt = —F(2') + V;é
= F(z*) - F(2') + Vie'.
I < VP () - F(z*) - Vie'|
<|ViUINE (') = F(z*) = Wiet |+ Wi = Vi]l[le]]- (4.22)

Ttom 4.9), (4.11), (4.6), (4.20) and (4.22) we get

et < a5l + 28]l = epaef < 11,

" ¢ zroves (4.12) and completes the proof of @-linear convergence.

“zxr. we will prove the Q-superlinear convergence of {z*} under the assumptions.

"~ Z. = Ag — f'(z*). From the last part of the proof of Theorem 8.2.2 of (6] (also see
2z zet

| Bes®| _

lim
k—oo [|s]]

(4.23)
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From F(z*) + Vi (z**! — 2*¥) = 0 we have
F(z¥) + Wizt - 2%) + (Vi - W) (=¥ - 2F) =0,

Wiebtl = (W, — Vi) (2! - 2F) — [F(2*) — F(z*) — Wie].
Therefore,

b < Wi K P (2*) — F(e™) = Week || + (Vi = Wi)s“|I}.
From (4.14), (4.15) and (4.5) we get
(Vi = Wi)s*[| < [[(4r — f'(2*))s"]]
< (A = £1(2))sM + (' (%) = f'(="))s*|
< || Bes*|| +vlle®|llls*])-

Substituting this, and (4.17) into (4.24) gives

4 < SRIP(H) - Pa") = Waek] + | Bt -+ 1l 154

From (4.12) and (4.25) we get

|10 [[F(2¥) - P(z”) - Wiekl] | || Best]l [s¥]
Hnekn| <5h e e i|ek||+”’”sl_c“}

<
-9

lo,IF(H) = Fe) ~Wiet]  2[Bst] 3

T 2 e+ o

From Lemma 2.1 and the Q-linear convergence of {z*} we have

lim %] = o,
k—o0

|F(a*) - F(a*) ~ Weet|| _

li 0.
koo e
Substituting (4.23), (4.27) and (4.28) into (4.26) gives
k+1
tim 1l g
koo [|e¥]]
which completes the proof of Q-superlinear convergence. O

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

Remark. For nonlinear complementarity problem, the nonsingularity assumption of

>.F(z*) is equivalent to the b-regularity assumption in [18)].

For general nonsmooth equations, we will consider the following method’s convergence

gFtl = 2% - A;IF(2F), AL € R™™, k=0,1,....
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THEOREM 4.2. Suppose that F : R™ — R"™ is a locally Lipschitzian function in the
open convex set D C R" and * € D is a solution of F(z) = 0. Suppose that F is
semismooth at ¥ and all W, € 8y F(z*) are nonsingular. There exists positive constants
s, § such that if z° € D, ||2° — 2*|| < ¢ and there ezists W), € Iy F(z*) such that

[Ae = Wil < 6, (4.31)

then the sequence of points generated by (4.30) is well defined and converges to z* Q-
linearly in a neighborhood of z*.

Proof. From the proof of Lemma 2.2, Theorems 3.1 and 4.1 we can obtain the result
of this theorem without difficulty. The detail is omitted here. O

In [19], Pang and Qi extended Theorem 2.2 in Dennis and Moré [5] to nonsmooth
equations. Here, we can also do a similar extension and point out that some algorithms
can be cast in our frame form.

THEOREM 4.3. Suppose that F : R® — R" is a locally szschztzzan function in
’he open conver set D C R"™. Assume that F 1s semismooth at some z* € D and all
. € Oy F(z*) are nonsmgular Let {Ax} be a sequence of nonsingular matrices in R™"
lnd suppose for some 29 in D that the sequence of points generated by (4.30) remains in
D. and satisfies % # z* for all k, and llm z* = 2. Then {z*} converges Q-superlinearly

1027, and F(z*) = 0 of and only if there ezzsts Wy € 8, F(z*) such that

lim M:M =0 (4.32)
k—o0 [[s¥]] ’ '
vhere sk = ghtl _ gk

Proof. The proof of the theorem is similar to that of Theorem 2 in Pang and Qi [19].
It we also notice of Lemma 2.2, there is no difficulty. So we omit the detail here. O

The Q-superlinear convergence of our algorithm discussed in this section is an appli-
-ation of Theorem 4.3, but not a special case discussed in Pang and Qi [19]. Besides the
zlgorithms discussed in this chapter, we will also give two examples to demonstrate the
applications of Theorems 4.2 and 4.3. One example is dicussed by Ip and Kyparisis [9],
“ne other is a new algorithm.

Example 1. In [9], Ip and Kyparisis discussed the local convergence of the following
zuasi-Newton method (Broyden’s method [1])

gFtl =gk 4 ok ok = —~ AR (2h), (4.33)

(tF — Aysk)s

AR AP A
skT gk

T

App1 = A + th = F(zF*1) - F(a*)

zr solving nonsmooth equations. The Q-superlinear convergence Is established under the
:irong condition that F' is strongly F-differentiable at the solution point . Under their
“»nditions, we can easily verify that (4.32) is satisfied (actually, in this case O F(z*) =
*gF(z") = {F'(2*)}). So Theorem 4.3 (in this case also Theorem 2 in Pang and Qi [19])
zeneralizes the result obtained by Ip and Kyparisis [9].
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Example 2. Consider the following nonsmooth equations
F(z) = min(f(z),9(z)) =0, (4.34)

where f, g : R* — R™ are continuously differentiable and the “min” operator denotes the

componentwise minimum of two vectors. Such a system arises from nonsmooth partial

differentiable equations [3, 2, 14] and implicit complementarity problem (see, e.g., [15]).
Consider the following quasi-Newton method (Broyden’s Case)

Given z° € R", Ay, Bo € R™"

Do for k=0,1,...:
Define

Choose Vi € 8, F*(z*)

Solve Vis* + F(z*) =0 for s

:I:k+1 — :I:k + sk

y* = f(z") - f(<")
¥ = g(z**1) — g(z*)

(yk _ Aksk)SkT
skT gk

Apy1 = Ax +

(% - BysF)sF"

T
Sk Sk

Bgy1 = By +

The Q-superlinear convergence of the sequence of points generated by this algorithm can
2e obtained from Theorem 4.3 under the stated assumptions.

5. Implementation of the Quasi-Newton Method

The implementation of the quasi-Newton method discussed in §4 for solving equations
'4.1) has no difference to the smooth case except for the implementation of the QR
factorization of the iterate matrix V. The entire QR factorization of Vj costs O(n®)
arithmetic operations. If we do this in every step, then the advantage of quasi-Newton
method loses a lot. In this section, we will show how to update the QR factorization of
1", into the QR factorization of Vi at most in O((I(k) + 1)n?) operations (see (5.8) for
the definition of I(k)). For the simplicity, we will assume that X = R%.
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For a given vector z € R", denote the index sets
afz) = {i:z; > fi(z)},
Ble) ={i: z; = fi(z)},
y(z) ={1:z; < fi(z)}.
Suppose for each k that we choose V}, € 8y F*(z*) such that the ith row Vki of Vi, satisfies
. AL if i€ afzh),
Vi = (5.1)
I'if i€ B(z*) un(zh).
Denote a matrix V such that its /th row V1k satisfies
. A, if i€ afeh),
7= | (5.2)
r if i€ pB(zF)un(zF).
Trom (5.1), (5.2) and (4.3) we get

(yk _ Vksk)skT

Vi=Ve+ o, (5.3)
sks
whnere §* satisfies
yE if i€ a(zF),
vt = (5.4)

s¥if 1€ p(eF)un(zh).
-2 is well known that we can update the Q R factorization of V} into the Q@ R factorization

2% in O(n?) operations (see, e.g., [T, 8]).
“re ith row Vki+1 of Vi1 satisfies
A, i @€ azkt),

Vigr = . (5.5)
r if 1€ p(zbtl)uqy(zhtt),

T zerefore,
Vir1 = Vk + AV, (5.6)
~rere AV satisfies
0 if 1€ a(zf)na(zF),
AV} = 0 if i€ {B(z*)un(z*)} N {B(z*1) U (21}, (5.7)

; . .
Viii — Vi otherwise.
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Denote
I(k) = n — (|o(z*) N ()] + [{B(*) U (eF)} N {B(=*) U(=z*T1)}]).  (5.8)

Since the number of the nonzero rows of AV is at most I(k), we can update the QR
factorization of Vi into the QR factorization of Vi41 at most in O(I(k)n?) operations
‘see, e.g., [7, 8]).

Therefore, we get

THEOREM 5.1. The cost of updating the QR factorization of V, into the QR factor-
ization of Vi1 is at most O((I(k) + 1)n?) arithmetic operations.

Josephy [10] considered the quasi-Newton method for solving generalized equations
see Robinson [23]). For nonlinear complementarity problem, in every step his method
eeds to solve a linear complementarity problem, which requires more cost than solving
z linear equations. Kojima and Shindo [11] extended the quasi-Newton method to piece-
wise smooth equations. They applied the classical Broyden’s method as the points z*
szayed within a given C!-piece. When the points z¥ arrived a new piece, a new starting
~atrix was used and it was needed to perform the entire Q R factorization (or other fac-
*orizations) in O(n?®) operations in general. Thus a potentially large number of matrices
~zed to be stored and to be performed entire QR factorization (or other factorizations).
-iere, our method needs only one approximate matrix, and except for the first step we
:zly need less effort to solve a linear equations, which may be solved in much less than
" n®) operations. The smaller the measure of I(k) is, the less computing effort is needed
=k —1)th step (note that I(k) is related to the nonsmoothness of F). Ip and Kyparisis
- discussed the local convergence of Broyden’s method (4.33) for solving nonsmooth
z3.ations. Although the form of (4.33) is very simple, the convergence remains open
2 :1n0ut assuming the existence of F'(z*).

6. The KKT System of Variational Inequality Problem

Y]

- a given closed set X C R™ and a mapping f : X — R", the variational inequality
z::zlem which denoted by VI(X, f) is to find a vector z* € X such that

(z-2z)Tf(z*) >0, forallze X.

X = R%, then VI(X, f) is equivalent to the complementarity problem which is to find
" < R” such that

t

f(z*) € R} and T fz)=0.

“zzn f is a gradient mapping, say f(z) = V#(z) for some real-valued function 6,
© . X.f) Is equivalent to the problem of finding a stationary point for the minimiza-
.z problem:

minimize 6(z)

subject to z € X.
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Here we shall assume that X has the form
X ={z€ R" g(z) <0, h(z) =0, | <z < u}, (6.1)

where g : R* — R™ and h : R™ — RP are assumed to be twice continuously differentiable,
and [,u € {RU{oo}}". By introducing multipliers (A, p, v, w) € R™tp+2n corresponding
*o the constraints in X, the (VI) Lagrangian (vector-valued) function (see, e.g., Tobin
27 ) can be defined by

m p
L(z, A, p,v,w) = f(z) + Z Vgi(z) A + Z Vhi(z)p; — v+ w.
=1 j=1

IZ1; = —oo (or u; = +o0) for some 1, the corresponding v; (w; respectively) is absent in
:ne above formular. Then the KKT system of VI(X, f) can be written as

Lz, A p,v,w) =0,

A >0, —g(z) >0, and ATg(z) = 0,

v>0, 2—-1>0, and vT(z~1) =0,

w>0, u—z>0, and wl (z — u) = 0.

Define
Ez, ) = 1(2) + 30 Vol + 3 Vhy(li
ind - . -
& = Puyle - L(z, A, p)]
H(z, A, p) = | A= Pre[d—(—g(2))] |. (6.3)
—h(z)

Suppose that (z*, A, u*, v*, w*) € R**™*+P*+2" ig a3 solution of the KKT system (6.2),
“nen (z*, A, p*) satisfies H(c*,A*,u*) = 0; conversely if (z*,\*,u*) € RV™+P is 4
solution of H(z, A, ) = 0, then (z*, A", u*, v*, w*) is a solution of the KKT system (6.2),
where v*, w* are defined as

v = PRi[L(:c*, A, )] and w* = Prr [ L(z", A", 7). (6.4)

=0 find a solution of the KKT system of VI is equivalent to solve H(z,A\,u) = 0. Let
== (IaA7/l')> K = [l,u] X R_?, X RP’ and

fz) =1 =g(2)



Then H(z,),u) = 0 can be written as

H(z) =z - Pglz - f(2)] = 0, (6.5)
which is a special form of (4.1).

Now suppose that z* is a solution of H(z) =0, and f is continuously differentiable
at ", we will discuss a sufficient condition on the nonsingularity assumption of OpH(2*).
Let

I(z") = {i] 1 <1 < m, gi(z*) = 0},

I*(z") ={ie I(z")| N >0},
Gt(z*)={de R Vg(z*)Td=0foric It(z%)

and Vh(z*)Td =0 for i = 1, P},

and

R(z*) = {d € R"| d; = 0if z} =; (or u;) and (L(z*)); # 0 for i = 1,..,n}.

THEOREM 6.1. Suppose that z* is a solution of H(2) = 0, and satisfies dTV?nf/(z*)d >
0 for alld € G*(z*) N R(2*)\{0}. If {Vgi(z*), i € I(2")} and {Vhi(z*), i =1,...,p} are
linearly independent, then all V € Oy H(z*) are nonsingular.

Proof. Combining (4.4) and the proof of Theorem 4.1 in Robinson [23], we can get
the result. O

7. Numerical Examples

In this section, we report computational results obtained for two small nonlinear com-
plementarity problems using the above Newton method and quasi-Newton method. For
quasi-Newton method, the initial matrices are generated by the difference approximation
method. In Table 1, “N” and “QN” represent Newton method and quasi-Newton method,
respectively; and “P 1” and “P 2” represent Problem 1 and Problem 2, respectively.

Problem 1 (A Nondegenerate Nonlinear Complementarity Problem, [10, 9]). Con-
sider the following problem: find £ € R* such that z > 0, f(z) >0, and 2T f(z) = 0,
where f: R* — R*is given by

fi(z) = 322 + 22125 + 222 + 23 + 3z4 — 6,
fo(z) = 22 + 2, + 2% + 3x3 + 224 — 2,
fa(z) = 32% + 2125 + 272 + 225 + 334 — 1,

fa(z) = 22 + 322 + 223 + 3z4 - 3.

This problem has a solution

1
g = (%\/é 7 1.2247,0,0,05),  f(z7) = (0,2 + V6 ~ 3.2247,5,0).
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Since A(z*) = §, z* is nondegenerate (see [9]) and it is easy to check that F'(z*) (here
Ay F'(z*) = {F'(z*)}) is nonsingular.

Problem 2 (A Degenerate Nonlinear Complementarity Problem, [11, 9]). Consider
the following problem: find z € R* such that z > 0, f(z) > 0, and zT f(z) = 0, where
f: R* — R*is given by

fi(z) = 3z} + 22175 + 225 + 25 4 324 — 6,
fo(z) = 222 + 21 + z2 + 10z3 + 224 — 2,
fa(z) = 3z} + 2129 + 223 + 223 + 974 — 9,

fa(z) = 2% + 3z% + 223 + 3z4 — 3.
This problem has two solutions

1 1
T = (5\/'6 ~ 1.2247,0,0,0.5), f(zp)=(0,2+ 5\/6 ~ 3.2247,0,0),

and
x}(VD = (1a0:3’0); f(m;‘VD) = (0)313())4)'

Since f(z’yp) = 0 for the solution zjp, it is a nondegerate solution (see [9]). On the
other hand, B(z},) = {3} for the solution £}, so it is a degenerate solution (see [9]). It
is easy to check that 9, F(z}yp) and 3, F(z}) are nonsingular.

TABLE 1
Results for problems 1 and 2

Algorithm | Starting point | Number of Iterations | sum of I(k)
P1 P2 P1| P2
N (1,0,0,0) 3 3(D)
QN (1,0,0,0) 4 4(D) 0| 2
N (1,0,1,0) 4 1(ND)
QN (1,0,1,0) 5 1(ND) 1 0
N (1,0,0,1) 4 4(D)
QN (1,0,0,1) 5 5(D) 1 2
N (1,0.2,0.5,1) 4 4(D)
QN (1,0.2,0.5,1) 6 6(D) 0| 2
N (1,0,1-1) 3 3(D)
QN (1,0,1,-1) 5 5(D) 1 2
N (15,-05,45-1.0) | 4 4(D)
QN (1.5,-0.5,45-1.0) | 6 6(D) 1 0
N (11,01,31,01) | 4 3(ND)
QN (1.1,-0.1,3.1,0.1) | 5 4(ND) 1 0
N (0.85,02,051) | 4 5(D)
QN (0.85,02,05,1) | 7 7(D) 1 2

D=degenerate solution, ND=nondegenerate solution.
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From Table 1 we see that even for problem 2 when the starting point is close to a
solution, the sequence will converge to the corresponding solution no matter wether it is
degenerate or not.

In this chapter two small examples are used to show the effectiveness of the Newton
method and the quasi-Newton method for solving some nonsmooth equations. More
examples are needed to show the efficiency of the above algorithms. For problem (4.1)
with a general convex set X, especially when X is a polyhedral set, how to construct
appropriate Newton methods and quasi-Newton methods is our further research topic.
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Chapter 4

Superlinear Convergence of Approximate Newton
Methods for LC! Optimization Problems without Strict
Complementarity

Abstract

In this chapter, the @-superlinear convergence property of the approximate Newton or
SQP methods for solving LC! optimization problems is established under the assumptions
that the derivatives of the objective and constraint functions are semismooth, the strong
second-order sufficiency condition is satisfied and the gradients to the active constraints
are linearly independent. The strong second-order sufficiency condition is weaker than
the second-order sufficiency condition and the strict complementarity condition.
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Chapter 4
Superlinear Convergence of Approximate Newton
Methods for LC! Optimization Problems without Strict
Complementarity

1. Introduction

Consider the standard nonlinear programming

minimize f(z)
subject to g¢(z) < 0, (1.1)
h(z) =0, '

where f, g and h are differentiable functions from R" into R, R? and R? respectively.
One method for solving (1.1) is to solve the following linearly constrained quadratic

program Q)

minimize  V f(2*¥)T(z ~ zF) + l(:1: — ¥ Gy (z - 2F)
subject to g(z*) + Vg(z*)T (z - z*) <0, (1.2)
h(z*) + VA(z*)T (z - «¥) = 0

successively. Here G is an n x n matrix. This method is called an approximate Newton
method or a SQP (sequential quadratic programming) method. If G is exactly the
second-order derivative of the Lagrangian at z*, this is Wilson’s method. See Garcia
Palomares and Mangasarian (Ref. 4) and Robinson (Refs. 21-22).

Before the advent of the very recent chapter by Qi (Ref. 19), the proof of the super-
linear convergence of such approximate Newton or SQP methods for solving nonlinear
programming problems requires twice smoothness of the objective and constrained func-
tions. Sometimes, the second-order derivatives of those functions are required to be
Lipschitzian, for example, see Garcia Palomares and Mangasarian (Ref. 4), Han (Ref.
5), McCormick (Ref. 9) and Robinson (Refs. 21-22). However, the second-order differ-
entiability may not hold for some problems. For example, the extended linear-quadratic
programming problem, recently emerged in stochastic programming and optimal control,
even in the fully quadratic case, does not possess twice differentiable objective functions.
However, their objective functions are differentiable and their derivatives are Lipschitzian
in that case. See Rockafellar (Ref. 24) or Rockafellar and Wets (Ref. 25) for a detail.
We call a function F : R™ — R™ a LC! function, if it is differentiable and its deriva-
tive function is locally Lipschitzian. We call a nonlinear programming problem a LC!
optimization problem if its objective and constrained functions are LC! functions. For
the detail of LC! functions and LC! optimization problems, see Qi (Ref. 17). In Qi
(Ref. 19), the Q-superlinear convergence of the approximate Newton or SQP meth-
ods for ‘solving LC! optimization problems was established under the assumption that
the derivatives of the objective and constrained functions are semismooth and the three
key assumptions that the second-order sufficiency condition, the strict complementarity
slackness and linear independence of the gradients to the active constraints are satisfied
under the context of LC! optimization problems. Basing on generalized equations’ theory
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established by Robinson (Ref. 23), Josephy (Refs. 7-8) provided a proof to the local su-
perlinear (quadratic) convergence of quasi-Newton (Newton) methods without assuming
the strict complementarity slackness condition when the second-order differentiability is
available. Also basing on Robinson’s generalized equations’ theory (Ref. 23), without
assuming the strict complementarity condition Lescrenier (Ref. 29) provided a proof to
the convergence of a class of trust region methods proposed by Conn, Gould, and Toint
(Ref. 30) for optimization problem with simple bounds constraints when the objective
function is twice continuously differentiable. In this chapter, we will discuss the super-
linear convergence of approximate Newton or SQP methods for solving LC! optimization
problems without assuming the existence of the second-order differentiability and the
strict complementarity slackness condition.

In a certain sense, our results in this chapter are the LC! version of the results
in Josephy (Refs. 7-8) or a generalization of the results in Qi (Ref. 19) without the
strict complementarity slackness. To achieve this, our technique is different from that
of Josephy (Refs. 7-8) or Qi (Ref. 19). First we consider the superlinear convergence
of a generalized approximate Newton type method for solving nonsmooth equations,
recently developed in Pang (Ref. 14) and Qi (Refs. 16-17). Then, we prove that the
approximate Newton or SQP methods are special cases of such generalized approximate
Newton method.

In section 2, we discuss the strong second-order sufficiency condition and linear in-
dependence under the context of LC! optimization. The Q-superlinear convergence of
approximate Newton or SQP methods for LC! optimization is established in section 3.
In section 4, we give some discussions.

2. The Strong Second-Order Sufficiency Condition

Throughout this chapter, we assume that f, g and h in (1.1) are LC! functions.

The Lagrangian of (1.1) is L(z,u,v) = f(z) 4+ uTg(z) + vTh(z). Denote the gradient
of L with respect to z by Fy,. Then

Fuu(z) = Vf(z) + Vg(z)u+ Vh(z)v
is a locally Lipschitzian function.

In Josephy (Refs. 7-8) or Robinson (Ref. 23), the two key assumptions other than
second-order differentiability are the strong second-order sufficiency condition and linear
independence of the gradients to the active constraints. We still need these two as-
sumptions. However the strong second-order sufficiency condition needs to be modified
because we will not assume the second-order differentiability of f, g and h.

In general, assume that F : R™ — R™ is locally Lipschitzian. By Rademacher’s The-
orem, F is differentiable almost everywhere. Let Dp be the set where F is differentiable.
Let OF be the generalized Jacobian of F in the sense of Clarke (Ref. 2). Then

F(z) = cof zl}ierlrjlp F'(z)}, (2.1)

2k —z
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where co{A} is a convex hull of a set A.

In Qi (Ref. 16) and Pang and Qi (Ref. 15), the concept dpF(z) was introduced

6BF((E) = { zliergp F’(mk)}.

1k—'1

Then
dF(z) = codpF(z).

For m = 1, 8pF(z) was introduced by Shor (Ref. 26). Let F; denote the 1th component
of F. Sun and Han (Ref. 27) introduced

abF(:l:) = 8BF1(:c) X aBFz(:l:) X oo X aBFm(:l:).

Then dpF(z) C 8, F(x) and the converse relation does not hold in general. For example

if F: R! — R? has the form
_ min(z, z%)
F(z) = ( min(—z, — %) ) ’

- {(8)(4)) om0 ()-(2) (2-0))

and 85 F(0) C 8;F(0). But when m = 1, 8,F(z) = 8 F(z)

then

From the results of Clarke (Ref. 2), Qi (Ref. 16), and Sun and Han (Ref. 27) we know
that 8F(z), 0B F () and 0, F'(z) are nonempty compact subsets of R™*" and the maps
dp, OpF and Oy F are upper semi-continuous (Ref. 1). In fact if we note that 8F (z) and
9;F(z) are compact subsets, and that the maps oF and 90;F are upper semi-continuous
(Ref. 2), we can draw the same conclusions for the maps dpF and 9, F through the
standard analysis. In this chapter we use M(z, F) to represent one of 3F(z), OBF(z)
and 9, F(z) and use the multifunction M(-, F) to represent one of 9 F, dpF and Oy F.
Therefore, M(z, F) is a nonempty compact subset of R™*", and the map M(:, F) is upper
semi-continuous.

Suppose that f1, fo: R — R! are continuously differentiable functions. Let fo(z) =
min(f1(z), f2(z)), then

{Vfi(=)"} if fi(z) < fa(z),
3 fo(z) = (Vi(e)T, Vha(a)'y i f1(z) = fa(=),
{Vfalx)"} if fi(z) > fa(z)-

This formulae will be used later in this chapter.
The first-order Kuhn-Tucker conditions for (1.1) are

Fuu(z) = Vf(z)+ Vg(z)u+ Vh(z)v =0,
u>0, g(z) L0,
uigi(z) =0, for1=1,..,p,
h(z) = 0.

(2.2)
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Let
Vf(z) + Vg(z)u+ Vh(z)v
H(z) = min(u, —g(z)) , (2.3)
~h(z) .
where the ‘min’ operator denotes the componentwise minimum. Then the first-order

Kuhn-Tucker conditions are equivalent to H(z) = 0. Denote Hi(z) = Vf(z)+ Vg(z)u+
Vh(z)v, Ha(2) = min(u, —g(z)) and Hs(z) = —h(z). Then

Hl(z)
H(z) = Hz(z)
Hg(z)

For every z = (z,u,v) € R" X RP x RY, denote
o H(z) = M(z, Hy) x 9sHa(2) X {VHs(2)T}-

It is easy to see that dgH(z)isa nonempty compact subset of R™*™, and the map dg H
is upper semi-continuous, where m = n + p+ q. For any A € M(z, Hy), there exists
V € R™" such that A= (V Vg(z) Vh(z)). Denote

Vo(2) ={V € R™"| (V Vg(2) Vh(z)) € M(z, H1)}

From the definition of the map M(:,-), it is easy to see that for any z = (z,u,v) €
R"™ x RP x R, we have
M(xaFu,U) C Va(2)-

Suppose that z = (z,u,v) € R™ X RP x R? is a Kuhn-Tucker point of (1.1). Let
I(z) = {i| 1 <i < p gilz) = O}
I"(2) = {1 € I(z)| wi > 0},

PG)={iel(z)l wi= 0},
G(z) = {d € R"| f'(z;d) =0, gl(z;d) =0fori € It(2), ¢i(z;d) <Ofor1 € 19(z)
and hi(z;d) =0 for i =1, e q}
and
G*(z) = {d€ R"| fi(z;d) =0, gi(z;d) =0fort € It (2)
and hi(z;d) =0 for 1 = 1,.., 4}

A point z = (z,u,v) € R™ x RP x R is said to satisfy the second-order sufficiency
conditions (strong second-order sufficiency conditions) for (1.1) if it satisfies the first-
order Kuhn-Tucker conditions and if dTVd > 0 for all d € G(2)\0 (d € GT(2)\0),
V € Vo(2)-

Suppose that z = (z,u,v) € R" X RP x R? is a Kuhn-Tucker point of (1.1). We say
that z satisfies the linear independence condition if {Vgi(z), i € 1(2)} and {Vh;(z), 1 =
1,...,q} are linearly independent. We say that z satisfies the strict complementarity
slackness condition if 1°(z) = 0. When the strict complementarity condition is satisfied
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(ie., I°(z) = 0), then G(2) = G*(2). Therefore, second-order sufficiency conditions
and the strict complementarity slackness condition mean strong second-order sufficiency
conditions. In general, strong second-order sufficiency conditions mean the second-order
sufficiency conditions, but don’t mean the strict complementarity slackness condition.
The strict complementarity slackness condition may not hold in nonlinear optimization
problems. Therefore, we will consider the superlinear convergence properties of approx-
imate Newton or SQP methods for LC! optimization problems without assuming the

strict complementarity condition.

First, we shall consider the nonsingularity of matrices W € 8gH(z) at a solution
of H(z) = 0. If the components of such a solution are denoted by zo, o, Vo, We can
partition the vector g(zo) into smaller vectors gt (zo), g%(zo) and g~ (zo), of dimensions
r, s and t, respectively, and partition o conformably into ug, u§ and ug so that

g7 (z0) = 0, ud >0,
¢°(z0) = 0, u) =0, (2.4)
g (z0) <0, uy =0,

where the ordering 1s componentwise. After suitable arrangement, (2.3) can be written

T Vv f(z) + Vg(z)u+ Vh(z)v
ut min(ut, —g* (2))
H| «° | = min(u’, —¢°(z)) : (2.5)
u” min(u™, —¢~ (2))
v —h(z)

Theorem 2.1. Suppose that zo = (o, uo,v0) € B™ X RP x R satisfies the strong
second-order sufficiency conditions and the linear independence condition of (1.1). Then
all W € 8¢ H(20) are nonsingular.

Proof. According to the definition of dgH/(z0), we only need to prove for 1 =
0,1,...,s, the nonsingularity of the following matrices

v et Gyt c¥" a;T HY

¢t o 0 0 0 0
Wi = -G 0 0 0 0o 0
() o 0 0 In; 0 0}’

o o 0 0 Ik O
g o o 0 0 0

where V € Vg, (20), Ho denotes Vh(zo)T, G§ denotes Vgt (zo)T, etc, I = {1,...,1} (when
i=0 1=0),J= {1,.,83\, 1 = |J], GYT is a matrix of the I rows of Gg, GY is a
matrix of_ the J rows of G8, and Ijx; and I;x: are the unit matrices of RI*J and Ri*¢
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respectively. Suppose that a, b, ¢, d, e and [ are such that

Ve +GiTo+ G e+ GYTd+ Gglet Ho'l =0,

—GS_G. =0,
-GYa =0
’ 2.6
Ijx]‘d =0, ( )
Iixte =0,
—Hpa = 0.
Therefore, we get
ve +6GiTo+ G e+ H'l=0,
~-Gfa =0
’ 2.7
—G8]a =0, 27)
-—Hoa =0.

Premultiplying the equations in (2.7) by al, o7, ¢T and [T, respectively, and adding
the result we find that oTVa = 0. This, together with the second and fourth equations
of (2.7) and the strong second-order sufficiency conditions, implies that a = 0; the first
equation of (2.7) and the linear independence assumption now imply that b, ¢ and [ are
also zero. The fourth and fifth equations of (2.6) means that d and e are zero. Thus the
matrix W) 1s nonsingular. This completes the proof. O

Corollary 2.1. Under the conditions of Theorem 2.1, there exist §>0and C >0
such that for any 2 = (&,4,0) € B" X RP x R, satisfying ||2 — zol| < 8, and any
W € dgH(2), W is invertible and |[WH| < C.

Proof. Applying Theorem 2.1 of this chapter, and that dgH (%) is a nonempty
compact subset and the map dqgH is upper semi-continuous, we can easily obtain the
conclusion. O

We say that a locally Lipschitzian function F: R"— R™ is semismooth at z if

. !
vealpl(rgm') {Vh'} (2.8)
R!—h, t]0

exists for any h € R"™. If F is semismooth at z, then F' is directionally differentiable at z
and F'(z;h) is equal to the limit in (2.8). Semismoothness was first introduced by Mifflin
(Ref. 10) for functional. Convex functions, continuously piecewise linear functions,
smooth functions and subsmooth functions are examples of semismooth functions. Scalar
products and sums of semismooth functions are also semismooth functions. In Qi (Ref.
16) and Qi and Sun (Ref. 18), the definition of semismoothness was extended to F' :
R" — R™. Tt was proved in Qi (Ref. 17) that F is semismooth at z if and only if each
of its components is semismooth at z.

3. Superlinear Convergence Property

To establish the superlinear convergence of approximate Newton or SQP methods,
we need the following two properties of semismoothness:
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Suppose that F: R™ — R™ is locally Lipschitzian and semismooth at z. Then
(1) F is B-differentiable at z, ie., F'(z;h) exists for all h € R™, and

F(z + h) = F(z) + F'(z; k) + o(lAl) (3.1)
(2) For any V € 0F(z + h), h —0
Vh— F(z;h) = ol|[A]). (3.2)
See Theorem 2.3 of Qi and Sun (Ref. 18).

The approximate Newton method (ANM) for solving (1.1) is as follows:

Start at a point 20 = (20,u’,v°) € R™ X RP X R?. Having z* = (z*,uk,v*), find a
Kuhn-Tucker point 2t = (xk+1,uk+1,vk+1) of the quadratic subproblem Q described

by (1.2). If z¥*1 is not unique, choose any Kuhn-Tucker point z¥*1 which is closest to

2* in terms of distance ||z5+! — 2¥||.

Suppose that z* = (z*,u",v*) € R" X RP x R is a solution of H(z) =0 (ie, 2z isa
Kuhn-Tucker point of (1.1)). For every z = (z,u,v) € R™ x RP x RY, denote

olz) = {i jwi > —gi(=)}, B(z) = {il i = —gi(z)} and v(2) = {i] wi < —gi(2)}-
ForieIf = {1,.‘.,2lﬂ(z*)‘}, define

Vf(z) + Vg(z)u+ Vh(z)v

HY(2) = p¥(2) : (3.3)
—h(z)
where pli)(z) € P(z) and P(2) consists of all the following functions p(z),
—g;(z) if j € a(z7),
pi(z) = { ujor — g9;(x) if 7 € B(z%),
uj if 5 €~(z7),

j=1,...,p and define

9o H (2) = M(z, Hy) X (v (2)"} x {VHs(2)"}.

Lemma 3.1. Suppose that z* = (2", u", v )ER"XRPx Rlisa Kuhn-Tucker point
of (1.1) and satisfies the conditions of Theorem 2.1. Then there exist positive constants
§ and C such that for any 2 = (&,4,0) € R* x R” X R? with 2 € {z| ||z — z*|| < 6}, and
any i € I?, all W) € g HU)(2) are invertible and Wil < C.

Proof. From the definition of H®)(2) and dq H®)(z) we know that

HO(z")=0 viel’

and ‘
doHW(z7) C8gH(2") Vie 1°.

wn
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From Theorem 2.1 we know that all matrices W € 89 H(z*) are nonsingular. This
means that all matrices W(;) € 9¢ H(i)(z*), i € IP are nonsingular. It is easy to see that
all d¢g H®)(z), i € I? are nonempty compact subsets and all the maps dg H® ie IP are
upper semi-continuous. Therefore for each 7 € IP there exist a neighborhood N(i)(z*)
of z* and a positive number C; such that for any 2 € NG(2*), all Wi € GQH(i)(é) are
nonsingular and satisfy HW(;;H < C;. Since I? is of finite elements, the conclusion of this
lemma holds. O

In order to establish the superlinear convergence of approximate Newton method, we
first consider the following generalized approximate Newton method (GANM) for solving
H(z)=0:

Given 20 = (2,40, v%) € R™ x RP x R1.

For k= 0,1,..., choose 1 € I8 and let

PR LE B(;)lkH(i)(zk), (3.4)
where B, = VH(i)k(zk)T and HU)F is defined as

Vf(z*) + Vg(zF)u + Vh(zF)v + Gi(z — xk)b
HO¥(2) = g% (2) , (3.5)
—h(z*) — Vh(:z:k)T(a: — z*)

i € I?, where ¢(¥(z) is defined as

. —g;(a*) — Vgy(a*) (z —ak)  if jEale),
0 (2) = 3 () + VR ()T (- ) if G eB(e), (3:6)
u]~ lf .7 € '7(2*)>

j=1,..,p, and G, € R™".

Remark 3.1. In practice, we can’t use the above method since we don’t know z*.
However, the above method provides an approach to prove the Q-superlinear convergence
of the approximate Newton method.

Theorem 3.1. Suppose that z* = (z*,u*,v*) € R" x R? x R? is a Kuhn-Tucker
point of (1.1) and satisfies the conditions of Theorem 2.1. Suppose that Vf, Vg and Vh
are semismooth at z*. Let C and & be the positive constants in Lemma 3.1. If there
exists Vi € V.« (2¥) such that

1
Gr—Vil| £ — Yk .
Gk k|.-4c ; (3.7)

then the above method GANM is well defined and Q-linearly converges to 2™ in a neigh-
borhood of z*. If furthermore,

Gk = Vi) (eF! = 2¥)||
““Zk<—1 _ zk”

lim

k—oc

=0, (3.8)

36




then the convergence is Q-superlinear. If in the later case H(z*) # 0, we have

L IEEE)

o TEER (3.9)

Proof. Since Vf, Vg and Vh are semismooth at z*, H and HY e IP are
semismooth at z*.

From the definitions of V,«(z*) and g H()(2*), i € I?, for each Bk, ¢ € 1P there
exists W), € GQH(i)(zk) such that for any z = (z,u,v) € R™ x RP x R?

I(Bgye — Wepe)2ll = [I(Vi — Gi)zl|- (8.10)

In particular, we have

| Biiye = Wikl < 1IVi — (3.11)

G

i< 4o
If ||z* — 2*|| < 6, then by Lemma 3.1, W(:)lk exists and HW(;)IkH < C. By the Perturbation
Lemma of Ortega and Rheinboldt (Ref. 12, p. 45), B(;); is invertible and

| Bayell < %C. (3.12)

Recall that a map is semismmooth at z* if and only if each of its components is semis-
mooth at z* and there are finite elements in the set I?, so by (3.1) and (3.2), for ev-
ery € > O there exists a neighborhood N(z*) of z* such that when z € N(2*) and

Wiy € dg HU)(z) (note W(]I) € BHJ(i)(z)) we have

n+pt+q . . .
1HO(2) = HO) =Wy (= = =) < 30 1H () = B (27) = Wiz = =)
j=1
<égl|lz-2*| Viell. (3.13)

So we may choose §; > 0 sufficiently small such that when |[z* — 2*|| < 81, for any 1 € I#
we have

IHO(2%) — HO(2*) - Wip(e* - 27) 2% — 2| (3.14)

1
< e
Let § = min(6;,8). Then when ||2*¥ — 2*|| < §, we have

sz+1 _ Z*H — sz _ B(—i)lkH(i)(zk) i Z*H
< |IBELIHO () = HO(2") = B(z* - 27)]|
< IBELIIEO (%) = HO(2) - Wiy (2% - 27)])

+(Bayk = Wiipe) (25 = 27)]]. (3.15)
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Substituting (3.11)-(3.12) and (3.14) into (3.15) gives

4 1 1
k1| < =C(-=+ —=)|I2F - 2
E 2| <3C(etea)lle — 7l
1 *
= 5Hz’°—z . | (3.16)

This proves that GANM is well defined and Q-linearly converges to z* in a neighborhood
of z*.

Furthermore if (3.8) holds, by (3.10)-(3.11), (3.13) and (3.15), we have
12541 = 27 < %C[I|H(i)(zk) - HO(") = Weye(* = 27|

+[[(Bgy — W) (257 - 2|+ 11(Bgiye — Weape) (257 = 27)]]]

IN

L0l 1) + Vi = G+ = )+ 45 125 = =7l

o2 - [1) + offl+* — 2#]) + 3147 = =)L (3.17)

IA

This, and the Q-linear convergence of {2*}, turns out to be
12540 = 2" = o] — 2*I1), (3.18)

i.e., the convergence of GANM is Q-superlinear.

The proof of (3.9) is similar to the proof of Theorem 3.1 of Qi (Ref. 16). 0

Remark 3.2. For unconstrained optimization problem (f € C?), condition (3.8) is
known as the Dennis-Moré type condition (see, e.g., Dennis and Schnabel (Ref. 3)) and
that for nonlinear programming (C? optimization problem) with equality constraints a
generalization of this condition due to Boggs, Tolle, and Wang (Ref. 31) is widely used.

Corollary 3.1. Assume that the conditions of Theorem 3.1 hold. Then there exists
a positive number & > 0 such that when there exists Vi € V« (2*) such that

Vi — G| < min(e Y k, (3.19)

1
' 10
the approximate Newton method described above is well defined and Q-linearly converges
to z* in a neighborhood of z*. If furthermore (3.8) holds, then the convergence is Q-
superlinear. If in the later case, H(z*) # 0, then (3.9) holds.
Proof. To complete the proof, we prove that the approximate Newton method is a
special case of GANM in a neighborhood of 2™.

Choose a positive number 8, > 0 (6, < §/3, 6 is defined in the proof of Theorem 3.1)
such that when
z, 25 € B(2";36:) = {2] ||z — 27| < 363},
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we have
—gi(2%) - Vgi(e!) (2 - 2F) < uf i€ o),
{ _gi(z*) - Vai(z)) (z - 2F) > uF if i e(2). (3.20)
)

gi
(3.21)

*

So when z* € B(z*;36;) we have
a(z") € a(), 7(z") € 1(*) and A=) € ().

The first-order Kuhn-Tucker conditions of the quadratic subproblem @ can be writ-
(3.22)

ten as
H*(z) =0,
where H*(z) is defined as
Vf(z*) + Vg(z*)u + Vh(z*)v + Gi(z — z*)
HE(2) = min(u, —g(z%) — Vg(z£)" (« — 2*)) . (3.23)
—h(z*) — Vh(xk)T(m — zF)

We now show that (3.22) has a solution if 6; sufficiently small. Similarly to the proof
of Theorem 4.1 of Robinson (Ref. 23), we can easily conclude that the following matrix
Vga( *)(:1:*) Vh(z*)

V. 2
A= _-Vga(z")(x*)T 0 0
~Vh(z*)T 0 0

is nonsingular, and the Schur complement
B(z*) = C(")T AT C(2")

is a P-matrix (i.e., a matrix with positive principle minors), where V, € V,«(2") and

Vgp(z+)(z*)
C(z") = 0
0

From the definitions of M(z, H1) and V,(z), for every ¢ > 0 we can prove that there

exists &3 > O such that when
2% € B(z";85) = {2| ||z - 2*|| < 83},

we have
Y, (2F) C Y, (2*) + €B(0; 1), (3.24)
where B(0;1) = {z € R"| ||z]] < 1}. So we may restrict 6, and & such that for any
zF € B(2*;8;,) = {z] ||z — 2*|| < 62}, the matrix :
Gy Vga(z‘)(zk) Vh(:l:k)
A() = | =Vgapy (=9 0 0
~Vh(z*)" 0 0
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is nonsingular, and the Schur complement

B(2*) = C() A() T C(2)
is a P-matrix, where

Vs (")
c(zF) = 0
0

A(Z* C(z*
( —C((zk))T (0 ) ) ) (3.25)

the index sets o and 3 are defined at z* but the various gradients are evaluated at z*.

Note that in the matrix

In order to consider the solvability of the system (3.22

), we consider the solvability
of the following system

Fye g (%) + Gid® + Vg(z*)d* + Vh(z*)d" =0,
_gi(e*) — Vgi(ak) d® =0 fori € afz"),

min(uf + d*, —gi(z*) - Vgi(z¥) d=) =0 for i € B(z"), (3.26)
ub +d% =0 fort€ ~(z"), .

_h(z*) - Vh(z¥) d* = 0.

The component d* 1s explicit for 1 € ~(z*). Simplifying these equations, we deduce that
the remaining components of the vector d = (d*,d", d’) € R* x RP X R? can be obtained
by solving the mixed linear complementarity problem

3(z*) + A(zF)w + C(zF)d** =0,
k kT
—gp(z ) - C(= Y w>0,
i+ d% >0, (3.27)

gp(e") — A" w] (uh+d) =0,
where
w = (dz,du,,)dv), q(zk) = (‘jﬂ(zk)’ _ga(xk)’ —hv(xk))) qﬁ(zk) = Fu",vk(xk) - Vgﬁ(:ck)u’;

and o, § and 7 denotes respectively the index sets afz*), B(z*) and ~(z*). From linear
complementarity theory (see, e.g., Murty (Ref. 11)), we know that a sufficient condition
for the system (3.27) to have a unique solution 1s (i) the matrix A(2%) is nonsingular and
(ii) the Schur complement B(z*) = C(zk)TA(zk)—l(?(zk) ‘s a P-matrix. Since we have
proved that these two conditions are satisfied, system (3.27) has a unique solution. Then
system (3.26) has a unique solution when 2k € B(z7;6;). We denote this solution by

g = (4% .4+ .d") € R® x RP x V.
It is easy to prove that for each k there exists i € I? such that

H () = Bayd® =0 (3.28)
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From the proof of Theorem 3.1, we know that
1
ok 4t — ) < gl - 7L (3.29)

Let ¥t = zF + d*. Then FFt1 e B(z2*;62) if ZF € B(z*;82).

We now prove that H¥(z**t!) = 0, which means that (3.22) has a solution. when
2k, z¥t1 € B(z*;6;), we have

min(a+1, - gi(¥) - Voi(z*)T (@1 - %))

[ —ai(a®) - Vi) (@ - af) e o),
ght1 if @ € y(2).

)

e

Thus if 2 € B(z*;62), then

For o (2%) + Vg(z*)d + Vh(z)d" + Gpd™
HE(zk) = min(u® + dv*, —g(zF) - Vg(xk)TdIk)
_h(z*) - Vh(z*) d*"

Foye o (z%) + Vg(c*)d* + Vh(z*)d*" + Gyd®
—gal(zF) - Vga(:ck)Tdmk
| min(ul + %, —gp(=*) — Vas(sh) )
ul‘, + d¥s
_h(z*) — Vh(z)" d*

=0,

which means that system H*¥(z) = 0 has a solution z¥*! in B(z*;82), le., zFtl is a
Kuhn-Tucker point of (1.2). Suppose that ¥t € B(z*;362) is an arbitrary solution of

H¥(z) = 0. Since 5k+1 ¢ B(z*;362), then

min(@k+?, - gi(z*) V()T (8 - 2F))

[ gt - Vails) @ - af) i€ ole),

aktt if © € v(2%).
Therefore dF = z¥T1 — z* is also a solution of system (3.26). From the uniqueness of
the solution of system (3.26), we know that 3¥+1 = z**1, which shows that zFt1 is the
closest Kuhn-Tucker point to z* in terms of distance |25t - z*||. So there exists jeIP
such that 4

R Ba)lkH(')(zk),
which means that approximate Newton method is a special case of GANM in a neigh-
borhood of z*. So we complete the proof of Corollary 3.1 by considering Theorem 3.1.
0

Remark 3.3. If we choose G € V,«(2¥), (3.7) and (3.8) are satisfied.
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4. Some Discussions

In this chapter we considered the local convergence of approximate Newton or SQP
methods for LC! optimization problems without assuming the strict complementarity
condition. The global convergent technique used in Qi (Ref. 19) can be applied to this
chapter similarly.

GANM is useful in proving the Q-superlinear convergence of approximate Newton
or SQP methods, but it can’t be used in practice since we don’t know az*), B(z")
and v(z*). The approximate Newton or SQP methods are well used and in each step a
quadratic programming is needed to be solved. In the following we give such a method
that in each step only a linear equations is needed to be solved.

Given 20 = (z0,u%,v°) € R™ X RP X RY.
For k= 0,1, ...,
= 2k BylH(2Y), (4.1)

where By € 9 HF (%) = {VLk(Zk)T} x Byg*(2F) x {th(zk)T}) and

Lk(z) = Vf(xk) + Vg(:vk)u + Vh(xk)v + Gilz - z¥),

o5(2) = min(u, —g(*) - Vo(z*) (=~ =*))

and

RE(2) = —h(z*) - Vh(s) (= - 2*).

It is easy to see that in a neighborhood of the solution 2* of H(z) = 0, the above
method is a special case of GANM. So similar convergent properties for (4.1) can be
found in Theorem 3.1.
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Chapter 5

Newton and Quasi-Newton Methods for Normal Maps
with Polyhedral Set

Abstract

This chapter presents a Newton method and a quasi-Newton method for solving
normal maps H(z) := F(llc(z)) + 2 — Tig(z) = 0 when C is a polyhedral set. For both
Newton and quasi-Newton methods established here the subproblem needed to solve is a
linear equations in per iteration. The other characteristics of the quasi-Newton method
established in this chapter include: (i) without assuming the existence of H'(z"), a Q-
superlinear convergence theorem is established, (ii) only one initial approximation matrix
is needed, (iil) the linear independence condition is not assumed, (iv) the Q-superlinear
convergence is established on the original variable z, and (v) from the QR factorization of
the k-th iterative matrix we need at most O((1+2|Jk| + 2| Li|)n?) arithmetic operations
to get the QR factorization of the (k -+ 1)-th iterative matrix.
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Chapter 5
Newton and Quasi-Newton Methods for Normal Maps
with Polyhedral Set

1. Introduction

Let C be nonempty closed convex set in R, and F be the continuous function from R"
to itself. A very common problem arising in optimization and equilibrium analysis is
that of finding a point z such that z is a solution of the following normal maps [26]

H(z) = F(Ilg(z)) + = — Tg(z) = 0, (1.1)

where Tl is the Euclidean projector on C. For example, the variational inequality
problem defined on C' is to find y € C such that

(z—y)TF(y) >0 VYzeC. (1.2)

It is easy to verify that if H(z) = 0, then the point y =: ¢ (z) solves (1.2); conversely
if y solves (1.2), then with z 1=y — F(y) one has H(z) = 0. Therefore the equations
H(z) = 0 is an equivalent way of formulating the variational inequality problem (1.2).

For solving (1.1) or (1.2), the basic methods are Josephy’s Newton’s method [10]
and quasi-Newton methods [11]. In each step, Josephy’s methods need to solve a linear
variational inequality problem defined on the set C. This is a nonlinear and nonconvex
subproblem in general. Kojima and Shindo [12] generalized Newton and quasi-Newton
methods to piecewise smooth functions. For quasi-Newton methods, their method needs
a new approximate starting matrix when the iteration sequence moves to a new c?
piece. This may require to store lots of initial matrices. Ip and Kyparisis [9] discussed
quasi-Newton methods directly applied to nonsmooth equations. The Q-superlinear con-
vergence of quasi-Newton methods was established by them on the assumption that the
mapping is strongly Frechét differentiable [14]. This is too restrictive for (1.1). The
results of Chen and Qi [3] are not far from this. Sun and Han (28] considered Newton
and quasi-Newton methods for a class of nonsmooth equations and related problems,
which include the general nonlinear complementarity problem, the variational inequality
problem with simple bound constraints, and the Karush-Kuhn-Tucker (K-K-T) systems
of nonlinear programming problem. Sun and Han’s methods need one approximate ini-
tial matrix and in each step only need to solve a linear equations. Furthermore for
quasi-Newton method they discussed how to update the QR factorization of the present
iterative matrix to the QR factorization of the next iterative matrix in less than 0(n?)
arithmetic operations. However, the skill introduced in [28] can’t be used directly to
solve (1.1) when C'1s a general polyhedral set.

In this chapter, we shall assume that C has the form
C = {z| Az < a, Bz = b}, (1.3)
where A : R > ®R™, B:R* — RF, a € ®™, and b € RP. Throughout this chapter

we will assume that rank (B)=p (p < n). In the following we will discuss such kinds of
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Newton and quasi-Newton methods that use a linear equations as the subproblem in per

1teration.

The main characteristics of the quasi-Newton method established in this chapter in-
clude: (i) without assuming the existence of H'(z*), we establish a Q-superlinear conver-
gence theorem, (ii) only one approximate matrix is needed, (iii) the linear independence
condition is not assumed, (iv) the @-superlinear convergence is established on the origi-
nal variable z, and (v) from the QR factorization of the k-th iterative matrix we need at
most O((1 + 2|Jk| + 2|Lk|)n?) arithmetic operations to get the @R factorization of the
(k + 1)-th iterative matrix (see (5.6) for the definition of Ji and Ly).

The rest of this chapter is organized as following. In § 2 we discuss some properties of
the normal maps (1.1). The Newton and quasi-Newton methods are given in § 3 and § 4,
respectively. In § 5 we discuss the implementation aspects of Newton and quasi-Newton

methods.
2. Basic Preliminaries

For any z € R", II¢(z) is the Euclidean projection of z on C and C is of the form (1.3),
then there exist multipliers A € 7, p € R? such that

Me(z) —z+ ATA+ BTu =0,
A>0, a— Allg(z) > 0, AT(a ~ Allg(z) =0, (2.1)

b — Blg(z) = 0.

Let M(z) denote the nonempty set of multipliers (A, u) € R x RP that satisfy the
K-K-T conditions (2.1). For a nonnegative vector d € R™, we shall let supp(d), called
the support of d, be the subset of {1, ...,m} consisting of the indexes i for d; > 0. Denote

I(z) = {i| Aillg(z) = a;, 1=1,...,m}. (2.2)

Define the family B(z) of indexes of {1,...,m} as follows: K & B(z) if and only if
supp(A) C K C I(z) for some (A, u) € M(z) and the vectors

13

(AT, ie KYu{BT, j=1,..,p} (2.3)
are linearly independent. This family B(z) is nonempty because M(z) has an extreme

point which easily yields a desired index set K with the stated properties.
Define

P(z) = {Pewrv>n"| P=1- (AL BT) ((f;) (A% BT))_ (A];f) ,

KeB(z)},  (24)

where [ is the unit matrix of R"*™ and Ak is the matrix consisting of the K rows of A.
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Remark 2.1. The existence of (( A];{ ) (A% BT)> comes from the linear indepen-

dence of the vectors (AT, i€ K}u {B;fr, j =1,..,p}. Note that for all P € P(z), we
have PT = P, P2 = P, and ||P|| < 1. These simple facts will be used later.

In the following lemma, part (i) is a consequence of Pang and Ralph [18]. For the
completeness, we also give the proof.

Lemma 2.1. (i) There exists a neighborhood N(z) of  such that when y € N(z), we
have

B(y) C B(z) and P(y) € P(=);
(ii) when B(y) € B(z), Holy) = lig(z) + Ply—z) VPE P(y).
Proof. According to the definition of P(-), we only need to prove that there exists a
neighborhood N(z) of such that
B(y) C B(z) VY€ N(z). (2.5)

If not, then there exists a sequence {y*} converging to = such that for all k, there is
an index set K¥ € B(y*)\B(z). Since there are only finitely many such index sets, if
necessary by taking a subsequence we assume that these index sets K* are the same for
all k. By letting K be the common index set, we have that the vectors

(AT, ie KYU{Bj, j = 1,..,p}

are linearly independent and there exists (A, uk) e M(y*) such that supp(\¥) € K €
I(y*), but K ¢ B(z). Clearly K C I(z). The only way for K ¢ B(z) is that there exists
no (A, p) € M(z) such that supp()) € K. But we have

P
Hc(yk) —yF+ ZA?A,-T + ZH?B,T =0.
ick i=1
Since y* — z and {AT, ie K}U {BJT, j=1,..,p} are linearly independent, it follows
that {\¥, i € K} and {u’;, j=1,..,p} are bounded; thus, the full sequence {XF}u {u*}
must have an accumulation point which must necessary be an element in M(z) and whose
support is a subset of K. This is a contradiction.
(ii) when B(y) € B(z), from the K-K-T conditions (2.1) we know that for any Pe
P (y) there exists K € B(y) C B(z) such that

() ()

Te(y) = Py + ek, Ho(z) = Pzt ek

A o oag )
where cx = (A% BT) (( é{ ) (A% BT)) ( ;{ ) _and ag is the vector consisting

of the K components of a.

Thus

and

Me(y) =Te(z) = Ply—2) YPE P(y)-
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3. Newton Method

In the following sections suppose that F is continuously differentiable and C is of the
form (1.3). Denote

W) = {W e RV"|W = F'(llc(z))P+ 1 - P, Pe P(z)}.

The Newton method for solving (1.1) can be described as following:

Given z° € ®™.
Do for £k =0,1,...:
Choose Py € P(z*) and compute

Wi = F’(Hc(zk))Pk +1-P, € W(:I:k)
Solve

Wis + H(z*) =0 (3.1)

for s*

ehtl = ok 4 sk (3.2)

Theorem 3.1. Suppose that F': R* — R" is continuously differentiable, C is of the form
(1.3), and z* is a solution of (1.1). If all W, € W(z*) are nonsingular, then there exists
a neighborhood N of z* such that when the initial vector z° is chosen in N, the entire
sequence {z*} generated by (3.2) is well defined and converges to z* Q-superlinearly.
Furthermore, if F'(y) is Lipschitz continuous around Ilg(z*), then the convergence is
quadratic.

Proof. From Lemma 2.1 we know that there exists a neighborhood N of z* such that
B(z) € B(z*) and P(z) C P(z*) hold for all z € N. So from the assumption that all
W. € W(z*) are nonsingular and the fact that there are finitely many elements in P(z*),
we know that there exists a positive number 8 > 0 such that

W= <8
for all W € W(z), z € N. So (3.2) is well defined for the first step.
When z*¥ € N, B(z*) C B(z") holds. So from (ii) of Lemma 2.1 we have
Mg (zF) — Me(e*) — Pe(ef —27) = 0.
From W;s* + H{(z*) = 0 we have

Wi(zFtt — 2) + Wi(z” — 2F) + H(zF) = 0.
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Therefore,

24+ — 2| < B\ H(z*) - H(z") - Wi(=" — =)l
= B F(Tle(=%) + =* — To(a¥) — (F(Tle(2") + =7 —He(z7))
—(F'(Tle(z*)) P + T = Pe)(* = =)
— BI[F(Te(z*)) - F(Tlo(z")) — F'(Tle(2")) Pe(z* —=7)]
ot — o — (2% — 2%)] - [To(et) ~ Mo(a®) = Pel* — =)l
= BI|F(Tg (=) — F(Ilo(s")) = F'(To () Pe(=" — =7}l
— B|F(Tle () - F(Tlg(s")) - F'(Tlo(z*)) (e (=) ~ Mo ()|

= o(|| e (z¥) ~ Me(z7))-

From the property of the projection operator IIc, we know that

T (2%) -~ e ()] < Jla* = =711

So
a5+t — 2¥|| < o]|z* — =7]])-

If F'(y) is Lipschitz continuous around Il¢(z*), then from the above formulas we can
conclude that the convergence is quadratic. O

For the assumption of nonsingularity of W, € W(z*), we have the following result.
Proposition 3.1. Suppose that V' := F'(I¢(z)) is strictly copositive on the cone
C(z;C) = U{v\ Axv =0, Bv=0, K € B(z)},
K
le.,
vIVe >0 YveC(z;C)\O, (3.3)
then all W € W(z) are nonsingular.
Proof. For W € W(z), there exists K € B(z) such that

W=VP+I1-P,

-1
where P = I — (4% BT) (( A];( ) (AL BT)) ( A; ) is an element of P(z).

Assume that v is such that
Wuv =0,

le.,
VPy+v— Pu=0, (3.4)
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Multiplying (Pv)T in both sides of (3.4) and noting that PT = P and P? = P, we have
0 = (Pv)TPv+ (Pv)Tv - (Pv)T Pv |
= (Pv)TVPu+ vT Py — vT P?v
:(PMTVPv+vTPv—vTPv
= (Pv)TV Pv.

Therefore,
(Pv)TV Pv=0. (3.5)

But

which means that

Pv e C(z;C).
From (3.3) and (3.5) we know that
Pv=0.
Substituting this into (3.4) gives
v =0,
which means that W is nonsingular. O

Remark 3.1. In Proposition 3.1 we needn’t the condition of the linear independence of
the vectors

{A,T, iel(z)}v {B]T, j=1,..,p}
If this linear independence condition is satisfied, then condition (3.3) is equivalent to
Robinson’s strong sufficiency condition [23], which is implied by the sufficiency condition
and the strict complementarity condition (i.e., there exists no i € I(z) such that A; =0,
where (A, 1) € M(z)).

4. Quasi-Newton Method

Basing on the Newton method established in § 3, we can describe the quasi-Newton
method for solving (1.1).

Quasi-Newton method (Broyden’s case 1))
Given 20 € R", Do € R™*" (an approximation of F'(Tc(2°)))
Do for k=0,1,...:
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Choose Py € P(z*) and compute
Vi:= DyPr+1— P
Solve Vis + H(z¥) = 0 for s*
ol = gk oy o
§* = o (2" 1) - Mo ()
y* = F(llo(z*)) - F(Ie(2")

T
(y¥ — Dys*)é*
skT gk )

D1 = Di +

Theorem 4.1. Suppose that F : R" — R™ is continuously differentiable, z* is a solution
of (1.1), F'(y) is Lipschitz continuous in a neighborhood of Tlc(z*) and the Lipschitz
constant is 4. Suppose that all W. € W(z") are nonsingular. There exist positive
constants €, § such that if [|z° — z*]| < € and ||Do — F'(Ilc(z"))|| < §, then the sequence
{z*} generated by the above quasi-Newton method (Broyden’s case) is well defined and
converges Q-superlinearly to z”.

Proof. From the proof of Theorem 3.1 we know that there exist a neighborhood No(z*)
of z* and a positive number 8 > 0 such that B(z) C B(z*) and ||W 1| < B for any
x € No(z*), W € W(z).

Choose ¢ and & such that

B(z) C B(z*), (4.1)

| F'(Te (=) - F'(He(z))]] < 7T (z) - T (7)), (4.2)
786 < 1, (4.3)

3ve < 26, (4.4)

W <8, (4.5)

|F(Ie(z)) - F(lic(z")) — F'(Ie () (Te(z) — Mo (2))]

< SlHe(z) - Me ()| (4.6)

for any z € N(z*) = {z| [t —z*[| < e}, W € W(z). Denote e* = zF — z*.

| O

We will first prove that {z¥} is locally Q-linearly convergent. The local Q -linear
convergence proof consists of showing by induction that

| De — F'(Tle(27))]] < (2 - 27F)8, (4.7)
Wil < 28, (@8)

: +1 11"
ek < ?@kH, (4.9)
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for k=0,1,....

For k = 0, (4.7) is trivially true. The proof of (4.8) and (4.9) is identical to the proof
at the induction step, so we omit it here.

Now assume that (4.7), (4.8), and (4.9) hold for k =0,1,...,7 — 1. For k = ¢, we have
from Dennis and Moré [5] (also see Lemma 8.2.1 of Dennis and Schnabel [6]), and the
induction hypothesis that

|Di = F'(Te ()l < | Dimy = F'(Te (=)l + %(1\“0(%’) ~To(z7)||
+[Te (2 ~1) = He(2)]))

< (2- 27605+ (Il + D

< (2 - 276-0)5 4 Syl 6. (4.10)
From (4.9) and [|¢%]] < & we get
e~ t=0]| < 2767 D]Jef)| < 276 Ve
Substituting this into (4.10), and using (4.4), gives
I1Di ~ P(Tle(@))] < (2 - 265 + 32767
<(2-276"M5+27%
— (2273,

which verifies (4.7).

To verify (4.8), we must first show that V; is invertible. From the definition of V;
there exists P; € P(z') such that

Vi=DiP,+1- P,

Denote '
W, = F'(Hc(x'))R +1-F.
Then ‘
W; € W(I‘)
and

Vi = Wil < I1D; = F'(Te (= )11 A
< ||Di = F'(Tlo ()]

< 'D, - Fi(Tle(z7)) ' = [ F'(Tlo(2)) = F'(Tle(2*))])- (4.11)



Using (4.7) for k = 1 and the Lipschitz condition (4.2) gives
Vi = Wil| < (2 - 2796 + lle(a*) — Mo (")

< (2-2796 + ]l (4.12)
From (4.9), ||°|| < ¢, and (4.4)

el < 2oy < 5275,
which substituted into (4.12), gives

Vi —Will < (2 -27)6 + -ﬁ- L27i5 < 25. (4.13)
From (4.5), (4.13), and (4.3) we get
W (W — Vi)l < B-26 <2/7T< 1.

So we have from Theorem 2.3.2 of Ortega and Rheinboldt [14] that V; is invertible and

w8 T

WA, V] S 12 5

1«
Vit < —
which verifies (4.8).

To complete the induction, we verify (4.9). From Vi(z**! — 2*) + H(z*) = 0 we have
‘/,‘CH_l — _H(Ii) + V'iei

- —(H(a:i) — H(z*) - \/}ei).

From Lemma 2.1 and (4.1), we know that

Mg (z') - Me(z*) = P(s’ — z%). (4.14)
Therefore,
e 1 < Vil H (') = H(z*) = Vie']
= [V, Y[ (Mg (ah) - F(Tle(e")) - DiPi(a' - 27))]
+He' — 2" = I(af - 2%)] - [Mle(e’) — Te(2") - Pl — 27|
= [V, I F(Te(sY) - F(He(27)) — Di(Me(z) — T (=)l
< IV YIIF (e (2)) - F(Tle(z")) ~ F'(Te(2)) (e (<) — To(z"))]]
+[[(F'(Me(2") = D) Pl = 27)]
= [V U F (Mo () = F(Te(z7)) - F'(Te(2*) (Mo (') — To(z*))|

+H[(Wi = Vi) (a* - 27) ] (4.15)
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From (4.15), (4.8), (4.6), (4.13), and (4.3) we get

¢4 < B2 e () ~ o (&) + 28]]ei]
< Ta2 )il + 28]l

1., .
< —||et|].
< 2el
This proves (4.9) and completes the Q-linear convergence.

Next, we will prove the Q-superlinear convergence of {z¥} under the assumptions.
Let Ex = Dy — F'(Il¢(z*)). From [5] or the last part of the proof of Theorem 8.2.2 of
(6], we get
|1 Bws¥]|

lim =
k—oo [|6%||

So from (4.15), (4.8), (4.14), (4.7), (4.16), and (4.3),

(4.16)

1] < LBIIF(To(a")) - F(lle(z")) - F'(Te(=) (o (=) - Tho (=)

P (Tlo(a4)) - D)Mo (2*) ~ Mo (&) |

< of{illo () ~ Mo (")) + £ AII(Ds — F(Tlo(=))) (Tlo () — To(a"))]
HIF o (a4)) - F(Tlo("))) (Te(#) - o (=)

< o(|[Mo (a*) - Te (")) + g APk — F'(Te(")) (e (1) — Te(4))]
HI(De = F(Te () (e (24+1) = To( )] + of|| Pic (24) - Tie (=) )

< oMo (24) ~ o (&) ) + LAl BesH] + 5 B8ITo (=) - Tio (o)

< offiet 1) + ofl15¥1) + 2 le** |

< olle*]) + o[[e*]l) + o(lle** 1) + %He"“H,

which means that

k+1y:
lim L1 —o,
koo [[€F]]
This completes the Q-superlinear convergence of {z*}. O
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5. Implementation Aspects

For implementing the Newton method established in this chapter, there is no much differ-
ence from the smooth case except for choosing the iterative matrices. For implementing
the quasi-Newton method, there exist some differences from the smooth case, especially
for the factorization of the iterative matrix Vi. The entire QR factorization of Vi costs
O(n?®) arithmetic operations. If we do this in per iteration, then the advantages of quasi-
Newton methods lose a lot. In this section, we will discuss how to update the QR
factorization of Vj, into the QR factorization of Vi+1 1n much less than O(n®) operations.

Denote
Vi=Di 1P+ 1- P, (5.1)
Then -
— (ye — Dk5k)5’° Py
Vi=Vi+ 5kT5k (52)
and
Vit1 =V + (Diy1 — I)(Pig1 — Pr). (5.3)

It 1s well known that we can update the QR factorization of Vi into the Q R factorization
of Vi in O(n?) operations (see, e.g., |7, 8]).
According to the definition of Py and Pi, 1, there exist K € B(z*) and K € B(z*t1)

such that .
wecwn(()wm) (4) e
and -1
Pepy =1~ (A% BT) (( ’jgf? ) (A% BT)) < ABI? ) . (5.5)
Denote
K=KnK, Jy=K\K, and L, = E\K. (5.6)
Define 4
Py =1- (AL BT) (( K ) (4% BT)) ( K ) (5.7)
and
Vit1 =Vi+ (Dis1 — I)(Pe — Py). (5.8)

After simple computations, we can see that (Dyy; — I)(Py — Py) is at most a rank-2|Jy|
matrix and (Dg41 — I)(Pey1 — Pg) is at most a rank-2|L;| matrix. But from (5.3) and
(5.8) we know that

Vit1 = Vierr + (Dis1 = I)(Piyy — Py).

So we can update the QR factorization of V; into the QR factorization of Vi ; in
O(2(]Jx| + | Lk|)n?) operations (see, e.g., [7, 8]).
Therefore, we get

Theorem 5.1. The cost of updating the Q R factorization of Vi into the Q R factorization
of Vi1 1s at most O((1 + 2|J;! ~ 2[Ly[)n?) arithmetic operations.
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The numerical results will be reported separately later, since we feel that it is never

an easy task to program a good numerical software. As the further research topics, we
just mention two points: (i) when C has the general form C = {z| g;(z) < 0, i =

1,.

.,m, hj(z) =0, 7 = 1,..,p}, how to give the Newton and quasi-Newton methods

accordingly; (ii) how to globalize the Newton and quasi-Newton methods established

here.
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Chapter 6

Safeguarded Newton Method for a Class of Nonlinear
Projection Equations

Abstract

This chapter presents a globally and superlinearly convergent safeguarded Newton
method for solving the projection equations H(z) =z —Tlc[z — F(z)] =0, where C'is a
polyhedral set and F is locally Lipschitzian, semismooth over R", and pseudomonotone
over C. In each step, the basic Newton method presented here needs to solve a linear
equations, which 1s easier than to solve a linear complementarity problem and a linear
variational inequality problem.
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Chapter 6
Safeguarded Newton Method for a Class of Nonlinear
Projection Equations

1. Introduction
We consider the following nonlinear projection equations
H(z) :=z—¢lz — F(z)] =0, (1.1)

where C is a closed convex set of ®*, I¢ is the Euclidean operator on C, and F : R — R
is not Fréchet differentiable but locally Lipschitzian and semismooth over R". For the
definition of semismoothness, see [22]. Such a class of nonlinear projection equations often
arise in optimization and equilibrium analysis. For example, the variational inequality
problem defined on C'is to find z € C such that

(y—2) F(z) >0 VyeC. (1.2)

It is easy to see that  is a solution of (1.2) if and only if z is a solution of (1.1). Therefore
the equations H(z) = 0 is an equivalent way of formulating the variational inequality
problem (1.2).

When F is continuously differentiable, there are many kinds of Newton methods for
solving (1.1) or (1.2); for examples, see [9, 26, 28, 10, 3, 12, 17, 20, 4, 32]. But when
F is just semismooth, there are few results. Pang and Qi [18] considered the following
linearly constrained convex minimization problem

min  f(z)
(1.3)

st. z€C,

where f : R* — R is a continuously differentiable function and C is a polyhedral set.
When V f is semismooth over R™, a globally and superlinearly convergent Newton method
with a line search technique is obtained by Pang and Qi [18]. In [21], Qi and Jiang
considered the trust region case, correspondingly. Problem (1.3), which is a special case
of (1.2), includes stochastic quadratic programming problems [24] and minimax problems
(18, 23]. In [8], Jiang and Qi generalized Josephy’s Newton method [9, 26] for solving
(1.2) to the case that F is semismooth. They proved the superlinear convergence of their
Newton method. But no global convergence result is obtained. This arises a question:
can a globally and superlinearly convergent method be obtained for solving (1.2) or
(1.1) when F is monotone over ®"? Recently, Sun [31] obtained a class of globally
convergent iterative methods for solving (1.1) when F is pseudomonotone over C. Then
a natural way for solving (1.1) is to combine the glebally convergent methods of [31]
and the superlinearly convergent method of '8]. However, in per iteration Jiang and Qi’s
method [8] needs to solve a linear variational inequality subproblem defined on C. This
subproblem is nonlinear and nonconvex, which may make it difficult to solve. So a more
efficient Newton method for solving (1.1) or (1.2) is needed. When C is a polyhedral set,
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we will first give such a Newton method that in per iteration the subproblem needed to
solve is a linear equations, which is relatively easy to solve, and then combine the new
resulting Newton method with the global convergent method appeared in [31] to obtain
a globally and superlinearly convergent method.

Denote
C* = {z € C| z is a solution of (1.1)}. (1.4)

Definition 1.1. The mapping F : ®" — R" is said to
(i) be monotone over C if

[F(z) - F(y)]"(z-y) 20 V& yeC; (1.5)
(ii) be strongly monotone over C if there exists a constant u > O such that
[F(z) - F(y)]T(z—y) > ullz—yll* Y=, y€C; (1.6)
(iii) be pseudomonotone over C' if

F(z)T(y - z) > 0 implies Fiy)f(y—-=z)>0 Vz,yeC. (1.7)

Suppose that G : " — R™ is locally Lipschitzian. By Rademacher’s theorem, G is
differentiable almost everywhere. Let Dg be the set where G is differentiable. Let G
be the generalized Jacobian of G in the sense of Clarke [2]. Then

3G(z) = co { lim G'(z%)}.
JkGDG
lk—"l
In order to reduce the nonsingularity assumption of the generalized Jacobian, dpG(z)
was introduced in [17, 20]
9pG(z) = { lim G'(z")}. (1.8)

2®€D¢;
zk—z

Then
3G (z) = co dpG(z).

In order to construct a class of quasi-Newton methods, 8,G(z) was introduced in (32, 4]
8,G(z) = dpG1(z) x dpGa(z) x -+ % 0BG m(z). (1.9)

Through similar analysis to that of [2], we can also know that dgG(z) and 8,G(z) are
nonempty compact sets of ®™*", and the mappings G (-) and 8yG(-) are upper sermni-
continuous [1]. In the next sections, we will use dg to represent one of 8, dp, and 0.
Then dgG(z) is a nonempty compact set of R™*" and the mapping dgG(-) is upper
semi-continuous.

In this chapter, unless other specified, we will assume that C has the form

C = {z| Az < a, Bz = b}, (1.10)
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where A : ®* — ®™, B : R" — RF ac R™, and b€ ®P. For the sake of simplicity, we
will assume that rank (B)=p (p < n).

The rest of this chapter is organized as follows. In § 2, we describe a globally conver-
gent method for solving (1.1) when F is pseudomonotone over C. In § 3, we give such
a new Newton method for solving (1.1) that in per iteration only a linear equations is
needed to solve. In § 4, by combining the globally convergent method given in § 2 and
the superlinearly convergent Newton method given in § 3, we give a globally and su-
perlinearly convergent method, which is called safeguarded Newton method, for solving
(1.1) when F 1s pseudomonotone over C and H is b-regular at a solution point.

2. A Globally Convergent Method

In this section we will describe a globally convergent method recently obtained by Sun
131]. The search direction g(z, 8) (see (2.5)) used in this chapter is a special case of (31].

Nearly the same time, the search direction g(z, B) also appeared in He [7]. In this section,
C is not necessarily assumed to be a polyhedral set but a nonempty closed convex set.

Lemma 2.1 [34]. For the projection operator Ilc, we have
(i) when y € C, [z — e (2))Tly - He(2)] <0 YV zeRY
(i) [Te(z) - Mol < llz -yl Yy, 2 €R™
Define
E(z,p) — ¢ - N¢lz - BF ()] (2.1)

When 8 = 1, E(z,1) = H(z).
Choose an arbitrary constant 1 € (0, 1). When z ¢ C*, define

t(z) ,
) max{n,1 - m}, if t(z) >0 0
1, otherwise
and
(1- n(z))w, if t(z) >0
s(z) = (=) , (2.3)
1, otherwise

where t(z) = {F(z) — F(liglz — F(2))}T E(z,1).

Lemma 2.2. Suppose that F is continuous over ®" and n € (0,1) is a constant. If
§ C R™\C™ is a compact set, then there exists a positive §(< 1) such that for allz€ S
and B € (0,6, when s(z) < 1, we have

(F(z) - F(Tlglz - BF(2))}" E(=, ) < (1 - n(@)E(z, B)II/ 8- (2:4)
Proof. Similar to the proof of Theorem 2.1 of [31]. =

82



Define

¢(z,8) = F(Tlglz - BF(z)]) — Fla) + E(z,8)/8- (2.5)

Then we can describe a globally convergent method appeared in (31]).

Projection and Contraction (PC) Method

Step 0. Choose an arbitrary vector 2 € R (in [31], 2° is chosen in C). Choose
positive constants 7, @ € (0, 1), 0< A1 <Az < 2. k:=0, go to step 1.

Step 1. Calculate n(z*) and s(zF). If s(z¥) = 1, let B = 15 otherwise determine
B = s(zF)a™*, where my is the smallest nonnegative integer m such that

{F(a*) - F(Hx[z* - s(z¥)am F(z*)))T E(z*, s(z*)a™)
(1 - ()| E(a¥,s(2*)a™) P/ (s(z*)e™) (2:6)

holds.
Step 2. Calculate g(z*, Be)-
Step 3. Calculate

o = E(z*, ) g(z*, B) /llg(z®, Bu)lI* (2.7)
Step 4. Take v € [A1, A,] and set
£FF = Tglzk — ~kpkg (2, Br)]- (2.8)
k:=k+1, go tostep 1.
Remark 2.1. If in (2.8) we just take
71 = o — yeprg(at, B,
then the following Theorem 2.1 also holds.

Suppose that 2 € C™. By taking z = zF — By F(z¥) and y = z" in (i) of Lemma 2.1,
we have

(z" - To[e* — BF (e {=" - BeF(z¥) - To[z* — BeF (2")]} < 0.
Therefore,
(% — )T E(e, i) > B{Tlole” - B F(zh)] — )T F(a*) + | E(®, Be) 1"
So if F is pseudomonotone over C, then

{Tg[z* - BiF ()] - z*}TF(Hc[:z:k — B F(z")]) >0
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and

(2% —2") (<", Be)
= (2t — ") TF(Tlg[z* - BeF(a4)]) — (z* — )T F(¥)
+(a* — )T E(z*, i)/ B
> (¢* - 2*)T F(Ilg[s* - BeF (")) — (e* - 27)T F(2¥)

+{Ilg|z — B F ()] - «* )T F () + || B(<*, B) I/ B

> E(at, 8)T F(lc[z* — B F (a%)]) — E(s*, B)T F (%) + | B (=", Be)I1*/ B

= E(z*, Bx)Tg(<*, Bi)

> n(e*)|| B(z*, Be)I*/ Br-

Therefore, we can get

Theorem 2.1 [31]. Suppose that F' is continuous over R" and pseudomonotone over C.
If C* # 0, then the infinite sequence {z*} generated by the above PC method converges

to a solution of (1.1).
When C is of the following form

C={ze®R"I<z<u},

(2.9)

where [ and u are two vectors of {R U {00}}", we can give an improved form of the PC

method. For any z € R®" and 8 > 0, denote

N(z,B) = {i| (z: <L and (g(z,B))i > 0) or (z; > u; and (g(=,8)); < 0)},

B(z,8) = {1,...,n}\N(z,8).
Denote gy (z,8) and gg(z, ) as follows

_Jo if 1 € B(z, )
(gn(z,0))i = { (g(z,B))i, otherwise ’

(98(z,8))i = (9(z,8))i — (gn(2,8))i, 1=1,....,n.

Then for any z* € C* and z € R",
(z - =) gp(z,8) > (z — =) g(z, 0).
So if in the PC method we set

FH =Tl [eF - 1epr9B(z*, Bi)]
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or

£ = 2F — 4 pegn (2, Br), (2.14)

where
5, = E(z*, B)Tg(z*, Bi)/las(<*, A%,

then the convergence Theorem 2.1 holds for the modified PC method. In practice, we
will use the iterative form (2.13) or (2.14) when C'is of the form (2.9).

3. Superlinearly Convergent Newton Method

Suppose that G : ®* — R™ is locally Lipschitzian. G is said to be semismooth at £ € R"
if the following limit exists for any h € R"

i h'}. 3.
veag(rzna-m'){v } ( 1)
hl—h, t]|0

If G is semismooth at z, then G is directionally differentiable at = and G'(z; h) is equal to
the limit in (3.1). Semismoothness was first introduced by Mifflin [13] for functionals. In
(22, 20], the definition of semismoothness was extended to G : ®" — R™. It was proved
in [20] that G is semismooth at z if and only if each of its components 1s semismooth at

If G : R — R™ is semismooth at z, then we have
(i) G is B-differentiable [27] at z, Le., G'(z; h) exists for all h € R" and

G(z + h) = G(z) + G'(z;h) + o(||h]]) (3.2)
as h — 0. See (2.2) of [20]
(i) For any V € 0G(z + h), h — 0,
Vh - (e k) = O(IAI). (3
See Theorem 2.3 of [22]

In the following sections we will assume that C has the form (1.10). For any z € Rn",
TIo(2) is the Euclidean projection of z on C, then there exist multipliers A € R, p € RP

such that
Ne(z) — 2+ ATA+ BTu=0,

A>0, a— Allg(z) > 0, AT(a — Allg(2)) = 0, (3.4)

b— Bllg(z) =0.

Let M(z) denote the nonempty set of multipliers (A, p) € RT x NP that satisfy the
Karush-Kuhn-Tucker (K-K-T) conditions (3.4). For a nonnegative vector d e R™, we
shall let supp(d), called the support of d, be the subset of {1, ...,m} consisting of the
indexes ¢ for d; > 0. Denote

I(z) = {l, Agnc(z) = ay, 1= 1,...,m}. (3.5)
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Define the family

B(z) of indexes of {1,..,m} as follows: K € B(z) if and only if
supp(A) C K C I(2) for some (A, p) € M(z) and the vectors

(AT, ic K}U{BT, j=1,..,p} (3.6)

1 )

are linearly independent. This family B(z) is nonempty because M(z) has an extreme
point which easily yields a desired index set K with the stated properties.
Define

P(:) = (Pe®™n| P=1-(4k BT) ((“;) (4% BT))_ (A;),

K € B(z2)}, (3.7)
where I is the unit matrix of R**" and Ak is the matrix consisting of the K rows of A.

Agk
B
dence of the vectors {AT, i € K} U {B;fr, j =1,...,p}. Note that for all P € P(z), we
have PT = P, P2 = P, and ||P|| < 1. These simple facts will be used later.

-1
Remark 3.1. The existence of (( ) (AT BT)> comes from the linear indepen-

Combining the results of [19] and the K-K-T conditions (3.4), we get

Lemma 3.1 [5]. (i) There exists a neighborhood N(2) of z such that when y € N(z),
we have

B(y) C B(z) and P(y) C P(2);
(ii) when B(y) C B(2), llo(y) = Me(2) + Ply—2) ¥ PeP(y)
Denote
W(z)= (W e R W =1-P(I-V), PEP(z~F(z)), VEIF(z)} (38

From the facts that dg F(z) and P(z — F(z)) are nonempty compact sets, and the map-
pings dg F(-) and P(-) are upper semi-continuous, we know that M(z) i1s a nonempty
compact set and the mapping M(-) is upper semi-continuous.

The Newton method for solving (1.1) can be described as following:
Given z° € R".
Do for £k =0,1,...:
Choose Vj € dg F(z*), P € P(z* — F(z*)), and compute
Wy = [ — Po(I — Vi) € W(z¥)

Solve
WkS + H(Ik) =0

for s
Ftl = oF + g*. (3.9)
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From the above Newton method we know that at the k-th step one needs to solve a
linear equations while in [8], one needs to solve the following nonlinear subproblem

z — Mgz — [F(z*) + Vilz - )] =0
to get z*t1,

Theorem 3.1. Suppose that F : ®" — R" is locally Lipschitzian and semismmooth at
z*, C is of the form (1.10), and z* is a solution of (1.1). If all W, € W(z") are nonsingular,
then there exists a neighborhood N of z* such that when the initial vector z° is chosen
in N, then the entire sequence {z¥} generated by (3.9) is well defined and converges to
z* Q-superlinearly.

Proof. From Lemma 3.1 we know that there exists a neighborhood N of z* such that
B(z — F(z)) C B(z* — F(z*)) and Pz — F(z)) € P(z" - F(z*)) hold for all z € N. So
from the assumption that all W. € W(z") are nonsingular and the facts that W(z*) is
a nonempty compact set and the mapping W(-) is upper semi-continuous, we know that
there exists a positive number # > 0 such that

Wl <p
for all W € W(z), z € N. So (3.9) is well defined for the first step.

When z* € N, B(z* — F(z*)) C B(z* — F(z*)) holds. So from (ii) of Lemma 3.1 we
get

Ig|c* — F(z*)] - Tgfz” — F(z7)] = PylzF - F(z*) — (=" — F(z))]. (3.10)
From Wjs* + H(z*F) = 0 we have
Wi(zFTL — 27) + Wi(z” - 2%) + H(z*) = 0.
Therefore,
[25+1 — z*| < BI|H (a*) — H(z") = Wi(z* - 27)
= B{||{z* — &~ - I(z* - 2*)] - [He[e* - F(z¥)] - T [z" - F(z7)]
=PI = Vi)(z* = =)} (3.11)
= B||Pe[F(2*) - F(2*) = Vi(z* - =)l

< BIF(ck) - F(e7) = Vi(a* - 27))]

Since F is semismooth at z*, each of its components is semismooth at z* also. So from
(3.1) and (3.2) we know that for any V € dg F(z™ + h)

F(z" +h) - F(z') = Vh = o(||]) (3.12)

as h — 0.
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Combining (3.11) and (3.12), we have

241 = 2" = ol - ="1]),

which completes the proof of the Q@-superlinear convergence of {z*}.

0

For the assumption of nonsingularity of W. € W(z*), we have the following result.

Proposition 3.1. Suppose that V € 8o F(z) is strictly copositive on the cone

C(z;C) :U{vl Agv =0, Bu=0, K € B(z — F(z))},
K

le.,
vwITVu>0 Yve C(z;C)\0,

then for any P € P(z — F(z)), the matrix
W.=1-P(I-V)e W)

is nonsingular.

Proof. For any P € P(z — F(z)), there exists K € B(z — F(z)) such that

p=1-(A% BT (( K ) (A% BT))— (

Assume that v is such that
Wwv =0,

le.,

v—-P(I-V)v=0.

Ak
5 |

Multiplying (PVv)T in both sides of (3.14) and noting that PT = P and P?

have
0 = (PVv)Tv— (PVv)TP(I-V)v
= oTVT Py — oTVT P2y + (PV V)T (PV )
= yTVT Py — vTVT Py + (PV )T (PVv)
= (PVv)T PV,
le.,
PVoy=0.

Substituting (3.15) into (3.14) gives

v = Pu.
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But

AK)U:Q (3.17)

Using (3.14) and (3.15) we get

vIVy = TV Pv — vIV PV

~0-0=0,
From this. (3.13), and (3.17), we know that
v=20,
whicr shows that W is nonsingular. O

Remark 3.2. Proposition 3.1 states that if (3.13) is satisfied at z* for all V, € dg F(z”),
then ali ¢, = 3¢ (r") are nonsingular.

Remark 3.3. When C = R” and F € C?, the nonsingularity assumption of W. € W(z")
is equivalent to the b-regular assumption [16]. For this sake, in the following we will say
that H is b-regular at z° if all W € W(z") are nonsingular.

Proposition 3.2. Suppose that F is locally Lipschitzian, semismooth, and b-regular
at the solution point z". Then there exist positive constants c1, ¢z € (0, o0) and a
neighborhood N of z* such that

cflz - 27| < [H(@)] < ealle — 27l (3.18)

Proof. Since F is locally Lipschitzian at z*, there exist a neighborhood Nj of z* and a
constant ¢ € (0, oo) such that

|F(2) = F(z")]| < elle — 27]|-

Therefore,
|H(z)|| = || H (=) - H(=")|

= ||z - Hglz - F(e)] — (&" = Te[a" — F(z"))
<z = 2|+ lle = F(z) = (=" = F(="))ll

< (24 )|z —z||.
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Take ¢ = 2+ ¢, then
1H (2)|| < eallz — 7. (3.19)

According to Lemma 3.1, there exists a neighborhood N3(C N;p) of z” such that
W= <8

and

Mg[z - F(s)] — Nele” — F(e)] = Ple - F(z) - (" — F(z7)]
for any W € W(z), P € P(z — F(z)), and z € N».
e H(z) = & ~ Tlo[e  P(2)] — (= ~ Tofa” - F(="))
— Iz - ") - Plz~ F(z) - (z" — F("))]
=[I-P(I-V)|(z~z")+ P[F(z) - F(e") = V(z — z7)],

where P € P(z — F(z)) and V € g F(x).
But
F(z) - F(z") = V(z — ") = o([|z — 27]]).

So we can choose a neighborhood N(C N3) of z* such that
|F(z) - F(z") = V(e —z")|| < o5llz = =7[|.

Define

So for all z € N,

1 1
H(z)|]| > =|lz — z*|| - =]z - ="
1 (=)l = 3 =541 I
1 :
=le =7l
Tak -2 th
ake ¢ = o3, then
allz - 2°|| < [|H(<)]] (3.20)
So (3.19) and (3.20) make that (3.18) holds. a

Theorem 3.1 discussed the locally superlinear convergence of the Newton method
established in this section. Next we will discuss a global technique for the Newton
method.

Suppose that F is locally Lipschitzian and semismooth over R". Define

r(z) = %H(m)TH(:c).

Then according to the chain rule, we know that r is directionally differentiable and

r'(z;d) = H(z)T H'(z; d), (3.21)
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where H'(z;d) = d — Iy (z — F(z);d - F'(z;d)). For the explicit description of Iy (- ),
see [14]. It is easy to see that if there is a direction of d such that r'(z;d) < 0 and
H(z) # 0, then for a given scalar o € (0, 1/2) there exists a positive constant 8 such
that
r(z +td) < r(z) + otr'(z;d).

holds for all t € [0, 6].

This, and Theorem 3.1, Proposition 3.2, stimulates us to give the following modifica-
tion of the basic Newton method.

Newton Method with Line Search

Step 0. Choose an arbitrary vector 20 € ®". Choose scalars a and o with a € (0,1)
and ¢ € (0,1/2). k := 0, go to step 1.
Step 1. Choose Vi € dgF(z¥), P € P(z* — F(z*)), and compute

W, =1 - P(I - Vi) e W(z").
Step 2. If Wy is singular, stop; otherwise solve

Wis + H(zF) =0

for °. M r(z*—s*) < (1- o)r(zF), let 51 = gk 4 6F k= k+1, go to step 1; otherwise,
go to step 3.

Step 3. If (2 s¥) < 0, let d* = s* and go to step 5; otherwise go to sep 4.

Step 4. If r/(z*: —sk) <0, let d¥ = —s* and go to step 5; otherwise, stop.

Step 5. Let 3% = o™k where my is the first nonnegative integer m for which

r(z% - a™d¥) < r(z¥) + oo™ (z*; d¥).
Set z°-1 = 77 — 3°d*¥ and k := k — 1. Go to step 1.

Remark 3.4. In the above method, the search direction d* is obtained by solving a
linear equations while in [16], d* is obtained by solving the following equations

H(z*) + H'(z*;d) =0,
which is a nonlinear and nonconvex subproblem in general.

Due to the nonsmoothness of H(z), we can’t expect the above algorithm to have such
a global convergent property that every accumulation point of the infinite sequence {z*}
is a solution of H(z) = 0. But when F has some monotonicity condition, we can combine
the PC method described in § 2 and the modified Newton method to obtain a globally
and superlinearly convergent method. Such a method will be discussed in § 4.

4. Safeguarded Newton Method

The Newton method with line search established in § 3 may lose global convergence,
although it has locally superlinear convergence. When F is pseudomonotone over C, a
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practical way to get global and locally superlinear convergence is to combine the globally
convergent method introduced in § 2 and the Newton method introduced in § 3. In this
section we will give such a method. Suppose that F is locally Lipschitzian, semismooth
over ®", and pseudomonotone over C.

Safeguarded Newton Method

Step 0. Choose an arbitrary vector 0 € ®". Choose scalars n, a,7,€0 € (0,1),
o €(0,1/2),and 0 < Ay < A, < 2.k :=0, go to step L.
Step 1. Choose Vi € dq P(z¥), Pr € P(z* - F(z*)), and compute
Wy = I — Po(I — Vi) € W(=H).

Step 2. If Wy is singular, go to step 6; otherwise solve

Wis + H(:Ck) =0

for s° If
r(;r’c +sf) < (1- a)r(xk), (4.1)
let 257 - = r¢ — sF, k:=k— 1, go tostep 1; otherwise, go to step 3.
Srep 3 I r(2%5%) < —eor(z¥), let dF = s* and go to step 5; otherwise go to sep 4.
Step 4 If 'k —s¥) < —ear(z¥), let 4k = —s* and go to step 5; otherwise, go to
step ©

Step 5 safeguarding step) Let 3% = a™*, where my is the first nonnegative integer

r(z* - a™d*) < r(z*) + gor! (z*; d¥)

or
o™ <y
holds.
If 3¢ >~ let 2571 = % — 3,d*, k= k+ 1, and go to step 1; otherwise, go to step 6.
Step 6. Set y” = 2% and 1 := 0. Take y° as the initial vector and use PC method

established in § 2 until to get a sequence {yo,yl,...,yi(k)} such that 1(k) is the first
positive integer t such that
i k
r(y') < (1 - a)r(=%)-

Set 571 = y*¥) and k := k + 1. Go to step 1.
Before giving the convergence theorem, we make several remarks.

Remark 4.1. We use the safeguarding step because H is not continuously differentiable.
Remark 4.2. The pseudomonotonicity assumption of F' is used only when the Newton
step fails.

Remark 4.3. Step 6 is guaranteed by Theorem 2.1.

Theorem 4.1. Let F be locally Lipschitzian and semismooth over R™. Suppose that F
is pseudomonotone over C, C* # 0, and Co == {z| r(z) < r(z°)} is bounded. Then the
sequence {r*} generated by the above safeguarded Newton method is well defined and
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every accumulation point of {z*} is a solution of (1.1). Furthermore, if H is b-regular at
an accumulation point Z (i.e., all W € W(T) are nonsingular), then {z*} converges to T
Q-superlinearly.

Proof. According to the safeguarded Newton method, we have
r(z*t) < (1 - oeo)r(zF)
<(1- ovyeg)¥tir(z%).

Therefore,
lim r(z*) =0. ' (4.2)
k—o00
From (4.2) and the boundedness of Co, we know that {z*} is bounded and every accu-
mulation point of {z¥} is a solution of (1.1).
Furthermore, if T is an accumulation point of {z*¥} and H is b-regular at T, then
according to Proposition 3.9 and Theorem 3.1, when z* is close enough to T, (4.1) is
catisfed and the full Newton step will be taken. So according to Theorem 3.1, the

seguence .z*} will converge to 7 Q-superlinearly. O

Wrer © = C}, by using a differentiable merit function [3], Taji, Fukushima, and
[carax. 22 established a globally convergent Newton method for solving strongly varia-
i-ra. mesuaaty problems. In each step, their methods need to solve a linear variational
iregla.Ty proriemora linear complementarity problem, but not a linear equations. This

.- -learly if we take ' = ®" . The quadratic convergence is established under
Tzed strict complementarity condition, which 1s somewhat restrictive. It 1s
. seve mennod of 33 can be generalized to the case that F' is not differentiable
wop- semismiooin From Proposition 3.1 and Theorem 4.1 we know that if F is strongly

mencmene sver Cand cermismooth over R™, then the iterative sequence {:ck} will converge
.- -re urigue so.ution of (1.1) Q-superlinearly.
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