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Abstract 

In this paper we propose a new global convergent iterative method for solving the 
nonlinear complementarity problem and it 's related problems. The  method behaves 
effectively not only for linear cases but also for general nonlinear cases. In special 
case, our metllod reduces to the same, which was also discussed in [9,11,22] for linear 
cases. 

1 Introduction 

The nonlinear complementarity problem, denoted by N C P ( R 7 ,  F), is to find x* E R 7  
such tha.t 

F ( Z * ) ~ X *  = 0, F(x*)  E R;, ( l .1)  

where F is a mapping from R: into Rn.  In this paper, we consider the following general 
nonlinear complementarity prol~lem: to find x* E X = {x E RnIl 5 x 5 u) such that  

F ( ~ * ) ~ ( x  - x*) > 0 Vx E S, (la2) 

where 1 and u are two vectors of { R U  00)" and 1 < u. For this problem, we will denote 
it by 1JrCP(X, F ) .  When X = R;, problem (1.2) reduces to problem (1.1). Let 

X* = { x  E Xlx  solves N C P ( X ,  F) ) .  (la3) 

It is easy to see that x E X* if and only if :c satisfies the following projection equation 
(may be nonsmooth): 

Px[x - P F ( x ) ]  = x for some or any p > 0, (1.4) 

where for any y E Rn ,  PX(y) = argmin{x E XIJlx - yII) (1.5) 
and ( 1  . 1 1  denotes the l2 norm of R n  or it's induced matrix norm. See [3] for a proof. 
For the simplicity of X ,  it is easy to  implement Px(y). When X is any other nonempty 
convex subset of Rn ,  we can denote the variational inequality problem (abbreviated to 
V I P ( x ,  F ) )  similar to  that  of (1.2). We can also define X* = {x E X l x  solves V I P ( X ,  E)). 
From [3], we know that  x solves V I P ( X ,  F )  if and only if x solves the projection equa- 
tion (1.4) for some P > 0. Therefore, in this paper we put our main attention on solving 
the projection equation (1.4). The development of algorithms for the N C P ( X ,  F )  and 



V I P ( X ,  F )  has a long history in mathematical programming, see [7] for a comprehensive 
review of this literature. 
Defnition 1.1 The mapping F : Rn - Rn is said to  

(a) be monotone over a set X if 

(b)  be pseudomonotone over X if 

~ ( y ) ~ ( x  - y) 2 0 implies F ( x ) ~ ( x  - y) 2 0 v 2, Y E X ;  ( 1.7) 

(c) be strongly monotone over X if there exists a positive constant P > 0 such that 

((1) satisfy the solvability c,ontlition over X if X *  is nonenipty and for any x' E .I 

~ ( x ) ~ ( : r :  - x*) 2 o V x E X .  (1 .9 )  

When F(x)  is monotone, ant1 Lipschitz continuous, i.c., there exists a constant L > 0 
such that  

IIF(J9 - F(Y:lll I L.113. - Yll v J ,  Y E X ,  (1.10) 

Korpelevich [15] studied a certain modification of the gradient method that  used the idea 
of extrapolation. IIis method, which is called Extragradient Method, is as follows: 

where O < /3 < 1/L. The advantage of the above algorithm is that it only needs mono- 
tonicity, not as other algorithms need strong monotonicity, see [4,7,20]; the obvious draw- 
back of the extragratlient method is that  it also needs the Lipschitz constant, in practice, 
however, it is not easy t o  implement. In [21], the author gave a modification of the extra- 
gradient method in which there introduced the inexact line searches into ~xtragradient  
method and didn't need the Lipschitz constant. The modified extragradient method is 
as follows: 

Given constants r )  E (0, l ) ,  cr E (0 , l ) and  s E (0, oo), the iterative form is 

where Pk = s c r m k  and mk is the smallest nonnegative integer such that  

holds. The modified algorithm is of good numerical results, but when reduced t o  linear 
cases , it can't vie with those developed by He [9,11] and He and Stoer [lo] only for 
linear cases. In this paper our main aim is to  design a new projection and contraction 
method for solving general nonlinear complementarity problem. Our algorithm behaves 
effectively not only for linear cases but also for nonlinear cases. In special case (in 
particular for linear programming) our algorithm reduces t o  the same, which was also 
discussed in [11,22] and the later is designed for linear complementarity problem. 



2 Basic Preliminaries 

Throughout this paper, we assume that X is a nonempty convex subset of Rn and F ( r )  
is continuous over X. 
Lemma 2.1 [la]. If F ( x )  is continlious over a nonempty compact convex set Y ,  then 
there exists y* E Y such that 

~ ( y * ) ~ ( y  - y*) > 0 for all y E Y. 

Lemma 2.2 [23]. For the projection operator Px7 we have 
(i) when y E X, [Px(r)  - Z ] ~ [ P ~ ( ~ )  - y] 5 0 for all r E Rn; (2.1) 
(ii) ( 1  P x ( r )  - P x ( y ) J J  < 11s - yll for all y, r E Rn. (2.2) 

Lemma 2.3 [2,5]. Given s E Rn and d E R", then function 0 defined by 

is antitone (nonincreasing). 
Choose an arbil rary constant r1 E (0 ,  I ] ,  define 

where /3 is a posit,ive consta.nt. 
From (i) of lemma 2.2, take z = x - /3F(x) ant1 y = z, we have 

Combining (2.4), (2.5) and (2.6), we have 
Theorem 2.1. Let y ( z , P )  and .Ij,(z,P) be defined as in (2.4) and (2.5), respectively, 
then 

(i) p(x,/J) > l;i(s,p) for all x E X; 
(ii) x E X  a.nd p ( x , p )  = 0 iff x E X  and $(a,$) = 0 iff x E X*. 

Theorem 2.2. Suppose that  F ( x )  is continuous over X a.nd 77 E (071).  If S C X\X* is a 
compact set, then there exists a positive constant 6 such that  for all x E S and ,B E (0,6], 
we have 

{ F ( z )  - F ( f i [ x  - I ~ F ( X ) ] ) } ~ { ~  - Px[x  - PF(x)])  
5 (1  - ~ ~ ) F ( x ) ~ { z  - PX[s - PF(s)]}.  (2-7) 

Proof. Since S C S \X*  is a compact set and F(x)  is continuous over X, there exists a 
positive number 60 > 0 such that for x E S 

From lemma 2.3 and (2.8), for all z E S and P E (O,l], 

From the continuity of F ( s )  we know that  F ( x )  is uniformly continuous over X.  There- 
fore, there must exist a constant 6 > O(6 < 1)  such that for all x € S and /3 € (0, S], 



Combining (2.9)  and (2.10), for all x  E S and @ E ( 0 , 6 ] ,  we have 

the last inequality follows from (2.6) .  So we complete the proof. 

Remark 2.1. Theorem 2.2 ensures that the algorithm given in the next section is 
reasonable. 

Remark 2.2. When F ( x )  = D x  + c  and D  is a skew-symmetric matrix (i.e., D~ = - D ) ,  
then (2.7)  holds for = I ,  @ E (O,+oo) and T E X.  

3 Algorithms and Convergence Properties 

then we have 
Theorem 3.1 Suppose that  F ( T )  is continl~olls over X and satisfies the solvability con- 
dition (1.9). If there exists a positive nlimber @ such that  (2.7) holds for some x  E X ,  
then 

(x - X * ) ~ ~ ( X , @ )  > p ( x , @ )  vx*  E X * .  (3.2)  

Proof. Since F ( x )  satisfies the solvability condition (1 .9) ,  for x* E X *, we have 

( x  - ~ * ) ~ g ( x ,  @) = ( x  - x * ) ~ F ( P ~ [ x  - @ F ( x ) )  

= { X  - p x [ x  - ~ F ( X ) ] } ~ F ( P ~ [ X  - @ F ( x ) ] )  
t { P x [ x  - P F ( x ) ]  - z * ) T ~ ( ~ x [ z  - @ F ( x ) ] )  

2 { x  - P x [ x  - @ F ( X ) ] } ~ F ( P ~ [ X  - @ F ( x ) ] )  ( ~ s i n ~ ( 3 . 3 ) )  

= { x  - P x [ x  - P F ( x ) ] ) ~ { F ( P X [ ~  - P F ( x ) ] )  - F ( x ) }  + F ( X ) ~ { X  - PX[X  - @ F ( x ) ] )  
>_ (7 - l ) ~ ( x ) ~ { x  - P X [ x  - @ F ( x ) ] )  + F ( x ) ~ { x  - P x [ x  - @ F ( x ) ] ) ,  

(3.4) 
the last inequality follows from (2.7) .  Therefore, 

Choose positive constants s E ( 0 ,  +m) and 77 E ( 0 ,  I ) ,  we can describe our algorithm: 
ALGORITHM A 

Given xO E X ,  cu E ( 0 ,  I ) ,  y E ( 0 , 2 )  
F o r k  = 0 , 1 ,  ..., if xk  4 X*, then do 
1. Determine pk = sam,k, where m.k is the smallest nonnegative integer such that  



Let 

2. Calculate cp(zk, Pk) and g(xk,  Pk); 

3. Calculate pk = d x k ,  Pk)/llg(xk, P k ] ) l 2 -  

4. Set xk+' = pX[xk - y p k g ( ~ k , ~ k ) ] .  
when X = {x E Rn(l 5 x 5 u) ,  we can improve ALGORITHM A. 
For x E X , l e t  

N = {il(z; = I ;  and (g(x ,P)) ;  2 0) or  (xi  = u; and (g(x ,P)) ;  5 O)), 

( S B ( ~ I  P)) i  = (9(77 P)) i  - ( ~ N ( X ,  P))i,  (3.9) 

i = 1 ,2 ,  ..., n. Then for a.ny z*  E X* a.nd 2: E X ,  ( z  - ~ : * ) ~ ~ ~ ( x )  5 0 and 

Theorem 3.2 Asslime tha.t the conditions of theorem 3.1 holds, then 

(. - x * ) ~ ~ B ( . ,  PI 2 P( x , P )  Vx* E X * .  (3.11) 

Proof. The  result follows from theorem 3.1 and (3.10). 

ALGORITHM B (An improvement of ALGORITHM A) 
Given xO E X ,  a E (0, + m ) ,  11, rr E ( 0 , l )  and y E (0 ,2)  
For k = 0 ,1 ,  ..., if x* X * ,  then (lo 
1. Determine ,Bk = s c r m k ,  where 7nk is the smallest nollnegative integer such tha t  

holds; 
2. Calculate p(zk ,  Pk) and g(xk,  Pk) by (2.4) and (3.1), respectively; 
3. Determine gB(zk,  by (3.8) and (3.9) and ca.lculate 

Remark 3.1. When F ( x )  = D z  + c and D is skew-symmetric, (2.7) holds if we take 
q = 1 and ,B = 1, and in this case ALGORITHM B is also discussed by He [ l l ] .  We note 
tha t  in [ll] the search direction g(x) is given by 

Since D is skew-symmetric, we have 

g(x) = -D{x - Px[x - ( D x  +c)]}  + D x + c  
= DPx[z  - ( D z  + c)] + c = ~ ( x ,  1). 



So the search direction gB(x) given in [ll] is the same t o  gB(x,  1)  and the step-sizes are 
also the same. In particular, for linear programming, our algorithm can generate t,he 
same sequence to  tha t  of [ll]. When D~ # -D, the algorithm of [ll] is different with 
ours. When F ( x )  is a nonlinear mapping, there is no correspondent algorithm in [ l l ] ,  
but here our algorithm is generalized t o  nonlinear case. 

For the convergent properties, ALGORITHM A and ALGORITHM B are similar, so 
we only consider ALGORITHM B. 

Theorem 3.3. Suppose that  X* is nonempty and F ( x )  is continuous over X = {x E 
Rn( l  5 x 5 u). If F ( x )  satisfies the solvability condition (1.9), then for any x" E X*, the 
sequence {sk) generated by ALGORITHM B satisfies 

Proof. From (ii) of lemma 2.2 and t,heorem 3.2, we have 

which proves (3.16). 
Define 

dist(x, X * )  = inf{( (s  - x * ( / ( x *  E X*). 

Since (3.16) holds for any n: E X*, then form theorem 3.3, 

i.e., the sequence {.ck) is Fbjer-monotone relatively t o  X *. 

Theorem 3.4. If the conditions of theorem 3.3 hold, then there exists x* E X* such 
tha t  x k  i 5* as k + oo. 
Proof. Let x* E X*. I t  is easy t o  check tha t  each Fkjer-monotone sequence is bounded. 
Suppose 

lim dis t ( rk ,  X * )  = 60 > 0, 
k-03 

(3.19) 

then {xk) C S = {x E 5 dist(z, X*) ,  llx - z'll 5 llzO - ~ ' 1 1 )  and S is a compact 
set. Since S C X\X* is a compa.ct set,  then from theorem 2.2 there exists a positive 
const,ant 6 such that  for all x E S ant1 /3 E (0,6]  (2.7) holds. Therefore, 

pk 2 min{crb,s) > 0, V k .  (3.20) 

From theorem 2.1 and (3.20), 
infv(zk, Pk) > 0. 

From the definition of gB(z, P )  and the continuity of F ( z ) ,  



Combining (3.21) and (3.22) we have 

From (3.19) there exists an integer ko > 0 such that  for all k 2 ko 

On the other hand , (3 .18) ,  (3.23)  and (3.24)  gives 

which  contradict,^ (3.19) .  Therefore, 

From (3.25) and (3.18) thew exists x* E X* such that x k  - Z* as k - m. 0 

Remark 3.2. Wllen X* is nonernpty and F ( x )  is pseudomonotone over X ,  the conclu- 
tions of thereoms holtl, for in this case solval~ility condition holds. 

Remark 3.3. Froin lemnla 2.1, when X is a nonempty compact convex subset of Rn,  
X* # 0. When X is unbountletl, the nonempty conditions of X* can be found in the 
comprel~ensive paper [7]. 

4 Numerical Experiments 

In this section, the results of applying ALGORITHM I3 to a number of examples which 
have appeared in literature will be reported, and will be compared against the use of 
other algorithms. The termUNCP" is used to dtnote ALGORITHM B, " E G M 7 '  and 
"MEGM" refer to the extragradient method [15] and the modified extragradient method 
[21], respectively, while "LCP" refers to the method of [ l l ] ,  which was designed for 
the linear complementarity problem. In all the examples, we will take cy = 0.5 and 
rl = 0.95 (in numerical experiments, a large value TI will cause faster convergence). All 
the algorithms will terminate when y ( x ,  1) _< q ~ 2 ,  where E is a small tolerance. (note 

$4.' 1 )  2 ~ 1 1 .  - ?Y[" - F(1)1Il2). 

Example 1. This example is a 4-variable nonlinear complementarity problem reported 
by Kojirna and Shindo 1141. We take the fisrt steplenth s = &/4 and e2 = 10-16. 
Table 1 lists the result for this example. Our algorithm is much faster than the modified 
extragradient metshod for two different values of y.  Since this example is nonlinear and 
nonlipschitz continuous, we didn't consider the methods of "LCY" and " E G M " .  

Table 1. 
Results for example 1 



Algorithm Starting point Number of iterations Number of inner iterations 

LlEGM (o,o,o,o> 380 758 
NCP(y = 1.95 ) (0,0,0,0) 22 22 
NCP(y = 1.0) (0707o,o) 52 52 

MEGM (171,1,1) 395 785 
NCP(y = 1.95) (17111,l) 28 27 

NCP(y = 1.0) ( l , l J , l )  7 3 6 3 

Example 2. In this example, we consider a 4-variable equilibrium problem [li]. The 
function F : R x R: x R +  - R4 is of the form 

with the da ta  being the constants b2, b3 > 0 and CY E ( 0 , l ) .  For this problem, we will 
take two sets of constants: (tu, b2,b3) = (0.75,1,0.5) and (0.75,1,2). In this example, we 
take s = &/2 ant1 E' = lo-''. 

Table 2. 
Results for example 2. 

Parameter 1 Algorithm start ing point Number of Number of 
values I iterations inner iterations 

CY = 0.75 ( MEGM (17171,l) 103 0 
b 2 = 1 . 0  N C P ( y = 1 . 9 5 )  ( ~ , l , l , ~ )  42 0 

and c in a n-vector. X = [ l ,u] ,  where 1 = (0, ..., o ) ~  and u = (1, ..., I ) ~ .  For 'LEGMY' 
and " M E G M " ,  we take the first steplength s = f i / 7  while for " N C P "  we take 
s = , /4 /4 .  In this example, we take E~ = nl0-14, where n is the  dimension of the 
problem. " N C P ( y  = 1.95)" can view with "LCP(y  = 1.0)", and both of them behave 
better than " E G M "  and " M E G M "  do. Different starting points are of similar conclu- 

b3 =d 
CY = 0.75 
b2 = 1.0 
b3 = 2.0 

sions. 

NCP ( 7  = 1.0) ( L l , l , l )  56 0 
MEGM ( l J 7 l J )  4 1 0 
NCP(y = 1.95) ( l A l > l )  36 0 
NCP( 7 = 1.0) (171J71) 4 3 0 

Table 3. 

Example 3. In this example, we investigate the problem which was also discussed 
by Ahn [I].  F ( x )  = D s  + c, where 



Results for e x a m ~ l e  3 with starting ~ o i n t  (0. .... 0). 
Algorithm Number of iterations(1eft) and number of inner iterations(right) 

n= 10 n=100 n=200 n=500 n= 1000 

Example 4. In this example, we investigate a linear complementarity problem for 
Lemke's algorithm is known to run in exponential time (see [19, Chapter 61). This Prob- 
lem has a special s t r~ ic t~ i re  with c = (-1, - 1, ..., - l ) T  and 

EGM 59 0 59 0 59 0 59 0 58 0 
MEGM 59 0 59 0 59 0 59 0 58 0 
NCP(y = 1.95) 11 9 14 11 14 10 17 10 16 10 
N C P ( y = l . O )  31 27 31 26 31 25 31 25 31 24 

F ( x )  = D x  + c. This example was also discussed by IIarker and Pang [6], Harker and 
Xiao [8]. For "EGM",  we take s = f i / ( f i n ) ;  for " M E G M "  take s = f i l ( 4 J 5 j ) ;  for 
" N C P "  take s = &/2. IIere, n is the dimension of the problem. In this example, we 
take E~ = n10-'! From the results, we see that  for the starting point x0 = (0, ...., o ) ~ ,  
" N C P ( y  = 1.95)" converges slower than "LCP(y  = 1.0 or 1.95)" does. However, even 
in this case, our algorithm behaves better than "EGM" and " M E G M "  do. When we 
take the starting point x0 = (0.6, ..., 0.6) or (1, ..., l ) ,  " N C P ( y  = 1.95)" behaves better 
than "LCP(y = 1.95 or 1.0)" does. Here we only list out the computational results for 
xO = (0, ..,, 0). 

LCP(y = 1.95) 
LCP(y = 1.0) 

Table 4. 
R.esults for example 4 with starting point (1, ..., 1) 

39 
18 

T Example 5.  In this example, we consider F ( z )  = Fl (x )  + F2(x) ,x  = (x l ,  ..., xn) , X O  = 
xn+l = 0, Fl (x)  = ( f l  (x), ..., f , ( : ~ ) ) ~ ,  F2(x) = D x  + c, where fi(x) = x:-~ + x: + X ; - ~ X ;  + 
X ; X ; + ~ ,  i = 1, ..., n and D ,  c is the same to  those of example 3. We take X = [I, u], where 
1 = (0, ..., o ) ~  ant1 u = (1, ..., l )T.  For "MEGM7'  and "NCP", we take s = J?j/4 and 
E~ = n10-14, where n is the dimension of the problem. Also note that "NCP" behaves 
much better than " M E G M "  does. 

0 39 
0 19 

Algorithm 

EGM 
MEGM 
NCP(y = 1.95) 
N C P ( y = 1 . 0 )  
LCP(y = 1.95 
LCP(y = 1.0) 

0 39 
0 19 

"1" indicates that  the number of iterations exceeds 1000. 

Number of iterations(1eft) and number of inner iterations(right) 
n=10 n=20 n=50 n=100 n=200 n=500 

0 39 
0 19 

227 
150 
12 
32 
10 
26 

0 434 
5 202 
8 15 
16 36 
0 11 
0 26 

0 38 
0 19 

0 / 
5 305 
17 20 
30 56 
0 5 
0 25 

0 
0 

/ 
13 372 
42 26 
100 63 
0 11 
0 26 

/ 
16 456 
73 44 
158 71 
0 7 
0 26 

1 
21 593 
172 64 
221 85 
0 12 
0 27 

43 
317 
359 
0 
0 



Table 5 Results for example 5 with starting point z0 = 1. 
Number of iterations(1eft) and 

Algorithm number of inner iterations(right) 
n=10 n=20 n=50 n=100 

MEGM 58 57 60 59 61 60 62 60 
NCP(y = 1.95) 14 13 14 13 13 12 13 11 
N C P ( r  = 1.0 ) 20 19 19 18 19 18 19 17 
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