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Abstract

In this paper we propose a new global convergent iterative method for solving the
nonlinear complementarity problem and 1t’s related problems. The method behaves
effectively not only for linear cases but also for general nonlinear cases. In special
case, our method reduces to the same, which was also discussed in [9,11,22] for linear
cases.

1 Introduction

The nonlinear complementarity problem, denoted by NC P(R%, F), is to find z* € R
such that
F(z*)Tz* =0, F(z*) € R", (1.1)

where F is a mapping from R7 into R™. In this paper, we consider the following general
nonlinear complementarity problem: to find z* € X = {z € R"|{ < & < u} such that

FPa)T(z —2*) >0 Vz € X, (1.2)

where [ and u are two vectors of {R|Joc}™ and { < u. For this problem, we will denote
it by NCP(X, F). When X = R}, problem (1.2) reduces to problem (1.1). Let

X*={re X

z solves NCP(X, I)}. (1.3)

It is easy to see that £ € X™* if and only if = satisfies the following projection equation
(may be nonsmooth):

Px[z — fF(z)] = ¢ for some or any § > 0, (1.4)
where for any y € R", Px(y) = argmin{z € X|||z — y||} (1.5)
and || - || denotes the I, norm of R™ or it’s induced matrix norm. See [3] for a proof.

For the simplicity of X, it is easy to implement Px(y). When X is any other nonempty
convex subset of R™, we can denote the variational inequality problem (abbreviated to
VIP(X, F))similar to that of (1.2). We can also define X* = {z € X|z solves VIP(X, F)}.
From [3], we know that z solves VIP(X, F) if and only if = solves the projection equa-
tion (1.4) for some 3 > 0. Therefore, in this paper we put our main attention on solving
the projection equation (1.4). The development of algorithms for the NCP(X, F) and



VIP(X, F) has a long history in mathematical programming, see [7] for a comprehensive
review of this literature.
Defnition 1.1 The mapping F : R® — R™ is said to

(a) be monotone over a set X if

[F(2) = F(u)'(z ~9) 20 ¥ z,y € X; (1.6)
(b) be pseudomonotone over X if
F(y)T(z —y) > 0 implies F(z)T(z —y) >0 Vz,y€ X; (1.7)
(c) be strongly monotone over X if there exists a positive constant 8 > 0 such that
[F(z) — F(y)] (z — y) > Bljlz — y||* Vz,y€X; (1.8)
(d) satisfy the solvability condition over X if X~ is nonempty and for any r~ € .X
F2)T(x—2*)>0 VzeX. (1.9)

When F(x) is monotone, and Lipschitz continuous, i.e., there exists a constant L > 0
such that
[F(z) = F(y)ll < Lljlz —yll V2,y€X, (1.10)

Korpelevich [15] studied a certain modification of the gradient method that used the idea
of extrapolation. His method, which is called Extragradient Method, is as follows:

{ z* = Py[zF — BF(z*)]

ot = Px ek - gF(z%)), (1.11)

where 0 < # < 1/L. The advantage of the above algorithm is that it only needs mono-
tonicity, not as other algorithms need strong monotonicity, see [4,7,20]; the obvious draw-
back of the extragradient method is that it also needs the Lipschitz constant, in practice,
however, it is not easy to implement. In [21], the author gave a modification of the extra-
gradient method in which there introduced the inexact line searches into extragradient
method and didn’t need the Lipschitz constant. The modified extragradient method is
as follows:
Given constants n € (0,1),a € (0,1)and s € (0,00), the iterative form is

Tk = Px[xk - ﬂkF(zk)]
{ﬁ“=Rw#—mn#m (1.12)
where 8; = sa™* and my is the smallest nonnegative integer such that
1£(2*) = F(z*)|| < nllz* - =¥ (1.13)

holds. The modified algorithm is of good numerical results, but when reduced to linear
cases , it can’t vie with those developed by He [9,11] and He and Stoer [10] only for
linear cases. In this paper our main aim is to design a new projection and contraction
method for solving general nonlinear complementarity problem. Our algorithm behaves
effectively not only for linear cases but also for nonlinear cases. In special case (in
particular for linear programming) our algorithm reduces to the same, which was also
discussed in [11,22] and the later is designed for linear complementarity problem.




2 Basic Preliminaries

Throughout this paper, we assume that X is a nonempty convex subset of R* and F(z)
is continuous over X.

Lemma 2.1 [18]. If F(z) is continuous over a nonempty compact convex set Y, then
there exists y* € Y such that

Fiy ) (y—y*)>0forall yeY.

Lemma 2.2 [23]. For the projection operator Py, we have
(i) when y € X, [Px(2) — 2]T[Px(z) — y] < 0 for all z € R™; (2.1)
(i) | Px () - Pr()]| < |l — ] for all y, > € R". (29)
Lemma 2.3 [2,5]. Given z € R™ and d € R, then function @ defined by

_|IPx (= + 8d) — a|

9 , 0 2.3
(3) 3 B> (23)
is antitone (nonincreasing).
Choose an arbitrary constant 71 € (0, 1], define
p(z,B) = nF(z){z - Px[z — BF(2)]}, (24)
P(x, ) = nlle — Px[z — BF(x)](*/8, (2.5)

where 3 is a positive constant.
From (i) of lemma 2.2, take z = # — fF(x) and y = x, we have

p{z - Px[e — BF(0)}TF(z) > ||z — Px[z — BF ()| (2.6)

Combining (2.4), (2.5) and (2.6), we have
Theorem 2.1. Let ¢(z,3) and t(x, 8) be defined as in (2.4) and (2.5), respectively,
then

(1) w(z,8) > ¢¥(x,) for all z € X;

(i) € X and p(z,8)=0iff . € X and ¢(z,8) =0iff z € X*.
Theorem 2.2. Suppose that F(z) is continuous over X and 7 € (0,1). f S C X\X*isa
compact set, then there exists a positive constant § such that for all z € S and g € (0, 6],

we hav
) {F(a) = F(Px[z — BF@))}T{z - Px[s ~ BF(a)}
< (1 =n)F(«){z - Px[z - BF(2)]}. (2.7)

Proof. Since § C X\ X ™ is a compact set and F(z) is continuous over X, there exists a
positive number 6y > 0 such that for 2 € S

|Px[z ~ F(z)] ~ zf| > éo > 0. (2.8)
From lemma 2.3 and (2.8), for all z € S and 3 € (0,1],
e~ Pxle — BFNI/A > lle — Pxle — F()]| > b (2.9

From the continuity of F(z) we know that F(z) is uniformly continuous over X. There-
fore, there must exist a constant 6 > 0(6 < 1) such that for all z € S and 8 € (0, 4],

|F(Px[z — BF(2)]) - F(2)|| < (1 = n)éo- (2.10)



Combining (2.9) and (2.10), for all z € S and S € (0, §], we have

[F(z) - (Px[w — BF(x))]"{z — Px[z - BF(x)]}
<|[F(z) - F(Px[z — BF(z)])ll|e - Px[z - BF(z)]]

<A =nlz - Pxlz - BF@)*/8

< (1= n)F(z) {z - Px[z - BF(2)]},

the last inequality follows from (2.6). So we complete the proof. a

Remark 2.1. Theorem 2.2 ensures that the algorithm given in the next section is
reasonable.

Remark 2.2. When F(z) = Dz+c¢ and D is a skew-symmetric matrix (i.e., DT = = D),
then (2.7) holds for n = 1, § € (0,400) and = € X.

3 Algorithms and Convergence Properties

If we put,
glx,B) = F(Px[z - BF(z)]), B>0, (3.1)

then we have
Theorem 3.1 Suppose that F(z) is continuous over X and satisfies the solvability con-
dition (1.9). If there exists a positive number § such that (2.7) holds for some z € X,
then

(x —29)Tg(z,8) > oz, 8) VYz" € X~ (3.2)

Proof. Since F(x) satisfies the solvability condition (1.9), for * € X*, we have
{Px[z - BF(z)] - 2} F(Px[e - BF(z)]) > 0, (3.3)

(2 = a)Tg(z, 8) = (¢ — )T F(Px[z — BF(2))
= {a = Pyle - AF(@I)TF(Px[e - BF(z))
H{Px[z - BF(2)] - "}T F(Px [z — BF(x)
> {o - Py[e - SF(@)}TF(Pxlz — BF(2)]) (using(3.3))
= {z - Pxle — BF()\T{F(Px[z — BF(®))) — F(2)} 4 F(x)T{z — Px[z — BF(2)]}
> (n— 1)F()T{z - Px[z — BF(x)]} + F(2)T{z - Pxlz - AF()]},
(3.4)
the last inequality follows from (2.7). Therefore,

(z —2")Tg(z,B) 2 nF(2)"{z ~ Px[e = BF(2)]} = o(z, B). O
Choose positive constants s € (0,+00) and n € (0,1), we can describe our algorithm:

ALGORITHM A

Given 2° € X, « € (0,1), v €(0,2)
For k = 0,1,...,if ¥ ¢ X*, then do
1. Determine 8y = sa™*, where my is the smallest nonnegative integer such that

{z* - Py[z* —ﬂkF( )]}T{F(x) (Px[z — B F(z")])}
< (1= n)F(a")T{z* — Py[z* - B F(z")]} (3.5)



2. Calculate ¢(z*, 8x) and g(z*, Br);

3. Calculate py = (2%, 8¢)/||g(z*, B)|I2. (3.6)
4. Set z*+! = Px[z* — yprg(z*, 1)) (3.7)
when X = {2z € R"|l <z < u}, we can improve ALGORITHM A.

Forz € X, let

N = {i|(z; = {; and (g(z,5)); > 0) or (z; = u; and (g(z,5)); < 0)},

B ={1,2,..,n}\N. (3.8)
Let
0 1€ B
(ol )i = { (9(e, ) i€ N
(9B(x,8))i = (9(x,8))i — (gn(x, 8))is (3.9)
i=1,2,...,n. Then for any 2* € X* and 2 € X, (z — 2*)Tgn(z) < 0 and
(z — %) gn(z,8) > (z — )T g(z, B). (3.10)

Theorem 3.2 Assume that the conditions of theorem 3.1 holds, then
(z — 2" gn(z, B) > p(z,B) Vz* € X~. (3.11)
Proof. The result follows from theorem 3.1 and (3.10). O
ALGORITHM B (An improvement of ALGORITHM A)
Given 2% € X, s € (0,+00),n,e¢ € (0,1) and v € (0,2)

For k =0,1,...,if z* ¢ X*, then do
1. Determine 8, = sa™*, where my is the smallest nonnegative integer such that

{a* - Px[z* — B F(a®)]JT{F(a*) - F(Px[2* = BrF(2*)])}
< (1 =) F(a*) {z* — Px[z* - BeF(a")]) (3.12)

holds;
2. Calculate @(2*, 8x) and g(z*, 8x) by (2.4) and (3.1), respectively;
3. Determine gg(z*, 8) by (3.8) and (3.9) and calculate

pi = o(2F, Br)/ l9B(2*, Bi)II%; (3.13)

4. Set zFt1 = Py[a* — vprgp(F, Be)]. (3.14)

Remark 3.1. When F(z) = Dz + ¢ and D is skew-symmetric, (2.7) holds if we take
n=1and § = 1, and in this case ALGORITHM B is also discussed by He [11]. We note
that in [11] the search direction ¢g(z) is given by

g(z) = DT{z - Px[z — (Dz + ¢)]} + Dz + c.
Since D is skew-symimetric, we have

g(z)= —D{z — Px[t— (Dz +¢)]} + Dz +¢
= DPx[z — (Dz+¢)]+ ¢ = g(z,1). (3.15)



So the search direction gg(z) given in [11] is the same to gg(z,1) and the step-sizes are
also the same. In particular, for linear programming, our algorithm can generate the
same sequence to that of [11]. When DT # —D, the algorithm of [11] is different with
ours. When F(z) is a nonlinear mapping, there is no correspondent algorithm in [11],
but here our algorithm is generalized to nonlinear case.

For the convergent properties, ALGORITHM A and ALGORITHM B are similar, so
we only consider ALGORITHM B.

Theorem 3.3. Suppose that X™ is nonempty and F(z) is continuous over X = {z €
Rl < z < u}. If F(z) satisfies the solvability condition (1.9), then for any z* € X*, the
sequence {z¥} generated by ALGORITHM B satisfies

2"t — 2 |* < ffz* = 2*)|* = 3(2 = ), B1)/lgm (aF)]% (3.16)
Proof. From (ii) of lemma 2.2 and theorem 3.2, we have

lz*%1 — 2*||* = || Px[2* = vorgn(2*, B)] — 2*|)?
< lz* ~ yorgp(x*, Be) — |||
= |la* — 2*|* = 2vprgn(z¥, )T (2% — =*) + v?p}llgB (2, Be) ||
< jz* — 2|2 = 2vprp(a*, Br) + 72 pillgn(F, Bi)I?

lle* — ™ ||* = 2ye(a*, B/ llgs(2*, Bl + v2 (¥, Bk)?/llgs(z*, Bi)lI*
= Ha'k - T*“2 -7(2- 7)99(1k7/Bk)2/“95(xk’ﬂk)n2v
which proves (3.16). a
Define
dist(z, X™) = inf{||Jz — «™|||z" € X*}. (3.17)
Since (3.16) holds for any @ € X~, then form theorem 3.3,
[dist(2*+1, X )2 < [dist(a*, X0 = 72 = 1)@, 0 Nan(a, Bl (3.18)

i.e., the sequence {z*} is Féjer-monotone relatively to X *.

Theorem 3.4. If the conditions of theorem 3.3 hold, then there exists £* € X™* such
that ¥ — 7* as k — oo.

Proof. Let z* € X ™. It is easy to check that each Féjer-monotone sequence is bounded.

Suppose
Jim dist(z*, X*) = 60 > 0, (3.19)

then {zF} C S = {z € X|éy < dist(z,X™), ||z — 2*|] < ||2° — 2*||} and S is a compact
set. Since S C X\X™ is a compact set, then from theorem 2.2 there exists a positive
constant é such that for all ¢ € S and 3 € (0,6] (2.7) holds. Therefore,

Bx > min{aé, s} > 0, Vk. (3.20)

From theorem 2.1 and (3.20),
infc,o(a:k,ﬂk) > 0. (3.21)

From the definition of gg(z,3) and the continuity of F(z),

suplgs(a®, Br)|| < 4oo. (3.22)



Combining (3.21) and (3.22) we have
info(z*, Be)?/|lgs(z*, Bu)))? = €0 > 0. (3.23)
From (3.19) there exists an integer kg > 0 such that for all £k > ko
[dist(2*, X*)]* < 6§ + eo(2 - 7)7/2. (3.24)
On the other hand , (3.18), (3.23) and (3.24) gives

[dist(z¥+1, X*))? < [dist(z*, X*)]? — eo(2 —7)¥
<65 —eo2—y/2 Yk >k,

which contradicts (3.19). Therefore,

lim dist(z*, X*) = 0. (3.25)
k—oo

From (3.25) and (3.18) there exists z* € X~ such that z¥ — 7* as k — 0. o
Remark 3.2. When X* is nonempty and F(z) is pseudomonotone over X, the conclu-
tions of thereoms hold, for in this case solvability condition holds.

Remark 3.3. From lemma 2.1, when X is a nonempty compact convex subset of R™,
X™ # 0. When X is unbounded, the nonempty conditions of X* can be found in the
comprehensive paper [7].

4 Numerical Experiments

In this section, the results of applying ALGORITHM B to a number of examples which
have appeared in literature will be reported, and will be compared against the use of
other algorithms. The term“NCP” is used to denote ALGORITHM B, “FGM” and
“MEGM? refer to the extragradient method [15] and the modified extragradient method
[21], respectively, while “LC P” refers to the method of [11], which was designed for
the linear complementarity problem. In all the examples, we will take &« = 0.5 and
n = 0.95 (in numerical experiments, a large value 7 will cause faster convergence). All
the algorithms will terminate when ¢(z,1) < ne?, where ¢ is a small tolerance. (note

¢(z,1) 2 nllz = Px[z = F(@)]|]*).

Example 1. This example is a 4-variable nonlinear complementarity problem reported
by Kojima and Shindo [14]. We take the fisrt steplenth s = \/77/4 and €* = 1076,
Table 1 lists the result for this example. Our algorithm is much faster than the modified
extragradient method for two different values of v. Since this example is nonlinear and
nonlipschitz continuous, we didn’t consider the methods of “LCP” and “EGM?™.

Table 1.
Results for example 1



Algorithm Starting point Number of iterations Number of inner iterations

MEGM (0,0,0,0) 380 758
NCP(y =1.95) (0,0,0,0) 22 22
NCP(y = 1.0) (0,0,0,0) 52 52
MEGM (1,1,1,1) 395 785
NCP(y = 1.95) (1,1,1,1) 28 27
NCP(y = 1.0) (1,1,1,1) 73 63

Example 2. In this example, we consider a 4-variable equilibrium problem [17]. The
function F': R X R2 x Ry — R*is of the form

- +p2t+ps3
y — a(bapy + baps)/p1
by —y — (1 — a)(bzp2 + baps)/p2
by —y

F(y,p1,p2,p3) =

with the data being the constants by, b3 > 0 and « € (0,1). For this problem, we will
take two sets of constants: («, by, b3) = (0.75,1,0.5) and (0.75,1,2). In this example, we
take s = \/77/2 and £? = 107",

Table 2.
Results for example 2.
Parameter | Algorithm Starting point Number of Number of
values iterations inner iterations
@ =0.75 | MEGM O (,L,1,1) 103 0
by = 1.0 | NCP(y = 1.95) (1,1,1,1) 42 0
b3 = 0.5 | NCP (y = 1.0) (1,1,1,1) 56 0
@ =075 | MEGM (1,1,1,1) a1 0
by =10 | NCP(y = 1.95) (1,1,1,1) 36 0
b3 =20 | NCP(vy=1.0) (1,1,1,1) 43 0

Example 3. In this example, we investigate the problem which was also discussed
by Ahn [1]. F(x) = Dz + ¢, where

and ¢ in a n-vector. X = [l,u], where [ = (0,...,0)T and u = (1,...,1)T. For “EGM”
and “MEGM?”, we take the first steplength s = ,/7/7 while for “NCP” we take
s = /n/4. In this example, we take ¢ = n107'¥, where n is the dimension of the
problem. “NCP(y = 1.95)” can view with “LCP(y = 1.0)”, and both of them behave
better than “EGM” and “MEGM” do. Different starting points are of similar conclu-
sions.

Table 3.



Results for example 3 with starting point (0, ...,0).

Algorithm Number of iterations(left) and number of inner iterations(right)
n=10 n=100 n=200 n=500 n=1000
EGM 59 0 59 0 59 0 59 0 58 0
MEGM 59 0 59 0 59 0 59 0 58 0
NCP(y = 1.95) 11 9 14 11 14 10 17 10 16 10

NCP(y = 1.0) 31 27 31 26 31 25 31 25 31 24
LCP(y = 1.95) 39 0 39 0 39 0 39 0 38 0
LCP(y = 1.0) 18 0 19 0 19 0 19 0 19 0

Example 4. In this example, we investigate a linear complementarity problem for
Lemke’s algorithm is known to run in exponential time (see [19, Chapter 6]). This Prob-

lem has a special structure with ¢ = (=1, -1, ...,—1)7 and
1 2 2 2
o 1 2 --- 2

p=|001 - 2|
6 00 ---1

F(z) = Dz + ¢. This example was also discussed by Harker and Pang [6], Harker and
Xiao [8]. For “EGM”, we take s = \/7/(v/2n); for “M EGM” take s = /217/(4,/7); for
“NCP” take s = \/n/2. llere, n is the dimension of the problem. In this example, we
take €2 = n107!%. From the results, we see that for the starting point z° = (0, ..., 0)7,
“NCP(y = 1.95)” converges slower than “LCP(y = 1.0 or 1.95)” does. However, even
in this case, our algorithm behaves better than “EGM” and “M EGM” do. When we
take the starting point z® = (0.6,...,0.6) or (1,...,1), “NCP(y = 1.95)” behaves better
than “LCP(y = 1.95 or 1.0)” does. Here we only list out the computational results for
z% = (0,...,0).

Table 4.
Results for example 4 with starting point (1,...,1)
Algorithm Number of iterations(left) and number of inner iterations(right)
n=10 n=20 n=50 n=100 n=200 n=500
EGM 227 434 [ 0 / / / /

0

MEGM 150 15 202)5 305 13 372 | 16 456 | 21 593 | 43
NCP(y = 1.95) 12 | 8 15|17 20 42 26 | 73 44 | 172 64 | 317
NCP(y = 1.0) 32 116 36| 30 56 | 100 63 | 158 71| 221 85 | 359
LCP(y =1.95 1010 11| 0 510 11

LCP(y = 1.0) 26 | 0 26 | 0 25 (0 26
“/” indicates that the number of iterations exceeds 1000.

710 12 | 0
26| 0 2710

0
0

Example 5. In this example, we consider F(z) = Fy(z)+ Fy(z),z = (z1,...,2,)7, 20 =
Zntt = 0, Fi(2) = (f1(2), s fu())T, Fal2) = Da+ e, where fi(z) = 22, +a? +2;12; +
T;Tit1, ¢ = 1,...,nand D, c is the same to those of example 3. We take X = [[, u], where
I =(0,....,0)7 and v = (1,...,1)T. For “MEGM” and “NCP”, we take s = ,/7/4 and
e? = n107', where n is the dimension of the problem. Also note that “NCP” behaves
much better than “M EGM?” does.



Table 5 Results for example 5 with starting point 2° = [.

Number of iterations(left) and

Algorithm number of inner iterations(right)

n=10 n=20 n=>50 n=100
MEGM 58 57 60 59 61 60 62 60
NCP(y=195) | 14 | 13 14 | 13 13 | 12 13 | 11
NCP(y=1.0) | 20 | 19 19 | 18 19 | 18 19 | 17
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